Precipitation and Pattern Formation under Far-From-Equilibrium Conditions

PDF Version Also Available for Download.

Description

Precipitates of a series of alkaline earth metal (barium and strontium) carbonates, chromates, phosphates, and sulfates were formed at high supersaturation by diffusion through silica hydrogel, agarose hydrogel, and the freshly developed agarosesilica mixed gels. The reaction vessels could be a small test tube, a recently designed standard micro slide cassette and a enlarged supercassette. Homogeneous nucleation is thought to have taken place, and particle development led to the formation of an unusual category of materials, known as Induced Morphology Crystal Aggregates [IMCA], at high pH under far-from-equilibrium conditions. Standard procedures were developed in order to produce homogeneous gels. Particle ... continued below

Physical Description

xiv, 185 leaves : ill.

Creation Information

Chen, Peng, 1960- August 1995.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 30 times . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Chen, Peng, 1960-

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Precipitates of a series of alkaline earth metal (barium and strontium) carbonates, chromates, phosphates, and sulfates were formed at high supersaturation by diffusion through silica hydrogel, agarose hydrogel, and the freshly developed agarosesilica mixed gels. The reaction vessels could be a small test tube, a recently designed standard micro slide cassette and a enlarged supercassette. Homogeneous nucleation is thought to have taken place, and particle development led to the formation of an unusual category of materials, known as Induced Morphology Crystal Aggregates [IMCA], at high pH under far-from-equilibrium conditions. Standard procedures were developed in order to produce homogeneous gels. Particle development led to characteristic style of pattern formation, which I have called monster, spiral, and flake. Among these IMCA, barium carbonate, chromate, and sulfate were moderately easy to grow. Barium phosphate was very difficult to grow as IMCA due to formation of poorly crystalline spherulites. IMCA of strontium carbonate, chromate and sulfate could be developed at high basic pH in the presence of silicate. Strontium carbonate sheet morphology displays a unique property, double internal layer structure, which was identified by backscattering electron imaging (BEI). Selected electron diffraction (SAD) revealed a new crystal phase which was called "Dentonite". Precipitate particles were isolated using a non-destructive isolation technique. Optical microscopy was widely used to examine particles in situ and scanning electron microscopy and X-ray dispersive energy (EDX) spectroscopy were applied to particles ex situ, together with ESCA for surface analysis. Growth patterns were found to be strongly dependent on pH. Other related pattern formation processes were also investigated including normal and dendritic structures, spherulitic structures and periodic pattern formation. Some interpretations were proposed in terms of mechanism. Chemical additive effects were examined experimentally in the calcium phosphate system. The effect of external ionic strength was investigated, and it was found that a certain concentration of sodium chloride (0.2 M) approximately equals a fraction of pH unit (-0.2).

Physical Description

xiv, 185 leaves : ill.

Subjects

Keywords

Library of Congress Subject Headings

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • August 1995

Added to The UNT Digital Library

  • March 24, 2014, 8:07 p.m.

Description Last Updated

  • April 23, 2015, 9:01 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 30

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Chen, Peng, 1960-. Precipitation and Pattern Formation under Far-From-Equilibrium Conditions, dissertation, August 1995; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc278650/: accessed September 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .