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Tensor products of Banach Spaces are studied. An introduction to tensor products
is given. Some results concerning the reciprocal Dunford-Pettis Property due to
Emmanuele are presented. Pelczynski’s property (V) and (V)-sets are studied. It
will be shown that if X and Y are Banach spaces with property (V) and every integral
operator from X into Y™ is compact, then the (V)-subsets of (X®Y)" are weak”
sequentially compact. This in turn will be used to prove some stronger convergence
results for (V)-subsets of C(Q, X)*. Finally, it will be shown that if the Banach space

X has a basis and f is a member of C'(£}, X), then there exists a unique sequence

(fz) in C(82) such that

fzifn@m:n.

n=]

This representation will be used to show that representing measures for operators
from C{}, X) into Y take thier values in £{X, Y) if and only if the operator is
the pointwise limit of a sequence of weakly compact operators and the representing

measure is the pointwise limit of the corresponding sequence of representing measures.
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CHAPTER 1

INTRODUCTION

This paper studies various aspects tensor products of Banach Spaces. An intro-
duction to the tensor products is given in Chapter 2. Most of the material in this
chapter comes from the mongraph by Diestel and Uhl [DU, Chapter VIII]. The proofs
presented here generally provide more details then the proofs in thier book. Further-
more, some of thier proofs have been modified and simplified. For example, the use of
the Stone Representation Theorem in the proof of the factorization theorem for inte-
gral operators (Theorem VIII.1.9 in [DU], Theorem 2.19 here) has been abandoned
in favor of a more basic argument.

In Chapter 3, the reciprocal Dunford-Petts property on the projective tensor prod-
uct of two Banach spaces is studied. The main results are due to I'mmanuele [EM2].
A detailed presentation is given. The proof of Theorem 3.9 provides the motivation
for the main results in Chapter 4.

Property (V) and (V)-sets are introduced in Chapter 4. The (V)-subsets of the
contiuous dual of the injective tensor product of Banach spaces are studied. Sufficient
conditions for weak” sequential compactness, a necessary condition for weak compact-
ness, are given. This is used to provide stronger convergence result for (V)-subsets of
the space C(2, X)*. Additionally, a new proof of a well known theorem is presented.

In Chapter 5, a representation theorem for the space C({}, X) is presented when



it is assumed that X has a basis. This result is used to give a charactorization of
representing measures for operators from C(2, X) into ¥ which take thier values in
L(X, Y).

Most definitions of terms and symbols are provided in the paper as needed. The
symbol O at the end of a line indicates the end of a proof. Definitions of any terms
or symbols not given in this paper may be found in [DU]. Royden [RDN, Chapter
19] and Diestel and Uhl [DU, Chapters [, II, and VI] provide a sufficient background

in functional analysis for this paper.



CHAPTER 2
TENSOR PRODUCTS OF BANACH SPACES

Let X and Y be vector spaces over the real numbers and let B(X,Y) be the vector
space of all bilinear forms on X x Y. For (2,y) € X x Y, let @ y be the member

of B(X,Y)!, the algebraic dual of B(X,Y), defined by

(z®y, f) = flz,y)

for all f € B(X,Y). The linear span in B(X, Y of {a®y: z€ X, y € Y} will be

denoted by X ® Y. Members of X @ Y satisfy the following properties:

(z+2)@y=2Ry+ 2@y,

t@(y+w=20y+ % w,

ar Ry =P ay.
The proofs of these properties are an easy exercise and are ommitted. Further infor-
mation on the algebraic properties of X @ Y can be found in any standard algebra
text (see, for example, Hungerford {[HUN]).

The remainder of this chapter involves the study of tensor products of Banach
spaces based on material from Diestel and Uhl [DU, Chapter 8]. A detailed presenta-
tion is given here. Let X and Y be Banach spaces. For each member (x,y) of X x Y
define ||(z,y)|| by

(@, )l = max {||=]}, flyll}.

3



This defines a norm on X X Y. The subspace of B(X,Y'} of continuous bilinear forms
on (X x Y, |]|) will be denoted by B(X, Y'). Each member of X* ® ¥ defines in a
natural way a member of B{X, V). Let v = ¥7_, 27 ® y7 be a member of X* @ Y™~

and {z,y) be a member of X x Y. Then v(z,y) is defined by

vle,y) = L)

Definition 2.1 Let X and Y be Banach spaces. A norm a on X 8 Y is celled a

reasonable crossnorm if the following two conditions hold:
Rl a{z@y) < ||| [lyl| forallze X,y €Y,

R2 if2* € X* and y* € Y™, then 2* @ y* defines a member of (X @ Y)* and has

functional norm no larger then |[z7| ||y|.

Proposition 2.2 Supposc o is a reasonable crossnorm on X @ Y. Then
Loafz@y) ==l lyll,

2.z € X* and y* € Y™ then the norm of 2* @ y* as a member of (X @Y, )"
s [l2~]| [ly*]l,
3. if a* is the norm on X* QY™ as a subspace of (X QY, «)*, then a* is a reasonable

crossnorm on X- & Y™,

Proof. To prove (1), let # € X and y € Y. Choose 2* € X* and y* € Y*, each of

norm one, such that z*(z) = [|x[| and y*(y) = ||y|l. By R2 of the definition, z* ® y”
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is a member of (X ® Y, @) and the functional norm of z* ® y* is no more than one.

Thus

It
&
*
—
8
Nt
=
*
~—~
=
~—

2l [yl
= {(2"®@y" )z @y

< alz®y)h

R1 of the definition gives the reverse inequality.
To prove (2), let z* € X~ and y* € Y™* Choose sequences (r,) and (y,) from
X and Y respectively such that [[an|f = [[yal = 1, |lz*|| = lim, z*(z,), and [jy*|| =

lim,, y*(y,). Then

[Eall

¥l = lim|z™(za)] [y™(ya)l

= lim|(z" @ y")(z @)

< limsup a{z, ® y,)norm(x” @ y*)
< norm{x” ®@y"),
< el

The last inequality follows from R2 of the definition. It follows that the functional
norm of z* @ y* is |||} ||y*|l-

Finally, to prove (3), let 2* € X* and y* € Y™. Then o*(z” ® y*) is the functional
norm of x* @ y*. Therefore condition Rl of the definition is satisfied. Thus it must

be shown that if 2™ is a member of X** and y** is a member of Y**, then 2** @ y**



is a member of {(X* ® Y*, «*)* and the functional norm of 2** ® y** is no more than
2=y~

Let z** € X** and y** € Y**. Choose nets (z3) iu X and (y,) in Y such that
lzall < 1z, lwsll < g™, limpzs = ** , and lim,y, = y**, where the limits
occur in the weak* topologies on X** and Y™ respectively. Let v* =31 7 ® 37 be

a member of X" ® Y*. Then

[z ®y™) ()| =

> o)y ()
=1

({3
; lim zi(zg) tmy; ()

Z zi(x)yl (yq)

= hm lim
# v =1

IA

limsup |(zg ® yy}(u™)]

B

VAN

limsup [lea]l ljg-} o (u)
By

< [l ™ i e ().

Part (3) follows. This completes the proof of the proposition. O

Let u € X @ Y. Define A(u) by
Mu) =sup{|(z" @y )(u)|: 2" € X", " €Y7, |l&7|| , Iyl <1},
It is easily seen thal A defines a norm on X @ Y.

Proposition 2.3 The norm A is a reasonadble crossnorm on X QY.

Proof. Let © € X and y € Y. Then

Mz@y) = sup{l(e" @y )(e@y)[: 2" € X7, vy~ € Y7, {la”[], v’ <1}
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= sup{|z"(a)y"(y)| : =" € X", y" e Y7, [l27, |yl < 1}

< =il ltyli-

This shows A satisfies the R1 of the definition.

Let z* € X*andy* € Y™ Foranyu e X @Y,

[z @y )b < ™[ g™l 1/ ll=1) @ (™ /Hly™I[) ) w)]

IA

[l [[y™l A () s

the last inequality resulting from the definition of A. Thus R2 is also satisfied and A
is a reasonable crossnorm. The proposition follows. 0
The completion of (X ® Y, A) will be denoted by X®Y and called the injective

tensor product of X and Y. The norm on X®Y will still be denoted by A.

Proposition 2.4 Lel  be a compact Hausdorff space and X be a Banach space.
The space C(Q)&X is linearly isometric to the Banach space C(, X) of continuous

functions fi Q s X equipped with norm || f||_. = sup{|[f(w)|| : w € 02}
Proof. Define J: C()) % X — C(Q, X) by
JO fi®a)(w) = > filw)zs.
i=1 i=1

Then

o)
i=1

= sup{

;fi(w]ﬂ»‘s

oC

: wEQ}



- sup{ (@3 @)z o e X7, el < 1, weﬂ}
=1
= sup{ i(m*,mi)ﬁ“ 2t e X', l27]l £ 1}
i=1 o
= sup{u 3w ) v e Gy & e X ] < 17 <1
=1
- p{ S a2 - v € LY, & e X7, Il < 1,7 31}
t=1

It follows that J extends to a linear isometry from X®Y into C(Q, X).

Now suppose ¢ is a member of C'(Q, X). The range of ¢ is a compact subset of
X. Let ¢ > 0. Choose wy, wy, ..., w, in §} such that for cach w in Q, there is
an 7, 1 < < n, for which ||g(w) — g(w;)]| £ ¢/2. For cach ¢, put U; = {w € {1 :
lg(w) — g(w)|l < €}. The set U = {U,, Uy, ..., U,} is a finte open cover of 2. Let
{91, 92, ..., ga} be a finite partition of unity subordinate to 4 [WIL]. That is, each
g: 18 continuous, >.7; gi(w) = 1 for all w in £, 0 < g(w) < 1 for all w in ), and

gi(w) = 0 if w is not a member of U;. Define A 1 — X by

hw) = gilw)glwi).

t=1
Then
h=J (Z gi ®9(w¢))
=1
and

2

i) — o)l = " (z.qi(wg(m) - g(w)

- | (Soten) - (o) )




Thus the range of J is a closed subspace {J is an 1sometry) of '({2, X') and the range

of J is dense in C'(§}, X ). It follows that the range of J is all of C'(€2, X). Thus J is
a surjection. ;

Let u € X @Y. Define vy (u) by
y(u) = sup {[p(u)] : ¥ € BIX, V),{léll <1}.
Then v defines a seminormon X @ Y.

Proposition 2.5 The norm ~ is a reasonable crossnorm on X & Y. Futhermorve, if

w is @ member of X QY then A(u) < v (u).

Proof. First note that X*®@Y* is isometric to a closed linear subspace of B(X™**, ¥™*).
Thus Jlz* @ y"[[gixee, yooy = A(@* B y™) = {lz7|| ly*[|. Consequently the restriction
(2* @ y*)|xey of 2" @ y* to X ® ¥ satisfies
le" @y )xey s, vy S U™ @Y sxe, yory = 2l 57l -
Thus if u € X @Y then
Au) = sup{lz" @y (w)]: 2" € X7, ym € Y™, afl, [l¥7]l < 1}
< sup {[g(w)l s w € B(X, Y), [ip] <1}

= 7(u).
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This shows that A(u} < v (u).

Now suppose z and y are nonzero members of X and Y respectively. Then

y(@®y) = sup{l¥(z,y)l: v € B(X, Y),|l¢| <1}
= sup {|le[| llyll [¥(=/ll=ll, v/ vl : ¥ € B(X, Y), |l¢] < 1)
= |l=fl -

This shows that + satisfies R1. Since v dominates A, for 2= € X* and y e Y it
follows that 2~ @ y* is 2 member of (X ® Y,~)* and has functional norm no greater

than [[z*[] [|y*[l. Thus 7 satisfies R2 and first statement of the proposition is proven.

(]
The completion of (X @ Y,v) will be denoted X®Y and called the projective
tensor product of X and ¥. The norm on X@Y will still be denoted by ~. The

following proposition gives a useful alternative way to consider ~.

Proposition 2.6 Ifu is member of X @Y, then

v (u) = i“f{z.”-’r:'” wll: € X, el u=) 2:;® ?}e}-

i=1 1=1
If w is @ member of X®Y and ¢ > 0, then there exist sequences () in X and (y.)
i Y such that lim, z, =0 = lim, y,,, u = Dome1 En @ Yn tny norm, and such that

1) S 3 loall fonll <700+ €

Proof. 'l'o prove the first staternent, let,

a(u) = inf {Z ]| fwill 0 =€ X, s €V, u= Yo T-g} .
i=1

=1
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Clearly, a(z @ y) < izl ly]l. If w= L, 2 @ y; then

70 S Lr (e 990 = 3 el .

It follows -y (1) < afu) forallu ¢ X ® Y and that a is a reasonable crossnorm on
X®Y.
Let u € X@Y. Choose ¢ € (X®Y, @)* such that ¢(u) = Hull and o]l y gy ay- = 1.
Define 4> on X x ¥ by
Pp(z,y) = ¢z R y).
Then
[lz,y)] = |¢(z®@y)

< ol ®@y) H‘35||(X®}10'J*

= afz®y)

Al Myl

It follows that ¢ is a member of B{(X, Y} and 4] < 1. Hence
alu) = [d(u)] = f(u)] <7 (u)

and v = a. This proves the first statement.
To prove the second statement, select a sequence (u, ) in X®Y such that v (u — Up) <
¢/2"*3 for each natural number 7. Using the first statement of the proposition, write

i(1
Uy = E:(:IJ z; ® y;, where

(1)

leﬁ%ll Hyill < v (ua) + 2% <y (w) + /22,
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The last inequality follows from a simple calculation. For each n > 1,

Y (Unir = un) <y (U= tngr) +y{u — )

< 6/211-{-4 + E/tzn+3 < ff2n+2-

Using this inequality and the first statement of the proposition, for each n > 1, write

i(n+1)
Up41l — Uy = Z &y @ Yis
i:i[n}-{-l
where S Nl il < €272, Thus
t(nt1) (1) n i(k+1)
~ u—ZxSy = Zj=‘ﬂ1?+z D T®y
k=1 i=i(k)+1

= v (u - (ul + g}(ﬂw - ukJ))

= y(u—u,) < ef2"F3,
Hence 5772, 2; ® y; converges absolutely to u and clearly, using the triangle inequality,

() < S el el
=y

Also,
o] 3(1}
2ol wll = Zflﬂftﬂ lf:l| + Z [ERINEA|
1= ] e=i{1)41
o t(k+1}
S v+ Y 3T e [yl
k=1 fei(k)+1
< g (u) + 2+ Z € frkt2
k=1
< 7ylu)+e

All that remains to be proved is that (z,) and (y) may be chosen so that lim, |z, =

0 =limy, [jy.||. Suppose (x,) and (y,) arc the sequences obtained above and, without
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lose of generality, assume all of the terms are nonzero. Let i be a natural number.

Choose n such that
(ny+1<i<i(n+1).
Then ||z:|| || < ¢2™*". Choose a; such that [ly;]| fe; = \/e/2n+2. Then

€ E €
o || iz = lzl} fly]l < ST

Therefore,
floizi|| < o/ €f2n*2,
The sequences (anz,) and (y, jv,) satisfy the conclusion of the proposition. ]

Attention is now turned to the continuous duals of X§Y and X®Y. Let £(X, V)
denote the space of bounded linear operators from X into ¥ with the usual operator

norm. The next theorem provides some natural linearly isometric representations of

(XEY).

Theorem 2.7 Let X and Y be Banach spaces. The spaces (XQY)*, B(X, Y), and

L(X,Y™) are all linearly isometric.

Proof Let v € B(X, Y)andu=30",2, 95, € X QY. Put 1,5(1.:) = > vz, y).

The definition of the tensor product guarantees that i is well defined. Futhermore,

|1f)(u)| = !i b2, 1)

< I Nl el

Therefore ¢ is continuous on (X @Y, ) and by 2.6 the norm of % is no greater than

[#]]. Extend  to all of X@Y to obtain a member of (X &Y)*
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Now suppose ¢ € (X&Y)". For each (z,y) in X x Y put P(z,y) = ;ﬁ(:r. & y).
Then
(e, )t = [de @ )| < [l v (x 0 w) =[] el lIyil.

Therefore ¢ defines a member of B(X, Y) and || < . It follows that the map

4]
¥ +— ¥ defines a linear 1sometry from B(X, Y) onto (XQY)*.

Let ' € £(X, Y*) and (z,y) € X x Y. Put ¥(z,y) = {(#'(z},y). Then

9@, y)l = 100" (@) )| < 1| [llf ilyll -

Therefore 3 is a member of B(X, Y} and the functional norm of % is no greater than

[

Now suppose 1 € B(X, V), € X, and y € Y. Put {¢'(z),y) = ¥(x,y). Then

({8 (), ) = [, )] < N19)f (e, )l

Therefore, ¢’ is member of £(X, Y*) and the operator norm of ¥ 1s no greater
3 ? k] by g

than |l4]]. It follows the map ¢’ + 4 defines a linear isometry from L{X, Y onto
B(X, Y).
Thus

(XQV) > B(X, V)= L(X, Y)

under the correspondence

t,; o) el

The theorem follows. O
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There is a natural map, 7, from ¥ @ X onto X @ Y, given by

k43 n
7 (Zy:— ® ﬁn) ="z Q¥
i=1

=1

which establishes a linear isometry between Y &X and X®@Y (and between Y ®X and
XQY). Thus the adjoint, #*, is a linear isometry between the respective duals. Let

¥ be a member of B(X, Y). Then n*(3) is the member of B(Y, X) defined by

7 (W) y, ¥) = iz y)

for ally € Y, z € X. Let T be the member of £(X, ¥*) for which

(T(z),y) = ¥(z,y)

for each x € X, y € Y. Thinking of »* as an isometry between £(X, ¥Y™) and

L(Y, X*) note that

() x) = mbly,2) = $(z,y)-
Let J be the natural embedding of ¥ into Y**. Then
TG = T
= ¥(x,y)

= n'{y,x)

= @"(T)(y), 2).

These remarks are summarized in the next corollary.
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Corollary 2.8 Let J: Y —— Y™ be the natural embedding. The map T — T* o J is

a linear isometry between L(X, Y™*) and L{Y, X*).

Attention is now turned to the dual of (X®Y). Let S = (By. x By.,w* x w*).
Let uw = S0, 2; ® y; be a member of X@Y. For each (2*,y*) € S, define &4(z*,y") by

m

a2 y") =3 2" (@)y" (v)-

1==]

The map u v i defines a linear isometry from X®Y into C(5).

Theorem 2.9 (Grothendieck) A continuous bilinear functional b defines a mem-
ber of (X®Y)* if and only if there exists u reqular Borel measure 1 on S such that

foralze X and forally ey,
w(z,y) = jsfv*(m)y”(y) du(z*,y").

In this case, p may be chosen so that the norm of ¥ as member of (XQY)" equals

lief (S) where |u| is the variation of 4.

Proof. Let ¢ be a member of (X&Y'}, Thinking of XRY as a closed linear subspace
of C(S), let % be a Hahn-Banach extension of ¢ to all of C(S). Using the Riesz

Representation Theorem, obtain a regular Borel measure ; on S such that

o= [ s

for all f € C(S) and such that |u|($) = [[¢

J = Hﬁ)“m@w- Thus

Wlz,y) = dlz,y) = fs:r‘(;r)y*(yJ du(z™, y").
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Now suppose ¢ is a continuous bilinear functional on X x Y and has a represen-

tation
We) = [ (@) duta ),
where 4 is a regular Borel measure on S, Define ¥ on X ® Y by
=D Pl )
i=]

forallu=%",2;®@y; in X @Y. Then for each u = P Ti®y;in XY,

'af)(u)‘ = i'ﬁi‘(%yi)‘

= J% d#( )l
< I3 (2" (0 A" )
< “Za ®ye !;LJ(S)

= Alu) Jul(S )

The last inequality pertains to u as a member of C($). "I'hus % extends to a continuous
linear functional on XQ®Y with “nﬁ” < [#](S). An appeal to the first half of the
argument guarantees that g may be chosen so that the norm of v is |y (5). The
theorem follows. 0

Theorem 2.9 inspires the following definition.

Definition 2.10 A continuous bilinear form b on X x Y is said to be integral when-
ever 1 defines a member of (XQY)*. The norm of ¥ as a member of (XQY)* will

be called the integral norm of v and denoted by bl
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The space of integral bilinear forms on X xY with the integral norm will be denoted

~

by BIX, Y).

Theorem 2.9 guarantees that

A

(X&Y) = B(X, V).

Definition 2.11 An opevator 71 X —— Y is said to be an integral operator if the

bilinear functional 7 on X X Y™ defined by
{a,y") = (T(z), y")

is a member of BEX: Y*). The integral norm of 1' is defined to be |7, , and is

denoted by ||T||

int”

Suppose W, X, Y, and Z are Banach spaces and suppose T: X ~— W and §:
Y =~ Z are bounded linear operators. Let )%, z; ® y; be a member of X ® Y.
Define (T ® S)(u) by
(T ® $)w) = 32 T(e) @ S(y)
i=1
Lemma 2.12 The map T @ S is a well defined bounded linear operator from XQY
into WQZ. FPuthermore,

17 @ Sl < 171 #Sl-

Proof. Suppose v € X @ Y and has representations

m

kt3
U = Zw; &y = Z“i @ wv;.
t=1 j=t1
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Define T x S: X xY = W x Z by

(T x S)(z,y) = (T(2),5(y)) -

Let 8 € B(W, Z). Then 8 o (T x S) is a member of B(X, Y). Thus

(5169 50) = Loz, sw)

= Y HT X §)(an )

i=1

= iB(T X S)(uj-,vj-)

7=1
y ( (T(u}-),S(v_f))) .
j=1
Therefore,

2. 1) @ Slys) = 31 (w;) © S(vj).
=1 -

i=1

The proves the first statement. The sccond statement follows from a simple calcula-

tion. o

Theorem 2.13 Let W XY, and Z be Banach spaces and let T: W — X, S:
X — Y, and R: Y —— Z lbe bounded linear operators with S integral. Then

RST: W v Z is integral and {|RST)| RIS 1T

int = | i |

Proof. Using 2.12, the map I'® B WQZ* +—— X®Y™" is well defined. Thus,
(T'® B*Y: B(X, Y*)— B(W, 2%).
Let o € BEX, Y*) such that {(S(z), y*) = ¥(=z,¥*) and [|.S].

= [[#];,,- Then

int

(T'® R*)*(v) is a member of B(W z*). Let w € W and z* € Z*. Then

('@ R ) () (w,z") = (T @ R w,z")



= ¢(T(w), R*(27))
= (§T(w),27)
= (RST(w),z").
Thus RST is integral. Note that
I8STY; = Il(T & B) (&)l

< @ e &)l

int

IN

T ML 1]

2 1S 1T
The theorem follows. O

Theorem 2.14 Let X and Y be Banach spaces, T: X —— Y be « bounded linear
operator, and J: Y +—— Y be the natural embedding. Then T is integral if and only

if JT is integral. In this case, |JT|,., = [|TH

nt int’

Proof. 1f T' is integral then, by 2.13, so is JT', and ||JT.,, < ||} |7

|?."n.£ - HT“;Eﬂt'

A

Suppose JT is integral. Let i be the member of B{(X, Y™**} corresponding to JT.
Let J. be the natural embedding of ¥~ into Y™™ and Iy be the identity on X. Then

(Ix @ J.): X®Y™ —— X@Y™™ is continuous and
(Ix ® J.) B{X, V") — B{X, Y™).
Let {(z,y*) € X x Y*. Then

((Ix @ L) (), (2,97)) = (B, (Ix @ L)(2,y7)
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= ¥ (z, L (Y"))

This shows 7 is intcgral. Futhermore,

1T = Wx & J) (8]
< MUx @ L)l o],

S- ”w”mr = HJT”t'ni'

The theorem follows. O
The following lemma will be used to prove that the natural inclusion map from

Loo(pt) into Ly{t) and is integral and has integral norm equal to el ().

Lemma 2.15 Let K be q finite dimensional subspace of Loy (1) and let {[Ads U]y -0 [}
be a basis for K. For each i, 1 < i < n, let f; be a representative from (fi]. Then
there exists a p-null subset N of Q such that for each n-tuple (r1, r2, ..., ) of real

numbers,

S i)

i=1

i 'f‘f[fi]“co = sup

i=1 wEN

Proof [LEW]. For each n-tuple (g1, g2, ..., ¢,) of rational numbers, choose a u-null
subset N(qi, ..., gn) of Q such that

> ailfi]

i=1

l :SUP{‘ST:%L’(W]%: w € Q\N(q, Q)}

1=1
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Let

N = U N ((q1a cery (.t"n)

{(“ ssss In )E Qn

Since N is the countable union of null sets, N is also a null set. Thus, for any n-tuple

(91, -+ ., gn) of rational numbers,

(i)

= sup
wGQ\N

s

”

Now suppose (71, 72, ..., r,) is an n-tuple of real numbers and let € > 0. Note
that sup,co\n [y rifi(w)] is finite since SUPy e\ [2i=1 fi(w)] is finite. Choose a
rational n-tuple (g, ¢z, ..., ¢.) such that

> (e — i) fulw)

fi==

< €.

sup
WEMN

Then

Z’*‘“f[ff]” < sup [Yorifilw)
- we\N [z
n
sup > gifilw)| + sup
we\N 1,21 , weL\N

n

L(? — ¢i) fio(w)

=1

IA

~—

< sup Zq,—f,—(w) +e€
wENN |i=1

S gl +e

=] oo
7

i?‘e’[ﬁ‘] + Z(?“,‘—qij[ﬁ']” + €

1= >0 fti=1
Z(?f ¢ ) filw

‘n
=1

|Z UG+ sup

i=1 o WETNN

?[j + 2e.

x>

[FAN

IN
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Specifically,
Z T [fi] < sup Z T':’fg (Lv) < Z ?z[f,b]H 4 Ze.
i=1 oo WENN iz i=1 foo
It follows that
ri|fil] = sup i filw)) -
; A o WEMN E )
The lemma follows. O

Propasition 2.16 Let (2,2, p) be a finite measure space. Let 11 Loo(p) v Li(p)

be the natural inclusion. Then I is integral and ||I],,, = || {€2).

Proof. It will suffice to prove the proposition with the assumption |u[{§2) = 1. Let

¢ € B{Lo(2), Loo(pt)) such that
#(1.9) = (1(f)g) = [ fodu

for all f,g € Loo(). Suppose v = 30 [fi] & {gi] is a member of L{(y)® Loo(p) with
A(u) = 1. For each 7, 1 < j < n, choose representatives f; € [f;] and g; € [g;]. Let

{[h], [h2], --., [~«]} be a maximal linearly independent subset of the set

L R ERET R W P CTY R (2SR T

and let {Ay, ..., hi} be the corresponding linearly independent subset of

{flr---afmglu—--sgn}-

Using 2.15 let N be a g-null subset of §2 such that

n

Z ?‘i[hl‘]i

=1

i?‘f&-i(t{))

=1

= sup
wE\N

iloc



24

for all n-tuples (7, ..., rn) of real numbers. Then the following isometry results:
(span {hy, ..., by}, sup norm on Q\N) & (span {[hy], ..., []}, |I']l..)-

For each w € O\ N, let 6, be the member of (span {hy, ..., hi})* defined by
k k
((5w, Z ‘P,‘hg) = Z ?’,‘h{(w).
=1 i=1
Note that |}é,] < 1. Furthermore, 6, may be considered as a bounded linear func-

tional on span {[h,!, ..., [h|}. Using the Hahn-Banach theorem, extend &, to all of
] g

Leo(t). Thus

6.5 0d| = [ o o)

L)

< |Suilel) wio)

= sup_ Zf;[w)gi(u«’) |22} (€2)
wEQAN |i=1

= ;EZI\JN Z(éw: fe) (bwagt> Ix“| (‘Q)

= suUp Z(éws [fa]} <(5»~= [9’:‘]) |:“| (QJ
WE\N [j—

< (;[m . [gf;]) ().

It follows that ¢ is continuous on (Lieo(p) @ La{p),A). Therefore, I is integral.
Moreover,

161l < 12l (£2).



Using the [{ahn Decomposition Theorem [RDN, Proposition 11.5.21}, write
Q=A{B

where A and B are disjoint measurable sets,
w(C) 20,

for any measurable subset (' of A, and
p(D) <0

for anv measuralble subset £ of /3. Then

[{¢,xa+x8Q xa—xB)| = Uﬂ (xa+xB){xa— xB) dit
o UQ (xa — xB) dﬂ‘

= |p(A) — 1 (B)| = |p|(9).

Thus

“I”mz = H¢'Hm: = !H| (§2).

The proposition follows.

Q)
(&2}

0

Recall that a operator is absolutely summing if it sends weakly unconditionally

Cauchy (wuC) series onto absolutely converging series. The following characterization

for absolutely summing operators can be found i Diestel and Uhl (DU, Proposition

V1.3.2).
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Theorem 2.17 Let T: X —— Y be a bounded linear operator. Then T is abso-
lutely summing of and only if there exists ¢ K > 0 such that for any finite subset

{z1,22,..., 2.} of X the following inequality holds:

> Nl < K sup {Z Ha™ @« 2® € X¥, ||lz¥)) < 1}.
i=1 =1

The next proposition, coupled with Theorem 2.19, will show that integral operators

are absolutely summing.

Proposition 2.18 Let (2, X, 1) be u finite measure space. Let I: Loo (gt} — Ly(pe)

be the natural inclusion. Then I is an absolutely summing operalor.

Proof. Suppose 322, (fi] is a wuC series in Loo(g). Let n be a fixed natural number.
Assume, also, that for each 7, 1 < i < n, [f:] is nonnegative i-almost everywhere.
The general case will follow. For each 7, 1 <i <, let f; € [f:]. Using 2.15, let N be

a p-null subset of Q such that for each n-tuple (ry,7s, .. ., ) of real numbers,

i ?“,‘fg(w) .

i=1

g

we Q\Jf\r

For each w of Q\N let &, be the member of span {[f1], [f2], ..., [f,]}" defined by

n

{6, 2 milfi) = i rifilw)

=1 i=1

for each 327, m:[fi] € span {[f1],...,[f.]}. Thus

immnl - ): 11l dlu
g Lﬁ-a’-l&l

f



= fi:fidhf-[

< pf (22
= |l (§2) sup Zf;(w)
weMN |i=

= | () sup i(ﬁw;[ﬁ-]}l

wEMN ;=1

< W@ sup{ZJ e el < 1}

For the general case, write
£ = L1 = 171
where [f*] and [f7] are both nonnegative g-almost everywhere and
£l = (£ + [f7]:

Apply the above argument lo the set span {[f{'“] NN D § o P [in‘]} Note that

sup {Z fHw) :we Q\J’\f} < sup {Z [fi(w)] : .y IS Q\N}
and

sup {Zn: filwywe Q\N} < sup {Zn: | filw)]: w € .Q\N} :

=1

Thus
Zu[fnnlsw 0) wp{ziv DL v € (L) |J~|1<1}

It follows from 2.17 that I is absolutely summing.
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Theorem 2.19 An operator T: X —— Y s integral if and only if JT admits «

factorization

X Y o

Loo(s) 7 - Ly(p)

where J: Y v Y™ is the natural embedding, p is a finite reqular Borel measure
on a compact Hausdorff space Q, I: L..(u) — Ly(p) is the natural inclusion, and
St X v Lo(p) and Q: Ly{p) — Y™ are bounded linear operators. In this case,

Q. i, @, and S can be chosen so that ||S||, |Q] <1 and || T}, = g ().

~

Proof. Suppose T is integral. Let ¢ be the member of B(X, Y) induced by 7. Let

2 = (Bx+ x By, w* x w*). Choose a regular Borel measure z on Q such that

(T(2),y") = vlay) = [ "2y (v) duta", v

and
e (2) = W% e = 1171100 -

Define 5: X =— Lm(!u,] by

and It Y™ — Lo.(p) by

R(a)(=", 5™) = y™(y)
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for all z € X and y € Y. Then S and R are bounded linear operators, IIS)] < 1,and

|B|| £1. Let & € X and y* € Y*. Then

T(@)y") = [ @) due”,v™)

/QS(x)(w*,y**)ﬁ(y"‘)(-’r*,y**) du(z”,y™)
- L IS(@)(e",y™) R(y") (", y™) dp(e™,y™)
= (8(2), R(y"))
= (R*IS(z),y").

Let Q = R*. Then JT = QIS is the desired factorization.

The converse follows {rom 2.15 and 2.13. O

Corollary 2.20 A bounded linear operator T: X — Y is wntegral if and only if the

adjornt T Y™ +—— X is integral. In this case, 1T, = 170,

Proof. Suppose T is integral. Using the factorization in 2.19 and taking adjoints

produces the commutative diagram

J I~

Yo ——— ¥ ——— x>

Q*

LW(I;L) = L)

where J, ¢, S, @, and T are as in 2.19,
Let L be the natural embedding of Li(p) into Loo(p)*. It is a simple exercise to

show that 7* = Lf. Let & be the natural embedding of ¥Y* into Y***. Thus the
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dragram

is obtained. Therefore,

I"=T"JK=8LIQK.

Since [ is integral, it follows by 2.13 that T is also integral. Fivally, using 2.16,

”iﬂ*“int = ;lS*LJTQ*-{(”mt S ”I“mt = |,U'I (Q) = ”izlllmf '

Specifically,

17" Hine S N7 Mine

Now suppose 7™ is integral. Let R be the natural embedding of X into X**. Using

the first part of the argument, 7 is also integral, Accordingly, the diagram

T J
X —~ Y - Y

R
T**
X

is obtained. Thus JT is integral. It follows that 7" is integral and

1T Mine = NIT Mg = N Blfyy <NIT e < N7

int "
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Therefore Tis integral and

17| |ie = 117

int line -

The corollary follows. ;
Let X and Y be Banach spaces. The space of integral operators from X into ¥

will be denoted I(X, Y). The next corollary shows that (I(X, ¥™*), ||-ll,., ) is linearly

~

isometric to ( B(X, Y), |I{];.. )-

Corollary 2.21 A continuous bilinear functional ¢ on X X Y is integral if and only
if the continuous lincar operator Ty: X w~— Y* defined by Ty(z)(y) = ¢lx,y) is
integral. In this case, |4, , = ||T|

int tnt'

Proof. Let 3 be a member ol B(X, Y) and suppose Ty is integral. Let 7 be the

~

member of B(X, 1) induced by 7" Tet J: ¥ — Y™ be the natural embedding

and let Ix be the identity on X. Then
(Ix @J): XQY +— XQV™,
has operator norm one, and
(Iy ® J): B{X, Y™)— B(X, Y).

Thus it will suffice to show « = (Ix @ .J)*(r). Let (2,%) € X x Y., Then

Ux @) (7)z,y) = t(Ix&J)(z,y)

= 1({Ix(z), J(y))



32

It follows % = (Iy ® J)*(7). Futhermore,

1¥fie = x & T) ()i
< MZx @ J) | 7l
= “IX ®I JH ”T”int

= “THa'nt '

Now suppose % is integral. Let  be the space (By. x By.,w* x w*). Let gt be a

regular Borel measure on §2 such that
Wey) = [ (0" (1) du (e ")
for all (z,y} € X xY and |9, = [#| (). Define R: X — Lo, () by
R(z)(z",y") = 27(z),
for all 2 € X and define St ¥ +— L (p) by
S y") =y"(y)

for ally € Y. Then for (z.y) € X x Y,

{(Tu(x)yy) = v(z.y)

= [ @@y @Aty



= fnR(m_)(m*,y’“)S(-‘vJ(w'ay”‘)dﬂ(ﬁf‘ay’")

{£i(z), I5(x))
= ((15)"R(z),y),
where I: Lo(p} —> Li(n) is the natural inclusion. Thus
Ty=({US)R=SI"R
and Ty is integral. Futhermore,
T lline = WS™I Rlliny < IS i HRI S 1 e = Wl = 1] () = 30l -

The last inequality follows from 2.16. The corollary follows.
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CHAPTER 3

THE RECIPROCAL DUNFORD-PETTIS PROPERTY ON X &Y

This chapter deals with some results on tensor products of Banach spaces due to
Emmanuele [EM2]. Recall that an operator on a Banach space is said to be Dunford-
Pettis (or completely continuous) if it sends weakly Cauchy sequences onto norm
convergent sequences. Such an operator will be called a DP operator. [t is an easy
exercise to show that 7" 1s a DP operator if and only if 7' sends weakly convergent

sequences onto norm convergent sequences,

Definition 3.1 4 Banach space X is said to have the reciprocal Dunford-Pettis prop-

erty (RDPP) if every DP operator on X is weakly compact.

Definition 3.2 Let X be a« Banach space. A bounded subset K of X* is an L-set if

for each weakly null sequence (z,) in X,

lim sup [(z",z.)| = 0.
o oaeeK

The next theorem gives a useful charactorization of the RDPP.

Theorem 3.3 (Leavelle, [LV]) A Banach space X has the RDPP if and only if

every L-set in X~ 15 weakly compact.

Proof. Suppose each L-set in X* is weakly compact. Let 71 X +— Y be a DP
operator. To show that 1" is weakly compact it will suffice to show T™(By») is an

34
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L-set. Suppose (z,) is a weakly null sequence in X and y* € By.. Then

(T*(y" ) eadl = Hy™ Tl S (T ()l — 0.

Thus By is an L-set.
Now suppose X has the RDPP . Let X be an L-subset of X*. Let B{X) be the

Banach space of all bounded real valued functions on X equipped with the supremum

norm. Defive 70 X —— B(K) by
T(z)(z") = (z", )

for all # € X and 2* € K. Then T is a DP operator. To see this, let (z,) be a weakly

null sequence in X'. Then

IT (@)l = sup [{Tlaa)z ) = sup l(a"2)] 2 0,
e i r*e iy

since K is an L-set. Thus 7' is a DP operator. Hence 7" and T* are weakly compact.

For z* € K and f € B(K) put

Then 4.+ defines a member of B(/{)* with norm no greater than one. Note T*(8,+) =
z*. Hence I{ is a subset of T*(Bp)+), a relatively weakly compact set. The theorem
follows. m

The next theorem is due to Odell [ROS2, page 377].

Theorem 3.4 A Banach spuce X does not contain an isomorphic copy of Iy if and

only if cvery DP operator mapping X into another Banach space is compact.
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Proof. If X does not contain an isomorphic copy of {; then by Rosenthal’s {; Theorem
[ROS1], By is weakly conditionally compact (i.e. every sequence has a weakly Cauchy
subsequence). It {ollows that every DP operator on X is compact.

Conversely, suppose X contains an isomorphic copy of {;. Let (e,) be a copy of
the canonical unit vector basis of I} in X and let (r,,) be the sequence of Radamacher
functions in Ly [0,1]. That is for each natural number n and each real number ¢,
0<t<l,

ra(t) = sgn(sin(2"xt))

where sgn(f) = t/|¢| for t # 0 and sgn(i) = 0 for t = 0. For each @ = 3%, a¢; in
spat {e,, } define T(a} by
o) = Zn: Q;r;.
i=1

Then 7 is a bounded linear operator from §paii {e, } into L]0, 1}. Using the fact that
Loof0,1] is injective, T can be extended to a map, still called 7', on all of X. Now let
It Lo,[0,1] = L4[0, 1] be the natural inclusion. Since Loo[0, 1] is linearly isometric
to a C(£2) space for some compact Hausdorfl space Q and [ is weakly compact, it
follows that / is also DP (see [DU][Corollary 17, p. 160]). Thus /o7 is DP; however,
it is not compact. The theorem follows. i

Theorem 3.4 will be used to prove the next theorem.

Theorem 3.5 (Emmanuele, [EM1]) A Banach space X does not contain an iso-

morphic copy of Iy if and only if every L-subset of X* is relatively compact.
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Proof. Suppose X does not contain an isomorphic copy of [;. Let K be an L-subset
of X*. Let B(K) be the space of bounded real value functions on K. Following [LV],
Define 70 X — B(K) by
T(e)(e") = (&, 2)
for all z in X and for all z* in X*. The argument in 3.3 shows that 7" is DP. Since T
is DP, 7" is compact by 3.4. Therefore 7™ is also compact. It follows from the proof
of 3.3 that K is a subset of 1*( By ). a relatively compact set,
Now suppose every L-subset of X* is relatively compact. Let T: X —— Y be a
DP operator and let A = T*(By+). lence K is a L-set and T and T are compact.

The theorem follows. )

Lemma 3.6 Suppose (27) is a sequence in X* with the property that for each weakly
null sequence (z,) in X

lién(z:;, z,) = 0.

Then {x}, : n € N} 1s an L-set.

Proof. The proof will consist of three steps.

Step 1. I ¢ is a permutation of the natural numbers then the sequence (@) also
satisfies the hypothesis of the lemma. To see this, let {z,) be a weakly null sequence
in X. For each natural number n, let 2, = @4-1(,;. Then (z,) is also weakly null.

Thus [z}(z,)] — 0. Let € > 0. Choose a natural number N such that for all n > N,
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[z (2a)| < €. Next choose M > N such that for all n > M,

sup (k) < ¢{n).

1<kSN

Then for n > M, |:z;* (zé(HJ)‘ < €. That is, < €.

3(n)

(o)

Step 2. 1f (27,) is a subsequence of (z7,), then (z},) satisfies the hypothesis of the
lemma. To see this, let (z;) be a weakly null sequence in X. For each natural number
n, define z, to be z; if n = n; and to be the zero vector otherwise. Then (zp) is a

weakly null sequence. Thus (i}, (2;)) is a subsequence of (2(2,)), a null sequence.

*
7

Step 3. Finally, to show the set {z} : n € N} is an L-set, let (%) be a sequence
in the set. Note that

{zn:ne N} C{z: N}.

Let (2,) be a weakly null sequence in X. Suppose (|z2(z,)|) does not converge lo {.
A moment’s reflection reveals that this implies {2 : n € N} must be an infinite set.
Thus, it may be assumed, upon passing to a subsequence and relabeling if necessary,
that there is € > 0 such that [27(xz,)] > € for each n and such that z; # z} whenever
1 # j. Now for some subsequence (w?) of (+?) and some permutation ¢ of the natural
numbers, 2, = wWg(,). Using the first two steps of the argument, it follows that
|2%(xn)| — 0, a contradiction. The lemma follows. 0

A sequence satisfing the hypothesis of 3.6 will be call an L-sequence. The space of
all compact linear operators from the Banach space X into the Banach space ¥ will
be denoted K(X, Y), and the space of all compact weak” to weak continuous linear

operators from X* into ¥ will be denoted K,..( X", Y'). The next lemma establishes
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a linear isometry between K(X, Y) and K,«(X**, Y).

Lemma 3.7 Let X andY be Banach spaces. Then the spaces K (X, Y) and K,+(X™, Y)

are linearly isomelric.
Proof. Let T be a member of K(X, Y). Then
fz'\**: X** — J(Y) g Y’k*

where J: Y +—— Y™ is the natural embedding (see {DS, Theorem V1.4.2]). Thus
J™ o T** maps X™ into Y (here J=!: J(Y) — Y). Since T** is weak* to weak*
continuous and (J(Y'),w") and (¥, w) are linearly homeomorphic, it follows that J=!o
T™* 1s a compact weak* to weak continuous operator. Thus the map T J~) o T
is a linear isometric embedding of K(X, Y) into K. (X, ¥).

Now suppose S is a member of K. (X™, V). Let T = Sol, where I is the natural

embedding of X into X**. Then T** = (5™ 0 I™*). Thus for z** € X** and yre Y,
{J_lT**(l'**),y*> — (T**(Ir**),y*l)
— (SHH-{**(:U*X]’Q‘&)
= (@™, I"S"(y")).

Now let {z,) be a net in X such that lim, I(2s) = 2™ in the weak™ topology on X**.

Then

(-T**) ]*S*(y*n = Ii?“(i*o-),i'*b‘*(y*_))

= Hm{za. /7S (y"))
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= lim{{(z4),57(y"))
= (&, 57(y")-
Thus
(JTTE)7) = @57 0)
= (5(2™).y").
Therefore,

J 1ol =5,
It follows that the map T+ J~ o T™* defines a linear isomentry from K (X, Y') onto
Ko (X*, Y). The lemma follows. ]
The following theorem, due to Ruess {RSS, 4.1.4], will be used in the proof of the

main theorem (Theorem 3.9} of this chapter.

Theorem 3.8 A bounded sequence (T,) in K,~(X*,Y) converges weakly to T in

K (X*,Y) if and only in (T, (a*), y*) == (T(2*),y*) for all z* € X* and y* € Y™.

Theorem 3.9 (Emmanuele, [EM2]) Let X be a Banach space not containing an
isomorphic copy of Iy and let Y be a Banach space with the RDPP. If L(X,Y*) =

K(X,Y"), then X&Y has the RDPP.

The proof of the theorem will contain several numbcred italicized assertions and thier
proofs.
Proof. Let M be an L-subset of (X2Y}*. Using the linear isometries established in

2.7, M will be considered as a subset of (X, Y*}. Let (4,) be a sequence in M.
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The goal is to show that (%,) has a wealky convergent subsequence. To this end, let
H be the closed linear span of {h,(z): z € X,n € N}. Since each h, is compact, H

is separable. Let A be a countable weak* dense subset of H*.

3.10 By passing to a subsequence, it may be assumed that (h,{r)) is convergent for

each r in A.

Proof of 3.10. First note that the sequence (h%(r)) is an L-sequence in X* for all »

in #*. To see this, let (z,) be a weakly null sequence in X and let r be a member of

H*. Thus

](h:(r)vﬂ:nn = |(?'.. hn(TnDrl

A

[t B ()il
3.11 The sequence ({|hn(2,)]]) converges to 0.

Proof of 3.11. Suppose not. Choose € > 0 and a subsequence h, («,,) of ho(,) such

that

(2, )] > €

for each :. Next, choose a sequence (z;) in By such that
I{h'ﬂr ($71r' )’ :’:1)' > €
for each 7. However, if T' is a member of K (X, ¥*), then

(T (wn,), 200 S NT (@)l = 0
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since T' is compact and (o) is weakly null. It follows that (@, @ ;) is a weakly null

sequence in X®Y. Since (h7(r)) is an L-sequence,
|(hﬂi (x‘ng): zi)l "I—"’ 0.

However, this is a contradiction. The claim 3.11 follows.
From 3.11 it follows that

[(hntr) za)] = 0.

Hence (h=(r) is an L-sequence in X7. Since X does not contain a copy of I, it
follows from 3.5 that (A%(r)) has a convergent subsequence. Since A is countable, a
diagnalization argument finishes the proof. The claim 3.10 follows.

Now let 2** be a member of X™* and, using the fact each h, is compact, consider

(h7*(x**)) as a sequence in Y.

3.12 The sequence (h*(x**)) is an L-sequence,

Proof of 3.12. Let {y.) be a weakly null sequence in Y. For each natural number 7,

[ (2™ ) y] = (™ A (ya))]

By 2.8, (h%) is an L-sequence in [ (Y™ X). Consequently, |7} (ya)]| —5 0. This proves
the claim 3.12,

Since Y has the RDPP, by 3.3, {k3*{(z™*): n € N} isa relatively weakly compact
cubset of Y* for each z** in X*~. Since each %, is compact and takes its range in A,

the set {hx* (2"} : n € N} may be considercd as a subset of H.
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A weak limit for (&,) will now be constructed. Fix z* in X™*. Using the fact
that (hX*(2™)} is a sequence in a relatively weakly compact subset of H, let w and =z
be two weak-sequential cluster points of (h;*(2™)), and let (A7;(2™)) and k7 (2™))
be subsequences converging weakly to w and 2 respectively. Let r be a member of A.

Then, since h¥(r) is a convergent sequence, it follows that

(,r) = lim{hy (@), )
= lim(z™", i, (r))
= lim{a™, A7 (r))
= li}'n(x”, hy, (1))
= li}'n(h;:(i?-'“)a")
= (z,7).
Therefore,

(t0,7) = (2,7)

for all ¥ in A (a weak™ dense subset of 7}, and
w = z.

Hence (h}*(z**)) is weakly convergent for every o™ in X**.

For each 2** in X** define fz('z"‘"‘) by
h(z2*) = w— lim AT (2™).

Then A defines a bounded linear operator from X into H or from X into Y.



3.13 h is weak™ to weak® continuous.

Proof of 3.13. Let (z2¥)o be a weak* null net in X and let y be a member of Y.
Thinking of y as a member of Y™, (k;(y)) is an L-sequence in X*. By 3.5, (R (¥))

has a subsequence (A% (y)) converging to some 2™ in X*. Thus
lié_n(jz(x;*),y) = lim (]_inl(h;’:(m;’"), y))
= lim (Iil_n(;t:;_*, h.;z_(y)))

= liéﬂ(;rz*,;z:') = 0,

and 3.13 follows.
Let h = ko J, where / is the natural embedding of X into X**. Then A is a

compact operator from X into Y™,
3.14 b = h.

Proof of 3.14. Let ™ be a member of X™ and let (,), be a bounded net in X
converging to ™ in the weak* topology on X**. Then, using the fact that adjoints

are weak® to weak* continuous,

W (a™) = w*—liclxl'lh“(l'a)

i

w" —limA(z,)
= w — ii_1]_n fz(:co.]

= h(x™),

and 3.14 follows.
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Since A** = b,
(s (), 0™) = (Be™) ) = (B (), 57

for all 2™~ € X** and y** € Y™**. Thus, using 3.8, (AL¥) converges to A** in the weak
topology on K,+(X**,Y*). Hence by 3.7, (h,) converges weakly to & in £{X, ¥™*).

The theorem follows. O



CHAPTER 4

PROPERTY (V) ON X&Y AND (V)-SUBSETS OF (X&Y)"

In this chapter unconditionally converging operators on tensor products of Banach

spaces are studied.

Definition 4.1 Let X and Y be Banach spaces. An opevalor T X —— Y is said to
be unconditionally converging if T sends weakly unconditionally Caunchy (wuC) series

onto unconditionally converging (uc) series,

Lemma 4.2 Suppose 3 oo x,, is a wuC' series in X and (yn) is a bounded sequence

inY. Then 350, 2, & yn 15 @ wuC servies in XQY.

Proof. Let T be a member of (X®Y')*. Using the isometries established in Chapter 2,
T may be considered to be a member of 7(X, Y™). Hence by the remarks preceeding

Proposition 2.18, 7" is an absolutely summing operator. Let M = sup,, ||y.||. Then

2Q

MUCETRIIESS ERIA)
< m 1) s
< MY Tl < oo
Thus 32, @, @ yn 18 wul. o

One should note that if the roles of (z,.) and (y,) in the lemma are reversed, the
series y - | @n & Yy 1s still wuC.

46
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It is casily seen, in view of the Orlicz-Pettis theorem, that weakly compactl opera-
tors are unconditionally converging. It is not the case, however, that every uncondi-
tionally converging operator is weakly compact. For example, the identity operator
on {5 is certainly unconditionally converging but not weakly compact. This motivates

the next definition.

Definition 4.3 (Pelczyiiski , [PEL]) A Banach space X is said to have property

(V) if every unconditionally converging operator on X is weakly compact.

Among the spaces with property (V) is the space C{§1) where Q is a compact
Hausdorff space (see [DU, Corollary V1.2.16]). Pelezynski studied Banach spaces with
property (V) and published his results in 1962 (see [PEL]). The question whether
the space C(Q2, X) has property (V) whenever X has property (V) remains open.
Pelczynski has given an affirmative answer when X is reflexive. Cembranos, Kalton,
Saab, and Saab [CKSS] have shown that if X has the so called property (n) and
does not contain an isomorphic copy of #; then C'(§2, X) has property (V). Finally, N.
Randrianantoanina [RAND] has recently announced that if X is separable and has

property (V), then C(Q, X') has property (V).

Definition 4.4 Let X be a Banach space. A bounded subset K of X* is culled «

(V)-set if for each wuC series Y5, x, in X,

L=

lim sup [{z", x,)| = 0.
noxrel

The proof of the next lemina is almost identical to the proof of 3.6 and is omitted.
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*

Lemma 4.5 Suppose (z}) is a sequence in X* with the property that for each wuC
Series Y oo &y in X
li?{nsglp [{z}, s @n)| = 0.
Then the set {z; : n € N} is a {V)-set.
A sequence in X" satisfying the hypothesis of Lemma 4.5 will be called a (V)-sequence.

The next theorem duc to Pelczynski gives a charactorization of property (V) in

terms of (V)-sets.

Theorem 4.6 (Pelczynski , [PEL]) Lei X be a Banach space. Then X has prop-

erty (V) if and only if every (V)-subset of X* is relatively weakly compact.

Let X and Y be Banach spaces. The space of compact integral operators from X
into ¥ will be denoted K I1{X, V). In the next proposition, sufficient conditions are

given so that KI(X,Y) = /{X,Y).

Proposition 4.7 Let X and Y be Banach spaces and suppose X does not contain

an isomorphic copy of ;. Then
KI(X,Y)=1(X,Y).

Proof. Let 1© X —— Y be an integral operator. Then J7' has a factorization

T J
X Y yor
4
S Q
Lo (gt) La(g)
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where J: Y —— Y™ is the natural embedding, x is a regular Borel measure on a
compact Hausdorff space ©, || (Q) = |T|l,,,, I+ Loc(p) = L1{x) is the natural
inclusion, and S: X —— Lo () and @: Ly{p) —— ¥ are bounded linear operators
with ||S|| €1 and [|@Q]} < 1. The map 7 is weakly compact and hence, using the fact
Loo(pt) 1s linearly isometric to a space C'(A) for some compact Hausdorff space A, T
is also DP (see [DU, Corollary V1.2.17]). Accordingly, the map Q15 is also DP.
Since X does not contain a copy of ;, by Rosenthal's {;-theorem [D, page 201],
the unit ball of X is weakly precompact, that is, every sequence has a weakly Cauchy
subsequence. Thus STR is a compact operator. Since JT = STR, JT is also compact.

It follows that 7 must be compact. The proposition [ollows. O

Theorem 4.8 Let X and Y be Banach spaces with property (V) and suppose that
IX,Y*)= KI(X,Y*). Then every (V)-set in (X&Y' )" is relatively weak = sequen-

tially compact.

The proof is similar to the proof of 3.9. Several asscrtions will again be numbered
and 1talicized,

Proof. Let K be a (V)-subset of {X®Y)". Using the isometries established in Chapter
2, K may be considered as a subset of 7(X, Y*). Let (%,) be a sequence in K and
let H =span {h,(z): € X,n € N}. Then H is a separable subspace of Y. Let 4

be a countable dense subsct of f1*.

4.9 The sequence (hL(r)) is a {V}-sequence for cach r € A,
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Proof of 4.9. Suppose not. Let » € A and let 307, 2, be a wuC series in X such that

limy, sup,, |{zn, A5, (r))] is not zero. Let € > 0 and assume (passing to a subsequence

of (@) if necessary) that (%,,,) is a subsequence of (4,) such that
‘(wn,h;n(rm > €.
Let ** be a member of Y~ such that
y g =r

and
fly™{ = |t}

For each natural number n, choose ¥, in ¥ such that

I(hrnﬂfa’n)a y - yrt)l < 12",

Then
(s b (D] = M, B3, (™))
= (o, (20), 57}
< [l (20)s 4™ = yn) |+ Wl (Z0), ¥n) |
< 12" A (R, (20), 0] = 0,
since 302 Tn @ ¥y 1s wul and (%, ) is a (V)-sequence. However, this is a contradic-

tion, and 4.9 follows.
Using the {act that A is countable and 4.9, it will be assumed that {kX(r)) is

weakly convergent [or every r € A.
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Now let z** be a member of X** and consider the sequence (A} (z**)) in Y™ (h}*
may be considered as a map from X into ¥Y™*). An argument similar to that of 4.9

shows that (Ax*(z**)) is a {V)-sequence. [t follows that the set
{hy(x™): n e N}

is a relatively compact subset of ¥*; in (act, it is a relatively weakly compact subset
of H.

A weak™ limit for (%) is now constructed. Let 2™ be a member of X™**. Using
the that fact that {(R}*(2**)) is a sequence in a relatively weakly compact subset of
H, let w and z be two weak sequential cluster points of (Ay*(x™)), and let (AZ*(2**))
and (h;*(2)) be subsequences of (A}*(x**)) converging to w and z respectively. Let
r be a member of A. Then

(w,r) = llm{h“ ™), r)
= lizn(x"‘ﬂh;‘.(?‘))
= lim(@™, Ay (r))
= li;n(;rr”,h:lj(?‘j)
. li}.‘ﬂ(h“(i‘”),?“)
= {z,7).
It follows that w = z. Thus {h}*(2*)) is weakly convergent for all 2** in X**. For

each =™ in X**, define A(x™*) by

h(2*) = w — L 277 (™).
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4.10 The map h is weak® to weak* continuous.

Proof of 4.10. Let (z3) be a weak™ null net in X** and let y be a member of Y.

Then, thinking of y as a member of Y**, (A% (y)) is a (V)-sequence in X*. To see this,

n

note that if 3277 | @, is a wuC series in X then % 2, @y is a wuC series in XQY.
Thus,

lill'nsup [hr (y), zu M = li%‘n sup | (a0 @ y)| -5 0.
o ! mn

Hence (h;(y)) has a weakly convergent subsequence (A (y:)) converging to some z*

in X*. Thus

lim(h(a3),) = lim (llm B )

= lim (llm hoi( ))
= llnl(hm(xa, ', ))

= lim(z",2%) = 0.

The claim 4.10 {ollows.

Now let A = ko [, where / is the natural embedding of X into X™*. Then
h* = h.
4.11 The map h: X —— Y™ is integral,
Proof of 4.11. First note that

h{z) = ™ I(z) = w — mh "I (z) = w - lim#h, (z)
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for all z inX. Let € > 0 and let v = Efﬂ z; @ y; be a member of X ® Y. Choose a

natural number N such that for all n > N and for each 7,1 < 7 < k,

{(h(z:), 35} — (hn(i),4:)| < €/k.

Then

th(u) — hn(u)| < e

Let M = sup, k.||, Then

int’
()] < |hn(u)|+ ¢
S enlline A ) + ¢

< MA(u) +e.

It tollows that A is continuous on (X @ Y,A). Hence h is continuous on XY,
Thercfore, £ is integral and 4.11 follows.

Note that since % is integral, it is also a compact operator. Futhermore, if u is a
member of X ® Y, then {h,(u)) converges to h(u). It follows that {(hn(u)) converges
to A{w) for all uw in X®Y. Hence K is relatively w*-compact. O

The next corollary uses the set theoretic containrnent of KI(X.Y™) as a subset

of K(X,Y").

Corollary 4.12 Suppose X andY have property (V) and X, Y )= KIX, V). If

K 15 a (V)-subset of I(X, Y"), then K is relatively weakly compact in (K(X, Y"),w).

Proof. If h is a member of KI{X, V"), then A is a member of e (X, Y77,

Suppose K is a (V)-subsct of KI{X, Y*). Let (hn) be a scquence in K, and, using
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4.8, assume (%, ) converges in the weak™ topology to k, where k is the Hinit constructed

Ak

in the proof of Theorem 4.8. Then (22"(2**)) couverges weakly to A™(z**) in Y* for

T

each " in X**. Thus the sequence ({h,(2**),y**)) converges to (h{z™*),y™) for all

™ in X™* and for all ** in Y**. Thus, by Therovem 3.8, (A=) converges in the
weak topology on Ko« (X**, Y™*) to k™. 1t follows that (k,) converges weakly to k
in K(X, V™). |

Let €2 be a compact Hausdorff: space and let ¥ be the o-algebra of Borel subsets
of 2. The uniform closure of ¥-simple functions taking values in the Banach space X
will be denoted 2{(X, X). Recall that the dual of C(, X) is the space M(£, X*) of
X*-valued regular Borel measures of bounded variation equipped with the variation
norm (see [DU, Chapter VI]). Since (/(€, X) and C(§)&.X are linearly isometric,
it follows that AM(Q, X*) and I(C{), X*) are also lincarly isometric. Let T be a
member of /(C(§2), X*) and let 1 be the coresponding member of M(£, X*). Then

for eachu = I, fi® 2y in C(Q ® X),

(Tyu) =3 AT(fi), )

and

(g, uy = Z/g; fizidu
i=1

It follows that
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for all [ in C(f); that is, u is the representing measure for 7.
Theorem 4.13 ([LEW]) Suppose X has property (V) and
(C(Q),X™)=KI(C(£2),X").

Then every (V)-set in M (2, X*) is sequentially compact in the U5, X>*)-topology on

M, X™).

Proof. Let K be a (V)-subset of M0, X™) and let {y,,) be a sequence in K. Using
Theorem 4.8, it will be assumed that (z,,) converges to u in the weak* topology on
M(Q, X™), where g is the limit constructed in the proof of Theorem 4.8. Thinking
of M as a subset of KI(C(§2), X*), by Corollary 4.12, (u,) converges weakly to ¢ in
K(C(9), X*}) and in L(C(Q), X~).

Let A be a Borel subset of @ and let 2™ be a member of X**, Then x4 2** defines

a member of L(C(2), X*)* by
{(xaz™, v} = (v(4),27)
for all v in L(C(§2), X*) (see [DU, Theorem VI[.2.1]). Thus
(™, pn) — {(xa2™, p).
It follows that if & is a member of U{Z, X**), then
(i, 0) ~= (1, 0).

The theorem [ollows. O



Let K be a bounded subset of M (2, X*). Define [A| by
(K| = {lu|: p€ K}.

Also, recall that | K| is said to be uniformly countably additive if for each pairwise

disjoint sequence {A,) of Borel subsets of §)

fim sup > el (As) = 0.

wEK y=m
The next proposition, is well known (see [PEL]); however, the proof presented will

use the results in this chapter and the following theorem.

Theorem 4.14 ([BL], [BOM]) Let X be a Banach space and let I be a (V)-subset

of M(Q, X). Then |K| is uniformly countably additive.

Proposition 4.15 Suppose X has property (V) and that X and X* have the Radon-

Nikodym Property. Then C(§2, X) has property (V).

Proof. First note that under this hypothesis, J{C(£2), X*) = KI(C(£2), X*). In fact,
every integral operator from C{€2) into X™ is nuclear {see [DU], Chapter VI1.4). Let K
be a (V)-subsct of M (€2, X*). Using [DU, Theorem [.2.4], let m be a control mcasure
for [K'|. That is, let i be a nonnegative countably additive measure on the Borel
subsets of 2 such that

lin =0
it 1

uniformly for g in [K]. Let (u,) be a sequence in K and, using 4.13, assume (tn)

converges to w in the U(X, X**)-topology on M (9, X*). Using the fact X* has the
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Radon-Nikodym Property, choose a sequence {f,) and f in Ly(m, X*) such that for

n L / ,,] k3 d

for each natural number n and

w(E) = /Efdm.

Now suppose ¢ = 3.2, xg o where ||[z7*}} < 1 and (£;) is a pairwise disjoint

sequence of Borel subsets of 2. Then ¢ is a meraber of Lo (m, X™),

(Furg) = ]ﬂ fag dm

k
= (BT + |
i=1

for each natural number n, and

(f.g) = /Qfgdm
k

. fng din

>k T2

= Z(H(Ei), ai’) + fgdm.
=1 \/‘UJ_}*_ ,
Futhermore,
{/LL.)A. E f.g (-Z?'?'L S H){'Uj>k Ejf;l 1 “g”m
s _/ i full dim

Uj)k EJ'

= [ptn] (U E;

ivk

uniformly in n. Therefore,

(fm.g) — (j ﬂ)‘

)i,
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It follows that (f,) converges to f in the weak topology on L;{m, X™). Therefore

(n) converges weakly to pu. a



CHAPTER 5
A REPRESENTATION THEOREM FOR C{, X)

In this chapter, a representation for members of C'(Q, X} will be given when X
has a basis. The fact that C{€), X) can be expressed as a tensor product will be used.
This representation will be used Lo characterize when the representing measure of a
bounded linear operator from C(f2, X) into ¥ takes its values in £{X, V). In this
chapter, © will be a compact Hausdorff space and ¥ will be the o-algebra of Borel
subsets of {1,

Let X be a Banach space. Recall that sequence (z,) in X is called a Schauder
basis (or just a basis) if for each z in X there exists a unique sequence (a,} of real

numbers such thal

o0
r= Y antn.

n=1

Futhermore, if a sequence {(z,,) is a basis, then there exists a positive real number K
such that for each sequence () of real numbers and each pair of integers n and m
with n < m,

<K

Lo
§Z ax;

Te=1

m
Zt}'z‘(ﬂ@ .
=3
The least such K is called the basis constant. Finally, for each n let 2, be the member

of X* defined by
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*

») 1s called the sequence of coeflicient

for each 2 = 372 | . in X. The sequence (2

functionals in X*. Tlach member 2 of X may be written

oG
z= an(z)T,
n=1

Theorem 5.1 Let X be a Banach space with basis (z,,) and let ) be compact Haus-
dorff space. Then for each f in C(Q, X) there exists a unique sequence {f,) in C{Q)
such that

f= i fotn.

n=1
Proof. Using the linear isometry cstablished in example 2.4, it will suffice to show
that if f is a member of C(Q2).X, then there exisis a unique sequence (f,) in C(Q)
such that

= Z [ @z

n=1{

The first step will be to show that every member of C'(£2) & X has such a repre-
sentation. To this end, let ¢ = 3.5, h; ® z; be a member of C() & X. Fach z; has a

representation

where () is the sequence of coeflicient funtionals in X*. Thus

k
gy = Zh-; 9z
=1

% G
o B .
= > hi@ (Zb_{ :z.ﬂ(zi)x.n)
i=1 n=1

ko

= Z Z h{ i ;l’:_(ﬁ'i).’lf.,l

=1 n=)
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For each natural number n let

Then

[ee]
g = Z 9n < -

n=1

Thus a representation exists for each member of C(§}) @ X.
Now let f be a member of C(2)®@X. Let (g;) be a sequence in C'(2)® X converging

i A-norm to f. Using the first half of the argument each ¢; has a representation

a4 = _Z gé,ﬂ (?_j Ty

n=1
Let K be the basis constant for (x,), et m2 be a natural number, and let w be a

member of ). Then

gim (W)2n = gim(Wlanll = [[(g:m(w) = gim (@) Tl
< Z (gi,n(w) — Yim {w)) Tn
n=1
=Im-—l
[ 22 (Gialw) = gin(w)) @]
n=1 |
|| e
< 2K Z (gi,ﬂ(w) - gj,n(w}) &y
n=1

00 |

Z .(J"I'.n(.w)xn hae Z y_.;'ln(w):cn .

n=1 n=1

= 2K
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Accordingly,
A(gim © T — G @ @) < 2K (g3 = g;) =5 0,

Therefore, the sequence (g; )i is Cauchy. For each natural number n, let
fo = limgip.
Let € > 0. Choose a natural number N such that for 7,7 > N,
ME—gi) <ef2

and

Algi — g;) < e[AK.

