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Tensor products of Banach Spaces are studied. An introduction to tensor products 

is given. Some results concerning the reciprocal Dunford-Pettis Property due to 

Emmanuele are presented. Pelczyriski's property (V) and (V)-sets are studied. It 

will be shown that if X and Y are Banach spaces with property (V) and every integral 

operator from X into Y* is compact, then the (V)-subsets of (X®F)* are weak* 

sequentially compact. This in turn will be used to prove some stronger convergence 

results for (V)-subsets of C(fl,X)*. Finally, it will be shown that if the Banach space 

X has a basis and / is a member of C(0,X), then there exists a unique sequence 

(fn) in C(n) such that 
OO 

/ = ]C /» ® Xn-
71=1 

This representation will be used to show that representing measures for operators 

from into Y take thier values in C(X, Y) if and only if the operator is 

the pointwise limit of a sequence of weakly compact operators and the representing 

measure is the pointwise limit of the corresponding sequence of representing measures. 
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CHAPTER 1 

INTRODUCTION 

This paper studies various aspects tensor products of Banach Spaces. An intro-

duction to the tensor products is given in Chapter 2. Most of the material in this 

chapter comes from the mongraph by Diestel and Uhl [DU, Chapter VIII]. The proofs 

presented here generally provide more details then the proofs in thier book. Further-

more, some of thier proofs have been modified and simplified. For example, the use of 

the Stone Representation Theorem in the proof of the factorization theorem for inte-

gral operators (Theorem VIII.1.9 in [DU], Theorem 2.19 here) has been abandoned 

in favor of a more basic argument. 

In Chapter 3, the reciprocal Dunford-Petts property on the projective tensor prod-

uct of two Banach spaces is studied. The main results are due to Emmanuele [EM2]. 

A detailed presentation is given. The proof of Theorem 3.9 provides the motivation 

for the main results in Chapter 4. 

Property (V) and (V)-sets are introduced in Chapter 4. The (V)-subsets of the 

contiuous dual of the injective tensor product of Banach spaces are studied. Sufficient 

conditions for weak* sequential compactness, a necessary condition for weak compact-

ness, are given. This is used to provide stronger convergence result for (V)-subsets of 

the space C(Q, X)*. Additionally, a new proof of a well known theorem is presented. 

In Chapter 5, a representation theorem for the space C(Q,X) is presented when 
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it is assumed that X has a basis. This result is used to give a charactorization of 

representing measures for operators from C(fl, X) into Y which take thier values in 

C(X, Y). 

Most definitions of terms and symbols are provided in the paper as needed. The 

symbol • at the end of a line indicates the end of a proof. Definitions of any terms 

or symbols not given in this paper may be found in [DU]. Royden [RDN, Chapter 

10] and Diestel and Uhl [DU, Chapters I, II, and VI] provide a sufficient background 

in functional analysis for this paper. 



CHAPTER 2 

TENSOR PRODUCTS OF BANACH SPACES 

Let X and Y be vector spaces over the real numbers and let B(X, Y") be the vector 

space of all bilinear forms on X x Y. For (x,y) € X x Y, let x <g) y be the member 

of B(X, Y)", the algebraic dual of B(X,Y), defined by 

(x 0 y , f ) = f(x,y) 

for all / € B(X,Y). The linear span in B(X, Y)u of {a; (g) y : x € X, y 6 Y} will be 

denoted by X ® Y. Members of X ® Y satisfy the following properties: 

(x + z)<giy = xtgiy + z®y, 

x <8> {y + w) = x<$y + x®w, 

ax <S> y = x 0 ay. 

The proofs of these properties are an easy exercise and are ommitted. Further infor-

mation on the algebraic properties of X <g> Y can be found in any standard algebra 

text (see, for example, Hungerford [HUN]). 

The remainder of this chapter involves the study of tensor products of Banach 

spaces based on material from Diestel and Uhl [DU, Chapter 8]. A detailed presenta-

tion is given here. Let X and Y be Banach spaces. For each member (x, y) of X x Y 

define ||(a;,!/)|| by 

IIO,y)ll = max{| |x | | , ||y||} . 



This defines a norm on X x Y. The subspace of B(X, Y) of continuous bilinear forms 

on ( X x Y, ||-1|) will be denoted by B(X, Y). Each member of X* 0 Y* defines in a 

natural way a member of B(X, Y). Let v = xi ® V* be a member of X* 0 Y* 

and (x , y ) be a member of X x Y. Then v(x,y) is defined by 

i=1 

Definit ion 2.1 Let X and Y be Banach spaces. A norm, a on X ®Y is called a 

reasonable crossnorm if the following two conditions hold: 

R1 a(x ® y) < ||a:|| ||j/|| for all x G X, y G Y, 

R 2 if x* G X* and y* G Y*, then x* ® y* defines a member of (X ® F)* and has 

functional norm no larger than ||x*|| ||y*||. 

Proposi t ion 2.2 Suppose a is a reasonable crossnorm on X ® Y. Then 

1. a(x ® y) = ||x|| ||t/||, 

2. if x* G X* and y* G Y* then the norm of x* ®y* as a member of (X ® Y,a)* 

* Ik l l ||</% 

3. if a* is the norm on X*(g>F* as a subspace of (X(g)Y, a)*, then a* is a reasonable 

crossnorm on X* ® Y*. 

Proof. To prove (1), let x G X and y € Y. Choose x* G X* and y* G Y*, each of 

norm one, such that a:*(x) = ||s| | and y*(y) = ||y||. By R2 of the definition, x* <g> y* 



is a member of (X ® Y, ct)* and the functional norm of x* ® y* is no more than one. 

Thus 

Ikll llyll = k*(z)y*(s/)l 

= |(ar* 0 y*)(x ® y)| 

< a(x®y). 

R1 of the definition gives the reverse inequality. 

To prove (2), let x* £ X* and y* G Y* Choose sequences (xn) and (yn) from 

X and Y respectively such that ||xn|| = ||f/n|| — 1, ||rc*|| = lim„ x*(a:n), and ||y*|| = 

l im ny*{y n ) . Then 

M \\y*\\ = lim|a:*(xn)| \y*(yn)\ 

= lim j(s* ® y*)(x ® y)| 

< lim sup a(xn ® ?/n)norm(x* <g> y*) 
n 

< norm(x* ® y*), 

11 * II II * II 

< IF II lly II-

The last inequality follows from R2 of the definition. It follows that the functional 

norm of x* ® y* is ||a:*|| ||y*||. 

Finally, to prove (3), let x* £ X* and y* € Y*. Then a*(a:* <g> y*) is the functional 

norm of x* <g> y*. Therefore condition Rl of the definition is satisfied. Thus it must 

be shown that if x** is a member of X** and y** is a member of F**, then x** ® y** 



6 

is a member of (X* <g> Y*y a*)* and the functional norm of x** <g> y** is no more than 

M I i i n i -

Let x** € X** and y** € Y**. Choose nets (xp) in X and (y7) in Y such that 

lk/?|| < ||®**IU \\y-y\\ < lh/11, l i v c i p x p = x** , and lirOy?/7 = y**, where the limits 

occur in the weak* topologies on X** and Y** respectively. Let u* = Ya=i x*i ® V* be 

a member of X* ® Y*. Then 

\(x** ® y**)(u*)\ l y w w ) 
i—1 

^ l i m x * ^ ) limt/*(t/7) 
t=1 1 

lim lim 
p i 

Y,xi(xp)yi(y-i) 
t=1 

< limsup\(x@ 0 y7)(u*)| 

< limsup ||y7|| 
P,-y 

< H^l l | |< /** |K(0-

Part (3) follows. This completes the proof of the proposition. 

Let u € X <g) Y. Define A («) by 

• 

A(u) = sup{|(®'®y*)(u)|: y* G Y*, M , ||j,*|| < 1} . 

It is easily seen that A defines a norm on X ® Y. 

Proposition 2.3 The norm A is a reasonable crossnorm on X ®Y. 

Proof. Let x € X and y £ Y. Then 

A (x®y) = sup{|(x* <g> y*)(x ® y)\ : x* e X*, y* €Y*, ||x*||, ||?/*|| < 1} 



= sup{|a:*(a:)y*(y)l : € X*, y* € Y*, ||®*||, ||y*|| < 1} 

< IMI llyll-

This shows A satisfies the R1 of the definition. 

Let x* <E X* and y* € Y*. For any u € X <g) Y, 

| ( * W ) ( « ) I < M M l ( ( * 7 M ) ® ( v 7 M ) ) ( « ) l 

< M M a h , 

the last inequality resulting from the definition of A. Thus R2 is also satisfied and A 

is a reasonable crossnorm. The proposition follows. • 

The completion of (X ® Y, A) will be denoted by and called the injective 

tensor product of X and Y. The norm on X®Y will still be denoted by A. 

Proposition 2.4 Let be a compact Hausdorff space and X be a Banach space. 

The space C(f2)<S>X is linearly isometric to the Banach space C(Q,X) of continuous 

functions f: 0 i—»• X equipped with norm | | / | | = sup{||/(w)|| : u> € 0}. 

Proof. Define J : C(0) ® X i—>• C{Sl,X) by 

J £ fi ® xi)(u) = 

«=1 i=z 1 

Then 

J H /»' ® X* 
\?:=i 

= sup 
i—1 

: « e f l ; 



sup 

sup 

(x* fi(u)xi) 
t=1 

i=1 

a;* G X*, ||z*|| < 1, w € ft 

: x* € X*, j|z*|| < l l 

sup< {v, Y^{x*,xi)fi) : i /€ C(ft)*, X*ex*, \\i>\\ < 1, ||z*|| < 1 

sup v,fi){x*,xi) 

i=1 
/ n \ 

^ ( X) Si ® xi 

v e C( f t )* , x* € X * , ||z/|| < i , | |^*|| < l 

u= 1 

It follows that J extends to a linear isometry from X®Y into C(ft ,X). 

