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Discrete-time survival analysis as an educational research technique has focused 

on analysing and interpretating parameter estimates. The purpose of this study was to 

examine the effects of certain data characteristics on the hazard estimates and goodness of 

fit statistics. Fifty-four simulated data sets were crossed with four conditions in a 2 (time 

period) by 3 (distribution of Y = 1) by 3 (distribution of Y = 0) by 3 (sample size) design. 

Data with the same skewness of Y = 0, but positively or negatively skewed 

distributions of Y = 1 produced significantly different model and likelihood ratio chi-

square values than normally distributed data as indicated by a significant G2( 1) value. 

The skewness of Y = 1 determines the prevailing shape of the hazard function, regardless 

of other conditions. 

Data with the same skewness of Y = 1, but positively or negatively skewed 

distributions of Y = 0 produced significantly different model and likelihood ratio chi-

square values than normally distributed data as indicated by a significant G2( 1) value. A 

negative distribution of Y = 0 causes a deflation of the hazard estimates and a positive 

distribution causes an inflation of the hazard estimates when compared to a normal 

distribution of Y = 0. 



The number of time periods in which the data were measured has a statistically 

significant effect on the model and likelihood ratio chi-squares as indicated by a significant 

G (1) value. Data measured in four time periods generally have higher hazard estimates than 

data measured in eight time periods, regardless of the distribution of Y = 1 and Y = 0 or 

sample size. 

Because sample size has an effect on chi-square statistics, only hazard estimates and 

standard errors for the time period parameter estimates were used to assess the effect of 

sample size. The smaller the sample size, the larger the hazard estimate. However, the 

standard errors remained relatively consistent across sample size. 
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CHAPTER 1 

INTRODUCTION 

BACKGROUND 

When the research question involves a dependent variable that is dichotomous, 

linear regression models may not be appropriate because they assume that the dependent 

variable has continuous level responses. In some instances, however, a research question 

includes a dependent variable that is naturally dichotomous. Some examples of these 

research questions are: Are men or women more likely to have a heart attack? or Does 

knowledge of ethnicity and age distinguish students who drop out of school from those 

who graduate? The logistic regression model is more appropriate to use when answering 

these types of research questions because it is formulated for use with interval level data 

on independent variables and dichotomous data on the dependent variable. A related 

technique, the logit regression model, is used when both the dependent and independent 

variables are dichotomous or categorical data. 

Limitations of Linear Regression 

A prediction equation with a single independent variable, X, yields the simple 

regression model, Y' = a + pX, where a = the Y intercept and p = the slope or regression 

coefficient. This simple regression model is not suitable for dichotomously scored 

dependent variables for several reasons. First, parameter estimates may fall below 0 and 



above 1, making probability interpretations impossible. Second, error terms are not 

normally distributed because they can take on only two values. Third, error terms are 

heteroscedastic, that is, they have unequal variance. Fourth, "the fitted relationship is 

extremely sensitive to the value(s) taken by the explanatory variable(s), especially when 

they are concentrated together" (Gottman & Roy, 1990, p. 192). This "concentration" 

occurs frequently when there are only two choices for values of the predictor variable. 

Fifth, the usual tests of significance for the estimated coefficients do not apply, and the R2 

measure cannot be meaningfully interpreted. For these above mentioned reasons, 

ordinary least-squared estimators will result in inefficient and biased estimates, and 

imprecise predictions (Neter, Wasserman, & Kutner, 1989; Gottman & Roy, 1990; 

Menard, 1995). 

The numerical values chosen for the dichotomous dependent Y variables are not 

important, e.g., 0 and 1 or 1 and 2. What is important, however, is the probability values 

of one or the other of Y's two possible values, and the extent to which that probability 

value depends upon values of the independent variables. Unfortunately, regression 

models have difficulty with parameter estimation based on only two values for Y. 

Therefore, it is necessary to use a different regression modeling technique. 

The Logistic Regression Model 

Logit Transformation and Maximum Likelihood Estimation 

In logistic regression models, a curvilinear relationship, rather than a linear one, 

occurs because of the nature of the dependent variable coding. Therefore, a logarithmic 

transformation is necessary to linearize the logistic response functions, creating 



probabilities that fall in the range of 0 to 1. The function ln(p/l-p) is called the logistic 

transformation or logit, which is the natural logarithm of the odds of success. The 

log-odds of success is a linear function of the predictor variables in the model 

(Lunneborg, 1994). 

Nesselroade & Cattell (1988) cite two very important reasons for using logits or 

odds. They are as follows: 

(a) They often arise as natural or canonical parameters when discrete distributions 
are 'factored' into the exponential family form and (b) functions of logits satisfy 
many desirable 'optimality' requirements for measures of association or 
relationship. Logistic regression, logit, and log-linear models summarize data in 
terms of natural sufficient statistics, thereby making a more complete use of the 
data. In fact, the binomial distribution is a member of the exponential family. 
The logit is thus the canonical parameter for the binomial distribution and the 
observed number of 'successes' is the natural sufficient statistic for the logit. 
(p. 341) 

Logistic regression models are estimated using a maximum likelihood routine 

(MLR) rather than the ordinary least-squares (OLS) approach used in linear regression. 

Maximum likelihood parameter estimates maximize the probability or likelihood of 

obtaining the true group membership for cases in the sample. This is done through an 

iterative process in which the computer program finds successively better approximations 

of the p values that satisfy the maximum likelihood equations. Because MLR does not 

require grouping and aggregation of explanatory variables, maximum likelihood 

estimators do not introduce measurement bias. "It also does not require very large cell 

sizes and uses information in small cells. However, justification for the method is 

asymptotic, and therefore relies on large sample properties" (Gottman & Roy, 1990, 

p. 215). 



Interpreting the Logistic Regression Coefficients 

Interpreting the model coefficients for OLS linear regression is straightforward. 

The value for the predictor variable estimates the change in the dependent variable for 

any one-unit increase in the independent variable. In logistic regression, however, the 

effect of a unit increase in the predictor variable changes depending on the location of the 

starting point on the X scale (Neter et al., 1989). When the (3 value has been estimated, 

that value can be placed in equations solving for probabilities and odds. The probability, 

the odds, and the logit are simply three different ways to express the same thing. 

Although probability may be the easiest to understand intuitively, the logit form is the 

best for mathematically analyzing dichotomous dependent variables. 

If P = 0, the logit value does not change as X changes, therefore, the logistic 

regression curve flattens to a straight line. If the value of p is positive, the probability 

that Y = 1 increases as X increases. Negative values of P indicate the probability that 

Y = 1 decreases as X increases. The greatest rate of change in Y occurs at the point 

where Y = 0.5. This is the point at which the steepness of the curve increases as the | P | 

increases. "A line drawn tangent to the curve at that point has a slope of p/4. p cannot be 

interpreted as a simple slope because the rate at which the curve climbs or descends 

changes according to the value of X" (Agresti & Finlay, 1988, p. 483). 

Definition of Terms 

The following terms are associated with the logistic regression model. 



(1) The logistic regression model can be expressed directly in terms of the 

probability that Y = 1: 

p = ea + P x / [ l + e a + Px] (1) 

(2) Odds can be defined as the probability that Y = 1 divided by the probability 

that Y = 0. The odds are 1 when both outcomes are equally as likely. Unlike probability, 

odds can range from 0 to infinity. The logistic regression coefficient, p, can be 

interpreted as an effect on the odds. Taking the antilog of both sides of the logistic 

regression equation, the odds are: 

odds = log[p/l-p] = ea + px = ea(e|5)x (2) 

The exponential form indicates that every unit increase in X produces a multiplicative 

effect of ex on the odds (Agresti & Finlay, 1988). Another way to state this is that the 

odds favoring Y = 1 change by 100(ep"') percent with each one-unit increase in X. Odds 

are often used comparitively to describe the strength of an effect (Hamilton, 1992). 

(3) The odds ratio estimates the change in the odds that Y = 1 for a one-unit 

change in X. The odds ratio is computed by using the P for the predictor variable as the 

exponent of e. In contrast to the predicted probability, the estimated change in odds is the 

same for all levels of the predictor variable, making it a more useful statistic to calculate 

(Afifi & Clark, 1984; Wright, 1995). It is a measure of association between a 

dichotomous variable and the occurrence of an event. 



Discrete-Time Survival Analysis 

Researchers frequently wish to ask questions related to the timing of 

developmental or educational events that occur in various populations and the variables 

that impact these events. Events such as amount of time children spend in day care 

(Singer, Fosburg, Goodson, & Smith, 1978), teacher attrition (Murnane, Singer, & 

Willett, 1988,1989), high school student dropout and graduation (Sween, 1989; 

Roderick, 1994), and doctoral program completion (Zwick & Braun, 1988) have been 

studied using survival analysis methods. Survival analysis methods answer, not just 

whether the event occurs, but when it is most likely to occur, and under what conditions. 

Discrete-time survival analysis is unique in that it can handle both time-varying 

and time-invariant predictor variables and uses data from all observations, censored or 

uncensored. A case is considered to be censored if the event in question did not occur 

before the end of data collection. Because censored cases have no value for the outcome, 

regression modeling is not appropriate, as listwise deletion would cause those cases to be 

deleted from the analysis (Willett & Singer, 1991). 

Before beginning a description of discrete-time survival analysis, it is necessary to 

define the key concepts of the survivor and hazard probability functions. A brief 

explanation of Cox's proportional hazards model, a precursor to discrete-time survival 

analysis, will also be given. 



Key Concepts for Survival Analysis 

The Survivor Function 

The discrete-time survival analysis begins with an examination of the survivor 

probability function. This survivor function is a plot of the probability that an individual 

will remain in the risk pool as a function of time. The risk pool contains only cases that 

are known to be qualified to experience the event in question, in other words, those who 

have not yet experienced the event. The shape of the survivor function is very 

consistent—a negatively accelerating, monotonic extinction curve (Singer & Willett, 

1991). At the beginning of a study, when all individuals are present, the survival 

probability is 1.00. As time passes and individuals experience the event, the survival 

probability drops toward 0.0, though rarely reaching it because every case usually does 

not experience the event before data collection ends. 

The Hazard Function 

The hazard function is the chronological profile of the probabilities that a portion 

of the risk set will experience the event in question during specific time periods. The 

values of these conditional probabilities are estimated and the influence of predictor 

variables is considered. Each separate hazard probability is computed only on that time 

period's risk set. This ensures that hazards for every time period can be compared, even 

when some cases are censored. The censoring is assumed to be unrelated to the event's 

occurrence, that is, censored cases do not differ from those that remain. If censored cases 

differ from those that remain, inferences to the general population may be invalid. The 

sample hazard function can be used to estimate the sample survivor function, even during 
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time periods when it can not be calculated due to censoring. "The sample survivor 

probability in any time period is simply one minus the hazard probability for that time 

period multiplied by the sample survivor probability from the previous time period" 

(Singer & Willett, 1993, pp. 161-162). The hazard function mathematically records 

changes in the slope of the survivor function, thereby allowing the researcher to identify 

high risk time periods. The higher the hazard, the higher the risk that the event will 

occur. 

Statistical Models of Hazard 

The research question typically asks if the population hazard function differs 

systematically for different groups of people, e.g., males and females. Relationships 

between entire hazard profiles and one or more predictors are hypothesized in the hazard 

models. The entire hazard function is the conceptual outcome, with other variables added 

as potential predictors of that outcome. "A population hazard model formalizes this 

conceptualization by ascribing the vertical displacement to the predictors in much the 

same way as an ordinary linear regression model ascribes differences in mean levels of 

any continuous noncensored outcome to predictors" (Willett & Singer, 1991, p. 416). 

Cox's Proportional Hazards Model 

Building the proportional hazards model. In 1972, David Cox, a British 

statistician, published a paper entitled "Regression Analysis and Life Tables" in which he 

proposed using a logistic regression model to express how the hazard rate depends on the 

predictor variables and the time periods. His model was 



hit) = a(t) + b,X, + b2X2 (3) 

where hit) is the proportional hazard rate, a(t) is any function of time, bi and b2 are 

parameter estimates, and the Xs are time-constant variables. However, because hit) 

theoretically should be greater than 0, the typical approach was to take the natural log of 

hit) before setting it equal to the predictor variables. The hazard model is then written as 

log/z(t) = a(t) + b1Xi+b2X2 (4) 

Because a(t) does not have to be specified, the model is considered to be partially 

parametric or semiparametric. It is called the "proportional hazards model because for 

any two individuals at any point in time, the ratio of their hazards is a constant. Formally, 

for any time t, h,{t)/hj{t) = c, where i and j refer to distinct individuals and c may depend 

on explanatory variables, but not on time" (Allison, 1984, p. 35). 

Cox developed a partial likelihood method that was similar to the maximum 

likelihood method. A detailed description of the mathematical properties can be found in 

Allison (1984), but the general properties are as follows: 

The method relies on the fact that the likelihood function for data arising from the 
proportional hazards model can be factored into two parts: one factor contains 
information only about the coefficients bi and b2; the other factor contains 
information about bi, b2, and the function ait). Partial likelihood simply discards 
the second factor and treats the first factor as if it were an ordinary likelihood 
function. The first factor depends only on the order in which the events occur, not 
on the exact times of occurrence, (p. 37) 

These estimators are asymptotically unbiased and normally distributed, but are not 

fully efficient due to the information lost by ignoring the timing of the event's occurrence 

(Allison, 1984). Efron (1977) found that this loss is so small that it has little bearing on 

the efficiency, assuming that censoring is not a consequence of the event studied. 
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Violations of the proportional hazards model. Violations of the proportional 

hazards assumption occur in several ways. The first involves the inclusion of 

time-varying variables in the equation, whereby hazards are no longer proportional, but 

may become nonproportional. If there is an interaction between time and one or more of 

the predictor variables, the proportional hazard assumption is also violated. The 

interaction model is written as 

log h(t) = a(t) + bx + cxt (5) 

where the product of x and t is one of the predictor variables. If c is positive, the effect of 

time on the hazard increases linearly as x increases. When the hazards are not 

proportional, the effect of some variable on the hazard is different at different points in 

time. 

Violations of the proportionality assumption can be checked both graphically and 

statistically. By stratifying the sample according to the categories of a variable, assuming 

that the influence of other covariates is identical for all categories, and transforming the 

survivor function, the plotted lines should differ only by a constant factor, p. If there is a 

change in the distance between the two plots, the proportionality assumption may be 

violated. A statistical test for proportionality would demonstrate that the coefficient p 

would not be significantly different from 0 and the hazard functions of the two categories 

of the variable should differ only by the constant factor exp(p) (Blossfeld, Hamerle, & 

Mayer, 1989). 
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Limitations of the proportional hazards model. Although Cox's proportional 

hazard model is still widely used, there are some important limitations. The first and 

most significant, is the basic assumption that cancels the interaction when the time 

variable is not in the equation. Singer and Willett (1991) state that time is the crucial 

time-varying predictor and should be included in the model. The other major limitation is 

the lack of a term to represent unobserved heterogeneity in the model, which has been 

found to be especially significant when dealing with repeated events. 

Discrete-Time Survival Analysis Models 

Using logistic regression to conduct survival analyses came to the forefront in the 

early 1990s, although it had been in the literature since the 1970s (Allison, 1984). A new 

approach to survival analysis using discrete-time measurement and logistic regression 

was developed primarily by Judith Singer and John Willett, who began using their model 

to describe teacher attrition (Willett & Singer, 1991). 

The discrete-time hazard function. The hazard function has been called the 

"cornerstone" of discrete-time survival analysis for four reasons: (a) it shows whether 

and, if so, when events occur, (b) information from both censored and uncensored cases is 

included, (c) the sample hazard function can be computed for every time period under 

consideration, then plotted, to reveal variation in the timing of events, and (d) the sample 

hazard function can be used to estimate the sample survivor function indirectly (Willett & 

Singer, 1993). 

Recalling the direct connection between logits, odds, and probabilities, it is 

understandable that hazard profiles can also be displayed as odds instead of probabilities. 



12 

If a hazard probability in a time period is 0.4, there is a 40% chance that the event of 

interest will occur in the period and a 60% chance that it will not (given no prior 

occurrence). The odds of event occurrence in this period are 0.4 to 0.6, usually written as 

4/6 or 0.66. "Odds can be computed by the formula odds = hazard/(l - hazard)" (Willett 

& Singer, 1993, pp. 956-957). 

The median life time. The median life time can be calculated as the point at which 

the survival function equals 0.50. It is at this point that half of the population has 

experienced the event and half has not. It truly answers the question, "How long does it 

take the average person to experience the event?" because it takes into account both 

censored and noncensored cases. 

The baseline model. As in linear regression, the initial model contains only the 

intercept with no predictor variables. In discrete-time survival analysis, Po(0 is the 

baseline log hazard profile, and represents the values of the outcome without other 

predictor variables. The baseline equation can be expanded to account for specific 

measurements of discrete time intervals to 

logite(/z)j = [aiTi + a2T2 + . . . akTk] (6) 

Rather than having a single intercept, the alpha parameters are "multiple 

intercepts, one per time period," and represent the "baseline logit-hazard function because 

it captures the time-period by time-period conditional log-odds that individuals whose 

covariate values are all zero will experience the event in each time period, given that they 

have not already done so" (Singer & Willett, 1993, p. 167). 
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Adding predictor variables. As in multiple regression, the equation expands to 

include predictor variables that control for observed heterogeneity. The relationship of 

the log-transformed hazard profile to the predictor variable, Xi, is 

logite(/0j = [aiTi + a2T2 + . . . akTk] + P1X1 (7) 

Interaction terms can also be included in the hazards model. Cross-product terms are 

added to the main effect models in the same manner in which interactions are examined 

in multiple regression. The (3 parameters measure the amount of "vertical shift" in 

log-hazard per unit difference in the predictor variables. 

Time-varying variables as well as time-invariant variables can be used efficiently 

in discrete-time survival analysis. Time-invariant variables are those that will not vary as 

time passes in the study. Examples of time-invariant variables are gender and ethnicity. 

Time-varying variables are predictors that may vary throughout the length of the study. 

Participation in a particular program, job classification, and marital status are examples of 

time-varying variables. To this point, other survival analysis models have not allowed for 

the inclusion of time-varying variables. 

RATIONALE FOR THE STUDY 

The use of discrete-time survival analysis as an educational research technique has 

received limited attention to date. The literature thus far has explained how to conduct a 

discrete-time survival analysis, examined the conditions under which it can be most 

useful, and described how to interpret the logistic parameter estimates that are produced. 

As the technique becomes more widely used, it will be important for researchers to 

understand the effects on survival analysis hazard estimates and goodness of fit statistics 
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when data sets have certain characteristics. In this study, the following four conditions 

were varied to assess the impact on survival analysis hazard estimates and goodness of fit 

statistics: (a) the number of time periods for which the data is coded, (b) the distribution 

of the dependent variable outcome of Y = 1 across time periods, (c) the distribution of the 

dependent variable outcome of Y = 0 across time periods, and (d) the sample size. 

RESEARCH QUESTIONS 

To carry out the purpose of the study, the following research questions were 

formulated: 

(1) Does the skewness of the outcomes for Y = 1 and Y = 0 across time periods 

affect survival analysis hazard estimates and goodness of fit statistics? 

(2) Does the number of time periods in which the data is measured affect survival 

analysis hazard estimates and goodness of fit statistics? 

(3) Does the sample size affect survival analysis hazard estimates and goodness of 

fit statistics? 

DELIMITATIONS 

There were several delimitations of this study. The first was that fixed data sets 

were used to assess the effects of varying numbers of time periods, the skewness of the 

distribution of outcomes Y = 1 and Y = 0, and sample size on discrete-time survival 

analysis. The number of time periods was set to four and eight; the fixed data sets 

reflected a positive, normal, and negative skewness; and sample sizes were 300, 500, and 

1,000. Also, since no predictor variables other than number of time periods were 
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included (baseline models), no assessment of the effects of collinearity or 

nonproportionality were addressed. 



CHAPTER 2 

REVIEW OF THE LITERATURE 

The following literature review focuses on the assumptions of logistic regression 

and the recent development of discrete-time survival analysis with respect to the 

interpretation of model fit statistics and parameter estimates. Because discrete-time 

survival analysis uses logistic regression as its statistical model, the assumptions of 

logistic regression will necessarily affect the discrete-time survival analysis model. The 

aim of the present review is (a) to list the assumptions of both the logistic regression and 

discrete-time survival analysis models, (b) to explain the possible effects of violating 

these assumptions, (c) to discuss the interpretation of logistic regression and discrete-time 

survival analysis parameter estimates, and (d) to discuss the interpretation of goodness of 

fit measures. 

To achieve the above goals, the review is outlined as follows: first, the 

assumptions of logistic regression are discussed. Second, the interpretation of the logistic 

regression coefficients, tests of the null hypothesis, and the evaluation of the logistic 

regression model are discussed. Third, the effects of violation of the assumptions of the 

model are considered. Turning to the discrete-time survival analysis model, the added 

assumptions of the discrete-time hazard model and the interpretation of the discrete-time 

16 
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survival analysis model parameter and hazard estimates and goodness of fit measures are 

considered. Finally, violations of assumptions are discussed. 

THE LOGISTIC REGRESSION MODEL 

Assumptions 

If specific assumptions about the population are met, maximum likelihood 

estimates of logit parameters should be unbiased, efficient, and normal with large enough 

data samples (Hamilton, 1992; Hildebrand, 1986). The assumptions are: 

(1) The random dichotomous variable takes the value 1 with probability Pi and 

the value 0 with probability Po = 1 - Pi. 

(2) The relationship between the dependent and independent variables is assumed 

to be nonlinear, creating a sigmoidal or S-shaped curve. However, a partial curve, rather 

than a complete S-curve, will usually be seen unless X strongly affects Y. No matter how 

extreme the values of the predictor variables, the curve never reaches above 1 or below 0. 

For very high or very low values of X, the probability that Y = 0 or Y = 1 will be so close 

to zero that even large changes in the value of X will have little effect on the probability. 

(3) The categories or outcomes must be mutually exclusive and collectively 

exhaustive. This means that a case cannot be in more than one outcome category at a 

time, and every case must be a member of one of the categories under analysis. 

(4) The model must be correctly specified so that it contains all relevant predictors 

and no irrelevant predictors. This specification assumption, however, is rarely met 

(Wright, 1995). 
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(5) None of the X variables are linear functions of the others. Perfect 

multicollinearity makes estimation impossible, and strong multicollinearity makes 

estimates imprecise. 

(6) Because the standard errors for maximum likelihood coefficients are large 

sample estimates, the sample must be large. For most cases, a minimum of 50 cases per 

predictor variable is sufficient to test hypotheses involving the logistic regression 

coefficients (Hamilton, 1992; Wright, 1995). The estimation of adequate sample size for 

logistic regression is complicated by the fact that statistical properties of logit estimates 

also depend on the number of cases with a given combination of X and Y values. 

Skewed Y distributions are particularly troublesome (Hamilton, 1992). Consequently, 

Gottman and Roy (1990) state that: 

It is generally accepted, however, that maximum likelihood estimators have a 
number of very desirable statistical properties even when applied to small 
samples. All parameter estimators are consistent and asymptotically efficient. 
They are also known to be asymptotically normal, so that analogs of the 
regression t-tests for testing significance of individual coefficients can be applied. 
Thus the ratio of the estimated coefficient and its estimated standard error is 
assumed to follow a normal distribution, (p. 216) 

MODEL EVALUATION 

Null Hypothesis 

To determine whether the regression coefficient is different from zero, there are 

several hypothesis tests that can be performed. If the researcher assumes the null 

hypothesis, the coefficient for the predictor variable is 0 in the population. If there is 

sufficient evidence in the sample to conclude that the regression coefficient is 
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significantly different from 0, then the alternative hypothesis can assume that the 

predictor variable has some effect on the dependent variable. The z test and the 

likelihood ratio statistic or its alternative Wald statistic are methods of testing the null 

hypothesis. Given large samples, the likelihood ratio and the Wald statistic typically give 

similar results when used on the same data set (Wright, 1995). 

z Test 

The z test is used for testing the significance of individual parameters. Because 

maximum likelihood estimators have asymptotic properties, the test for whether a 

parameter equals zero is approximately a z test (Demaris, 1992). It is calculated by 

dividing the estimated parameter estimate for that predictor by its standard error. Ratios 

of 1.96 and 2.58 or larger can be considered significant for an a of 0.05 and 0.01, 

respectively. 

Likelihood Ratio Statistic 

The likelihood ratio statistic is similar to the F test in that a large value means the 

population differs from zero. The probability associated with the likelihood ratio will 

determine if it is a significant difference. This probability is obtained from a chi-square 

distribution where the number of degrees of freedom equals the number of logits minus 

the number of distinct parameters in the model. The likelihood ratio statistic is also used 

for comparing the fits of full and restricted models. Smaller values of this statistic 

indicate a better fit of the model. 
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Wald Statistic 

The Wald statistic is a less computationally intense alternative to the likelihood 

ratio for testing the significance of individual coefficients. It is obtained by comparing 

the maximum likelihood estimate of the P to an estimate of its standard error. It can be 

calculated to be asymptotically distributed as a chi-square distribution or it can follow a 

normal distribution. Both the SAS and SPSS logistic regression procedures use the 

chi-square distribution (SAS Institute, Inc., 1989; SPSS, Inc., 1991). If the p is large, the 

estimated standard error is inflated, resulting in failure to reject the null hypothesis when 

the null hypothesis is false (Menard, 1995). 

Goodness of Fit Measures 

Evaluation of linear regression models is based upon how well, if at all, the 

independent or explanatory variables predict the dependent variable. In logistic 

regression the dependent variable can take on only one of two values; therefore, these 

models are evaluated based upon the frequency of correct predictions, as well as how well 

the model minimizes errors of prediction. Logistic regression goodness of fit statistics 

will be compared to linear regression statistics and explained further. 

The Model Chi-Square 

In logistic regression, the log-likelihood is the criterion for selecting parameters. 

The likelihood itself is a small number, so the log of the likelihood is multiplied by -2 

(commonly abbreviated as -2LL) and approximates a chi-square distribution. Smaller 

values indicate a better prediction of the dependent variable (Menard, 1995). If a model 
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fits perfectly the likelihood is 1, and -2 times the log likelihood is 0. The model 

chi-square is analogous to the multivariate F test for linear regression. It is calculated as 

the difference between the -2LL for the intercept-only model and the -2LL of the model 

that includes a predictor variable. 

Goodness of Fit Chi-Square 

This approach assesses different combinations of values of the variables identified 

in the regression equation, called patterns. If there are two dichotomous variables, there 

are four distinct patterns, the same as those found in a classification table. The 

probability of Y = 1 and Y = 0 are computed. The goodness of fit chi-square is computed 

as 

Goodness of Fit x2 = 22 x O x ln(0/E) (8) 

where E is the number of expected cases and O is the number of observed cases in Y = 1 

and Y = 0 for each pattern, and E is the sum of the probabilities for a given pattern. Afifi 

and Clark (1984) warn that this statistic may be misleading when the number of distinct 

patterns is too small or too large. 

R2L 

9 • 9 

R l is analogous to the R used in linear regression. It indicates a proportional 

reduction in chi-square or in the absolute value of the log-likelihood (Hosmer & 

Lemeshow, 1989). Values of R2l range from 0 when the independent variables make no 

difference in the prediction of the dependent variable to 1 when the model perfectly 

predicts the dependent variable. R2l is defined as 
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R2L ~ Gm / (Gm + DM) (9) 

where Gm is the model chi-square and Dm is the deviation chi-square for the full model. 

Gm is analagous to the regression sum of squares and Dm is analagous to the error sum of 

squares in linear regression. 

Other Measures 

The Akaike Information Criterion (AIC), the Schwartz Criterion (Bollen, 1989), 

and the Score statistic are other proposed indices of goodness of fit used when selecting 

an optimal model from a set of models. "Akaike's criterion is based on minimizing the 

Kullback directed divergence between the true and hypothesized distributions" (Read & 

Cressie, 1988, p. 174). Parsimony is favored in the AIC by building in a penalty for 

overparameterizing. The significance level at which Akaike's criterion rejects the null 

hypothesis increases monotonically with the number of parameters estimated under the 

null hypothesis. 

The AIC and the Score statistic give two different ways of adjusting the -2LL 

statistic for the number of terms in the model and the number of observations used. 

These statistics should be used when comparing different models using the same data. 

Lower values of the statistic indicate a more desirable model (SAS Institute, Inc., 1989). 

The Score statistic "is based on the distribution theory of the derivatives of the log 

likelihood. Its major advantage is reduced computational effort" (Hosmer & Lemeshow, 

1989, p. 17). 
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Violations of Assumptions 

Violating the assumptions of the logistic regression model can result in one of 

three effects: biased coefficients, insufficient estimates, or invalid statistical inferences 

(Menard, 1995). Bias exists when there is a tendency for the estimated coefficients to be 

too high or too low when compared to the true values for the coefficients. Coefficients 

are inefficient if their standard errors are too large relative to the size of the coefficient. 

This may cause the researcher to accept the null hypothesis when in fact it is false. When 

the calculated statistical significance of the logistic regression coefficient is not accurate, 

invalid statistical inferences may occur. Additionally, outliers and influential cases are as 

troublesome to logistic regression parameter estimates as they are to ordinary least 

squares regression estimates. 

Specification Error 

Incorrect Model Specification 

It may be the case that the logistic regression model is incorrect. Nonlinearity 

occurs when logit(Y) as the dependent variable does not have a linear combination with 

the independent variables. When the change in the value of the dependent variable 

associated with a one-unit change in an independent variable depends on the value of one 

of the other independent variables, there may be an interaction, also known as 

nonadditivity. 
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Incorrect Variable Specification 

Including irrelevant or excluding relevant variables from the regression equation 

is a problem depending upon the amount of correlation among the incorrect variables and 

those correctly included in the model. Including irrelevant variables can increase the 

standard error of measure, thus reducing the efficiency of the estimates, without biasing 

the coefficients. On the other hand, omitting relevant variables does bias the coefficients 

for the independent variables. "Bias is generally regarded as a more serious problem than 

inefficiency, but a small amount of bias may be preferable to massive inefficiency" 

(Menard, 1995, p. 59). 

Collinearity 

When independent variables are correlated with each other there is 

multicollinearity. Perfect multicollinearity occurs when an independent variable is a 

perfect linear combination of another and is usually due to an oversight in modeling. 

Less than perfect collinearity is fairly common, especially in the social sciences. "As 

collinearity increases among the independent variables, linear and logistic regression 

coefficients will be unbiased, and as efficient as possible, but the standard errors for the 

linear and logistic regression coefficients will tend to be large" (Menard, 1995, p. 65). 

Variables with R values of 0.80 or more should be carefully assessed. Collinearity also 

tends to produce linear and logistic regression coefficients that are unusually high. 

Unstandardized logistic regression coefficients greater than 2 should be examined to 

determine whether extreme collinearity is present (Menard, 1995). 
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Zero Cells in the Classification Table and Complete Separation 

When the odds are 1 or 0 for an entire defined group of cases, such as all males or 

all females, zero cell counts will be found in the classification table. This may result in a 

high estimated standard error for the coefficient associated with that category. If the 

model predicts the dependent variable perfectly, complete separation occurs and both the 

logistic regression coefficients and their standard errors will be very large. If complete 

separation occurs in a bivariate model, regression coefficients cannot be calculated. 

Quasicomplete separation occurs when separation is less than complete; however, 

standard errors and regression coefficients will still be very large. 

Problems in model design, such as having too many variables for the number of 

cases, may cause complete or quasicomplete separation. Inefficient estimation of the 

parameters is common with zero cell counts, although they do not result in bias or 

inaccurate inferences. 

Outliers and Other Influential Cases 

Cases are said to be outliers if they have "unusually high or low values on one 

variable or unusual combinations of values on two or more variables. Influential cases 

exert a disproportionate influence on the estimates of the logistic regression coefficients" 

(Menard, 1995, p. 58). There are various diagnostic methods available to detect outliers 

and influential cases which are beyond the scope of this literature review. (See Menard, 

1995 or Hamilton, 1992, for diagnostic methods.) 
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DISCRETE-TIME SURVIVAL ANALYSIS MODEL 

Assumptions 

Having postulated the discrete-time hazard model using logistic regression, Singer 

and Willett (1993) identified three assumptions. The assumptions were (a) linearity, 

(b) no unobserved heterogeneity in the model, and (c) proportionality. 

(1) Linearity for discrete-time survival analysis is similar to linearity in regression, 

with the addition that "vertical displacements in logit hazard are linear per unit of 

difference in each predictor" (Singer & Willett, 1993, p. 182). 

(2) No unobserved heterogeneity refers to the assumption that the inclusion of 

predictors in the model accounts for all of the error. Thus, it becomes very important to 

choose the correct predictors and not to omit relevant predictors. 

(3) As described in Cox's model (Cox, 1972), proportionality refers to the 

assumption that logit hazard profiles of various predictors maintain the approximate 

shape of the baseline profile, but shift it up or down, depending upon the sign of the P 

value. If data are not checked for nonproportionality, results may be biased. Other event 

history analysis models make no allowance for the violation of this proportionality 

assumption, although nonproportionality does occur frequently. 

Model Evaluation 

Besides graphs, logistic parameter estimates, standard errors, and goodness of fit 

statistics are generated when predicting the dichotomous outcome of the event's 

occurrence using the time indicators and predictor variables. Allison (1982) 
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demonstrated that these estimates are consistent, asymptotically efficient, and 

asymptotically distributed. Wright (1993) affirms that the logistic regression model 

works because it is a Rasch model: 

Willett and Singer's technique and rationale provide support and insight for Rasch 
practitioners. Manual calculations and a Facets Rasch analysis confirm Singer 
and Willett's results. Linearity is assured for fitting data because their models 
incorporate the necessary and sufficient conditions for constructing linear 
measures. What is not assured is the extent to which their data cooperate in 
constructing this linearity, i.e., fit their model, (p. 307) 

Singer and Willett (1991) have also found that even though the procedure expands the 

data set and increases the sample size, the estimated standard errors are consistent 

estimators of the true standard errors. 

The logistic regression procedure estimates the a 's (multiple intercepts, one per 

time period), which leads to fitted hazard probabilities for each discrete-time period and 

allows reconstruction of fitted survivor and hazard plots. These estimates are maximum 

likelihood estimates and also "constitute the discrete limit of the better known Kaplan-

Meier estimate of continuous-time hazard rate" (Singer & Willett, 1993, p. 177). The 

interpretation of the parameter estimates, the likelihood ratio chi-square test, the Wald 

chi-square, and the odds ratio have previously been described for model evaluation in the 

logistic regression literature review. 

Violations of Assumptions 

Because discrete-time survival analysis uses the logistic regression statistical 

method, the assumptions of both models must be met. Therefore, this section will 
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describe the effects on the survival analysis model when the assumptions of either logistic 

regression or discrete-time survival analysis are violated. 

Statistical Independence of Outcomes 

In order to decrease the possibility of violation of this assumption, outcomes or 

condition states must be specifically defined. Restrictive definitions may lead to 

underestimations of the time until an event occurs, while less limited definitions bias 

estimates toward overestimation. Dependent outcomes can cause standard errors, 

hypothesis tests, and confidence intervals to be inaccurate (Wright, 1995). If the 

researcher finds that cases have more than one state or more than one occurrence of the 

event in question, e.g., dropping out of school, returning to school, then dropping out 

again, a multiple outcome discrete-time survival analysis technique has been developed to 

handle this (Willett & Singer, 1995). 

Sample Size 

Sample size is important because logistic regression maximum likelihood 

estimates depend upon large sample sizes for correct interpretation. Because sample size 

has such an impact on statistical power, it is important to have an adequate number of 

cases to study. When determining the number of cases that must be studied to have good 

statistical power, there are three areas of concern: (a) the hypothesis to be tested, (b) the 

desired Type I and Type II error rates, and (c) the minimum effect size considered 

important (Cohen, 1990). When conducting a discrete-time survival analysis, the 
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distribution of the hazard function must also be specified, as well as the length of follow-

up (Singer & Willett, 1991). 

Biostatisticians have developed several methods of calculating effect size for 

studies involving longitudinal data (Freedman, 1982; Makuch & Simon, 1982; Lachin & 

Foulkes, 1986, Dupont & Plummer, 1990). Singer and Willett (1991) suggest that "the 

simplest is the ratio of median lifetimes in the two groups, denoted by R. Letting mi be 

the median lifetime in one group and m2 the median lifetime in the other, R = m\lni2 

(p. 276). When R = 1.25, the median lifetime of one group is 25% longer than the median 

lifetime of the other group; when R = 1.50, the median lifetime is 50% longer; when R -

2.00, the median lifetime of one group is twice as long (100%) as the other group. In the 

absence of prior information, Schoenfeld and Richter (1982) suggest that an R - 1.50 be 

used because a 50% increase in survival is "clinically important and biological feasible" 

(p. 163). 

After identifying the minimum detectable effect size, the length of follow-up must 

be considered. Singer and Willett (1991) created a standardized measure that divides the 

length of follow-up by the average anticipated median lifetime in the two groups. 

"Letting A = (m\ + mi)!2 be the average median lifetime in the two groups and 7 be the 

total length of follow-up, the standardized measure of follow-up, F, is T/A" (p.276). 

Linearity 

The assumption of linearity can be checked in two ways: (a) exploratory data 

analysis, using graphical methods, or (b) statistical inference (Singer & Willett, 1993). 
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When using the exploratory approach, the data are divided into strata by predictor values, 

then sample logit-hazard functions are estimated and graphed. "The linearity assumption 

is met if equal differences in the predictor correspond to approximately equal vertical 

displacements of the subsample logit-hazard profiles" (Singer & Willett, 1993, p. 183). 

A predictor can be transformed or represented as a dummy variable if the effect of the 

variable is nonlinear. Nonlinear predictor specifications can also be added to the hazard 

model to check for linearity. If the additional nonlinear term improves the fit, it can be 

retained in the model. Murnane, Singer and Willett (1989) found both a linear and a 

quadratic component in a study examining the relationship between a teacher's score on 

the National Teacher Examination and the risk of leaving teaching. 

No Unobserved Heterogeneity 

Willett and Singer's discrete-time hazard models contain no error terms, with 

individuals distinguished only by their values on the predictor variables. If an important 

predictor variable is omitted from the model, it is as if the hazard profiles of the omitted 

variable are pooled across the heterogeneous population. Vaupel and Yashin (1985) 

argue that a pooled risk profile can have an entirely different shape from the individual 

profiles. This occurs because, over time, "individuals in high risk groups die out early, 

and the surviving populations come to look less like the original populations " (Singer & 

Willett, 1993, p. 185). So unobserved heterogeneity can directly impact the shape of 

fitted hazard profiles, and when the shapes are interpreted, one can not be certain whether 
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the obtained profile actually describes the risk pattern for a randomly selected member of 

the population. 

Proportional ity 

Violations of the proportionality assumptions are quite common in discrete-time 

survival analysis. This occurs because of the use of time as a variable. The frequency of 

the occurrence of events often varies across time, thereby violating the proportional 

hazard assumption. Constraining the log-hazard profiles to be parallel, when in fact they 

are nonproportional, may cause estimated predictors to be wrong (Singer & Willett, 

1991). 

In discrete-time survival analysis, it is relatively easy to ascertain whether the 

proportionality assumption has been violated. Singer and Willett (1991) have developed 

a S AS program that creates new dummy variables to reflect the effects of the predictors 

over time. These new variables are cross-products between the time indicators (aiTi, 

OC2T2, etc.) and the predictors. This procedure allows the data to be checked both 

graphically and statistically. A visual examination of graphs of the hazard functions for 

Y = 1 and Y = 0 will indicate whether there is a near-proportional distance between the 

two lines. 

Significant differences between the profiles can be checked statistically by 

conducting an F test for the significance of the difference between variances for 

independent samples (Denson & Schumacker, 1994). A Bonferroni F table must be 

consulted for the critical value of F "based on p dependent variables and J-l and N-J-C 

degrees of freedom" (Huitema, 1980, p. 239) where N = number of subjects, J = number 
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of groups, and C = number of comparisons. For survival analysis comparisons, N is not 

just the number of subjects, but the number of observations into which the survival 

analysis expands the data set. The number of groups is typically 2, and the number of 

comparisons is the number of time periods into which the data have been divided. If the 

assumption has truly been violated, the appropriate parameter estimates can be 

maintained by including the interaction terms in the fitted model. 



CHAPTER 3 

METHODS AND PROCEDURES 

To illustrate the effects of varying conditions on survival analysis hazard 

estimates and goodness of fit measures, discrete-time survival analysis was performed on 

simulated data sets. 

SIMULATED DATA SETS 

Four conditions were created and simulated data sets were produced to reflect 

crossing the fixed conditions. The four conditions were (a) the number of time periods 

for which the data is coded, (b) the distribution of the dependent variable outcome of 

Y = 1 across time periods, (c) the distribution of the dependent variable outcome of Y = 0 

across time periods, and (d) the sample size. 

The data were coded to reflect the division of time into either four or eight 

periods. These periods were chosen to emulate typical time periods found in educational 

research, that is, the four years or the eight semesters of high school or college. 

The distribution of cases with the outcome Y = 1 spread over the time periods was 

one of the following: (a) normally distributed, (b) positively skewed, or (c) negatively 

skewed. The number of cases in each of four time periods remained constant at n = 100, 

and can be seen in Table 1 divided by four time periods for the three distributions. 
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Table 1 

Number of Cases with Outcome Y = 1 for Four Time 

Periods by Distribution Type 

Distribution 
Time Periods 

Distribution T1 T2 T3 T4 

Normal 10 40 40 10 
Positively Skewed 50 25 15 10 
Negatively Skewed 10 15 25 50 

The number of cases in each of eight time periods also remained a constant, 

n = 100 and can be seen in Table 2 divided by the eight time periods for the three 

distributions. 

Table 2 

Number of Cases with Outcome Y = 1 for Eight Time Periods by 

Distribution Type 

Time Periods 
Distribution T1 T2 T3 T4 T5 T6 T7 T8 

Normal 4 6 15 25 25 15 6 4 
Positively Skewed 30 23 17 12 7 5 4 2 
Negatively Skewed 2 4 5 7 12 17 23 30 

Similarly, the distribution of cases with the outcome Y = 0 spread over the time 

periods was one of the following: (a) normally distributed, (b) positively skewed, or 

(c) negatively skewed. However, the Y = 0 cases were used to create not only various 

distributions, but also various sample sizes. The sample sizes for the Y = 0 cases were 
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200,400, or 900. The number of cases in each of four time periods is shown in Table 3 

by distribution and sample size. 

Table 3 

Number of Cases with Outcome Y = 0 for Four Time 

Periods by Distribution Type and Sample Size 

Time Periods 
Sample Size T1 T2 T3 T4 

Normal 
200 30 70 70 30 
400 75 125 125 75 
900 100 350 350 100 

Positively Skewed 
200 100 50 30 20 
400 200 100 60 40 
900 400 275 150 75 

Negatively Skewed 
200 20 30 50 100 
400 40 60 100 200 
900 75 150 275 400 

The number of cases in each of eight time periods is shown in Table 4 by 

distribution and sample size. 
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Table 4 

Number of Cases with Outcome Y = 0 for Eight Time Periods by Distribution 

Type and Sample Size 

Time Periods 
Sample Size T1 T2 T3 T4 T5 T6 T7 T8 

Normal 
200 9 16 25 50 50 25 16 9 
400 16 24 60 100 100 60 24 16 
900 30 75 145 200 200 145 75 30 

Positively Skewed 
200 70 48 33 16 12 10 7 4 
400 140 96 66 32 24 20 14 8 
900 275 225 180 100 60 30 20 10 

Negatively Skewed 
200 4 7 10 12 16 33 48 70 
400 8 14 20 24 32 66 96 140 
900 10 20 30 60 100 180 225 275 

It has been shown that the statistical power of the discrete-time survival analysis 

model is affected by sample size and effect size (Singer & Willett, 1991). Using Singer 

and Willett's previously described method of computing adequate effect and sample size 

for a power of at least 0.80 with an a of 0.05, the sample size of the cases with the 

outcome Y = 1 remained constant for each set of time periods, that is, n = 100, for both 

four and eight time periods. This allowed for a sufficient number of cases in each block 

to construct hazard estimates for each time period. As previously described, the number 

of cases with the outcome Y = 0 was 200, 400, and 900. This created total sample sizes 

of 300, 500, and 1,000 when combined with the Y = 1 outcome cases. 
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Simulated Data Sets 

The two levels of time periods, the three distributions of cases with outcome 

Y = 1 across time periods, the three distributions of cases with the outcome Y = 0 across 

time periods, and the three levels of sample size were crossed with each other to produce 

54 simulated data sets. The conditions for each data set are presented in Table 5. 

Table 5 

Conditions for Simulated Data Sets 

Number of Distribution Distribution 
Data Sets Time Periods II o of Y = 0 Sample Size 

Data Set 1 4 Normal Normal 300 
Data Set 2 4 Normal Normal 500 
Data Set 3 4 Normal Normal 1000 
Data Set 4 8 Normal Normal 300 
Data Set 5 8 Normal Normal 500 
Data Set 6 8 Normal Normal 1000 
Data Set 7 4 - Skew Normal 300 
Data Set 8 4 - Skew Normal 500 
Data Set 9 4 - Skew Normal 1000 
Data Set 10 8 - Skew Normal 300 
Data Set 11 8 - Skew Normal 500 
Data Set 12 8 - Skew Normal 1000 
Data Set 13 4 + Skew Normal 300 
Data Set 14 4 + Skew Normal 500 
Data Set 15 4 + Skew Normal 1000 
Data Set 16 8 + Skew Normal 300 
Data Set 17 8 + Skew Normal 500 
Data Set 18 8 + Skew Normal 1000 
Data Set 19 4 Normal - Skew 300 
Data Set 20 4 Normal - Skew 500 
Data Set 21 4 Normal - Skew 1000 
Data Set 22 8 Normal - Skew 300 

table continues 
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Table 5 Continued 

Data Set 23 8 Normal - Skew 500 
Data Set 24 8 Normal - Skew 1000 
Data Set 25 4 - Skew - Skew 300 
Data Set 26 4 - Skew - Skew 500 
Data Set 27 4 - Skew - Skew 1000 
Data Set 28 8 - Skew - Skew 300 
Data Set 29 8 - Skew - Skew 500 
Data Set 30 8 - Skew - Skew 1000 
Data Set 31 4 + Skew - Skew 300 
Data Set 32 4 + Skew - Skew 500 
Data Set 33 4 + Skew - Skew 1000 
Data Set 34 8 + Skew - Skew 300 
Data Set 35 8 + Skew - Skew 500 
Data Set 36 8 + Skew - Skew 1000 
Data Set 37 4 Normal + Skew 300 
Data Set 38 4 Normal + Skew 500 
Data Set 39 4 Normal + Skew 1000 
Data Set 40 8 Normal + Skew 300 
Data Set 41 8 Normal + Skew 500 
Data Set 42 8 Normal + Skew 1000 
Data Set 43 4 - Skew + Skew 300 
Data Set 44 4 - Skew + Skew 500 
Data Set 45 4 - Skew + Skew 1000 
Data Set 46 8 - Skew + Skew 300 
Data Set 47 8 - Skew + Skew 500 
Data Set 48 8 - Skew + Skew 1000 
Data Set 49 4 + Skew + Skew 300 
Data Set 50 4 + Skew + Skew 500 
Data Set 51 4 + Skew + Skew 1000 
Data Set 52 8 + Skew + Skew 300 
Data Set 53 8 + Skew + Skew 500 
Data Set 54 8 + Skew + Skew 1000 

DISCRETE-TIME SURVIVAL ANALYSIS MODEL 

Before using logistic regression to conduct a discrete-time survival analysis, the 

data structure must be transformed from the standard one-person, one-record data set (the 
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person data set) into a one-person, multi-period data set (the person-period data set) 

(Singer & Willett, 1991). Willett and Singer's SAS program was used to array the data in 

such a fashion. (See Appendix A for the SAS program.) The records in the reconstructed 

data set show what happened to each person during each discrete time period when the 

event of interest could have occurred or until data collection ended (whichever came 

first). The reconstructed data set yields one record per time period per person. "In 

discrete-time survival analysis, the researcher uses the person-period data set to model the 

relationship between the occurrence of interest and the selected predictors. Because the 

outcome is dichotomous, logistic regression is used to model the log-odds of the event's 

occurrence" (Singer & Willett, 1991, p. 283). Either the SAS PROC LOGISTIC 

procedure used in this study (SAS Institute, 1989) or the logistic regression procedure in 

SPSS (SPSS, Inc., 1991) can be used to fit the model and reconstruct fitted hazard and 

survivor plots from parameter estimates. 

This study used only the baseline model, expanded as previously described, to 

include specific measurements of discrete time periods. Although most applied studies 

would include predictor variables such as ethnicity and gender, no predictor variables 

other than time were used because the purpose of this study was to assess the effects of 

varying model demographics rather than variables included in the model. 

ANALYSIS 

When a discrete-time survival analysis was conducted for each of the 54 data sets 

using the SAS PROC LOGISTIC procedure, the following three parameter estimates and 
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goodness of fit measures were compared: (a) the likelihood ratio, (b) the model 

chi-square, and (c) hazard estimates for the time periods. These comparisons were made 

so that conditions were crossed. 

Likelihood Ratio Chi-Square Statistics 

The likelihood ratio chi-squares were compared by computing a G2 (df = 1) value 

(Wainer, 1990) with the following equation: 

G2(l) = G2
2 - G

l
2 (10) 

where Gl2 is the -2(loglikelihood) of model 1 and G22 is the -2(loglikelihood) of model 2. 

This comparison was used to assess the effects of skewness of Y = 1 and Y = 0 for 

data sets with the same number of time periods and the same sample size. Another 

comparison across number of time periods by sample size assessed the effect of number 

of time periods on the likelihood ratio chi-square. These comparisons were for models 

with similar distributions of Y = 1 and Y = 0 in order to isolate the effects of number of 

time periods. 

Model Chi-Square Statistics 

The statistical difference between the two model chi-squares was assessed in a 

similar manner as the likelihood ratio chi-square statistics. Because the likelihood ratio 

and the model chi-square are both chi-square measures, Equation 10 is appropriate for 

assessing the statistical difference between model chi-squares as well. 

This comparison was also used to assess the effects of skewness of Y = 1 and 

Y = 0 for data sets with the same number of time periods and the same sample size. A 
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comparison across number of time periods by sample size was conducted to verify that 

models with more time periods have statistically different model chi-squares. These 

comparisons were for models with similar distributions of Y = 1 and Y = 0 so as to 

isolate the effects of number of time periods. 

Hazard Estimates 

Hazard estimates were plotted to assess visually the effects of the manipulated 

characteristics. Hazard estimates were plotted by sample size for comparison of data sets 

with normal, negative, and positive distributions of Y = 1 and the same distribution of 

Y = 0. Similarly, plots of hazard estimates with normal, negative, and positive 

distributions of Y = 0 and the same distribution of Y = 1 were constructed. Each plot 

contains three lines, one for each distribution. 

Hazard estimates for models with the same number of time periods were plotted 

to compare the combinations of distributions of the outcomes of Y = 1 and Y = 0 with 

four time periods by sample size and the combinations of distributions of the outcomes of 

Y = 1 and Y = 0 with eight time periods by sample size. Each plot contains three lines 

representing the three sample sizes. 

Research Questions 

Research Question 1: Does the skewness of the outcomes for Y = 1 and Y = 0 

across time periods affect survival analysis hazard estimates and goodness of fit 

statistics? Model chi-squares and likelihood ratio chi-squares were computed for each of 

the 54 data sets with the SAS PROC LOGISTIC procedure. Survival analysis hazard 



42 

estimates were also computed for the 54 data sets with Singer and Willett's (1991) 

discrete-time survival analysis program. Goodess of fit statistics were compared using 

the G2( 1) value in Equation 10 on page 40 for data sets with the same number of time 

periods and sample size, differing only by skewness of the Y = 1 or Y = 0 outcome. 

Hazard estimates were compared by constructing hazard functions for the same 

combinations of data sets. 

Research Question 2: Does the number of time periods in which the data is 

measured affect survival analysis hazard estimates and goodness of fit statistics? Model 

chi-squares and likelihood ratios were computed on each of 54 data sets using the SAS 

PROC LOGISTIC procedure. Hazard estimates were computed with Singer and Willett's 

discrete-time survival analysis program. Goodess of fit statistics were compared using 

the G2(l) value in Equation 10 on page 40 for data sets with the same skewness of Y = 1 

and Y = 0 and the same sample size, differing only in number of time periods in which 

the data were measured. Hazard estimates were compared by constructing hazard 

functions for the same combinations of data sets. 

Research Question 3: Does the sample size affect survival analysis hazard 

estimates and goodness of fit statistics? Standard errors for each time period were 

computed on the 54 data sets using the SAS PROC LOGISTIC procedure. Hazard 

estimates were computed with Singer and Willett's discrete-time survival analysis 

program. Standard errors were compared for data sets with the same skewness of Y = 1 

and Y = 0 and the same number of time periods in which the data were measured, 
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differing only in sample size. Hazard estimates were compared by constructing hazard 

functions for the same combinations of data sets. 



CHAPTER 4 

DATA ANALYSIS AND FINDINGS 

This study was undertaken to examine the effects of certain data characteristics on 

survival analysis hazard estimates and goodness of fit statistics. The following four 

conditions were varied to assess the impact on the hazard estimates and goodness of fit 

statistics: (a) the number of time periods for which the data is coded, (b) the distribution 

of the dependent variable outcome Y = 1 across time periods, (c) the distribution of the 

dependent variable outcome Y = 0 across time periods, and (d) the sample size. To 

answer the research questions, 54 simulated data sets were created to cross the four 

conditions in a 2 (time periods) by 3 (distribution of Y = 1) by 3 (distribution of Y = 0) by 

3 (sample size) design. 

Analysis of the Effect of Skewness 

Effect on Model Fit Statistics 

First, positive and negative distributions of Y = 1 with one distribution of Y = 0 

were compared to a normal distribution of Y = 1 with the same distribution of Y = 0. 

When the normal distribution of Y = 1 with varying distributions of Y = 0 was compared 

to either positive or negative distributions of Y = 1 with the same distribution of Y = 0, 

the G2( 1) was significant, with a p <.001. This difference was found regardless of sample 

size. The model chi-square, the likelihood ratio, and the G2( 1) value for each comparison 

Ad 
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can be found in Tables 6 to 17 in Appendix B. Each table contains three comparisons of 

model chi-squares and likelihood ratios, one for each sample size. The comparison in 

Table 14 had a slight variation. For the comparisons of normal and negatively skewed 

distributions of Y = 1 with negatively skewed distributions of Y = 0, the G (1) was still 

statistically significant, but only atp< .02. 

General observations regarding the model chi-square and likelihood ratio statistics 

for these comparisons can be made. Regardless of sample size, the number of time 

periods in which the data were measured, or the distribution of Y = 0, data sets with a 

negatively skewed distribution of Y = 1 had higher model chi-square values and lower 

likelihood ratio values than the data sets with a normal distribution of Y = 1. Conversely, 

data sets with a positively skewed distribution of Y = 1 had lower model chi-squares and 

higher likelihood ratios than data sets with a normal distribution of Y = 1. For 

comparisons of negatively skewed data sets with the normally distributed data sets, the 

G2( 1) for the model chi-square was always negative and the G2( 1) for the likelihood ratio 

was always positive. For comparisons of positively skewed data sets with the normally 

distributed data sets, the G2(l) for the model chi-square was always positive and the G2( 1) 

for the likelihood ratio was always negative. However, the specific direction of this 

difference is not important because a reversal of the order in which statistics were entered 

in the formula (see Equation 10, p. 40) would cause the exact opposite to occur. It was 

important, however, that it was always a statistically significant difference. 



46 

In the next comparisons, positive and negative distributions of Y = 0 with one 

distribution of Y = 1 were compared to a normal distribution of Y = 0 with the same 

distribution of Y = 1. When the normal distribution of Y = 0 with varying distributions 

of Y = 1 was compared to either positive or negative distributions with the same 

distribution of Y = 1, the G2( 1) was significant a tp <.001. This difference was found 

regardless of sample size. The results can be found in Tables 19 to 30 in Appendix C. 

Again, each table contains three comparisons of model chi-squares and likelihood ratios 

and the G (1) value for each sample size. 

Some general observations could be noted regarding the model chi-square and 

likelihood ratio statistics for these comparisons. When the normally distributed Y = 0 

data sets were compared to the negatively skewed Y = 0 data sets, both the model chi-

square and likelihood ratio of the negatively skewed data sets were larger than the 

normally distributed data sets. This caused the G2( 1) to be negative for these 

comparisons. On the other hand, when the normally distributed Y = 0 data sets were 

compared to the positively skewed Y = 0 data sets, both the model chi-square and 

likelihood ratio of the negatively skewed data sets were smaller than the normally 

distributed data sets, causing the G2( 1) to be positive for these comparisons. This 

occurred in every data set, regardless of sample size. The direction of the difference is 

less important than the statistically significant difference in goodness of fit statistics. 
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Effect on Hazard Estimates 

Effect of the skewness of Y = 1 on a normal distribution ofY = 0. The specific 

effects of the skewness of the Y = 1 outcome can be visually assessed by plotting the 

hazard estimates for the compared data sets. Hazard estimates for each of the data sets 

can be found in Appendix D. Several important observations can be made about the 

hazard functions (i.e., lines) in Figure 1. A normal distribution of Y = 1 and Y = 0 with 

four time periods for a sample size of 300 yields the hazard function plotted in Line 1. 

Although this is the normal distribution, it is lacking the traditional normal curve. One 

should keep in mind that survival analysis hazard estimates are calculated based upon the 

risk set of remaining subjects who have not yet experienced the event. Moreover, the 

SAS program expands the data set based upon the number of time periods in which the 

subject remains in the risk set. Even though the number of "subjects" that experienced 

the event (the Y = 1 outcome) in each time period was expanded to 10, 30, 30, and 10, for 

time periods 1 through 4, respectively; the number of "cases" for each time period was 

40, 220, 330, and 160 for each time period, respectively. This causes the hazard function 

to assume a lopsided normal curve. Similar expansion of the data set occurs in each 

analysis, no matter what the distribution. 
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—•—Line 1 (N) 

—B—Line 2 (-) 

A Line 3 (+) 

PERIOD 

Figure 1. Hazard Functions for Normal, Negative, and Positive Distributions of Y = 1 
with Normal Distributions of Y = 0 with Four Time Periods for Sample Size 
N = 300 

Line 2 represents the hazard function for the data set with a negatively skewed 

distribution of Y = 1 and a normal distribution of Y = 0. It should be observed that 

Line 1 and Line 2 start at exactly the same point (0.0333) for time period 1, but Line 2 

rises rapidly and sharply to the right, as in a negative skew, for time periods 2 through 4. 

The hazard function for the positively skewed distribution of Y = 1 and a normal 

distribution of Y = 0 is represented in Line 3. It begins at a higher data point (0.1667) 

than Line 1 and 2 in time period 1, drops below Line 1 for time periods 2 and 3, then 

returns to the exact same point (0.2500) as Line 1 for time period 4. This same pattern 

repeats for each function with four time periods. The influence of sample size and 
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distribution of Y = 0 causes alterations of the functions. Plots for sample sizes of 500 and 

1,000 can be found in Figures 5 and 6 in Appendix E. 

When the data have been measured in eight time periods, there is a comparable 

repetition of the pattern. Line 1 in Figure 2 graphs the hazard function for a normal 

distribution of Y = 1 and Y = 0 for a data set with eight time periods and a sample size 

of 300. Again, there is a lopsided "normal" curve. The negatively skewed Line 2 starts at 

almost the same point as Line 1 (0.0067 and 0.0133, respectively), and rises to the right 

gradually through time periods 2 through 5, then more sharply for time periods 6 to 8. 

Line 3 starts slightly above Lines 1 and 2 at hazard 0.1000 for time period 1, dips during 

time periods 2 through 5, then rises during time periods 6 through 8. Unlike the functions 

with four time periods, Line 3 does not meet Line 1 at time period 8, but remains below 

Lines 1 and 2. Each function with eight time periods repeats this pattern. Variations of 

these functions for other comparisons are due to the influence of sample size and 

distribution of Y = 0. Plots of the hazards for sample sizes 500 and 1,000 can be found in 

Figures 7 and 8 in Appendix E. 
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•Line 2 (-) 

-Line 3 (+) 
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Figure 2. Hazard Functions for Normal, Negative, and Positive Distributions of Y = 1 
with Normal Distributions of Y = 0 with Eight Time Periods for Sample Size 
N = 300 

Effect of the skewness of Y = 0 on a normal distribution ofY = 1. Plots of the 

hazard functions for data sets with normal distributions of Y = 1, but varying distributions 

of Y = 0 reveal the effects of the skewness of Y = 0. Line 1 in Figure 3 is the hazard 

function for a data set with a normal distribution of Y = 1 and Y = 0, with four time 

periods and a sample size of 300. It should be noted that this is the same lopsided normal 

curve from Figure 1. The hazard function for a data set with a negatively skewed 

distribution of Y = 0 and a normal distribution of Y = 1 are plotted in Line 2. Line 2 

begins at the same hazard as Line 1 (0.0333), and follows the same general shape as 

Line 1, but with increased hazards. Line 3 also begins at the same hazard as Lines 1 and 

2. It again follows the general shape of Line 1, but with decreased hazards. This pattern 
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repeats through all comparisons. Variations are caused by differences in sample size and 

distribution of the Y — 1 outcome. Hazard functions for data sets with a sample size of 

500 and 1,000 can be found in Figures 9 and 10 in Appendix E. 

0.35. 

0.25. 

0.05. 

-Line 1 (N) 

-Line 2 (-) 

-Line 3 (+) 

PERIOD 

Figure 3. Hazard Functions for Normal, Negative, and Positive Distributions of Y = 0 
with Normal Distributions of Y = 1 with Four Time Periods for Sample Size 
N = 300 

When time is measured in eight periods, the normal, negatively skewed, and 

positively skewed distributions of Y = 0 follow a similar pattern. In Figure 4, Line 1 is 

the hazard function of a data set with a normal distribution of Y = 0 and Y = 1 with a 

sample size of 300 measured in eight time periods. It is the same line as Line 1 in 

Figure 2. The hazards have almost the same value for time periods 1 through 3, but begin 

to spread apart in time periods 4 through 8. As with four time periods, the negatively 
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skewed distribution of Y = 0 deflates the hazard estimates and the positively skewed 

distribution inflates the hazard estimates. Hazard functions of data sets with a sample 

size of 500 and 1,000 can be found in Figures 11 and 12 in Appendix E. 
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-Line 1 (N) 
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Figure 4. Hazard Functions for Normal, Negative, and Positive Distributions of Y == 0 
with Normal Distributions of Y= 1 with Eight Time Periods for Sample Size 
N = 300 

Research Question 1 

Findings from this study indicate that the skewness of the outcomes for Y = 1 and 

Y = 0 across time periods does affect survival analysis hazard estimates and goodness of 

fit statistics. 

Effect of the skewness of Y = 1. Data sets with the same skewness of Y = 0, but 

positively or negatively skewed values of the Y = 1 outcome have significantly different 
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model chi-squares and likelihood ratio chi-square values than the normally distributed 

data set as indicated by a significant G2( 1) value. When compared with a normally 

distributed Y = 1 data set, the direction of the skew influences the direction of the 

difference in goodness of fit statistics. Comparison of a normal and negatively skewed 

distribution causes the model chi-square G2(l) value to be negative and the likelihood 

ratio G\ 1) value to be positive. The opposite is true when comparing a normal and 

positively skewed distribution: the model chi-square G2( 1) value is positive and the 

likelihood ratio G2(l) value is negative. 

The skewness of Y = 1 appears to determine the prevailing shape of the hazard 

functions, regardless of the distribution of Y = 0, the number of time periods, or the 

sample size. Figures 13 to 15 in Appendix E plot the hazard functions of negative 

distributions of Y = 1 for normal, negative, and positive distributions of Y = 0 with four 

time periods for the three sample sizes. Figures 16 to 18 plot functions with these same 

characteristics for data measured in 8 time periods. The shape of the function is generally 

that of the negatively skewed distribution of Y = 1 with a normal distribution of Y = 0 

found in Line 2 in Figures 1 and 2. 

Figures 19 to 21 in Appendix E plot the hazard functions of positively skewed 

distributions of Y = 1 for normal, negative, and positive distributions of Y = 0 with four 

time periods for the three sample sizes. Figures 22 to 24 plot these same characteristics 

for data measured in 8 time periods. The shape of the function is generally that of the 
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positively skewed distribution of Y = 1 with a normal distribution of Y = 0 found in 

Line 3 in Figures 1 and 2. 

Effect of the skewness ofY=0. Data sets with the same skewness of Y = 1, but 

positively or negatively skewed values of the Y = 0 outcome have significantly different 

model chi-squares and likelihood ratio chi-square values than the normally distributed 

data set as indicated by a significant G2( 1) value. When compared with a normally 

distributed Y = 0 data set, the direction of the skew influences the direction of the 

difference in goodness of fit statistics. Comparison of a normal and negatively skewed 

distribution causes both the model chi-square G2( 1) value and the likelihood ratio G2( 1) 

value to be negative. The opposite is true when comparing a normal and positively 

skewed distribution: the model chi-square G2( 1) value and the likelihood ratio G2( 1) 

value is positive. 

The skewness of Y = 0 appears to have its own effect on hazard estimates. A 

negative distribution of Y = 0 causes a deflation of the hazard estimates and a positive 

distribution causes an inflation of the hazard estimates. Figures 25 to 27 in Appendix E 

plot the hazard functions of negatively skewed distributions of Y = 0 for normal, 

negative, and positive distributions of Y = 1 with four time periods for the three sample 

sizes. Figures 28 to 30 plot functions with the same characteristics for data measured in 8 

time periods. The shape of the function is generally the same as the function for the 

normal distribution of Y = 0. The data points are almost the same for time periods 1 and 

2, but the functions flatten out in time periods 3 and 4 as the hazard estimates deflate. A 
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positively skewed distribution of Y = 0 causes the opposite result. Starting at the same 

data points as the normal distribution, the functions open up and spread farther apart as 

the hazard estimates inflate for time periods 2 through 4. This can be seen in Figures 31 

to 33 for data sets with four time periods and in Figures 34 to 36 for data sets with eight 

time periods. 

Analysis of the Effect of Number of Time Periods 

Effect on Model Statistics 

The results of the comparison of data sets with the same number of time periods 

and similar distributions of Y = 1 and Y = 0 indicate that the number of time periods has 

a statistically significant effect on the difference in model chi-squares and likelihood 

ratios. The G (1) value for each comparison was significant at/? < .001. Results of the 

model chi-square comparisons can be found in Tables 31 to 33 in Appendix F. 

Comparisons of the likelihood ratio chi-square can be found in Tables 34 to 36 in 

Appendix F. 

Regardless of the skewness of the Y = 1 or the Y = 0 outcomes and the sample 

size, the model chi-squares and likelihood ratio values for the eight-period data sets are 

always higher than the values for the four-period data sets. Therefore, the G2(l) values 

are always negative. 

Effect on Hazard Estimates 

A visual examination of certain pairs of data sets illustrates the effect of the 

number of time periods on the hazard estimates. Line 1 in Figure 1 and Line 1 in Figure 2 
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(on pp. 48 and 50, respectively) are hazard functions of data sets with normal 

distributions of Y = 1 and Y = 0 for a sample size of 300 measured in four and eight time 

periods. The shape of the lines is similar; though the hazards are generally lower for 

those subjects measured in eight time periods than those measured in four time periods. 

Only in time period 8 does the eight-period line rise above the four-period line. Hazard 

estimates can be compared in Appendix D. Figures 37 to 39 in Appendix G illustrate this 

finding by plotting hazard functions of data sets with similar distributions of Y = 1 and 

Y = 0 and the same sample size. 

Research Question 2 

The results of this study indicate that the number of time periods in which the data 

is measured has a statistically significant effect on the model chi-square and likelihood 

ratio chi-square statistics. The model chi-squares and likelihood ratios for eight-period 

data sets were consistently higher than the four-period data sets for all comparisons; 

therefore, the G (1) values were always negative. 

Data sets measured in four time periods have generally higher hazard estimates 

than data sets measured in eight time periods. This remains constant regardless of the 

distribution of Y = 1 or Y = 0 or the sample size. 

Analysis of the Effect of Sample Size 

It is known that chi-square statistics are affected by sample size; therefore, the 

model chi-square and likelihood ratio chi-square are not appropriate statistics to use when 

comparing data sets for differences due to sample size. A visual analysis of hazard 
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functions of data sets with the same number of time periods and the same distribution of 

Y = 1 and Y = 0, differing only in sample size clearly reveals that data sets with smaller 

sample sizes have higher hazard estimates. Thus, hazard estimates for the compared data 

sets can be ordered in this fashion: n = 300> n = 500> n = 1000. Hazard estimates are 

plotted in Figures 40 to 57 in Appendix H for these comparisons. The figures in 

Appendix H also confirm the findings regarding the effects of the skewness of Y = 1 and 

Y = 0. 

Research Question 3 

The findings from this study indicate that sample size has an impact on survival 

analysis hazard estimates. The smaller the sample size, the larger the hazard estimate. 

Increasing sample size causes the standard error to decrease (Hinkle, Wiersme, & Jurs, 

1988). The standard errors for the parameter estimates for each time period did decrease 

as the sample size increased. However, the differences in standard errors among the three 

sample sizes were small, usually less than 1.0. The differences may have been small 

because the survival analysis procedure expands the data sets. Small data sets with 300 

subjects expanded to numbers of cases between 750 and 850, depending upon the 

skewness of the outcomes. Data sets with 500 subjects expanded to numbers of cases 

between 1,250 and 1,550, and data sets with 1,000 subjects expanded to numbers of cases 

between 2,500 and 3,000. This expansion may have kept standard errors fairly consistent 

across sample sizes, even if the hazard estimates did vary. 



CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

Previous survival analysis studies have addressed the application of the procedure 

to educational and psychological data. In the field of education and social science, there 

is little information on the effects of certain data characteristics on the model fit statistics 

and the hazard estimates produced by the survival analysis procedure. The purpose of 

this study was to investigate the effects of attributes that could be described for any 

survival analysis data set, regardless of the simplicity or complexity of the design. These 

attributes included the skewness of the Y = 1 and Y = 0 outcomes, the number of time 

periods in which the data are coded, and the sample size. Data sets were created to cross 

these characteristics and were compared to verify if varying these characteristics caused 

statistically significant differences among the model chi-squares and likelihood ratios. 

Hazard functions were also created and compared to visually assess the effects of the 

varied characteristics. 

CONCLUSIONS 

Based on the results of the study related to Research Question 1, the skewness of 

the outcomes for Y = 1 and Y = 0 across time periods does significantly affect survival 

analysis hazard estimates and goodness of fit statistics. The statistical equality of the 

compared goodness of fit statistics, the model chi-square and the likelihood ratio, was 

^8 
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indicated by the G (1) value with one degree of freedom. Data sets with a normally 

distributed Y = 1 outcome were compared to data sets with either a positively skewed or 

negatively skewed distribution of Y = 1 and a normally distributed Y = 0. The G2( 1) 

value was significant at p< .001 for all comparisons, except one for which the G2( 1) 

value was significant atp < .02. This clearly indicates that data sets with a positive or 

negative skew of Y = 1 are going to produce different results than a normally distributed 

data set. 

Data sets with a normally distributed Y = 0 outcome were compared to data sets 

with either a positively skewed or negatively skewed distribution of Y = 0 and a normal 

distribution of Y = 1. For all comparisons, the G2( 1) value was significant atp < .001. 

Again, this indicates that data sets with a positive or negative skew for Y = 0 are going to 

produce different results than a normally distributed data set. 

A researcher conducting a discrete-time survival analysis would be interested in 

goodness of fit statistics. For both the practitioner and the researcher, the hazard estimate 

is the "cornerstone" of the procedure. It shows whether, and if so, when events occur. 

Obtaining the hazard estimate is the principal reason for choosing survival analysis over 

other statistical procedures. Plotting hazard functions gives a visual image of the effects 

of the skewness of the Y = 1 and Y = 0 outcomes and indicate why the G2( 1) values were 

significant. The distribution of the Y = 1 outcome determines the shape of the hazard 

function and the distribution of the Y = 0 outcome determines whether the hazards are 

inflated or deflated. The shape of the function is controlled by the logistic regression 
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procedure predicting parameter estimates for the Y = 1 outcome (coded Y = 1 if the event 

occurs, Y = 0 if it does not). The survival analysis procedure also computes the hazard 

estimates for the Y = 1 outcome. The researcher wants to know whether and when the 

event in question occurs or when the value of Y is 1. 

A positively skewed distribution of the Y = 0 outcome causes the hazard function 

to maintain a similar shape as the normally distributed function, but to have inflated 

hazard estimates. The opposite is true for a negatively skewed distribution. A negatively 

skewed distribution of the Y = 0 outcome causes the hazard function to maintain a similar 

shape as the normally distributed function, but to have deflated hazard estimates. This is 

due to the fact that the survival analysis procedure calculates each hazard based on the 

risk set of subjects remaining in the study. When there is a positively skewed distribution 

of Y = 0, many subjects who did not experience the event leave the study in the earlier 

time periods. This leaves fewer total subjects in the risk set at later time periods; 

therefore, there are more subjects in the data set who will experience the event and the 

hazard increases as time passes. The opposite occurs for a negatively skewed distribution 

of Y = 0. When there is a negatively skewed distribution of Y = 0, many subjects who 

did not experience the event leave the study at later time periods. This leaves more total 

subjects in the risk set who do not experience the event and the hazard decreases. 

As observed from the results of Research Question 2, data sets in which the length 

of time is measured in more finite units have significantly different goodness of fit 

statistics than those measured in fewer units as assessed by the G2( 1) value. Data sets 
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coded into eight time periods had larger model chi-squares and likelihood ratio values 

than those coded into four time periods. Logistic regression literature indicates that, for 

both the model chi-square and the likelihood ratio, smaller values indicate a better fit of 

the model. Further work is needed to assess whether this holds true for the survival 

analysis procedure. If so, it would indicate that, for the same length of time to conduct 

the study, models with fewer time periods may have a better fit to the data than those with 

more time periods. Perhaps for this data, which was modeled after four years of high 

school versus eight semesters of high school, the year-based model would give just as 

much information as the semester-based model, with less work involved in data 

collection. 

Hazard functions for four-period data sets compared with eight-period data sets 

show that hazards are higher for subjects in four-period models. Only in time period 8 

did hazards for the eight-period model rise above those of the four-period model. This is 

due to spreading out the number of subjects that experience the event per time period 

across time periods rather than compacting them into fewer time periods. However, this 

information does not imply that data sets in which the same amount of time is measured 

in larger amounts are better than those in which time is measured in smaller amounts 

(e.g., a day measured in hours versus half hours or a year measured in months versus 

weeks). 

Singer and Willett (1991) provided some basic rules of thumb regarding the 

length of data collection and the choice of time intervals. The data collection period 
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should be long enough for at least half the sample to experience the target event during 

that time. This ensures reasonable statistical power. Systematic data collection at regular 

intervals is best. Nevertheless, if there seems to be periods with intensely increased 

activity, that is, very high hazards, data can be collected more frequently when hazards 

are high and less frequently when hazards are low. Both logical and financial constraints 

should dictate this decision. 

The results of Research Question 3 reveal that sample size does have an effect on 

hazard estimates. This is not surprising, as sample size has been found to have an effect 

on many statistical procedures. Because sample size is known to have a dramatic effect 

on chi-square statistics, it was not appropriate to compare model chi-squares and 

likelihood ratios across models with similar distributions of Y = 1 and Y = 0, but 

different sample sizes. Therefore, only hazard functions were used for comparison. 

The findings were simple: the smaller the sample size, the larger the hazard 

estimate. Standard errors, however, remained fairly consistent across sample size. This 

may have occurred because of the expansion of the data sets by the discrete-time survival 

analysis procedure. In this study, the sample size for the Y = 1 outcome was held to a 

constant of 100. The sample size for the Y = 0 outcome was varied to adjust, not only for 

distribution of the Y = 0 outcome, but also for sample size. Consequently, when sample 

size was larger, there were more subjects that did not experience the event. When more 

subjects do not experience the event, the risk of the event occurring is lower. 
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One of the possible conclusions from this study has already been implied, namely 

that it is important to fully understand the characteristics of the data set with which one is 

working. Sample size and number of time periods is directly observable. However, 

before interpreting the survival analysis hazard estimates, the researcher should 

investigate the skewness of the Y = 1 and Y = 0 outcomes. 

The literature has reported the application of survival analysis in various 

educational and social science settings. Murnane et al. (1988,1989) conducted several 

studies regarding teacher attrition. The length of time that children spent in day care was 

studied by Singer et al. (1978). Organizational researchers (e.g., Morita, Lee, & Mowday, 

1989; Darden, Hampton, & Boatwright, 1987) described survival analysis as a method for 

analyzing employee turnover. Mensch and Kandel (1988) used a related event-history 

technique to identify students most at risk of dropping out of high school. These and 

other studies all have one thing in common—they identify a specific period of time that 

an event is most likely to occur. What appears to be lacking in the literature is what has 

been done with this identification of significant time periods. 

Perhaps another appropriate use of the hazard estimate in educational research has 

yet to be explored. As the cornerstone of the survival analysis procedure, the hazard 

estimates are critical to decision-making. These "risk" estimates allow the researcher to 

predict when events are most likely to occur, thereby identifying when it would be most 

propitious to provide some sort of intervention to either promote or discourage the event 

in question. This study contributes further enlightenment about hazard estimates. 
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Without a knowledge of the effects of the data set characteristics on the hazard estimates, 

one may make faulty conclusions. Decisions based on the significance of a hazard are 

similar to the decision-making process involved in assigning a "cut score" (Crocker & 

Algina, 1986). For example, the decision may be made to begin an intervention program 

aimed at preventing substance abuse in the time period in which the risk of the event 

occurring reaches a certain hazard prediction. If the cut score for the hazard is placed too 

low, the program may find that it has too many subjects, and the effort at prevention 

cannot be as concentrated as is deemed necessary. On the other hand, if the cut score for 

the hazard is set too high, some subjects who needed the program will be excluded. 

At this critical point, knowledge of the effects of the data set characteristics used 

in this study can assist decision-makers in setting the cut score for the hazard. 

Knowledge that the data set has a negative skew for Y = 0 lets the decision-maker know 

that the hazards are deflated. Knowledge that the sample size is small lets the decision-

maker know that the hazards are inflated. It is obvious that an understanding of these 

effects can enhance the decision-making process. Nevertheless, as always when basing 

judgments on statistics, knowledge of prior research must be used to temper the final 

decision. 

Another unique feature of discrete-time survival analysis warrants taking the 

research yet another step further. When an intervention program has been put into place, 

data collection continues for an appropriate amount of time and participation in the 

program can be included as a variable, perhaps even a time-varying variable, when 
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necessary. Although this study examined only a baseline model, the inclusion of 

predictor variables suggests that factors studied herein can add or detract from a predictor 

variable's significance in a model. Validation of outcomes, given intervention strategies 

in a program, will ultimately confirm the accuracy of a specific discrete-time survival 

analysis model. 

RECOMMENDATIONS 

This study dealt with the effects of each of the varied attributes taken separately. 

However, this is not practical because the attributes used in this study do not occur in 

isolation in real life research. Every data set has a skewness of both its Y = 1 and Y = 0 

outcomes, a set number of time periods in which the data are measured, and a sample 

size. Several recommendations for further research are: 

1. Comparisons of data sets that differ in more than one attribute should be 

assessed to complete the picture of the effects of these attributes on goodness of fit 

statistics and hazard estimates. The G2(l) value can be used to compare the model 

chi-square and the likelihood ratio, but a statistic to compare hazard estimates needs to be 

identified. 

2. In this study the sample size of the Y = 1 outcome was held constant at 100. 

Varying sample sizes of Y = 1 in combination with varying sample sizes of Y = 0 would 

provide more information on the effects of sample size. 

3. One of the delimitations of this study was that fixed data sets were used to 

assess the effects of varying the characteristics. The number of time periods and the 
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sample sizes for this study were chosen to allow for sufficient power. Further replication 

of similar comparisons across multiple data sets with different sample sizes and numbers 

of time periods is recommended for results to be conclusive. 

4. No predictor variables other than the number of time periods were used in this 

study. The research related to the effects of skewness, number of time periods, and 

sample size will be more thorough if the examination of the effect of predictor variables 

is also included. 



APPENDIX A 

WILLETT AND SINGER'S SAS PROGRAM FOR CONDUCTING 
DISCRETE-TIME SURVIVAL ANALYSIS 

fn 
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WILLETT AND SINGER'S SAS PROGRAM FOR CONDUCTING 
DISCRETE-TIME SURVIVAL ANALYSIS 

* CREATING THE PERSON-PERIOD DATA SET; 

DATA SURVANAL; 
SET STUDINFO; (Assumes the previous creation of data set STUDINFO) 
ARRAY OCCASION[8]E()l-E8; (Assumes time period measured in 8 periods) 
ARRAY ASSIGN[12]S01-S8; 
DO PERIOD=l TO MIN(LASTPD,8); 

IF PERIOD=LASTPD AND CENSORS THEN Y=l; 
ELSE Y=0; 

END; 
OUTPUT; 
END; 

*CREATING THE INITIAL MODEL; 

PROC LOGISTIC DATA=STUDSURV NOSIMPLE OUT=ESTIMATE; 
TITLE2 "MODEL 1 - INITIAL (NULL) MODEL"; 
MODEL Y=E01-E8/N OINT MAXITER-100; 

^COMPUTING FITTED HAZARD AND SURVIVAL FUNCTIONS; 

DATA NEWEST; 
SET ESTIMATE; 
ARRAY OCCASK)N[8]E01-E8; 
SURVIVAL=1; 
DO PERIOD=l TO 8; 

X=OCCASION[PERIOD] 
HAZARD= 1/(1 -(EXP(X))); 
SURVIV AL=( 1 -HAZARD) * SURVIV AL; 
OUTPUT; 

END; 
KEEP PERIOD SURVIVAL HAZARD; 

*PRINT SURVIVAL AND HAZARD RESULTS; 

PROC PRINT; 
VAR PERIOD SURVIVAL HAZARD; 
FORMAT SURVIVAL HAZARD 6.4; 

PROC PLOT; 
PLOT(SURVIVAL HAZARD)*PERIOD; 
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Table 6 

Significance of the Difference in Model Chi-Square and Likelihood 

Ratio for Normal and Negatively Skewed Distributions ofY = 1 and 

Normal Distributions ofY=0 with Four Time Periods by Sample 

Size 

Statistic 

Distribution of Y = 1 
Negatively 

Normal Skewed G2(l) P 
II U>

 
o o 

Model x2 509.825 678.056 -168.225 <.001 
Likelihood Ratio 529.896 451.774 78.122 <.001 

n = 500 
Model x2 1090.252 1260.077 -169.825 <.001 
Likelihood Ratio 642.616 562.900 79.71 <.001 

n = 1,000 
Model x2 2681.581 2899.631 -218.050 <.001 
Likelihood Ratio 784.154 656.215 127.939 <001 
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Table 7 

Significance of the Difference in Model Chi-Square and Likelihood 

Ratio for Normal and Positively Skewed Distributions ofY = 1 and 

Normal Distributions ofY = 0 with Four Time Periods by Sample 

Size 

Statistic 

Distribution of Y = 1 
Positively 

Normal Skewed G2(l) P 
S3 II UJ

 
o o 

Model x2 509.825 386.774 123.051 <.001 
Likelihood Ratio 529.896 562.837 -32.941 <.001 

II o o 

Model %2 1090.252 962.184 128.068 <.001 
Likelihood Ratio 642.616 680.575 -37.959 <001 

n = 1,000 
Model x2 2681.581 2552.822 128.759 <.001 
Likelihood Ratio 784.154 822.805 -38.651 <.001 
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Table 8 

Significance of the Difference in Model Chi-Square and Likelihood 

Ratio for Normal and Negatively Skewed Distributions ofY = 1 and 

Normal Distributions ofY=0 with Eight Time Periods by Sample 

Size 

Statistic 

Distribution of Y = 1 
Negatively 

Normal Skewed G\ 1) P 
tJ II LO

 
O

 
o 

Model x2 1240.118 1599.321 -359.203 <.001 
Likelihood Ratio 631.379 502.301 129.078 <.001 

3 11 o o 

Model x2 2381.850 2778.480 -396.630 <.001 
Likelihood Ratio 737.313 570.790 166.540 <.001 

n = 1,000 
Model x2 5356.973 5784.853 -427.880 <001 
Likelihood Ratio 881.351 683.597 197.754 <.001 
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Table 9 

Significance of the Difference in Model Chi-Square and Likelihood 

Ratio for Normal and Positively Skewed Distributions ofY=l and 

Normal Distributions ofY = 0 with Eight Time Periods by Sample 

Size 

Statistic 

Distribution of Y = 1 
Positively 

Normal Skewed G2( 1) P 

n = 300 
Model %2 1240.118 960.488 279.630 <.001 
Likelihood Ratio 631.379 680.885 -49.506 <.001 

S3 II U
\ o o 

Model %2 2381.850 2093.283 288.567 <.001 
Likelihood Ratio 737.313 795.754 -58.424 <.001 

n= 1,000 
Model %2 5356.973 5063.996 292.977 <.001 
Likelihood Ratio 881.351 944.203 -62.852 <.001 
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Table 10 

Significance of the Difference in Model Chi-Square and Likelihood 

Ratio for Normal and Negatively Skewed Distributions ofY = 1 and 

Negatively Skewed Distributions ofY=0 with Four Time Periods by 

Sample Size 

Statistic 

Distribution of Y = 1 
Negatively 

Normal Skewed G2( 1) P 

n = 300 
Model x2 638.550 758.571 -120.021 <.001 
Likelihood Ratio 581.389 551.477 29.912 <.001 

n = 500 
Model x2 1396.127 1519.946 -123.819 <.001 
Likelihood Ratio 697.177 663.468 33.709 <.001 

n = 1,000 
Model %2 3384.006 3520.059 -136.053 <.001 
Likelihood Ratio 844.192 798.248 45.944 <.001 
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Table 11 

Significance of the Difference in Model Chi-Square and Likelihood 

Ratio for Normal and Positively Skewed Distributions ofY = 1 and 

Negatively Skewed Distributions ofY = 0 with Four Time Periods by 

Sample Size 

Statistic 

Distribution of Y = 1 
Positively 

Normal Skewed G2(l) P 

n = 300 
Model %2 638.550 531.957 106.593 <.001 
Likelihood Ratio 581.389 597.873 -16.484 <.001 

n = 500 
Model %2 1396.127 1287.828 108.299 <.001 
Likelihood Ratio 697.177 715.367 -18.190 <.001 

n = 1,000 
Model %2 3384.006 3275.019 108.987 <001 
Likelihood Ratio 844.192 863.069 -18.877 <.001 
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Table 12 

Significance of the Difference in Model Chi-Square and Likelihood 

Ratio for Normal and Negatively Skewed Distributions ofY = 1 and 

Negatively Skewed Distributions ofY=0 with Eight Time Periods by 

Sample Size 

Statistic 

Distribution of Y = 1 
Negatively 

Normal Skewed G\ 1) P 
2 11 LO

 
O

 
o 

Model x2 1666.024 1959.807 -293.783 <.001 
Likelihood Ratio 718.403 654.744 63.659 <.001 

n = 500 
Model x2 3310.216 3609.275 -299.059 <.001 
Likelihood Ratio 834.805 765.870 68.935 <.001 

n= 1,000 
Model x2 7588.352 7902.290 -313.938 <.001 
Likelihood Ratio 985.878 902.065 83.813 <.001 
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Table 13 

Significance of the Difference in Model Chi-Square and Likelihood 

Ratio for Normal and Positively Skewed Distributions ofY= 1 and 

Negatively Skewed Distributions ofY = 0 with Eight Time Periods by 

Sample Size 

Statistic 

Distribution of Y = 1 
Positively 

Normal Skewed G\ 1) P 
II UJ

 
o o 

Model x2 1666.024 1430.812 235.212 <.001 
Likelihood Ratio 718.403 723.490 -5.087 <.020 

£3 II O
 

O
 

Model %2 3310.216 3073.513 236.703 <.001 
Likelihood Ratio 834.805 841.383 -6.578 <.020 

n = 1,000 
Model %2 7588.352 7351.724 236.628 <.001 
Likelihood Ratio 985.878 992.381 -6.511 <.020 
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Table 14 