Next choose a natural number L such that for all I > L,

i
A (f - Z GNpm @ :1:._.1) < €f2.

n=]

Fix { > L. Fori > N,

{ ? ; ;
A (f - Z Gin & ff'n.) < A (f - Z GNn @ .’l?n) + A (Z IN & x, — Z 921 nK T,
n=1

n=l n=1 n=1

< R4 2K Mgy — ) < e
Now choose M; > N such that for all 1 > M,

i !
= .
A ( N & XTp — X‘. Gin & .’Cn) < €.
1

n= n=1

Then

e

! ! ! i
/\ (f - Z fﬂ. Q,O xn) _,<_ /\ (f - Z Q’N,u \5_\:' 3_{'"_) + /\ (Z S}'N,n \,\_\?) ;rn — Z g}wh“ ® xn)

n=1 n=1

! !
+ A (Z UMy n & 2y — Z Fa® wn)

n=1 n=1

n=1 n=1

< e
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Thus f has a representation

f = Z fn B Ty.

n=1

To establish the uniqueness of the vepresentation, suppose

f= Z fn @, = Z Gn & Ly

n=1 n=]1

Then for each w in Q,

f(w) = Z fn(w)i'-n Z gn(w)‘rn-

It follows that, for each natural number n and for each w in 0,

Therefore,
b = g
The theorem follows. Q
There is a useful way to obtain the sequence {f,) in Theorem 5.1. Let f be a

member of C'(§}, X') and let f = f, @ 2, be representation of f given in the theorem.

If wis a member of ) then

S
&
~—
il
=
8w
s
£
h

Thercfore,
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The next theorem, [DIN], provides a means of representing a bounded linear
operator on C(£2, X) as a vector valued measure. Let m: X +—— L(X, Y**) be a

vector measure. Then my ¥ —— Y™** is the vector measure defined by
me(A) = m(A){z)

for each z in X and every 4 in X, and mye: ¥ — X* Is the vector measure defined
by
mys(A) = (m(A)(-),y")
for each y* in Y™ and every A in ¥. Finally, ||m|| is the set function defined by
[l (A) = sup {[my-(A} : y" € ¥, Jy"|| < 1}
for all A in Z.

Theorem 5.2 (Dinculeanu-Singer) Let T: C(Q,X) —— Y be o bounded linear

operator. Then there exists ¢ unique vector measure v: L — L{X, Y™*) such that
1. m is finilely additive and ||m|| () < co;
2. m is weakly reqular, that is my is regular for each y™ € Y™,
3. the mapping y* = my. is weak™ to weak® continuous from Y™ into C(}, X)*;

§. T(f) = fo fdm for all f € C(O, X);

&

m| () = [IT|; and

6. T(y*) = my» for adl y> € Y™,
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Conversley, any vector m: Y. +—— L{X, V™) that satisfies 1, 2, and 3 defines a

bounded linear operator Tt C (2, X)) — Y by 4 and saiisfies 5 and 6.

Let T: C(Q, X} — Y be a bounded linear operator with representing measure
m. Let x be a member of X and 2* be a member of X*. Define T, ,»: C{}, X))+ — Y
by

Toue(f) = T((&" 0 f) @)
for all fin C(£2, X). Define m, o0 L r— L(X, Y™) by
g (A)(1) = 5" (m( A) ()
for all « in X and A In X.

Lemma 5.3 {[LEW]) Let T: C(Q,X) v— Y be « bounded linear operator with
representing measure m, v € X, and 2* € X*. Then my.- is the representing

measure for T, 4.

Proof. Clearly, m,. .+ is finitely additive. Suppose v € X and y™ € ¥'*. Then
meae ()W) y) = Mol A)z),y™}

< (] (AN [l iyl

< Ml {AY ™ < oo

for all A € ¥. It follows that

7202+ (§1) < [l | fi™| limfi (£2)
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and that (mg s+ ), is regular and countably additive (see {DU, V1.2.14,V1.2.5]). Thus
m is weakly regular.

Let ¢ = 3" . xa,u; be an X-valued Borel simple function. Then
f pdmg e = Z Mg (A; )
Q =1
= > @M {u)m{A)(z)
i=1
= Zf () x4, ® xdm
=174
= ] (2" 0 @) @ adm.
a .
Therefore,
/ fdmyg . = f(x* o f) & xdm
0 Q

for all f in C(Q2, X). Thus,

Tx,x' (j)

fl

T((x"o f) R 2)
= /s;(:r:* of)&a)dm

= /Q fdmy ..

The lemma {ollows. m]

Theorem 5.4 ([LEW]} Let X be a Banach space with basis (z,)) and suppose T':
C(,X) — Y is a bounded linear operator with representing measure m. Then m
takes its values if L(X, Y) if end only if there exists a scquence of weakly compact
operators (1) from C(, X) into Y and a corresponding sequence of representing

measures {1n,,), taking their values in L(X, Y'), such that
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1. To(f) -2 T(f) for every f € C(Q, X) and
2. m,(A)z) — m(A)(z) forall Ac ¥ and all z € X.

Proof. Assume m takes its values in L{X, Y'). To prove Condition 1, several operators
on C(Q,X) and vector measures on ¥ will need to be deflined. To this end, fix

f=50, fn®a, n C()&X and a natural number n. Note that

f'rt = "I’:L o f

»
n

where (z7,) s the sequence of coefficient functionals associated with (z,). Let K be

the basis constant for (2,). Define T,(f) by
Tn(f) = Z Ta:‘,a:“(f)-
i=1
Then

7.0l = H.’f‘(Zﬂm
1=1

< TREAS).

By lemma 5.3
T (f) = / fdmg, e
0
Define bounded linear operators S,: C(Q)@X +—— C(}) and R,: C(}) —> Y by
S{f) =z 0f

for fin C{()&X and

Ralg) = / gdm,,
Q
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for b € C(R). Since my,, takes its values in £L(X, ¥), R, is weakly compact (see [DU,
VI.2.3]). Moreover,

142
-lxmx

L= RnSﬂ.-

Therefore, T, is weakly compact and (T5,(f)) converges to T(f). Condition 1 follows.

To prove Condition 2 holds, let A € ¥ and = € X. Then

S e (A)() = 3 @3 (e ( AJas,
=1 =

1
n xXa
doaiaim(Aja; -2 Y alm(A)a,
and
(o] oo
S arm{A)xz; = m(A) (Z{xf(’r)xz) = m(A)(x).
i=1 =]
Let m, = 37 ms,ze. Note that m, is the representing measure for T, for each

natural number n and that (m,(A)) converges pointwise to m(A) for all 4 in E.
The converse is obvious. |
It should be noted that the second condition in Theoremn 5.4 cannot be removed.

For example, the identity operator 7: C'[0,1] — C[0,1] is the pointwise limit of

compact operators. This follows from the fact that C'[0, 1] has a basis. However, if mn

1s the representing measure for J, then

m(A) = xa

for every subset A of [0,1]. Thus m(A4) € C[0,1] if and only in A = [0,1] or A4 is the

empty set.
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Dobrakov [DBK] has provided an example of a non-weakly compact operator

which satisfies the conclusion of Theorem 5.4.



BIBLIOGRAPHY
[BL] Bator, E. and Lewis, P., Properties (V) and (wV) on C'(§}, X), Math. Proc.
Camb. Phil. Soc. 117 (1995}, 469-477.

[BOM] Bombal, I., On (V*) sets and Pelczyniski’s Property (V*), Glasgow J. Math.

32 (1990), 109-120.

[CKSS] Cembranos, P., Kalton, N.; Saab, E., Saab, P, Pelczynski’s Property (V) on

C{S}, B) spaces, Math. Ann. 271 (1985), 91-97.

D] Diestel, J., Sequences and Series in Banach Spaces, Springer-Verlag, New York
1 g g

(1984).

[DU] Diestel. J. and Uhl, J., Vector Measures, American Mathematical Society, Prov-

1dence (1977).
[DIN] Dinculeanu, N., Vector Measures, Pergamon Press, New York {1967).

(DBK] Dobbrakov, 1., On Integration in Banach Spaces, Czech. Math. J. 95 (1970),

511-536.

[DS] Dunford, N. and Schwartz, J., Linear Operators, Part 1. General Theory, John

Wiley and Sons, New York (1988).

70



71

[EM1] Emmanuele, G., A Dual Charactorization of Banach Spaces Not Containing

l,, Bull. Polish Acad. 34 (1986), 153-160.

[EM2] Emmanuele, G., On the Reciprocal Dunform-Pettis Property in Projective

Tensor Products, Math. Proc. Carnb. Phil. Soc. 109 (1991), 161-166.
[HUN] Hungerford, T., Algebra, Springer-Verlag, New York (1974).
[LV] Leavelle, T., The Reciprocal Dunford-Pettis Property, preprint.
[LEW] Lewis, Paul, Private communication.

PEL] Pelczyiski , A., On Banach Spaces on Which Every Unconditionally Converg-
I 12

ing Operator is Weakly Compact, Bull. Acad. Polon. Sci. 10 (1962), 641- 648.

[RAND] Randrianantoanina, N, Pelezynski’'s Property (V) on Spaces of Vector-

Valued Funtions, to appear.

[ROS1] Rosenthal, t. P., A Characterization of Banach Spaces Not Containing Iy,
Proc. Nat. Acad. Sci., U. S, AL 71 (1971), 2411-2413.

[ROS2] Rosenthal, . P., Pointwise Compact Subsets of the First Bairc Class, Amer.
J. Math. 99 (1977), 362-378.

[RDN]} Royden, H. .., Real Analysis, Macmillan, New York (1988).

[RSS] Ruess, Duality and Geometry of Spaces of Compact Operators, Functional
Analysis: Surveys and Recent Results, Studies in Math. and its Applications 90

(1984).



[S] Schaefer, H., Topological Vector Spaces, Springer-Verlag, New York (1971).

[WIL] Willard, S., General Topology, Addison-Wesley, Reading, Mass. (1970).



