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We develop a numerical method for solving singular differential equations and 

demonstrate the method on a variety of singular problems including first order ordi-

nary differential equations, second order ordinary differential equations which have 

variational principles, and one partial differential equation. 

The method is a variation of steepest descent in Sobolev spaces which is a variation 

of descent based on the Euclidean gradient. We cast the differential equation as a 

least squares problem yielding a functional representing the equation. A weighted 

Sobolev space for the problem is chosen where the weights are based on the functional. 

This produces gradients which take into account both the weights and the boundary 

conditions for the given equation. 

Results are presented which demonstrate the improvements obtained by comput-

ing based on weighted Sobolev gradients over computing based on either unweighted 

Sobolev gradients or on the Euclidean gradient. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

This paper exhibits a numerical method for the study of differential equations 

which have linear singularities. The method extends the work pioneered by Neuberger 

[N5], where he introduces steepest descent based on Sobolev gradients. Our gradients 

arise from weighted Sobolev spaces such as those introduced by Kufner [KA] and 

Elschner [E]. The weights (and spaces) depend on the singularity of the differential 

equation we wish to consider and on the functional we use to represent the equation. 

We refer throughout the paper to three types of steepest descent: L2 steepest descent, 

Sobolev steepest descent, and weighted Sobolev steepest descent. We show that for 

the problems studied, weighted Sobolev descent outperforms Sobolev steepest descent 

which in turn outperforms L2 descent. The value of Sobolev steepest descent has 

already been established for difficult problems, a few of which will be referenced 

in the next section. This paper demonstrates not a fast solution to one applied 

problem, but rather a systematic approach for using weights to improve an already 

established method. The numerical method is applied throughout the paper on first 

order problems, variational problems, and one partial differential equation in order to 

demonstrate the adaptability of the method. Methods traditionally used to improve 
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L2 descent such as conjugate gradient or multi-step methods are also applicable to 

descent based on Sobolev gradients and weighted Sobolev gradients. 

We first develop the theory for the following general class of singular first order 

ordinary differential equations. 

? W ( * ) = /(*»y(*)) , , 
(1.1) 

h y(a) + k2y(b) = k3 

where a,b £ 7, / € Cf, q G Cj, and q{t) = 0 for some t € I = [0,1]. Here we 

walk the reader through the numerical method in great detail, outlining first the 

descent methods without constraints and then adding the constraints. The method 

is then extended to certain second order differential equations which have variational 

properties such as Legendre's equation. Finally, we apply our method to the first 

order partial differential equation on 0 = 7 x 7 , 

®«i(»,y) + yu2(x,y) = 0 
(1.2) 

u(a:,0) = 1 = u(0,y) V (x,y) € O 

which has linear singularities in each variable. 

Throughout the paper we exhibit the continuous ideas which motivated the nu-

merical algorithms, posing questions which we wish to answer in the continuous case, 

then consider the discretized numerical algorithms, followed by comparisons of the 

three methods. Chapter 3 is a prerequisite for Chapters 4 and 5 because we outline 

certain information on projections and linear systems solvers in Chapter 3 which are 

assumed in the later chapters. 



The advantages of the algorithm will be expanded upon in the conclusions, but 

briefly they are as follows: The algorithm we put forth outperforms L2 and Sobolev 

steepest descent in every case considered. The algorithm is flexible and can be easily 

adapted to consider a wide variety of different types of differential equations with 

varying boundary conditions. The success of the numerical algorithm points the way 

for further study of the continuous theory which motivates the numerics. 

1.2 History 

Steepest descent goes back as far as Cauchy and Sobolev steepest descent was 

first introduced by Neuberger [N6]. Neuberger and his students have demonstrated 

the power of Sobolev steepest descent for many specific problems. See [K], [G], [DM] 

for examples of Sobolev steepest descent on non-singular problems and see [N2] for 

an example of a nonlinear second order differential equation with nonlinear singu-

larity arising from a problem concerning transonic flow. Existence and uniqueness 

arguments for singular problems in Sobolev spaces have been given by Schuchman 

in [S] and by Canic and Keyfitz in [CK]. For a specific paper concerning Sobolev 

gradients which are constructed specifically based on the problem at hand (as ours 

are), consider the paper [RN]. 

While mathematicians and scientists have sought solutions to differential equa-

tions using steepest descent based on the discretized L2 gradient (or Euclidean gradi-

ent), we demonstrate that the choice of the underlying space (and thus the underlying 



gradient) is all important to developing efficient numerical methods. Support for this 

belief has been offered before for non-singular problems by Neuberger. In [N6], Neu-

berger addresses this point, comparing L2 steepest descent to Sobolev steepest descent 

for the differential equation y' = y, y(0) = 1. His result indicates that using the stan-

dard gradient one may expect a larger number of divisions of the interval to result in 

smaller descent step sizes and thus slower convergence rates. On the other hand, for 

the Sobolev gradient the step size remains large regardless of the number of divisions. 

Indeed, Neuberger points out that solving the problem with machine accuracy and 

100 divisions on the interval I requires 500,000 iterations using the standard gradient 

and only 7 using the Sobolev gradient. 

We show similar results for singular problems where weighted Sobolev steepest 

descent outperforms Sobolev steepest descent. We use throughout this paper the 

phrases L2 steepest descent, Sobolev steepest descent, and weighted Sobolev steepest 

descent to indicate whether the gradient flow arises from an L2 space, a Sobolev space 

without weight, or a weighted Sobolev space. 



CHAPTER 2 

A MOTIVATING EXAMPLE 

This chapter introduces the spaces and techniques used throughout the paper as 

well as illustrating our first example. This chapter also puts forth here the necessary 

continuous theory for the remainder of the paper. The example which follows marks 

the departure from Neuberger's work by adding the weighted spaces to the descent 

process while at the same time supporting his belief that one observes vastly improved 

numerical results by choosing a space which is well suited to the problem. 

2.1 Introduction to Spaces 

We introduce the spaces here in the continuous case although for the numerical 

work we will be using discretized versions of these spaces. The discrete spaces are 

defined in Chapter 3. Consider the simple problem, 2ty' = y on I = [0,1] with final 

condition y(l) = 1 and cast the equation as a least squares minimization problem, 

setting 

J(u) = Jp-3U' - uf 

for every u € Cj where j denotes the identity on I. If there existed a C1 solution, 

then a zero of J would indicate this solution. The fact that there is no C 1 solution 

motivated the development of the spaces which follow. We note here that the results 
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we obtain for this problem are not as precise as results we obtain in later examples. 

This is due to the fact that our motivating example is singular in two senses. First, 

the problem is singular in the traditional sense that we cannot solve for y' on the 

interval and, second, the solution has infinite derivative. Later problems, such as 

ty' = y, which have solutions with finite derivatives yield machine precision results. 

We proceed to consider three Hilbert spaces and seek solutions via steepest descent 

based on gradients arising from each of the spaces. These spaces and notations remain 

constant throughout the paper. Let L = Lj and (•, -)L denote the L inner product. 

Define 

-Di 

/ 

\ 
u 

< : u € Cj 

k 

-LxL 

H KlDl 

{u,v)H = (u,v)l + (Di{u),Di(v))l. 

Of course, if u 6 Cj then D\{u) = u' and for any Di(u) = u' where ' denotes 

the generalized derivative. Using the same technique to develop the weighted Sobolev 

space, we define for any w € Cj which is positive almost everywhere, 

-LxL 

D™ = 

\ 
u 

wu 

u eC} 

Hu TTl D? 



If to = 1 then Hw = Hi — H and if w = j and u € C] then D™(u) — .Di(w) = ju'. 

Neuberger has shown [N4] that D\ is a function in the sense that no two elements 

of D\ have the same first coordinates and distinct second coordinates. We now show 

that D\ is a function. Thanks to John M. Neuberger for his ideas on this proof. 

Theorem 1 If j(t) = t on I then D[ is a function in the sense that no two elements 

of D[ have the same first coordinates and distinct second coordinates. 

Proof. Let 

f \ 
u 

A = : u € Cj > 

1 jvf ) 
J 

so that A = D{. Let 

( f 

( f \ ( an ^ 
be elements of A. Let 

\h) \ia'n) 

converging to 
bn \ 

in L2 x L2 and let 

\9 / \jKJ 

be a sequence in A 

f \ 
be a sequence in A converging to 

h 
in L2 x L2. We prove four lemmas, the last resulting in the proof of the theorem. 

Lemma 1 ( j a n ) n is uniformly Cauchy on I. 

Proof. an —> / in L2 implies an —> f in L1, thus (an)N is L1 Cauchy. Similarly, 

(ja'n)n is L1 Cauchy. Let e > 0. Let Ni in N such that for all n, m > Ni,fr \an — am\ < 

Let N2 in N such that for all n,m> N2, f j \ ja'n — ja'm\ < Let N = max{Ni, iV2}, 

t e I, and n,m> N. j ta n(f)- tam( i ) | = | /o0'an)'-(iam)'| = | fo ja'n-j
a'm+an-am\ < 

fo \jan jam\ fo lan < 2 2 — 



Lemma 2 (jan — jbn)n converges to zero uniformly on I. 

Proof. Since (jan)^ is uniformly Cauchy, jan —> jf uniformly and since (jbn)n is 

uniformly Cauchy, jbn —• jf uniformly. Hence, jan — jbn —> jf — jf = 0 uniformly. 

Lemma 3 | fi(jct'n — jb'n)| converges to zero uniformly on I. 

Proof. Let e > 0. From Lemma 2 let Ni € N such that for all n > \xan(x) — 

xbn(x)\ < | for every x € I. Let jV2 G N such that n > -/V2, ||an — 6n|| < | . Let 

n > max{Ni, JV2} and s,tel.\ fi ja'n - jb'n\ = | fi(jb'n + bn - bn +an - an - ja'n)| = 

I X f ( 0 ' ^ y - 0 ' « n ) 0 + i ? K - ^ ) l < IXfCOW-O'-OOI+Xf < I t b n ( t ) - t a n ( t ) -

s&„(s)+san(s)| + ||a»-&n|| < |i&n(0-<an(t)| + |s6n(s)-5an(5)| + ||an-fenjj < § + § + § = 

e. 

Lemma 4 | fi(g — /i)| = 0 for every s,t € I. 

Proof. Recall, ja'n —> g in L2 implies ja'n —> g in L1 and jb'n —> h in L2 im-

plies jb'n -+ h in L1. Pick s,t 6 I and we have | fig - fija'J < fi\g - ja'n\ -> 

0 and \fih - fi jb'J < fi \h - jb'n\ -+ 0. Therefore, lim^oo fija'n = fig and 

lim^oo fijb'n = fi h. We conclude \fi(g - h)\ = | fig - fi h\ = |limn^oo fija'n -

limn-^oo fi jb'n\ = I limn^(X1(/j(ja'ri - jb'n))\ = lim^oo | fi(ja'n - jb'n)\. Thus, J / f o -

h) | = lirrin-̂ co j fi(ja'n — jb'n) |. Let e > 0 and from Lemma 3 choose N € N such that 

for all n > N, | fi(ja'n - jb'n)\ < e for every s,t £ I. Then, lim^oo | fi(ja'n - jb'n)\ < e 

for every 5, t £ I. Hence for every e > 0 and for every s, t € I we have | fi(g — h) | < e 

thus fi(g — h) — 0. This implies that g — h = 0 almost everywhere. For if g — h ^ 0 



almost everywhere then there exists x and e > 0 such that, without loss of generality, 

g — f > 0 on (x — e, x + e). Therefore, /®*e
£ / — g > 0, a contradiction. Conclude, 

I fliff — h)\ = 0 in L2 and g — h almost everywhere, q.e.d. 

Theorem 2 D{ is a non-expansive closed bounded densely defined linear operator. 

Proof. The fact that D{ is closed follows from its definition. Recall that D{ is 

densely defined iff the domain of D[ is dense in L. But the polynomials on I are dense 

in L and Hj = dom(D[) is a superset of the polynomials on I and a subset of L, thus, 

D\ is densely defined. Since we have for any u £ Hj, 

ll-DiiHt _ < , 

N k IMU + II-DWIL" 

we see that D[ is bounded and non-expansive as an operator from Ilj to L. q.e.d. 

We demonstrate that Hw is a larger space by showing that the solution to our 

motivating example is in Hw but not in H. We follow this with a proof that Hw is a 

Hilbert space. 

Theorem 3 H is a proper subset of Hj. 

Proof. Suppose it G H. There exists, 

hence, 
u„ \ 

\WUn/ 

u \ 

f u n \ 

\ < / 

f Uv \ 
such that 

\UnJ 

in L x L. We conclude H C Hw. 

wu / 

u \ 

\« / 
in L x L, 

We claim that z = y/j € Hj\H. We first show that 2 € Hj. We must show that 
1 OL \ (a\ ^ Wjj \ 

z =Z 7Ti where — limn—>oo I for some sequence (un) G C) UJ UJ \3<) 
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n(®) 

Put 

' _ I n 3 / 2 x 2 + | n l / 2 a . if a; € [0,1] 

if 31 € [J, 1] 

n G C? since « „ ( — ) = ^ = «»( i+)- «» € Cj since < ( £ - ) = ^ = < ( £ + ) • 

Since tin —» = u pointwise almost everywhere, un —* \ / ] = u. Since ju'n 

(2.1) 

u 

& — ju' pointwise almost everywhere ju'n ^ = ju'. We conclude u G Hj. 
(cc\ a\ 

To demonstrate that z £ H we show z ^ -K\ 

a vn\ 
\N 

for any pair 

\N 

satisfying 

lim„-

\P. </ 

where vn G Cj. If there exists such a sequence converging in 

L x L then ( t / ) is a Cauchy sequence in the Hilbert space L converging to z' L, a 

contradiction, q.e.d. 

Neuberger has shown [N4] that the space H is the often studied space H}'2 and 

we will show that Hw is an alternate definition of a Hilbert space defined in Kufner. 

Theorem 4 Hw is a Hilbert space. 

Proof. Certainly, (u,v)Hvt = {u,v)L + (Dfu,D™v)L is an inner product, so we 

show only that Hw is complete. If (un) is a Cauchy sequence in Hw then there 

exists 
Ur. 

G Dw such that un = 7Ti 

Vn . 

( u„ \ 

\Vn/ 

. Since (un) is Cauchy in Hw we have 

l " n - « | | L 0 and |jun — v^L —* 0 for some G L x L. We conclude that 

||un — = ||it„ - u\\L + ||t>„ — ull^ —» 0 and thus ||un — —> 0 in Hw. q.e.d. 

A discussion of the history of generalized derivatives would be too lengthy to 

include here and we refer the reader to [A]. We have already stated that H is the 
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often studied Hilbert space, H]'2. We now observe that Hw is a special case of the 

spaces defined by Kufner [KA]. Let Da be the ath generalized derivative, where a 

is a multi-index, a = ( a l s . . . , ak) and J2i K l = k, where k denotes the number of 

derivatives, p indicates the overlying Lp space, 0 C and a = {cra : \a\ < k}. We 

now have the space 

w = (wk*(n,<j), II-IU) 

where the norm is given by 

| |u|| = I / \Dau(x)\VVoc{x)d-

{\a\<kJU 

Setting a — (1, t2) we have the space, 

w = ( » * ' ( « , ,7), H I ) 

l/p 

where if u £ Cj then 

Mlw = / u 2 + w2u'2 = IMIff. 

Theorem 5 Hw = W 

Proof. Let P denote the polynomials with rational coefficients. Each of H and 

W are subsets of L containing P and P is dense in L, thus each of H and W are 

dense in L. Furthermore, DpII# = ||p|lw for every p € P. Let x € W. There exists a 

sequence (pn) € P such that pn x. Also, ||p„ — x\\L < \\pn — x^w implies pn x. 

pn ^ x implies (pn) is a W-Cauchy sequence. Since ||p||ffw = ||p||w for every p 6 P, 

. A H 
(pn) is a //,j,-Cauchy sequence also. Thus, there exists x such that pn x. Finally, 
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||Pn - X\\L < ||Pn - &\\w implies pn —* x. But limits are unique in L thus x = x. We 

conclude that W C Hw and a symmetric argument shows that Hw C W. q.e.d. 

With the notation just defined, we redefine J. As defined above, the domain of 

J was all Cj functions but this is not acceptable, as the solution to our problem is 

y(t) — \ f i is not Cl. Thus we redefine 

J(u) = 

for every u £ Hw and seek a solution in Hw. 

2.2 Results 

Having demonstrated the continuous properties of the spaces, we list some results 

for this problem. Table 2.1 illustrates our claim that the number of iterations and the 

time required to solve the problem both decrease while the accuracy increases as we 

consider L, H, and Hw descent respectively. Table 2.2 demonstrates how drastically 

results change as we increase the number of divisions. While the Hw descent still 

performs well, L descent was unable to obtain the desired accuracy. When in future 

examples we use a small number of divisions or a large stopping criteria it is for 

precisely the reasons demonstrated here. In many cases L and H will simply not 

converge for too tight a stopping criteria or for too large a number of divisions. We 

have observed that the order of magnitude of the gradient for Hw descent is usually 

on the order of the stopping criteria. This is certainly a desirable quality for steepest 

descent which is not shared by L or H descent for singular problems. 
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Figure 2.1 shows the difference after three iterations between the two descent pro-

cesses. The graph shows four lines. They are shaded from light to dark and vary 

from thick to thin. Respectively they represent the initial estimate, the Sobolev ap-

proximation to the solution after 100 iterations, the weighted Sobolev approximation 

to the solution after three iterations, and the solution itself. The advantage of the 

weight near the origin (where the singularity occurs) is clear from the graph. The 

results in Figure 2.1 are supported by the following reasoning. L descent does not 

take the derivative of the function into consideration, hence H descent outperforms 

L descent. While H descent considers the derivative, the solution does not belong 

to H. Since \/t € HW\H, Hw descent outperforms H descent. These difficulties in 

the continuous setting carry over to the numerical settings. We will see examples in 

later chapters where we are unable to get acceptable accuracies using L or H descent 

methods in any amount of time, while we obtain machine accuracy results using Hw 

descent, 

2.3 Convergence 

The next theorem, due to Neuberger [N4], guarantees convergence in the contin-

uous case for the problem stated and for the problems follow for each of the Sobolev 

spaces considered. 

Theorem 6 Suppose 7i and K. are Hilbert spaces and G € L(H,/C). Suppose g E IC, 

v € "H, Gv — g, and = |j |G« — g\\2 for every u € H. If x £ H and z is the 
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Table 2.1: Motivational Problem 

2ty' - y = o y(l) = 2 N = 100 

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err. 