Significance of the Difference in Model Chi-Square and Likelihood 

Ratio for Normal and Negatively Skewed Distributions ofY=l and 

Positively Skewed Distributions ofY=0 with Four Time Periods by 

Sample Size 

Statistic 

Distribution of Y = 1 
Negatively 

Normal Skewed G\ 1) P 

n = 300 
Model x2 403.454 548.114 -144.66 <.001 
Likelihood Ratio 456.048 401.498 54.558 <.001 

II U
l 

o o 

Model x2 817.687 972.242 -154.733 <.001 
Likelihood Ratio 554.744 483.298 71.446 <001 

n= 1,000 
Model x2 2009.062 2201.248 -192.186 <.001 
Likelihood Ratio 694.212 592.135 102.077 <.001 
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Table 15 

Significance of the Difference in Model Chi-Square and Likelihood 

Ratio for Normal and Positively Skewed Distributions ofY=l and 

Positively Skewed Distributions ofY=0 with Four Time Periods by 

Sample Size 

Statistic 

Distribution of Y = 1 
Positively 

Normal Skewed G\ 1) P 
II LO

 
O

 
o

 
Model x2 403.454 250.637 152.817 <.001 
Likelihood Ratio 456.048 518.756 -62.708 <.001 

n= 500 
Model x2 817.687 652.926 164.761 <.001 
Likelihood Ratio 554.744 629.396 -74.652 <.001 

P
 II o
 

o
 o
 

Model x2 2009.062 1837.677 171.385 <.001 
Likelihood Ratio 694.212 775.488 -81.276 <.001 
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Table 16 

Significance of the Difference in Model Chi-Square and Likelihood 

Ratio for Normal and Negatively Skewed Distributions ofY = 1 and 

Positively Skewed Distributions ofY=0 with Eight Time Periods by 

Sample Size 

Statistic 

Distribution of Y = 1 
Negatively 

Normal Skewed G\ 1) P 

n = 300 
Model x2 838.334 1150.736 -312.402 <.001 
Likelihood Ratio 520.235 437.957 82.278 <.020 

ts II o o 

Model x2 1490.587 1834.130 -343.543 <.001 
Likelihood Ratio 602.718 489.300 113.418 <.001 

n= 1,000 
Model x2 3203.733 3596.556 -392.823 <.001 
Likelihood Ratio 698.686 535.987 162.699 <.001 
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Table 17 

Significance of the Difference in Model Chi-Square and Likelihood 

Ratio for Normal and Positively Skewed Distributions ofY = 1 and 

Positively Skewed Distributions ofY = 0 with Eight Time Periods by 

Sample Size 

Statistic 

Distribution of Y = 1 
Positively 

Normal Skewed G\ 1) P 
es II UJ

 
o o 

Model x2 838.334 528.071 310.263 <.001 
Likelihood Ratio 520.235 600.372 -80.137 <.001 

n = 500 
Model x2 1490.587 1157.169 333.418 <.001 
Likelihood Ratio 602.718 706.011 -103.293 <.001 

n= 1,000 
Model x2 3203.733 2832.519 371.214 <.001 
Likelihood Ratio 698.686 839.775 -141.089 <.001 
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Table 18 

Significance of the Difference in Model Chi-Square and Likelihood 

Ratio for Normal and Negatively Skewed Distributions ofY=0 and 

Normal Distributions ofY=l with Four Time Periods by Sample 

Size 

Statistic 

Distribution of Y = 0 
Negatively 

Normal Skewed G2(l) P 

n = 300 
Model x2 509.825 638.550 -128.725 <.001 
Likelihood Ratio 529.896 581.389 -51.493 <.001 

n = 500 
Model %2 1090.252 1396.127 -305.875 <.001 
Likelihood Ratio 642.616 697.177 -54.561 <.001 

n= 1,000 
Model x2 2681.581 3384.006 -702.425 <.001 
Likelihood Ratio 784.154 844.192 -60.038 <.001 
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Table 19 

Significance of the Difference in Model Chi-Square and Likelihood 

Ratio for Normal and Positively Skewed Distributions ofY=0 and 

Normal Distributions ofY=l with Four Time Periods by Sample 

Size 

Statistic 

Distribution of Y = 0 
Positively 

Normal Skewed G\ 1) P 

n = 300 
Model %2 509.825 403.454 106.371 <.001 
Likelihood Ratio 529.896 456.048 73.848 <.001 

O
 

O
 II a 

Model x2 1090.252 817.687 272.545 <.001 
Likelihood Ratio 642.616 554.744 87.872 <001 

t3 II o o o 

Model %2 2681.581 2009.062 672.519 <.001 
Likelihood Ratio 784.154 694.212 89.942 <.001 



85 

Table 20 

Significance of the Difference in Model Chi-Square and Likelihood 

Ratio for Normal and Negatively Skewed Distributions ofY=0 and 

Normal Distributions ofY=l with Eight Time Periods by Sample 

Size 

Statistic 

Distribution of Y = 0 
Negatively 

Normal Skewed G2{ 1) P 

n = 300 
Model x2 1240.118 1666.024 -425.906 <.001 
Likelihood Ratio 631.379 718.403 -87.024 <.001 

n = 500 
Model %2 2381.850 3310.216 -928.366 <.001 
Likelihood Ratio 737.313 834.805 -97.492 <.001 

S3 II 
H

-*
 O
 

o o 

Model %2 5356.973 7588.352 -2231.379 <001 
Likelihood Ratio 881.351 985.878 -104.527 <.001 
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Table 21 

Significance of the Difference in Model Chi-Square and Likelihood 

Ratio for Normal and Positively Skewed Distributions ofY = 0 and 

Normal Distributions ofY=l with Eight Time Periods by Sample 

Size 

Distribution of Y = 0 

Statistic Normal 
Positively 
Skewed G2(l) P 

Model x2 

Likelihood Ratio 

n 
1240.118 
631.379 

= 300 
838.334 
520.235 

401.784 
111.144 

<.001 
<.001 

Model x2 

Likelihood Ratio 

n 
2381.850 

737.313 

= 500 
1490.587 
602.718 

891.263 
134.595 

<.001 
<.001 

Model x2 

Likelihood Ratio 

n = 
5356.973 

881.351 

= 1,000 
3203.733 
698.686 

2153.240 
182.665 

<.001 
<.001 



87 

Table 22 

Significance of the Difference in Model Chi-Square and Likelihood 

Ratio for Normal and Negatively Skewed Distributions ofY = 0 and 

Negatively Skewed Distributions ofY=l with Four Time Periods by 

Sample Size 

Statistic 

Distribution of Y = 0 
Negatively 

Normal Skewed C2(l) P 

n = 300 
Model x2 678.056 758.571 -805.515 <.001 
Likelihood Ratio 451.774 551.477 -99.703 <.001 

n = 500 
Model x2 1260.077 1519.946 -259.869 <.001 
Likelihood Ratio 562.900 663.468 -100.568 <.001 

n = = 1,000 
Model x2 2899.631 3520.059 -620.428 <001 
Likelihood Ratio 656.215 798.248 -1420.033 <.001 
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Table 23 

Significance of the Difference in Model Chi-Square and Likelihood 

Ratio for Normal and Positively Skewed Distributions ofY = 0 and 

Negatively Skewed Distributions ofY=l with Four Time Periods by 

Sample Size 

Statistic 

Distribution of Y = 0 
Positively 

Normal Skewed G2(l) P 

n = 300 
Model x2 678.056 548.114 129.942 <.001 
Likelihood Ratio 451.774 401.498 50.276 <.001 

n = 500 
Model x2 1260.077 972.242 287.835 <.001 
Likelihood Ratio 562.900 483.298 79.602 <.001 

n = = 1,000 
Model x2 2899.631 2201.248 698.383 <.001 
Likelihood Ratio 656.215 592.135 64.08 <.001 
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Table 24 

Significance of the Difference in Model Chi-Square and Likelihood 

Ratio for Normal and Negatively Skewed Distributions ofY = 0 and 

Negatively Skewed Distributions ofY=l with Eight Time Periods by 

Sample Size 

Statistic 

Distribution of Y = 0 
Negatively 

Normal Skewed G\ 1) P 
P

 II U
J 

o
 

o
 

Model x2 678.056 758.571 -805.515 <.001 
Likelihood Ratio 451.774 551.477 -99.703 <.001 

n = 500 
Model x2 1260.077 1519.946 -259.869 <001 
Likelihood Ratio 562.900 663.468 -100.568 <.001 

n= 1,000 
Model x2 2899.631 3520.059 -620.428 <001 
Likelihood Ratio 656.215 798.248 -1420.033 <001 
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Table 25 

Significance of the Difference in Model Chi-Square and Likelihood 

Ratio for Normal and Positively Skewed Distributions ofY=0 and 

Negatively Skewed Distributions ofY = 1 with Eight Time Periods by 

Sample Size 

Statistic 

Distribution of Y = 0 
Positively 

Normal Skewed G2( 1) P 
ts 1! O

 
o 

Model x2 1599.321 1150.736 1483.585 <001 
Likelihood Ratio 502.301 437.957 64.344 <.001 

£
 11 o o 

Model x2 2778.498 1834.130 944.368 <.001 
Likelihood Ratio 570.790 489.300 81.49 <.001 

n= 1,000 
Model x2 5784.853 3596.556 2188.297 <001 
Likelihood Ratio 683.597 535.987 147.610 <001 
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Table 26 

Significance of the Difference in Model Chi-Square and Likelihood 

Ratio for Normal and Negatively Skewed Distributions ofY=0 and 

Positively Skewed Distributions ofY=l with Four Time Periods by 

Sample Size 

Statistic 

Distribution of Y = 0 
Negatively 

Normal Skewed G2(l) P 

n = 300 
Model x2 386.774 531.957 -145.183 <.001 
Likelihood Ratio 562.837 597.873 -35.036 <.001 

P II o o 

Model x2 962.184 1287.828 -325.644 <.001 
Likelihood Ratio 680.575 715.367 -34.792 <.001 

S3 II o o o 

Model x2 2552.822 3275.019 -722.197 <.001 
Likelihood Ratio 822.805 863.069 -40.264 <.001 
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Table 27 

Significance of the Difference in Model Chi-Square and Likelihood 

Ratio for Normal and Positively Skewed Distributions ofY=0 and 

Positively Skewed Distributions ofY=l with Four Time Periods by 

Sample Size 

Statistic 

Distribution of Y = 0 
Positively 

Normal Skewed G2(l) P 
II L
O

 
O

 
O

 

Model %2 386.774 250.637 136.137 <.001 
Likelihood Ratio 562.837 518.756 44.081 <.001 

n = 500 
Model x2 962.184 652.926 309.258 <.001 
Likelihood Ratio 680.575 629.396 51.179 <.001 

n= 1,000 
Model x2 2552.822 1837.677 715.145 <.001 
Likelihood Ratio 822.805 775.488 47.317 <.001 
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Table 28 

Significance of the Difference in Model Chi-Square and Likelihood 

Ratio for Normal and Negatively Skewed Distributions ofY = 0 and 

Positively Skewed Distributions ofY=l with Eight Time Periods by 

Sample Size 

Statistic 

Distribution of Y = 0 
Negatively 

Normal Skewed G\ 1) P 
P II LO

 
O

 
o 

Model x2 960.488 1430.812 -470.324 <.001 
Likelihood Ratio 680.885 723.490 -42.605 <.001 

3 II O
 

O
 

Model x2 2093.283 3073.513 -980.230 <.001 
Likelihood Ratio 795.754 841.383 -45.629 <.001 

n = 1,000 
Model x2 5063.996 7351.724 -2287.728 <.001 
Likelihood Ratio 944.203 992.381 -48.178 <.001 
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Table 29 

Significance of the Difference in Model Chi-Square and Likelihood 

Ratio for Normal and Positively Skewed Distributions ofY = 0 and 

Positively Skewed Distributions ofY = 1 with Eight Time Periods by 

Sample Size 

Statistic 

Distribution of Y = 0 
Positively 

Normal Skewed G2( 1) P 

n = 300 
Model x2 960.488 528.071 432.417 <.001 
Likelihood Ratio 680.885 600.372 80.513 <.001 

n = 500 
Model x2 2093.283 1157.169 936.114 <.001 
Likelihood Ratio 795.754 706.011 89.743 <.001 

n = = 1,000 
Model x2 5063.996 2832.519 2231.477 <.001 
Likelihood Ratio 944.203 839.775 104.428 <.001 
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Hazard Estimates for the Data Sets 

Time Period 
Data Set Characteristics 1 2 3 4 5 6 7 8 

1 4 N N 300 .0333 .1538 .2667 .2500 -
2 4 N N 500 .0200 .0964 .1600 .1176 -
3 4 N N 1000 .0100 .0449 .0800 .0909 -
4 8 N N 300 .0133 .0209 .0566 .1111 .1667 .2000 .1714 .3077 
5 8 N N 500 .0080 .0125 .0333 .0667 .1000 .1200 .1200 .2000 
6 8 N N 1000 .0040 .0062 .0169 .0345 .0500 .0545 .0522 .1176 
7 4 - N 300 .0333 .0577 .1429 .6250 . . . -
8 4 - N 500 .0200 .0361 .0909 .4000 . . . . 
9 4 - N 1000 .0100 .0169 .0476 .3333 -

10 8 - N 300 .0067 .0138 .0186 .0293 .0659 .1417 .2949 .7692 
11 8 - N 500 .0040 .0083 .0110 .0180 .0426 .1000 .2473 .6522 
12 8 - N 1000 .0020 .0041 .0056 .0095 .0226 .0531 .1456 .5000 
13 4 + N 300 .1667 .1136 .1200 .2500 . . . -
14 4 + N 500 .1000 .0667 .0667 .1176 -
15 4 + N 1000 .0500 0294 .0316 .0909 . . . -
16 8 + N 300 .1000 .0881 .0766 .0667 .0593 .0820 .1290 .1818 
17 8 + N 500 .0600 .0507 .0418 .0364 .0321 .0450 .0870 .1111 
18 8 + N 1000 .0300 .0245 .0202 .0176 .0150 .0192 .0360 .0625 
19 4 N - 300 .0333 .1481 .2000 .0909 . . . -
20 4 N - 500 .0200 .0889 .1143 .0476 . . . -
21 4 N - 1000 .0100 .0437 .0552 .0244 . . . -
22 8 N - 300 .0133 .0205 .0538 .0984 .1152 .0852 .0469 .0541 
23 8 N - 500 .0080 .0123 .0321 .0577 .0651 .0459 .0244 .0278 
24 8 N - 1000 .0040 .0061 .0156 .0273 .0301 .0213 .0118 .0143 
25 4 - - 300 .0333 .0556 .1111 .3333 . . . . 
26 4 - - 500 .0200 .0333 .0667 .2000 . . . -
27 4 - - 1000 .0100 .0164 .0333 .1111 
28 8 - - 300 .0067 .0136 .0177 .0261 .0482 .0769 .1345 .3000 
29 8 - - 500 .0040 .0082 .0106 .0157 .0288 .0457 .0796 .1765 
30 8 - - 1000 .0020 .0040 .0052 .0075 .0139 .0227 .0416 .0984 
31 4 + - 300 .1667 .1087 .0857 .0909 -
32 4 + - 500 .1000 .0610 .0462 .0476 -
33 4 + - 1000 .0500 .0286 .0214 .0244 . . . -
34 8 + - 300 .1000 .0865 .0720 .0574 .0378 .0309 .0323 .0278 
35 8 + - 500 .0600 .0498 .0400 .0309 .0199 .0160 .0165 .0141 
36 8 + - 1000 .0300 .0240 .0185 .0138 .0088 .0072 .0079 .0072 
37 4 N + 300 .0333 .2105 .4000 .3333 . . . . 
38 4 N + 500 .0200 .1379 .2667 .2000 -
39 4 N + 1000 .0100 .0678 .1455 .1176 
40 8 N + 300 .0133 .0265 .0872 .2016 .3012 .3261 .2857 .5000 
41 8 N + 500 .0080 .0169 .0591 .1445 .2155 .2239 .1875 .3333 
42 8 N + 1000 .0040 .0083 .0306 .0847 .1471 .1765 .1500 .2857 

table continues 
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Appendix D, continued 
Time Period 