Now suppose g is a member of C(ft, X). The range of g is a compact subset of 

X. Let e > 0. Choose lo 1; lo2, u>n in ft such that for each u> in ft, there is 

an i, 1 < i < n, for which ||p(w) — 5(t*>j)|| < e/2. For each i, put Ui = {u> € ft : 

||fif(u>) — r̂(u î)|| < e}. The set U — {U\, U2, • •., Un} is a finte open cover of ft. Let 

{#!, <72, • • • 5 9n} be a finite partition of unity subordinate to U [WIL], That is, each 

gi is continuous, E"=i&(w) = 1 f° r ^ in ft, 0 < #(u>) < 1 for all to in ft, and 

= 0 if u> is not a member of Ui. Define h: ft 1—> X by 

h(uj) = J2gi{v)g(ui). 

izz 1 

Then 

h-J\ ® 

and 

I I A H - s H I l = 

\i=1 



< J2gi(u)\\g(ui) - g(u) 
t=1 
n 

< = e-

»=i 

Thus the range of J is a closed subspace ( J is an isometry) of C(Q,X) and the range 

of J is dense in C(IL,X). It follows that the range of J is all of C(fJ,X). Thus J is 

a surjection. • 

Let U £ X ® Y . Define 7 (u) by 

7 («) = sup {|^(«)| : 0 € B(X, Y), \M < 1}. 

Then 7 defines a seminorm on X <S> Y. 

Proposition 2.5 The norm 7 is a reasonable crossnorm on X ®Y. Futhermore, if 

u is a member of X ®Y then A (u) < 7 («). 

Proof. First note that X*®Y* is isometric to a closed linear subspace of B(X**, Y**). 

Thus jfa?* ® Y**) = ^(X*®V*) = 11̂*11 lb*||- Consequently the restriction 

(x* 0 y*)\x®Y of x* ® y* to X <g) Y satisfies 

IK® ®y Y) — 11^ ® V Y**) ~ IN II IIV II • 

Thus if u G X 0 Y then 

A (u) = s u p { | s * ® j , » | : x*€X\ y* eY\ N | , ||y*|| < 1} 

< sup{foHiO|: iPeB(X, Y), 11011 < 1} 

= 7(«)-
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This shows that A (u) < 7 (u). 

Now suppose x and y are nonzero members of X and Y respectively. Then 

7 Or <8)y) = sup{\^{x,y)\: i!>€B(X,Y),\m<l} 

= ™P{M\\y\\mx/\\xhy/\\y\\)\:^€B(X, Y), j|0|| < 1} 

= N l l y l l -

This shows that 7 satisfies Rl. Since 7 dominates A, for x* € A'* and y* <E Y*, it 

follows that x* <g> y* is a member of (X ® Y, 7)* and has functional norm no greater 

than ||s*|| ||y*||. Thus 7 satisfies R2 and first statement of the proposition is proven. 
• 

The completion of (A' <g> Y, 7) will be denoted X®Y and called the projective 

tensor product of X and Y. The norm 011 X&Y will still be denoted by 7. The 

following proposition gives a useful alternative way to consider 7. 

Proposition 2.6 If u is member of X ®Y, then 

{« 7 1 } 

E M INI : <= X, yie Y, u = Y^xi®yi). 
«'=1 t=l J 

I f u is a member of X®Y and e > 0, then there exist sequences (®n) in X and (yn) 

in Y such that limn xn — 0 = limn yn, u = J2nLi xn <8> Vn in 7 norm, and such that 

7 (w) — E ll^ill llynll — 7 (u) + 
n = 1 

Proof. To prove the first statement, let 

( n n 
a(u) = inf i M IMI : ^ Vi eY, u = ^2 ^ ® yt 

\ ? = 1 i = l 
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Clearly, a(x <g> y) < | |x|| ||j/||. If u = £ ? = 1 X i (g> y{ t hen 

7(«) < = E l N I l i f t | | • 
8 = 1 t = l 

It follows 7 (u) < a ( « ) for all u £ X and t ha t a is a reasonable crossnorm on 

X ® F . 

Let u e X®Y. Choose <f> £ (X®Y,a)* such tha t <j>(u) = | |u|| and | | ^ | | « ) * = !• 

Define tj) on X x F by 

= <f>(x<g>y). 

T h e n 

= \<t>{x®y)\ 

< « ( ^ ® j / ) | | ^ | | ( W a ) . 

= a(x ® y) 

= I M I M 

It follows t h a t <0 is a member of B(X, Y) and | |^ | | < 1. Hence 

a(u) = |0(u) j = | ^ ( u ) | < 7 (u) 

and 7 — a . This proves the first s t a t ement . 

To prove the second s t a t emen t , select a sequence ( u n ) in X®Y such t ha t 7 (« - un) 

ef2n+3 for each na tu ra l n u m b e r n. Using the first s t a t ement of t he proposi t ion, 

ui = xi ® Vi, where 

i(i) 

E I N I I N I < 7 ( « i ) + e/24 < 7 («) + e / 2 3 . 
t=1 

< 
write 
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The last inequality follows from a simple calculation. For each n > 1, 

l{un+i-un) < 7 (u - un+i) + 7 (u - un) 

< e/2n+4 + e/2n+3 < e/2n+2. 

Using this inequality and the first statement of the proposition, for each n > 1, write 

i(n-f-l) 
^n-f 1 = : ® Uij 

i=?(n)+1 

where INI INI < e/5n+2. Thus 

/ '("+1) \ / A'(l) n »(fc+l) 
7 I " - E *»' ® f*• I = 7 w - l C *«' ® yi + E E ^ ® Vi 

\ / \ V=1 fc=1 

= 7 + E(u /c+l — 

= 7(1/ - un) < ej2n+z. 

Hence YliZi xi ® Vi converges absolutely to u and clearly, using the triangle inequality, 

00 
l{u) < E M llsfcll . 

i = l 

Also, 

0 0 i(1) 00 

11̂*11 lly«ll = Yl lk»ll l|y»ll + ]C llXill lly»ll 
i = i »=i t=»(i)+i 

CSO 

< 7(«) + e/23 + E £ \\xi\\ \\yi\\ 
ksz 1 

0 0 

< 7 (u) + e/23 + J 2 e / 2 k + 2 

Ar=l 

< 7 (u) + e. 

All that remains to be proved is that (xn) and (yn) may be chosen so that lin^ ||xnj| = 

0 — limn ||y„||. Suppose (xn) and (yn) are the sequences obtained above and, without 
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lose of generality, assume all of the terms are nonzero. Let i be a natural number. 

Choose n such that 

i(n) + 1 < i < i(n + 1). 

Then ||xt || j|y4-|| < t/2n+l. Choose a* such that |[yt || /<*,• = yje/2n+1. Then 

<*; \\xi\ 
2n+2 IMI llvll < 2«+i 

Therefore, 

||afxf|| < y/e/2»+K 

The sequences (anxn) and (yn/an) satisfy the conclusion of the proposition. • 

Attention is now turned to the continuous duals of X®Y and X®Y. Let C(X, Y) 

denote the space of bounded linear operators from X into Y with the usual operator 

norm. The next theorem provides some natural linearly isometric representations of 

Theorem 2.7 Let X and Y be Banach spaces. The spaces B(X, Y), and 

£(X, Y*) are all linearly isometric. 

Proof. Let i/, € B(X, Y) and u = £?= 1 Xi ®VieX® Y. Put ^(«) = £?= 1 0(s,•,!/<)• 

The definition of the tensor product guarantees that ij> is well defined. Futhermore, 

4>(u) 
i=z 1 

< n r t E b . i i iikII • 

Therefore 0 is continuous on (X <K> Y, j) and by 2.6 the norm of '</> is no greater than 

||"0]|• Extend ip to all of XigiY to obtain a member of (X<S)Y)*. 
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Now suppose i) € (X<g>F)*. For each {x,y) in X xY put ^{x,y) = ip(x ® y). 

Then 

\i}>(x,y)\ = i>(x%y) < i f ) j(x<g>y) = # |ja?|| ||y||. 

Therefore 0 defines a member of B(X, Y) and |j<0|| < |U | . It follows that the map 

0 h-> defines a linear isometry from B(X, Y) onto (X®F)*. 

Let ip' £ C(X, Y*) and (x,y) € X x Y . P u t i})(x,y) = (ip'(x),y). Then 

mxiy)\ = m * ) , y ) \ < \ m N I i m i . 

Therefore ^ is a member of B(X. Y) and the functional norm of ?/; is no greater than 

M -

Now suppose 0 € B(X, Y), x e X , and y € Y. Pu t {r/>'(x),y) = ^(x,y). Then 

l(0'O),</)| = \il>(x,y)\ < ||0|j ||(a:,y)||. 

Therefore, ifi is member of L,{ \^ Y*) and the operator norm of ip' is no greater 

than |)^||. It follows the map ^ if> defines a linear isometry from £(X, Y*) onto 

B(X, Y ) . 

Thus 

(X®F)* = B{x, Y ) * C(X, Y ) 

under the correspondence 

<-> ^ <-» tp'. 

The theorem follows. • 
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There is a natural map, r], from Y ® X onto X <g> Y, given by 

n \ n 

n 13 Vi ® x * l = £ X i ® 

\«=1 / i=l 

which establishes a linear isometry between and X(g)Y (and between Y<§)X and 

X®Y). Thus the adjoint, ??*, is a linear isometry between the respective duals. Let 

?/> be a member of B(X, Y). Then is the member of B(Y, X) defined by 

v * W ( y ^ x ) = ^ i x i y ) 

for all y € Y, x € X. Let T be the member of £(X, Y*) for which 

( T ( x ) , y ) = 4>{x,y) 

for each x € X, y € Y. Thinking of 7]* as an isometry between C(X, Y*) and 

C{Y, X*) note that 

( r } * ( T ) ( y ) , x ) = r)tj)(y, x) = if>{x,y). 

Let J be the natural embedding of Y into Y**. Then 

( T * J ( y ) , x ) = ( T ( x ) , y ) 

= */>(x,y) 

- y*(y,x) 

= ( n * { T ) ( y ) , x ) . 

These remarks are summarized in the next corollary. 
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Corollary 2.8 Let J: Y i—• Y** be the natural embedding. The map T •—> T* o J is 

a linear isometry between C(X, Y*) and C(Y, X*). 

Attention is now turned to the dual of (X®F). Let S = (Bx• x By,w* x to*). 

Let u — xi ® Vi be a member of X®Y. For each (x*,y*) € S, define u(x*,y*) by 

i=1 

The map u i—• u defines a linear isometry from X®Y into C(S). 

Theorem 2.9 (Grothendieck) A continuous bilinear functional xj) defines a mem-

ber of (X<S>Y)* if and only if there exists a regular Borel measure [i on S such that 

for all x E X and for all y € Y, 

^{x,y)= f x*(x)y*(y)dn(x*,t/). 
Js 

In this case, [i may be chosen so that the norm of ij> as member of (X&Y)* equals 

|/^| (S) where |^| is the variation of fi. 

Proof. Let ^ be a member of (XjSjY)*. Thinking of X®Y as a closed linear subspace 

of C(S), let ?/> be a Hahn-Banach extension of I/> to all of C(5'). Using the Riesz 

Representation Theorem, obtain a regular Borel measure FI on S such that 

W) = Lf 
J iy 

for all / G C(S) and such that \n\ (S) = Thus 

^(x,y) = i>(x,y) = f x*(x)y*(y)dfi(x*,y*). 
J s 
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Now suppose 4> is a continuous bilinear functional on X x Y and has a represen-

tation 

^(®>y)= / x*(x)y*(y)dp(x*,y*), 
J s 

where fi is a regular Borel measure on S. Define 4> on X ® Y by 

$(u) = 
i=l 

for all u = £™=1 Xi <g> yi in X ® Y. Then for each u = £" = 1 Xi <g> j/» in X ® F , 

$(«) 

*/. 

? ' = ! 

S Lx*(xi)y*(yi)Mx\y*) 
1 ̂  

X>*(zi)y'(lN)<W*'.S<') 
i=l 

< ^ ® IJl 
! = 1 

A(tt) H ( 5 ) . 

The last inequality pertains to m as a member ol C(iS'). Thus ^ extends to a continuous 

linear functional on X&Y with ||^|| < |^| (S). An appeal to the first half of the 

argument guarantees that fj, may be chosen so that the norm of ?/> is |/i| (5'). The 

theorem follows. • 

Theorem 2.9 inspires the following definition. 

Definition 2.10 A continuous bilinear form ijj on X xY is said to be integral when-

ever 4> defines a member of{X®Y)*. The norm of xf> as a member of (X®Y)* will 

be called the integral norm of tp and denoted by |j^||jVir 
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The space of integral bilinear forms on XxY with the integral norm will be denoted 

by B(X, Y). 

Theorem 2.9 guarantees that 

(X®y)* s* B(X, Y). 

Definition 2.11 An operator T: X \—• Y is said to be an integral operator if the 

bilinear functional r on X x Y* defined by 

Tixi V*) = {T{x),y*) 

is a member of B(X, Y*). The integral norm of T is defined to be ||T||ini and i is 

denoted by ||r||inr 

Suppose W, X, y , and Z are Banach spaces and suppose T: X i—> W and S: 

Y i—• Z are bounded linear operators. Let x; ® yt- be a member of X 0 Y. 

Define (T <S> S)(u) by 

(T®S)(u) = '£T(x,)®S(m). 
(=1 

Lemma 2.12 The map T <S> S is a well defined bounded linear operator from X®Y 

into W®Z. Futhermore, 

l i r®s | | < ||T|| ||S||. 

Proof. Suppose u € X @ Y and has representations 

U - Y2 Xi ® Vi - 12 Ui ® V3-
«=1 3=1 
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Define T x S : X x Y ^ W x Z by 

(TxS)(x,y) = {T(x),S{y)). 

Let 6 G B(W, Z). Then 9 o (T x S) is a member of B(X, Y). Thus 

\*=1 / 4 = 1 
71 

* = 1 

m 

i = i 

= « ( E ( r w , s f e ) ) 
U=1 

Therefore, 

»'=i j=i 

The proves the first statement. The second statement follows from a simple calcula-

tion. • 

Theorem 2.13 Let W,X,Yf and Z be Banach spaces and let T: W i—> X, S: 

X i—> Y, and R: Y i—> Z be bounded linear operators with S integral. Then 

RST: W i • Z is integral and \\RSTlnt < ||i?|| ||5|| iBl ||T||. 

Proof. Using 2.12, the map T <8> R*: W®Z* • X<g>y* is well defined. Thus, 

(T® R*)*: B(X, Y*) h—> B(W, Z*). 

Let V e B(X, Y*) such that {S(x), y*) = ip{x,y*) and | |5| | i n i = \\^\\inV Then 

(T ® is a member of B(W, Z*). Let w € W and 6 Z*. Then 

{T®R*Y{$){w,z*) = i>{T®R*)(w,z*) 
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= iP{T{w),R*{z*)) 

= {ST(w),z*) 

= {RST(w),z*). 

Thus RST is integral. Note that 

I I * s t L , = l l ( T ® f f ) * « < ) I L , 

< I K T 8 - R T I I I I V - I U 

< M l ||J?-|| I W , „ , 

= W I I | S I L . i m i . 

The theorem follows. • 

Theorem 2.14 Let X and Y be Banach spaces, T: X i—>• Y be a bounded linear 

operator, and J: Y i—> Y** be the natural embedding. Then T is integral if and only 

if JT is integral. In this case, ||JT||int = ||r||inr 

Proof. If T is integral then, by 2.13, so is J T , and \\JT\\int < | |J | | \\T\\int = ||r||int. 

Suppose JT is integral. Let ijj be the member of B(X, Y***) corresponding to JT. 

Let J* be the natural embedding of Y* into Y*** and Ix be the identity on X. Then 

(Ix ® J*)- X®Y* i—> X(8)Y*** is continuous and 

(Ix ® J*)": B(X, Y*) • B(X, Y***). 

Let (x,y*)£X x Y*. Then 

({Ix <8> J*)* (0), (x,y*)) = (i/>, (Ix ® J*)(x,y*)) 
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= i>{x,J,(Y')) 

= (JT(x),J,(f)) 

= ( r M , y * ) . 

This shows T is integral. Futhermore, 

i m i m ( = i n / * ® j . r M i i , -int 

hnt 

< IML = VT\\mt-

The theorem follows. • 

The following lemma will be used to prove that the natural inclusion map from 

L ^ F I ) into L i ( N ) and is integral and has integral norm equal to \/J,\(Q). 

Lemma 2.15 LetK be a finite dimensional subspace of L ^ f i ) and let {[/i], [/2], ..., [/„]} 

be a basis for A. For each i, 1 < i < n, let fi be a representative from [/,•]. Then 

there exists a jx-null subset N of U such that for each n-tuple ( n , r2 , . . . , rn) of real 

numbers, 

= sup 
oo i=l 

Proof [LEW]. For each n-tuple (qu q2, qn) of rational numbers, choose a //-null 

subset N(qi, ..., qn) of Q such that 

£?.•[/«] 
i=l 

= sup 
oo >• 

( £ ?.-/.• (w) 
i=l 

: u>en\N(qi,..., 9n)l. 
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Let 

JV= U JV 
(? l . - ,9n)6G n 

Since N is the countable union of null sets, N is also a null set. Thus, for any n-tuple 

(<7i, ..., qn) of rational numbers, 

£ * [ / . ] = sup 
cx) t=1 

Now suppose (ri, r2, . . . , rn) is an n-tuple of real numbers and let e > 0. Note 

that supwgfAJV rifi(u>)\ is finite since supw6tJVV | £ f = 1 /8(u>)| is finite. Choose a 

rational n-tuple (qu q2, ..., qn) such that 

Then 

sup 
uen\N i= 1 

< e. 

E ' . - l / i ] 
i—l 

< sup 
oo w€tt\N 

< sup 
A/" 

< sup 
u>en\N 

Ylrifi{u) 
i=l 

J2 
i= l 

t= l 

+ sup 
uj£tt\N 

+ 6 

t=1 

< 

< 

< 

S 9<[/i] 
?r=l 
n 

E r»[/<] 
i=i 

+ e 

+ - ft )[/.•] 
t = l 

-f € 

2 = 1 

£ r>\f'} 
i—1 

+ sup 
oo w€0\JV 

+ 2e. 

XX r* ~ 
8 = 1 

+ e 
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Specifically, 

i=l 

< sup 
oo €̂n\AT i=1 

< E r > [ / J 
i = l 

+ 2e. 

It follows that 

£ r i [ / i ] 
i=l 

= sup 
oo ueQ\N i=1 

The lemma follows. • 

Proposition 2.16 Let (fi, E,/u) be a finite measure space. Let I: L ^ j x ) \—• L \ { f i ) 

be the natural inclusion. Then I is integral and ||/||int = | / j | ( f J ) . 

Proof. It will suffice to prove the proposition with the assumption |/i| (ft) = 1. Let 

<f> G S(L0o(^),X00(/i)) such that 

4>(f,g) = ( H f ) , 9 ) = f f g d f i 
Ju 

for all f , g € L ^ / j , ) . Suppose u = J2i=i[fi] <8> [gi] is a member of Loo(fi) <8> ioo(^) with 

A (u) = 1. For each j, 1 < j < n, choose representatives f j G [/j] and g3 (E [</,]. Let 

{[Ai], [/12], • • •, [̂ Jb]} be a maximal linearly independent subset of the set 

{[/1], [/2], [/„], \9il N , k ] } 

and let {hi, . . . , hk] be the corresponding linearly independent subset of 

{ f l j • • • ) fnt 9\i • • • 1 9n} • 

Using 2.15 let N be a /i-null subset of ft such that 

I / . M 
2 = 1 

= sup 
00 "6f2VV 
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for all n-tuples (ri, . . . , rn) of real numbers. Then the following isometry results: 

(span {hi, . . . , hk} , sup norm on Q\N) = (span {[hi], . . . , [hk]} , ||-|| ) . 

For each u> € 0 \ N , let Su be the member of (span {hi, . . . , hk})* defined by 

i) = 

t=l i=l 

Note that ||£w|| < 1. Furthermore, Su may be considered as a bounded linear func-

tional on span {[hi], . . . , [hjJ}. Using the Hahn-Banach theorem, extend 8W to all of 

Thus 

(<h X M ® \9i)) 
i=l 

W ) 
i=1 
n 

L fi9i d!1 

1 ( p « ) 
< D / . 1 M 

i=1 
W (!!) 

= sup 
UJ£Q\N 

sup 
o€Q\N 

sup 
w£Q\N 

fi{io)gi(uj) 
t = l 

izz 1 

( - W r f 
i—l 

< a ( £ [ / , ] ® [».]) M («) • 

W W 

Ml(fi) 

WI ( " ) 

u=l 

It follows that <f> is continuous on 0 L00(/^),A). Therefore, I is integral. 

Moreover, 

II^IL* < IH (ft). 
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Using the Hahn Decomposition Theorem [RDN, Proposition 11.5.21], write 

ft = A[jB 

where A and B are disjoint measurable sets, 

fi(C) > 0, 

for any measurable subset C of A, and 

H(D) < 0 

for any measuralble subset D of B. Then 

\(<t>, Xa + XB® Xa ~ XB}| / (xa + XB){XA - XB) dp 
J Q 

/ {XA - XB) dfi 
Jn 

= M ( « ) -

Thus 

Pll,„, = P L , = M (")• 

The proposition follows. • 

Recall that a operator is absolutely summing if it sends weakly unconditionally 

Cauchy (wuC) series onto absolutely converging series. The following characterization 

for absolutely summing operators can be found in Diestel and Uhl [DU, Proposition 

VI.3.2]. 
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Theorem 2.17 LetT: X i—> Y be a bounded linear operator. Then T is abso-

lutely summing if and only if there exists a K > 0 such that for any finite subset 

{a;i, x2,..., xn} of X the following inequality holds: 

n ( n 1 

I ] INI sup ^ 5 3 1(3*, a:,-) I : z* G X*, ||a;*|| < l l . 
t=i u=i J 

The next proposition, coupled with Theorem 2.19, will show that integral operators 

are absolutely summing. 

Propos i t ion 2.18 Lei (O,£,/0 be a finite, measure space. Let I: L ^ f i ) i—> Li(fi) 

be the natural inclusion. Then I is an absolutely summing operator, 

Proof. Suppose X^iL/*'] *s a WUC series in L00(fi). Let n be a fixed natural number, 

Assume, also, that for each 1 < i < n, [/?;] is nonnegative //-almost everywhere. 

The general case will follow. For each i, 1 < i < n, let f] G [/•]. Using 2.15, let N be 

a //-null subset of 0 such that for each n-tuple (r^, r2, • - * ?^n) of real numbers, 

= sup 
co ^eO\N 

E n / . M 
i= 1 

For each LO of Cl\N let be the member of span {[fl], [f2], . . . , [fn]}* defined by 

= lLrifi{u) 
4*=1 

for each J^'=l € span {[fi], -. -, Thus 

EIIWII> = E / j / . M W 
4=1 t=l J U 

= iJf.tM 
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L i b f i d h J U i=i 

< H ( » ) E / i 
t = l 

|p| (fi) sup 
w€0\AT 

|/i| (0) sup 
u>(E.d\lSf 

oo 
n 

S / . - H 
i=l 

£ < 4 , , [/.]> 
2 = 1 

< M( f ! ) su P j D W / i D b - € < i 

For the general case, write 

i/.] = i n - L/n. 

where [/;*"] and [/; J are both nonnegative \i-almost everywhere and 

= [ f t ] + i f f } -

Apply the above argument to the set span { [ # ] , . . . , [f+], [ f f ] , . . . , [f~]}. Note that 

{ £ f?(u>) : w € n\A^) < sup |/s(u>)| : u € fi\ivl 
,i=l ,4 = 1 

and 

SUP fi (w) : w € fi\N j < sup |/i(w)| : u € fi\jvj 

Thus 

" ( n "i 
X/ ll[/']lll — 2 l/̂ j (fi) sup < ^2 \{vi [/i])! ; V € (Loo(^))*, ||l/|| < 1 1 . 
»=1 U=1 J 

It follows from 2.17 that I is absolutely summing. • 
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Theorem 2.19 An operator T: X i—> Y is integral if and only if JT admits a 

factorization 

T J 
X - y r * * 

s Q 

LM 

where J: Y \—• Y** is the natural embedding, n is a finite regular Borel measure 

on a compact Hausdorff space Q, I: L^pt) i—> L\(n) is the natural inclusion, and 

S: X i—> Looifi) and Q: Li(fx) i—> Y** are bounded linear operators. In this case, 

Si!, //, Q, and S can be chosen so that ||5]| , ||Q|| < 1 and | |T|| in i = |/«| ( f i ) . 

Proof. Suppose T is integral. Let y'j be the member of B(X, Y) induced by T. Let 

SI = (Bx. x ]3Y * ? w* x w Olioose ct re^ul&r Borel nicctsure JJ, on 0 such thctt 

{T(x),y*} = ij>(xty*)= f x*(x)y*(y) d^(x*,yx) 
J Q 

and 

M (<1) = M L = n 
xnt 

Define S: X \—• L00(n) by 

and R: Y* i—> LOQ((i) by 

S(x)(x',y") = x"(x) 

R(x)(x',y") = y"(y) 
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for all x € X and y € Y. Then S and R are bounded linear operators, ||S|| < l,and 

\\R\\ < 1. Let xeX and y* e Y*. Then 

(:T(x),y*) = fx*(x)y**(y*)dti(x*,y**) 
J it 

= J Q S ( x ) ( x " , y " ) R ( y ' ) ( x " , y " l 

= llS(x)(x',y")R(y-)(x-,y") d^x-.y") 

= (IS(x),R(y")) 

= (R'IS(x).y-). 

Let Q = R*. Then JT = QIS is the desired factorization. 

The converse follows from 2.15 and 2.13. • 

Corollary 2.20 A bounded linear operator T: X i—> Y is integral if and only if the 

adjoint T*: Y* \—• X* is integral In this case, )|Tj|inf = ||r*||t. 

Proof. Suppose T is integral. Using the factorization in 2.19 and taking adjoints 

produces the commutative diagram 

J* T* 
y"*** ^ y* -

Q* 

LM ivl(/i) 
I* 

s* 

where J, fj,, S, Q, and I are as in 2.19. 

Let L be the natural embedding of Lx(n) into It is a simple exercise to 

show that I* = LI. Let A be the natural embedding of Y* into Y***. Thus the 
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diagram 

I< J* T* 
Y* *- y*** »• y* 

Q* 

Loo(fi) = L^nY —p—L^n) — 

5* 

L00W = L1{liy 

is obtained. Therefore, 

T* = T*J*K = S*LIQ*K. 

Since I is integral, it follows by 2.13 that T" is also integral. Finally, using 2.16, 

i r i L = \\S"L1Q-K\\m, < ||/|L = W («) = ||T||,.n,. 

Specifically, 

i r i L < imii; %nt 

Now suppose T* is integral. Let R be the natural embedding of Ar into A'**. Using 

the first part of the argument, X is also integral. Accordingly, the diagram 

is obtained. Thus JT is integral. It follows that T is integral and 

P L , = 11/riL = \\T-R\\mt < ||T"|L, < unL 
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Therefore Tis integral and 

i m u = P X , . 

The corollary follows. • 

Let X and Y be Banach spaces. The space of integral operators from X into Y 

will be denoted I(X, F) . The next corollary shows that ( I ( X , Y*), ||-||,-n() is linearly 

isometric to {B(X, Y), 

Corollary 2.21 A continuous bilinear functional if) on X xY is integral if and only 

if the continuous linear operator : A' i—• Y* defined by T^(x)(y) = ip(x,y) is 

integral. In this case, \\i)\\int = \\T\\int. 

Proof. Let </> be a member of B(X, Y*) and suppose is integral. Let r be the 

member of B{X, Y**) induced by T. Let J: Y i—> Y** be the natural embedding 

and let Ix be the identity on X. Then 

(Ix <8> J): X®Y > X®Y**, 

has operator norm one, and 

{Ix®J)*: B(X, Y") i—• B{X, Y). 

Thus it will suffice to show $ = (Ix ® Let (x,y) € A x Y. Then 

(Ix ® J)* (r)(x,y) = r(Ix ® J)(x,y) 

= t (Ix(x), J(y)) 

= T ( x , J { y ) ) 
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= (Ux),J(y)} 

= (T^ix),y} = 

It follows %f> = ( I x ® J)*(r). Futhermore, 

W U = 1 1 ( ^ 0 

< i i ( ^ 0 ^ r i i M u 

= l l ^ ® J | | | | r | | r a l 

Now suppose if) is integral. Let 0 be the space (Bx* x By*,w* x w*). Let f.i be a 

regular Borel measure on ft such that 

*f>(x,y)= I v"{x)y*{y)dti(x*,y*) 
J 0 

for all (x,y) £ X xY and |fV'llint = l/"l (^)- Define R: X i—> L ^ f i ) by 

R(x)(x\y*) = z*(x), 

for all x £ X and define S: Y i—> Lr^(ji) by 

S{y){x\y*) = y*(y) 

for all y £ Y. Then for [x, y) £ X x Y, 

(Ty,(x), y) = %l>(x,y) 

= I x*(x)y*(y)dn(z~,y*) 
•J Q 
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= [ R(x)(x\y-)S(x)(x\y')dp(x",y') 
J 1 I 

= (R(x),IS(x)) 

= {(IS)'R(x),y), 

where I: L^fi) \—> L\(n) is the natural inclusion. Thus 

Ti, = (IS)*R = S*I*R 

and is integral. Futherraore, 

I M , „ t = L |s*/*fi|| jn( < IIS-II ||/-||,„, | |fi| | < | | r | | r a ( = ||/||,.„, = w (Si) = . 

The last inequality follows from 2.16. The corollary follows. • 



CHAPTER 3 

THE RECIPROCAL DUNFORD-PETTIS PROPERTY ON X<g>F 

This chapter deals with some results on tensor products of Banach spaces due to 

Emmanuele [EM2]. Recall that an operator on a Banach space is said to be Dunford-

Pettis (or completely continuous) if it sends weakly Cauchy sequences onto norm 

convergent sequences. Such an operator will be called a DP operator. It is an easy 

exercise to show that T is a DP operator if and only if T sends weakly convergent 

sequences onto norm convergent sequences. 

Definition 3.1 A Banach space X is said to have the reciprocal Dunford-Pettis prop-

erty (RDPP) if every DP operator on X is weakly compact. 

Definition 3.2 Let X be a Banach space. A bounded subset K of X* is an L-set if 

for each weakly null sequence (x„) in X, 

lim sup |{x*,x„)j = 0. 
" x*ei< 

The next theorem gives a useful charactorization of the RDPP. 

Theorem 3.3 (Leavelle, [LV]) A Banach space X has the RDPP if and only if 

every L-set in X* is weakly compact. 

Proof. Suppose each L-set in X* is weakly compact. Let T: X i—> Y be a DP 

operator. To show that T is weakly compact it will suffice to show T*(By*) is an 

34 
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L-set. Suppose (xn) is a weakly null sequence in X and y* £ By. Then 

|(T*(j*),x.) | = I(s/*,T(I„))| < l l r ^ J I I ^ 0. 

Thus By is an L-set. 

Now suppose X has the RDPP . Let K be an L-subset of X*. Let B(K) be the 

Banach space of all bounded real valued functions on K equipped with the supremum 

norm. Define T: X i—> B(K) by 

T(x)(x*) == (x*,x) 

for all x € X and x* G K. Then T is a DP operator. To see this, let (xn) be a weakly 

null sequence in X. Then 

II^WHoo = sup |{T(a:„),ar*)| = sup |{a;*,x)| 0, 
v*eK x*€K 

since K is an L-set. Thus T is a DP operator. Hence T and T* are weakly compact. 

For x* € K and / € B(I() put 

M/) = /(*•)• 

Then 8X* defines a member of B(I()* with norm no greater than one. Note T*(SX*) = 

x*. Hence K is a subset of T*{BB(K)*)I a relatively weakly compact set. The theorem 

follows. • 

The next theorem is due to Odell [ROS2, page 377]. 

Theorem 3.4 A Banach space X does not contain an isomorphic copy of l\ if and 

only if every DP operator mapping X into another Banach space is compact. 
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Proof. If X does not contain an isomorphic copy of li then by Rosenthal's l\ Theorem 

[ROS1], Bx is weakly conditionally compact (i.e. every sequence has a weakly Cauchy 

subsequence). It follows that every DP operator on X is compact. 

Conversely, suppose X contains an isomorphic copy of l\. Let (en) be a copy of 

the canonical unit vector basis of l\ in X and let (rn) be the sequence of Radamacher 

functions in ^ [ 0 , 1 ] . That is for each natural number n and each real number i, 

0 < < < 1 , 

r„(£) = sgn(sin(2n7rt)) 

where sgn(t) = t/\t\ for t ^ 0 and sgn(^) = 0 for t = 0. For each a = cti&i in 

span {en} define T(a) by 

T{<x) = Ylairi-
i=l 

Then T is a bounded linear operator from span {e„} into L^O, 1], Using the fact that 

Loo[0,1] is injective, T can be extended to a map, still called T, on all of X. Now let 

I: Zoo [0,1] 1—> [0,1] be the natural inclusion. Since £oo[0,1] is linearly isometric 

to a C(Ct) space for some compact HausdorfF space 0 and I is weakly compact, it 

follows that I is also DP (see [DU] [Corollary 17, p. 160]). Thus I oT is DP; however, 

it is not compact. The theorem follows. • 

Theorem 3.4 will be used to prove the next theorem. 

Theorem 3.5 (Emmanuele, [EMI]) A Banach space X does not contain an iso-

morphic copy ofh if and only if every L-subset of X* is relatively compact. 



37 

Proof. Suppose X does not contain an isomorphic copy of /j. Let K be an L-subset 

of X*. Let B(K) be the space of bounded real value functions on I(. Following [LV], 

Define T: X h—• B(K) by 

T(x)(x*) = (x*, x) 

for all x in X and for all x* in X*. The argument in 3.3 shows that T is DP. Since T 

is DP, T is compact by 3.4. Therefore T* is also compact. It follows from the proof 

of 3.3 that K is a subset of T*(BB(K)*)? a relatively compact set. 

Now suppose every L-subset of X* is relatively compact. Let T: X i—> Y be a 

DP operator and let K = T*(By*)- Hence K is a L-set and T* and T are compact. 

The theorem follows. • 

Lemma 3.6 Suppose (a:*) is a sequence in X* with the property that for each weakly 

null sequence (a:n) in X 

Y\-m{x*n,xn) = 0. 

Then {#* : n € N} is an L-set. 

Proof. The proof will consist of three steps. 

Step 1. If 4> is a permutation of the natural numbers then the sequence {x^n^) also 

satisfies the hypothesis of the lemma. To see this, let (.rn) be a weakly null sequence 

in X. For each natural number n, let zn = Then (zn) is also weakly null. 

Thus |x*(^n)J —% 0. Let e > 0. Choose a natural number N such that for all n > N, 
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\xn(zn)\ < e. Next choose M > N such that for all n > M, 

sup <j)(k) < <f>(n). 
Kk<N 

< e. Then for n > M, ®; ( n )(^ ( n )) | < e. That is, ®;(n)(xn) 

Step 2. If (a;*.) is a subsequence of « ) , then (x*.) satisfies the hypothesis of the 

lemma. To see this, let (a;,) be a weakly null sequence in X. For each natural number 

n, define zn to be x; if n = n,- and to be the zero vector otherwise. Then [zn) is a 

weakly null sequence. Thus (a:*.(a;,-)) is a subsequence of (x*(zn)), a null sequence. 

Step 3. Finally, to show the set {x* : n € N} is an L-set, let (z*) be a sequence 

in the set. Note that 

R : n € N } C { < : N}. 

Let (xn) be a weakly null sequence in X. Suppose (|^(®n)|) does not converge to 0. 

A moment's reflection reveals that this implies {z* : n E N} must be an infinite set. 

Thus, it may be assumed, upon passing to a subsequence and relabeling if necessary, 

that there is e > 0 such that for each n and such that z* zJ whenever 
% I J 

i ^ j• Now for some subsequence (u?*) of (x*) and some permutation <j) of the natural 

numbers, zn = w^ny Using the first two steps of the argument, it follows that 

\zn(xn)\ 0, a contradiction. The lemma follows. • 

A sequence satisfing the hypothesis of .3.6 will be call an L-sequence. The space of 

all compact linear operators from the Banach space X into the Banach space Y will 

be denoted h(X, F), and the space of all compact weak* to weak continuous linear 

operators from X* into Y will be denoted KW*(X% Y). The next lemma establishes 
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a linear isometry between K(X, Y) and K.W*(X**, Y). 

Lemma 3.7 LetX andY be Banach spaces. Then the spaces K(X, Y) and KW*(X**, Y) 

are linearly isometric. 

Proof. Let T be a member of K(X, Y). Then 

T**, x** ^ g Y** 

where J: Y \—> Y** is the natural embedding (see [DS, Theorem VI.4.2]). Thus 

j 1 o m a p S x** into Y (here J~l: J(Y) i—> Y). Since T** is weak* to weak* 

continuous and (J(y),u;*) and (y,u>) are linearly homeomorphic, it follows that J~lo 

T** is a compact weak* to weak continuous operator. Thus the map T ^ J'1 o T** 

is a linear isometric embedding of I<(X, Y) into KW.(X**, Y). 

Now suppose S is a member of Y). Let T = Sol, where / is the natural 

embedding of X into X**. Then 71** = (S** o /**). Thus for x** 6 X** and y* G Y*, 

= (r*(̂**),t/*) 

/rf**r**/ ** \ *\ 
= {S I {x ),y ) 

= (x*\I*S*(y*)>. 

Now let (xa) be a net in X such that lima I(xa) = x** in the weak* topology on X**. 

Then 

(x",rs*(y*)) = Um{l{xa),I*S*(y*)) 

= lim(xa, rS*(y*)) 
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= lim{/(a:a),5*(y*)) 

= <z**,£"V)). 

Thus 

= (x**,S*(y*)) 

= (S{x**),y'). 

Therefore, 

j-x Q T „ = ^ 

It follows that the map T H-> J - 1 o T** defines a linear isomentry from K(X, Y) onto 

KW*(X**, Y). The lemma follows. • 

The following theorem, due to Ruess [RSS, 4.1.4], will be used in the proof of the 

main theorem (Theorem 3.9) of this chapter. 

Theorem 3.8 A bounded sequence (Tn) in KW*(X*, Y) converges weakly to T in 

KW*(X*, Y) if and only in {Tn{x*),y*) ^ (T{x*),y*) for all x* € X* and y* € Y*. 

Theorem 3.9 (Emmanuele, [EM2]) Let X be a Banach space not containing an 

isomorphic copy of l\ and let Y be a Banach space with the RDPP. If C(X, Y*) = 

K(X, Y*), then X®Y has the RDPP. 

The proof of the theorem will contain several numbered italicized assertions and thier 

proofs. 

Proof. Let M be an L-subset of (X®y)*. Using the linear isometries established in 

2.7, M will be considered as a subset of K(X, F*). Let (hn) be a sequence in M. 
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The goal is to show that (hn) has a wealky convergent subsequence. To this end, let 

H be the closed linear span of {hn(x) : x € X,n € N}. Since each hn is compact, H 

is separable. Let A be a countable weak* dense subset of H*. 

3.10 By passing to a subsequence, it may be assumed that (hn(r)) is convergent for 

each r in A. 

Proof of 3.10. First note that the sequence (/i* (r)) is an L-sequence in X* for all r 

in H . To see this, let (a;n) be a weakly null sequence in X and let r be a member of 

H*. Thus 

| ( ^ ( r ) , x n ) | = |{?\ hn(xn)) | 

< IMI IIM^OII • 

3.11 The sequence (Pn(^n)||) converges to 0. 

Proof of 3.11. Suppose not. Choose e > 0 and a subsequence hni{xni) of hn(xn) such 

that 

l|^ni(a'n, )|| > C 

for each i. Next, choose a sequence (z.;) in By such that 

| {/in, (^n, %i) | 5* £ 

for each i. However, if T is a member of I((X, Y*), then 

\{T(xn%),Zi)\ < ||T(arn,.)|| - U 0 
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T is compact and (xni) is weakly null. It follows that (xni <g> zi) is a weakly null 

sequence in Since {h*n(r)) is an L-sequence, 

\{hni(Xnt),Zi)\ 0-

However, this is a contradiction. The claim 3.11 follows. 

From 3.11 it follows that 

-=-» 0. 

Hence {h*Jr) is an L-sequence in X*. Since X does not contain a copy of h, it 

follows from 3.5 that (K{r)) has a convergent subsequence. Since A is countable, a 

diagnalization argument finishes the proof. The claim 3.10 follows. 

Now let x** be a member of X** and, using the fact each hn is compact, consider 

(h*n*(x**)) as a sequence in Y*. 

3,12 The sequence is an L-sequence. 

Proof of 3.12. Let (yn) be a weakly null sequence in Y. For each natural number n, 

\(K*(x"),yn)\ = \{x*\K(yn))\ 

< ll®*1IP;(yn)ll. 

By 2.8, {h*n) is an L-sequence in K(Y* X). Consequently, \\h*n{yn)\\ 0. This proves 

the claim 3.12. 

Since Y has the RDPP, by 3.3, {h*n*{x**) : n € N } is a relatively weakly compact 

subset of Y* for each X** in X**. Since each hn is compact and takes its range in H, 

the set : n € N} may be considered as a subset of H. 
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A weak limit for (hn) will now be constructed. Fix x** in X**. Using the fact 

that (h™(x**)) is a sequence in a relatively weakly compact subset of H, let w and z 

be two weak-sequential cluster points of (/&**(«**)), and let (h^*(x**)) and h^*(x**)) 

be subsequences converging weakly to w and 2 respectively. Let r be a member of A. 

Then, since h^(r) is a convergent sequence, it follows that 

(w,r) = Yim(h*n*(x**),r) 
I 

= lim (x*\h*nt{r)) 

= lim (x"th*n(r)) 

= l i m { r ) ) 
3 3 

= < > * * ) > ' ' } 
3 J 

= (z,r). 

Therefore, 

(w,r) = (z,r) 

for all y in A (a weak* dense subset of H*), and 

w — z. 

Hence (h^*(x**)) is weakly convergent for every x** in X**. 

For each x** in X** define h(x**) by 

h(x**) = w-l\mh*n*{x**). 

Then h defines a bounded linear operator from X into H or from X into Y**. 
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3.13 h is weak* to weak* continuous. 

Proof of 3.13. Let (£**% be a weak* null net in X** and let y be a member of Y. 

Thinking of y as a member of Y**, (h*(y)) is an L-sequence in X*. By 3.5, (h*(y)) 

has a subsequence (A*. (3/)) converging to some x* in X*. Thus 

Yim{h{x**),y) = lim(Hpi</i;*(<*),^) 

and 3.13 follows. 

Let h — hoi, where I is the natural embedding of X into X**. Then h is a 

compact operator from X into Y*. 

3.14 h** = h. 

Proof of 3.14. Let x** be a member of X** and let (xa)Q be a bounded net in X 

converging to x** in the weak* topology on X**. Then, using the fact that adjoints 

are weak* to weak* continuous, 

h**(x**) = w*-llmh**(xQ) 
a / 

= w* — lim/i(xQ) 

= w* — lim h(xa) 
a / 

= M O , 

and 3.14 follows. 
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Since h** = h, 

for all a;** € -X"** and y** € F**. Thus, using 3.8, (h^) converges to h** in the weak 

topology on KW*(X**,Y*). Hence by 3.7, (hn) converges weakly to h in C(X, y*). 

The theorem follows. • 



CHAPTER 4 

PROPERTY (V) ON X®Y AND (V)-SUBSETS OF (X®F)* 

In this chapter unconditionally converging operators on tensor products of Banach 

spaces are studied. 

Definition 4.1 Let X and Y be Banach spaces. An operator T: X i—• Y is said to 

be unconditionally converging ifT sends weakly unconditionally Cauchy (wuC) series 

onto unconditionally converging (uc) series. 

Lemma 4.2 Suppose Yl™=ixn is a wuC series in X and (yn) is a bounded sequence 

in Y. Then xn ® Vn is a wuC series in X®Y. 

Proof. Let T be a member of (X®Y)*. Using the isometries established in Chapter 2, 

T may be considered to be a member of I(X, Y*). Hence by the remarks preceeding 

Proposition 2.18, T is an absolutely summing operator. Let M = supn ||yn||- Then 

CO OO 

J] \T(xn® t/n)| = ^2\{T(xn),yn}\ 
n=l 
oo 

< E 
n—1 

CO 

< M ^ l i r w i l < oo. 

n = l n = l 
oo 

n=l 

Thus 22^=1 xn ® Vn is wuC. • 

One should note that if the roles of (arn) and (y„) in the lemma are reversed, the 

series xn ® Vn is still wuC. 
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It is easily seen, in view of the Orlicz-Pettis theorem, that weakly compact opera-

tors are unconditionally converging. It is not the case, however, that every uncondi-

tionally converging operator is weakly compact. For example, the identity operator 

on l\ is certainly unconditionally converging but not weakly compact. This motivates 

the next definition. 

Definition 4.3 (Pelczyriski , [PEL]) A Banach space X is said to have property 

(V) if every unconditionally converging operator on X is weakly compact. 

Among the spaces with property (V) is the space C(Q) where is a compact 

Hausdorff space (see [DU, Corollary VI.2.16]). Pelczyriski studied Banach spaces with 

property (V) and published his results in 1962 (see [PEL]). The question whether 

the space C(fl,X) has property (V) whenever X has property (V) remains open. 

Pelczyriski has given an affirmative answer when X is reflexive. Cembranos, Kalton, 

Saab, and Saab [CKSS] have shown that if X has the so called property (u) and 

does not contain an isomorphic copy of l\ then C(Vl,X) has property (V). Finally, N. 

Randrianantoanina [RAND] has recently announced that if X is separable and has 

property (V), then (7(17, X) has property (V). 

Definition 4,4 Let X be a Banach space. A bounded subset K of X* is called a 

(V)-set if for each wuC series i xn in X, 

lim sup |(x*, xn) | = 0. 
n x'eK 

The proof of the next lemma is almost identical to the proof of 3.6 and is omitted. 
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Lemma 4.5 Suppose (x*) is a sequence in X* with the property that for each wuC 

series xn in X 

limsup |(®m, xn) | = 0. 
n m 

Then the set {a:* : n € N} is a (V)-set. 

A sequence in X* satisfying the hypothesis of Lemma 4.5 will be called a (V)-sequence. 

The next theorem due to Pelczyriski gives a charactorization of property (V) in 

terms of (V)-sets. 

Theorem 4.6 (Pelczyriski , [PEL]) Let X be a Banach space. Then X has prop-

erty (V) if and only if every (V)-subset of X* is relatively weakly compact. 

Let X and Y be Banach spaces. The space of compact integral operators from X 

into Y will be denoted KI(X, Y). In the next proposition, sufficient conditions are 

given so that KI(X, Y) = I(X, F). 

Proposition 4.7 Let X and, Y be Banach spaces and suppose X does not contain 

an isomorphic copy of l\. Then 

I(I(X: Y) = I(X, Y). 

Proof. Let T: X \—> V be an integral operator. Then JT has a factorization 

T J 
X y Y** 

S Q 

Loo(p-) ~ " L\(/i) 
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where J: Y i—• Y** is the natural embedding, /J, is a regular Borel measure on a 

compact Hausdorff space ft, |/i| (0) = | |T|| in t, I: L^/i) i—> Li(fx) is the natural 

inclusion, and S: X i—• Loo(fi) and Q: Li(fi) i—• Y** are bounded linear operators 

with 11511 < 1 and ||Q|| < 1. The map I is weakly compact and hence, using the fact 

Loo(fi) is linearly isometric to a space C(A) for some compact Hausdorff space A, T 

is also DP (see [DU, Corollary VI.2.17]). Accordingly, the map QIS is also DP. 

Since X does not contain a copy of /1? by Rosenthal's / r theorem [D, page 201], 

the unit ball of X is weakly precompact, that is, every sequence has a weakly Cauchy 

subsequence. Thus SIR is a compact operator. Since JT = SIR, JT is also compact. 

It follows that T must be compact. The proposition follows. • 

T h e o r e m 4.8 Let X and Y be Banach spaces with property (V) and suppose that 

I(X, Y*) = KI(X, Y*). Then every (V)-set in (X®Y)* is relatively weak * sequen-

tially compact. 

The proof is similar to the proof of 3.9. Several assertions will again be numbered 

and italicized. 

Proof. Let K be a (V)-subset of (X®Y)*. Using the isometries established in Chapter 

2, K may be considered as a subset of I(X, F*). Let (hn) be a sequence in K and 

let H = span {hn(x) : x € X, n € N}. Then H is a separable subspace of Y*. Let A 

be a countable dense subset of H*. 

4.9 The sequence ( ^ ( r ) ) is a (V)-sequence for each r € A. 
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Proof of 4-9. Suppose not. Let r € A and let xn be a wuC series in X such that 

limn supTO \{xn,h*m{r))\ is not zero. Let e > 0 and assume (passing to a subsequence 

of (a;n) if necessary) that (h m n ) is a subsequence of (hn) such that 

(X*ihmn(
r)) > t. 

Let y** be a member of Y** such that 

** I 
y | H = r 

and 

For each natural number n, choose yn in Y such that 

\(hmn(xn),y**-yn)\<l/2r' 

Then 

(zn,h*(r)) 

= \(hmnM,y**)\ 

— I(^mn V Vn}\ I J/n) | 

< l/2n + \(hmn(xn), yn)\—• 0, 

since xn ®Vn is wuC and {hmn) is a (V)-sequence. However, this is a contradic-

tion, and 4.9 follows. 

Using the fact that A is countable and 4.9, it will be assumed that (h*n(r)) is 

weakly convergent for every r A. 
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Now let x** be a member of X** and consider the sequence (/&**(#**)) in Y* (A** 

may be considered as a map from X** into Y*). An argument similar to that of 4.9 

shows that (A**(x**)) is a (V)-sequence. It follows that the set 

{ / C ( 0 : n € N}~ 

is a relatively compact subset of Y*\ in fact, it is a relatively weakly compact subset 

of H. 

A weak* limit for (hn) is now constructed. Let x** be a member of X**. Using 

the that fact that (A**(:r**)) is a sequence in a relatively weakly compact subset of 

H, let w and z be two weak sequential cluster points of and let (h™.(x**)) 

and (h^*(x**)) be subsequences of (k**(x**)) converging to w and z respectively. Let 

r be a member of A. Then 

(10, r) = lim K:(x-"),r) 
% 

= l i p ^ ^ f r ) ) 

= h*{r)) 

= lim (x**,h*(r)) 
3 3 

= Bm(/nO, r ) 
3 

= (z,r). 

It follows that w = z. Thus is weakly convergent for all x** in X**. For 

each x** in X*", define h(x**) by 

h(x**) = w — limft**(x**). 



52 

4.10 The map h is weak* to weak* continuous. 

Proof of 4-10. Let (x**) be a weak* null net in X** and let y be a member of Y. 

Then, thinking of y as a member of Y**, (h*n(y)) is a (V)-sequence in X*. To see this, 

note that if xn is a wuC series in X then ]C^ i xn ® V is a wuC series in X®Y. 

Thus, 

limsup K^(s/),arn) | = limsup | h m ( x n ® y)j 0. 
n m n rn 

Hence (h*n{y)) has a weakly convergent subsequence (h*h (?/,•)) converging to some x* 

in X*. Thus 

lirri(h(x*a*),y) = lim(\im(h*n{xl*),y) 

= l i m ( l i t m { ^ ( x r ) , y ) 

= lim ^lim{a:**, h^.(y)) 

= lim(a:**, x*) — 0. 

The claim 4.10 follows. 

Now let h — h 0 I, where I is the natural embedding of X into X**. Then 

h** = h. 

4.11 The map h: X 1—> Y* is integral. 

Proof of ^.ll. First note that 

h(x) = h**I(x) = 10 - l imh**I(x) = w - lim hn(x) 
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for all x inX. Let e > 0 and let u = J2i=i xi ® Hi be a member of X ® Y. Choose a 

natural number N such that for all n > N and for each i, 1 < i < k, 

Vi) I t/k' 

Then 

|A(u) - hjv(u)\ < e. 

Let M = sup„ \\hn\\int. Then 

— IM«)I +1 

— ^ ( U ) + € 

< MX (u) + e. 

It follows that h is continuous on (X ® Y, A). Hence h is continuous on X%Y. 

Therefore, h is integral and 4.11 follows. 

Note that since h is integral, it is also a compact operator. Futhermore, if u is a 

member of A <8>Y, then (/tn(u)) converges to h{u). It follows that (hn(u)) converges 

to h(u) for all u in X&)Y. Hence K is relatively w*-compact. • 

The next corollary uses the set theoretic containment oi K / (X, Y*} as a subset 

of K(X, Y*). 

Corollary 4.12 Suppose X andY have property (V) andI(X, Y*) = KI(X, Y*). If 

I< is a (V)-subset of I(X, Y"), then I< is relatively weakly compact in (I\(X, Y*),w). 

Proof. If h is a member of KI(X, Y% then h** is a member of KW.(X**, Y*). 

Suppose K is a (V)-subset of KI(X, Y*). Let (hn) be a sequence in K, and, using 
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4.8, assume (hn) converges in the weak* topology to k, where h is the limit constructed 

in the proof of Theorem 4.8. Then (h£*(x**)) converges weakly to h**(x**) in Y* for 

each a;** in X**. Thus the sequence ((hn(x**), y**)) converges to (h(x**),y**) for all 

x** in X** and for all y** in Y**. Thus, by Therorem 3.8, {h™) converges in the 

weak topology on KW*(X**, F**) to h**. It follows that (h „) converges weakly to h 

in K(X, Y*). • 

Let be a compact Hausdorff space and let E be the a-algebra of Borel subsets 

of 0 . The uniform closure of S-simple functions taking values in the Banach space X 

will be denoted W(E, X). Recall that the dual of C(Q,X) is the space M(tt,X*) of 

JsT*-valued regular Borel measures of bounded variation equipped with the variation 

norm (see [DU, Chapter VI]). Since C(fl:X) and C(f2)<g).Y are linearly isometric, 

it follows that M(£l,X*) and / (C(0) ,X*) are also linearly isometric. Let T be a 

member of I(C(Cl),X*) and let ft be the coresponding member of M(Q,X*). Then 

for each u = ® Xi in C (0 ® X), 

(T, «) = Y.vUi) , v ̂  ^ i 
i=l 

and 

0 ^ " ) = f fiXidp> 
i=1 JQ 

= J2( I /•• x 

»=1 

It follows that 

T ( f ) = / /dp 
Jq 
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for all / in C(fi); that is, FI is the representing measure for T. 

Theorem 4.13 ([LEW]) Suppose X has property (V) and 

i(C{a),x*) = i<i(c{n),x*). 

Then every (V)-set in M(Cl,X*) is sequentially compact in the £/(£, X**)-topology on 

M( n,x*). 

Proof. Let K be a (V)-subset of M{£l,X*) and let (fin) be a sequence in K. Using 

Theorem 4.8, it will be assumed that converges to pi in the weak* topology on 

M(Cl,X*), where pi is the limit constructed in the proof of Theorem 4.8. Thinking 

of M as a subset of KI(C(£l), X*), by Corollary 4.12, (pin) converges weakly to pi in 

K(C{Sl), X*) and in £(C(0) , X*). 

Let A be a Borel subset of 0 and let x** be a member of X**. Then xa%** defines 

a member of £(C(fl), X*)* by 

(xax**,v) = {v(A),x**) 

for all v in £(C(D), X*) (see [DU, Theorem VI.2.1]). Thus 

{XAX**,Vn) {XAX**,fl). 

It follows that if 0 is a member of U{E, X**), then 

The theorem follows. • 
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Let I\ be a bounded subset of M(Q,X*). Define \K\ by 

| / f | = {W : lie K}. 

Also, recall that |A'| is said to be uniformly countably additive if for each pairwise 

disjoint sequence (An) of Borel subsets of 0 

OO 

£ H M n ) = 0. 
n=m 

The next proposition, is well known (see [PEL]); however, the proof presented will 

use the results in this chapter and the following theorem. 

Theorem 4.14 ([BL], [BOM]) Let X be a Banach space and let K be a (V)-subset 

of M(Q, X). Then \K\ is uniformly countably additive. 

Proposition 4.15 Suppose X has property (V) and that X and X* have the Radon-

Nikodym, Property. Then C(0, X) has property (V). 

Proof. First note that under this hypothesis, I(C(Q,),X*) = KI(C(Q),X*). In fact, 

every integral operator from C(0) into X* is nuclear (see [DU], Chapter VI.4). Let K 

be a (V)-subset of M(0 , X*). Using [DU, Theorem 1.2.4], let m be a control measure 

for \K\. That is, let m be a nonnegative countably additive measure on the Borel 

subsets of fl such that 

lim \fx\ = 0 
m(E)—>o 11 

uniformly for fi in |/<"|. Let (jun) be a sequence in K and, using 4.13, assume ( f i n ) 

converges to /i in the W(S,X**)-topology on M{fl,X*). Using the fact X* has the 
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Radon-Nikodym Property, choose a sequence (/„) and / in Li(m,X*) such that for 

each Borel subset E of ft 

dm 

for each natural number n and 

p(E) = f f dm. 
J E 

Now suppose g = XE,x** where ||x**|| < 1 and (Ei) is a pairwise disjoint 

sequence of Borel subsets of 0 . Then g is a member of L^m, X**), 

(fn,9) = / fngdm 
J Q 

= + / , fngdm 
i=1 AJ,>* ^ 

for each natural number n, and 

( / » f f ) = / fa dm. 
J Q 

k 

E W ) , ' D + [ , / « dm. 

Futhermore, 

/ . fg dm 
}>k 1 

< X l i ] > k
E ^ n M 

< L II fn\\dm 
Uj>k L3 

= W ( l K ' ) -
\3>k } 

uniformly in n. Therefore, 

(fn,g) (/,</)• 
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It follows that ( f n ) converges to / in the weak topology on L-i(m,X*). Therefore 

(fin) converges weakly to fi. • 



CHAPTER 5 

A REPRESENTATION THEOREM FOR C ( t l , X ) 

In this chapter, a representation for members of C ( 0 , X ) will be given when X 

has a basis. The fact that C { S l , X ) can be expressed as a tensor product will be used. 

This representation will be used to characterize when the representing measure of a 

bounded linear operator from C { £ l , X ) into I' takes its values in C { X , Y ) . In this 

chapter, £) will be a compact Hausdorff space and S will be the cr-algebra of Borel 

subsets of 

Let X be a Banach space. Recall that sequence (xn) in X is called a Schauder 

basis (or just a basis) if for each x in X there exists a unique sequence (a„) of real 

numbers such that 
OO 

X = ^ ^ otnxn. 

n—1 

Futhermore, if a sequence (xn) is a basis, then there exists a positive real number K 

such that for each sequence (an) of real numbers and each pair of integers n and m 

with n < m, 

aiXi 
i=l 

< K 

m 

aiXi 
1=1 

The least such K is called the basis constant. Finally, for each n let x* be the member 

of X* defined by 

{.x*,x) = a n 

59 
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for each x = ]C£Li anxn in X. The sequence («*) is called the sequence of coefficient 

functionals in X*. Each member x of X may be written 

OQ 

n= 1 

T h e o r e m 5.1 Let X be a Banach space with basis (xn) and lei H be compact Haus-

dorff space. Then for each f in (7(0, X) there exists a unique sequence ( f n ) in C(O) 

such that 

oo 
/ = £ fnX*' 

n—1 

Proof. Using the linear isometry established in example 2.4, it will suffice to show 

that if / is a member of ( 7 ( 0 ) 0 ^ , then there exists a unique sequence (/„) in C(O) 

such that 
OO 

f xn. 
n=z 1 

The first step will be to show that every member of C(Q.) ® X has such a repre-

sentation. To this end, let g = £ f = 1 h{ ® Zi be a member of C(0) ® X. Each Zi has a 

representation 
OO 

n~ 1 

where (#*) is the sequence of coefficient funtionals in X*. Thus 

k 

9 = J2 hi ® z* 
i= 1 

k / oo \ 
= \Y2X*n(Zi)X-< 

1 \n=l 
k oo 

= ® x*n(zi)xn 



oo k 

n=lt=1 

oo / k \ 
= E E W ® x » ' 

n=l \t'=l / 

For each natural number n let 
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3n = 
»=1 

Then 

X-n . 9 = Y , 9n 
n=1 

Thus a representation exists for each member of C(ft) ® X. 

Now let / be a member of C(0)(%>X. Let (g;) be a sequence in (7(0)®X converging 

in A-norm to / . Using the first half of the argument each §i has a representation 

OO 

9i ~ ^ / 9i,n ® -En-

n=l 

Let K be the basis constant for (xn), let m be a natural number, and let w be a 

member of fi. Then 

116̂1 771 9j,m |j — || 9j,m (^)) || 

< 
n=l 

+ 

< 2K 

= 2 K 

(9i,n(u) ~9hn{u))x., 

n — 1 
Y1 (&*(<*>)-9j,n(w))®„ 
1=1 

OO 

n=1 

oo oo 

n=l n=1 
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Accordingly, 

® %m 9j,m ® ^m) ^ 2,/iTA i?j) 0-

Therefore, the sequence is Cauchy. For each natural number n, let 

fn = limgi<n-
I 

Let e > 0. Choose a natural number N such that for i,j > N, 

^(f~9i) < 

and 

X(<J> ~ 9j) < t/4/v. 

Next choose a natural number L such that for all I > L, 

^ ^ y @N,n 5̂ ^ (.ft. 

Fix 1>L. For i > N, 

X ( f - J 2 9i,n ® < A {f — ^2 9N,n ® + A ( ^ 9N,n ® %n ~ 5^ gi, 
V n=l / \ n= 1 / \„=1 n = i 

< eft -f 2KX (<7tv — 9i) < e. 

Now choose Mt > N such that for all i > Mh 

^ ^ j 9N,n ® ^n ^ j 9i,n ® *^n j ^ 
\n=l n=l / 

Then 

^ (f ~ fn ® Xn) ^ ^ ( / ~ ]C 9N,n <8> Xn^ + A ( ^ gN<n (g) Xn — ^ 9Mt, 
\ n=l > V n=l / \n=l „=1 

+ M £^/.« ® ~~ / " ® Xn ) 
\n=l n=l / 

< 3e. 

n Yy 
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Thus / has a representation 

CO 

f = ^ ^ fn ® 

n=1 

To establish the uniqueness of the representation, suppose 

00 00 

f ^ v In @ y Qn ® ^n* 

n = l n = l 

Then for each a; in 0 , 

00 00 
_/"(cc>) ^ ' / ? i ( w ) x n ^ ^ <7n(cu);En . 

n=l n=l 

It follows that, for each natural number n and for each uj in fi, 

/ n M = 5„(w). 

Therefore, 

fn 3n • 

The theorem follows. • 

There is a useful way to obtain the sequence (fn) in Theorem 5.1. Let / be a 

member of C(Q,,X) and let / = fn 0 xn be representation of / given in the theorem. 

If cu is a member of Q, then 

OO 

/ M = J2Xnf(i°)Xn 
n=1 

oo 

= 12 fn{u)xn. 
n=1 

Therefore, 

fn = K ° /• 
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The next theorem, [DIN], provides a means of representing a bounded linear 

operator on C(Q,X) as a vector valued measure. Let m: £ i—• C(X, F**) be a 

vector measure. Then mx: S i—> Y** is the vector measure defined by 

mx(A) = m(A)(a:) 

for each x in X arid every A in £, and my*\ S i—> X* is the vector measure defined 

by 

my*(A) = (m(A)(-),y*) 

for each y* in F* and every A in S. Finally, ||m|| is the set function defined by 

IHI (-4) = sup { |nv (A) | : y* € Y*, [|t/*|| < 1} 

for all A in S. 

Theorem 5.2 (Dinculeanu-Singer) Let T: C(Q,X) \—»• Y be a bounded linear 

operator. Then there exists a unique vector measure m: S i—• £(X, Y**) such that 

1. m is finitely additive and ||m|| (fi) < co; 

2. m is weakly regular, that is my* is regular for each y* G Y"; 

3. the mapping y* i—> my* is weak* to weak* continuous from Y* into C(Q,,X)*; 

4• T ( f ) = fn f dm for all f € C ( f i J ) ; 

5. ||m|| (SI) = ||T||; and 

6. T*(y*) = mr for all y* <=Y*. 
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Conversley, any vector m: S i—• £{X, Y**) that satisfies 1, 2, and 3 defines a 

bounded linear operator T: C(fi, X) i—• Y by 4 and satisfies 5 and 6. 

Let T: C(i~l,X) i—• Y be a bounded linear operator with representing measure 

m. Let a; be a member of X and x* be a member of X*. Define TXtX*: C(0, X) i—• Y 

by 

r ^ . ( / ) = r ( ( x * o / ) ® a : ) 

for all / in C(f t ,X). Define mx<x< S » C(X, Y**) by 

= x*(u)m(A)(x) 

for all u in X and A in XL 

Lemma 5.3 ([LEW]) Let T: C(Cl,X) i—> Y be a bounded linear operator with 

representing measure m, x € X, and x* (E X*. Then mXtX* is the representing 

measure for Tx>x*. 

Proof. Clearly, mx<x* is finitely additive. Suppose u d and y* € Y*. Then 

\(mx,x*(A)(u),y*)\ = |{a;*(u)m(A)(a:),jf)| 

< |x"(«)| ||m(A)|| ||x|| \\y*\\ 

< ||a;*|| ||m|| (A) ||y*|| < oo 

for all A € E. It follows that 

| |"W*|| (Q) < ||x|| ||a;*|| ||m|| (fi) 
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and that (mx>x*)y* is regular and countably additive (see [DU, VI.2.14,VI.2.5]). Thus 

m is weakly regular. 

Let (j> = Xa.UI be an A'-valued Borel simple function. Then 

)Ui I (j) duix^x* — ^ ^ 
^ i = 1 

= f2x*(v,i)m(Ai)(x) 
i=1 
n r 

- YL i x * ( u i ) X A i <g>xdm 
i=i ^ 

= / {x* o <f) ® x dm. 
Jo 

Therefore, 

/ / d m x x * = { x * o f ) ® x d m 
J Q ' JQ 

for all / in C(0 ,X) . Thus, 

T x , A f ) = T((x*of)®x) 

= I (x* o / ) (g) x) dm 
Jo 

= I j dmx x*» 
Jo 

The lemma follows. • 

Theorem 5.4 ([LEW]) Let X be a Banach space with basis (xn) and suppose T: 

C(Q>jX) i—> Y is a bounded linear operator with representing measure m. Then m 

takes its values if C(X, Y) if and only if there exists a sequence of weakly compact 

operators (Tn) from C(fl,X) into Y and a corresponding sequence of representing 

measures (mn), taking their values in £{X, Y), such that 
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1. T n ( f ) T ( f ) for every f € C ( 0 , X ) and 

2. mn(A)(x) —-> for all A G S and a// £ £ X . 

Proof. Assume m takes its values in £(X, Y). To prove Condition 1, several operators 

on C(fl, X) and vector measures on S will need to be defined. To this end, fix 

/ = DibLi fn ® xn in C(n )®X and a natural number n. Note that 

fn = < o / 

where (x*) is the sequence of coefficient furictionals associated with (xn). Let K be 

the basis constant for {xn). Define T n ( f ) by 

n 

Tn(f) = ET*:<(f)-
1= l 

Then 

lir»(/) | Xi 

< i m i A ' A t / ) . 

By lemma 5.3 

T X U , k U ) = lfdmXn,K. 
J12 

Define bounded linear operators Sn: C(0)®X i—> C(0) and Rn: C(fl) i—• Y by 

for / in and 

Sn(f) =X*n0f 

Rn(g)= / gdmXn 
J n 
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for h € C(£}). Since mXn takes its values in C(X, Y), Rn is weakly compact (see [DU, 

VI.2.5]). Moreover, 

Txn,x^ — RnSn. 

Therefore, Tn is weakly compact and ( T n ( f ) ) converges to T ( f ) . Condition 1 follows. 

To prove Condition 2 holds, let A € £ and x G X. Then 

^ r n X u X . ( A ) ( x ) = YJx*(x)m(A)xh 
i=l l - I 

^2x*(x)m(A)xi J 2 x i m ( A ) x h 
»=i ?—i 

and 

5 2 x i m ( A ) x i = m{A) (5^®-(a:)a;f) = m(A){x). 
«'=i \»=i / 

Let mn — J2't=l Note that mn is the representing measure for Tn for each 

natural number n and that (m„(A)) converges pointwise to m(A) for all A in S. 

The converse is obvious. • 

It should be noted that the second condition in Theorem 5.4 cannot be removed. 

For example, the identity operator I: C[0,1] i—> C[0,1] is the pointwise limit of 

compact operators. This follows from the fact that C[0,1] has a basis. However, if m 

is the representing measure for / , then 

m l M ) = XA 

for every subset A of [0,1]. Thus m(A) <E C[0,1] if and only in A = [0,1] or A is the 

empty set. 
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Dobrakov [DBK] has provided an example of a non-weakly compact operator 

which satisfies the conclusion of Theorem 5.4. 
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