Reciprocal Influences of Temperature and Copper on Fathead Minnows (Pimephales promelas)

PDF Version Also Available for Download.

Description

Acclimation temperature had a significant effect on the lethality of copper to fathead minnows in replicated 96-hour lethality tests. Lowest median lethal copper concentrations (LC50) were recorded at 12 and 22°C, with LC50s at 5 and 32°C at least 140 μg/1 higher. This research found LC50 copper concentrations in the 300 to 500 μg/1 range and a polynomial relationship between LC50s and acclimation temperature. Following a 24-hour exposure to three sublethal concentrations of copper, critical thermal maxima (CTMax) were tested in minnows acclimated to four temperatures. Sublethal exposure to copper significantly decreased the CTMaxs relative to controls at three of ... continued below

Physical Description

vi, 47 leaves: ill.

Creation Information

Richards, Virginia L. (Virginia Lynn) May 1994.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 28 times . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Richards, Virginia L. (Virginia Lynn)

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Acclimation temperature had a significant effect on the lethality of copper to fathead minnows in replicated 96-hour lethality tests. Lowest median lethal copper concentrations (LC50) were recorded at 12 and 22°C, with LC50s at 5 and 32°C at least 140 μg/1 higher. This research found LC50 copper concentrations in the 300 to 500 μg/1 range and a polynomial relationship between LC50s and acclimation temperature. Following a 24-hour exposure to three sublethal concentrations of copper, critical thermal maxima (CTMax) were tested in minnows acclimated to four temperatures. Sublethal exposure to copper significantly decreased the CTMaxs relative to controls at three of the four temperatures. Control CTMaxs ranged from 28.6 to 40.4°C and increased 0.46°C for each 1°C increase in acclimation temperature.

Physical Description

vi, 47 leaves: ill.

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • May 1994

Added to The UNT Digital Library

  • March 24, 2014, 8:07 p.m.

Description Last Updated

  • April 16, 2015, 3:34 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 28

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Richards, Virginia L. (Virginia Lynn). Reciprocal Influences of Temperature and Copper on Fathead Minnows (Pimephales promelas), thesis, May 1994; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc278235/: accessed August 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .