Tensor Products of Banach Spaces

PDF Version Also Available for Download.

Description

Tensor products of Banach Spaces are studied. An introduction to tensor products is given. Some results concerning the reciprocal Dunford-Pettis Property due to Emmanuele are presented. Pelczyriski's property (V) and (V)-sets are studied. It will be shown that if X and Y are Banach spaces with property (V) and every integral operator from X into Y* is compact, then the (V)-subsets of (X⊗F)* are weak* sequentially compact. This in turn will be used to prove some stronger convergence results for (V)-subsets of C(Ω,X)*.

Physical Description

iv, 72 leaves

Creation Information

Ochoa, James Philip August 1996.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 46 times . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Ochoa, James Philip

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Tensor products of Banach Spaces are studied. An introduction to tensor products is given. Some results concerning the reciprocal Dunford-Pettis Property due to Emmanuele are presented. Pelczyriski's property (V) and (V)-sets are studied. It will be shown that if X and Y are Banach spaces with property (V) and every integral operator from X into Y* is compact, then the (V)-subsets of (X⊗F)* are weak* sequentially compact. This in turn will be used to prove some stronger convergence results for (V)-subsets of C(Ω,X)*.

Physical Description

iv, 72 leaves

Subjects

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • August 1996

Added to The UNT Digital Library

  • March 24, 2014, 8:07 p.m.

Description Last Updated

  • July 10, 2015, 8:10 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 46

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Ochoa, James Philip. Tensor Products of Banach Spaces, dissertation, August 1996; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc278580/: accessed November 13, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .