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The nonlinear dynamics of three physical systems has been investigated. 

Diode resonator systems are experimentally shown to display a period doubling 

route to chaos, quasiperiodic states, periodic locking states, and Hopf bifurcation 

to chaos. Particularly, the transition from quasiperiodic states to chaos in line-

coupled systems agrees well with the Curry-Yorke model. The SPICE program has 

been modified to give realistic models for the diode resonator systems. 

A proportional feedback technique is applied to both single and line-coupled 

diode resonator systems. For single diode system, periodic orbits up to period 17 

from a typical chaotic attractor are successfully stabilized. More interestingly, for 

the line-coupled diode systems not only are high periodic oscillations obtained 

easily, but for the first time quasiperiodic orbits are also stabilized. 

Synchronization of chaos to a common orbit has been observed by weakly 

coupling two tunnel diode relaxation oscillators. In addition, the "frequency-locked 

entrainment" states of two chaotic attractors have also been observed when 

appropriate coupling is applied. 

The dynamical Hall effect in n-lnSb at liquid helium temperatures has been 

investigated. The experimental results are consistent with the theoretical 

predictions of Hupper and Scholl. The stability of chaos in this system against an 

external AC-driven source has been investigated and compared to that for a simple 

driven oscillator. The induced transitions from chaos to periodicity by an AC-driven 



source have been found in good agreement with a conjectured scaling law. 

Resonant Impact Ionization (Rll) Spectroscopy, a new technique for 

studying low concentrations of trap levels in narrow-gap semiconductors, has been 

employed to investigate Hg interstitials in both bulk and LPE samples of Hg^ 

xCdxTe with x value from 0.22 to 0.24. The Rll spectroscopy of these samples, 

which are processed under different conditions to control the concentration of Hg 

interstitials, provide direct evidence that these Hg interstitials are responsible for 

the formation of trap levels near midgap. 
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CHAPTER 1 

INTRODUCTION 

This dissertation encompasses investigations in two disciplines: nonlinear 

dynamics of semiconductor device circuits, and characterization of deep energy 

levels in Hg^Cd^e by using Magneto-Optical Spectroscopy. The experimental 

systems for the nonlinear dynamics studies included driven diode resonator 

systems, coupled tunnel diode relaxation oscillators, and the dynamical Hall 

effect in n-lnSb. For the deep energy level studies of Hg^Cd^e, a new 

technique called Resonant Impact Ionization (Rll) spectroscopy was extensively 

used to investigate deep trap levels in both bulk and LPE Hg^Cd^e samples 

with x value from 0.22 to 0.24. The backgrounds on these two fields are 

presented in Sec. 1.1 and Sec. 1.2 respectively. 

1.1 Nonlinear dynamics of electronic circuits and semiconductor n-lnSb 

A variety of oscillatory instabilities in a wide range of physical systems due 

to nonlinear effects have been observed and investigated for the past two 

decades. These systems include electronic circuits11"41, semiconductors'5"171, 

chemical reactions118"201, optical systems'21"231, and continuum hydrodynamics 

systems'24"301. Particularly in the last several years, many new results have been 

found in experimental chaos'311. Many esoteric theoretical predictions from chaos 

theory and concepts have been explored'311, e.g., mode locking, tori, Curry-Yorke 

scenario to chaos, golden means, fractals, strange attractors, stability of chaotic 

attractor, scaling laws, etc. The studies of these experimental dynamical systems 

1 
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not only confirm many theoretical predictions, but also facilitate the dramatic shift 

of emphasis toward applications of chaos1311. Two most notable examples are the 

synchronization of chaos and the stabilization of chaotic attractors. 

In all of the chaos experiments an enormous challenge is that of data 

analysis. For example, many concepts in nonlinear dynamics are complex and 

abstract. These include concepts such as: fractal dimension, phase space, 

phase portrait, Poincare section, autocorrelation function, and bifurcations. Thus, 

they are very difficult to observe directly from the experiments. In addition, partly 

because nonlinear dynamics is still a young discipline and partly because of the 

nature of nonlinear dynamics itself, there are very limited quantities which can 

quantitatively characterize a chaotic attractor. Quite often these quantities require 

high quality data in large amounts. One such quantity commonly used is the 

Lyapunov exponent. 

Taken's theorem1321 allows one to extract most of the important concepts 

from a single system observable. In other words, if a time series for one system 

observable from the experiment is obtained, then one can reconstruct the phase 

portrait, and this phase portrait is diffeomorphic to the original dynamics of the 

system. This means that one can obtain estimates of quantities such as phase 

portrait, Poincare maps, autocorrelation functions, and most importantly 

Lyapunov exponents directly from a single time series. 

Several experimental techniques are employed to obtain the single time 

series, its power spectrum, and autocorrelation function. Then these quantities 

are used to reconstruct the phase portrait and Poincare sections (Sec. 2.1, 2.2). 

Practically, the calculation of Lyapunov exponents from a time series is 

complicated, and different approaches have to be taken for different dynamical 
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systems and circumstances. Three algorithms (Sec. 3.1) developed recently are 

employed in this dissertation, and Lyapunov exponents for all of the experiments 

reported here are successfully evaluated. 

A driven diode resonator system is a simple electronic circuit that consists 

of pn-diodes, inductors, and resistors. Early work[2][3][4] has shown that (1) a 

single diode resonator system exhibits a period doubling cascade, hysteresis, 

etc. and (2) a coupled system exhibits quasiperiodicity, Hopf bifurcation and 

periodic locking. However, there still remains controversy on the proper 

approaches for modeling of the systems. Testa, Perez, and Jefferies[33][341 insisted 

that the observed period doubling and chaotic behavior were due to the 

nonlinearity of the effective capacitance on the diode pn-junctions. On the other 

hand, Hunt, Rollins and Su[3] argued that the nonlinear reverse bias capacitance 

of the pn-junction is not responsible for the behavior observed. Instead, the 

rather large reverse recovery time of such diodes was essential. Recently Yu et 

a/.[35] gave a third approach, which is to employ the well-known SPICE 

program1361 to achieve a realistic modeling of the diode. This model, which is 

detailed in this dissertation, gives more detailed expressions and realistic 

parameters corresponding to the particular type of diode. Although it does not 

resolve the controversy surrounding the modeling, this model is shown to 

achieve excellent agreement with experiment for both the single and coupled 

diode resonator systems. More importantly, this model becomes more useful for 

complex coupling diode resonator systems that represent higher dimensional 

dynamical systems. 

The importance to carefully study diode resonator systems can be seen 

if one realizes that much more complex dynamical systems can be built out of 
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this simple building block (single diode resonator). In addition one can 

experiment and explore many different ideas to study the control of chaos and 

the synchronization of chaos. Doing the experiments on such systems is also 

superior over computer simulation because it is cheaper, easier to implement, 

and much faster. 

One typical example to extend the diode resonator experiments is to study 

the stabilization of chaos. The idea that one can stabilize periodic orbits in a 

chaotic system was coined by Ott, Grebogi and Yorke (OGY)[37]. It is well 

known1381 that a typical chaotic attractor contains infinitely many unstable periodic 

orbits of all periods. By choosing small time dependent perturbations in an 

accessible system parameter, one can stabilize the system to an existing 

periodic orbit embedded in the original chaotic attractor. The stabilization of 

chaos not only has theoretical interests, but also potential applications. One 

possible application is to apply this technique to a laser system to achieve stable 

and high power output[39]. These stabilization schemes have been realized 

experimentally in several different dynamical systems, including electronic 

circuits140', laser systems1391141"431. However, most of the experiments were done 

on the most simple chaotic attractor, namely, a three-dimensional dynamical 

system, and researchers were only considering controlling a chaotic attractor to 

a periodic state. 

In the investigation of chaos stabilization reported in this dissertation, the 

proportional feedback technique has been applied to the single and line-coupled 

diode resonator systems. As a result, both high period periodic states and 

quasiperiodic states have been stabilized. These stabilized quasiperiodic states 

have important implications for further investigation, which is whether there exist 
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any quasiperiodic orbits embedded in chaotic attractor. The fact that the 

quasiperiodic orbits can only be stabilized in coupled-diode resonator systems 

indicates that this is associated with higher dynamical systems. Therefore, 

quasiperiodic oscillations can possibly be used to characterize chaotic attractors 

of high dimensional systems. 

Another interesting idea to exploit chaos is to investigate the possible 

synchronization of chaos144"471. The study of this synchronization scheme not only 

can be provided as a model for nonlinear systems with many degrees of 

freedom, but also can help to explore biological information processing and even 

engineering applications. In this dissertation, experimental observations have 

shown that by weakly coupling the two tunnel diode oscillators while both are in 

chaotic regimes, a synchronization to a common chaotic orbit can be obtained. 

Spontaneous or periodic externally driven oscillations and chaotic behavior 

related to impact ionization have been studied experimentally in a number of 

semiconductors: n-GaAs[48"511, p-Ge[5256], n-lnSb[57![58l[16] and n-Si[59]. Various types 

of periodic oscillations and chaotic behaviors were observed in these 

experiments, including period doubling bifurcation to chaos (Feigenbaum 

scenario), quasiperiodic oscillations, intermittency, and the Ruelle-Takens-

Newhouse scenario. Semiconductors, with generation-recombination kinetics and 

easily tunable parameters, provide an ideal testing ground for low dimensional 

models of dynamical systems with chaotic states. 

In this dissertation, further investigations on both the self-generated and 

driven oscillations in InSb in the presence of a transverse magnetic field at liquid 

helium temperatures are presented. The experiments have shown that the 

system can have a period doubling route to chaos. More importantly, there is a 
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good agreement on the magnetic field versus current density phase diagram 

between the experiment and theory that was proposed by Hupper and Scholl. 

Lyapunov exponents were also obtained to confirm the existence of chaos. For 

the AC-driven system, the stability of a chaotic attractor against an external AC-

driven source was investigated and the results were compared to that of a 

simple driven oscillator. The induced transitions from chaos to periodicity by the 

AC-driving source are also studied. The experimental result agrees well with a 

conjectured scaling law. 

1.2 Characterization of deep energy levels in Hg.,_xCdxTe 

Impurities and defects in semiconductor Hg^CdxTe have long been 

considered as an important factor160"621 which limits the performance and yield of 

infrared detector systems made from this material. Particularly, those energy 

levels which lie deep in the forbidden gap region and have large capture cross-

sections can make an enormous impact on the detector performance. Even 

though considerable effort has been made in characterizing these impurities and 

defects, many of these defects are still remain poorly understood because of the 

lack of sensitive techniques to detect and measure these trap levels. Deep Level 

Transient Spectroscopy (DLTS)[63 65], which is usually used to study deep levels 

in silicon and III-V semiconductors, is not appropriate for narrow gap 

semiconductor like HgCdTe since it does not provide larger enough temperature 

range for DLTS measurement as the wide gap semiconductor does. Other 

techniques, such as thermally stimulated capacitance (TSC)[661 is limited by the 

background drift due to leakage currents, and the admittance spectroscopy 

(AS)[67] is appropriate only for majority carrier traps. Other reasons for the 
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difficulty to detect deep trap levels are that deep trap states usually have very 

small absorption cross-sections and are of low density. Very recently, a new 

technique, which involves the resonant impact ionization (Rll)[68 71] of a valence 

electron by a conduction band electron, has been developed to sensitively and 

accurately detect the deep trap levels. 

The mercury (Hg) vacancy is a natural defect in HgCdTe due to the rather 

weakly bound nature of the Hg lattice and is commonly believed to act as an 

acceptor1721. During the manufacturing process, the Hg vacancy concentration in 

HgCdTe is generally reduced from a large as-grown concentration by a post-

anneal in a Hg-rich atmosphere. During this anneal, Hg atoms enter the lattice 

as interstitials and move through the crystal until they encounter and fill vacancy 

sites. Other methods17011731 such as ion-beam milling and the baking of an anodic 

oxide at the surface exist to introduce Hg atoms, as interstitials, into the HgCdTe 

lattice and can be used to convert vacancy-doped p-HgCdTe to n-HgCdTe. Until 

now, a very limited amount of work has been done to study the electrical 

properties of Hg Interstitials in HgCdTe. Recently, two separate 

experiments'7011731 on bulk HgCdTe samples have provide evidence that Hg 

interstitials appears to form deep trap levels. The Hg interstitials in these 

experiments are introduced to the sample by either ion-beam milling or oxide 

baking. 

In this dissertation, the investigation of Hg interstitials in both bulk and 

LPE HgCdTe samples by using the Rll technique is presented and described. 

The samples are grown and/or processed under different conditions to control 

the concentration of Hg interstitials. The effect of deep trap levels on the Two 

Photon Magneto-Absorption (TPMA) process is also studied and the result is 
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compared with theory. 

This dissertation consists of six chapters. Chapter 2 describes the 

experimental apparatus, techniques and numerical methods used in this 

dissertation. Chapter 3 presents the time series analysis methods used for the 

data analysis of nonlinear dynamical experiments. Chapter 3 also include the 

investigation results on the nonlinear dynamics of driven diode resonator system, 

the stabilization of chaos in driven diode system, and synchronization of chaos 

in coupled tunnel diode oscillator system. Chapter 4 shows the experimental 

results on the autonomous and externally driven periodic and chaotic oscillations 

in n-lnSb under transverse magnetic field. Chapter 5 reports the investigations 

of Hg interstitials in both bulk and LPE samples by using Rll spectroscopy. 

Chapter 6 is the conclusion of this thesis. Suggestions for the future work are 

also included in Chapter 6. 
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CHAPTER 2 

EXPERIMENTAL AND NUMERICAL METHODS 

This chapter describes the experimental setup, techniques, and apparatus 

for the following experiments: (1) oscillatory instability study of n-lnSb in low 

temperature and high magnetic field (Chapter 4), (2) nonlinear dynamical study 

of diode resonator systems (Chapter 3), (3) control of chaos in the diode 

resonator systems (Chapter 3), (4) investigation of the deep energy levels in 

HgCdTe by using magneto-optical spectroscopy (Chapter 5). Lastly, the 

numerical methods used in this dissertation are presented. 

2.1 Experimental Setup for Oscillatory Instability Studies of n-lnSb in 

Liquid Helium Temperature and High Magnetic Field. 

Fig. 2.1 is a diagram that shows the sample layout for this experiment. In 

this sample configuration, the magnetic field B is transverse to the sample 

current I. The InSb samples were obtained from Cominco American Inc., and 

they have the following specifications: at 77K extrinsic electron carrier 

concentration is 9x1013 /cm3, and electron mobility is 7x105 cm2/(V-sec). By 

using a Servomat sparkgap cutting machine, the samples were cut into 

rectangular bars, with thickness from 0.1 mm to 0.4 mm, width from 0.6 mm to 

0.9 mm, and length from 5 mm to 10 mm. Then sample surfaces were polished 

mechanically. Finally the ohmic electric contacts were made to the sample using 

pure indium as solder, and 60A/ITI gold wires as electric leads. A constant current 

was supplied, and the resulting longitudinal voltage and Hall voltage were 
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measured simultaneously. 

Fig. 2.2 is a block diagram showing the experimental setup. All outputs 

were buffered to eliminate the effects of external influences on the sample itself. 

An X-Y recorder was used to record the Hall voltage versus current or 

longitudinal voltage versus current characteristics of the samples under different 

magnetic field. The phase plots and Poincare sections were obtained using 

oscilloscopes, as detailed in Sec. 2.2. The oscilloscope and spectrum analyzer 

were used to monitor the signals and their power spectra, respectively. The 

digitizer employed here has two channels with 64 K memory each, 8-bit 

precision, and up to 1 MHz digitizing speed. There are tradeoffs between 

choosing high precision and high speed for digitizers for the same cost. High 

speed was chosen here because the output signals of oscillatory voltages are 

not spiky and well behaved; however, the interested frequencies are often as 

high as around 50 KHz. A Turbo-c program was written to transfer data from the 

digitizer to IBM personal computer for data analysis. The autocorrelation 

functions for each time series can be computed and displayed on the IBM/PC 

in the real time. 

2.2 Experimental Setup for Nonlinear Dynamical Study of Diode 

Resonator Systems. 

Fig. 2.3 shows a schematic diagram of the experimental apparatus used 

for the nonlinear dynamical studies of the diode resonator systems. The diode 

circuits are very sensitive to external noise, so buffers were used to measure the 

voltages across a resistor or a diode throughout the experiments. The driving 

source is a signal generator which can supply a sinusoidal signal with 
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frequencies up to 100 KHz and adjustable amplitude. In addition it can also 

sweep the amplitude from zero to the maximum voltage with various time 

constants. An oscilloscope and an HP 3585A spectrum analyzer were used to 

monitor the output signals. 

Electronic techniques, first used by Perez et a/.[1], were employed here 

to directly observe bifurcation diagrams, Poincare sections, phase plots, and 

return maps on the oscilloscope in real time. The key idea to obtain the 

bifurcation diagram is to detect the peak position of the current signals with zero 

crossing detectors, and use a pulse generator triggered by the output of a zero 

crossing detector to strobe the oscilloscope. With an adjustment of timing delay 

one can achieve strobing at each peak of the system signal. By sweeping the 

amplitude of the driving voltage and using this as the input for the horizontal 

deflection voltage, a diagram of peak values versus driving amplitude is 

displayed on the CRT of the oscilloscope. Conceptually, this diagram 

corresponds to the Poincare map on the plane of d0/dt = 0 and d20/dt2 ^ 0 in 

a {0, d0/dt, d20/dt2} phase space. By changing the control parameter of the 

system (driving amplitude in this case), this map will undergo bifurcation between 

different changing system states (periodic, chaotic, etc.). All bifurcation diagrams 

presented in this dissertation were constructed for this type of Poincare map. 

In addition, if one feeds the horizontal deflection with system output signal 

and the vertical deflection with a certain timing delayed the same signal, one will 

obtain a reconstructed 2-D phase plot for the system on the oscilloscope. 

According to TakensI2], this reconstruction should faithfully reflect the real phase 

plot (See Section 3.2 for details). In the same plot, the strobed trace will be the 

Poincare section. All of the pictures shown on the oscilloscope and on the 
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spectrum analyzer were taken by a 35 mm SLR camera. 

To obtain the time series of the system signals, an Analog Devices 

FAST-16 series digitizer was used. It has 16-bit resolution, 1 MHz speed and 1 

Mega-word memory. A Turbo-C program was written to control the digitizer and 

transfer the data from digitizer memory to IBM/PC. 

2.3 Method to Stabilize Chaos in the Diode Resonator Systems. 

(Proportional Feedback Technique) 

The implementation of a stabilizer is based on an idea by Ott, Grebogi 

and York[3] (OGY). It is similar to a method developed by Hunt141, but with some 

modifications. Basically, one samples the peak current ln of the diode system; for 

all peaks within a preselected adjustable window, the difference between the 

peak position and the center of the window is then computed. This difference is 

amplified with an adjustable gain and used as a control signal by superposition 

with the driving sinusoidal signal. The time delay and duration of the control 

signals are also adjustable parameters of the control circuit. 

Fig. 2.4 is a schematic diagram of the logic and electronic components for 

the stabilizer. A signal generator drives the diode resonator system (single diode 

resonator or line-coupled diode resonator system). The current through each 

system is converted to a voltage by the IA/ converter. The dc level of this signal 

may be adjusted by the offset. One unique property of the driven diode resonator 

system is that a current peak occurs at every driving cycle, therefore one can 

detect the peak position and generate a peak reference pulse from the driving 

source by the zero crossing. Using this pulse to trigger a Sample/Hold with the 

above voltage as input, one can obtain the peak level voltage which reflects the 
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peak value of the system current. This peak level can then be fed into a window 

comparator and another Sample/Hold. The window's width and position level can 

be adjusted. Thus if the peak level is within the selected window, the difference 

is generated. After it goes through an analog switch and an amplifier, the 

resultant feedback control signal is generated and fed to the multiplier. This 

multiplier modulates the system's driving signal by the feedback signal. If the 

peak level falls out of the window, a zero control signal is generated. 

2.4 Magneto-Optical Measurement Technique 

(1) Sample Preparations 

The sample preparation was carried out both at Texas Instruments and 

the University of North Texas. The measurements were performed at University 

of North Texas. Different kinds of samples used in this investigation are 

discussed as follows. 

Bulk Samples (x « 0.22 and x « 0.24): The bulk samples were rectangular 

slabs of dimensions « 8mm x 1mm x 0.2mm, cut from larger rectangular 

slices obtained from ingots grown by standard solid state 

recrystallization methods and thinned to «0.2mm in such a manner that 

the p-type core was no longer present. The thinning of the larger slices was 

accomplished by lapping both sides with alumina grit and then chemo-

mechanically polishing with a 2% solution of bromine-methanol. The electrical 

properties of the bulk x « 0.22 and x « 0.24 samples at 77K were listed in table 

2.1. 

Before cutting the final slabs to be used as samples, each slice was cut 

into two pieces. One piece was anodized in a 0.1 M KOH solution (90% ethylene 
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glycol and 10% de-ionized water) at a 200mA constant current. The anodization 

was terminated after achieving a voltage drop of 15 V, which corresponding to 

an oxide thickness of approximately « 600 A. This sample was then baked at 

140°C for approximately five hours to partially decompose the oxide and 

to introduce Hg interstitials into the materials. The second piece did 

not receive the treatment and served as a control. The electrical 

contacts were made to the bulk samples by using pure indium. The samples 

were free standing, held in place by the current leads and Hall leads. 

x values Nd - Na (cm"3) // (cm2V"1 s"1) 

x « 0.22 

O
 X 

CO 
CO 1.51 x 10s 

x » 0.24 2.5 x 1014 1.21 x 105 

Table 2.1 Electrical Properties of the Bulk Hg.,.xCdxTe 

LPE samples (x » 0.23 and x ~ 0.24Y. The LPE samples were grown on 

<111B>-oriented CdZnTe substrates using a tellurium-rich solution, where one 

of the melts contained indium at a mid-1014 cm"3 concentration as a dopant. Both 

the indium-doped and undoped samples were annealed after growth in a Hg-

saturated atmosphere to reduce the concentration of metal vacancy levels. 

Surface passivation is extremely important for HgCdTe devices151. Two 

different passivation technologies have been used. The first involves the 

deposition of a thick ZnS film. The second is a two-layer combination of a thin 
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native film and a thick deposited dielectric film (ZnS, or CdTe). For the second 

one, the native layer is made by anodic oxide, which is a mixture of HgTe03, 

CdTe03, and Te02. It has been found161 that this anodic oxide can be thermally 

decomposed by baking and thus introduce Hg interstitials deeply into the LPE 

sample. The details of passivation procedure for LPE samples used in this 

dissertation are proprietary technologies of Texas Instruments, Inc. and therefore 

cannot be discussed here. 

The electrical contacts were made to the LPE samples by using pure 

indium. Then the samples/substrates were attached to a holder by using a heat 

sink compound. 

(2) Experimental Apparatus (Fig. 2.5) 

Laser system and optics: The primary laser used is a Model 150 C02 system of 

Apollo Lasers Inc. It is an axial-flowing gas, electric discharge, water-cooled 

laser system that can produce up to 150 Watts/line. It can operate in the CW, 

chopped, pulsed modes and output more than 100 grating-tunable wavelengths 

in the 9.14//m - 11.01//m region. Most of the operation are controlled by 

IBM Microcomputer. 

For the experiments as described in Chapter 4, the laser was 

operated in CW mode. The beam was first condensed and collimated by a 

ZnSe telescope. A variable frequency light chopper was used to produce 

laser pulses. The chopper was located at the focal point of a ZnSe lens 

with focal length of 2 inches. A HeNe laser was transmitted through the 

exact position on the chopper as the C02 beam on a Si detector to produce 

synchronized reference pulses. Then the C02 beam was collimated using 
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another 2 inch focal length ZnSe lens. Usually the C02 laser was chopped into 

20^/sec wide pulse with a low duty cycle to prevent the lattice-heating effect. In 

addition, an attenuator was used to adjust beam intensity before it was focused 

onto the sample by another ZnSe lens. The HeNe laser pulses obtained from the 

chopper were detected by a Si photodiode, and used to trigger the sampling 

electronics. During the experiments a C02 spectrum analyzer was used to 

monitor the excitation mode of the laser system. 

Magnetic field and low temperature environment: High magnetic fields and low 

temperatures were obtained by using a Janis Research Superconducting 

Magnet/Cryostat System. Within the system, the magnetic field was produced by 

a superconducting solenoid that is made from filamentary niobium tin wire and 

niobium titanium wire. It can reliably produce fields of up to 12.0 Tesla at 4.2K 

in a 53mm bore, and it is capable of being ramped up and down uniformly at an 

adjustable speed. A modulation coil is also contained in the solenoid, and it can 

be used to produce a ±500 Gauss modulation field in the bore, superimposed 

on the DC magnetic field. The main solenoid and modulation coil are immersed 

in a liquid helium bath, and the sample chamber is located at the center of 

magnet. There is a capillary tube with a needle valve control from helium bath 

to sample chamber. The temperature of the sample can be controlled from 2K 

to 300K (within ±0.5K) by the flowing of liquid helium and the DRC-82 

temperature controller from Lake Shore Cryogenics, Inc. 

Signal processing techniques: The signal processing procedure without magnetic 

field modulation is the following: A He-Ne laser beam passed through the same 

chopper as C02 beam is detected by a Si photodiode, and generates a pulse to 

trigger the boxcar averager unit. The signal from either Hall leads or longitudinal 
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leads of the sample are amplified, and then input to the boxcar. The aperture 

delay of the boxcar was adjusted so that it samples the desired position of the 

signal. The integrated output of the boxcar yield averaged output for the selected 

position of the input signal. 

In order to do magnetic field modulation, a 22 Hz small ac magnetic field 

(±500 Gauss) was superimposed on the dc field. The same ac signal used to 

excite modulation field is also used as external reference to the lock-in amplifier. 

When frequency is set to 22 Hz and 0 degree phase difference between 

reference and input signals, the lock-in amplifier will phase-sensitively detect 22 

Hz component of boxcar averager output signal. To obtain fine details in the 

photoconductive response, the dc magnetic field is slowly swept. By setting lock-

in amplifier frequency to 22 Hz and 0 degree phase difference, the first derivative 

photoconductive versus magnetic field is obtained. If the lock-in amplifier is set 

to 44 Hz and 90 degree difference with the input signal, second-derivative type 

spectra is obtained171181. 

Data acquisition and processing: In this dissertation, most of the time data are 

needed in the digital form so that further data analysis can be performed. 

Therefore, data acquisition and processing are a very important part of the 

experiments. 

Two kinds of micro-computers were used in the experiments of this 

dissertation: An HP9000 and IBM/PC. The HP 9000 series 300 computer in the 

solid state lab of UNT has the following specifications: 

Operating System: Basic 5.1 

Processor: MC68030 

Display: Bitmap (512x512) 
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Memory: 1 Megabytes 

Hard disk: 40 Megabytes 

Interfaces: GP-IB(IEEE488), GPIO, RS232. 

This computer provides a central control over a variety of instruments to achieve 

instrument control, data acquisition, data displays, data transformations, and data 

outputs, etc. Through the GP-IB interfaces (also called IEEE488 interface), one 

can connect GP-IB compatible instruments. The instruments used in this work 

were: HP3585A power spectrum analyzer, HP7090A plotting system which has 

three channels of built-in digitizers, SRS SR850 lock-in amplifier, Fluke 8840A 

multimeter, Keithley 175 multimeter, Keithley 220 Programmable Current Source, 

Tektronix 7904 oscilloscope with 7D20 programmable digitizer, and Palm Beach 

Cryophysics Inc.'s 4025 cryogenic thermometer/controller. Through the same 

interface it can also communicate with IBM/PC which has a Tecmar IEEE488 

interface board. 

A typical example of these applications is to design a system which can 

display magneto-transport or magneto-optical spectra in real time, plot the result 

when the hardcopy is needed, and store the data if it is necessary for further 

processing. Each run of the experiment can take between zero and 20 min; 

thus, the signal variation over this period is very slow. Therefore the speed of the 

digitizer can be in the range of 10 to 100 Hz (one data point per 0.01 sec up to 

one data point per 0.1 sec). However, the memory storage has to be very large 

(approximately 50, 000 data points). A further complication is that the range of 

the signal is not known a prior, so the parameter settings for the digitizer and 

display must be adjustable during the run without stopping the experiment. To 

solve this problem, the HP computer was connected to the HP 7090A plotter 
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through GP-IB. The plotter has built-in digitizers with 12-bit resolution, up to 500 

Hz speed and signal range ±100V. It has both internal trigger mode and external 

trigger mode. All of the functions can be remotely controlled by computer through 

GP-IB interface. A program that was used to perform these functions. The basic 

algorithm was as follows: The HP 9000 will initiate the digitizer in the plotter to 

digitize the data (both axises, x: magnetic field, y: signal), and then transfer them 

to the computer memory. The data collected is displayed on its monitor by 

drawing a curve representing signal versus magnetic field. When a run is 

finished one has the options to plot the data on the plotter or store data on the 

hard disk, or both. Several hardware interrupts were set up to handle the 

parameter changes during the run. These parameters include digitizer speed and 

its range to customize the digitizer, vertical range and horizontal range on the 

display so that one can have customized view of the signal. 

2.5 Numerical Integration Methods. 

Most of the models describing the physical systems are in the form of 

differential equations. A differential equation with one independent variable is 

called Ordinary Differential Equation. In this thesis, models for the diode 

resonator systems, autonomous oscillation of Hall voltage in n-lnSb, and tunnel 

diode relaxation oscillators are all in the form of ODEs. Due to the instabilities 

of dynamical systems, accuracy, stability and efficiency of numerical methods 

becomes even more important. The three numerical methods which were used 

in this dissertation are Runge-Kutta, Gear, and Adams-Moulton Methods.191 
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Figure 2.3 Schematic diagram of experimental setup for the nonlinear dynamic 

study of diode resonator systems. 
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Figure 2.4 Logic diagram of the circuit which was used to stabilize chaos in 

diode resonator systems. 
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CHAPTER 3 

NONLINEAR DYNAMICS OF DRIVEN DIODE RESONATOR SYSTEMS 

AND SYNCHRONIZATION OF CHAOS IN COUPLED 

TUNNEL DIODE OSCILLATOR SYSTEMS 

This chapter concerns the investigation of nonlinear dynamics in two 

different electronic circuits: coupled tunnel diode and driven diode resonator 

systems. The advantage of studying these systems is that they are easy to 

implement and expand, yet they can exhibit a variety of phenomena of nonlinear 

dynamics. 

Sec. 3.1 is devoted to the data analysis methods used in this chapter and 

next chapter. Sec. 3.2 describes the simulation and characterization of nonlinear 

dynamics in driven diode resonator systems. In Sec. 3.3, the stabilization of 

periodic and quasiperiodic oscillations in driven diode resonator systems is 

presented. Sec. 3.4 presents experimental results on the synchronization of 

chaos in coupled tunnel diode resonator relaxation oscillators. 

3.1 Time Series Analysis Methods 

This section describes some important concepts and techniques for time 

series analysis in nonlinear dynamic experiments. These include phase portraits, 

Poincare sections, power spectra, autocorrelation functions, and Lyapunov 

exponents. 
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(1) Phase portraits and Poincare Sections 

In general, state space is defined as the space whose axes are the 

coordinates of position and momentum of the system, and a given dynamic state 

at a particular time is represented as a single point in this space. A phase 

trajectory is a curve in the phase space representing the time evolution of the 

system originating from any initial state. The set of phase trajectories for all 

possible initial conditions constitutes a phase portrait. 

For illustration, consider only a system with a three-dimensional phase 

space. Rather than directly studying the solution to the dynamical system, 

sometimes it is fruitful to observe the points of intersection of the trajectory with 

a surface. Starting with an initial condition, one thus obtains a set of points 

comprising a Poincare Section, that is, a graph in two dimensions. The 

transformation leading from one point to the next is a continuous mapping called 

Poincare Map. 

It has been shown111 that the Poincare section and map have the same 

kind of topological property as the flow from which they arise. Therefore, the 

study of Poincare sections and maps can help one obtain direct information on 

complex attractors, which otherwise is difficult to do. In most of the experiments 

discussed in this dissertation, the Poincare sections can be obtained on the 

oscilloscope in real time (See Chapter 2 for details). For a periodic oscillation, 

the corresponding Poincare section is a single point. For a two-frequency ( fp f2) 

quasiperiodic solution the Poincare section is a closed curve C; but when the 

ratio f/f2 is rational, the Poincare section is composed of a finite set of points. 

The Poincare sections for chaotic attractors generally have more complicated 

structures. 
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(2) Embedding Theorem 

Given a time series of a single scalar observable B(t) for a complex 

system, {Bff, ), B(t2), ..., B(tN )} and ti+1 - f, = T , one can reconstruct an tri-

dimensional phase portrait from vectors {B(tk), B(tk+1), ... , J} for k= 1, 

2, ...(N-m+1). Takens[2] has proved that this reconstruction is diffeomorphic to the 

original dynamics provided m ^ 2d + 1, where d is the dimension of the 

underlying attractor. In practice d is not generally known a priori. The easiest 

approach to this problem is to increase m systematically until additional structure 

fails to appear when an extra dimension is added. Several more advanced 

techniques have been proposed to improve this approach[3][4lt5]. 

(3) Power Spectrum 

For discrete finite sequence {xp x2, ..., xn}, the power at frequency k is: 

Po'Na.2 . 0 < k £ ^ (3.1) 

where ak and bk are discrete Fourier cosine (sine) transform of the original 

sequence. Plot of power versus frequency is called power spectrum. 

The power spectrum indicates whether the system is periodic or 

quasiperiodic. For a periodic system with frequency fits spectrum has peaks at 

f and its harmonics 2f, 3f, . . . For a quasiperiodic system with fundamental 

frequencies fp f2, . . ., fk its spectrum has peaks at these positions and also 

possibly at all linear combinations with integer coefficients. In experimental 

situations, the peaks are not infinitely sharp; they have at least an "instrumental 

width" 2/7/7" in addition to the effects of system noise, where T is the length of 

the time series used. Generally, two-frequency quasiperiodic phenomena (k = 
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other hand, if the signal is chaotic or mostly noisy, the autocorrelation function 

amplitude will usually exponentially decay. Again, only quantitative information 

can be obtained from the autocorrelation function. 

(5) Lyapunov Exponents 

The concepts described above can only qualitatively identify chaos. To 

quantitatively characterize a chaotic attractor, one need a new concept: 

Lyapunov exponents. 

Lyapunov exponents are defined by the time-dependent behavior of small 

derivations from the flow. Given a d-dimensional system of ODEs: 

x=F(x) (3-3) 

the solution is designated as: 

x(f)=Vx0 (3.4) 

where x0 is the initial condition, V is a matrix representing the "flow map". Small 

deviations from the orbit x(t) are denoted by 6x(t). Their time evolution is 

governed by the variational equation: 

6x=^(T'x0)6x (3.3a) 
6x 

or: 

6x =J(x(t)) 6x (3.3b) 

where J is the Jacobian matrix of F. The solution of Eqs. (3.3a) or (3.3b) is 

written as: 

6x(t) =Ul
x 6x0 (3.5) 

U is called the fundamental matrix. Now consider a set of vectors e„ i =1,2, . 
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. . d, each representing a deviation 6x(t) from the orbit x(t). The volume Vol(ed) 

is the volume of the parallelpiped spanned by these vectors, defined as: 

Vol(ed) = | e1 xe2x - xed || (3-6) 

The symbol "|| || " denotes Euclidean norm in a d-dimensional Euclidean 

space. The time dependent volume of the parallelpiped is given by: 

Vro/(ed,0 = ||(/'xe1(0)x(/'xe2(0)x - xU'xed(0) || (3.7) 

The d-dimensional Lyapunov exponent then defines the average expansion rate 

of the d-dimensional parallelepiped: 

A{ed,x0) = Hm l l n V o l ( e d ' f ) ( 3 8 ) 
0 ^ / Vol(ed,0) v ' 

If U is a multiplicative cocycle with respect to T, i.e., if the condition: 

i r s
x =(/x i /s

x (3-9) 
* 0 0 A o 

is satisfied, then the limit in Eq.(3.8) exists for all ed and for almost all initial 

orbits x0
[7]. The quantity A(ed, x j is independent of the choice ed.[8] There exists 

any subset of Vol(ed, t). In particular the following limit: 

^(e',x )= lim l l n V o , ^ e ' ^ = lim l\x\U**^ (3 iq) 
v °; h o o | Vol(e',0) t-> 00 t e'(0) 

is of interest. The Eq. (3. 10) is the definition of the 1-dimensional Lyapunov 

exponent. There are d different limits for I = 1, 2, . .. , d. They can be ordered 

as: 

A , ^ A 2 > ^Ad (3-11) 

These are the complete Lyapunov spectrum. 

Lyapunov exponents describe the exponential divergence and 
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convergence of trajectories toward an attractor in a multi-dimensional dynamic 

flow. These exponents reflect the properties of an attractor by their sign and 

magnitude. The sum of the exponents is the time-average divergence of the 

phase space velocity; therefore any dissipative dynamical system will have at 

least one negative exponent, the sum of all of the exponents is negative. An 

attractor for a dissipative system with one or more positive Lyapunov exponents 

is said to be "strange" or "chaotic". 

A stable fixed point has all negative exponents. A periodic attractor is 

characterized by one zero exponent, and the rest of the exponents are negative. 

A two-frequency quasiperiodic attractor has two zero exponents and negative 

exponents for the rest. A chaotic attractor has at least one positive exponent 

indicating the divergence of the trajectories, i.e., the sensitivity with respect to 

initial conditions. For example, in a three-dimensional continuous phase space 

a fixed point has spectrum (-, -, -), a periodic limit cycle (0, -, -), a quasiperiodic 

attractor (torus) (0, 0, -) and a chaotic attractor (+, 0, -). A zero exponent 

corresponds to the slowly changing magnitude of a principle axis tangent to the 

flow. The magnitude of the negative exponents quantitatively describes the 

contraction of the attractor along certain axes in phase space. 

The magnitude of Lyapunov exponents measures the rate at which the 

system processes create or destroy information.191 Thus the exponents are 

expressed in bits of information per second, or bits/orbit for a continuous system 

and bits for a discrete system. In this dissertation, all the Lyapunov exponents 

computed from experimental time series are in bits/iteration. 

The Lyapunov spectrum is closely related to the fractional dimension of 

the associated strange attractor. There is a number[10] of different fractional-like 
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quantities such as the fractal dimension, information dimension, and the 

correlation dimension. It has been conjectured by Kaplan and Yorke[11] that the 

information dimension df is related to the Lyapunov spectrum by the equation: 

j 

(3.12) 
df= /'+ 

M/+1I 
where j is defined by the condition that: 

j J +1 
X ) 4 > 0 and (3.13) 
t=1 t=1 

The conjectured relation between df and the Lyapunov exponents appears to be 

satisfied for some model system.1121 

In most of the experimental situations there are no dynamical equations, 

therefore no Jacobians A and fundamental matrix U available to calculate 

Lyapunov exponents. Fortunately, from the time series one can reconstruct the 

attractor, and then estimate a linearized flow map A' of the tangent space by 

using a different technique. Experimental data inevitably contain noise due to 

environment fluctuations and limited experimental resolution. Therefore the ability 

to obtain good estimates of A depends largely on the quantity and quality of the 

data as well as the complexity of the dynamical system. There has been 

considerable effort to provide algorithms for the determination of the Lyapunov 

exponents from time series alone[13][14l[15l[16][17]. In this dissertation the three most 

popular algorithms developed by Wolf etal.[u], Sano ef a/.[15], and Bryant e£a/.[16] 

were employed. 

In Wolf et a/.'s algorithm1141 a single vector is chosen between nearby 

trajectories, and propagated along the attractor. After reaching a certain size 
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along the system's fiducial trajectory, it is replaced by a new vector with minimal 

length and most similar orientation. The largest exponent can be estimated 

reliably and easily, but the other exponents, especially the negative ones, are 

difficult to obtain because the evolved vectors tend to fall in the direction of 

strongest divergence. Selection of the embedding dimension and delay time is 

very important here. It was found that attractors reconstructed using smaller 

values of m often yield reliable value for the largest Lyapunov exponent, even 

though it has been suggested121 to choose m to be greater than twice the 

dimension of the underlying attractor to have a good embedding. But when m is 

too small "catastrophes" that interleave distinct parts of the attractor are likely to 

result. On the other hand increasing m past what is minimally required will 

effectively increase the noise level. Therefore it is recommended that the stability 

of results with m and r are checked to ensure robust estimates. The amount 

of the data required to calculate Lyapunov exponents is recommended to 

be in the range of 10d to 30d, where d is the information dimension of the 

dynamical system. 

The basic idea of Sano et a/.'s algorithm'151 is to approximate the local 

tangent space to the attractor by a flow map Aj which is computed by a least-

squares method from a number of pseudo-tangent vectors propagated over a 

certain time span. These vectors are generated from near-by trajectories of the 

attractor, and serve as an approximation for the true tangent space. Lyapunov 

exponents can be computed as: 

4 = „ i r . i ' H E i v / i (3 i4 ) 
tn j = 1 
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for i = 1, 2, . . d, where {e/} (/ = 1, 2, . .., d) is a set of basis vectors of the 

local tangent space. In the numerical procedure, an arbitrary set {e/ } was 

chosen, operated on with matrix Ajt and renormalized to Ajej. The Gram-Schmidt 

procedure'181 was then used to maintain orthogonality. This procedure was 

repeated for n iterations and used to compute the Lyapunov spectrum given by 

Eq. 3.11. The advantage of this algorithm is that it can compute all of the 

components to a good accuracy with relative ease. However in some locations 

of the chaotic attractors flow is very "thin" in certain directions associated with 

negative exponents. When the local data-set curvature is too large in these 

locations the linear least-squares method becomes inappropriate. In some cases 

the reconstructed data are close to degenerate; then a Singular-Value 

Decomposition technique has to be used to achieve a reasonable result. 

Bryant et a/.'s algorithm1161 is similar to Sano et a/.'s except it finds the 

required Jacobians by making local polynomial maps, allowing for a more 

accurate determination of A. The calculation based on this algorithm is quite 

sensitive to the noise level compared to the above two. But with careful setting 

of the parameters it can find the negative exponents quite accurately as well as 

the positive ones. 

When only the largest Lyapunov exponent is needed, Wolfs algorithm is 

always the best choice. It can be easily implemented, and the calculation results 

are often stable and reliable. This algorithm was used for all three nonlinear 

dynamic systems described in this chapter and next chapter: driven diode 

resonator systems (Sec. 3.2), coupled tunnel diode relaxation circuits (Sec. 3.4) 

,and autonomous and externally driven oscillations in n-lnSb (Chapter 4). 

On the other hand, if one is interested in the complete Lyapunov spectra, 
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Sano's or Bryant's approach has to be considered. An implementation of Sano's 

algorithm by Kruel ef a/.[17] is used in this dissertation for the experiment of diode 

resonator systems(Sec. 3.2); Bryant's approach was used in the system of 

electrical oscillations of n-lnSb (chapter 4). Kruel's program is stable and fast for 

most of the experimental data. It can give reasonably accurate estimates for 

system's complete spectra, but sometimes has difficulty to find good negative 

exponents. Bryant's program can be used to calculate more accurate negative 

exponents, but it often takes longer computing time, and fails for some 

experimental data. 

(6) Summary 

Several different concepts, which include phase portraits, Poincare 

sections, power spectrum and autocorrelation functions, all can be used to 

identify periodic and quasiperiodic oscillations. They can be also used to 

separate periodic or quasiperiodic motions from chaotic evolutions. However to 

quantitatively characterize chaotic attractor, one has to use Lyapunov exponents. 

Lyapunov exponents are the average exponential rates of divergence or 

convergence of nearby orbits in phase space. But the orbits in phase space can 

only be obtained from the equations of the dynamic systems. In real world 

applications, most of time these equations are not available. Fortunately, from 

a time series of single system variable, the Takens' embedding reconstruction 

technique allows one to obtain a phase space diffeomorphic to the original one. 

In addition, Lyapunov exponent is invariant with respect to diffeomorphic 

transformation of variables for an infinite amount of noise-free data. In practice, 

one can use a finite segment of a time series obtained from the experimental 
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system to give good estimates for the exponents. 

3.2 Simulation and Characterization of Nonlinear Dynamics in Driven 

Diode Resonator Systems 

(1) Introduction 

Harmonically driven diode resonator systems have been found to exhibit 

several universal behaviors representing particular routes to chaos. These 

behaviors include period doubling route to chaos in the single diode resonator 

system119][20][211, and quasiperiodic route to chaos in the coupled diode resonator 

systems1221. However there is still controversy about the modeling of these 

systems. Testa, Perez, Buskirk and Jefferies[231[24] insisted on that the observed 

period doubling and chaotic behavior were due to the nonlinearity of the effective 

capacitance on the diode pn-junctions. They showed that this model gives 

reasonable qualitative agreement with experiments. On the other hand, Hunt, 

Rollins and Su[25][261[27] argued that the nonlinear reverse bias capacitance of the 

pn-junction is not responsible for the behaviors observed, but the rather large 

reverse recovery time of such diodes was essential here. A third approach1281 is 

to employ the well-known SPICE program1291 trying to achieve a maximally 

realistic modeling of the diode. This model is similar to the model by Testa et 

aP1 in that both introduce a voltage-dependent differential capacitance. The 

difference is the model with SPICE gives more detailed expressions and realistic 

parameters corresponding to the particular type of diode. Under some 

circumstances an accurate and realistic model is very important. For example 

an accurate model is very useful for complex coupling diode resonator systems 

that represent a higher dimensional dynamical system. 
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It is known that high-dimensional line-coupled diode resonator systems 

can reach the chaotic state via a quasiperiodic route[24p7]. One important theory 

about this route was put forward by Rulle, Takens and Newhouse1301. In the 

Ruelle-Takens theory, the sequence of transitions leading to chaos is as follows: 

fixed point S -» limit cycle P -> quasiperiodic with two frequencies T2 -» 

quasiperiodic with three frequencies T3-» chaos. As soon as the third frequency 

arrives, the broad-band noise characteristic of chaos should start to appear. But 

as Curry and Yorke pointed out1311, there is another route to chaos via 

quasiperiodic regimes, where chaos appears directly from a quasiperiodic regime 

with two frequencies. In this case, the manifestation of another degree of 

freedom is not in the form of a third frequency, but rather by the gradual 

departure of the trajectories from T2, which amounts to the destruction of tori 

(quasiperiodic orbits). The typical transitions to chaos are as follows: periodic P 

-»• quasiperiodic with two frequencies T2 -> periodic locking states L chaos. 

In this section, the diode resonator model from SPICE is discussed first. 

Then detailed comparisons between experimental and simulation results on the 

single diode resonator system are presented. These include wave forms, power 

spectra, phase portraits, bifurcation diagrams, and Lyapunov exponents. Thirdly, 

the transitions from quasiperiodic oscillations to chaos in line-coupled systems 

are shown, in good agreement with the Curry-Yorke model. A comparison of 

Lyapunov exponents from the experimental time series and simulation model is 

given to show that the SPICE model also accurately describes the coupled 

systems. 

(2) Diode Model from SPIC&29] 
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A SPICE model for a diode pn-junction is composed of an ohmic 

resistance rs, an ideal static diode lD, and an effective capacitance CD, which 

reflects the dynamic properties of diode, and is essential for the observed 

chaotic behaviors (Fig. 3.1). 

Static Model of a on-iunction: It is well known that a pn-junction can be modeled 

as follows:1291 

i = TO = 

QVO 
LS(E nkT - 1 ) +VDGmin for VD ^ - 5 

U + VdGMIN for VD < - 5 

nkT 
q 

nkT 
(3.15) 

Here n is the emission coefficient (1 ^ n < 2), and ls is the saturation current. 

A small conductance Gmin is added in SPICE in parallel with pn-junction to aid 

convergence of numerical integration. The default value for Gmin is 10"12 F. 

Charae-storaae effects of a on-iunction: There are two forms of charge storage: 

minority-carrier injection Qs and the space charge Qd. The first one results from 

excess minority carriers injected across the junction in forward bias. This charge 

is proportional to the total current injected across the junction: 

Qs=-rDlD(VD) (3.16) 

Where TD is called the transit time, which represents the minimum time required 

to either store or remove the charge. 

A second kind of charge is associated with the changing of the space-

charge region when VD changes. It can be given as: 

1 
0o 

(3.17) 
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Here CD(0) is the diode junction capacitance at zero bias (VD = 0), and 0O is the 

junction potential (built-in voltage). 

There are two points that can be made on Eq (3.17). First, for reverse 

bias and small forward bias, QD is the dominant stored charge. Second, for 

moderate forward bias and beyond, the injected charge Qs dominates. The 

second observation is important because as VD approaches 0O, Eq (3.17) is no 

longer valid. A more exact analysis of real diode gives the following results. For 

forward-bias voltage up to about 0o/2, the values of QD are more accurately 

predicted by Eq. (3.17). For voltage VD ^ 0O a linear extrapolation of Eq. (3.17) 

can be used to achieve the best simulation result. 

