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Lehr(1991) proved that, if M(q,r) denotes the set of real numbers whose expansion 

in base-r is ^-automatic i.e., is recognized by an automaton A = (Ag, Ar, a0,6,<f>) 

(or is the image under a letter to letter morphism of a fixed point of a substitution 

of constant length q) then M(q, r) is closed under addition and rational multiplica-

tion. Similarly if we let M{r) denote the set of real numbers a whose base-r digit 

expansion is ultimately primitive substitutive, i.e., contains a tail which is the image 

(under a letter to letter morphism) of a fixed point of a primitive substitution then 

in an attempt to generalize Lehr's result we show that the set M{r) is closed under 

multiplication by rational numbers. We also show that M(r) is not closed under 

addition. 
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CHAPTER 1 

PRELIMINARIES 

This chapter consists of the notation and definitions of some of the concepts used 

throughout as well as some preliminary results about them which are not proved 

in this manuscript. It is by no means an exhaustive presentation of the relevant 

mathematical topics, but is simply intended to prepare the reader for the chapters 

that will follow. 

1.1 Notation and Definitions 

In what follows, for a G 1R we denote the integer part of a by [aj = max{x € Z\x < a} 

and the fractional part of a by (a)/ = a — |aj. 

Next we recall some definitions from abstract algebra. A monoid consists of a non-

empty set A and a binary relation 

* : A x A A 

(a,b) -¥ a*b 

We shall use the notation ab for a*b. The binary relation * satisfies the following 

axioms: 

Associativity: For any a, 6, c € A 

(ab)c = a(bc). 
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Unit: There exists an element 1 € A such that 

la = a = al, Va € A. 

Given any set A, the free monoid A+ with base A is defined as follows. The elements 

of A+ are n — tuples 

s~{aU02,--',an), (n > 0) (1.1) 

of elements of A. The integer n is called the length of s and is denoted by |s|. If t = 

(bi,b2, • • •, bm) is another element of A+, the product st is defined by concatenation, 

i.e., 

st — (fli, fl2j * '" j ®nj ^1> ̂ 2> * "" i bm)-

This clearly produces a monoid with unit () (the only 0-tuple). Clearly, |si| = |s| + |i| 

and IQI = 0. 

We shall agree to write a instead of the 1-tuple (a). In this way (1.1) may be written 

as 

S == CLIQ>2 * • • Q>n 

if n > 0. Because of this, the element s is called a word of length n, () is called the 

empty word while a 6 A is called a letter, and A itself is called an alphabet. 

Note that the convention a = (o) permits us to treat A as a subset of A+. 

Now, let s 6 A+. An element t € A+ is called a segment of s if s = vtv for some 

u, v € A+. If u is the empty word, then £ is an initial segment; if v is the empty word 

then, t is a terminal segment. If A and A' are monoids, a morphism r : A—y A' 



is a function on A satisfying the following conditions. 

r(ab) = r(a)r(6), 

and 

r ( l A) = r{lA<). 

A morphism <j> : A -¥ B (where A and B are alphabets) that maps every letter in 

A to a letter in B, is referred to as a letter to letter morphism. A substitution 

on A is a morphism r : A —> A+ that takes every element of A to a word in A. A 

substitution r on A is said to be of constant length q provided that Va G >1, r(a) is 

a word of length q. 

1.2 Fixed Points 

If we have a substitution r on an alphabet A and some a € A with the property that 

r(a) is a word that begins with the letter a then, for some w 6 A+ then r(o) = aw 

which would imply that for all n 6 IN, 

rn(o) = Tn(a)rn(w) 

= Tn~l{T{a))Tn{w) 

= Tn~l{aw)Tn{w) 

— Tn~1(a)rn~1(w)Tn(w) 

Thus, for every natural number n, rn(o) has as initial segment rn - 1(a) . Therefore, 

the lira,,.**, rn(a) can be written as an infinite sequence that has, Vn € IN, the initial 



segment rn(a). The above limit in such cases is denoted as r°°(a) and is called a fixed 

point of r. It can be verified that, if we have a £ A such that r(a) begins in a then, 

r°°(a) can be constructed by sequentially concatenating to r(a), r applied to every 

letter occurring in the sequence, beginning with the second letter of r(a). 

For example, if we define a substitution r on the alphabet A = {1,2,3} such that: 

r(l) = 132 

r( 2) = 12 

r( 3) = 31. 

Then r°°(1) = 1323112311321321231132 

Equivalently given a substitution r on an alphabet A and an arbitrary sequence 

UI 6 A®*, a; is a fixed point of r if T(UJ) — U>. 

Note: A substitution may have no fixed points or more than one fixed point. (The 

substitution in the example above has two fixed points.) 

1.3 q-Automatic Sequences 

A finite deterministic automaton A is defined to be composed of a finite set 

of states A, a set of inputs Z, an initial state ZQ E A and a transition function 

S A x Z —^ A. 

For example, let A — {0,1,2,3,4}, Z = {0,1}, zo = 4 and let S : A x Z A be 

defined by the formula, 

6(a, z) = (a + z) mod 4. 



Then given the input sequence 101 € Z3 we follow the steps: 

<5(4,1) = 1, 5(1,0) = 1, 8(1,1) = 2. 

Therefore 2 is our final output. 

Remark 1 

• The input sequence may be any word in Z of finite length. 

• The automaton defined above is denoted as A = (A, Z, zq, 8). 

• An automaton may also be composed of a labelling function <f) which simply maps 

the final output to a letter in a new alphabet, which then becomes the new final 

output. The automaton can then be denoted more generally as A = (A, Z, z0, S, </>), 

where <f> may be the identity function. 

Let Ag = {0, • • •, (q—1)}. A sequence u e A® is said to be ^-automatic if there exists 

an automaton with A = Ag as described above such that for every natural number i, 

if i denotes its base q representation then, i considered as an input sequence gives a 

final output which is the ith entry of the sequence u. (i.e the automaton recognizes 

the sequence). Alternately, a sequence u> € A®* is also called ^-automatic if it is the 

image, under a letter to letter morphism, of a fixed point of a substitution of constant 

length q. 

The Thue-Morse sequence generated in the following fashion is an example of a 

2-automatic sequence. 

Let r : {a, 6} —y {a, 6}+ be the substitution of constant length 2 defined by 

r(a) = ab 



r(b) = ba. 

The fixed point abbabaabbaababbabaababbaabbabaabbaab of this substitution is 

called the Thue-Morse sequence and is 2-automatic. 

The other fixed point of r, baababbaabbababababbabaabbaabbaabba is also 2-

automatic. 

1.4 Primitive Substitutive Sequences 

A substitution r on A is said to be primitive if, 3n € IN such that Va € A every 

element of A occurs in the word rn(a). For example, the substitution r defined on 

the alphabet A = {1,2,3} as follows: 

t(1) = 312 

r( 2) = 12 

r( 3) = 31 

is primitive, since r2(l),r2(2) and T2(3) all contain every letter of the alphabet. 

A sequence on an alphabet A is called primitive substitutive if it is the image 

under a letter to letter morphism of a fixed point of a primitive substitution. 

Thus, the fixed point 3131231312123131231 of the above substitution is prim-

itive substitutive. If we define the letter to letter morphism <j> : {1,2,3} —> {a,b,c} 

such that, 

<t>{ 1) = a 



^(2) = 6 

4,(3) = c 

then, the image cacabcacababcacabca of the above fixed point under <f> is also 

primitive substitutive. Equivalently, a sequence ui € is also said to be primitive 

substitutive if every word in the sequence occurs in bounded gaps. A sequence u) € 

is said to be ultimately primitive substitutive if it has a primitive substitutive tail. 



CHAPTER 2 

STATEMENT OF THE MAIN RESULT 

2.1 Historical Remarks 

In [CKFR], Christol et al. proved that for any prime p, a sequence 

x = xix2xs — • • £ 

is p-automatic iff the formal power series x(t) = Y^Lq £ktk is algebraic over the 

function field K(t) over some finite field K of characteristic p, where a?*, is the image 

of Xk under some injective map from Ap into K. It follows that, within the field 

#[[£]] of formal power series, sums and products of these elements x(t) are again 

p-automatic. If we replace t by the reciprocal of an integer r > 2 then it was proved 

by Lehr in [Le] that the set of real numbers naturally obtained in the same way is 

closed under addition and rational multiplication. Moreover, he proved that if we let 

M(q, r) denote the set of real numbers whose fractional part in base-r is ^-automatic 

then M(q, r) is aQ-vector space.(Recall that, a(Q-vector space is a space that is closed 

under addition and rational multiplication.) However, if we let M(r) denote the set 

of real numbers whose base-r digit expansion is ultimately primitive substitutive, we 

prove that M(r) is closed under multiplication by rational number, but not under 

addition. 



