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Differential item functioning (DIF) detection rates were examined 

for the logistic regression and analysis of variance (ANOVA) DIF 

detection methods. The methods were applied to simulated data sets of 

varying test length (20, 40, and 60 items) and sample size (200, 400, 

and 600 examinees) for both equal and unequal underlying ability 

between groups as well as for both fixed and varying item discrimination 

parameters. Each test contained 5% uniform DIF items, 5% 

non-uniform DIF items, and 5% combination DIF (simultaneous 

uniform and non-uniform DIF) items. The factors were completely 

crossed, and each experiment was replicated 100 times. 

For both methods and all DIF types, a test length of 20 was 

sufficient for satisfactory DIF detection. The detection rate increased 

significantly with sample size for each method. 

With the ANOVA DIF method and uniform DIF, there was a 

difference in detection rates between discrimination parameter types, 

which favored varying discrimination and decreased with increased 



sample size. The detection rate of non-uniform DIF using the ANOVA 

DIF method was higher with fixed discrimination parameters than with 

varying discrimination parameters when relative underlying ability was 

unequal. In the combination DIF case, there was a three-way interaction 

among the experimental factors discrimination type, relative ability, and 

sample size for both detection methods. 

The error rate for the ANOVA DIF detection method decreased as 

test length increased and increased as sample size increased. For both 

methods, the error rate was slightly higher with varying discrimination 

parameters than with fixed. For logistic regression, the error rate 

increased with sample size when relative underlying ability was unequal 

between groups. The logistic regression method detected uniform and 

non-uniform DIF at a higher rate than the ANOVA DIF method. 

Because the type of DIF present in real data is rarely known, the logistic 

regression method is recommended for most cases. 



TABLE OF CONTENTS 

Page 

LIST OF TABLES v 

Chapter 

1. INTRODUCTION 1 

Overview of Differential Item Functioning Detection 
Rationale for Study 
Research Questions 
Delimitations 
Definitions 

2. REVIEW OF THE LITERATURE 11 

Traditional Differential Item Functioning Methods 
Chi-Square Differential Item Functioning Methods 
Latent Trait Differential Item Functioning Methods 

3. METHODS AND PROCEDURES 29 

Differential Item Functioning Types 
Experimental Factors 
Construction of Simulated Data Sets 

4. RESULTS 46 

Uniform Differential Item Functioning Detection 
Non-Uniform Differential Item Functioning 

Detection 
Combination Differential Item Functioning 

Detection 
False Positive Errors 
Summary 

5. CONCLUSIONS AND RECOMMENDATIONS 61 

Conclusions 
Recommendations 

in 



Page 

APPENDICES: 

A. DATA GENERATION PROGRAM 72 

B. RASCH RESIDUAL SCORE CALCULATION 
PROGRAM 77 

C. RESIDUAL SCORE ANALYSIS OF VARIANCE 
PROGRAM 82 

D. LOGISTIC REGRESSION PROGRAMS 88 

E. DATA ANALYSIS PROGRAM 91 

F. SUMMARY DATA 93 

REFERENCES 100 

IV 



LIST OF TABLES 

Table Page 

1. Definition of Experiments 30 

2. Mean Percentage Detection Rates Over 100 Replications . . . 47 

3. Analysis of Variance of the Effects of Experimental 
Factors on Uniform Differential Item 
Functioning Detection Rates 49 

4. Interaction Cell Means for Analysis of Variance 
Differential Item Functioning Method and Uniform 
Differential Item Functioning 50 

5. Analysis of Variance of the Effects of Experimental 
Factors on Non-Uniform Differential Item 
Functioning Detection Rates 51 

6. Interaction Cell Means for Analysis of Variance 
Differential Item Functioning Method and 
Non-Uniform Differential Item Functioning 52 

7. Analysis of Variance of the Effects of Experimental Factors 
on Combination Differential Item Functioning 
Detection Rates 54 

8. Interaction Cell Means for Analysis of Variance 
Differential Item Functioning Method and 
Combination Differential Item Functioning 55 

9. Interaction Cell Means for Logistic Regression Method 
and Combination Differential Item Functioning 
at Sample Size 200 56 

10. Interaction Cell Means for Logistic Regression Method 
and Combination Differential Item Functioning 57 

11. Analysis of Variance of the Effects of Experimental Factors 
on False Positive Error Detection Rates 58 

12. Interaction Cell Means for Logistic Regression Method 
and False Positive Errors 59 



Table Page 

13. Summary Data for Logistic Regression and Analysis of 
Variance Differential Item Functioning Detection 
Methods (100 Replications) 94 

VI 



CHAPTER 1 

INTRODUCTION 

Overview of Differential Item 
Functioning Detection 

A fundamental requirement of measurement is that test scores 

should be valid. A test should measure examinee ability accurately 

without regard to the subject's membership in any demographic group. 

Although sources of variation unrelated to the construct of interest 

cannot be eliminated entirely, efforts should be made to ensure that 

these sources of variation do not put any subpopulation at a 

disadvantage. If extraneous sources of variance are distributed differently 

for identifiable subgroups on a test item, the item is considered biased 

(Crocker &. Algina, 1986). The presence of bias is a cause for concern 

because tests are used as gatekeepers for educational opportunities and 

employment advances. Legislative actions as well as lawsuits have 

resulted from perceptions that tests are biased against certain groups 

(Faggen, 1987; McAllister, 1993). 

Bias in testing can be divided into two subcategories: selection 

bias and item bias. Studies of selection bias look at fair use of tests such 

as college admissions examinations and licensing examinations. Selection 

bias is studied through the comparisons of test scores to external criteria. 
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Item bias is studied by looking at the test structure itself through both 

judgmental and statistical methods. It is the statistical analyses of group 

differences on item characteristics that detect differential item 

functioning (DIF). 

Although the phrases are sometimes used interchangeably, 

differential item functioning is more meaningful and neutral terminology 

than item bias when statistical properties are studied (Holland & Thayer, 

1988; Humphreys, 1986). DIF detection refers to any empirical method 

used to flag items for possible item bias. Perhaps the relationship 

between item bias and DIF was best explained by Camilli (1993): 

An item is said to "function differently" for two or more groups if 
the probability of a correct answer to a test item is associated with 
group membership for examinees of comparable ability. Statistical 
indices of DIF are designed to identify such test items. If the 
degree of DIF is determined to be practically significant for an item 
and the DIF can be attributed plausibly to a feature of the item 
that is irrelevant to the test construct, the presence of this item on 
the test biases the ability estimates of some individuals. This 
compound condition, when satisfied, indicates item bias, 
(pp. 397-398) 

To calculate statistical indices of DIF, a population is usually 

divided into comparison groups referred to as reference and focal groups, 

majority and minority groups, or base and comparison groups. Item 

statistics are then calculated for each group. If item statistics differ 

between groups after adjusting for ability differences, an item is said to 

exhibit DIF. Because these techniques use test scores as a measure of 

ability, only items biased relative to the test itself can be identified. 



These procedures can be categorized into three broad classes: 

traditional classical test theory methods, chi-square methods, and latent 

trait theory methods. Of these, latent trait methods are theoretically 

preferred (Shepard, Camilli, &. Williams, 1984), but they are 

computationally intense (expensive), usually need minimum sample sizes 

of 1,000, and often require test lengths of at least 40 items. In practice, 

the population of minority examinees may be too small to allow 

implementation of a latent trait method (Bleistein, 1986). Much 

research in the area of DIF detection focuses on alternatives that can be 

applied under less restrictive conditions and that require fewer 

computations. 

The current method of choice, developed by Holland and Thayer 

(1988), is based on the Mantel-Haenszel chi-square statistic. The 

Mantel-Haenszel procedure is the DIF detection method used by many 

practitioners, including those at Educational Testing Service (Dorans & 

Holland, 1993). The technique's popularity is due to favorable 

performance comparisons with latent trait methods while taking 

substantially less time to calculate. The method is so well accepted that 

Holland and Wainer (1993) mentioned it as a standard against which 

new methods could be judged before adoption by measurement 

practitioners. 



Rationale for Study 

Although the Mantel-Haenszel procedure eliminates the 

time-consuming calculations inherent in latent trait DIF detection 

methods, it is not free from shortcomings. One troublesome condition is 

small sample size. Mazor, Clauser, and Hambleton (1991) found that 

with sample sizes of 500 the method's DIF detection rate was lower than 

50%. Another situation in which the Mantel-Haenszel procedure 

performs poorly is in the presence of group differences in item 

discrimination, a condition known as non-uniform DIF. This problem has 

been illustrated analytically (Hambleton & Rogers, 1989) and 

empirically (Rogers, 1989; Rogers &. Swaminathan, 1993; Swaminathan 

& Rogers, 1990). 

To overcome these difficulties, two procedures have been proposed 

as alternatives to the Mantel-Haenszel procedure. Both have been 

shown through simulation studies to outperform the Mantel-Haenszel 

technique. The ANOVA method using Rasch-based estimates (Tang, 

1994) has been found to be more powerful than the Mantel-Haenszel 

method with small sample sizes. The second method, based on logistic 

regression, has been shown to detect non-uniform DIF, which was not 

found by the Mantel-Haenszel method (Rogers, 1989; Rogers & 

Swaminathan, 1993; Swaminathan & Rogers, 1990). Unlike the 

Mantel-Haenszel procedure, both of these methods treat ability as a 



continuous variable and thus utilize more information (Linacre &. 

Wright, 1987; Swaminathan & Rogers, 1990). 

Two studies of logistic regression as a DIF detection method have 

used simulated data to compare the performance of logistic regression to 

the Mantel-Haenszel technique. Under all studied conditions, logistic 

regression has been superior to the Mantel-Haenszel method, most 

notably in the presence of non-uniform DIF (Rogers, 1989; Rogers &. 

Swaminathan, 1993; Swaminathan & Rogers, 1990). A third study 

(Tian, Pang, &Boss, 1994) used a variation of the Swaminathan and 

Rogers' technique on real data and found that the logistic regression 

method outperformed the Mantel-Haenszel procedure. The Tang (1994) 

study used simulated data to compare the performance of the ANOVA 

DIF detection method with Rasch-based estimates to the 

Mantel-Haenszel technique. In all simulated situations, the ANOVA 

DIF detection method was superior to the Mantel-Haenszel method, 

most notably in small sample sizes. Because the ANOVA DIF detection 

and logistic regression methods have been show to be preferable to the 

Mantel-Haenszel method in these studies, a study to directly compare 

these two procedures is warranted. What remains unknown is the 

relative performance of these two DIF detection methods under identical 

conditions. No research has been done directly comparing the two 

methods. 



The ANOVA DIF detection method using Rasch-based estimates 

has been applied only to the detection of uniform DIF. The existence of 

non-uniform DIF violates an assumption of the Rasch model. However, 

Rudner, Getson, and Knight (1980) detected non-uniform DIF with a 

Rasch-based method by interpreting the lack of fit between the data and 

the model as DIF. Swaminathan and Rogers (1990), by contrast, are 

among the researchers who assert that Rasch-based DIF methods will not 

detect non-uniform DIF. Angoff (1993) further stated that Rasch-based 

DIF detection methods are likely to find artifactual DIF in cases of 

model-data misfit. There seems to be no empirical verification of these 

claims. 

The ANOVA DIF detection method has been limited to the study 

of test lengths of 30 items. Sample sizes have ranged from 200 to 1,200 

total examinees. Wright and Stone (1979) recommended a minimum of 

200 total examinees and a minimum test length of 20 when using the 

Rasch model. Examination of the ANOVA DIF detection method has 

also been confined to data in which discrimination was constant for all 

items. 

Logistic regression has not been evaluated for use when sample 

sizes were less than 500 total examinees or when text lengths were less 

than 40 items. Furthermore, the logistic regression method has been 

used only with reference and focal groups constrained to have equivalent 

underlying ability distributions. Rogers (1989) proposed further study 



when the reference and focal groups have unequal ability distributions, 

when sample sizes are as small as 100 per group, or when test lengths are 

as short as 20 items. Consequently, these two methods were compared 

on identical sets of data with known DIF and related factors known to 

affect DIF detection. 

Research Questions 

The following questions were examined with respect to the logistic 

regression and ANOVA methods of DIF detection: 

1. Do significant interactions or main effects exist for test length, 

sample size, discrimination types, and relative ability when the type of 

DIF is uniform? 

2. Do significant interactions or main effects exist for test length, 

sample size, discrimination type, and relative ability when the type of 

DIF is non-uniform? 

3. Do significant interactions or main effects exist for test length, 

sample size, discrimination type, and relative ability when both uniform 

DIF and non-uniform DIF are present? 

4. Do significant interactions or main effects exist for test length, 

sample size, discrimination type, and relative ability for false positive 

errors? 
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Delimitations 

The generated data simulated responses to dichotomously scored 

test items, with no guessing and no omitted answers. The factors under 

study were delimited to include only three sample sizes (200, 400, and 

600 examinees), three test lengths (20, 40, and 60 items), two relative 

ability distributions (equal and differing by one standard deviation), and 

two item discrimination assumptions (constant and varying). The use of 

simulated data in this study permitted knowledge about which items 

actually contained DIF and were anticipated to be detected by DIF 

detection methods. However, artificially created data may not 

necessarily reflect DIF as it actually occurs with real examinees in any 

given test situation (Subkoviak, Mack, Ironson, & Craig, 1984). 

Definitions 

DIF, an acronym for differential item functioning, is present in a 

test item if the probability of a correct answer differs between equally 

able members of separate demographic groups. 

Uniform DIF occurs when an item is uniformly more difficult for 

one group than another across all ability levels. The case in which only 

item difficulty varied between groups was considered uniform DIF. 

Non-uniform DIF occurs when the difference in difficulty between 

groups varies across ability levels. The case in which only item 

discrimination varied between groups was considered non-uniform DIF. 



Combination DIF exists when both item difficulty and item 

discrimination vary between groups. 

Focal group is the group of examinees against whom DIF is 

generated. 

Reference group is the group of examinees against whom no DIF is 

generated. 

Latent Trait Theory encompasses models that related unobservable 

abilities (latent traits) to test item performance. An in-depth discussion 

of this theory can be found in Hambleton (1989). 

Item characteristic curve represents the probability of a correct 

response to an item as a function of the ability measured by the test that 

contains the item. 

Item discrimination (a-parameter) is proportional to the slope of the 

item characteristic curve at the point of inflection. 

Item difficulty (b-parameter) is the location of the point of inflection 

on the item characteristic curve ability scale. 