Therefore the charge storage element QD = Qs + Qd can be determined 

by the following relations: 

TdID
 + c0(0)D f(1 - ±)-"dV for VD <FCx<p0 

J <t>0 
(3.18) 

tdId * Cd(0)F, * f (F3 + T¥.)dV for VD < FC*0o 

fcU 0o F2 

the above equation can also be defined equivalently by the effective capacitance 

relations: 

- «Q„ 
°'DV~O 

T0^S- * CD(°)0(1 - for VD < FCx0o 
dVD 0, 0 (3.19) 

To-^~ + ^-(1=3 + —) for VD< FCx 0O °dVD F2
 3 0O 

where m is the junction grading coefficient, and FC determines how the depletion 

capacitance is calculated when the junction forward-biased. Usually FC is set 
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equal to 0.5, which means linear extrapolation is taken; Fp F2, and F3 are 

SPICE constants whose values are determined as follows: 

00 (1 - (1 - Fcy-m) 
1 - m 

F2 = (1 - FC)' *m 

F3 = 1 - FC( 1 + m) 

(3.20) 

(3) Results and Discussion 

Single diode resonator system: The single diode resonator system is composed 

of a diode, a resistance, and an inductance in series with an external sinusoidal 

driving source. Fig. 3.1 shows the schematic diagram of the circuit used in our 

experiment. The parameters used in this experiment are listed as in Table 3.1. 

R 100Q 

L 100mH 

D IN4004 

f 50KHz 

Table 3.1 Parameters for a Single Diode Resonator System. 

A set of Ordinary Differential Equations (ODE) derived from the model 

described above are listed as follows: 
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di _ V0sinG- V- l{R0+ Rs) (3 2^ 

dt L 

dV 
dt 

l ~ l d 

dv 0O 

l ~ l d 

C j ( 0 ) ( F 3 + ^ ) 
dl 0o 

TddV+ W2 

when V < FC* Q 0 

(3.22) 
when V > FC* 0O 

dQ = 2 rrf (3.23) 
dt 

where / = / s ( e x p ^ - 1)+ V* Gn 

V 

The first thing obtained from the experiment is the wave form of the 

current signals. Fig. 3.3 and Fig. 3.4 are pictures taken from the oscilloscope. 

Fig. 3.3 shows wave form of a period-8 signal, and Fig. 3.4 shows a typical 

chaotic signal. The time series of Fig. 3.4 was captured using a digitizer, and 

used to calculate the Lyapunov exponents. Brown's algorithm was employed, 

and a typical run gave the results listed in Table 3.2. Note that the sum of all 

three components is -2.18, which means the system is dissipative. One positive 

component, one negative component, and one much smaller compared to the 

other two indicate that the system has a strange attractor (See Sec. 3.2). 

By integrating the simulated equations and plotting their solutions verse 

time, wave forms of periods 8 (Fig. 3.5) and chaos(Fig. 3.6) are obtained. Note 
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that Fig. 3.5 and Fig. 3.6 closely resemble Fig. 3.3 and Fig. 3.4, respectively. 

The complete Lyapunov spectra from the ODE equations for the chaotic regime 

are also calculated, and the results are listed in Table 3.2. The accumulated 

error for this calculation is estimated around 1%. Comparing the Lyapunov 

spectra from experimental time series and simulated equations as in Table 3.2, 

one can see they are in good agreement. 

Experimental Time Series Simulated Equations 

>*1 0.56±0.2 0.378 

>12 0.016±0.01 0.0 

^3 -2.76±1.5 -3.86 

df 2.21 ±0.6 2.098 

Table 3.2 Lyapunov Exponents for a Single Diode Resonator System from Both 

Experimental Time Series and Theoretical Simulated System 

Phase portraits were also obtained, as described in Chapter 2, for periods 

8 and chaotic oscillations (Fig. 3.7 and Fig. 3.8). In the period-8 phase portrait 

one can identify 8 different stable curves in the upper right part, although most 

of the portraits have more than one curves overlapping with each other. Both 

portraits have a characteristic "hump" near the center of the upper region in the 

pictures. 

From the simulated system, phase portraits for period-8 and chaotic 
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oscillations were produced, as shown in Fig. 3.9 and Fig. 3.10. These phase 

plots are obtained by integrating the simulated equations to produce a time 

series for one system variable (Current I in Fig. 3.1 is used in this dissertation), 

and then plotting the series versus a certain time delay of the same time series. 

The time delay was chosen so that the portraits resemble those from 

experiments. One can see the similarities between the experimental phase 

portraits and portraits from simulated system, including the characteristic 

"humps". 

Fig. 3.11 and Fig. 3.12 show the power spectra corresponding to period 

8 and chaotic oscillations, respectively. Fig. 3.13(a)(b) show the power spectra 

calculated from simulated system for the same two dynamical regimes. 

A bifurcation diagram from the experimental diode system is shown in Fig. 

3.14. It shows period doubling, chaos, band merging, windows of period 5 and 

period 3, and hysteresis. This is the simplest type of bifurcation diagram 

observed , and it is displayed by different diode systems with variety of element 

parameters and diode types, provided that the driving frequency f is close to the 

resonance frequency for that diode fres. 

The bifurcation diagram from the simulation was obtained as follows. For 

different driving amplitudes, the equations were integrated first. Then, a certain 

amount of the consecutive peaks values of the current variable (usually around 

500 peak values in our simulations) were picked and stored. Plotting those 

peaks values verses their driving amplitude gave the bifurcation diagram as 

shown in Fig. 3.15, Fig. 3.16, and Fig. 3.17 (See Sec. 2.2). Figures 3.16 and 

3.17 are enlarged diagrams showing some of details of Fig. 3.15. Compared to 

Fig. 3.14 of the experimental bifurcation diagram, these bifurcation diagrams has 
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period doubling, chaos, band merging, windows of periods 5 and periods 3, 

hysteresis, etc. One can notice that all the transitions to chaos in this diagram 

are going through period doubling route. 

Line-coupled diode resonator systems: A two-line-coupled diode resonator 

system consists of two parallel, single diode resonators coupled through a series 

of a resistor and a conductor as shown in Fig. 3.18. Many different sets of 

parameters in these line-coupled diode resonator systems were experimented, 

and in most cases similar results have been obtained. A typical set of 

parameters used in the experiments are listed as in Table 3.3. 

R-j & R2 100Q 

L i&L 2 100mH 

D1 & D2 IN4007 

f 53.21 KHz 

Table 3.3 Parameters for a Line-Coupled Diode Resonator System 

A set of Ordinary Differential Equations can be derived from the SPICE 

model as follows: 

dl _ V0sinQ - V, - l(R0 + Rs) 
dt L 

(3.24) 



dl, _ V0smQ-2 V,+ V 2 - I , ( R 0 + R s ) 

dt L 

dV1 

dt 

dV2 

~df 

'1-', 61 

dl d1 

dV, 
Cd( 0)(1 

11 - Id 

^ y M 

</>o 

dl. d1 

M * V , 
c c ( 0 ) ( F 3 + — — L ) 

00 

dV, 

cf2 

C" ( 0> ( 1 " X * " 
2 ^0 

1 - 1 , - 1 d2 

dl. 
Cd(0)(Fz 

M* V, 

d2 00 
4 

c/V, 

52 

(3-25) 

when V1 < FC* 0O 

wfren V, ^ FC * 0O ( 3 - 2 6 ) 

when V 2 < FC* 0O 

M//?en V2 ^ FC* 0O (3-27) 

c/Q 
df 

= 2rrf 

where: ^ and 
ld1 = /s(exp w,(r - 1) + * 6min 

(3.28) 

ld2 = ls(expNkT - V + V 2 * G„ 

In these coupled diode resonator systems, two different transitions have 

been found: the first one is the conventional period-doubling bifurcation route, 

just like the transitions to chaos in the single diode resonator systems; the 

second one however follows quasiperiodic oscillations, and was called Hopf 

bifurcation scenario. 
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One typical transition to chaos is described as follows. For an increasing 

amplitude of the driving signal with fixed frequency f0 = 53.21 KHz the following 

sequence has been observed. (1) For V0 <, 6.07V the system resides on a 

simple stable limit cycle with frequency equal to the driving frequency f0 as 

shown in Fig. 3.19(a), (these are period-one "oscillations" of the system). (2) 

For 6.07V <, V0 < 9.87V the system has a quasiperiodic attractor (two-

dimensional torus) as shown in Fig. 3.19(b). (3) For 9.87V ^ V0 ^ 10.50V the 

system appears to be chaotic. (4) The chaotic regime is followed by clear period-

three stable oscillations which occur for 10.50V < V0 ^ 13.00V. The Poincare 

section and phase portrait of the system, is represented by three bright dots in 

Fig. 3.20(a). (5) Further increase in the amplitude of the driving signal, when 

13.01V < V0 ^ 14.21V, brings the system again to a different two-frequency 

quasiperiodic attractor, with intermittent period three windows as shown in Fig. 

3.20(b). Poincare sections of these tori consist of three nearly circular closed 

curves, centered on the three dots of the periodic orbit as in Fig. 3.20(a). The 

radii of the circles grow rapidly with increasing amplitude of the driving signal. 

The power spectrum of this regime is shown in Fig. 3.21, where one can 

identify the fundamental frequency f0and another incommensurate frequency /, 

with all other frequencies occurring at linear combinations of f0and /jwith rational 

multipliers. The value of/, slowly increases with an increase of the amplitude V0. 

(6) For yet higher driving amplitudes, 14.25V < V0 < 15.31V, frequency locked 

states were observed. Fig. 3.20(c) shows a typical frequency locked state with 

an orbit of high period residing on the torus. The Poincare section initially 

consists of three groups of dots falling on nearly circular closed curves. These 

closed curves deformed away from circles with increasing V0. The power 
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spectrum shown in Fig. 3.22 shows that all peaks occur at frequencies (p/q)f0 

where p and q are integers and a particularly strong peak is observed at the 

period-3 positions. The frequency locking ratio is f0/ /j = 33/3. (7) Finally with 

further increase of the driving voltage, 15.40V ^ V0 ^ 16.20V, again the chaotic 

regime is reached as shown in Fig. 3.20(d). The attractor still bears 

resemblance to that in the quasiperiodic regime, but the presence of wrinkles 

and corrugations indicates that folding is taking place. Broad band features, seen 

in the power spectrum with period-3 windows, is shown in Fig. 3.23. This 

sequence of transitions is in agreement with the Curry-Yorke scenario161. 

Additional evidence for the existence of chaotic and quasiperiodic regimes 

can be provided, as usual, by Lyapunov spectra. Kruel and Eisworth[12]'s 

algorithm has been used to calculate Lyapunov exponents in this dynamical 

system. Guided by the dimensionality of the phase space of the SPICE 

simulated model, d = 5 was selected as embedding dimensions for line coupled 

systems. Data series obtained from these systems are well behaved, and 

singular-value decomposition is unnecessary. The obtained spectra of a line 

coupled system for typical quasiperiodic and chaotic regimes are listed in Table 

3.4. As emphasized by Kruel and Eisworth1121, reliable exponents' estimates must 

be stable in all parameters which enter the program. The two most important 

parameters are emax, the maximum distance to locate the neighbors, and tevolv, the 

evolution time. The exponents listed in Table 3.4 have plateaus when cmax is in 

the range of [0.01, 0.08] and tevolvinthe range [0.5x10"6, 9.0x10"6]. The maximum 

variations of the exponents with respect to the above two parameters are 

entered as the error estimates. The other two algorithms developed by Wolf et 

al.[U] and by Bryant et al. [16] were used for the same time series. The positive 
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exponents of the chaotic regimes and the largest negative exponents were all 

in qualitative agreement. 

Experimental Time Series Simulated System 

Quasiperiodic 

regime 

-0.0038±0.0002 0.00 

Quasiperiodic 

regime 

-0.0038±0.0006 -0.00175 
Quasiperiodic 

regime 
-0.14±0.015 -0.100 

Quasiperiodic 

regime 

-0.82±0.2 -3.25 

Quasiperiodic 

regime 

-4.0±1.5 -3.27 

Chaotic Regime 

+0.13±0.02 +0.0876 

Chaotic Regime 
-0.0017±0.00015 0.00 

Chaotic Regime 
-0.45±0.08 -0.4 

Chaotic Regime 

-1.28±0.17 -3.06 

Chaotic Regime 

-5.96±2.0 -3.42 

Table 3.4 Complete Lyapunov spectra of a quasiperiodic regime and a chaotic 

regime calculated from both experimental time series and SPICE simulated 

equations (Eqs. 3.24-3.28) for line-coupled diode resonator system. 

Less difficult, but by no means trivial, are calculations of the complete 

Lyapunov spectra for a simulated model system. In particular, error bars for 
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calculated values are difficult to estimate and the obtained values show 

variations for changing parameters of the algorithm. After numerical integration 

of these equations using Runge Kutta's method for the line coupled diode 

system, an identical sequence of transitions have been found, i. e. periodic 

solution quasiperiodic solution T2 -> frequency locked state -> chaotic state, 

occurs. Lyapunov spectra calculations based on this model are listed in Table 

3.4, for comparison with those obtained from the experimental time series. The 

error for this calculation is around 10"3. One can see a very good agreement 

between the estimated exponents from the experimental data and those 

calculated from simulated system. 

Bifurcation diagrams from simulation system of Eq. 3.24-3.28 were shown 

in Fig. 3.24 and Fig. 3.25. One interesting thing about this bifurcation diagram 

is that at the critical point of the Hopf bifurcation in Fig. 3.24, the convergence 

rate is very slow as theory indicated. Therefore it took extremely long computing 

times to locate the critical position. One can compare bifurcation diagram Fig. 

3.24 from the simulation to the Fig. 27 of Ref. [24], which is a bifurcation picture 

for a two-coupled diode resonator system. The two bifurcation diagrams have 

many similarities, e.g. Hopf bifurcation, period doubling, periodic locking, chaos, 

etc. 

To compare the simulation model and its experimental systems for higher 

dimensional line-coupled resonators, a phase plot was obtained for the chaotic 

regime of a four line-coupled diode resonator system (Fig. 3.26). One can 

compare this with the corresponding phase plot from experiment as shown in 

Fig. 3.33(a). 



57 

(4) Conclusions 

The single diode resonator system displays a typical period doubling 

cascade and transitions to chaos. Experimentally the wave form, phase portrait, 

and power spectra can be used to study the periodic oscillations and to delineate 

between the periodic states and chaotic states. But only the Lyapunov exponents 

can quantitatively describe the chaotic attractor. The model derived from SPICE 

program is capable of simulating the system quite accurately, as shown by good 

agreement for experimental observables including the wave form, phase portrait, 

power spectra, bifurcation diagram, and more importantly by the agreement of 

Lyapunov exponents. 

Comparing to the single diode resonator systems, the line coupled system 

can follow a quasiperiodic route to chaos, in addition to the period doubling 

route. More accurately, the transitions to chaos for these systems agree with 

Curry-Yorke model very well, that is: periodic states P -*• quasiperiodic states 

with two frequencies T2 -> periodic locking states L -*• chaos. The simulation 

model for line-coupled system derived SPICE gives consistent results. In 

addition, Lyapunov exponents calculated from experimental time series and 

simulation system are in good agreement for both quasiperiodic regimes and 

chaotic regimes. 

Diode resonator systems are simple, yet they can display varieties of 

interesting nonlinear dynamics features: period doubling, band merging, 

windows of period-5 and period-3, hysteresis, quasiperiodic states, periodic 

locking states, and Hopf bifurcation to chaos. The last three features are 

associated with higher dimensional systems (usually higher than 3). 

The line-coupled systems are higher dimensional systems. For example, 
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for two line-coupled system d = 5, and for three line-coupled system d = 7. So 

for every branch added to the system two extra freedom are added to the 

dynamical systems. Therefore these simple systems provide ideal test ground 

for the more complex dynamical system experiments. One example is to explore 

the possibility to stabilize unstable orbits in a chaotic attractor, as described in 

Sec. 3.3 of this dissertation. 

3.3 Stabilization of Periodic and Quasiperiodic Oscillations in Diode 

Resonator Systems 

(1) Introduction 

The idea of stabilizing high-period orbits in a chaotic system was first 

coined by Ott, Grebogi, Yorke'321 (OGY). As is well known[41], a typical chaotic 

attractor contains infinitely many unstable periodic orbits of all periods. In the 

original paper by OGY[32] it was proposed that an unstable orbit can be stabilized 

by small and carefully chosen perturbations in an accessible system parameter. 

These perturbations "turn-on" when the system begins to move away from 

unstable orbit along the unstable manifold. Shortly afterwards, several 

experimental chaos control schemes were reportedI331t34p51[361[37], which converted 

chaotic motions into stable period-1 and period-2 oscillations by a proportional 

feedback technique. Hunt1381 modified this method and applied it to a single diode 

resonator system. He stabilized periodic orbits up to period-23 on a typical 

chaotic attractor. More recently, Fillie, Grebogi and Ott1391 pointed out the 

possibility of stabilization of periodic orbits from chaotic attractor that has more 

than one unstable eigendirection. So far, most of the experiments were done on 
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the most simple chaotic attractors, namely, three-dimensional dynamic system, 

and researchers are only considered controlling a chaotic attractor to a periodic 

state. 

To understand the details of chaos stabilization and explore the possibility 

of stabilizing more complex dynamical systems, a stabilization circuit based upon 

the so-called proportional feedback technique was designed and built. By 

applying this circuit to both single diode resonator systems and line-coupled 

diode systems, one not only can stabilize a chaotic attractor to a periodic 

oscillation as high as period-17, but also obtain quasiperiodic orbits from the line-

coupled diode resonator systems. 

(2) Experimental Results and Discussions 

Single diode resonator system: Fig. 3.27(a) is a picture showing the wave forms 

before employing the control feedback, in which the top trace is the chaotic 

signal, and the bottom one is the control feedback signal. After turning on the 

control and adjusting the control parameters, the result shown in Fig. 3.27(b) 

was obtained, where the system becomes period-2 oscillation. It is interesting 

to note that the control feedback back signal becomes erratic when the 

stabilization of the resonator is obtained. By careful tuning the control 

parameters, a stabilized period-6 oscillation from the same chaotic attractor was 

obtained, as shown in Fig. 3.27(c). The stabilization of higher-period orbits is 

more difficult (more precise control parameter tuning required), though periodic 

orbits up to the period 17 can be stabilized. These results confirm those obtained 

by Hunt with somewhat different single diode circuit and control circuit. 

Line coupled diode resonator system: For the line-coupled diode resonator 
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system, it was found that the stabilization of high period orbits is typically easier 

than the single diode system. What is more important, careful stabilization allows 

one to restore some of the quasiperiodic orbits with two incommensurate 

frequencies. Fig. 3.28(a) is the phase plot and Poincare section of a typical 

chaotic attractor, Fig 3.28(b) shows the phase plot and Poincare section of the 

same system stabilized from chaotic attractor Fig. 3.28(a). One can see that its 

phase plot is a winding torus, and its Poincare section consists of two circles, 

which are indications of quasiperiodic oscillations. In addition, a periodic locked 

state from the same attractor has been obtained by adjusting the control circuit. 

Fig. 3.28(c) shows the phase plot and Poincare section of this periodic locked 

state. By counting the dot of its Poincare section, a locked ratio of 22/2 is 

obtained. The above stabilization results can be confirmed by their power 

spectra. Figures 3.29, 3.30 and 3.31 show the power spectra corresponding the 

chaos of Fig. 3.28(a), quasiperiodic oscillation of Fig. 3.28(b), and periodic 

locked state of Fig. 3.28(c). 

The same control technique was also applied to a line coupled system 

consisting of four single diode resonators. This system, as shown in Section 3.3, 

has periodic, quasiperiodic and chaotic regimes. The stabilization of periodic and 

quasiperiodic orbits was also found to be possible, as shown in Fig. 3.32 and 

Fig. 3.33. 

The above stabilization results were also possible for a variety of line-

coupled diode resonator systems with different elements (resistors and inductors) 

as well as diode types. 

The control signals in the experiments described above were always small 

when compared to the system signals (less than 5%). Unfortunately, a simple 
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operational recipe for the stabilization for all of the observed orbits within the 

Hunt's technique was not found. Both high periodic and apparently quasiperiodic 

orbits are equally difficult to stabilize, and there was not any specific difference 

in the stabilization procedures for orbits of these two types. The orbits classified 

as quasiperiodic appeared less often than the periodic ones, as may be 

expected. A word of comment should be added on the observed quasiperiodic 

orbits. Obviously, a strictly quasiperiodic orbit is an experimental and simulational 

impossibility (all measured frequencies are commensurate, all simulated orbits 

are ultimately periodic). Additionally, a high periodic orbit perturbed by a small 

amount of noise residing on a torus will behave as an almost periodic orbit, 

which can be well approximated by a quasiperiodic orbit. In this situation, an 

experimental observation of quasiperiodicity must first localize tori on which 

these orbits may live, and secondly provide an example of an orbit which 

appears dense on this torus. All of the high period orbits stabilized clearly belong 

to some common tori, similar to those observed in the system before the 

transition to chaos. Additionally, orbits of period as high as 17 are still classified 

as such, which indicates the relatively low noise level in the system. 

It was well known that a typical attractor has embedded within it an infinite 

number of unstable periodic orbits[40]. Based on the experiments described above 

it is conjectured that the chaotic attractors for systems considered in this section 

contain both unstable periodic and unstable quasiperiodic orbits. These 

quasiperiodic orbits within a chaotic attractor could provide another invariant set 

besides the unstable periodic orbits used in characterization of complex fractal 

structure of strange attractors1411. 
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(3) Conclusions 

By applying the stabilization circuit to single diode system, periodic orbits 

up to period 17 from a typical chaotic attractor were successfully stabilized. More 

interestingly, for the line-coupled diode systems not only were high periodic 

oscillations obtained easily, but quasiperiodic orbits were also stabilized. 

Theoretically, this raises a serious question: Does there exist any unstable 

quasiperiodic orbits in addition to the well-known unstable periodic orbits? On the 

other hand, these results and techniques directly aid in the investigation of the 

stabilization of laser arrays, which is higher dimensional system, and its 

stabilization has potential applications in the laser manufacturing industry1421. 

3.4 Synchronization of Chaos in Coupled Tunnel Diode Relaxation 
Oscillators 

(1) Introduction 

Recently, synchronization of chaos has been found in several different 

dynamical systems: coupled lattice maps (Kaneko[43]), dynamical systems driven 

by a common "master system" (Pecora and Caroll[44]), and finally systems of 

coupled "virtual" chaotic nonlinear oscillators which for some values of the 

coupling parameters produce synchronized auto-oscillations ranging from 

periodic to chaotic (Kowalski et a/.[45]). The study of synchronized chaos is 

important not only as a model for nonlinear systems with many degrees of 

freedom, but also from the view point of biological information processing and 

possible engineering applications. For example, the synchronized chaos circuit 

might be used for a military communication system1461. In this section, 

experimental observations1471 of synchronization to a common chaotic orbit in a 
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coupled relaxation oscillator system through weak coupling are presented. 

(2) Circuit layout and dynamical equations 

Fig. 3.34 shows a basic relaxation circuit in which there are two branches 

connected in parallel. Each branch contain a nonlinear element tunnel diode, and 

two linear elements consisting of a resistance and a inductance. For any real 

tunnel diode there is an effective capacitance associated with it in addition to the 

ideal tunnel diode. This circuit is a simplified version of a circuit proposed 

earlier1481 where two branches were coupled by a resistor R. With this coupling 

the circuit can display much more complex dynamics. But even for R = 0 the two 

branches remain coupled due to the finite internal resistance of the voltage 

source, and therefore some common periodic and chaotic regimes can still be 

observed. The reason for choosing R = 0 is to simplify the system to study the 

coupling behavior of several such relaxation units. Fig. 3.35 shows a circuit of 

two coupled relaxation oscillators. The typical values of the circuit elements are 

listed in Table 3.5. The coupling resistance was chosen as Rc = 50kQ. The 

tunnel diodes used were purchased from Custom Components, Inc. P/N 

151100G. Two separate power supplies were used to drive the two units. The 

voltage signals were taken at points A and B by using high impedance buffer 

amplifiers to minimize external perturbations to the circuit. As with the other 

nonlinear dynamic experiments, the signals can be displayed on a digital 

oscilloscope or digitized by using 10MHz 8-bit sampler and stored in the 

computer. The frequency spectra was obtained using Hewlett-Packard 3585A 

spectrum analyzer. 
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R1 = 1.35Q R3 = 1.51Q 

R2 = 1.20Q R4 = 1.25Q 

L1 = 220.0//H L3 = 270.0//H 

L2 = 180.0//H L4 = 220.0//H 

Rw= 1.0Q Rw' = 1.0Q 

Table 3.5 Parameter Values of a Coupled Tunnel Diode Oscillator systems 

dk 

The dynamics of a single relaxation unit can be described by: 

/c =1,2 

k = 1,2 

'
 v ~

 w , ~ K 

ft(VJ 
dt 

(3.29) 

(3.30) 

(3.31) 
'k 'k\vdk/ 

where s is the applied bias voltage, Vdk and ldk are the voltages and currents, 

respectively, in the k-th tunnel diode, fk is the current-voltage characteristic of the 

k-th diode, which is well approximated by a cubic polynomial, Ck are the small 

effective diode capacitances which are essential for the generation of relaxation 

oscillations, and Rw is the internal resistance of the voltage source. The system 

described by the four equations given above (Eq. (3.29) & Eq. (3.31)) represents 

a pair of relaxational Van der Pol type oscillators with linear coupling via slow 

variables (Eq.(3.30)). These systems were originally considered as hardware 

models of coupled Fitzhugh-Nagumo neuromimes'491 with fast voltage variable 
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representing the membrane potential and the current modeling the slow 

"recovery" variable. 

(3) Experimental results 

In the many different decoupled units both periodic and aperiodic behavior 

have been observed. It is well known that two such similar units in periodic 

regimes residing on stable limit cycles with close frequencies may synchronize 

in the presence of weak coupling to a common periodic orbit. Even more 

interesting is the possibility of synchronization of two weakly coupled chaotic 

attractors. Fig. 3.36(a) shows an oscilloscope picture of periodic synchronized 

diode voltages near the start of auto-oscillations. Fig. 3.36(b) shows the 

corresponding power spectra. Fig. 3.37(a) shows two unsynchronized chaotic 

diode voltages when the units are uncoupled and when a slightly smaller bias 

voltage is applied to one of the units than in Fig. 3.36(a). Fig. 3.37(b) shows 

synchronized chaotic pulses when the units are coupled via resistor Rc for the 

same experimental conditions as Fig. 3.37(a). Fig. 3.38 shows the power spectra 

for the synchronized chaotic pulses. Fig. 3.39(a) shows synchronized chaotic 

signals for qualitatively different behavior with shorter time intervals between 

pulses when slightly larger bias voltage is applied than in Fig. 3.37(b). Fig. 

3.39(b) shows the corresponding chaotic power spectra. The synchronization can 

be observed over long periods of time by digitizing the signals and displaying 

them on a computer, as shown in Fig. 3.40 for the experimental conditions of 

Fig. 3.37(b). The synchronization in Fig. 3.40 is observed at each pulse as the 

pulses form bursts. 

The observed synchronization is only the simplest result of two similar 
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chaotic attractor interactions, similar to the case of two coupled limit cycles. The 

"frequency-locked entrainment" states of two chaotic attractors have also been 

observed when one of the units is modified. This behavior is shown in Figs. 

41(a)-(b) for 2/3 entrainment, that is every two peaks in the top trace are 

entrained with every three peaks in the bottom trace. This clearly is a interesting 

phenomenon falling in between synchronization with strong coupling and 

unsynchronization with weak coupling. The experimental circuit to observe this 

behavior is that of Fig. 3.35 with the addition of a coupling resistance R of 16Q 

between the two branches of Unit I, as in the scheme of Gollub et al. A wide 

range of entrained chaos and synchronized chaos was observed as a function 

of R. 

To make sure that such units did not act as "noise amplifiers", one has to 

study the experimental time series in terms of Lyapunov spectra. By using 

Takens' embedding technique and the algorithm of Wolf et al. the principal 

Lyapunov exponent was estimated. A stability analysis was made of the time 

series shown in Fig. 3.38(a) and Fig. 3.40. The number of data points is 30, 000, 

and was sampled at a rate of 5MHz. The evolution time of the Wolf algorithm 

was varied for both signals and the resultant calculated exponents are shown in 

Fig. 3.42(a)-(b). The variation in the calculated principal exponent with respect 

to maximum replacement distance was examined for several parameter values. 

In these instances, changing the maximum replacement distance from 10 

percent to 5 percent of the lateral extent of the embedding changed the 

calculated principal exponent by at most 10 percent. These calculations suggest 

a principal Lyapunov exponent of 50x103(bits/s) for the time series of Fig. 

3.38(a) and 70x103(bits/s) for time series of Fig. 3.40. The positivity of the 
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exponent and its degree of stability with respect to changes in the evolution time 

are consistent with a chaotic voltage train, which has around 40 KHz oscillations; 

so the signal will lose almost all of the information within one cycle. 

(4) Conclusions 

Through a weak coupling, the simple system of Fig. 3.35 shows mutual 

entrainment of two chaotic relaxation oscillators. This is first time that the 

synchronization of chaos has been observed in the coupled tunnel diode 

systems. This result also experimentally confirm the idea of synchronization in 

chaotic systems, which was proposed by Pecora and Carrol1441. In addition, the 

"frequency-locked entrainment" states of two chaotic attractors have also been 

observed when appropriate coupling is applied. Large communities of interacting 

chaotic relaxational units would be worthy of further investigation. In addition 

numerical simulations for a model of the coupled units shown in Fig. 3.35 will 

also be interesting to confirm the synchronization phenomena. 
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Figure 3.1 Schematic diagram of a diode model in SPICE. 
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Figure 3.2 Circuit of a single diode resonator system. 
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Figure 3.3 Picture taken from a oscilloscope showing the wave form of period-8 

oscillations in a single diode resonator system. 
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Figure 3.4 Picture taken from a oscilloscope showing the wave form of chaotic 

oscillations in a single diode resonator system. 



76 

I1 ' i" ' '1"' i I ' "T" 

> I 1 1 I I t in t. I 

Figure 3.5 Wave form of period-8 oscillation obtained from simulated system of 

single diode resonator. Vertical axis is current / through the system and horizotal 

axis is time t. 
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Figure 3.6 Wave form of chaotic oscillation obtained from simulated system of 

single diode resonator. It has the same fundamental frequency as the driving 

source, but the amplitudes of peaks are randomly distributed. 
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Figure 3.7 Picture taken from oscilloscope showing the phase portrait of the 

period-8 oscillation in the single diode resonator. There are 8 winding cuves in 

the upper right region, although those cuvres tend to overlap with each other. 
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Figure 3.8 Picture taken from oscilloscope showing the phase portrait of the 

chaotic motion in the single diode resonator. It expanded in one diagonal 

direction and contracted in another. 
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Figure 3.9 Phase plot of period-8 oscillation from simulated Eqs. 3.21-3.23 for 

single diode resonator. Compare this plot with Fig. 3.7. 
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Figure 3.10 Phase plot of a chaos from simulated Eqs. 3.21-3.23 for single 

diode resonator. Compare this plot with Fig. 3.8. 
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f o / 8 

Figure 3.11 Power spectrum corresponding periods 8 of Fig. 3.7 and Fig. 3.9 for 

the single diode resonator system. The second peak from the right is the 

fundamental frequency. 
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Figure 3.12 Power spectrum corresponding chaos of Fig. 3.8 and Fig. 3.10 for 

the single diode resonator system. Broad band spectrum indicated that the 

system is truely in chaotic. 
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Figure 3.13 Power spectra for (a) period-8 oscillations and (b) chaotic 

oscillations obtained from simulated systems. 
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Figure 3.15 Bifurcation diagram obtained from simulated Eqs. 3.21-3.23 of a 

single diode resonator system. Compare this plot with Fig. 3.14 of experimental 

result. This plot contains 500,000 data points. 
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Figure 3.16 Enlarged bifurcation diagram showing the first portion of the Fig. 

3.15. It has period doublings, period 5, period 7, etc. 
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Figure 3.17 Enlarged bifurcation diagram showing the second portion of the 

Fig. 3.15. 
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Figure 3.18 Circuit of a line-coupled diode resonator system. 
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(a) 

(b) 

Figure 3.19 Phase plots for (a) period-1 with driving amplitude V0 ^ 6.07V and 

(b) two fequency quasiperiodic oscillations with driving amplitude in the range: 

6.07V ^ V0 <; 9.87V. 
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(a) (b) 

(c) (d) 

Figure 3.20 Sequence of phase plot for the driving amplitude V0 10.05V i.e., 

after the first transition to chaos, (a) Period three state, (b) Quasiperiodic state, 

(c) Frequency locked state, (d) Second chaotic state. 
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Figure 3.21 Power spectrum of the quasiperiodic state shown in Fig. 3.20(b). 

Here the two basic frequencies are f0 « 50.22KHz and fj * 4.43KHz. 
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fo/33 

Figure 3.22 The power spectrum of frequency locked state corresponding to 

the phase plot shown in Fig. 3.20(c). The locking ration is 33/3. 
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Figure 3.23 Power spectrum of chaotic state corresponding to the phase plot 

shown in Fig. 3.20(d). 
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Figure 3.24 Bifurcation diagram obtained from Eqs. 3.24-3.28 of the simulated 

line-coupled diode resonator system. The drving amplitude ranges from 2.0V to 

3.0V. This plot contains 300,000 data points. 
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Figure 3.25 Another bifurcation diagram obtained from Eqs. 3.24-3.28 of 

simulated line-coupled diode resonator system. The driving amplitude is ranging 

from 3.0V to 4.0V. This plot contains 300,000 data points. 
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Figure 3.26 The Poincare section of a chaotic attractor for a simulated four-line-

coupled diode resonator system. Compare this plot with Fig. 3.32(a) of the 

experimental result. 
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Figure 3.27 System signals (top) and control signals (bottom) for (a) chaotic 

attractor with control off, (b) stabilized period-2 and (c) stabilized period-8. 
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(a) (b) 

(c) 

Figure 3.28 Phase plot for (a) chaotic attractor before the control (b) stabilized 

quasiperiodic oscillation and (c) stabilized periodic locked state. 
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Figure 3.29 Power spectrum for the chaotic attractor before the stabilization; the 

corresponding pahse plot is shown in Fig. 3.28(a). 
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Figure 3.30 Power spectrum for the stabilized quasiperiodic oscillation; the 

corresponding phase plot is shown in Fig. 3.28(b). 
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Figure 3.31 Power spectrum for the stabilized periodic locked state, where the 

locked ratio is 22/2; corresponding phase plot is shwon in Fig. 3.28(c). 
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Figure 3.32 Poincare sections of a four-line-coupled diode resonator system for 

(a) a chaotic attractor before the control on and (b) the two-frequencies 

quasiperiodic oscillation stabilized from the above chaotic attractor. Their power 

spectra are shown in Fig. 3.33(a) and (b) respectively. 
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(a) 

(b) 
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Figure 3.33 Power spectra for the (a) chaotic motion before the stabilization and 

(b) quasiperiodic oscillation with two incommensurate frequencies as result of the 

stabilization. 
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Figure 3.34 A Tunnel diode relaxation oscillator unit. L1 and L2 are inductors; R1( 

R2 and Rw are resistors; D1 and D2 are tunnel diodes; E is the power supply. The 

effective capacitors (C1 and C2) for two tunnel diodes and an extra coupling 

resistor (R) for another version of oscillator circuit are drawn in dashed lines. 
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Figure 3.35 Two coupled relaxation oscillators. Voltages are measured at A and 

B. The values for elements in this circuit are listed in the Table 1. 
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Figure 3.36 (a) Synchronized chaotic voltages. Top trace and bottom traces are 

measured at A and B respectively, (b) Corresponding power spectra. 
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Figure 3.37 (a) Chaotic voltages before coupling (without Rc). (b) Synchronized 

chaotic voltages with coupling of Rc. 
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Figure 3.38 Power spectrum for synchronized voltages of Fig. 3.37(b). 
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Figure 3.39 (a) Synchronized chaotic voltages, (b) Corresponding power 

spectrum. 
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Figure 3.40 Syncronized chaotic voltages for the same experimental conditions 

as Fig 3.37(b). The data were obtained by digitizing the signals at 8-bit resolution 

and 5Mhz speed. 
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Figure 3.41 (a) Chaotic voltages entrained at 2/3. (b) Corresponding power 

spectrum. 
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Figure 3.42 (a) Variation of the principal Lyapunov exponent with respect to 

replacement time for time series of Fig. 3.38(a). (b) Variation of the principal 

Lyapunov exponent with respect to replacement time for the time series of Fig. 

3.39. 
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CHAPTER 4 

AUTONOMOUS AND EXTERNALLY DRIVEN PERIODIC AND 

CHAOTIC OSCILLATIONS IN n-lnSb 

4.1 Introduction 

Spontaneous and externally driven periodic and chaotic oscillations™ have 

been studied experimentally in a number of semiconductors: n-GaAs[2 5], p-Ge[6" 

10], high purity n-lnSbI1113], and n-Si[14!. Various types of periodic and chaotic 

oscillations were observed in these experiments including period-doubling 

bifurcation (Feigenbaum scenario), Hopf bifurcation to a simple periodic 

oscillation, and intermittency. In this chapter, further investigations on periodic 

and chaotic voltage oscillations in n-lnSb at low temperature and under 

transverse magnetic field are presented. 

4.2 Hiipper and Scholl ModeP1 

The basic idea of this model is to consider both the applied field and the 

induced Hall field as dynamic variables whose time dependence is governed by 

dielectric relaxation. These two field components are linearly dependent on the 

carrier density. The field relaxation process combined with the generation-

recombination(GR) kinetics of the carrier density yields oscillatory instabilities at 

a threshold value of the magnetic field. 

In this theory quantum effects leading to the formation of Landau levels 

are neglected. The dynamics of the electric field E in this case is thus 

determined by : 

123 
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j0 = j+£E (4'1) 

where j is the conduction current density vector, eE is the displacement current 

density, the dot denotes the time derivative. When a magnetic field is applied 

perpendicular to the current density it will gives rise to a Hall field Ez which leads 

to a spatially inhomogeneous transverse carrier density distribution. If the effect 

of these nonuniformities is neglected, the conduction current density can be 

given by[16] 

J = en/j/jBE- en/jfjBExB (4.2) 

where // is the mobility of the carriers, e is the electric charge of carriers, n is 

the carrier density, and /JB= FJ/ (1+ J/B2) is the mobility reduction factor due 

to magnetoresistance1171. Now choosing the coordinate system such that j0=(j0. 

0, 0) and B = (0, B, 0), from Eq. (4.1), Eq. (4.2) and the kinetic equation 

describing the generation-recombination processes one can obtain the following 

set of dynamic equations for the electric field components Ex, Ez, and carrier 

density n: 

£EX =jQ-enfJB(Ex + /J BEz) 

(4.3) 

£EZ = en/jBEz - enfj/jBBEx 

n = Hn, E, B) 

Here E = (Ex
2 + Ez

2)1/2. For a constant carrier density, Eq. (4.3) becomes a 

simple harmonic oscillator. However, if there exists a nonlinear dependence of 

n on the field E, Eq. (4.3) form a three-dimensional nonlinear coupled differential 

system. Hupper and Schcill showed1151 that without the magnetic field in this 

system, oscillatory instabilities and chaos are found only if an AC drive is applied 
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or if an additional, excited impurity level is considered. But the presence of 

magnetic field changes this situation dramatically. Even in the case of constant 

mobility and a single impurity level, self-generated periodic and chaotic 

oscillations can be induced due to the coupling of longitudinal field with the 

dynamic Hall field. 

To simplify the numerical simulation, one can assume that GR processes 

are related to a single (donor or acceptor) impurity level and restricted to thermal 

ionization, impact ionization, and trapping processes. Then n can expressed as 

follows: 

n= Hn. E, B) = XJN,„ a - n) - T,n(n * N,) • X„n(N.„ „ - n) (4.4) 

where Neffd = Nd - Na is the effective concentrations of donors, Na the 

concentration of acceptors, and Xs, Ts, and Xn are the field dependent rates for 

the thermal ionization, trapping, and impact ionization processes respectively. 

Clearly this theory is not restricted to any particular semiconductor 

materials. Until now the oscillatory instabilities induced by transverse magnetic 

field have been experimentally found in p-Ge[5], n-GaAs1181, and n-lnSb[1112]. The 

simulation of this Hupper-Scholl theory based on p-Ge[15]l19] have shown that for 

some parameter values the system exhibits period doubling route to chaos. 

There exists a boundary that separates the oscillatory instability region with the 

static region in the control-parameter plane of magnetic field B versus current 

density j. For any fixed current density, increasing magnetic field yields a 

sequence of period doubling route to chaos. 

4.3 Experimental Results and Discussion 
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Autonomous Oscillations: An overview of the autooscillatory behavior for n-lnSb 

under transverse magnetic field is provided by the two parameter (B, j0) phase 

diagram, a plot of the boundaries between oscillatory instability regimes and 

static regimes shown in Fig. 4.1. Increasing B upward along a line of constant 

current density yields a simple period-doubling sequence to chaotic regime. This 

result agrees very well with the theoretical simulations'151'19'. (Compare the Fig. 

4.1 with the Fig. 2(d) of Ref. [15]). 

The experimental data were significantly contaminated with noise. Thus 

after obtaining time series with high speed digitizer, software filtering was used 

exclusively to smooth the data in the construction of wave form plots and phase 

plots. Fig. 4.2 shows a wave form before and after filtering. One can see that the 

significant portion of random noise are smoothed out while almost all 

components of signal itself are kept. 

Typical changes induced by increasing the magnetic filed B are presented 

in the autooscillatory time evolutions of VL(t) and VH(t) (Fig. 4.3), in their power 

spectra (Fig. 4.4), in their autocorrelation functions(Fig. 4.5), and in selected 

phase plots of (VL(t), VL(t)), (VH(t), VH(t)), and (VL(t), VH(t)) (Fig. 4.6). The DC 

current density supplied to the sample was held constant at j0 = 0.15A/cm2. The 

lattice temperature is kept at 1,8K. 

For field close to B = 0.5T a single periodic orbit of frequency « 30 kHz 

emerges. The time evolutions of the Hall voltage and longitudinal voltage in this 

regime are shown in Fig. 4.3(a) and 4.3(b) respectively. The power spectrum 

corresponding the time series of Fig. 4.3(a) is shown in Fig. 4.4(a), in which the 

first peak from left is the fundamental frequency (« 30kHz), and all other peaks 

are subharmonic oscillations. When increasing the magnetic field this 
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fundamental frequency will slowly increase. In the autocorrelation function Fig. 

4.5(a) for the same time series as Fig. 4.4(a) one can see single periodic 

oscillations with very slow decay of amplitude. This decay is due to the inevitable 

system noise. In the phase plot Fig. 4.6(a) for the same time series of Fig. 4.3(a) 

the phase trajectory is approximately a single closed curve, which is the 

characteristic of period-1 limit cycle. 

At B = 0.55T, a period doubling bifurcation occurs with a new frequency 

of « 17kHz in addition to the fundamental frequency « 34kHz, which can be 

seen in power spectrum Fig. 4.4(b). Fig. 4.3(c) is the longitudinal voltage, and 

the signal is nearly repeated every other cycle. Fig. 4.5(b) shows its 

autocorrelation function; the function is oscillating with period-2 and slowly 

decay over time. Fig. 4.6(b) is the phase plot, in which one can see double 

closed curve corresponding the fundamental frequency oscillation and period-2 

oscillation. 

At B = 0.4T a subsequent period-doubling bifurcation occurs. Now the 

fundamental frequency is around 72kHz, and other three peaks are located at 

around 18kHz, 36kHz, and 54kHz (Fig. 4.4(c)). The autocorrelation function 

corresponding to the same time series (Fig. 4.5(c)) has period-4, and its 

amplitude is decaying slowly due to the noise. Fig. 4.6(c) shows the phase plot 

for this period-4 oscillations, in which one can identify four closed curves. 

At B = 0.89 T the system is at the onset of a chaotic regime, and the 

wave form can be seen in Fig. 4.3(e). Its power spectrum, as shown in Fig. 

4.4(d), is broad band. The correlation function of the same signal is seen to 

exponentially decay (see Fig. 4.5(d)). This means that the signal lose the 

correlation over a certain period of time, and this reflect the unpredictability 
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(sensitivity on initial conditions) of the chaotic system. Fig. 4.6(d) shows the 

phase plot in this regime. From the phase plot one can see features of 

converging, spreading, and folding of the system phase trajectory, which is a 

typical for a strange attractor. 

The above sequence of transition phenomena can also be observed while 

one keeps magnetic field constant, and uses current density as control 

parameters [20]. These results are consistent with the fact that in Hupper-Scholl 

system like n-lnSb self-generated periodic and chaotic oscillations can be 

induced by magnetic field as predicted by Hupper and Scholl'151. 

Lvaounov Exponents Calculation: Stronger evidence for the existence of a 

chaotic regime can be provided by estimations of the Lyapunov spectrum 

obtained directly from the experimental time series. To accomplish this, the Wolf 

et a/.[21] algorithm (See Sec. 3.2 for details) was employed first. The sampling 

rate was selected as rs = 0.2/JS to produce enough data points in the intervals 

of the rapid variation of the system relaxational signals (with typical duration of 

5//s), at the same time to have long enough time series for Lyapunov exponents 

calculations. 

Data filtering allows one to show much more clearly the underlying 

structure of the attractor, as seen in Fig. 4.3 and 4.5. However, since heavy 

filtering may change the values of the Lyapunov spectrum, one has to use the 

unfiltered data for Lyapunov analysis. The Wolf algorithm is known to be quite 

sensitive to noise, consequently, the numerical stability of calculated exponents 

with the parameters of this routine is carefully checked. Assuming that one can 

build good embeddings from each of the two observed scalar signals 

(longitudinal and Hall voltages) one compares first the values for the maximal 
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Lyapunov exponents obtained from these two time series for a chaotic attractor 

corresponding to B = 0.89T and j0= 0.15mA/cm2. The Lyapunov exponent 

obtained from the longitudinal signal was estimated to be 9 (in units of the basic 

frequency, which was selected to be 105 Hz), and the best estimate for the same 

exponent from the Hall voltage was 2. In all of the measurements the Hall 

voltage was always considerably noisier than the longitudinal voltage. It is 

known[21] that added noise typically lowers the value of the calculated principal 

exponent. This therefore explains the discrepancy of two exponents. Additionally, 

the numerical stability of each calculated exponent was only satisfactory when 

using the less noisy longitudinal signal. The positive exponent obtained indicates 

that the system is truly in a chaotic regime. In addition, the consistency of the 

order of magnitude between exponent from longitudinal voltage and that from 

Hall voltage provide a good example that Wolf et al. 's algorithm is stable for the 

largest Lyapunov exponent calculation. 

AC-Driven system: To further investigate this dynamic system, one can added 

a periodic driving source to the original current source. Choosing a fixed driving 

amplitude and driving frequency (f = 100kHz), the following sequence of 

transitions as one increases the current density has been observed: (see Fig. 

4.15 of Ref. 20) periodic oscillations with driving frequency f0-> period doubling 

f0/2 -> chaos -> period 3 f0/3. (see Fig. 4.16 of Ref. 20) period 7 f0/7 -> chaos -> 

periods-3 f0/3 -> chaos. 

An additional interesting experiment on this system is to study the stability 

and the transitions from chaos to periodicity triggered by a harmonic drive of 

variable amplitude. It is well known that[22) when a linear spring is driven by a 

harmonic driven source, the motion of the spring will oscillate with the same 
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frequency as the driving source, no matter what the initial condition the spring 

is. More importantly, the oscillating amplitude of driven spring, as well as its 

phase, will depend on the driving amplitude and its frequency. Suppose one was 

trying to obtain a fixed value oscillating amplitude A0 for the spring. Then for any 

particular driving frequency f, one has to adjust the driving amplitude Ad to a 

certain value. Fig. 4.7 shows the dependence of this amplitude Ad versus the 

driving frequency f. One can see that it has a resonance minimum at the intrinsic 

frequency of the spring, which means that it is easier to drive the spring to a 

oscillation when the driving frequency is close to the intrinsic frequency of the 

system. 

For a typical chaotic attractor, the different frequencies of the driving 

signals need to have different critical amplitude to make the transition from 

chaos to periodicity. There is a resonant frequency fc, for which the transition 

from chaos to periodicity takes place at the smallest possible amplitude Ac of the 

driving signal. Fig. 4.8 shows the dependency of five different critical amplitudes 

upon their frequencies. In this case the initial fundamental frequency without the 

driving source is 63.5kHz, which is very close to the frequency of the minimal 

critical driving amplitude Ac. This stability is very similar to that of the driven 

harmonic oscillators shown in Fig. 4.7. 

It has been conjectured1231 that critical amplitude Ac as described above 

satisfies a scaling law Ac = cK* where K is the Kolmogorov entropy, c is the 

system dependent constant, and the exponent x is universal. Numerical 

experiments with several specific systems1231 gave x~ 0.3 ± 0.1 with indications 

that^ could be equal 1/3. For a system that can be effectively described in a 

three dimensional state space, the Kolmogorov entropy coincides with the 
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positive Lyapunov exponent. To check this prediction on AC-driven n-lnSb 

system, four different chaotic attractors were chosen by changing the magnetic 

field parameter, and their minimal critical driving amplitude Ac can be estimated 

by appropriately scanning the driving frequency. The Lyapunov exponents of the 

chaotic attractors were estimated by using Bryant's algorithm (See Sec. 3.1 for 

details). The results are summarized in Fig. 4.9, and gave x = 0.4. Thus the 

result is in excellent agreement with the numerical experiments just discussed 

and indicate the presence of the scaling law in these systems. Since the chaotic 

attractor has very few properties can be used to quantitatively characterize them, 

the existence of the universal scaling law as described above becomes 

extremely important. 

4.4 Conclusions 

In this chapter, the electrical oscillations in n-lnSb at low temperatures 

under transverse magnetic field has been studied. The results are consistent 

with Hupper and Scholl's theory in that there exists a boundary in the two 

parameter phase space (B, j0). This boundary separates oscillatory instability 

regimes from static regimes. By changing magnetic field B at a particular current 

density j0 the system will follow the period doubling route to chaos. Lyapunov 

exponents were obtained by using Wolf et a/.'s algorithm and found to be 

consistent with the observed phenomena. For the AC-driven system, the stability 

of a chaotic attractor was studied, and its stability to the harmonic driving source 

was found to be similar to that in a simple driven oscillator. The induced 

transitions from chaos to periodicity by AC-driving source agrees well with the 

conjectured scaling law for chaotic systems. 
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Figure 4.1 Parameter phase plot shows the boundaries between autooscillatory 

instability region and static region. 
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Figure 4.2 (a) Actual signal of logitudinal voltage taken by a high speed digitizer, 

(b) The same wave form after software filtering. 
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Figure 4.3 (a) Hall voltage signal for period-1 oscillation, (b) Longitudinal 

voltage signal for period-1 oscillation, (c) Wave form for period-2. (d) Wave form 

for period-4. (e). chaotic signal. 
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Figure 4.4 Power spectra of longitudinal or hall voltage signals for (a) period-1 

oscillations, (b) period-2 oscillations, (c) period-4 oscillations, (d) chaotic regime. 
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Figure 4.5 Autocorrelation functions of longitudinal or hall voltage signals for (a) 

period-1 oscillations, (b) period-2 oscillations, (c) period-4 oscillations, (d) chaotic 

regimes. 
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Figure 4.6 Phase portraits of longitudinal or hall voltage signals for (a) period-1 

oscillations, (b) period-2 oscillations, (c) period-4 oscillations, (d) chaotic 

regimes. 



142 

D 
£ 

< 
© 
"O 

E < 

Driving Frequency (Arb. Unit) 

Figure 4.7 The plot of required driving amplitude Ad versus driving frequency f 

to drive a linear spring to a fixed amplitude oscillation. The dashed line 

represents the position of intrinsic frequency for the spring. 
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Figure 4.8 Plot of critical amplitude AQ VS. driving frequency f0. Applying to the 

same chaotic attractor that has fundamental frequency 63.5kHz, driving source 

of amplitude A0 and fequency f0 will just destroy the chaos. 
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CHAPTER 5 

CHARACTERIZATION OF DEEP LEVELS IN Hg^CdJe BY USING 

RESONANT IMPACT-IONIZATION SPECTROSCOPY 

5.1 Introduction 

For the last two decades, the ternary semiconductor Hg^Cd^e alloy has 

been used as the material of choice for the construction of the intrinsic infrared 

detectors in both military and commercial imaging systems. One important factor 

which affects the detector's response and quite often limits its performance is the 

presence of impurity or defect levels.[1pl[3] Among these defects, those that lie 

deep in the forbidden gap region are very important since they can act as 

effective recombination centers controlling excess carrier lifetime. These deep 

levels can also act as centers that enhance interband tunneling, giving rise to the 

dark currents in intrinsic detectors based on p-n diode or metal-insulator-

semiconductor (MIS) device concepts. 

On the other hand, details concerning these deep level defects still remain 

poorly understood. In addition, these defects or impurities usually have very 

small absorption cross section, and they are of sufficiently low density that they 

are extremely difficult to detect. Deep level transient spectroscopy (DLTS) is one 

of the most popular techniques to study deep levels in silicon and lll-V 

semiconductors'41151161. But for narrow gap semiconductors like Hg^Cd^e, DLTS 

will not provide enough data points to accurately determine the energy levels. 

Other techniques include Thermally Stimulated Capacitance (TSC) and 
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Admittance Spectroscopy (AS). However, theTSC171 is limited by the background 

drift and noise due to leakage currents. Also the AS[8] is appropriate only for 

majority carrier traps. It is therefore highly desirable to employ new, sensitive 

technique to characterize these deep level defects in Hg^CdxTe. 

The mercury (Hg) vacancy is a natural defect in HgCdTe due to the rather 

weakly bound nature of the Hg lattice atom and is commonly believed191 to act 

as an acceptor. The Hg vacancy concentration in HgCdTe is generally reduced 

from a large as-grown concentration by a post-anneal in a Hg-rich atmosphere. 

During this anneal, Hg atoms enter the lattice as interstitials and move through 

the crystal until they encounter and fill a vacancy site. Other methods such as 

ion-beam milling11011111 and the baking of an oxide surface exist to introduce Hg 

atoms as interstitials into the HgCdTe lattice and can be used to convert 

vacancy-doped p-HgCdTe to n-HgCdTe. Until now, a very limited amount of 

work has been done to study the electrical properties of Hg interstitials in 

HgCdTe[10][11]. Recently, two methods of Hg interstitial production mentioned 

above (ion-beam milling and oxide baking) have been shown1101 to produce a 

long-range, bias-dependent dark current in n-HgCdTe MIS devices. 

A new method called Rll spectroscopy was recently11111121 developed and 

used to investigate Hg interstitials in both bulk and LPE samples of HgCdTe 

with x value from 0.22 to 0.24. For x «0.22 samples, Hg interstitials are 

found to be responsible for the formation of defect states near 45 meV 

and also appear to form states near 60 meV above the valence band edge. 

For x « 0.24, the Hg interstitials are found to form states near 60 meV 

above the valence band. These results are consistent with that obtained 

by using other techniques. Therefore, Rll spectroscopy is a very 
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sensitive technique to study deep levels in HgCdTe. 

In this chapter, extended investigations of Hg interstitials in 

both bulk and LPE samples are reported. After a theoretical discussion 

of Rll mechanism (Sec. 5.2), the experimental results and data analysis 

are presented and discussed (Sec. 5.3). The final conclusions and 

remarks is included in Sec. 5.4. 

5.2 Resonant Impact Ionization Mechanism 

Resonant Impact Ionization (Rll) spectroscopy is a new type of magneto-

optical effect involving resonant oscillations in the photo-conductivity(PC) of 

semiconductor due to impact ionization of valence electrons. This form of 

spectroscopy has a unique magneto-optical signature, that is that the peak 

positions of PC response are independent of laser photon energy. 

Fig 5.1 shows a typical wavelength dependence of both One Photon 

Magneto-Absorption (OPMA) and Rll spectra for an x = 0.24 bulk sample. The 

Rll resonances are those between 1.5T and 3.0T, and they do not shift with 

incident laser wavelength. On the other hand, the two peaks that appear at 

higher magnetic fields are due to OPMA and impurity-to-band magneto-optical 

transitions, and they are seen to shift rapidly with the laser wavelength. Note that 

if the photon energy is less than the separation between the highest Landau 

level in the valence band and the lowest in the conduction band, the PC signal 

becomes very small, the remaining signal due only to Impurity Magneto-

Absorption(IMA) and Two Photon Magneto-Absorption(TPMA) processes. 

The transition energies for OPMA, including the exciton corrections, can 

be calculated by using Pidgeon-Brown model[13]. These calculations can befitted 
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to the OPMA data from the experiment and used to determine the energy gap 

of the sample Eg. 

In order to understand the resonance condition that lead to the Rll 

oscillations, the electronic band structure of a semiconductor material under 

transverse magnetic field is schematically illustrated in Fig. 5.2. Electrons are 

photoexcited across the energy gap via strong one photon magneto-

absorption(OPMA), creating a large photoexcited population of electrons in the 

conduction band. Some of these photoexcited electrons are then subsequently 

excited well into the conduction band by the absorption of a second photon. For 

a Rll resonance, the transition energies AELL between conduction-band Landau 

levels must equal the transition energies AE„ between the highest Landau-

valence-band Landau level and an impurity or trap level in the gap. Thus, the 

process involves the resonant relaxation of conduction-band electrons via impact 

ionization of a valence electron into a trap level. Landau levels that are more 

than a photon energy above the lowest conduction-band Landau level are not 

effectively populated and do not contribute. In the Rll process, changes in 

mobility occur whenever the electron makes a resonant transition from higher-

lying Landau level to a lower-lying one. Since the conduction band of these 

narrow-gap HgCdTe samples is highly nonparabolic, the mobility increases 

rapidly with increasing energy as measured from the bottom of the conduction 

band. Thus, resonant peaks in the PC response are seen whenever the Rll 

mechanism is present, and it does not depend on the incident photon energies. 

In order to calculate the magnetic field positions of Rll resonances, a 

computer program was written to incorporate the code that calculate Landau 

level energies over magnetic field and to search for the impurity energy level and 
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field positions that satisfy the Rll resonance condition. The sequence of the 

algorithm is illustrated as follows: 

(1) Calculate both the conduction-band and valence-band Landau level 

energies for a wide range of quantum number n and over the appropriate 

magnetic field range. 

(2) Input a range of impurity energy levels [E(, Ef] and energy incremental 

step AE. 

(3) Input a range of magnetic field [Bj, Bf] and magnetic field incremental 

step AB. 

(4) Input the experimental magnetic field positions (B.,, B2, Bk) for the 

Rll resonances. 

(5) Given a impurity energy level E, do the following: For every magnetic 

field B (start from B, and increment by AB each time), compare the difference of 

E and highest (n = 0) valence-band Landau level energy (which is En)with the 

difference of each pair of conduction-band Landau levels (which is E„). If |EirEn| 

is less than a predefined constant eE and the magnetic field B can match any of 

the input field positions b| within a predefined uncertainty eB, a match is found 

and the energy E, the magnetic field B and the conduction band Landau level 

numbers are output as a candidate for the Rll resonance. Otherwise, increment 

the magnetic field by AB and repeat the comparison again, until the magnetic 

field reaches Bf. 

(6) Increment impurity energy E by AE. If this E is less than Ef, go back 

to (5), otherwise terminate the program. 

Usually many matches can be found from this procedure for some 

uncertainty parameters eE and eB. Further confirmation of a particular level E 
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comes from searching the successive matching of a multitude of field positions 

yielding approximately the same energy E. Thus, the preciseness of individual 

matchings is not as important as the trend of matches to the same energy. In 

addition, since there are usually more than one trap level in each sample, the 

spectra represent a superposition of peaks which at lower fields become 

unresolved. 

5.3 Experimental Results and Discussion 

To study the effect of Hg interstitials, a control sample and a "doped" 

sample were prepared from a same piece of bulk crystal. The "doped" samples 

were prepared in such a manner to have a large Hg interstitial concentration as 

compared to control sample. Fig. 5.3 shows the spectra obtained from both the 

control and the "doped" x « 0.22 samples at a temperature of 5K. In spectra A 

(the control sample), the only resonances seen are due to OPMA, which would 

be expected for a sample with very low amounts of impurity or defects levels. 

The verification that this structure arises from OPMA processes is seen in Fig. 

5.4 and Fig. 5.5. Fig. 5.4 shows the wavelength dependence of the observed 

structure. Fig. 5.5 shows the fit of this set of data to calculated OPMA transition 

energies resulting in an energy gap of 105±2 meV for this sample. 

In spectra B (Fig. 5.3), the structure seen is entirely different; the 

resonance peaks in the PC response do not shift with laser wavelength. These 

resonances are thus due to the Rll process. In this figure, the Rll structure 

dominates and obscures the OPMA resonances seen in the spectra A. In 

addition, the Rll peaks seem to be superimposed on a broader resonance, 

centered about B = 2.0T. This broad resonance is similar to that seen by Ipposhi 
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et afu], and is possibly due to magnetophonon resonance trapping of excess 

carriers involving the emission of LO phonons by a Shockley-Read center. 

The resonant field positions of the Rll spectra can be used to estimate the 

deep trap levels, and the results are listed in Table 5.1. The trap levels 

responsible for spectra A, upon analysis, are found to be at «44 and «59 meV 

above the valence band, which is consistent with values obtained by using other 

technique1151. Therefore these results show that deliberately "doped" Hg 

interstitials in HgCdTe produce deep trap levels in Hg1.xCdxTe. 

In addition to the OPMA resonances seen in Fig. 5.4, an additional weak 

resonance is seen as a "shoulder" at the high-field end of most of the spectra. 

The transition energies versus magnetic field for this peak are represented by 

the open squares lying about 4 meV below the lowest OPMA transition shown 

in Fig. 5.5. These are due to the effect of bound excitons. Bound excitons are 

typically difficult to observe in narrow-gap semiconductors because of the 

extremely small binding energy of the complex. However, a similar transition has 

been seen in n-lnSbt16], and it corresponded to an exciton bound to a neutral 

acceptor level. One way1171 that has been used to determine the nature of the 

bound-exciton complex is to compare the observed binding energy of the 

complex with simple theoretical estimates of the four possible complexes. The 

four cases and their binding energies aret18] as follows: 

D+x (exciton bound to an ionized donor) = 0.06Ed 

D°x (exciton bound to a neutral donor) = 0.13Ed 

A°x (exciton bound to a neutral acceptor) = 0.07Ea 

A+x (exciton bound to an ionized acceptor) = 0.4Ea 

For Rll model to be valid the complex center must be able to receive electrons, 
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i.e., an ionized donor, therefore the bound excitons can't be A+x. Also, D°x and 

A°x can also be ruled out from energy considerations. Thus, using 59 meV as 

donor energy Ed, then the D+x bound-exciton has energy of » 3.5 meV, which 

is in good agreement with the observed « 4 meV binding energy. Presumably, 

the donor level in this case is ionized by the intense laser irradiation which 

produces transitions from the « 59 meV level to the conduction band. 

Rll structure is also seen in another bulk sample of x « 0.24 as shown 

in Fig. 5.6(a). This structure is presumably due to residual Hg interstitials that 

were introduced during the recrystalization step of this sample's growth. For the 

purpose of this investigation Hg interstitials were deliberately added to one of the 

pieces of this sample to study how additional Hg interstitials would effect the Rll 

resonances. In Fig. 5.6 (b), the Rll spectra for this "doped" sample was plotted 

to compare with the control spectra (Fig. 5.6(a)). Note that for the field range 

shown in the Fig. 5.6, the peaks in both spectra occur at essentially the same 

magnetic field positions, but the resonances appear stronger in the "doped" 

sample. Fig. 5.7 shows the same spectra with monotonic background for each 

sample remove by fitting approximate Gaussian peaks to the original spectra. 

Clearly, the resonances are stronger (by about a factor of 2) in the Hg 'doped" 

sample, indicating that the introduction of Hg interstitials increases the population 

of the trap levels responsible for the peaks shown (or Rll structure). 

Fig. 5.8 shows a comparison of TPMA resonances obtained from the 

same control and "doped" sample as discussed above(x«0.24). The TPMA 

lifetimes were also determined by examining the PC decay and were seen to be 

«250//s for the control and «150//s for the "doped" sample. It is clearly seen 

that the TPMA resonance (spectra B) for the "doped" sample is substantially 
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stronger than the control sample (spectra A). It is well known1191 that the two-

photon absorption constant p{cS) is proportional to a second-order matrix element 

rcv
kk' in the perturbation theory: 

nk nk' 

(5.1) 
n hu,-ie'(k)-e„) 

where en is the energy of an intermediate level n and e°(k) is the energy of 

electron in the conduction band(all the energies are measured from the bottom 

of the conduction band); pcn
k and pnv

k are the matrix elements of the electron 

momentum operator. From the above equation (Eq. 5.1) one can see that the 

absorption constant /?(w) should rise strongly near the absorption edge in the 

presence of an impurity level located near the middle of the forbidden energy 

gap, i.e., these intermediate states are provided by the impurity level, and these 

deep levels are located at cn « -Eg/2. Thus, the addition of trap levels at 

approximately mid-gap has effectively increased the TPMA transition strength by 

providing more near-resonant intermediate states for the TPMA transitions. 

Therefore the enhancement of TPMA for "doped" sample in Fig. 5.8 is consistent 

with the results from Rll spectra that the addition of Hg interstitials increased the 

concentration of deep trap levels. 