2.2 Statement of Main Theorem 

The main result of this manuscript can be stated in the following theorem: 

Theorem 1 The set M(r) is closed under multiplication by Q, but is not closed in 

general, under addition. 



CHAPTER 3 

PRELIMINARY LEMMAS 

This chapter consists of the lemmas used to prove our main result. Of these lemmas 

only the last one is proved in this manuscript. 

In [Le],Lehr's proof relies in part on a theorem of J.-P. Allouche, M. Mendes France: 

Lemma 1 (J.-P. Allouche, M. Mendes France, [AlMe]) Let * be an associa-

tive binary operation on a finite set A and let u; = UJ1U2OJ3... be a q-automatic 

sequence in Then the induced sequence of partial products 

u>i,u;i*u;2,wi*c<^*u;3,u;i*ct;2*w3*ct>4, • • • 

is q-automatic. 

In order to prove that Af (r) is closed under rational multiplication we will use the 

following analogue of Lemma 1 

Lemma 2 (C. Hoiton, L.Q. Zamboni, [HoZa]) Let * be a binary operation on a 

finite set A and let u> = u)iu>2u>3... be an ultimately primitive substitutive sequence in 

AF. Then the induced sequence of partial products 

U>l,L0i (^i *^2) ((^1 *^2) *<̂ 3) *^4, • • • 

is ultimately primitive substitutive. 

10 
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Lemma 3 Let n e IN. If {&} e ^ is an ultimately primitive substitutive sequence 

which is not ultimately periodic then, there is a positive integer M = M(n) such that 

'&+i + + _ _ _ + 

for each k>0 

£*+» _ f t 
n ^ ~ J - L 5 a \ r ' r* rM )\ 

Proof. Fix a positive integer I so that rl > n, and set (a)f = a — [aj for each a E H. 

Then 

h 
n | 1 =- + . . . + C <*)] + Sk + n £ 

£k+i 

where Sk = (n ^ + .. . + ^ 1 ) ) / • 

Note that for k > 0, \Sk is either 0 or 1. Let S — {<Sk | k ^ 1}. 

Then Card(S) < rl. For each s 6 S there exist words Vs, Us € A+ such that the 

base-r digit expansion of £(1 — s) € Q is given by VtUtUsUsUa • • •. Since the sequence 

{&} is not ultimately periodic, for each s e S there is a positive integer m, so that 

the sequence {£*} does not contain the subword U™'. Set Ms = |T |̂ + ma\Us\ and 

M' =max{M41 s G 5}. Then for each k > 0 we have 

sk + n X, —r 
» = / + ! ' 

= 1 

if and only if 

1 r U 

if and only if 

& + i + A f ' + -JTT + • • • + j4+M' > ~(X ~ Sk) 

Thus M = 1 + M' satisfies the conclusion of Lemma 3. 



CHAPTER 4 

PROOF OF MAIN THEOREM 

In this chapter we prove the main theorem of this manuscript. Section 4.1 consists 

of proving that M(r) is closed under rational multiplication. In section 4.2 we show 

that M(r) is not closed under addition by providing a counterexample. 

4.1 Closed Under Multiplication by a Rational 

We begin by observing that Q c M(r), since the digit expansion of a rational number 

is ultimately periodic, i.e., it has a periodic tail and in a periodic sequence any word 

occurs within a uniform and (therefore bounded) gap. Hence a periodic sequence 

is primitive substitutive. Let £ € M(r). In order to show that M(r) is closed under 

rational multiplication we need to show that for positive integers n and p, **£ G M(r). 

We prove separately that € M(r) and | € M(r). In each case we can assume 

that 0 < £ < 1 and that f ^ 4J. Hence we can write £ = £jfcr_fc with 6 

AT = {0,1,... ,r — 1}. The sequence {&} is then ultimately primitive substitutive 

but not ultimately periodic. We begin by showing that y = ^ e M(r). We write 

V = Vkr~k with yk € Ar. Then following [Le] we have 

Vk = -rk 

P 
rk oo 

mod r 

mod r 

12 
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1 0 0 

i s*" mod r 

1 00 

P i=l P «=Jfe+l 
„k—i mod r. 

Since, 

1 J. k—i ^ 
~22^r = — 
PU P 

for some natural number m, and 

1 0 ° 1 
- £ 6 ^ < -
Pi^+l p 

we obtain 

Vk = mk—i mod r = 
(E?=1 iiTk *) mod pr 

P 
mod r 

(which can be verified by the division algorithm). 

Consider the sequence {(6fe>r)}]&i *n the alphabet Apr x Apr- Since the sequence {£*} 

is ultimately primitive substitutive, the same is true of the sequence {(&,r)}. Let • 

denote the associative binary operation on Apr x Apr given by 

(a, a) * (b, (3) = (a/? + b mod pr, a/3 mod pr). 

(There is a typographical error in the definition of the binary operation * given in 

[Le]. It should be the same as •.) For each k > 1 we set 

xk = ( 6 , 0 * (£2, r) * • (&, r) = &r*- t m °d W, rk mod pr^ . 

By Theorem 2 the sequence {re*} is ultimately primitive substitutive, and hence so is 

the sequence {j/*} as required. 
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We next show that n£ e M(r). Let z = n£. Then we can write (z)f = Y^=i ZkT~k- It 

suffices to show that the sequence {z*} is ultimately primitive substitutive. Let M 

be as in Lemma 3. Then for k > 0 we have 

zk = K r * J mod r 

nrk ^2 &r * m°d r 
i=i 

n E ^ " i + ^ + n E &r*_< 

»=*+! 

oo 

i=l 
mod r 

n£k + n &k * 
i=k+l 

mod r 

= |n&J mod r + 

= |n&J mod r + 

» E fir" 
i=k+l 

mod r 

"( 1 . -̂(-2 + ^ F + . . . + Zk+M 
rM ) J mod r. 

Now since {£*} is ultimately primitive substitutive, the same is true of the sequence 

{(6:,£fc+i) • • • ,(k+M)}kLi- In fact if a tail of {&.} is the image of a fixed point of a 

primitive substitution C, then the corresponding tail of {(&,&+i,... ,6fc+Af)} is the 

image of a fixed point of the primitive morphism C m + i defined in [Qu] (see Lemma 

V.ll and Lemma V.12 in [Qu]). Define <j>: A^f+1 A? by 

®2> • • • j «m+i) = |naij mod r + |n {^- + + . . . + mod r. 

Then the sequence {2*} = {<f>(£k,€k+i,- • • ,^+m)}^. 1 is ultimately primitive substi-

tutive as required. 
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4.2 Counterexample to addition 

It remains to show that M(r) is not closed under addition. Let r be the primitive 

morphism defined by 

1 t-> 1211 

2 •-> 2112. 

Let a = {a*} denote the fixed point of r beginning in 1 and b = {&,} the fixed point 

of r beginning in 2. Let a = a»(10)~* and = YlTLi &i(10)~*. Then a and (3 are 

each in M(10) but a + /? ^ M( 10). In fact, the digit 3 occurs an infinite number of 

times in the decimal expansion of a + /? but not in bounded gap. We note that for 

each n > 1 the sequence a begins in rn(12)rn(l) and b begins in rn(21)rn(l). Since 

|rn(12)| = |rn(21)| it follows that for each N > 1 we can find k = k(N) so that 

a*a*+i • • • a,k+N = bkh+i.. . h+N- If c = {q} denotes the decimal expansion of a + /? 

then the block CkCk+i... Ck+N consists only of the digits 2 and 4. At the same time, 

for each n > 1 the sequence a begins in rn(121)r,l(2) while b begins in rn(211)rn(2). 

Since |rn(121)| = |rn(211)| it follows that a,j ^ bj (and hence Cj = 3) for infinitely 

many values of j. Thus no tail of the decimal expansion of a+/3 is a minimal sequence. 

In particular { c j is not ultimately primitive substitutive. • 
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