Guessing (c-parameter) is the lower asymptote of the item 

characteristic curve. 

Examinee ability estimate (0) is the examinee latent trait or ability 

level. 

Rasch model is a latent trait model which assumes that item 

discrimination is equal for all items and that no guessing occurs. 

Observed score is the actual item score. 
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Expected score is the score expected for an item based on Rasch 

estimation. 

Residual score is the difference between an observed and an expected 

score. 



CHAPTER 2 

REVIEW OF THE LITERATURE 

Methods to detect the presence of differential item functioning 

(DIF) can be placed in three broad categories: traditional (classical 

true-score) methods, chi-square methods, and latent trait theory 

methods. The categories differ in their approach to detecting DIF. The 

various methods in each category are described below. 

Traditional Differential Item 
Functioning Methods 

Traditional methods are those based on classical true score theory. 

The item difficulty and item discrimination used in this measurement 

theory are analogous, but not equivalent, to those in latent trait theory. 

Classical true score theory, as well as the DIF detection methods based 

on this theory, yields uncomplicated calculations that are easy to 

compute. The major problem is that these methods are test and sample 

dependent. The results do not generalize to the general population 

because they depend on the particular group of examinees and the 

specific test items used to obtain the item statistics. A more detailed 

discussion of classical true score theory weakness is contained in Crocker 

and Algina's (1986) work. 

11 
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Traditional Analysis of Variance 

The application of analysis of variance (ANOVA) to the study of 

DIF originated with Cleary and Hilton (1968). A number of designs 

have been used, such as Ethnicity x Gender x Age x Items (Jensen, 1974). 

Usually, the factorial designs include independent grouping variables 

such as gender, with item score as the dependent variable (Osterlind, 

1983). The magnitude of the item-by-group interaction in relation to 

other sources of variance is used as an indicator of DIF (Jensen, 1973). 

In the presence of significant item-by-group interaction, post hoc 

multiple comparison procedures are used to detect specific items with 

DIF (Plake, 1981; Plake & Hoover, 1979). 

The ANOVA method is easily understood, relies on simple 

calculations, and does not require a large number of examinees for 

implementation. Unfortunately, highly discriminating items, easy items, 

and difficult items will falsely indicate DIF if the groups differ in 

achievement level (Camilli &Shepard, 1987). 

Following publication of Camilli and Shepard's (1987) 

denouncement, use of ANOVA methods for DIF detection seemed to 

end. However, ANOVA was successfully used with matched pairs of 

examinees in a split-plot factorial design (Seong, 1990). 

Transformed Item Difficulties 

When the transformed item difficulties, or delta plot method is 

used, the proportion of correct responses for an item, known as p-values, 
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is calculated separately for each group. These p-values are transformed 

into z-values corresponding to the (l-p)th percentile of the standardized 

normal distribution. Delta values are calculated using the formula 

A = 4z 4- 13, then plotted on a coordinate system whose axes represent 

the comparison groups. An ellipse is fitted to the points, and the 

distance between each point and the major axis of the ellipse is computed 

as a measure of DIF for the item represented by the point (Angoff, 

1972). Items are ranked by the magnitude of this difference, with large 

differences indicating more DIF than small differences. Baghi and 

Ferrara (1989) found very high agreement between Rasch and delta plot 

DIF indices. 

The transformed item difficulties approach is simple and 

inexpensive to implement; nevertheless, this method tends to confound 

item difficulty with item discrimination; hence, when utilized with 

groups of differing mean ability, highly discriminating items will show 

spurious DIF (Angoff, 1982; Shepard, Camilli, & Williams, 1985). A 

modification suggested by Angoff has been found to be inadequate 

(Seong & Subkoviak, 1987; Shepard et al., 1985). However, Shepard 

et al. partialled point biserials out of the existing delta indices with good 

results and recommended further study. 
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Standardization Method 

The first DIF detection method, based on classical test theory, that 

considered differences in ability between groups was the standardization 

method (Dorans &. Kulick, 1983). Empirical item characteristic curves 

are formed for each group using scaled scores for the jr-axis and p-values 

for thej-axis. The differences in p-values between groups at each score 

level are weighted and summed. The resulting value is then compared to 

a cut-off value. Because there are no test statistics associated with the 

technique, practitioners refer to it as a DIF description method rather than 

a DIF detection method (Dorans &. Holland, 1993). 

The standardization method was developed at Educational Testing 

Service to detect DIF in the Scholastic Aptitude Test. Large sample sizes 

are required for stability (Dorans & Kulick, 1983) making the method 

impractical for many situations. Outside the Educational Testing 

Service, the standardization method has been applied in at least one 

study (Masters, 1988). No empirical verification using data with known 

DIF seems to have been conducted. 

Partial Correlation 

The partial correlation index, proposed by Strieker (1982), is the 

correlation between group membership and success on an item after 

partialling out scores on the test with the item omitted. The phi 

coefficient was used to determine significance. 
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Researchers who have used the partial correlation index cite its 

ease of computation, applicability to small samples, and ability to handle 

disproportionate sample sizes (Willson, Nolan, Reynolds, & Kamphaus, 

1989). A sample size of at least 1,500, with no fewer than 300 

examinees in the smallest subgroup, was recommended for stability 

(Strieker, 1984). 

Regression Bias 

Raju and Normand (1985) advocated the development of a 

regression line for each group, using p-values as the criterion and total 

test score as a predictor variable. Non-identical regression lines imply 

that an item has DIF. The F-ratio for equality of two regression lines was 

used to indicate significant DIF. Raju and Normand claimed that this 

method was easy to implement and could be used with sample sizes as 

small as 150. When compared to other DIF detection methods, this 

procedure's correlation was strongest with chi-square methods and 

weakest with latent trait methods. Raju and Normand acknowledged 

that logistic regression was theoretically preferred to the regression bias 

method, in spite of more complex computations. 

Conclusion 

With the exception of the standardization method, none of these 

methods seems to have found acceptance with measurement 

practitioners. This is understandable in light of the test and sample 
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dependence inherent in any procedure based on classical test theory. 

The advantage of simple calculation becomes smaller as computers 

become faster, more powerful, and less expensive. 

Chi-Square Differential Item 
Functioning Methods 

The general strategy of chi-square methods is to partition each 

group into subgroups based on test scores, then to compare proportions 

of correct responses within each level. DIF is assumed to exist if these 

proportions are unequal between groups. Variations are created by 

specifying different null and alternative hypotheses. 

General Chi-Square Methods 

Scheuneman (1979) developed a DIF index similar to x2> which 

was subsequently found not to be distributed as the x2 model required, 

and, therefore, was no longer recommended (Osterlind, 1983). Other x2 

DIF detection methods have since been proposed. 

Shepard and Camilli (1981) reported a modification by Camilli to 

the Scheuneman procedure that resulted in an index with a x2 

distribution. Camilli's x2 requires creation of three to five ability 

intervals, followed by calculation of x2 for each interval. The x2 values 

for each interval are summed, and the result is tested for significance. 

Ironson (1982) also indicated how this statistic can easily be calculated 
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with a 2 x 2 contingency table for each ability level (right/wrong by 

reference/focal groups). 

Two other %2 methods for identifying DIF have been presented by 

Marascuilo and Slaughter (1981). One of these methods tests the null 

hypothesis of no group differences in proportion correct at any ability 

level against the alternative hypothesis of a constant group difference 

across ability levels. Another method is based on partitioning %2 across 

the number of ability levels, using planned pairwise comparisons. 

Although these methods are easy to understand, use sample sizes 

as small as 200, and can be tested for significance, there are some 

disadvantages. The magnitude of the chi-square statistic could change if 

the score interval cutoffs are changed. If the score distributions between 

the groups are different, chi-square can become inflated. Finally, by 

treating the continuous variable test score as a discrete variable, 

information can be lost (Ironson, 1982). 

Logit Models 

Mellenbergh (1982) proposed the creation of three-way tables 

(score level x group x response), followed by tests for a main effect of 

score level or comparison group, and a score by group interaction. If a 

model including only a constant and a score group fit the data, the item 

was free of DIF. 
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An interative model was developed by Van der Flier, Mellenbergh, 

Ader, and Wijn (1984). Essentially, at the i'th iteration, the i items with 

the most DIF were removed, and the observed score indicator of ability 

for the (i + l)th iteration was computed from the remaining items 

(Intraprasert, 1986). 

Mantel-Haenszel 

The Mantel-Haenszel procedure was developed by Holland and 

Thayer (1988) and has been used by many researchers. Examinees are 

divided into ability intervals based on test score. For each interval, a 

2 x 2 table (item score by group membership) is constructed for the item 

to be studied. The null hypothesis is that the odds of an item being 

correct is the same in each group across all ability levels. It is based on 

the logit model reduced by the removal of the interaction parameter, 

which results in a more powerful test when there is only uniform DIF, 

but which prevents the detection of non-uniform DIF (Rogers, 1989). 

The Mantel-Haenszel procedure assumes that the underlying 

ability distributions of the reference and focal groups are equal (Linacre 

& Wright, 1987; Zwick, 1990), a condition which may not exist in 

practice. Camilli and Smith (1990) noted that the power of the 

Mantel-Haenszel method depended on the total sample size at any 

particular raw score. Hambleton and Rogers (1989) demonstrated 

analytically that the Mantel-Haenszel statistic was not designed to detect 
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group differences in item discrimination, a condition known as 

non-uniform DIF. 

Using artificial data, researchers have found that the 

Mantel-Haenszel procedure performs poorly with poor discrimination in 

the DIF-containing items, with small differences in between-group item 

difficulties (Mazor, Clauser, & Hambleton, 1991), with very difficult 

DIF-containing items (Clauser, Mazor, & Hambleton, 1991; Mazor et 

al., 1991), and in the presence of non-uniform DIF (Rogers, 1989; 

Rogers & Swaminathan, 1993; Swaminathan &. Rogers, 1990). Ryan 

(1991) found that obtaining stable estimates with the Mantel-Haenszel 

procedure required larger sample sizes than the Educational Testing 

Service recommended minimum total sample size of 500. Mazor et al. 

(1991) also found that fewer than half of the DIF items were detected 

with sample sizes of 500. 

Logistic Regression 

The use of logistic regression to detect DIF has been explored by 

Rogers (1989), Swaminathan and Rogers (1990), Rogers and 

Swaminathan (1993), and Tian, Pang, and Boss (1994). This method is 

a generalization of the Mantel-Haenszel procedure (Wainer, 1993). The 

probability of an individual's correct response to an item is given by the 

formula 

u(D = — 
1 +e' 
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where 
2 = To • Zfi + X2g + X,(%). 

The parameter t 0 is the intercept, t , is the coefficient for ability, 

t 2 corresponds to group difference in item performance, x3 corresponds 

to group by ability interaction, 0 is the observed ability of the individual, 

andg represents group membership (e.g., g = 1 for examinees in the 

reference group and g = 0 for examinees in the focal group). The 

parameters i0, t , , t2 , and t 3 can be estimated by the method of 

maximum likelihood, as explained by Hosmer and Lemeshow (1989). 

An item is considered free of DIF if x2 = x3 = 0. A likelihood ratio 

test and a Wald test statistic have been used in DIF research to 

determine the significance of these coefficients. Swaminathan and 

Rogers (1990) and Rogers and Swaminathan (1993) used the Wald 

statistic, but Rogers (1989) used both the Wald statistic and the 

likelihood ratio test and found no differences in the results (H. J. Rogers, 

personal communication, December 2, 1993). Hosmer and Lemeshow 

(1989) recommended the likelihood ratio test for theoretical and 

practical reasons, noting that the likelihood ratio test was easier to 

implement using existing software packages. 

The likelihood ratio test compares the logistic regression model 

that includes all parameters to a model with the restriction t 2 = t 3 = 0. 

These models can be expressed as 
Zv,», = + + "tJ? + (%) FULL Q I 2 » 3 v e > f 
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and 

Z = X + X 0. 
REDUCED 0 1 

The values of the parameters are estimated for each model. Each 

model's log likelihood L is then calculated using 

l = ln(llC(r» 

where 

C(f) = rc(j?rtl-n(f}]"" 

andj?,, . . . , j n are the item scores of the n examinees. 

Finally, the test statistic is 
G = -2(1 - l ) 

V REDUCED FULL1 

which has a chi-square distribution with 2 degrees of freedom. 

Programs that estimate logistic regression parameters and calculate 

the corresponding log likelihoods are available in commonly used 

statistical software packages. In terms of computer time, Rogers and 

Swaminathan (1993) found that the logistic regression method was three 

to four times as expensive as the Mantel-Haenszel method, yet much less 

expensive than item response theory methods. 

The logistic regression procedure's detection rate for DIF is affected 

by model-data fit, sample size, test length, and type of DIF (Rogers, 

1989; Rogers & Swaminathan, 1993). With non-uniform DIF, 

Swaminathan and Rogers (1990) found detection rates of 50%, using 

500 total examinees and test lengths of 40, 60, and 80 items. They 

achieved a 75% detection rate using 1,000 examinees and an 80-item 
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test. With non-uniform DIF, they detected at least 75% of the DIF 

items with 500 examinees and 100% of the items with 1,000 examinees. 

Conclusion 

Of all these methods, the Mantel-Haenszel is the most widely 

accepted due to its ability to approximate results of latent trait methods. 

The newest method, logistic regression, has great promise due to the 

ability to detect non-uniform DIF. 

Latent Trait Differential Item 
Functioning Methods 

Latent trait theory encompasses both item response theory and the 

Rasch measurement model. The latent trait methods have an advantage 

over the previous methods because they yield sample-free estimates 

(Hambleton, Swaminathan, & Rogers, 1991). With the notable 

exceptions of the one-parameter item response theory and Rasch models, 

large samples are required, and the calculations are time-consuming. The 

Rasch measurement model uses only item difficulty and person ability in 

calculating the probability of success on an item. It is appropriate for 

small sample sizes and reflects consistent, sufficient, and efficient 

estimates (Wright 5c Stone, 1979). 

Item Response Theory Methods 

Item response theory models relate the probability of success on an 

item to an examinee's ability and to a combination of the item's 
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difficulty, discrimination, and probability of being answered correctly by 

guessing. When difficulty, discrimination, and guessing are all 

incorporated into the item response theory model, it is a three-parameter 

model. If the probability of guessing an answer correctly is zero, the 

model is a two-parameter model. If all items are equally discriminating 

and if the chance of guessing the correct answer to any item is zero, the 

model is a one-parameter model. 