L 21518 208 10~5 10~2 1.3 x 10"1 

H 830 10 10"5 10~3 7.1 x 10~2 

Hw 11 1 10~5 10"5 2.7 x 10"3 

Table 2.2: Motivational Problem 

2ty' - y = 0 y(l) = 2 N = 1,000 

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err. 

H 10,000 1290 10-1° 10"4 4.1 x 10-3 

26 3 o 1 ©
 

10~6 8.7 x 10"4 

Table 2.3: Motivational Problem 

2ty' - y = 0 y(l) = 2 N = 10,000 

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err. 

Hw 41 53 10"10 10"8 2.8 x 10-4 
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1.5 

0.5 

Figure 2.1: Motivational Problem 
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function on [0, oo) so that 

^(0) = x,z'(t) = — (V(f>)(z(t)),t > 0 

then u = limn-^oozit) exists and Gu = g. 

If we consider D\ as an operator on H, then Di is bounded, [N4], and we have 

shown in Section 2 that D[ is bounded as an operator on Hj. Thus we may apply 

the theorem in either space putting v(t) = \ft and g .= 0. In H, we have H = H, 

/C = Gu = 2jDiu — u, and V = V # . In Hw, we have H = Hw, K, — 3?, and 

Gu = 2 D i ( u ) — u and V = VHw-



CHAPTER 3 

FIRST ORDER PROBLEMS 

This chapter presents a numerical method for solving a general class of singular 

first order differential equations with various constraints. After presenting the discrete 

weighted steepest descent, we demonstrate the distinction between descent in the 

three Hilbert spaces. Finally, we offer examples of the algorithm by considering 

unconstrained, constrained, and partially constrained problems. 

3.1 The Problem 

Let k%, k2, k3, a, b € with a < b and q € Cj. Let / : [a, b] x 5ft —• 9? be differen-

t i a t e with respect to the second variable. The problem is 

q{t)y'(t) = f(t,y{t)) 
(3.1) 

hy(a) + hy{b) = k3. 

3.2 Numerical Method in Detail 

We break the problem into two cases, one describing the solution to the problem 

without boundary conditions and the other incorporating boundary conditions. The 

former of these two cases may be considered entirely a subset of the latter for both 

coding and theoretical considerations and is presented here to introduce the method 

in its simplest form. 

17 
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3.2.1 q(t)y'(t) = f(t,y(t)) without Boundary Conditions 

We first introduce the necessary notation, much of which was motivated by [Nl] 

and [N6]. 

Throughout the paper denotes the Euclidean norm and we denote x £ 

by x = xTO). Let ki, &2> b £ with a < b and q € C}. Let I = [a, 6] and 

/ : I x 9? —• be differentiate with respect to the second variable. Suppose n is the 

number of divisions into which we partition the interval [a, 6], and 8 = (b — a)]n. Let 

e be the stopping criteria for our algorithm.; we stop when \\ynevj — y\\L < e where y 

and ynew denote successive approximations to the solution. 

To simplify our notation, we define discretized versions of the identity and deriva-

tive operators. Let Do : 3£n+1 — D f : 3£n+1 —» 3Jn, and Dw : 3£n+1 —> 3ft2n be 

defined by 

/ * 4 ^ \ / (saf2*-) \ 

D0{x) = 

#n4-#n+1 

, Df(x) = i Dw(x) 
(D0(x) 

^ Ŵn+Wn-l-l ^ ^£n±l^£n^ 

The three discretized versions of the spaces L, H, and Hw from the introduction 

are now (Kn+1, (•,•)[.), (S"+ 1 , (•, •)„), and (8f"+1, (•,•)».) w h e r e 

(«.»)». = (DO(U),DO(V)} + (D?(u),DT(v)) = 

{ltjb+1 + UK\ (VT+I + VK \ (Ulfe+1 + WK\2 (Ufe+x - ZLK\ (VK+L - VK\ 

M -
fc=l \ 

for all «, v G 9?n+1. 

" A 
+ 
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Observe that Dw relates the Euclidean a,nd Sobolev norms by || • | | ^ = | J A u ( ' ) I I l * 

Let y € 3in+1 and for all k = 1 ,2 , . . . , n + 1, let tk = a + (k — 1)6 and fk = /(tfc, y/t). 

Define J : ($T+M| • \\Hm) -> X by 

j(«) = \\\D?y - D„f\\l 
/ \ 2 1 VM ( + 9 k \ /j/fc+1 ~ ?/fc\ /fc + fk+1 \ 

fc=l 

We will minimize J via successive approximations, since a zero of J corresponds 

to a solution of our differential equation. We specialize one well-known theorem to 

our case before outlining the method. To verify the non-singular nature of the matrix 

Aw we refer the reader to [RSN] and for a more complete description of the matrix, 

we refer the reader to Chapter 6. 

Theorem 7 If {•, -)H denotes the discretized Sobolev inner product on 3in+1 and 

{•, -)L represents the standard inner product on 3Jn+1 then there exists a matrix Aw 

in jC(9?n+1,§£n+1) such that {x,y)Hw = {Awx,y) = (x,Awy) for every x,y £ 9£n+1. 

Moreover, Aw = B^DW and Aw (VhwJ) (a?) = (V/,J) (#) for every x € 3in+1. 

Proof. Let represent the standard basis on 3ftn+1. If Aw exists and a,-j 

denotes the i,j — th component of Aw then 

(eji ei)Hw
 = { ei) 

= 21/ (-^«>ej)fc(e«)fc 
k 

— {AuiCj); 

= aij. 
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Hence, if Aw exists then Aw is unique and a , j = (ej, &i)Hw- Let = (ej, If 

x, y G 3Jn+1, then 

(Awx,y) = 

= X/ Xaijxj )yi « j 

— X / X/ ( e i ' e *) Hw
xjy* 

* j 

= YKx^i)Hji 
i 

= {XiV)Hw-

A similar argument shows (x, y)Hw = (x,Amy). 

Since { x , y ) H u = ( D 0 x , D 0 y ) + (D^x,Dfy) = (jDjD0®,y) + ( ( ^ r ) * 2 / ) = 

<(£>£A, + (Z>J')tjDi')a:> y) for every x, y € 3£n+1 we have Aw - Dt
wDw. Given u € & n + 1 

we have ( (V L J ) (u), A) = J'(u)(fc) = <(VHw J ) («), A ) ^ = (A„ (VH„ J ) (u), h) for 

every h € 9ftn+1. Consequently, ( V ^ J ) (a:) = (V^J ) (a;) for every a: € 9ftn+1. 

q.e.d. 

Before outlining the method, we define 'optimal' step size. We say that h is the 

optimal step size if h minimizes J(y — h (S?hWJ) (y)). If / is linear, then the optimal 

step size is easily computed as 

h n ( v » . j ) f a ) H k 

{(VH.J)2(v),(Vn.J)(x))^ 

by minimizing a(h) = J(y — h (Vffw J) (y)). We now outline the method. Com-

pute the matrix, Aw, and choose an initial guess y. Compute the standard gradient, 

( V l J ) (y), and solve the linear system from Theorem 7, Aw (V//w J ) (y) = (V^J) (y), 
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for the Sobolev gradient, (V/yw J) (y). Follow the negative of this direction an 'opti-

mal' distance, h. Consider the distance between the new point, ynew, and y. If this 

distance is less than e, consider ynew a solution, else repeat the process with ynew as 

an initial guess. 

Algorithm: 

1. Compute the matrix, Aw. 

2. Choose y € ;Rn+1. 

3. Compute the gradient of J at y, (V^J) (y). 

4. Solve Aw (VHwJ) (y) = ( V L J ) (y) for (VHwJ) (y). 

5. Determine h which minimizes J(y — h ( V ^ J ) (y)). 

6. Let ynew = y-h (VHw J) (y)-

7. If ||ynew — y||L < e, we have a solution; else, put y — ynew and repeat steps 

3 through 7. 

3.2.2 q(t)y'(t) = f(t, y(t)) with Boundary Conditions. 

Recall that the boundary conditions were kiy(a) + k?y(b) = fc3 and retain the 

notation from Section 3.2.1. In addition, consider the perturbation space, 9£Q+1 = 

{a: G 5Rn+1 : k-iXi + ^^n+i = 0} and let tthw denote the orthogonal projection of 3Jn+1 

onto 9?Q+1 under the Sobolev inner product. 

It is noteworthy that in each of the following algorithms, tthw (Vhw J) (y) is in the 
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linear subspace, ^Q+1 . This assures that each successive approximation also lies in 

•&o+1, thus the boundary conditions are exactly maintained for each approximation. 

A numerically naive generalization of the case without boundary conditions fol-

lows. Start with an initial guess, y. Compute the Sobolev gradient, (VhwJ) (y), and 

the projection, 7thw- Project ( V / ^ J ) (y) onto 3£Q+1 under 7rHw and follow the negative 

of this direction an optimal distance, h. Consider the distance between the new point, 

ynew, and y. If this distance is less than e, consider ynew a solution, else repeat the 

process with ynew as our initial guess. 

Algorithm: 

1. Compute the matrix, Aw. 

2. Choose y € 5?o+1-

3. Compute the gradient of J at y, ( V l J ) (y). 

4. Solve Aw ( V f f w J ) (y) = (VL J) (y) for (Vjr.J) (y). 

5. Compute the Sobolev projection, and project (Vhw J) (y) onto 9£Q+1. 

6. Determine h which minimizes J(y — hitnw ( V h w J ) iv))-

7. Let ynew - y - h-KHw (Vj?WJ) (y). 

8. If | |ynew — y||L < e we have a solution; else, put y = ynew and repeat steps 

3 through 7. 

In fact, this is not the method we use, although it is equivalent [N5]. The difference 

between this algorithm and the one which follows is the combination of steps 4 and 
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5 in order to solve for the quantity TTHw (\7HwJ) ( y ) by solving simultaneously one 

system of n + 1 equations. This allows us to avoid computing the projection nHw 

directly. Depending on the boundary conditions associated with a problem, we may 

or may not know the projection, TIHw • For example, if we are considering a problem 

with perturbation space {u : J u = 0}, then we have TTHw
u = u — / t t if / I = 1. 

For our case determining irhw directly (to our knowledge) would require solving an 

additional (n + 1) x (n + 1 ) system and thus almost doubling the computations in the 

algorithm. 

We now exhibit the method used to compute TTHW ( V H w J ) (y)- Let u = (VHw J ) (Y) 

and define 7 : 9?o+1 —• by 7(2) = | | | x — U\\2
HW- Minimizing 7 over 9££+1 corresponds 

to determining x £ 9££+1 such that x = TTHw (VHwJ) (Y). Let ire denote the orthogonal 

Euclidean projection onto 3£q+1 • 

7(z) = 1̂1® - " I l k = \ \ \ D ^ i x -

j'{x)(g) = (Dw(x - u),Dw(g)) = <((DwYDw(x - u),g} 

= {(DwyDw(x - u),ne(g)) = (ve(DwyDw(x - . 

Therefore 7 ' (x)(g ) = 0 for every g € 3£JJ+1 if and only if 7rei?^jDw(u) = •KeD
t
wDw{x). 

Substituting Aw = D^Du, u = ( V j j w J ) (?/), and Aw (VHwJ) ( y ) = (VlJ) ( y ) into this 

equation yields 7reAwx = 7re (VLJ) (y). The solution to this equation is the desired 

quantity, x = irHul (VHw J) (y)-

Having avoided the direct computation of the projection TTHw, we must still deter-

mine the projection 7re. Yet, we may compute 7re easily by defining tp(x) = ||a: — «| |^2 /2 
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and minimizing if) over 5Rq+1 to obtain 

_ ( \ _ ( ~ hxn+1) -kx(k2xi - kixn+i)\ 
Ke{X) — I _j_ £2 »®2>Z3, . . . , £ n , &? + ) 

Certain values of kx and k2 cause numerical difficulties. For example, 7re is not 

defined if k\ — k2 = 0. If k\ and k2 are not both zero, 7re is well defined, yet when we 

apply the projection to the matrix the first and last rows of the projected matrix 

are linearly dependent. Let us look at each of four possible cases. If ki = k2 = 0, we 

do not wish to use the projection as we have no boundary conditions; we are actually 

solving the problem outlined in Section 3.2.1 where 7re was neither defined nor needed. 

If ki = 0 and k2 0 we are considering the final value problem, y(b) = fc3/k2. Here, 

Tre zeroes out the last row of the matrix Aw. Therefore we replace this row by the 

data (0,..., 0, k2), and zero out the final entry of the gradient vector ( V l J ) (y), before 

solving the system. If k\ ^ 0 and k2 = 0, we are considering the initial value problem 

y(a) = k3/ki. In this case 7re zeroes out the first row of the matrix Aw and we replace 

this row by the data (fci,0, ...,0) and zero out the first entry of the gradient vector, 

{SL J) (y)i before solving the system. Finally if both ki and k2 are non-zero then we 

replace the last row by the boundary data, (ki, 0,..., 0, k2) and zero out the last entry 

of the gradient vector, (V lJ ) (y), before solving the system. 

A revised algorithm follows. 

1. Compute the matrix, Aw, and the projection, 7re. 

2. Choose y € 3*S+1-
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3. Compute the gradient of J at y, (V^J) (y). 

4. Apply 7re to the matrix, Aw, and the gradient, (VL«7) (y). 

5. Make Aw nonsingular by replacing the necessary rows. 

6. Solve TTeAw(7THw (VHwJ) (y)) = 7Te (V^J) (y) for vHw (VH„ J ) (y). 

7. Determine /i which minimizes J(y — hirjjw (VJJw J) (y)). 

8. Let ynew = y - hirHw (VHwJ) (y). 

9. If — y\\L < e then we have a solution; else, put y = ynew and repeat 

steps 3 through 8. 

3.3 Examples 

In this section we apply our algorithm to several problems. Our first example 

shows the reader how we predict the solution depending on the initial function esti-

mate and choice of gradient in the case where boundary conditions are not sufficient to 

assure uniqueness. The second example adds boundary conditions to assure unique-

ness. The third example demonstrates the effectiveness of the algorithm when the 

singularity is on the interior of the domain and our final example shows that even 

in cases where there is no singularity we can expect the weighted Sobolev descent to 

outperform Sobolev descent. We conclude this section and the chapter with a singular 

non-linear differential equation. 
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3.3.1 Unconstrained Singular Problem 

Consider ty' =- y on I with no boundary conditions. An initial condition y(0) = 0 

is forced by the singularity, and using separation of variables we see that the one 

parameter family of solutions is given by z(t) = kt. Our functional is given by J(u) = 

fj(Dju — u)2 for every u € Hw. 

We begin this section by predicting the solution to which the algorithm will con-

verge based on the choice of the initial function and the gradient when boundary 

conditions are not sufficient to guarantee uniqueness. 

Theorem 8 If yo is our initial estimate, steepest descent will converge to z(t) = kt 

where kL = 3frjyo, kH = | / / (jj/o + y'^), and kH] = § / / j (yo + jy'o) are determined 

by the choice of the gradient used in the descent process. 

Proof. We prove only the statement associated with weighted descent. Suppose 

J is as stated above and a(z) = ||t/0 —
 z\^Hw- Observe that a(z) = ||y0 —

 = 

— 2(z,yo)Hw. Minimizing a over S = {z : z(t) = kt} will yield the 

closest element in Hw fl S. This is a quadratic equation yielding k as stated, q.e.d. 

To illustrate, we choose the initial function yo(t) = t2. We obtain the resulting 

solutions zi,{t) = 11, zjj(t) = and ZHw(t) = f t . The numerical results are in 

Tables 3.1 and 3.2. The number of divisions is small so that we may compare the 

Sobolev descent results with the L results. After we have made our point that L 

descent is clearly outperformed by Sobolev descent, we will omit the L and H results 

so that we can increase the number of divisions and accuracy desired. 
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27 

ty' — y = 0 yo{t) = t2 No Boundary Conditions N = 100 

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err. 

L 5419 50 10~5 1 o 4.1 x 10"2 

H 2161 28 lO"5 10"3 5.3 x 10~3 

Hw 8 1 10"5 10"6 9.8 x 10~6 

Table 3.2: Unconstrained Singular Problem 

ty' — y = 0 y0(^) = t2 No Boundary Conditions N = 10,000 

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err. 

36 45 10-is i o - 1 0 8.7 x IO"10 
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3.3.2 Constrained Singular Problem 

If we add the boundary condition t/(l) = 1, guaranteeing the unique solution 

y(t) = t, we see similar results (see Tables 3.3 and 3.4). We use this example to 

demonstrate graphically the advantage of the weights near the origin. Figure 3.1 

shows four lines shaded from light to dark and varying from thick to thin. Respec-

tively they represent the intial estimate, the Sobolev approximation to the solution 

after three iterations, the weighted Sobolev approximation to the solution after three 

iterations, and the solution itself. The advantage of the weight near the singularity 

is clear from the graph. 

3.3.3 Partially Constrained Singular Problem 

Consider (t — | )y ' = y with t/(0) = — Demonstrating the versatility of the 

algorithm we consider a partially constrained example. Solutions are given by, 

f if x € [0, |3 
z(t) = I 

[ k2(t- | ) if as € [|,1] 

Therefore since we have specified only an initial condition, the value for k2 is not 

unique. As in the first example, we may determine the solution. If yo is our initial 

guess, our solution, z, will be the function which minimizes ||j/o — z|j in whichever 

norm is chosen for steepest descent. Having previously made our point that L descent 

is outperformed by both H, and Hw descent, we omit these results here. This allows 

us to increase the number of divisions and the accuracy considerably. H descent will 
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Figure 3.1: Constrained Singular Problem 
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Table 3.3: Constrained Singular Problem 

ty' - y = 0 y(l) = 1 yo(t) = 1 N = 100 

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err. 

L 20056 232 10~s 10"2 3.2 x 10"1 

H 1346 18 10"5 10~4 6.7 x 10~3 

Hw 8 1 10~5 
H

—
* o I <1

 
2.2 x 10~6 

Table 3.4: Constrained Singular Problem 

ty' - y = 0 y(l) = 1 yo(t) = 1 N = 10,000 

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err. 

Hw 24 49 10-is 10-ie 4.2 x 10~14 
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yield the solution above with ki = 1 and k-z = § while Hw descent will yield k\ = 1 

and &2 = ~f • 

We make two points with this example using Tables 3.5 and 3.6. Hw descent 

outperforms H descent by a factor of 66 in time and by 105 in accuracy. After 

increasing the number of divisions, we still have the time factor of 66. However, 

we have an increase of 107 in accuracy. This trend persists in all examples we have 

considered: as we increase the number of divisions we observe an increase in the 

differential between the obtainable accuracy. 