Data Set Characteristics 1 2 3 4 5 6 7 8 

43 4 _ + 300 .0333 .0789 .2000 .7143 _ - _ 

44 4 - 4- 500 .0200 .0517 .1429 .5556 - - - -

45 4 - + 1000 .0100 .0254 .0833 .4000 - - - -

46 8 - + 300 .0067 .0175 .0284 .0507 .1043 .1868 .3594 .8824 
47 8 - + 500 .0040 .0112 .0194 .0374 .0811 .1518 .3067 .7895 
48 8 - + 1000 .0020 .0055 .0101 .0227 .0594 .1308 .2771 .7500 
49 4 + + 300 .1667 .1667 .2000 .3333 - - - -

50 4 + + 500 .1000 .1000 .1200 .2000 - - - -

51 4 + + 1000 .0500 .0455 .0600 .1176 - - - -

52 8 + + 300 .1000 .1150 .1318 .1519 .1373 .1563 .2353 .3333 
53 8 + + 500 .0600 .0697 .0806 .0937 .0833 .0943 .1429 .2000 
54 8 + + 1000 .0300 .0331 .0380 .0480 .0507 .0704 .1111 .1667 

Note. The first column under "Characteristics" indicates the number of time periods, the 
second column indicates the distribution of Y = 1, the third column indicates the distribution 
of Y = 0, and the fourth column indicates the sample size. 
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Figure 5. Hazard Functions for Normal Distributions of Y = 0 and Normal, Negative, and 
Positive Distributions of Y = 1 with Four Time Periods for Sample Size 
N = 500 
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Figure 6. Hazard Functions for Normal Distributions of Y = 0 and Normal, Negative, and 
Positive Distributions of Y = 1 with Four Time Periods for Sample Size 
N = 1000 
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Figure 7. Hazard Functions for Normal Distributions of Y = 0 and Normal, Negative, and 
Positive Distributions of Y = 1 with Eight Time Periods for Sample Size 
N = 500 
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Figure 8. Hazard Functions for Normal Distributions of Y = 0 and Normal, Negative, and 
Positive Distributions of Y = 1 with Eight Time Periods for Sample Size 
N = 1000 
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Figure 10. Hazard Functions for Normal Distributions of Y = 1 and Normal, Negative, 
and Positive Distributions of Y = 0 with Four Time Periods for Sample Size 
N = 1000 
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Figure 11. Hazard Functions for Normal Distributions of Y = 1 and Normal, Negative, 
and Positive Distributions of Y = 0 with Eight Time Periods for Sample Size 
N = 500 
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Figure 12. Hazard Functions for Normal Distributions of Y = 1 and Normal, Negative, 
and Positive Distributions of Y = 0 with Eight Time Periods for Sample Size 
N = 1000 
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Figure 13. Hazard Functions for Negative Distributions of Y = 1 and Normal, Negative, 
and Positive Distributions of Y = 0 with Four Time Periods for Sample Size 
N = 300 



108 

0.9-
Normal 

Negative 

Positive 

A 0.5. 

R 0.4. 

PERIOD 

Figure 14. Hazard Functions for Negative Distributions of Y = 1 and Normal, Negative, 
and Positive Distributions of Y = 0 with Four Time Periods for Sample Size 
N = 500 
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Figure 15. Hazard Functions for Negative Distributions of Y = 1 and Normal Negative 
and Positive Distributions of Y = 0 with Four Time Periods for Sample Size' 
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Figure 17. Hazard Functions for Negative Distributions of Y = 1 and Normal, Negative, 
and Positive Distributions of Y = 0 with Eight Time Periods for Sample Size 
N = 500 
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Figure 18. Hazard Functions for Negative Distributions of Y = 1 and Normal, Negative, 
and Positive Distributions of Y = 0 with Eight Time Periods for Sample Size 
N = 1000 
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Figure 19. Hazard Functions for Positive Distributions of Y = 1 and Normal, Negative, 
and Positive Distributions of Y = 0 with Four Time Periods for Sample Size 
N = 300 
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Figure 20. Hazard Functions for Positive Distributions of Y = 1 and Normal, Negative, 
and Positive Distributions of Y = 0 with Four Time Periods for Sample Size 
N = 500 
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Figure 21. Hazard Functions for Positive Distributions of Y = 1 and Normal, Negative, 
and Positive Distributions of Y = 0 with Four Time Periods for Sample Size 
N = 1000 
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Figure 22. Hazard Functions for Positive Distributions of Y = 1 and Normal, Negative, 
and Positive Distributions of Y - 0 with Eight Time Periods for Sample Size 
N = 300 
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Figure 23. Hazard Functions for Positive Distributions of Y = 1 and Normal, Negative, 
and Positive Distributions of Y = 0 with Eight Time Periods for Sample Size 
N = 500 
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Figure 24. Hazard Functions for Positive Distributions of Y = 1 and Normal, Negative, 
and Positive Distributions of Y = 0 with Eight Time Periods for Sample Size 
N = 1000 
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Figure 25. Hazard Functions for Negative Distributions of Y = 0 and Normal, Negative, 
and Positive Distributions of Y = 1 with Four Time Periods for Sample Size' 
N = 300 
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Figure 26. Hazard Functions for Negative Distributions of Y = 0 and Normal, Negative, 
and Positive Distributions of Y = 1 with Four Time Periods for Sample Size' 
N = 500 
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Figure 27. Hazard Functions for Negative Distributions of Y = 0 and Normal, Negative, 
and Positive Distributions of Y = 1 with Four Time Periods for Sample Size 
N = 1000 
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Figure 28. Hazard Functions for Negative Distributions of Y = 0 and Normal, Negative, 
and Positive Distributions of Y= 1 with Eight Time Periods for Sample Size 
N = 300 
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Figure 29. Hazard Functions for Negative Distributions of Y = 0 and Normal, Negative, 
and Positive Distributions of Y = 1 with Eight Time Periods for Sample Size 
N = 500 
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Figure 30. Hazard Functions for Negative Distributions of Y = 0 and Normal, Negative, 
and Positive Distributions of Y = 1 with Eight Time Periods for Sample Size 
N = 1000 
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Figure 31. Hazard Functions for Positive Distributions of Y = 0 and Normal, Negative, 
and Positive Distributions of Y = 1 with Four Time Periods for Sample Size 
N = 300 
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Figure 32. Hazard Functions for Positive Distributions of Y = 0 and Normal, Negative, 
and Positive Distributions of Y = 1 with Four Time Periods for Sample Size 
N = 500 



127 

Normal 

Negative 

Positive 

A 0.5. 

R 0.4. 

PERIOD 

Figure 33. Hazard Functions for Positive Distributions of Y = 0 and Normal, Negative, 
and Positive Distributions of Y = 1 with Four Time Periods for Sample Size 
N = 1000 
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Figure 34. Hazard Functions for Positive Distributions of Y = 0 and Normal, Negative, 
and Positive Distributions of Y = 1 with Eight Time Periods for Sample Size 
N = 300 
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Figure 35. Hazard Functions for Positive Distributions of Y = 0 and Normal, Negative, 
and Positive Distributions of Y = 1 with Eight Time Periods for Sample Size 
N = 500 
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Figure 36. Hazard Functions for Positive Distributions of Y = 0 and Normal, Negative, 
and Positive Distributions of Y = 1 with Eight Time Periods for Sample Size 
N = 1000 



APPENDIX F 

SIGNIFICANCE OF THE DIFFERENCE IN DATA SET STATISTICS FOR DATA 
SETS WITH THE SAME NUMBER OF TIME PERIODS AND 

SIMILAR DISTRIBUTIONS OF Y = 1 AND Y = 0 

131 



132 

Table 30 

Significance of Difference in Model Chi-Square by Sample Size and 

Number of Time Periods with a Normal Distribution ofY = 0 and a 

Normal Distribution ofY = 1 

Time Periods 
Sample Size 4 8 g2(D P 

300 509.825 1240.118 -730.293 <.001 
500 1090.252 2381.850 -1291.598 <.001 
1,000 2681.581 5356.973 -2675.392 <.001 

Table 31 

Significance of Difference in Likelihood Ratio by Sample Size and 

Number of Time Periods with a Negatively Skewed Distribution of 

Y = 0 and a Negatively Skewed Distribution ofY=l 

Time Periods 
Sample Size 4 8 G\ 1) P 

300 758.571 1959.807 -1201.236 <.001 
500 1519.946 3609.275 -2089.329 <.001 
1,000 3520.059 7902.290 -4382.231 <.001 
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Table 32 

Significance of Difference in Model Chi-Square by Sample Size and 

Number of Time Periods with a Positively Skewed Distribution of 

Y = 0 and a Positively Skewed Distribution ofY=l 

Time Periods 
Sample Size 4 8 G2(l) P 

300 518.756 600.372 -81.616 <.001 
500 629.396 706.011 -76.615 <.001 
1,000 775.488 839.775 -64.287 <.001 

Table 33 

Significance of Difference in Likelihood Ratio by Sample Size and 

Number of Time Periods with a Normal Distribution ofY = 0 and a 

Normal Distribution ofY = 1 

Time Periods 
Sample Size 4 8 G2(l) P 

300 529.896 631.379 -101.483 <.001 
500 642.616 737.313 -94.697 <.001 
1,000 784.154 881.351 -97.197 <.001 
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Table 34 

Significance of Difference in Model Chi-Square by Sample Size and 

Number of Time Periods with a Negatively Skewed Distribution of 

Y = 0 and a Negatively Skewed Distribution ofY=l 

Time Periods 
Sample Size 4 8 G2(l) P 

300 551.477 654.744 -103.267 <.001 
500 663.468 765.870 -102.402 <.001 
1,000 798.248 902.065 -103.817 <.001 

Table 35 

Significance of Difference in Likelihood Ratio by Sample Size and 

Number of Time Periods with a Positively Skewed Distribution of 

Y = 0 and a Positively Skewed Distribution ofY-1 

Time Periods 
Sample Size 4 8 G2(D P 

300 250.637 528.071 -277.434 <.001 
500 652.926 1157.169 -507.243 <.001 
1,000 1837.677 2832.519 -994.842 <.001 
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Figure 37a. Hazard Functions for Normal Distributions of Y = 1 and Y = 0 with Four 
Time Periods by Sample Size 
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Figure 37b. Hazard Functions for Normal Distributions of Y = 1 and Y = 0 with Eight 
Time Periods by Sample Size 
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Figure 38a. Hazard Functions for Negatively Skewed Distributions of Y = 1 and Y = 0 
with Four Time Periods by Sample Size 
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Figure 38b. Hazard Functions for Negatively Skewed Distributions of Y = 1 and Y = 0 
with Eight Time Periods by Sample Size 
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Figure 39a. Hazard Functions for Positively Skewed Distributions of Y = 1 and Y = 0 
with Four Time Periods by Sample Size 
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Figure 39b. Hazard Functions for Positively Skewed Distributions of Y = 1 and Y = 0 
with Eight Time Periods by Sample Size 
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Figure 40. Hazard Functions for Normal Distributions of Y = 1 and Y = 0 with Four 
Time Periods by Sample Size 
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Figure 41. Hazard Functions for Normal Distributions of Y = 1 and Y = 0 with Eight 
Time Periods by Sample Size 
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Figure 43. Hazard Functions for Normal Distributions of Y = 1 and Negative 
Distributions of Y = 0 with Eight Time Periods by Sample Size 
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Figure 44. Hazard Functions for Normal Distributions of Y = 1 and Positive 
Distributions of Y = 0 with Four Time Periods by Sample Size 
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Figure 45. Hazard Functions for Normal Distributions of Y = 1 and Positive 
Distributions of Y = 0 with Eight Time Periods by Sample Size 
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Figure 46. Hazard Functions for Negative Distributions of Y = 1 and Normal 
Distributions of Y = 0 with Four Time Periods by Sample Size 
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Figure 47. Hazard Functions for Negative Distributions of Y = 1 and Normal 
Distributions of Y = 0 with Four Time Periods by Sample Size 



148 

0.9 

0.8 

0.7-

0.6. 

H 
A 0.5 
Z 
A 
R 0.4 J 

— N = 300 

—11—N = 500 

- A - N = 1,000 

PERIOD 

Figure 48. Hazard Functions for Negative Distributions of Y = 1 and Negative 
Distributions of Y = 0 with Four Time Periods by Sample Size 
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Figure 49. Hazard Functions for Negative Distributions of Y = 1 and Negative 
Distributions of Y = 0 with Eight Time Periods by Sample Size 
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Figure 50. Hazard Functions for Negative Distributions of Y = 1 and Positive 
Distributions of Y = 0 with Four Time Periods by Sample Size 
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Figure 51. Hazard Functions for Negative Distributions of Y = 1 and Positive 
Distributions of Y = 0 with Eight Time Periods by Sample Size 
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Figure 52. Hazard Functions for Positive Distributions of Y = 1 and Normal 
Distributions of Y = 0 with Four Time Periods by Sample Size 
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Figure 53. Hazard Functions for Positive Distributions of Y = 1 and Normal 
Distributions of Y = 0 with Eight Time Periods by Sample Size 



154 

0.9 -

0.8 . 

0.7. 

0.6. 

H 
A 0.5. 
Z 
A 
R 0.4. 
D 

0.3. 

0.2. 

— N = 300 

—B—N = 500 

—A—N = 1,000 

PERIOD 

Figure 54. Hazard Functions for Positive Distributions of Y = 1 and Negative 
Distributions of Y = 0 with Four Time Periods by Sample Size 
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Figure 55. Hazard Functions for Positive Distributions of Y = 1 and Negative 
Distributions of Y = 0 with Eight Time Periods by Sample Size 
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Figure 57. Hazard Functions for Positive Distributions of Y = 1 and Positive 
Distributions of Y = 0 with Eight Time Periods by Sample Size 
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