Item response theoiy comparison methods. The detection of DIF by 

comparing item parameters or item characteristic curves has been 

addressed by numerous authors (Bleistein, 1986; Lord, 1980; Ironson, 

1982; Hambleton et al., 1991; Shepard, Camilli, & Williams, 1984; 

Thissen, Steinberg, & Wainer, 1993). Comparison groups are formed, 

and separate parameters are calculated for the groups. An item is free of 

DIF if the parameters are equal between the groups or if the area 

between the item characteristic curves is zero. There are problems 

associated with these methods. The test of significance for the parameter 

comparison method (Lord, 1980), as well as formulas for the area 

between item characteristic curves and the associated tests of significance 

(Raju, 1988, 1990), are rather complicated in the two-parameter and the 

three-parameter case. Hambleton et al. noted that parameter comparison 

in the three-parameter case may not be very powerful and that minimum 

sample size for the significance test was unknown. There is no test of 
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significance for the area between item characteristic curves when the 

c parameters are unequal because the area is infinite (Raju, 1988). 

Pseudo-item response theory method. Because item response theory 

comparison methods based on a two- or three-parameter model require 

large sample sizes, their use has been precluded when groups were small. 

One method, termed pseudo-item response theory by Shepard et al. (1985), 

was proposed by Linn and Harnisch (1981) for use when the number of 

examinees in a minority group was too small to utilize a traditional item 

response theory approach. Item response theory item parameters are 

obtained for all examinees in the combined group, and the ability scale is 

divided into quintiles. The difference between expected probability of a 

correct response and observed item response is computed for members of 

the group of interest, and the average difference for each interval is 

computed. The index of DIF is the sum of these differences. 

Shepard et al. (1985) stated that this approach was the "method of 

choice" (p. 103) for DIF detection with small sample sizes. However, 

Seong and Subkoviak (1987) found that this procedure was slightly less 

accurate than a simpler chi-square approach. Scheuneman (1990) noted 

that when the mean scores for the groups are quite different, this method 

is unlikely to detect differences in guessing ability between groups. 
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Rasch Methods 

The Rasch measurement model describes the relationship of item 

difficulty and person ability to the probability of a correct answer by 

expressing the probability of a correct answer with the ratio 

P(0) = 
[I**"'*'} 

where Pv is the ability of person v, and 6; is the difficulty of item i. 

Person abilities and item difficulties can be estimated from item scores 

by application of the unconditional method (UCON), as explained by 

Wright and Stone (1979). Computer source code for programs that use 

the UCON algorithm has been made available by both Linacre (1990) 

and Baker (1992). The estimation process is known as data calibration. 

Small sample sizes are not as problematic for the Rasch model as 

for other latent trait models (Lord, 1980), and the calculations are much 

simpler. The formula for the area between item characteristic curves 

reduces to the absolute value of the differences in the difficulty 

parameter (Hambleton et al., 1991); thus, DIF detection by calculating 

the area between curves is equivalent to DIF detection by parameter 

comparison. 

DIF detection based on the Rasch model has been shown to be 

theoretically preferable to the Mantel-Haenszel procedure. The Rasch 

model and the Mantel-Haenszel method require the same assumptions. 

However, the Rasch model treats test scores as a continuous variable, 
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whereas the Mantel-Haenszel procedure uses test scores as a blocking 

variable, resulting in a loss of data (Linacre & Wright, 1987). Schulz, 

Perlman, Rice, and Wright (in press) noted that at some test score levels, 

the Mantel-Haenszel procedure can have incomplete 2 x 2 tables that 

cannot be used. This loss of data reduces reliability. 

Separate calibration t-test approach. Wright and Stone (1979) 

discussed a graphical method equivalent to a procedure that Smith 

(1993) referred to as the separate calibration t-test approach. This 

appeared to be the most widely used Rasch DIF detection method. Item 

difficulty parameters are computed separately for the reference and focal 

group. For each item, the difference in difficulty between the reference 

and focal groups is divided by the square root of the difference of the 

standard errors. If the result exceeds the cutoff value of ±2, the presence 

of DIF is indicated. With empirical data, Englehard, Anderson, and 

Gabrielson (1989) found this method to be more reliable than the 

Mantel-Haenszel procedure. Schulz et al. (in press) found an almost 

perfect correlation between Rasch and Mantel-Haenszel techniques when 

the comparison groups had equal achievement. This approach was more 

sensitive to DIF and was more reliable in small focal groups (100 to 200 

examinees) than the Mantel-Haenszel procedure. 

Goodness of fit approach. A second type of Rasch-based method 

compares the model-data fit of the entire population studied to the 
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model-data fit of the focal group (Wright, Mead, & Draba, 1976). A 

study using simulated data found that this procedure could not detect 

DIF in difficult items, but that it could detect non-uniform DIF (Rudner, 

Getson, & Knight, 1980). Whereas researchers including Swaminathan 

and Rogers (1990) and Angoff (1993) stated that the lack of a 

discrimination parameter in the Rasch model rendered it useless for the 

detection of non-uniform DIF, Rudner et al. suggested that the 

utilization of goodness-of-fit by this method allowed for the poor fit of 

items that differ in discrimination between groups to be detected as DIF. 

A modified version of this method utilizes a single calibration for 

the combined reference of focal groups, allowing for smaller total sample 

sizes. When compared to the separate calibration (-test approach, it had 

a Type I error rate. Otherwise, there seemed to be no real differences in 

the results (Smith, 1993). 

Analysis of variance method using Rasch estimation. Tang (1994), who 

developed this method, referred to it as item response theory ANOVA, 

and it can theoretically be used with item response theory models. For 

this study, the procedure used a Rasch model basis and was therefore 

referred to as the ANOVA method using Rasch estimation. When this 

technique is employed, the item difficulties and person abilities are 

estimated from the combined reference of focal groups. This use of a 

single calibration allows total sample size to be as small as 200 without 
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violating the minimum sample size recommendation of Wright and 

Stone (1979). Expected scores are computed for each item for each 

examinee. For dichotomous items, an examinee's expected score is equal 

to the probability of correctly answering the item. For each item, each 

person's expected score is subtracted from the observed score to obtain a 

residual score. Analysis of variance is performed, with residual scores as 

the dependent variable and group membership as the independent 

variable. The test statistic is the F-ratio. 

To date, only one study (Tang, 1994) has used this method. With 

simulated data, this method was more powerful than the 

Mantel-Haenszel procedure when total sample size was smaller than 600. 

When ability was unequal between the groups and the DIF favored the 

focal group, the Mantel-Haenszel method was more powerful. 

Otherwise, the methods had comparable detection rates. The error rate 

for the ANOVA DIF detection method was higher when the mean ability 

level of the reference and focal groups differed. 

Conclusion 

In general, latent trait methods are more powerful than traditional 

(classical true-score) or chi-square methods of DIF detection. The major 

disadvantages of the latent trait methods are the requirement of large 

sample sizes and the complicated calculations. For small sample sizes, 

the ANOVA DIF detection method had comparable DIF detection rates. 



CHAPTER 3 

METHODS AND PROCEDURES 

Simulated sets of raw score data for dichotomously scored items 

were generated for further analysis. A 3 x 3 x 2 design with a total of 36 

experiments was used. Three test lengths (20, 40, and 60 items), three 

sample sizes (100, 200, and 300 persons per group), two mean ability 

relationships between groups (equal and unequal), and two item 

discrimination assumptions (constant and varying) were completely 

crossed. Both the analysis of variance (ANOVA) and logistic regression 

differential item functioning (DIF) detection methods were applied to 

this data. Each experiment was replicated 100 times. The experiments 

are explicitly numbered in Table 1. 

Differential Item Functioning Types 

The logistic regression DIF detection method has been examined 

with respect to uniform, non-uniform, and combination DIF, whereas the 

ANOVA DIF method has been studied only in the context of uniform 

DIF. The detection rates of the methods under study were examined 

with respect to all three types of DIF, as well as false positive errors. 

29 
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Table 1 

Definition of Experiments 

Experiment Discrimination Ability Items People 

1 Fixed Equal 20 200 

2 Fixed Equal 20 400 

3 Fixed Equal 20 600 

4 Fixed Equal 40 200 

5 Fixed Equal 40 400 

6 Fixed Equal 40 600 

7 Fixed Equal 60 200 

8 Fixed Equal 60 400 

9 Fixed Equal 60 600 

10 Fixed Unequal 20 200 

11 Fixed Unequal 20 400 

12 Fixed Unequal 20 600 

13 Fixed Unequal 40 200 

14 Fixed Unequal 40 400 

15 Fixed Unequal 40 600 

16 Fixed Unequal 60 200 

17 Fixed Unequal 60 400 

18 Fixed Unequal 60 600 

19 Varying Equal 20 200 

(table continues) 
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Experiment Discrimination Ability Items People 

20 Varying Equal 20 400 

21 Varying Equal 20 600 

22 Varying Equal 40 200 

23 Varying Equal 40 400 

24 Varying Equal 40 600 

25 Varying Equal 60 200 

26 Varying Equal 60 400 

27 Varying Equal 60 600 

28 Varying Unequal 20 200 

29 Varying Unequal 20 400 

30 Varying Unequal 20 600 

31 Varying Unequal 40 200 

32 Varying Unequal 40 400 

33 Varying Unequal 40 600 

34 Varying Unequal 60 200 

35 Varying Unequal 60 400 

36 Varying Unequal 60 600 

Uniform Differential Item Functioning 

Although the two DIF detection methods in this study have not 

been directly compared in previous studies, each had been compared to a 
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third method, the Mantel-Haenszel DIF detection method, with respect 

to uniform DIF detection. Swaminathan and Rogers (1990) and Rogers 

and Swaminathan (1993) had found that the logistic regression method 

was as powerful as the Mantel-Haenszel method in detecting uniform 

DIF and that the detection rate increased with sample size. 

Manipulating test length had no effect on the detection rate. Relative 

underlying ability of comparison groups and item discrimination type 

were not included in the studies. The ANOVA DIF detection method 

had been found to be more powerful than the Mantel-Haenszel method 

at detecting uniform DIF with the groups' sizes used in the present study, 

although the data used were limited to items with a constant 

discrimination parameter (Tang, 1994). Group ability differences had no 

clear effect on the detection rate, and the effect of test length was not 

studied. When the logistic regression and ANOVA DIF detection 

methods were compared directly, it was expected that both methods 

would perform satisfactorily and that, with constant discrimination, 

perhaps the ANOVA DIF detection method would have a higher DIF 

detection rate than the logistic regression method. 

Non-Uniform Differential Item Functioning 

In an analysis of empirical data, Hambleton and Rogers (1989) 

found that non-uniform DIF exists, yet cannot be reliably detected by all 

DIF detection methods. The logistic regression method had been shown 
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to detect non-uniform DIF, with higher detection rates associated with 

increased sample sizes (Rogers & Swaminathan, 1993; Swaminathan & 

Rogers, 1990; Tian, Pang, & Boss, 1994). Rogers and Swaminathan also 

found that the method had a higher detection rate, with a test length of 

80 items compared to a test with only 40 items. The effect of equal or 

unequal underlying ability of the comparison groups on the detection 

rates had not been studied, nor had the effects of constant versus varying 

discrimination parameters. The ANOVA DIF detection method's 

performance on non-uniform DIF had not been examined. Based on the 

work of Linacre and Wright (1987), a Rasch-based DIF detection 

method such as the ANOVA DIF detection method was not expected to 

detect non-uniform DIF. 

Combination Differential Item Functioning 

Rogers and Swaminathan (1993) referred to this type of DIF as 

"mixed" non-uniform. With the logistic regression method, they have 

found this type of DIF to be detected at or above the rate of uniform 

DIF and at a substantially higher rate than strictly non-uniform DIF. 

The detection rate of combination DIF had not been assessed for the 

ANOVA DIF method, and it was unknown whether the presence of 

non-uniform DIF in an item that already epchibited uniform DIF would 

enhance, degrade, or have no effect on the detection rate. None of the 
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experimental factors in the current study had been examined with respect 

to combination DIF detection. 

False Positive Errors 

Clearly, the utility of a DIF detection method would be 

compromised in spite of a high detection rate if it also frequently 

detected DIF where none actually existed. Swaminathan and Rogers 

(1990), as well as Rogers and Swaminathan (1993), found the logistic 

regression method to have a higher false positive error rate than the 

Mantel-Haenszel procedure, although the effects of the manipulated 

factors in the current study had not been directly investigated. Tang 

(1994) studied the ANOVA DIF's false positive error rate on items with 

constant discrimination and found an increase in the presence of group 

ability difference and increased sample size. Similar results were 

expected for the present study. 

Experimental Factors 

The experimental factors manipulated in this study have been 

shown to affect DIF detection. In general, smaller sample sizes, shorter 

test lengths, and unequal ability distributions make DIF more difficult to 

detect. 
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Test Length 

Test length is an important consideration because longer tests 

result in more reliable measures of ability, everything else being equal. 

Rogers and Swaminathan (1993) found no significant difference in DIF 

detection rates using logistic regression to find uniform DIF with test 

lengths of 40 and 80. There was a small difference when the DIF was 

non-uniform. No studies have considered the impact of varying test 

length on the ANOVA DIF detection procedure. Wright and Stone 

(1979), however, have recommended a minimum test length of 20 items 

for data calibration using the Rasch model. 

Sample Size 

The performance of a DIF detection method with small sample 

sizes is of interest because the available pool of focal group members may 

be small. Swaminathan and Rogers (1990) found that the power of the 

logistic regression method increased with a sample size increase from 500 

to 1,000 total examinees. Rogers and Swaminathan (1993) found an 

approximate 15% increase in uniform DIF detection rates and a 19% 

non-uniform detection rate increase when total sample size increased 

from 500 to 1,000 examinees. Tian et al. (1994) found a substantial 

increase in power with increased sample size when using the logistic 

regression method. Tang (1994) found that the ANOVA DIF method 

was more powerful under a variety of conditions when sample size 
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increased from 200 to 1,200 in increments of 200. Tang also found that 

the false positive error rate increased with sample size in the presence of 

group ability difference. Wright and Stone (1979) recommended a 

minimum sample size of 200 examinees for the Rasch model. 

Relative Underlying Ability 

Rogers (1989) suggested that the logistic regression method be 

studied when the reference and focal groups have unequal mean ability 

levels, noting that, in an actual testing situation, a focal group may have 

a lower mean ability than the reference group. Tang (1994) found the 

ANOVA DIF detection method to have a false positive error rate increase 

when the studied groups were unequal in ability and sample size 

increased. Schulz, Perlman, Rice, & Wright (in press) noted that 

Rasch-based DIF detection methods may be unable to detect 

non-uniform DIF when reference and focal groups differ in underlying 

ability. 

Type of Item Discrimination 

The Rasch model specifies that item discrimination be held 

constant. Varying the discrimination parameter will simulate misfit in 

the Rasch model, but not for the logistic regression procedure. The 

Rasch measurement model is generally robust to varying item 

discrimination (Baker, 1992), but the presence of non-uniform DIF may 

be obscured. In cases of model-data misfit, Rasch-based DIF detection 



37 

methods may find artifactual DIF (Angoff, 1993). The ANOVA DIF 

detection method using Rasch-based estimates has not been evaluated for 

use with varying item discrimination. 

Construction of Simulated Data Sets 

The data sets were constructed using an author-written BASIC 

computer program, the code for which is in Appendix A. Each data set 

contained 15% DIF items, a worst-case scenario, according to Rogers 

(1989). For each set, 5% of the items were more difficult for the focal 

group than for the reference group (uniform DIF), 5% of the items were 

more discriminating for the focal group than for the reference group 

(non-uniform DIF), and 5% of the items were more difficult and more 

discriminating for the focal group than for the reference group 

(combination DIF). The data were generated using the following 

formula: 

P. (0) = (l + e "i<e -1 

where i = 1, 2, 3 , f o r an «-item test, Px (9) is the probability that a 

person of ability 9 answers item i correctly, 9 is the ability parameter, a{ 

is the discrimination parameter for item i, and bi is item difficulty for 

item i. 

The value of Px (9) was calculated from the values of ability, item 

difficulty, and item discrimination, obtained as described below. This 

Pi (©) value was compared to a random uniform deviate from the interval 
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(0, 1). If the deviate was larger than Px (0), an incorrect answer for the 

item was simulated; otherwise, a correct response was simulated. 

Ability Parameter Simulation 

For the equal ability case, abilities were normally distributed with a 

mean of 0 and a standard deviation of 1. In the unequal ability case, the 

reference group abilities were normally distributed with a mean of 0 and 

a standard deviation of 1, and the focal group abilities were normally 

distributed with a mean of -1 and a standard deviation of 1. These 

values approximate findings from actual data and have been used by 

several researchers in the study of DIF detection (Clauser, Mazor, & 

Hambleton, 1991; Donoghue &. Allen, 1993; Mazor, Clauser, St 

Hambleton, 1991; Zwick, Donoghue, StGrima, 1993). 

Discrimination Parameter Simulation 

Item discrimination was equal to 1 for all items in the constant 

discrimination case, which reduced the equation to a Rasch model. In 

the case where item discrimination varied, the values were given by 

(l.7)ex, where z is normally distributed with a mean of -.065 and 

standard deviation 0.13. Zwick et al. (1993) used item discrimination 

values obtained from this distribution, citing the close approximation to 

actual values. Other studies have used this type of approximation as well 

(Donoghue &. Allen, 1993; Miller & Oshima, 1992). 
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Difficulty Parameter Simulation 

Item difficulties were normally distributed with a mean of 0 and a 

standard deviation of 1. Studies have used these values based on their 

proximity to real data (Donoghue & Allen, 1993; Miller &. Oshima, 

1992; Rudner, Getson, & Knight, 1980). 

Differential Item Functioning Simulation 

To simulate both uniform and non-uniform DIF, item parameters 

were chosen so that the area between the item characteristic curves of the 

reference and focal group was equal to 0.6. In Tang's (1994) study of 

the ANOVA DIF method, items with simulated uniform DIF met this 

condition. Swaminathan and Rogers (1990) included items with 

simulated uniform and non-uniform DIF, which fulfilled this 

specification. Uniform DIF was simulated by adding .6 to the difficulty 

parameter for the focal group. Non-uniform DIF was simulated by 

setting the discrimination parameter equal to 1 for the reference group 

and 1.763073 for the focal group. In both cases, the area between the 

item characteristic curves was 0.6. Combination DIF was simulated by 

changing both the difficulty and the discrimination parameters as 

described herein. The remaining items, which were not manipulated to 

simulate DIF, were nevertheless subjected to both detection methods to 

test false positive detection rates. 
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Creation of Simulated Data Sets 

A control file was written for each of the 36 experimental 

conditions. Each file resulted in 100 sets of raw score data. For example, 

the control file for the first experimental condition consisted of the 

following line: "c:\items\exp01dat" 20 100 1 100 1 1. 

The parameters include the name of the output file 

("c:\items\exp01dat"), the number of test items (20), the number of 

examinees per comparison group (100 per group), the filename extension 

of the first replicated data set (1), the filename extension for the last 

replicated data set (100), the choice of fixed discrimination (1), and the 

choice of equally able comparison groups (1). 

When the data generation program was run with this control file as 

input, 100 sets of data were generated and written to the files 

c:\jtems\exp01 dat. 1 

c:\items\exp01 dat.2 

c:\items\exp01 dat.3 

(filenames for data sets 4 through 98) 

c:\items\exp01 dat.099 

c:\items\exp01 dat. 100. 

The data generation program was run with each of the 36 control files. 
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Analysis of Variance Differential Item Functioning Procedure 

A BASIC computer program based on code by Linacre (1990) and 

adapted by the author for this study was used to compute the 

Rasch-based residual scores. A second program was written by the 

author to perform analysis of variance, with residual scores as the 

dependent variable and group membership as the independent variable. 

A significant F-ratio at the 0.05 level indicated the presence of DIF. The 

second program also counted the number of DIF items detected and the 

number of false positive errors. These programs are included in 

Appendix B and Appendix C, respectively. 

Rasch residual score calculations. A control file was written for each of 

the 36 experimental conditions, which took each of the 100 replicated 

data sets for the experimental condition and computed the Rasch 

residual score for each item for each examinee. For the data sets created 

for experiment 1 (described in the preceding section), the file contained 

the following lines: 

20 200 11 

"c:\items\exp01 dat. 1" 

nc:Vtems\expO 1 res.1" 

"c:\items\exp01 dat.2" 

"c:\items\exp01 res.2" 
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"c:\items\expO 1 dat.3" 

"c:\items\expO 1 res.3" 

(instructions for replications 4 through 98) 

"c:\items\expO 1 dat.99" 

"c:\jtems\expO 1 res.99" 

"c:\jtems\expO 1 dat. 100" 

"c:\items\expO 1 res. 100." 

The first line included the number of items (20), the number of 

total examinees (200), and the column where the data began (11). The 

remainder of the lines contained the input and output filenames for each 

replication. 

When the Rasch residual score calculation program was run with 

this control file as input, a set of residual scores was calculated for each 

set of simulated data. This program was run with each of the 36 control 

files. 

Analysis of variance differential item functioning detection calculations. A 

control file was written for each of the 36 experimental conditions. Each 

control file instructed the ANOVA program to perform ANOVA with the 

residual scores obtained above as the dependent variable and group 

membership as the independent variable. For the residual scores 

obtained from experiment 1, the control file contents were 
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20 20 "c:\results\anovaO 1 .out" 

:c:\items\expO 1 res. 1" 

"c:\items\expO 1 res.2" 

"c:\items\exp0 1 res.3" 

(instructions for replications 4 through 98) 

"c:\items\expO 1 res.99" 

"c:\items\expO 1 res. 100." 

The first line included the test length (20), the total number of 

examinees (200), and the file to which the results were to be written 

("c:\results\anova01.out"). The remaining lines were the filenames of 

residual score sets that were to be analyzed. 

When the ANOVA program was run with this file as input, 

ANOVA DIF detection was performed on all the items in the 100 

replications. The ANOVA program was run with each of the 36 control 

files. 

Logistic Regression Differential Item Functioning Procedure 

The Statistical Package for Social Sciences (SPSS) program was 

used to compute the logistic regression parameters and resulting log 

likelihood statistic necessary for the logistic regression DIF procedure. 

For each item, logistic regression was performed on the full model, using 

item score as the dependent variable and total score, group membership, 

and total score by group membership interaction as independent 
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variables. The reduced model, which had item score as the dependent 

variable and total score as the independent variable, was also evaluated. 

The log likelihood for the full model was subtracted from the log 

likelihood for the reduced model and the result multiplied by -2. The 

resulting statistic had a chi-square distribution with 2 degrees of freedom. 

When this statistic was significant at the 0.05 level, the presence of DIF 

was indicated. This program by the author is included in Appendix D. 

The simulated data sets were analyzed using the first program 

listed in Appendix D. This program produced an extremely large amount 

of additional output that was not required for DIF detection; thus, a 

second program was written that edited the original output to a more 

manageable size and counted the number of DIF items detected and false 

positive errors. This second program follows the first in Appendix D. 

Assessment of the Procedures 

The data were analyzed with a separate four-way ANOVA 

procedure for each of the following: uniform DIF, non-uniform DIF, 

combination DIF, and false positive errors. The dependent variable was 

the percentage of items detected, and the independent variables were the 

experimental factors test length, sample size, relative ability, and 

discrimination type. The Statistical Analysis System (SAS) program 

used for this analysis is in Appendix E. The ANOVA F-test and/or 
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subsequent simple effects tests were used to determine significant 

differences in the experimental factors for the research questions posed. 



CHAPTER 4 

RESULTS 

The data were analyzed using a four-way analysis of variance 

(ANOVA) procedure for each of the hypotheses under uniform 

differential item functioning (DIF), non-uniform DIF, and combination 

DIF conditions, as well as false positive errors. The dependent variable 

was the percentage of items detected, and the independent variables were 

the experimental factors test length, sample size, relative ability, and 

discrimination type. Any significant interactions were subject to further 

analysis. 

In addition to the four-way ANOVA procedures, the mean 

percentage detection rates of the experimental factors were calculated. 

The mean percentage detection rates are presented in Table 2. The 

summary data results for the 36 experiments are in Appendix F. 

Uniform Differential Item 
Functioning Detection 

As can be seen from Table 3, when the ANOVA DIF method was 

used, sample size, discrimination type, and relative ability were all 

significant main effects. A significant interaction between sample size 

and discrimination type was found, as shown in Table 3. This 

46 
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Table 2 

Mean Percentage Detection Rates Over 100 Replications 

False 
Factor and Uniform Non-uniform Combination positive 

level DIF DIF DIF errors 

ANOVA DIF method 

Test length 
20 
40 
60 

Sample size 
200 
400 
600 

Discrimination type 
Fixed 
Varying 

Relative ability 
Equal 
Unequal 

63.92 
65.17 
63.08 

42.49 
70.29 
79.39 

54.37 
73.74 

70.57 
57.54 

28.50 
29.46 
29.72 

19.28 
29.18 
39.22 

32.11 
26.34 

29.97 
28.48 

79.00 
77.75 
77.58 

63.60 
83.11 
87.63 

83.32 
72.90 

74.96 
81.26 

Logistic regression DIF method 

Test length 
20 
40 
60 

Sample size 
200 
400 
600 

57.17 
57.46 
56.50 

35.58 
62.69 
72.85 

55.50 
59.00 
60.11 

35.15 
60.96 
78.50 

86.06 
85.54 
85.53 

71.78 
89.89 
95.49 

7.03 
6.47 
6.30 

5.61 
6.68 
7.51 

6.38 
6.83 

6.42 
6.78 

7.24 
7.07 
6.77 

6.48 
6.87 
7.72 

(table continues) 
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Factor and 
level 

Uniform 
DIF 

Non-uniform 
DIF 

Combination 
DIF 

False 
positive 
errors 

Discrimination type 
Fixed 
Varying 

45.14 
68.94 

56.34 
60.06 

85.28 
86.16 

6.36 
7.69 

Relative ability 
Equal 
Unequal 

63.09 
50.99 

57.17 
59.24 

83.48 
87.95 

6.26 
7.79 

Note. DIF = differential item functioning; ANOVA = analysis of 
variance. 

interaction rather than the contributing main effects was therefore 

investigated. The cell means for this interaction are presented in 

Table 4. It was found that, at sample sizes of 200 and 400, the detection 

rate for items with varying discrimination was over 20% greater than for 

items with fixed discrimination. At sample size 600, this difference was 

around 12%. Regarding the significant main effect of relative ability, the 

detection rate for items when ability was equal between reference and 

focal groups was higher than for items for which underlying ability 

differed between groups (Table 2). 

As in the case with the ANOVA method, the factors of sample size, 

discrimination type, and relative ability were significant using the logistic 

regression method as shown in Table 3. The detection rate increased 
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Table 3 

Analysis of Variance of the Effects of Experimental Factors on Uniform 
Differential Item Functioning Detection Rates 

Experimental factor 

ANOVA Logistic regression 

Experimental factor F V F V 

Test length (TL) 1.13 0.32 0.23 0.79 

Sample size (SS) 379.68 0.00 356.74 0.00 

Discrimination type (DT) 289.07 0.00 408.56 0.00 

Relative ability (RA) 130.94 0.00 105.59 0.00 

SS x DT 8.54 0.00 1.91 1.15 

DT x RA 3.56 0.06 1.16 0.28 

TL x RA 0.92 0.40 0.93 0.40 

TL x DT 1.34 0.26 0.13 0.88 

TL x SS 1.07 0.37 2.04 0.09 

SS x RA 2.39 0.09 0.46 0.63 

TL x SS x DT 1.33 0.26 0.91 0.46 

TL x SS x RA 1.73 0.14 0.53 0.71 

TL x DT x RA 3.40 0.03 2.02 0.13 

SS x DT x RA 3.02 0.05 4.40 0.01 

TL x SS x DT x RA 1.69 0.15 0.67 0.64 

Note. ANOVA = analysis of variance. 
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Table 4 

Interaction Cell Means for Analysis of Variance Differential Item Functioning 
Method and Uniform Differential Item Functioning 

Discrimination type 

Sample size Fixed Varying F 

200 31.31 53.67 128.41* 

400 58.78 81.81 136.18* 

600 73.03 85.75 41.57 

*p < .001. 

with sample size (Table 2). The detection rate was also higher for 

varying discrimination than for fixed. And, as with the ANOVA method, 

the detection rate was higher for equal ability than for unequal ability. 

Non-Uniform Differential Item 
Functioning Detection 

A significant interaction between discrimination type and relative 

ability is shown in Table 5 for the ANOVA method. This interaction 

was examined before main effects were considered, and the cell means 

are presented in Table 6. Although relative ability was not a significant 

main effect, it was found that, when ability was unequal, the detection 

rate for fixed discrimination items was over 12% greater than for 
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Table 5 

Analysis of Variance of the Effects of Experimental Factors on Non-Uniform 
Differential Item Functioning Detection Rates 

Experimental factor 

ANOVA Logistic regression 

Experimental factor F V F V 

Test length (TL) 0.42 0.66 5.36 0.01 

Sample size (SS) 100.17 0.00 440.44 0.00 

Discrimination type (DT) 25.14 0.00 9.63 0.00 

Relative ability (RA) 1.68 0.20 2.99 0.08 

SS x DT 2.64 0.07 0.69 0.50 

DT x RA 34.42 0.00 0.02 0.89 

TLxRA 2.37 0.09 0.36 0.70 

TL x DT 0.92 0.40 2.01 0.13 

TL x SS 0.61 0.66 0.48 0.75 

SS x RA 2.82 0.06 1.64 0.20 

TL x SS x DT 0.96 0.43 2.43 0.05 

TL x SS x RA 1.12 0.35 2.56 0.04 

TL x DT x RA 2.31 0.10 0.89 0.41 

SS x DT x RA 1.79 0.17 0.34 0.71 

TL x SS x DT x RA 0.99 0.41 0.85 0.49 

Note. ANOVA = analysis of variance. 
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Table 6 

Interaction Cell Means for Analysis of Variance Differential Item Functioning 
Method and Non-Uniform Differential Item Functioning 

Discrimination type 

Relative ability Fixed Varying F 

Equal 29.48 30.46 0.36 

Unequal 34.74 22.22 59.19* 

*p .001. 

varying discrimination items. When ability was equal, the difference 

in detection rates between discrimination types was less than 1%. 

Sample size was a significant main effect, and, as shown in Table 2, the 

detection rate increased with larger sample sizes. In all cases, the 

detection rate of non-uniform DIF using the ANOVA DIF method was 

extremely low. 

When the logistic regression method was employed, as shown in 

Table 5, there were no significant interactions, and sample size and 

discrimination type were both significant factors. As indicated in 

Table 2, the detection rate increased as sample size increased. Varying 

discrimination items were detected at a significantly higher rate than 
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those with fixed discrimination (Table 5); however, the actual detection 

rates (Table 2) differed by less than 4%. 

Combination Differential Item 
Functioning Detection 

For the ANOVA DIF method, the significant three-way interaction 

among sample size, discrimination, and relative ability is denoted in 

Table 7. The discrimination by relative ability interaction was examined 

at each level of sample size. The discrimination and ability factors were 

found to interact at every level of sample size, with the smallest p-value 

at sample size 200, and the largest p-value at sample size 600 (i.e., the 

significance of the interaction decreased as sample size increased). The 

main effect of ability was then assessed for each level of discrimination 

type for each sample size. As can be seen in Table 8, the detection rates 

with equal ability are quite similar regardless of discrimination type at 

each level of sample size. In contrast, the detection rates with unequal 

ability differ by almost 33% between discrimination types at sample size 

200 and by around 14% at sample sizes 400 and 600. With fixed 

discrimination, unequal ability had a much higher detection rate than 

did equal ability for all sample sizes, although the difference became less 

pronounced as sample size increased. With varying discrimination, there 

was less than a 3% difference in detection rates between equal and 

unequal relative ability except for sample size 200, where there was a 

difference of 12%. The detection rate increased as sample size 
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Table 7 

Andy sis of Variance of the Effects of Experimental Factors on Combination 
Differential Item Functioning Detection Rates 

Experimental factor 

ANOVA Logistic regression 

Experimental factor F V F V 

Test length (TL) 0.78 0.46 0.17 0.84 

Sample size (SS) 211.40 0.00 267.24 0.00 

Discrimination type (DT) 105.68 0.00 1.01 0.32 

Relative ability (RA) 38.54 0.00 26.10 0.00 

SS x DT 8.65 0.00 0.39 0.68 

DT x RA 95.43 0.00 2.62 0.11 

TL x RA 0.66 0.51 2.97 0.05 

TL x DT 4.44 0.01 1.38 0.25 

TL x SS 0.95 0.44 0.73 0.57 

SS x RA 1.01 0.36 3.78 0.02 

TL x SS x DT 1.32 0.26 2.94 0.02 

TL x SS x RA 0.21 0.93 0.65 0.63 

TL x DT x RA 0.32 0.73 1.75 0.17 

SS x DT x RA 11.34 0.00 5.62 0.00 

TL x SS x DT x RA 1.27 0.28 2.23 0.06 

Note. ANOVA = analysis of variance. 
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Table 8 

Interaction Cell Means for Analysis of Variance Differential Item Functioning 
Method and Combination Differential Item Functioning 

Sample size 
Ecjual 
ability 

Unequal 
ability F 

200 
Fixed discrimination 
Varying discrimination 

61.17 
61.50 

82.22 
49.50 

71.84* 
23.33* 

400 
Fixed discrimination 
Varying discrimination 

78.17 
80.00 

94.28 
80.00 

42.06* 
0.00 

600 
Fixed discrimination 
Varying discrimination 

86.33 
86.21 

97.78 
83.78 

21.22* 
0.22 

*p .001. 

increased across all combinations of discrimination type and relative 

ability. Items with fixed discrimination had a statistically equal or higher 

detection rate than those with varying discrimination across all 

combinations of relative ability and sample size. 

As with the ANOVA method, the detection rate of the logistic 

regression method increased with sample size. Likewise, the same 

three-way interaction among sample size, discrimination type, and 

relative ability was present, although with a smaller (less significant) 

F-value. The interaction is indicated in Table 7. 
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An analysis of the interaction between discrimination type and 

relative ability at each level of sample size revealed a significant 

interaction at sample size 200. The cell means for this interaction are 

presented in Table 9. With fixed discrimination, items with unequal 

underlying ability between groups were detected at a higher rate than 

those with equal ability. With varying discrimination, items with equal 

underlying ability were detected at a slightly higher rate than those with 

unequal relative ability, although the difference was insignificant. 

Table 9 

Interaction Cell Means for Logistic Regression Method and Combination 
Differential Item Functioning at Sample Size 200 

Relative ability 

Discrimination type Equal Unequal F 

Fixed 68.33 75.33 10.66* 

Varying 73.61 69.83 3.10 

*p < .01. 

As no interaction between discrimination type and relative ability 

existed at sample size 400 or 600, each of these experimental factors was 

analyzed individually for each sample size. Although discrimination type 

was not found to be significant, items with unequal underlying ability 
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were detected at a significantly higher rate than those with equal 

underlying ability. These cell means are presented in Table 10. 

Table 10 

Interaction Cell Means for Logistic Regression Method and Combination 
Differential Item Functioning 

Relative ability 

Sample size Equal Unequal F 

400 86.04 93.64 24.47* 

600 93.34 97.64 8.06** 

*p .001. **p < .01. 

False Positive Errors 

As shown in Table 11, test length, sample size, and discrimination 

type were all significant main effects for the ANOVA DIF method. The 

error rates for test lengths 40 and 60 were not significantly different, but 

for a test of 20 items, the error rate increased. The error rate increased as 

sample size increased, and it was slightly higher with varying 

discrimination than fixed discrimination. 

With logistic regression, discrimination type was significant (Table 

11), while varying discrimination had a higher error rate than fixed 
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Table 11 

Analysis of Variance of the Effects of Experimental Factors on False Positive Error 
Detection Rates 

Experimental factor 

ANOVA Logistic regression 

Experimental factor F V F V 

Test length (TL) 8.39 0.00 2.94 0.05 

Sample size (SS) 51.44 0.00 21.19 0.00 

Discrimination type (DT) 8.62 0.00 69.04 0.00 

Relative ability (RA) 5.51 0.02 91.41 0.00 

SS x DT 0.99 0.37 1.55 0.21 

DT x RA 0.18 0.67 7.60 0.01 

TL x RA 0.04 0.96 1.71 0.18 

TL x DT 0.20 0.82 0.53 0.59 

TL x SS 0.72 0.58 0.19 0.95 

SS x RA 3.96 0.02 15.23 0.00 

TL x SS x DT 0.46 0.77 1.87 0.11 

TL x SS x RA 0.29 0.89 0.60 0.67 

TL x DT x RA 1.51 0.22 0.73 0.48 

SS x DT x RA 0.71 0.49 1.39 0.25 

TL x SS x DT x RA 0.20 0.94 0.24 0.92 

Note. ANOVA = analysis of variance. 
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discrimination (Table 2). There was also an interaction of sample size 

with relative ability. An analysis of this interaction, shown in Table 12, 

revealed that, in the presence of unequal ability, errors significantly 

increased with sample size. With equal ability, they remained constant 

across sample size. 

Table 12 

Interaction Cell Means for Logistic Regression Method and False Positive Errors 

Relative ability 

Sample size Equal Unequal F 

200 6.25 6.72 2.91 

400 6.13 7.61 28.60* 

600 6.41 9.04 90.36* 

*p < .001. 

Summary 

In the detection of uniform, non-uniform, and combination DIF, 

the detection rates of both studied methods were not affected by varying 

test length. Both methods detected all DIF types at higher rates with 

larger sample sizes. 
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When the ANOVA DIF method was used, the experimental factor 

discrimination type interacted with sample size in the detection of 

uniform DIF, and the detection rate was higher with equal underlying 

ability than with unequal underlying ability. The ANOVA DIF method 

applied to non-uniform DIF resulted in a low detection rate overall and 

revealed an interaction between discrimination type and relative ability. 

In the detection of combination DIF, a three-way interaction among 

sample size, discrimination type, and relative ability was found. Errors 

were more likely with 20-item tests, larger sample sizes, and varying 

discrimination. 

When the logistic regression method was used to detect uniform 

DIF, the detection rate was higher with equal rather than unequal 

underlying ability between groups. With uniform and non-uniform DIF, 

the logistic regression method had a higher detection rate with larger 

sample sizes as well as with items with varying discrimination. Like the 

ANOVA DIF method, the logistic regression method applied to 

combination DIF resulted in a three-way interaction among sample size, 

relative ability, and discrimination type. The error rate was higher with 

varying discrimination than with fixed and increased with sample size in 

the presence of unequal relative underlying ability. 



CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

For the logistic regression and analysis of variance (ANOVA) 

differential item functioning (DIF) methods, the research questions 

investigated the presence of significant interactions or main effects for 

the experimental factors in the detection of uniform, non-uniform, and 

combination DIF, as well as false positive errors, in the case of uniform 

DIF, the ANOVA method had a significant interaction between sample 

size and discrimination type, with relative ability a main effect. In the 

detection of uniform DIF with logistic regression, there were no 

interactions between any of the factors, and sample size, discrimination 

type, and relative ability were main effects. For non-uniform DIF, the 

ANOVA method had a significant interaction between discrimination 

type and relative ability, and sample size was a main effect. In the 

detection of non-uniform DIF with logistic regression, there were no 

interactions among any of the factors, and sample size and 

discrimination type were significant main effects. For combination DIF, 

there was a significant three-way interaction among sample size, 

discrimination type, and relative ability for both methods, and there were 

61 
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no main effects. For false positive errors, the ANOVA method had no 

interactions among factors, and test length, sample size, and 

discrimination type were main effects. The logistic regression method 

had a significant interaction between sample size and relative ability, and 

discrimination type was a main effect. 

Two general conclusions encompass the detection of uniform DIF, 

non-uniform DIF, and the combination of these two types of DIF, 

regardless of the detection method. First, the detection rate improved 

significantly as sample size increased. This is in keeping with Tang's 

(1994) findings regarding the ANOVA DIF method in detecting uniform 

DIF, Rogers and Swaminathan's (1993) findings regarding logistic 

regression in detecting uniform, non-uniform, and combination DIF, and 

Tian, Pang, and Boss's (1994) findings regarding logistic regression in 

DIF detection with empirical data. Second, the detection rate did not 

change significantly between tests of different lengths. This is in 

accordance with Rogers and Swaminathan (1993), who found that, with 

logistic regression and test lengths of 40 and 80, test length had no effect 

on uniform DIF detection rates and only a slight effect (a 5% difference) 

on non-uniform DIF detection rates. This result was also expected for 

the ANOVA DIF method because a test length of 20 items is adequate 

for applications based on the Rasch measurement model (Wright & 

Stone, 1979). Otherwise, results varied between types of DIF. 
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Uniform Differential Item Functioning 

With the ANOVA method, the ordinal interaction between sample 

size and discrimination type was due to a decrease in the detection rate 

difference between discrimination types at sample size 600. Thus, with a 

sufficiently large sample, the difference in detection rates between 

discrimination types may disappear. Relative ability was found to be a 

main effect, with a higher detection rate for equal ability than for 

unequal ability. With logistic regression, there were no interactions 

among any of the factors, and sample size, discrimination type, and 

relative ability were main effects. The detection rate increased with 

sample size, was higher for varying discrimination than for fixed, and was 

higher for equal ability than for unequal ability. 

In using either detection method, equal ability, larger sample sizes, 

and varying discrimination increased the detection rate. The increased 

detection rate in the presence of varying discrimination should be viewed 

with caution, however. In this particular study, the discrimination 

parameter values for items with varying discrimination tended to be 

larger than the discrimination parameter values for items with fixed 

discrimination. In the presence of uniform DIF, items with high 

discrimination values will have more area between the item characteristic 

curves of comparison groups than will items with low discrimination. 

Therefore, the procedures could have been taking advantage of more DIF 

rather than of varying discrimination. However, this seems unlikely, as 
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the increased detection rate for varying discrimination was much less 

pronounced or nonexistent with non-uniform or combination DIF. 

Non-Uniform Differential Item Functioning 

The ANOVA DIF method's interaction between discrimination 

type and relative ability indicated that unequal underlying ability, 

combined with varying discrimination (a form of misfit to the Rasch 

model), will significantly reduce the detection rate. Schulz, Perlman, 

Rice, and Wright (in press) noted that, when underlying abilities 

between groups are unequal, Rasch-based methods of DIF detection may 

not be able to separate non-uniform DIF from other sources of misfit to 

the Rasch model. This certainly seems true in the case of the ANOVA 

DIF method. In contrast, there were no interactions with the logistic 

regression method, and the only significant main effect (besides the 

universal one-sample size) was a slight increase in DIF detection when 

discrimination varied. 

The detection of non-uniform DIF was expected to exhibit the 

greatest differences between the detection procedures because the logistic 

regression technique was designed to detect non-uniform DIF and the 

ANOVA procedure was not. The overall ANOVA DIF detection rate was 

half that of the logistic regression method. 
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Combination Differential Item Functioning 

A significant three-way interaction among sample size, 

discrimination type, and relative ability was present for both DIF 

detection methods. No main effects were found with the use of either 

method. The methods seemed to behave most similarly in the detection 

of combination DIF, as opposed to the detection of exclusively uniform 

or exclusively non-uniform DIF. 

The higher detection rate when underlying ability is unequal rather 

than equal between comparison groups was a surprise. When DIF was 

exclusively uniform, it was detected at a higher rate with equal relative 

ability than with unequal relative ability. With non-uniform DIF, the 

detection rates differed only slightly between types of relative ability. It 

is possible that the broader range of ability level used when underlying 

ability was unequal gave better information to the procedures than when 

underlying ability was equal; however, this does not explain whey the 

results for combination DIF are unlike those for exclusively uniform and 

exclusively non-uniform DIF. Perhaps this result occurred only with 

combination DIF because the area between the reference and focal 

groups' item characteristic curves was larger than with only one DIF type 

present. This result could be attributed in part to the presence of more 

DIF rather than the simultaneous presence of two DIF types. 
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False Positive Errors 

With the ANOVA DIF method, no significant interactions existed 

among any of the experimental factors, and test length, sample size, and 

discrimination type were all main effects. With logistic regression, there 

was a significant interaction between sample size and relative ability, and 

discrimination type was a main effect. 

Tang (1994) found an increase in errors with the ANOVA DIF 

method when underlying ability was unequal between comparison groups 

as sample size increased. In contrast, this study found relative 

underlying ability to be the only insignificant factor studied with respect 

to the ANOVA DIF method and false positive errors. Tests of lengths of 

40 and 60 had a smaller error rate than those with 20 items, whereas the 

rate increased with increased sample size. Both methods had higher 

error rates in the presence of varying as opposed to constant 

discrimination. Curiously, the logistic regression method exhibited the 

same interaction between sample size and relative ability that Tang 

(1994) found when using the ANOVA DIF method. 

Recommendations 

Suggestions for Differential Item Functioning Detection 

The lack of any interaction between test length and sample size 

indicates that either method can be utilized with all combinations of test 

length and sample size contained herein, although both methods had 
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higher detection rates with larger sample sizes. For both methods, a test 

length of 20 was adequate. The performance of either method with 

shorter tests is unknown, although 20 is the minimum test length 

recommended for Rasch model applications such as the ANOVA DIF 

method. Whereas a few specific combinations of experimental factors 

and DIF types had adequate results with a sample size of 400, in almost 

all situations 600 was significantly better. Larger sample sizes than those 

contained in this study have been examined for both detection methods 

in the literature. The smallest sample size in this study (200 persons) is 

not recommended due to low detection rates with either method. 

Accordingly, sample sizes below 200 are also proscribed. Thus, the 

search for a small-sample DIF detection method outside the realm of 

classical true-score measurement theory does not seem to have ended. 

Looking beyond the two factors, test length and sample size, the 

effects of discrimination type and relative ability depend on what type of 

DIF is to be detected. And, although a practitioner can easily discover 

the underlying ability of comparison groups as approximated by test 

scores, the determination of discrimination type is not an easily solved 

problem. Thus, in practice, the knowledge of discrimination type may 

not be available. With combination DIF and non-uniform DIF, the 

logistic regression method was less affected than the ANOVA DIF 

method by differences in discrimination type, especially as sample size 

increased. 
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Any given test could harbor a variety of combinations of levels of 

the experimental factors examined in this study. The logistic regression 

method had fewer interactions among the experimental factors, and it 

would yield more interpretable and accurate results if a practitioner was 

uncertain about the nature of the test items to be studied. The detection 

rates were also generally higher than for the ANOVA DIF method. 

In the detection of uniform DIF, a test consisting of items with 

varying discrimination could be safely analyzed with the ANOVA DIF 

method, in spite of the model-data misfit that would exist. 

Unfortunately, to assure that only non-uniform DIF was present, items 

that did not fit the Rasch model would need to be eliminated from the 

test (Smith, 1993), which would obviate the usefulness of the method's 

apparent robustness to model-data misfit. 

Practitioners who have computed item statistics for a test using a 

Rasch model would have only a few additional calculations to perform in 

order to apply the ANOVA DIF detection method. In contrast, the 

logistic regression method does not build upon other item analysis 

procedures. 

If the items are going to be subjected to a Rasch analysis to obtain 

item statistics, and if the item were found to fit the Rasch model, then 

the ANOVA DIF method is recommended. However, if there is a chance 

that non-uniform DIF is present in the data, and if it is important that it 

be detected, the ANOVA DIF method should be avoided. 
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When underlying ability between comparison groups is not equal, 

this study found that the logistic regression method's false positive error 

rate increased with sample size. Because Tang (1994) found the same 

result with the ANOVA DIF method, caution with either method is 

advised in the presence of unequal ability. 

The ANOVA DIF method had not been studied in the context of 

any DIF type besides uniform or any discrimination type besides varying. 

The interactions among discrimination type and other experimental 

factors in the detection of all three DIF types indicates that the method 

may be of little value with items of varying discrimination when a clear 

analysis of DIF is required. Further, the advantages of a higher detection 

rate for both varying discrimination and equal relative ability with 

uniform DIF are reversed with combination DIF. It is highly unlikely 

that a practitioner will have advance knowledge of the type of DIF 

present when using any DIF detection method. Thus, the dependence of 

detection rates on the type of DIF, combined with discrimination type 

and underlying ability, proscribes the ANOVA DIF detection method in 

many situations. 

The logistic regression method had been shown in prior studies to 

be acceptable for DIF detection in a variety of situations. The present 

study adds to the knowledge about this technique's detection rate under 

previously unstudied conditions. In the case of strictly uniform and 

strictly non-uniform DIF, the detection rate of 35% to 36% with a 
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sample size of 200 indicates that the logistic regression technique is of 

little practical use in extremely small samples. The present study also 

found that a test length of 20 was adequate for DIF detection with the 

logistic regression method. There is no clear recommendation with 

regard to relative ability and discrimination type. For uniform and 

non-uniform DIF detection, the detection rate was clearly higher with 

varying discrimination. For uniform DIF, equal underlying ability was 

associated with a higher detection rate, whereas non-uniform DIF was 

detected equally well regardless of relative underlying ability. For 

combination DIF, the results are less clear, due to the interaction among 

sample size, discrimination type, and relative ability. Tian et al. (1994) 

presented a modification of the logistic regression procedure, which 

seems more likely to detect uniform and non-uniform DIF, as well as to 

identify which type of DIF is present. This procedure is highly 

recommended. 

Suggestions for Future Research 

The ANOVA DIF detection method should be investigated in 

several areas that were beyond the scope of this study: 

1. It would be of great interest to see how closely the ANOVA DIF 

method correlates with other, more established, Rasch-based detection 

methods, especially in the presence of small sample sizes. Theoretically, 

the ANOVA DIF method's use of a single calibration should enable it to 
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work satisfactorily with sample sizes as small as half of those required for 

other Rasch-based detection methods. 

2. It may be possible to use the ANOVA DIF method, even when 

non-uniform DIF is present, by performing a simple screening technique 

before DIF detection analysis. Hambleton and Rogers (1989) suggested 

as two possibilities the comparison of the direction of item difficulties 

between score groups at different score levels and graphing techniques. 

3. The reliability of the ANOVA DIF method has not been 

assessed using empirical data. The comparison of DIF detection results 

among samples drawn from a common population could help determine 

whether or not this method yields consistent results with real data. 



APPENDIX A 

DATA GENERATION PROGRAM 
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MAKEDIF 
A program to generate scored dichotomous item responses with options 
for difficulty and discrimination DIF. 
Last revision October 16, 1994 
The input file infile$ must contain the following information 

fname, a filename of 8 or fewer characters enclosed in double 
quotation marks, along with any drive and/or path specifications. 
This is where output will be written. 

iall, the length of the test. This number must be 20, 40, or 60. 

grupsize, the size of the focal group. This number is half of the 
total group size for which data will be generated, {This program 
assumes that reference and focal group sizes are equal.) 

firstrep, the identification number for the first replication. 

lastrep, the identification number for the last replication. 

discfixd, which should equal 1 if item discrimination is fixed 
and otherwise be 0. 

abilequl, which should equal 1 if reference and focal groups have 
equal ability and otherwise be 0. 

For example, if the input file consists of the following line: 
"b:\data\exper23" 40 200 425 430 435 0 1 
running the program would result in the files exper23.430, 
exper23.431, exper23.432, exper23.433, exper23.434, and 
exper23.435 being written to the directory data on drive b. Each 
file would be for a 40 item test taken by 200 focal group and 200 
reference group members, with varying discrimination and equal 
underlying ability. 

DECLARE FUNCTION gasdev! () ' returns random number from 
'unit normal distribution 

DECLARE FUNCTION normdist! {mean!, stdev!) 'returns normally distributed 
'random number with specified 
'mean and standard deviation 

DECLARE FUNCTION lognorm! {} 
GOSUB getinput 
GOSUB verify 

declare arrays 

alpha holds the discrimination parameter for each item 
beta holds the difficulty parameter for each item 
probcorr is the probability an item is answered correctly 
response is 0 for correct item, 1 otherwise 
theta holds the ability parameter for each person 
discdif equals 1 if item discrimination is altered to simulate dif, 0 

otherwise 
diffdif equals 1 if item difficulty is altered to simulate dif, 0 

otherwise 
DIM alpha{iall), beta{iall), probcorr{iall), response{iall), theta{pall) 
DIM discdif(iall), diffdif{iall) 
RANDOMIZE TIMER 
GOSUB initarrays 
GOSUB assigndif 
FOR thisrep * firstrep TO lastrep 

Exten$ - STR${thisrep) 
toobig « LEN{Exten$) 
Exten$ • RIGHT$(Exten$, toobig - 1) 
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outfile$ = basename$ + "." + Exten$ 
PRINT "replication number "; thisrep; " printing to outfile$ 
OPEN outfile$ FOR OUTPUT AS #2 
GOSUB itemparams 
FOR p ~ 1 TO pall 
GOSUB genabil 
GOSUB writeabil 
score = 0 
FOR i = 1 TO iall 

GOSUB unifdif 
GOSUB nonunifdif 
GOSUB genscors 
PRINT #2, USING "#*; response(i); 

NEXT i 
PRINT #2, USING "###"; score 

NEXT p 
CLOSE #2 

NEXT thisrep 
END 
getinput: 

INPUT "enter input file name:", infile$: OPEN infile$ FOR INPUT AS #3 
INPUT #3, basename$, iall 
IF iall <> 20 AND iall <> 40 AND iall <> 60 THEN PRINT "litems bad": CLOSE 

STOP 
INPUT #3, grupsize, firstrep, lastrep, discfixd, abilequl 
IF firstrep > lastrep OR lastrep > 999 OR (lastrep - firstrep) > 999 THEN 

PRINT "replication numbers bad": CLOSE : STOP 
IF discfixd <> 0 AND discfixd <> 1 THEN PRINT "discfixd flag bad": CLOSE : 

STOP 
IF abilequl <> 0 AND abilequl <> 1 THEN PRINT "abilequl flag bad": CLOSE : 

STOP 
pall = grupsize * 2 

RETURN 
verify: 

PRINT basename$; 
PRINT USING "###"; firstrep; 
PRINT " will be initial output file" 
PRINT basename$; 
PRINT USING "###"; lastrep; 
PRINT " will be final output file" 
PRINT iall; " items from 2 groups of grupsize; " will be replicated." 
IF discfixd = 1 THEN PRINT "discrimination will be fixed." 
IF discfixd » 0 THEN PRINT "discrimination will vary." 
IF abilequl * 1 THEN PRINT "ability between groups will be equal." 
IF abilequl = 0 THEN PRINT "ability between groups will be unequal." 
INPUT "okay to continue? y or n", signal$ 
IF signal$ <> "y" AND signal$ <> "y" THEN CLOSE : STOP 

RETURN 
initarrays: 

FOR i - 1 TO iall 
discdif(i) = 0 
diffdif(i) - 0 

NEXT i 
RETURN 
assigndif: 

diffdif{6) « 1 
discdif(13) » 1 
diffdif(20) = 1: discdif(20) = 1 
IF iall > 20 THEN 
diffdif(26) « 1 
discdif(33) « 1 
diffdif(40) « 1: discdif(40) « i 

END IF 
IF iall > 40 THEN 
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diffdif(46) = 1 
discdif(53) « 1 
diffdif(60) « 1: discdif(60) « 1 

END IF 
RETURN 
itemparaiRS: 

FOR 1 = 1 TO iall 
beta(i) * norxadist (0, 1) 
IF discfixd THEN alpha(i) = 1 ELSE alpha(i) * lognorm 

NEXT i 
RETURN 
genabil: 

IF (abilequl) OR (p > grupsize) THEN theta(p) * normdist(0, 1) ELSE theta(p) 
normdist(-1, 1) 
RETURN 
writeabil: 

PRINT #2, USING "###"; p; 
PRINT #2, USING "##.### theta(p); 

RETURN 
nonuhifdif: 
SELECT CASE discdif(i) 
CASE 1 

IF (p <= grupsize) THEN alphahat = 1.763073 ELSE alphahat = 1 
CASE 0 

alphahat = alpha(i) 
CASE ELSE 

PRINT "Program array discdif improperly filled. Fatal error.": CLOSE : STOP 
END SELECT 
RETURN 
unifdif: 

IF p <= grupsize AND diffdif(i) THEN betahat = beta(i) + .6 ELSE betahat = 
beta(i) 
RETURN 
genscors: 

probcorr(i) = 1 / (1 + EXP(-1 * alphahat * (theta(p) - betahat))) 
IF RND <= probcorr(i) THEN 

response(i) = 1 
score * score + 1 

ELSE response(i) = 0 
END IF 

RETURN 
FUNCTION gasdev 
t 

'From Sprott, 1991 » 

STATIC iset, gset 
SELECT CASE iset 
CASE 0 

DO 
vl « 2! * RND - 1! 
v2 - 2! * RND - 1! 
r = v l A 2 + v2 A 2 

LOOP WHILE r > s 1! OR r 8 0! 
fac « SQR<~2* * LOG(r) / r) 
gset « vl * fac 
gasdev * v2 * fac 
iset * 1 

CASE ELSE 
gasdev * gset 
iset * 0 

END SELECT 
END FUNCTION 
FUNCTION lognorm 

z * normdist.065, .13) 
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lognorm =1.7 * EXP(z) 
END FUNCTION 
FUNCTION normdist (mean, stdev) 

normdist = mean + stdev * gasdev 
END FUNCTION 
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RASCHRES: A program to estimate Rasch residual scores. 

This program reads in dichotomously-scored responses, then 
computes expected and residual scores using the Rasch model and 
UCON estimation. Residual scores match BIGSTEPS output to 2 
decimal places. 

From J. M. Linacre."Designing your own Rasch analysis program" 
ERIC document ED 318 801, April, 1990. 

Also F. B. Baker, 1992. 
Last revision, 16-NOV-94. 

datafile$ 
outfile$ 
iall 
pall 
I 

P 
iexp(i), pexp{p) 
ilogit(i), plogit(p) 
iscore(i), pscore(p) 
ivar(i), pvar(p) 

input file 
output file 
number of items in datafile$ 
number of persons in datafile$ 
index variable of item being calibrated 
index variable of person being measured 
holds expected item and person scores 
holds logit calibration or measure 
holds number of successes 
holds variance of logit estimate 

Command file format iall, pall, started 
"INPUT.FIL" "OUTPUT.FIL" 
"MOREINP.UT" "MOREOUT.PUT" 

Input file format: 

Output file format: 

Line 1 
Line 2 
Line 3 
etc. 
The number of lines is limited only by 

the number of input files and available disk 
space for output files. All input files 
contain IALL items and PALL people, 

and the data should begin in column STARTCOL 

Scored responses, no spaces between columns, 
beginning in column STARTCOL. One line per 

person. No blank lines. 
1 = correct; 0 = incorrect. 

Each person's first line is the information 
read from input file. Subsequent lines 
consist of residual scores computed to 3 

places, with a maximum line length of 120 cols. 

CLS 
INPUT "enter command file name: 
OPEN commfile$ FOR INPUT AS #3 
INPUT #3, iall, pall, startcol 
timel = TIMER 
DIM icount(iall), iexp(iall) , 
DIM pcount(pall), pexp(pall), 
DIM response(pall, iall) 
DIM raschres(pall, iall) 
oneless « startcol - 1 
DO UNTIL EOF(3) 

itertime = TIMER 
1 initialize arrays 

commfile$: 

ilogit(iall), iscore(iall), ivar(iall) 
plogit(pall), pscore(pall), pvar(pall) 



FOR 1 = = 1 TO iall: 
FOR p = 1 TO pall: 

icount(i) 
pcount(p) 

0: 
0: 

iscore(i) 
pscore(p) 

= 0: 
= 0: 

ilogit(i) 
plogit(p) 
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= 0: NEXT i 
= 0: NEXT p 

FOR p = 1 TO pall 
FOR i = 1 TO iall 

raschres(p, i) = 9 
NEXT i 

NEXT p 

itotal = iall: ptotal = pall 

read data file, beginning in column started 

INPUT #3, datafile$, outfile$ 
OPEN datafile$ FOR INPUT AS #1 
OPEN outfile$ FOR OUTPUT AS #2 
LOCATE 1, 1 
PRINT "datafile = "; datafile$; " outfile 
FOR p = 1 TO pall: LINE INPUT #1, 1$ 

FOR i = 1 TO iall 
r$ = MID$(1$/ oneless + i, 1) 
IF r$ <> "0" AND r$ <> "1" THEN 

response(p, i) = -1 
ELSE 

response(p, i} = VAL(r$) 
END IF 

NEXT i 
NEXT p 

= outfile$ 

recount = -1 
f This comment replaces code which was used when this program was 
1 actually run. To make this program operational, insert the last 
' 13 lines from Linacre (1990) page 17 (ERIC page 18) and the first 
1 19 lines from page 18 (ERIC page 19) in place of this comment. 
WEND 

GOSUB proxest » 

1 PROX algorithm first. 
1 Estimates converge when no measure changes by more than 0.1 
logits. 

converged$ = "no" 
est = 0 
LOCATE 23, 1 
PRINT " 
tt 

WHILE converged$ = "no": converged$ = "yes" 
LOCATE 23, 1 
est « est + 1: PRINT "est # est 
FOR i - 1 TO iall: iexp(i) = 0: ivar(i) = 0: NEXT i 

1 This comment replaces code which was used when this program was 
f actually run. To make this program operational, insert the last 
1 43 lines from Linacre (1990) page 18 (ERIC page 19) in place of 
1 this comment. 
WEND: PRINT "completed" 
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ibias = (itotal - It) / itotal 
FOR i = 1 TO iall 
IF icount(i) > 0 THEN ilogit(i) = ilogit(i) * ibias 

NEXT i 
t 
pbias = (ptotal - 1!) / ptotal 
FOR p = 1 TO pall 

IF pcount(p) > 0 THEN plogit(p) = plogit(p) * pbias 
NEXT p 
t 
FOR p = 1 TO pall 

IF pcount(p) > 0 THEN 
FOR i = 1 TO iall 
IF icount(i) > 0 AND response(p, i) >=0 THEN 
success = 1! / (1! + EXP(ilogit{i) - plogit(p))) 
variance = success * {1! - success) 
raschres(p, i) = response(p, i) - success 

END IF 
NEXT i 

END IF 
NEXT p 
i 
1 write results to disk 
t 
LOCATE 23, 40 
PRINT " 
FOR p = 1 TO pall 
LOCATE 23, 40 
PRINT "saving person p 
PRINT #2, USING "###"; pscore(p); 
FOR i = 1 TO iall 
PRINT #2, USING "##.###"; raschres(p, i); 
IF (i HOD 20) = 0 THEN PRINT #2, 'limit output to 

120 cols 
NEXT i 

NEXT p 
time2 = TIMER 
iterlaps = time2 - itertime 
elapsed = time2 - timel 
LOCATE 2 4, 1 
PRINT " time this iteration iterlaps; "total elapsed 
CLOSE #1 
CLOSE #2 
LOOP 
CLOSE #3 
END 

proxest: 
'This algorithm is from Baker, 1992 
proxsum = 0 
FOR i = 1 TO iall 

IF icount(i) > 0 THEN 
partone = ptotal / iscore(i) 
ilogit(i) = LOG(partone - 1) 
proxsum = proxsum + ilogit(i) 

END IF 
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NEXT i 
meanl = proxsum / itotal 
FOR i = 1 TO iall 
IF icount(i) > 0 THEN ilogit(i) = ilogit(i) - meanl 

NEXT i 
FOR p = 1 TO pall 

IF pcount(p) > 0 THEN 
parttwo = itotal - pscore(p) 
plogit(p) = LOG(pscore(p)) - LOG(parttwo) 

END IF 
NEXT p 
RETURN 
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DECLARE FUNCTION betail (a!, b! , x!) 
DECLARE FUNCTION betacf! {a!, b!, x!) 
DECLARE FUNCTION GAMMLN! <x!) 
fLast Revised 11-22-94 
1 input contains iall pall "outfile" and a list of input files. 
DECLARE SUB summer (datq!(), n!, sum!, sumsq!, count!) 
DECLARE SUB ftest (datal!(), nl!, data2!{), n2!, f!, dfbet!, dfwith!, 
probf!) 
DECLARE SUB hitcount (indx, u, nu, comb, fp) 
CLS 
DATA 76.18009173D0,-86.50532033D0, 24.01409822D0 
DATA -1.231739516D0, .120858003D-2,-.536382D-5,2.50662827465D0 
DATA 0.5D0,1,0D0,5.5D0 
'DATA lines are used in function GAMMLN 
INPUT "Enter command filename:"; commfile$: OPEN coramfile$ FOR INPUT AS 
#3 
INPUT #3, iall, pall, outfile$ 
IF (iall <> 20) AND (iall <> 40} AND (iall <> 60) THEN 

PRINT "Program requires 20,40, or 60 items, not iall 
CLOSE 
END 

END IF 
grupsize = pall / 2 
DIM res(pall, 20), grupl(grupsize) , grup2(grupsize) 
timel = TIMER 
fphitsum = 0 
uhitsum = 0 
nuhitsum = 0 
cbhitsum = 0 
OPEN outfile$ FOR OUTPUT AS #2 
DO UNTIL EOF(3) 

itertime = TIMER 
GOSUB initarrays 
icount = 0 
fphit = 0 
uhit = 0 
nuhit = 0 
cbhit = 0 
INPUT #3, infile$ 
PRINT "Input file = "; infile$, "Output file ="; outfile$ 
OPEN infile$ FOR INPUT AS #1 
FOR p = 1 TO pall 

GOSUB GetLinel 
NEXT p 
CLOSE #1 
GOSUB ProcessLine 
IF iall > 20 THEN 

OPEN infile$ FOR INPUT AS #1 
FOR p = 1 TO pall 

GOSUB GetLine2 
NEXT p 
CLOSE #1 
GOSUB ProcessLine 

END IF 
IF iall > 40 THEN 

OPEN infile$ FOR INPUT AS #1 
FOR p = 1 TO pall 



84 

GOSUB GetLine3 
NEXT p 
CLOSE #1 
GOSUB ProcessLine 

END IF 

"Data taken from "; infile$; " alpha = .05 with dfw; 

"Type I", "Uniform", "Nonuniform", "Combination" 
fphit, uhit, nuhit, cbhit 

nuhit 
cbhit 

LOCATE 1, 1 
PRINT #2, 

df. " 
PRINT #2, 
PRINT #2, 
PRINT #2, 
fphitsum = fphitsum + fphit 
uhitsum = uhitsum + uhit 
nuhitsum = nuhitsum 
cbhitsum = cbhitsum 
GOSUB ShowTime 

LOOP 
PRINT #2, 
PRINT #2, " TOTALS" 
PRINT #2, " "Type I", "Uniform ", "Nonuniform", " Combination" 
PRINT #2, "Found", fphitsum, uhitsum, nuhitsum, cbhitsum 
fpdenom = 85 * iall 
difdenom = 5 * iall 
PRINT #2, "Possible", fpdenom, difdenom, difdenom, difdenom 

"Percent", 
100 * fphitsum / fpdenom; 
100 * uhitsum / difdenom; 
100 * nuhitsum / difdenom; 
100 * cbhitsum / difdenom; 

USING "##.##"; 
USING "##.##"; 

##.##"; 
##.##"; 

USING 
USING 

PRINT #2, 
PRINT #2, 
PRINT #2, 
PRINT #2, 
PRINT #2, 
CLOSE #2 
CLOSE #3 
END 
initarrays: 

FOR p = 1 TO pall 
FOR i = 1 TO 20 

res(p, i) = 0 
NEXT i 

NEXT p 
FOR p = 1 TO grupsize 
grupl(p) = 0 
grup2(p) = 0 
NEXT p 

RETURN 

PRINT #2, 
PRINT #2, 
PRINT #2, "%' 
PRINT #2, "%' 

GetLinel: 
LINE INPUT #1, line$ 
startpos = 4 
GOSUB FilMatrx 
IF iall >= 40 THEN LINE INPUT #1, dum$ 
IF iall = 60 THEN LINE INPUT #1, dum$ 

RETURN 

GetLine2: 
LINE INPUT #1, dum$ 
LINE INPUT #1, line$ 
startpos = 1 
GOSUB FilMatrx 



85 

IF iall = 60 THEN LINE INPUT #1, dum$ 
RETURN 

GetLine3: 
LINE INPUT #1, dum$ 
LINE INPUT #1, dum$ 
LINE INPUT #1, line$ 
startpos = 1 
GOSUB FilMatrx 

RETURN 

ProcessLine: 
FOR i = 1 TO 20 

fifth = i / 5 
FOR p = 1 TO grupsize 

grupl(p) = res(p, i) 
NEXT p 
FOR p = grupsize + 1 TO pall 

grup2(p - grupsize) = res(p, i) 
NEXT p 
icount = icount + 1 
CALL ftest(grupl(), grupsize, grup2(), grupsize, f, dfb, dfw, probf) 
PRINT #2, USING icount; 
PRINT #2, USING "###.##"; f; 
IF probf < .05 THEN 

CALL hitcount(i, uhit, nuhit, cbhit, fphit) 
ELSEIF f = -9 THEN 

PRINT #2, "missing"; 
ELSE 

PRINT #2, M nosig 
END IF 
IF fifth = INT(fifth) THEN PRINT #2, 
NEXT i 

RETURN 

FilMatrx: 
FOR i = 1 TO 20 

res(p, i) = VAL(MID$(line$, startpos, 6)) 
startpos = startpos + 6 

NEXT i 
RETURN 

ShowTime: 
time2 = TIMER 
iterlaps = time2 - itertime 
elapsed = time2 - tirael 
LOCATE 24, 1 
PRINT "time this iteration iterlaps, " total elapsed; "" 

RETURN 

FUNCTION betacf (a, b, x) 
t 

'This subroutine for a complete beta function is available in Sprott 
(1991) . 
fIt is called from betai. 
t 

END FUNCTION 
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FUNCTION betai (a, b, x) 
I 

'This subroutine for an incomplete beta function is available in Sprott 
(1991). 
'It is used to compute the significance of F values in sub ftest. 
fIt calls the functions betacf and GAMMLN. 
i 
END FUNCTION 

SUB ftest (datal! (), nl!, data2!(), n2\, f!, dfbet!, dfwith!, probf') 
CALL summer(datal!(), nl!, suml!, sumsql!, countl!) 
CALL summer(data2!(), n2!, sum2!, sumsq2!, count2!) 
ntot = countl + count2 
IF countl <> 0 AND count2 <> 0 THEN 
sumtot = suml + sum2 
sumsqtot = sumsql + sumsq2 
ssavl = suml * suml / countl 
ssav2 = sum2 * sum2 / count2 
ssavtot = sumtot * sumtot / ntot 
ssbet = ssavl + ssav2 - ssavtot 
sswith = sumsqtot - ssavl - ssav2 
dfbet = 1 
dfwith = ntot - 2 
f = ssbet * dfwith / sswith 
probf = betai(.5 * ntot, .5, ntot / {ntot + f}) 'algorithm from 

Sprott, 1991 
IF probf > 1! THEN probf = 2! - probf 

ELSE 
f = -9 
probf = 999 
dfwith = 0 

END IF 
END SUB 
FUNCTION GAMMLN (XX) 
t 

'This function is available from Sprott, 1991. It is called from 
function betai. 
f 

END FUNCTION 
SUB hitcount (indx, u, nu, comb, fp) 

PRINT #2, " *SIG* 
SELECT CASE indx 
CASE 6 
u = u + 1 

CASE 13 
nu = nu + 1 

CASE 20 
comb = comb + 1 

CASE ELSE 
fp = fp + 1 

END SELECT 
END SUB 

SUB summer (datqM)/ n!, sum!, sumsq!, c!) 
i 
'given array datq of length n, returns sum of elements as sum and 
squared 
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'elements summed as sumsq • 

sum = 0! 
sumsq = 0! 
c = 0! 
FOR J = 1 TO n 

element = datq(J) 
IF element = 9 THEN 

c = c 
ELSE 

c = c + 1 
sum = sum + element 
sumsq = sumsq + (element * element) 

END IF 
NEXT J 
END SUB 
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COMMENT This is experiment 1 replication 1 
DATA LIST FILE = 'expOlDAT 1 A1' 

/PERSON 1-3 SCORE1 TO SCORE20 11-30 TOTAL 32-33 
COMPUTE GROUP = 0 
IF (PERSON < 301) GROUP = 1 
LOGISTIC REGRESSION SCORE1 WITH TOTAL GROUP GROUP BY TOTAL 
/METHOD ENTER TOTAL 
/METHOD ENTER GROUP GROUP BY TOTAL 

LOGISTIC REGRESSION SCORE2 WITH TOTAL GROUP GROUP BY TOTAL 
/METHOD ENTER TOTAL 
/METHOD ENTER GROUP GROUP BY TOTAL 

LOGISTIC REGRESSION SCORE3 WITH TOTAL GROUP GROUP BY TOTAL 
/METHOD ENTER TOTAL 
/METHOD ENTER GROUP GROUP BY TOTAL 

LOGISTIC REGRESSION SCORE4 WITH TOTAL GROUP GROUP BY TOTAL 
/METHOD ENTER TOTAL 
/METHOD ENTER GROUP GROUP BY TOTAL 

LOGISTIC REGRESSION SCORE5 WITH TOTAL GROUP GROUP BY TOTAL 
/METHOD ENTER TOTAL 
/METHOD ENTER GROUP GROUP BY TOTAL 

LOGISTIC REGRESSION SCORE6 WITH TOTAL GROUP GROUP BY TOTAL 
/METHOD ENTER TOTAL 
/METHOD ENTER GROUP GROUP BY TOTAL 

LOGISTIC REGRESSION SCORE7 WITH TOTAL GROUP GROUP BY TOTAL 
/METHOD ENTER TOTAL 
/METHOD ENTER GROUP GROUP BY TOTAL 

LOGISTIC REGRESSION SCORES WITH TOTAL GROUP GROUP BY TOTAL 
/METHOD ENTER TOTAL 
/METHOD ENTER GROUP GROUP BY TOTAL 

LOGISTIC REGRESSION SCORE9 WITH TOTAL GROUP GROUP BY TOTAL 
/METHOD ENTER TOTAL 
/METHOD ENTER GROUP GROUP BY TOTAL 

LOGISTIC REGRESSION SCOREIO WITH TOTAL GROUP GROUP BY TOTAL 
/METHOD ENTER TOTAL 
/METHOD ENTER GROUP GROUP BY TOTAL 

LOGISTIC REGRESSION SCORE11 WITH TOTAL GROUP GROUP BY TOTAL 
/METHOD ENTER TOTAL 
/METHOD ENTER GROUP GROUP BY TOTAL 

LOGISTIC REGRESSION SCORE12 WITH TOTAL GROUP GROUP BY TOTAL 
/METHOD ENTER TOTAL 
/METHOD ENTER GROUP GROUP BY TOTAL 

LOGISTIC REGRESSION SCORE13 WITH TOTAL GROUP GROUP BY TOTAL 
/METHOD ENTER TOTAL 
/METHOD ENTER GROUP GROUP BY TOTAL 

LOGISTIC REGRESSION SCORE14 WITH TOTAL GROUP GROUP BY TOTAL 
/METHOD ENTER TOTAL 
/METHOD ENTER GROUP GROUP BY TOTAL 

LOGISTIC REGRESSION SCORE15 WITH TOTAL GROUP GROUP BY TOTAL 
/METHOD ENTER TOTAL 
/METHOD ENTER GROUP GROUP BY TOTAL 

LOGISTIC REGRESSION SCORE16 WITH TOTAL GROUP GROUP BY TOTAL 
/METHOD ENTER TOTAL 
/METHOD ENTER GROUP GROUP BY TOTAL 

LOGISTIC REGRESSION SCORE17 WITH TOTAL GROUP GROUP BY TOTAL 
/METHOD ENTER TOTAL 
/METHOD ENTER GROUP GROUP BY TOTAL 

LOGISTIC REGRESSION SCORE18 WITH TOTAL GROUP GROUP BY TOTAL 
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/METHOD ENTER TOTAL 
/METHOD ENTER GROUP GROUP BY TOTAL 

LOGISTIC REGRESSION SCORE19 WITH TOTAL GROUP GROUP BY TOTAL 
/METHOD ENTER TOTAL 
/METHOD ENTER GROUP GROUP BY TOTAL 

LOGISTIC REGRESSION SCORE20 WITH TOTAL GROUP GROUP BY TOTAL 
/METHOD ENTER TOTAL 
/METHOD ENTER GROUP GROUP BY TOTAL 

COMMENT This assumes the results of the above program are 
COMMENT contained in the file EX01R001 LISTING El 
COMMENT This is experiment 1 replication 1 
SET ERRORS=BOTH MESSAGES=NONE PRINTBACK=NONE RESULTS=LISTING 
INPUT PROGRAM 
DATA LIST FILE = 'EX01R001 LISTING El' 
/LINEFLAG 3-4 (A) 

DO IF (LINEFLAG = "-2") 
REREAD 
DATA LIST RECORDS = 2 

/2 KISQ 23-32(3) 
DF 36-38 
SIGNIF 47-51 (4) 

END CASE 
END IF 
END INPUT PROGRAM 
SELECT IF DF = 2 
COMPUTE CASE = $CASENUM 
COMPUTE ITENUM = MOD(CASE, 20) 
LIST VAR = CASE KISQ DF SIGNIF ITENUM 
SELECT IF (SIGNIF <= .05) 
COMPUTE UDIF=0 
COMPUTE NUDIF=0 
COMPUTE COMBDIF=0 
COMPUTE FALSEPOS=0 
DO IF ITENUM=0 
COMPUTE COMBDIF=1 
ELSE IF ITENUM=6 
COMPUTE UDIF=1 
ELSE IF ITENUM=13 
COMPUTE NUDIF=1 
ELSE 
COMPUTE FALSEPOS = 1 
END IF 
LIST VAR = ALL 
DESCRIPTIVES VAR=UDIF NUDIF COMBDIF FALSEPOS/STAT=SUM 
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filename suiranstat 1dissresu.It! 1 ; 
data allobs; 
infile suiranstat; 
input uda nda cda fpa testlen sampsize disc abil repno udlr ndlr cdlr 
fplr; 
posshits=testlen/20; 
possmiss=testlen-(3*posshits); 
udapct=(uda/posshits)*100; 
ndapct=(nda/posshits)*100; 
cdapct=(cda/posshits)*100; 
fpapct={fpa/possmiss)*100; 
udlrpct=(udlr/posshits)*100; 
ndlrpct=(ndlr/posshits)*100; 
cdlrpct=(cdlr/posshits)*100; 
fplrpct=(fplr/possmiss)*100; 
run; 
proc anova data = allobs; 

class testlen sampsize disc abil; 
model udapct = testlenIsampsize|disc|abil; 

run; 
proc anova data = allobs; 

class testlen sampsize disc abil; 
model udlrpct = testlen|sampsize|discjabil; 

run; 
proc anova data = allobs; 

class testlen sampsize disc abil; 
model ndapct = testlenIsampsize|disc|abil; 

run; 
proc anova data = allobs; 

class testlen sampsize disc abil; 
model ndlrpct = testlen|sampsize|disciabil; 

run; 
proc anova data = allobs; 

class testlen sampsize disc abil; 
model cdapct = testlen|sampsize|disc|abil; 

run; 
proc anova data = allobs; 

class testlen sampsize disc abil; 
model cdlrpct = testlen|sampsize]disc|abil; 

run; 
proc anova data = allobs; 

class testlen sampsize disc abil; 
model fpapct = testlen|sampsize|disc|abil; 

run; 
proc anova data = allobs; 

class testlen sampsize disc abil; 
model fplrpct = testlenIsampsize|disc|abil; 

run; 
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Table 13 

Summary Data for Logistic Regression and Analysis of Variance Differential 
Item Functioning Detection Methods (100 Replications) 

Number of items found 

Experiment 
# of items 

possible ANOVA LR 

1. Uniform DIF 100 30 24 
Non-uniform DIF 100 24 39 
Combination DIF 100 64 73 
False positive 1,700 97 102 

2. Uniform DIF 100 67 55 
Non-uniform DIF 100 28 51 
Combination DIF 100 83 88 
False positive 1,700 106 91 

3. Uniform DIF 100 78 67 
Non-uniform DIF 100 36 70 
Combination DIF 100 89 91 
False positive 1,700 124 104 

4. Uniform DIF 200 69 54 
Non-uniform DIF 200 35 60 
Combination DIF 200 121 134 
False positive 3,400 191 195 

5. Uniform DIF 200 128 110 
Non-uniform DIF 200 53 109 
Combination DIF 200 155 171 
False positive 3,400 204 204 

6. Uniform DIF 200 165 140 
Non-uniform DIF 200 66 155 
Combination DIF 200 166 183 
False positive 3,400 234 194 

(table continues) 
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Number of items found 

Experiment 
# of items 
possible ANOVA LR 

7. Uniform DIF 300 105 94 
Non-uniform DIF 300 66 103 
Combination DIF 300 177 195 
False positive 5,100 281 307 

8. Uniform DIF 300 194 162 
Non-uniform DIF 300 100 191 
Combination DIF 300 222 254 
False positive 5,100 311 275 

9. Uniform DIF 300 248 215 
Non-uniform DIF 300 135 231 
Combination DIF 300 261 286 
False positive 5,100 312 310 

10. Uniform DIF 100 36 25 
Non-uniform DIF 100 19 25 
Combination DIF 100 88 81 
False positive 1,700 104 114 

11. Uniform DIF 100 50 45 
Non-uniform DIF 100 31 53 
Combination DIF 100 93 89 
False positive 1,700 124 112 

12. Uniform DIF 100 72 58 
Non-uniform DIF 100 51 78 
Combination DIF 100 99 97 
False positive 1,700 143 144 

13. Uniform DIF 200 56 44 
Non-uniform DIF 200 45 66 

(table continues) 
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Number of items found 

Experiment 
# of items 

possible ANOVA LR 

Combination DIF 200 164 150 
False positive 3,400 179 208 

14. Uniform DIF 200 124 100 
Non-uniform DIF 200 70 131 
Combination DIF 200 193 189 
False positive 3,400 211 260 

15. Uniform DIF 200 120 95 
Non-uniform DIF 200 107 156 
Combination DIF 200 198 195 
False positive 3,400 262 270 

16. Uniform DIF 300 73 59 
Non-uniform DIF 300 69 122 
Combination DIF 300 230 210 
False positive 5,100 255 270 

17. Uniform DIF 300 135 109 
Non-uniform DIF 300 97 183 
Combination DIF 300 280 277 
False positive 5,100 328 328 

18. Uniform DIF 300 189 162 
Non-uniform DIF 300 v 136 249 
Combination DIF 300 286 293 
False positive 5,100 350 355 

19. Uniform DIF 100 60 54 
Non-uniform DIF 100 19 36 
Combination DIF 100 62 78 
False positive 1,700 99 111 

(table continues) 
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Number of items found 

Experiment 
# of items 
possible ANOVA LR 

20. Uniform DIF 100 92 86 
Non-uniform DIF 100 29 63 
Combination DIF 100 82 87 
False positive 1,700 135 123 

21. Uniform DIF 100 90 87 
Non-uniform DIF 100 37 72 
Combination DIF 100 79 95 
False positive 1,700 135 117 

22. Uniform DIF 200 122 109 
Non-uniform DIF 200 43 77 
Combination DIF 200 117 141 
False positive 3,400 197 223 

23. Uniform DIF 200 184 169 
Non-uniform DIF 200 75 121 
Combination DIF 200 156 170 
False positive 3,400 227 227 

24. Uniform DIF 200 192 182 
Non-uniform DIF 200 75 168 
Combination DIF 200 171 189 
False positive 3,400 235 227 

25. Uniform DIF 300 189 163 
Non-uniform DIF 300 72 108 
Combination DIF 300 192 217 
False positive 5,100 277 339 

26. Uniform DIF 300 257 238 
Non-uniform DIF 300 86 184 

(table continues) 
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Number of items found 

Experiment 
# of items 
possible ANOVA LR 

Combination DIF 300 240 260 
False positive 5,100 332 313 

27. Uniform DIF 300 277 270 
Non-uniform DIF 300 120 242 
Combination DIF 300 250 278 
False positive 5,100 361 358 

28. Uniform DIF 100 45 38 
Non-uniform DIF 100 9 32 
Combination DIF 100 47 62 
False positive 1,700 100 1128 

29. Uniform DIF 100 73 72 
Non-uniform DIF 100 26 70 
Combination DIF 100 82 96 
False positive 1,700 121 154 

30. Uniform DIF 100 74 75 
Non-uniform DIF 100 33 77 
Combination DIF 100 80 96 
False positive 1,700 147 176 

31. Uniform DIF 200 90 75 
Non-uniform DIF 200 35 82 
Combination DIF 200 97 145 
False positive 3,400 196 250 

32. Uniform DIF 200 149 139 
Non-uniform DIF 200 47 126 
Combination DIF 200 160 188 
False positive 3,400 224 266 

(table continues) 
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Number of items found 

Experiment 
# of items 

possible ANOVA LR 

33. Uniform DIF 200 165 162 
Non-uniform DIF 200 576 165 
Combination DIF 200 168 198 
False positive 3,400 280 362 

34. Uniform DIF 300 144 119 
Non-uniform 300 37 109 
Combination DIF 300 159 225 
False positive 5,100 275 373 

35. Uniform DIF 300 221 197 
Non-uniform DIF 300 58 195 
Combination DIF 300 234 288 
False positive 5,100 361 413 

36. Uniform DIF 300 239 246 
Non-uniform DIF 300 94 247 
Combination DIF 300 262 296 
False positive 5,100 420 502 

Note. ANOVA = analysis of variance; LR = logistic regression; DIF = 
differential item functioning. 
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