It is worth observing that in the Table 3.6 we have a less strict stopping criteria 

for H descent than for Hw descent. This is the 'best' result obtainable for the H 

descent. We are using optimal step size and we are unable obtain superior results to 

the ones listed since the order of magnitude of (V# J ) is 10~16 or machine precision. 

We end this section merely by pointing out that we have obtained similar results for 

problems with multiple singularities over the interval such as (t — \)(t — | )y ' = y with 

an initial condition at any one of the interior points t = 0, t = |, t = | , or t = 1. 
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Table 3.5: Partially Constrained Singular Problem 

( t - i ) y ' - y = o y(o) = - | N = 1000 

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err. 

H 526 66 10~5 10"2 1.5 x 1CT1 

Hw 7 1 10"5 10"7 4.3 x 1CT6 

Table 3.6: Partially Constrained Singular Problem 

( t - | ) y ' - y = o y(o) = - | N = 10,000 

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err. 

H 764 497 10~6 10~3 3.4 x 10~2 

Hw 13 17 10-1° IO-10 1.8 x 10~9 



CHAPTER 4 

SECOND ORDER PROBLEMS 

We consider two second order problems which reduce to first order via variational 

principles thus allowing us to use the spaces constructed in Chapter 3. 

t2u" + 2tu' — u = 0 on I 
(4.1) 

u(0) = 0 and u(l) = 1 

(1 — t2)u" — 2tu' + u = 0 on I 
(4.2) 

u(0) = 0 and u(l) = 1 

In the section on Legendre's equation we obtain machine precision results using 

weighted descent which we are unable to obtain without the weights. This illustrates 

again the phenomenon shown in Chapter 3: Upgrading from L descent to H descent 

to Hw descent not only results in a decrease in both time and the number of iterations 

required to solve the problem, but also in accuracies unobtainable by the previous 

methods. 

We considered another numerical approach to this problem suggested in [N1]. 

The method used was to apply steepest descent directly to J , hoping that we did 

not 'fall off' the critical point. The alternative approach was to form the functional 

4>(u) = | | | (VHwJ) («)||2 whose zeroes are clearly critical points of J. We had successful 

results from each method, but the latter requires solving two systems of equations per 

iteration. Since neither had superior accuracy results and the alternative approach 

33 
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was computationally inferior, we present only the former approach. It is noteworthy 

that for problems where the first method tends to 'fall off' the critical points, the 

latter method is appropriate and, surprisingly, requires minimal alteration (about 3 

lines) of the original code. More information on this method can be found in [N2]. 

4.1 A Variational Problem 

Consider solving Ku — 0 where K is defined by Ku == {t2u')' — u and suppose 

we seek u E H such that «(0) = 0 <md u(l) = 1. Seeking out series solutions 

yields u(t) = c\t~"2^ -\-c2t * = ̂  where only the first summand satisfies the equation, 

boundary conditions, and space limitations; thus, we seek only this solution. Once 

again we are seeking a solution t *2^ E HW\H, and consider descent based on 

subspaces of L, H, and Hw. The three subspaces based on our boundary conditions 

are L° := {h € L : h(0) = 0 = A(l)}, = H C\ L\ and H% = Hw n L°. As all three 

functionals will agree on the space C := C° fl we abuse the notation and label 

them all J , letting 

= \JIi
2(u')2 + u2-

The motivation can be summarized in one sentence if we ignore the boundary 

conditions for the moment and assume u E Hw where to(t) — t. 

Since 

J'(u)(h) = j j2u'h? + uh — {u, h)H., 
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it seems natural to seek a critical point of J in the space {Hj-, {•, • 

In fact, we apply steepest descent based on a gradient which takes into consid-

eration both the weight and the boundary conditions simultaneously as we outlined 

in Chapter 3. Because L° is a Hilbert space and J is a bounded linear opera-

tor, the Reisz Representation Theorem guarantees existence of ( V j r , o J) such that for 

u e C C L,h e L°, 

((VLoJ)(u),h)LO = J'(u)(h) 

= j j2u'h' + uh 

= J ^ ( ( - j V ) ' + u)A 

= - J ^ h K u 

= {h,-PLKu)Lo, 

where Pl : L L° is the orthogonal projection. 

The parallel in the Hilbert space H° is given by 

~ 2 + u (4.3) 

and for u € C,h € H° we have 

{(VHoJ)(u),h)HO = J'(u)(h) 

= Jj2DiuDih + uh 

h \ I u 

D\h , 
h \ u 

>Ph 
\Dth ' 

\PD1U/ LxL 
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u 
h, itxPH 

\ j 2 D i u ) ' HQ 

where 
f 

u \ 

P f j : L x L —> < : u e H ° • 

V 
\DxuJ 

a 
is the orthogonal projection and 7Ti : 9ft x $ —> 3ft such that | — a . 

As in Chapter 3, the weight we choose is the square root of the function in the 

functional which results from the singularity in the differential equation. In this case 

the singularity in the differential equation is t 2 which appears again in the functional. 

The parallel in the Hilbert space H j is given by 

and for u € C , h <E L ° we have 

= J'(u)(h) 

= J D{uD{h + uh 
1 ( h \ 

u (4.4) 

D{hl 

{ h \ u 
\ D [ k j 

h, 7Ti-PfiT, 

D l U / LxL 

u 

BJ 

where 

f u \ 
L x L —• < : u G Hj > 
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is the orthogonal projection. 

We summarize this exposition with the following theorem. 

T h e o r e m 9 For all u £ C, the gradients with respect to the Hilbert spaces L°, H°, 
( u \ 

j, and 
\PDIU) 

(Vtfoj) (u) = 7xlPHj 

and are given by (VX,o J)(u) = —PLKU, (V#O J ) (U) = wiPJJ 

( u ^ 

\D[uj 

Having put forth the continuous theory, we now discretize the problem. The 

question is: Which of the following equations (V£,J)(u) = 0 (Euler's equation), 

(VHJ) (U) = 0, or ( V f f w J ) («) = 0 is the appropriate equation to consider for com-

puting on variational problems concerning singular differential equations? 

Discretizing the functional, 

Since ire(x) = (0,a?i , . . . , s n , 0 ) and (V^J ) (u) = —Ku, we have 

{<r-7 t\ / \ ( n ,2 k̂—1 2Uk "4" ttfc+1 _ Wfc+1 \ 
(VLOJ)(w) = ^ 2TK - + t i f e , . . . , 0 ) . 

The following algorithm outlines both H and Hw steepest descent since if w == 1, then 

Hw — H. We have not discussed solving the linear system here; the matrix itself is 

outlined in Chapter 6 and the boundary conditions are handled as in Chapter 3. 

1. Compute the matrix, Aw, and the projection, 7re. 

2. Choose y € 3$ + 1 . 
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3. Compute the gradient of J at y, (Vj^J) (y). 

4. Apply 7re to the matrix, Aw, and the gradient, (V^J) (y). 

5. Make Aw nonsingular by replacing the necessary rows. 

6. Solve 7ceAwx = ire (VLJ) (y) for x = irHw (VHw J) (y). 

7. Determine h which minimizes J(y — hnjjw (Vh^J) (y)). 

8. Let ynew = y- hvHw (VHwJ) («/)• 

9. If ||ynew — y\\L < t then we have a solution; else, put y = ynew and repeat 

steps 3 through 8. 

We exhibit the difference between the weighted and non-weighted descent processes 

via Figure 4.1. The graph shows four curves. They are shaded from light to dark and 

vary from thick to thin. Respectively they represent the intial estimate, the Sobolev 

approximation to the solution after three iterations, the weighted Sobolev approxi-

mation to the solution after three iterations, and the solution itself. The advantage of 

the weight near the singularity is clear from the graph. The solution and the weighted 

Sobolev approximation to the solution are already virtually indistinguishable by three 

iterations. Tables 4.1, 4.2, and 4.3 represent the numerical results obtained using each 

of the above methods. First observe the decrease on both time and iterations required 

and the increase in both average absolute accuracy and maximum absolute accuracy. 

The time required to solve each problem is valid for comparison between these 

algorithms only. We state this because every attempt was made to make a fair 
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comparison between the three methods, with the author going so far as to use one 

code with flags for all three methods. For these reasons, these numbers should not be 

used for comparison to other methods, as no attempt was made by the author to make 

the codes efficient for solving any particular of problem. Considerable improvements 

in the time required to solve each problem could be made merely by separating the 

code into three codes and writing for efficiency as opposed to comparability and 

readability. We also note that traditional methods such as conjugate gradient methods 

or multi-step methods are applicable to all three descent processes. The algorithms 

were written to support two facts: First, weighted Sobolev steepest descent is a 

noteworthy numerical method and efficient codes using this methodology could be 

developed and, second, computing based on an alternative to the traditional Euler's 

equation should be considered for singular variational problems. 

Our improved numerical results from the various processes were expected and a 

defense of the intuitive reasoning follows. Necessary conditions are given in [CH] 

in order that satisfying Euler's equation be a necessary condition for existence of an 

extremal point; however, our problem does not satisfy these conditions. This difficulty 

in the continuous case translates over to the poor numerical performance in solving 

(Vj[,J) = 0. Similarly, seeking the solution, t *2^ which does not belong to the space 

H, makes solving (VHJ ) = 0 an unpromising task. This leaves us with the equation 

(SHw J ) = 0 which indeed performed the best. 
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Figure 4.1: Variational Problem 
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Table 4.1: Variational Problem 

t v + 2ty' - y li o X
 

3 II o y(l) = 1 N = 100 

Gradient Iterations Seconds Residual Avg. Abs. Err. Maoc. Abs. Err. 

L 10,000 41 10~6 10~2 1.4 x 10"1 

H 538 2 10"6 10~4 1.8 x 10~2 

Hw 1 1 10~6 io-5 1.9 x 10~3 

Table 4.2: Variational Problem 

t v 4- 2ty' - y 

o II 

X
 

o II y(l) = 1 N = 1,000 

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err. 

H 151 4000 lo-8 10~4 1.3 x IO"2 

Hw 1 2 10~8 10~6 4.8 x 10"4 

Table 4.3: Variational Problem 

t 2 y " + 2ty' - y = 0 y(0) = 0 y ( l ) = 1 N = 100,000 

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err. 

Hw 14 3 10~16 10"9 2.8 x IO"6 
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4.2 Legendre's Equation of order o; = 1 

Consider the problem Ku = 0 where Ru — ((1 — t2)u')' + 2u on I with u(0) = 0 

(forced initial condition), u(l) = 1, and u € C]. General solutions are u(t) = cxt + 

^ t and only u(t) = t satisfies the boundary conditions. To obtain this 

solution, consider -the functional 

u2 

and define the three distinct functional which parallel those from the previous section. 

Let L° := {h G L : h(0) = 0 = A(l)>, H° H C\ L°, and H« = Hw n L°. For u € Cj 

and h e L° we have 

((VLoJ)(u),h)LO = J'(u)(h) 

= f (1 — j2)u'h' + uh 
JI 

= / ; ( ( - ( i - i V ) ' + «)h 

= — j KKu 

= {h, —PLKU)LQ, 

where PL : L —> L° is the orthogonal projection. 

The parallel in H is given by 

and for u £ C], h <G H° we have 

{(VHoJ)(u),h)HO = J'(u)(h) 

u2 
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J (1 — j^^DiuDih -J- uh 

u \ 

Dyh) \{l - P)Dxu ) ' LxL 

u h ) / 

,PH 

\Dxh j 1(1 

( u 

h,TTlPH 

\ ( 1 -

where 

\ { u \ 

PH : Lx L —• < : u € H° > 

I \Diuj 
J 

is the orthogonal projection. 

As in the previous section the weight we choose is the square root of the function 

in the functional which results from the singularity in the differential equation. In 

this case w(t) = \ / l — t2. 

The parallel in H g i y e n by 

and for u € h € we have 

u (4.5) 

( ( V j i a J ) («),&) J'(u)(h) 

Ld" ^ u D ^ h + uh 

h \ 

A h) 
h \ 

n \ / l - i 2 r I 
Di h 

u 

\D 
y/l-r 

u 

,Ph 

LxL 
u \ 

\D{ u J LxL 
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( u \ 

ynf^uj H°r—j 
Vi-j2 

where 

/ 

Ph ,—~ • L x L 
u \ 

i n V 1 _ j 
l \ A u 

is the orthogonal projection. Discretizing the functional, 

:ueH° 
Vf-

1 /^fc+1 "f" tk\ \ /^fc+1 "I" fc + 
fe=l V 2 

Since 7re(®) = (0, a:i,... ,rcn,0) and (V£,J) («) = —Ku, we have 

(VLoJ)(u) 

(' 0 , . . . . - ( 1 - t l ) " ' - ' 2 ^ + " ^ ' + 2 h " w
 s - 2«», ,o) 

Tables 4.4, 4.5, and 4.6 demonstrate the success associated with these problems. 

The algorithm is parallel to the one from the preceding section. 
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Table 4.4: Legendre's Equation 

(1 - t2)y" - 2ty + 2y = 0 y(o) = 0 y(l) = 1 N = 100 

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err. 

L 5948 24 

<0 I o 10"1 6.6 x 10~x 

H 1998 7 10~6 10"6 3.7 x 10~5 

Hw 64 1 10"6 10~7 8.0 x 10"6 

Table 4.5: Legendre's Equation 

(1 - t2)y" - 2ty + 2y = 0 y(0) = 0 y(l) = 1 N = 10,000 

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err. 

H 2142 82 10~6 10-6 3.4 x 10"5 

Hw 85 3 10~6 10"6 1.2 x 10"5 

Table 4.6: Legendre's Equation 

(1 - t2)y" - 2ty + 2y = 0 y(0) = 0 y(l) = 1 N = 100,000 

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err. 

Hw 325 125 10-15 10-!4 1.7 x 10~14 



CHAPTER 5 

A PARTIAL DIFFERENTIAL EQUATION 

In this chapter we demonstrate that our method extends to partial differential 

equations by considering a partial differential equation with linear singularity in each 

variable. 

5.1 The problem 

Let ft = I x I and consider the problem of finding u £ Cl satisfying Ku = 0 on 0 

where Ku = xu\ + yu2- The boundary conditions are given by u(x, 0) = 1 = w(0, y) 

for every (x, y) € Cl. Our approach will be much the same as in the previous chapters. 

We will consider three spaces L, H and Hw which have both continuous and discrete 

definitions on the square disk 0 . Again we will consider descent based on each of the 

three spaces which parallel the spaces from Chapter 4. 

5.2 Notation 

We take a direct approach, considering the functional 

J(u) = \ f u ( x u i + fu2)2, 

whose zeroes are solutions of the equation. 

In previous chapters we defined a generalized derivative and a generalized weighted 
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derivative. Here we define a generalized gradient and a generalized weighted gradient. 
( a\ ( a 

Let L — and define 7r1? 7T2 : 5ft x 5ft —• 5ft such that -K\ 

If V = , then define 

a and 7r2 

G = < 

/ \ 
u 

< " u € CQ > 

< 

V u j 

V0, 

-Lx(LxL) 

= /?• 

H 

E0(u) 

E1{u) 

E2(u) 

vxG 

= u 

ITiGU 

7T2 GU. 

(U,V)H = (U,V)l + {E1(u),E1(V))l + (E2(U),E2(V))Ij 

Thus, Gu = (EiU,E<iu) denotes the generalized gradient and we will let Gw denote 

the generalized weighted gradient. Define V „ = ( j ^ , where j(x,y) = x and 

k(x, y) = y and 

[ \ \ 

u 
Gw = { :ueCh> 

I ̂ I J 

Hw = U 

£ O ( M ) = U 

E*(u) == TTIGwU 
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E 2 ( u ) = -K2GwU. 

{U,v)H = {u,v)L + (E*(u).,E*(v))L+ (E2(u),E2(v))L 

Thus, GWU = ( E f u , Ev
2U) is the generalized weighted gradient. In order to develop a 

gradient which depends on our constraints, put 

L° = {u G L : u{x, 0) = 0 = u(0, y) V (x, y) € 0 } , 

H ° = H f \ L°, and D L°. In the Hilbert space, H ° , J is given by 

j ( « ) - \JU IXEIU + YEIUY (5.1) 

and for u, h € ff0 we have 

{(V/foJ)(u),/l) f fo — 

where 

/(«)(/,) 
j (xEiu + yE2u) (xEiA + yE2h) 

( 0 \ ( H \ 

x2Eiu + xyE2u 

V y2E2u + xyEiu J 
I 0 

= (h,TTiPH 

EIH 

\E2hJ Lx(jt,xL) 
\ 

x2E\u + xyE2u 

\ y2E2u + xyEiu / 

PH : L x (L x L) 
( U \ 

\ G u ) 
: u € i?° 
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is the orthogonal projection. 

In the Hilbert space, H ^ , J is given by 

J(u) = \ J (£fu + E$uf 

and for u , h € we have 

((VH.J)(u),h)H„ = J'(u)(h) 

= f {E?u + E%u) (E^li -t- Elk) 
J Q 

\ / H \ ( 0 

E*u + E%u 

\ E f u + E%u/ 
< 0 \ 

E \ H 

\Ey
2hJ Lx(LxL) 

h , V ] P H x i Ku 

\ K U / TTQ 
" *N 

where 

PHW:LX(LX L) 

is the orthogonal projection. 

/ U 

U € H?„ 
Gwu „ \ ^ W 

(5.2) 

5.3 Numerics 

For simplicity, we subdivide Q into n pieces along each axis. We order our grid 

starting in the lower left hand corner at (0,0) so that the value of uiyJ = u(\{i -

1), iO" - !))• 



5 0 

F o r t h e d i s c r e t e c a s e 5 Eq, £7i, JE25 Ef, a n d E\ a r e d e f i n e d b e l o w . 

A (^ij ~t~ ~4~ ̂ *»i+1 "4"* 

/ ' «i,i \ ' 

< Eq 
«2,1 

• = 

w K 1 / - * J 

' ' wl,l \ 

^ E l 

«2,1 

> = 

\ Wn+l,n-f-l / ^ i j 
r 

f U 1 , 1 \ 

\ 

< E2 
W2 fl 

• = 

< \ / J hi 
f 

/ W l f i \ 
\ 

< E* 
«2,1 

• = 

V \ ^n4-3L,n+l / } ij 
f 

/ «l tl \ 
"i 

< El 
«2,1 

> = 

V ^ n + l , n + l / ^ * J 

n 

— ( w t'j Ui+ij -j" Wjj-j-i 4~ ^ t + i i i + i ) 

n 

4 1 

n 
( y j "4" yj+i){~~ut,j w * + i » j "4" ̂ , i + i "4" ̂ t + i j + i ) 

( Eo(u) \ / E0(u) \ 

E ( « ) = Ex(u) E ^ ( i t ) = j S f ( « ) ( 5 . 3 ) 

E2(u)J \ E | ( u ) ^ 
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We caution the reader that while we are subscripting each of Eq(u), EF(u), E*(u), 

and u as though they were matrices, we are treating each as a vector. For example, 

( "i,i \ ( {-Sofa)}! i 

u 

" 2 , 1 

K E0(U) = 

\ "n+l.n+l / 

Discretizing our functional, 

{£„(«)} 2 ,1 

\ {-®o(w)}n+ltn+1 / 

1 f 

J ( u ) = - j ^ ( x u i + yu2)
2 

= | j , ( * ? « + * ? « ) ' 

1 

2 n2 

As before we compute VJ, the discrete analog to (V^J). 

(5.4) 

VJ(u) 

dJ 

8u 1,1 

dJ 
du2,i 

M # 
3«n+l,n+l 

Looking closely at the definition for J , only four summands contribute to 

dJ 

du p,i 

_1 d_ 

2n2 du. •p,i 

+ 
+ 

+ 

(*?")„ , - , + (*?«)„ 

(£>)Pl , +(^«)p. , 
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The necessary partials are computed below. 

d^(Eiu)P-i, 9 - 1 = t ^ P - 1 + xP ) 

9 : ( E i u ) P , o - i = 

9 
(ElU)p-l,q 

g - 1 

dup,q (
E2u)p-1,q-l 

9 

a 4< 

c)u 

(2/9—l + Vq) 

(E2 U)p, q-l = K^-1 + f«) 

9uP)<? 

5 ^ ( £ f " ) p , , 

a^(-®2«)p-i,g 

4(^-1 xp) 

--( 4' 

du' p,«? 

-(^p -f- Xp4.i) 

-4(2/9 + 2/9+1) 

" 4 ( 2 / 9 + 2 / 9 + 1 ) 

Substituting these partial into the previous equation yields: 

dJ 

du 

n* 
K « W , + ( * S « W i 

(E*u)r, ,-1 + (E"")p, ,-1 

(*?«)». , + ( ^ H , , 

72 y \ I ^ / I \ 
— (Xp_i "j" Xp ) "1" ~ xVq—l "I" Vq ) 

- {pp 4" ®p+l) "f" (2/9—1 ~t" 2lq ) 

^ (®p—1 ^ (2/9 2/9+1) 

(#p "t" ®p+l) ^ (j/9 H" ^9+l) 

n 

+ 

+ 

+ 

an. 

As in Chapter 3, having computed (V^J) (u) we proceed to solve the discrete 

alog to the system B(Vj*J)(u) = (V L J ) («) or the system Bw (VHw J) («) = 

(V l J ) (w), depending on whether we choose descent or weighted descent. In Theo-

rem 7 Chapter 3, we demonstrated the existence of a matrix relating two Euclidean 

spaces with differing norms. We have the parallel here for our spaces, defining 

B = {EofEo + {Exf Ex + (E2fE2 

and 

B, = (£„)'£o + (Ef)'E" + (El)'El 
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The interested reader may see Chapter 6 for a complete derivation of the matrices 

B and Bw. B is a diagonally dominant, non-singular operator. Furthermore B is band 

diagonal with nine non-zero diagonals. Rewriting the system in order to solve via a 

Gaus-Seidel iterative scheme, we see that receives contributions from eight of 

the nine non-zero diagonals which correspond to the eight neighbors of «,j. More 

precisely, although special consideration must be given to the boundary of fl, for an 

interior point j we have 

ui,j 

^ {(VLJ) (u)} tj — + B{-ij 

Bi-ij+i «i-i j+i + Bi,j-1 ii;j_i + Bij+1 Uij+i + 

Bi+ij-i + -Bi+ij Wt+i,j + Bi+ij+i ^ / Bij. 

As there are simple patterns for the elements of B, we have an efficient algorithm 

for solving the band diagonal system. The following section illustrates once again 

the improvements in time, iterations, and accuracy obtainable by considering the 

weighted spaces. 

5.4 Results 

The following section offers preliminary results on work in progress. Optimal step 

size is not implemented in this section, hence the longer run times. We will observe 

significant improvements in the obtainable accuracy in this section by utilizing the 

weighted steepest descent at we have in each previous chapter. 
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We demonstrate in Tables 5.1 and 5.2 the significant increase in computation re-

quired for the singular problems by comparing the time required to solve the problems 

U\ -f- v,2 = 0 
(5.5) 

u(i ,0) = 1 = u(0,y) 

and 

xu\ + yu2 = 0 
(5.6) 

u(x,0) = 1 = u(0,y). 

The results utilize standard Sobolev steepest descent. We observe in Tables 5.1 and 

5.2 a factor of five in the length of time and a factor of ten in the number of iterations 

required to solve the singular problem, despite the fact that each problem has the 

constant function one as a solution. We use such a small grid to show the reader one 

of the more valuable attributes of the algorithm. Being able to compute quickly on 

a small grid and still obtain results which will be representative of the results on a 

larger grid makes such an algorithm very easy to test and modify quickly. 

Table 5.3 offers the comparison between weighted and non-weighted Sobolev steep-

est descent on the singular problem. 
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Table 5.1: Non-Singular Partial Differential Equation 

Ui + U2 == 0 u ( x , 0 ) = 1 = u ( 0 , y ) G r i d — 5 x 5 

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err. 

H 290 5 

CD
 1 o r—1
 10"5 3.6 x 10"4 

Table 5.2: Singular Partial Differential Equation 

xu i + yu2 = 0 u(x, 0) = 1 = u(0,y) Grid = 5 x 5 

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err. 

H 2898 27 10"6 10~4 1.0 x 10~4 

Table 5.3: Singular Partial Differential Equation 

xu i + yu2 = 0 u(x, 0) = 1 = u (0,y) Grid = 10 x 10 

Gradient Iterations Minutes Residual Avg. Abs. Err. Max. Abs. Err. 

H 88,801 85 10-i° 10"6 1.9 x 10"5 

Hw 20,593 66 10-i° 10"6 5.5 x 10-6 



CHAPTER 6 

MATRICES OF STEEPEST DESCENT 

Throughout this chapter we will show only the case for weighted descent as non-

weighted descent is the special case of weighted descent with weight, one. While 

we view A and B as matrices in this chapter, we have noted that in practice for 

ordinary differential equations, A is tridiagonal and we store only the three non-zero 

diagonal vectors while for partial differential equations B is band diagonal (nine non-

zero bands) and we compute these non-zero elements as needed in order to solve the 

systems via a Gaus Seidel iterative process. 

6.1 Matrix for First Order Equations 

Recall the necessary definitions from Chapter 3. If x,w £ 5Km+1 then 

Do : &n+1 -> D™ : &n+1 -»• &n, and Dw : $n+1 -> &2n are defined by 

/ \ 
r 2 1 / 

D0(x) = • , B°{x) = 

i a?n-fa?n+l j 
X 2 7 V < s )> 

Da(x) 

WW, 

Define D\ = D™ where w(t) — 1 so that D\ is the usual discrete differential 

operator. Define pointwise multiplication ©, by (x,y,z) © (r, s, t) = (xr,ys,zt). We 

define two elementary matrices Mo and Mi which will be the building blocks for both 

the matrix A from Chapter 3 and B from Chapter 5. We now restrict ourselves to 
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the case n = 3. 

1 1 0 0 \ 

M0 = 0 1 1 0 8=
 

II 

\ 0 0 1 L) 

( - 1 1 0 0 \ 

0 - 1 1 0 

0 0 - 1 1 / 

Viewing DO arid D\ as matrices in terms of MQ and M\ 

1 71 

thus the matrix without weights, A, may be rewritten in terms of MO and M\ as 

1 fp1 

A = DTD = DLD0 + D\DX = -M*M0 + —M[MX. 

We make this observation now because we will refer back to these basic building blocks 

MQ and Mi in the section concerning matrices associated with partial differential 

equation problems. Returning to the weighted case, this allows us to rewrite DF in 

terms of D\, D0, 

D™(U) = D0{W)QD1(U), 

Starting with the proof of Theorem 7 in Chapter 3 we see 

= {EJIEI)UW 

(A) e j 5 D0ei) + {D™ ej, D™ ei) 

(DQEJ,DOEI) + (D0(W) © DXEJ, D0(W) © DIE,-) 

(6.1) 



If we let n = 3 this yields 
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/ 1 I (lO + 11 ) 
/ - i t " 452 

I _ (gp+gj) 
4 462 

1 Uo+Qi)2 1 i (?fl+?i)2 1 (qi+Q2)2 

— T dc2 

1 __ (gj+gg) 
4 4 52 

I _ (ll+flg) 
4 4 £2 

1 _L (gl+tg)2 _L (12 + ls)2 1 
2 I A £2 ~ 4̂ 2 

0 

0 

(12+13) 
4 fi2 0 ^ ,i £2 o 4 £2 ' 4 fi2 4 

n n I — (Q2 + 93)2 1 1 U2+13Y , 
U U 4 4 S2 4 T 452 / 

which is easily verified by simple computations with Equation 6.1 or by considering 

the following Mathematica code. 
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MATHEMATICA CODE 

one={l,1,1,1} 

Array[q,4] 

q={q0,ql,q2,q3} 

od = 1/d 

Array[x,3] 

Array[y,3] 

times[x_,y_]:= {x[[l]] y[[1]],x[[2]] y[[2]],x[[3]] y[[3]]} 

Array[e,4,4] 

e = IdentityMatrix[4] 

h = l / 2 

DO = h * { {1,1,0,0},{0,1,1,0},{0,0,1,1} } 

D l = od * {{-1,1,0,0},{0,-1,1,0},{0,0,-1,1}} 

A=Table[ 

Simplify[ 

D0.e[[j]].D0.e[[i]] + 

times[D0.q,Dl.e[[j]]].times [D0.q,Dl.e[[i]]] 

] 

, {i,4} , {j,4} ] 

Print["A=",A] 
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6.2 Matrix for Second Order Equations 

We make a brief observation concerning second order problems for which there is 

no variational principle. While none is considered in this paper, we have also studied 

second order differential equations which do not have a variational approach. We wish 

to point out how simply the matrices extend to this case. Suppose we are considering 

the problem y" = f(t, y, y') on I as a system of two first order equations 

fu'\ I fi(t,u,v)' 

\v') \f2{t,U,v) 

The space would then be ^(3£Tl+1)2, (•, -)J and the inner product would be defined by 

u\ / x\ 

VJ y / i/u 
(u^x)hw + (

v^)Hw 

{D0U, D0x)L + (Diu, Dxx)h + {DQV, D0y)L + (Dxv, Dxy)h 

{u,Ax)L + {v,Awy)L 

u \ ( Ax 

\v. Awy 
( u \ A 0 1 / x\ 

\vj 
* u Aw j \ y ) 

Thus once the effort has been made to compute using the weighted gradients for 

the first order codes, the second order problem is as simple as solving two systems. 

6.3 Matrix for Partial Differential Equations 

The ordering of the grid points is crucial to the following definitions, so recall that 

we order the grid as a vector starting with the lower left hand corner at (0,0) and 
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listing u as the vector, 
«i,i \ 

«2,1 

u 

\ ^n+l,n+l / 

where ui,i = ti(0,0) and = u(£(i - 1), £ ( j - 1)). 

In the previous section for n = 3 we defined Mo and Mi by 

Mo 

(\ 1 0 0 \ 

0 1 1 0 

\ 0 0 1 1 / 

Mi = 

/ - I 1 0 0 \ 

0 - 1 1 0 

V o o - 1 1 / 

In Chapter 5 we defined E0, Ei, E2, E*, El, E, and Ew by 

( «: l(i \ \ 

< E0 

"2,1 
> 

\ \ 7̂1+1,̂ +1 / 
f / «1,1 \ > 

< Ei 
"2,1 

> 

V \ ^n+l,n+l / . 
' 

Wl,l ^ 

< E<z 
«2,1 

> 

\ Un+l,n+l y 

- ( « i j + ««+i,j + Ui,j+1 + «i+ij+i) 

n 
+ ui+i,j — ui,j+1 + «t+l , j+l) 

n 
~ 2^ U ' 'i " "t" ui.i+i u«+i.i+i) 

',3 
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( « i , i \ y 

< E\ 
"2,1 

> 

\ W n + l i i + l ' 
4 

' ( Ul'X } V 

< E\ 
« 2 , 1 

> 

\ ^ n + l , n + l J 

= - ( X i + X{+i)(-Uitj + Ui+1J - UiJ+1 + Ui+l,i+l) 

/E0(«)\ (Eo{v)\ 

E(u) = Ei(u) Ew(u) = £f(u) 

KE2{u)/ \E%(U)J 

Rewrite Eo, E \ , and £*2 in terms of Mo and Mi as follows: 

E0 

N 

E l - 2 " 

/ M 0 Mo 0 0 ^ 

0 Mo Mo 0 

V 0 0 Mo Mo/ 
/ M i Mr! 0 0 \ 

0 Mi Mi 0 

En = 

0 0 Mi Mi J 

( - M o Mo 0 0 ^ 

0 —Mo Mo 0 

V 0 0 - M 0 M0 J 

(6.2) 

This yields our operator for the non-weighted case 

B = EtE = {EofEo + {Ei)1 Ei + {E-zfE-z 
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which may be rewritten as a block matrix which is tridiagonal in terms of the ele-

mentary building blocks, MQ and M\. 

B = 

fC D 0 0 ^ 

D 2 C D 0 

0 D 2 C D 

U 0 C D) 

where 

and 

D = j {M\MI + M'Mo) 

C = + y (MlMt - M'Mo) . 
l 6 - ° - v • 4 

Unfortunately we now must pay the price for the choice of our ordering of the grid. 

Because we chose to order from left to right first and then from bottom to top, our 

following definition for Ef is esthetically pleasing while our definition for E\ is not; 

however, reordering the choice for the grid will still yield only one esthetically pleasing 

definition. Define 

/-(xi + x2) (zi + s2)
 0 

•(x2 + x3) (x2 + x3) Ml 

\ 

N 
4 

0 

0 0 

-Mf Ml 0 

0 

0 

\ 

- (u?3 + W4) (^3 + W4) / 
0 \ 

0 -Ml Ml 0 

0 0 -Ml Ml J 
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~~(yi + V2)Mq (yi + y2)Mo 

El 
N_ 

4 
0 

0 

0 0 \ 

(2/2 + ys)Mo (j/2 + yz)Mo 0 

0 — (t/3 + Va)M0 (y3 + J/4)M0 / 

Finally, we have Bw : 3£(n+1)2 —> 9£(n+1) , 

Bw = (EjEw = (EofEo + {EtfEZ + (£?)'*? 

Once again the simplest way to see the properties of B is to consider a simple 

Mathematica code. Considering this code with n = 4 will give the reader a good 

visual picture of the structure of B. We remind the reader that B is band diagonal 

with nine non-zero bands. 
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MATHEMATICA CODE 

nd=2 

h—1/4 

DO = h* {{1, 1, 0, 1, 1, 0, 0, 0, 0}, {0, 1, 1, 0, 1, 1, 0, 0, 0}, 

{0, 0, 0, 1, 1, 0, 1, 1, 0}, {0, 0, 0, 0, 1, 1, 0, 1, 1} } 

D1 = nd/2*{rl*{-l, 1, 0, -1, 1, 0, 0, 0, 0}, r2*{0, -1, 1, 0, -1, 1, 0, 0, 0}, 

rl*{0, 0, 0, -1, 1, 0, -1, 1, 0}, r2*{0, 0, 0, 0, -1, 1, 0, -1, 1} } 

D2 = nd/2*{sl*{-l, -1, 0, 1, 1, 0, 0, 0, 0}, sl*{0, -1, -1, 0, 1, 1, 0, 0, 0}, 

s2*{0, 0, 0, -1, -1, 0, 1, 1, 0}, s2*{0, 0, 0, 0, -1, -1, 0, 1, 1} } 

A = Transpose[D0j.D0 + Transpose[Dl].Dl + Transpose[D2].D2 

uv={u[l][1],u[2][1],u[3][1],u[l][2],u[2][2], u[3][2],u[l][3],u[2][3],u[3][3]} 

bv={b[l][l],b[2][l],b[3][l],b[l][2],b[2][2], b[3][2],b[l][3],b[2][3],b[3][3]} 

zv=Array[z,9] 

Do[ z[i] = Solve[ (A.uv)[[i]]==bv[[i]],uv[[ij] ] ,{i,9}] 

Do[ Print[ 

z[i][[l]][[l]] 

) ,0,9}] 

Do[CForm[ 

Together! ap][[l]][[l]][[2]] ] 

] BJile.mth ,{i,9}] 



CHAPTER 7 

CONCLUSIONS 

We have seen throughout the paper that for singular problems our method outper-

forms the other two methods considered. We emphasize that the weighted descent is 

an extension of the standard descent so that once the effort has been put forth to im-

plement the non-weighted descent process, little extra effort is required to implement 

the weighted descent and superior results can be expected. 

Perhaps the greatest advantage of the algorithm described is its adaptability. The 

reader has seen the versatility of the algorithm by viewing its application to several 

types of equations. We have considered constrained, unconstrained, and partially 

constrained problems of first order, two variational problems, and one partial differ-

ential equation and have touched on the approach to general second order equations. 

We note that the partial differential equation was approached in a way which is type 

independent. All of these problems required only a slight adaptation of the underlying 

theory and spaces from the first order examples. Boundary conditions are maintained 

at each step of the descent process, guaranteeing exact boundary conditions for the 

solution. 

Given such versatility, one would expect a trade-off in numerical results for some 

of the problems; however, for every problem considered we have seen that weighted 

Sobolev descent outperform standard Sobolev descent which in turn outperforms 
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descent based on the Euclidean gradient. Furthermore, improvements such as multi-

grid methods and conjugate gradient methods are all applicable to the weighted 

gradients. 

Another characteristic of the method is that the algorithm tends to give good 

results on a small number of divisions. For example, if one can obtain a given precision 

on a problem where the interval is subdivided into a large number of divisions then 

one is able to obtain the same precision if the interval was divided into a small number 

of divisions. Therefore, quick experiments may be performed using a small number 

of divisions which will be representative of the results obtainable for a large number 

of divisions. This also serves as an indication that computing on a course mesh and 

then using the results as inputs to the code on a finer mesh should lead to vastly 

improved runtimes. 

We believe solving differential equations in this way will continue to lead us 

to questions such as the following, posed in Chapter 4. Which of the equations 

(V L J) (u) = 0 (Euler's equation), ('V#J) (u) = 0, or ( V ^ J ) (it) = 0 is the appropri-

ate equation to consider for understanding variational approaches concerning singular 

differential equations? 

Finally, we have offered a systematic approach for using weights to improve 

Sobolev steepest descent. 
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