The Rll peak positions from the complete spectra were obtained by using 

magnetic-modulation and lock-in-amplifier techniques, which yields more Rll 

positions. The results for both control sample and "doped" sample are tabulated 

in Table 5.2. For the control sample, two levels were obtained by a best fit: one 

at «16 meV and one at «61 meV. The 16 meV activation energy corresponds 

closely with that of the lowest Hg vacancy level[20], and the 61 meV level lies 
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close to the middle of the gap for this x«0.24 sample. However, upon analysis 

of the "doped" sample, only 61 meV level can be found from the spectra. Since 

the introduction of additional Hg interstitials should not only create additional trap 

levels but also fill some of the remaining Hg vacancies in the sample, one would 

expect to see both an increase in the trap concentration and a decrease in 

vacancy concentration, resulting in the observed spectral feature shown in Fig. 

5.6 and the absence of the vacancy level in the doped sample in Table 5.2. 

Rll resonances have also been observed in LPE samples. Fig. 5.9 and 

Fig. 5.10 shows wavelength dependence of the spectra obtained from a x®0.22 

sample of LPE Hg.,_xCdxTe. This sample was subjected to numerous damaging 

fabrication steps, e.g., devices were fabricated on this film and then removed, 

and anodic oxides were grown, baked and then removed. Finally, for this study, 

anodic oxide was grown, Hall bars were delineated and metalization deposited. 

Note that the spectra seen in Fig. 5.9 and Fig. 5.10 are almost identical to that 

of spectra B of Fig. 5.3, a bulk x « 0.22 sample. Fig. 5.11 shows the 

theoretically calculated transition energies for OPMA and experimental 

absorption peaks for the same LPE sample as Fig. 5.9 and Fig. 5.10. It can be 

seen that some of the peaks are possibly OPMA, while other peaks fall on five 

different vertical lines, i.e. they do not depend on photon energy. So they are 

due to the Rll mechanism. In addition, the energy gap of this sample is 99.5 

meV from the calculation, thus the x-value is « 0.22. This energy gap and x-

value is confirmed by FTIR measurements performed at Texas Instruments, Inc. 

Again, the impurity levels responsible for the Rll peaks were estimated , 

and the result is listed in Table 5.3. One can see that the there are three deep 

levels: 40 meV , 45 meV and 59 meV. These results are consistent with those 
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for the bulk samples. It is important to note that in Table 5.3, any one of the 

deep levels are responsible for multiple resonance field positions; e.g., 2.53T, 

3.08T, 5.50T, and 8.31T are all caused by 40 meV level. On the other hand, 

each resonance position might contributed by several resonances from different 

deep levels, e.g., all three deep levels can contribute to the resonance position 

of 3.08T. 

This LPE sample was also subjected to a 140°C bake to "dope" the 

sample with additional Hg interstitials. Fig. 5.12 shows the comparison of spectra 

before and after a bake. It can be seen that the Rll resonances are larger in the 

baked sample . This result is similar to the results from the bulk sample, where 

additional Hg interstitials were shown to provide more deep trap levels and 

enhance the Rll transition strengths. 

Another LPE sample of x * 0.22 was passivated with a sulfide rather than 

an oxide in order to investigate the effects resulting from the introduction of the 

Hg vacancies rather than Hg interstitials. Since the passivation layer is a sulfide 

rather than an oxide, no Hg interstitials will be created by a high temperature 

bake. Fig. 5.13 shows the resonance peak positions obtained from magneto-

optical spectra for unbaked LPE sample. It also shows the calculated OPMA 

transition energies calculated. One can see some of the peaks are fitted with 

OPMA transitions. But there are clearly some other peaks caused by Rll 

transitions. From the data fit, the energy band gap for this sample is determined 

as around 89.5 meV. 

Similarly, the experimental peaks and calculated OPMA transition energies 

for the same sample after a bake at 220°C are shown in Fig. 5.14. Now, all of 

the peak positions are described well by OPMA, and there are no Rll structures. 
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The energy gap for this baked sample is around 88.2 meV, which is slightly less 

than that before the sample was baked. 

Fig. 5.15 shows the spectra obtained from an x « 0.23 sample of LPE 

Hg^CdxTe. This sample was obtained form a sample which was grown from a 

melt in which indium was included as a dopant at a concentration of « 

5x1014cm"3. The broad set of OPMA resonances are seen to shift with laser 

wavelength. The results of a band-model analysis, shown in Fig. 5.16, yield two 

distinct energy gaps: one at » 111 meV and the other at « 120 meV. It is 

known that in LPE HgCdTe there sometimes exists a graded energy gap near 

the CdZnTe substrate interface. Thus the resonances which yield the higher gap 

presumably come from OPMA in the region near the interface, whereas the 

lower energy gap resonances are representative of the bulk of the remaining 

sample region. 

Fig. 5.17 shows spectra from an x « 0.24 LPE sample which was not 

doped with indium. Note that the resonances resemble that of the Rll spectra; 

i.e. the resonances positions do not shift with laser wavelength. The results of 

an Rll analysis on these peaks yields a trap level of approximately 58 meV for 

this sample (the energy gap for this sample Eg = 126 meV at 5K). Indium 

incorporation in LPE HgCdTe is known1211 to improve device or detector 

properties; therefore the above experimental results provide evidence for the 

reduction of the trap levels via incorporation of indium in the melt. 

5.4 Conclusions and Final Remarks 

Rll spectroscopy has been used to investigate impurity and defect (trap) 

levels that presumably are caused by Hg interstitials in both bulk and LPE 
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crystals of Hg^CdJe. Hg interstitials were deliberately introduced into bulk 

samples with x « 0.22 and x « 0.24. Rll spectroscopy provide direct evidence 

for the formation of trap levels near 45 and 60 meV above the valence band 

edge for the x « 0.22 sample, and near 60 meV for the x » 0.24 sample. The 

60 meV level in the x « 0.24 (Eg = 121 meV at 5K) sample is seen to enhance 

the transition strength of resonant TPMA observed at high fields by acting as a 

near-resonant intermediate state for the two-photon transition process. In 

addition, the weak resonance peaks in most of the spectra for x « 0.22 bulk 

samples were identified as due to the effect of excitons are bound to ionized 

donors. 

For the LPE samples that have Hg interstitials introduced during the post-

anneal in Hg-rich atmosphere, their Rll spectra show that there are three deep 

levels: 40 meV, 45 meV and 59 meV. Baking the LPE sample with a oxide layer 

introduces more Hg into the samples and produces stronger Rll resonances. On 

the other hand, baking the sample that does not have a oxide layer, causing the 

Hg interstitials to either fill some vacancies or be drive out of the sample, make 

the Rll structures disappeared. All these results consistently show that Hg 

interstitials in both bulk and LPE Hg^CdJe create deep trap levels in these 

materials. Thus, Rll spectroscopy is a very sensitive technique to investigate 

deep energy levels caused by Hg interstitials in Hg^Cd^e. This technique is 

generally applicable to the investigation of other defects and impurities in 

HgCdTe as long as the trap levels created are accessible via the Rll 

mechanism. 
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Bexpt(T) 

(±0.02T) 
Btheory(T) Transitions AEM(meV) 

1.26 1.20 7 -> 2 43.4 

1.39 1.36 8 -» 3 ; 5 -* 1 43.5 

1.52 
O

 t CO 43.5 

1.65 1.62 9 4 ; 6 2 43.5 

1.93 1.94 7 -> 3 ; 4 - 1 43.6 

2.30 2.25 8 ^ 4 ; 2 ^ 0 43.7 

2.47 5 -> 2 43.8 

2.84 2.89 6 -*• 2 ; 4 -»> 1 58.0 

3.02 

CO t CD 44.0 

3.57 3.47 3 -> 1 44.2 

3.59 

o t CM 58.2 

4.73 4.76 4 -> 2 44.6 

5.83 5.73 3 -> 1 58.9 

8.20 8.37 

o f CM t 59.8 

Table 5.1 Comparison of experimental Bexptand theoretical Btheory magnetic field 

positions for the x « 0.22 bulk sample, along with the transitions and the impact-

ionization energies AEM. 
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B e x p t ( T ) Btheory(T) Transitions AE„(meV) 

(±0.02) 

0.49 0.52 
O

 t C
O

 16.7 

0.78 0.80 
o t CM

 16.8 

1.36 1.44 9 — 2 61.5 

Control 1.69 1.70 

CM
 

t 00 

o t 17.1 ; 61.5 

Sample 1.90 1.91 6 - * 1 61.6 

2.11 2.02 4 — 0 ; 9 — 3 61.7 

2.34 2.26 

CM
 

t h- 61.8 

2.75 2.74 3 - 0 61.9 

1.42 1.44 9 - 2 61.5 

1.50 1.55 5 - 0 ; 7 - 1 61.5 

1.66 1.69 8 - 2 61.5 

1.83 1.91 6 - 1 61.6 

2.01 2.02 4 - 0 ; 9 - 3 61.7 
Doped 

2.30 

61.7 
Doped 

2.30 2.26 7 - 2 61.8 
Sample 

2.63 

61.8 
Sample 

2.63 2.57 5 - 1 ; 8 - 3 61.9 

2.78 2.74 3 - 0 61.9 

3.13 3.12 6 - 2 ; 9 - 4 62.0 

3.60 3.72 4 - 1 ; 7 - 3 62.2 

Table 5.2 Comparison of experimental Bexpt and theoretical Btheory magnetic field 

positions for the x « 0.22 bulk control and "doped" sample, along with the 

transitions and the impact-ionization energies AE„. 
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gexpt g theory Trnasitions AEM(meV) 

2.53 2.54 1 0 - 6 40.0 

3.08 3.07 3 - 1 ; 7 - 4 40.0 

5.50 5.50 5 - 3 40.0 

8.31 8.30 7 — 5 40.0 

2.53 2.53 2 - 0 45.0 

3.08 3.08 1 0 - 6 45.0 

3.98 3.98 7 - 4 45.0 

5.50 5.51 

C
D

 

t O
) 45.0 

3.08 3.07 1 0 - 5 58.0 

3.98 3.99 8 - 4 58.0 

5.50 5.51 6 — 3; 10 — 6 59.0 

8.31 8.30 8 - 5 59.0 

Table 5.3 Comparison of experimental Bexpt and theoretical Btheory magnetic field 

positions for the x » 0.22 LPE sample, along with the transitions and the impact-

ionization energies AE„. 
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Figure 5.1 Wavelength dependence of both OPMA and Rll spectra obtained 

from an x « 0.24 sample at 5.0K. The Rll resonances are those between 

1.5T and 3.0T, and do not shift with laser wavelength. The two peaks 

that appear at higher magnetic fields are due to OPMA and impurity-to-

band magneto-optical transitions and are seen to shift with laser 

wavelength. 
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Figure 5.2 Schematic diagram of the electronic transitions that lead to the 

observed resonances. AELL is the energy difference between the initial and 

final conduction-band Landau levels, and AE,, is the difference between the 

energy of the trap level and the highest-lying valence-band Landau level. Rll 

resonances occur when AE a = AE,,. 
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Figure 5.3 Photoconductive response versus magnetic field of the spectra 

obtained at 5.OK from control (A) and interstitially "doped" (B) samples with x 

« 0.22. Note that only OPMA is seen in the control sample, and only Rll is 

seen in the "doped" sample. 
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Figure 5.4 Wavelength dependence of the OPMA photoconductive response 

of the x « 0.22 control sample. The broad peaks in the higher field region for 

all the spectra are due to the bound excitons. 
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Figure 5.5 Fan chart of transition energies for the x « 0.22 control bulk 

sample. The solid dots represent the magnetic-field positions of OPMA, and 

the solid lines the calculated OPMA transition energies. The open squares 

represent the observed bound-exciton transition energies. 
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Figure 5.6 Comparison of Rll spectra of control (A) sample and "doped" (B) 

sample with x value around 0.24. The control sample is a bulk sample which 

contains a residual concentration of Hg interstitials; the doped sample which 

was obtained by introducing more Hg interstitials into a piece of the control 

sample via an oxide bake. 
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Figure 5.7 The same comparison of control (A) and "doped" (B) Rll spectra 

as that of Figure 5.6, but the monotonic background of each spectrum has 

been removed for better comparison of the transition amplitudes. Clearly the 

transition amplitudes of the Rll resonances from the "doped" sample are two 

to three times larger than those from the control sample. 
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Figure 5.8 Comparison of TPMA resonances a\A = 10.32//m and 5.OK from 

the control (A) and "doped" (B) samples, which are the same samples as 

discussed in Fig. 5.6 and Fig. 5.7. The TPMA transition corresponding to the 

observed resonance is b+(-1) -* bc(1). The TPMA transition amplitudes from 

the "doped" samples are seen to be two to three times larger than those from 

the control sample. 
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Figure 5.9 Wavelength dependence of Rll spectra for a x « 0.22 LPE sample. 

The wavelength is from 9.64//m to 10.81//m. 
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Figure 5.10 Wavelength dependence of Rll spectra for a x « 0.22 LPE sample. 

The wavelength is from 9.27A/m to 9.55//m. 
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Figure 5.11 Fan chart of transition energies of OPMA for the x « 0.22 of Hg^ 

xCdxTe (lines) and magnetic field positions of resonance peaks from the 

magneto-optical spectra (solid dots). 
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Figure 5.12 Comparison of Rll spectra before and after the 140 °C bake for the 

x « 0.22 LPE sample passivated with an oxide layer. 
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Figure 5.13 Transition energies of OPMA for the x « 0.22 of Hg^Cc^Te (lines) 

and magnetic field positions of resonance peaks from the magneto-optical 

spectra (solid dots) for the unbaked x «0.22 LPE sample passivated with ZnS. 
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Figure 5.14 Transition energies of OPMA for the x « 0.22 of Hg^CdJe (lines) 

and magnetic field positions of resonance peaks from the magneto-optical 

spectra (solid dots) for the x «0.22 LPE sample passivated with ZnS after 

220°C bake. 
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Figure 5.15 Wavelength dependence of the OPMA photoconductive response 

of the LPE x « 0.23 sample. The two peaks seen corresponding to the OPMA 

transitions K.,(a+(-1) a°(1)) and K2(b
+(-1) bc(1)). The energy gap is around 

111 meV. 
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Figure 5.16 Fan chart of transition energies from the OPMA fit with the 

resonance peak positions for a x « 0.23 LPE sample. Two distinct energy gaps 

are determined from this fit of theory (lines) to experimental data (solid dots): Eg 

« 111meV and Eg « 120meV. The spectra are shown in Fig. 5.15. 
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Figure 5.17 Wavelength dependence of Rll spectra obtained from an x « 0.24 

LPE sample. 
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CHAPTER 6 

CONCLUSIONS 

The nonlinear dynamics of driven diode resonator systems has been 

investigated. A varieties of interesting features have been observed: period 

doubling route to chaos, band merging, windows of period 3 and period 5, 

hysteresis, quasiperiodic states, periodic locking states, and Hopf bifurcation to 

chaos. The last three features are found only in line-coupled diode resonator 

systems. 

The model for the single diode resonator system derived from SPICE 

program can simulate the dynamics very well, as illustrated by good agreement 

for the experimental observables: wave form, phase portrait, power spectra, 

bifurcation diagram. In addition, the Lyapunov exponents calculated form the 

experimental time series agrees very well with that obtained from the SPICE 

model. 

For the line-coupled diode resonator system, experiments show that it can 

follow a quasiperiodic route to chaos. More specifically, the transitions to chaos 

for these systems agree with Curry-Yorke model very well, that is: periodic states 

P quasiperiodic states with two frequencies T2 -» periodic locking states 

L -* chaos. The simulation model for line-coupled system derived from SPICE 

gives consistent results. In addition, Lyapunov exponents calculated from both 

experimental time series and the simulated system are in good agreement for 

both quasiperiodic regimes and chaotic regimes. 
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OGY's stabilization technique is employed to control the chaos in both 

single and line-coupled diode resonator systems. For the single diode system, 

periodic orbits up to period 17 can be obtained from a typical chaotic attractor. 

As for line-coupled diode resonator systems, the stabilization can not only yields 

high periodic orbits very easily, but also produce quasiperiodic orbits. This is the 

first time that quasiperiodic states have been stabilized. This phenomenon has 

raised a serious question: Does there exist any unstable quasiperiodic orbits in 

addition to the well-known unstable periodic orbits in a chaotic attractor? On the 

other hand, the experimental techniques and results obtained have directly 

assisted the investigation of the stabilization of laser systems, which will certainly 

have practical applications. 

The synchronization of chaos is obtained by weakly coupling two coupled 

tunnel diode relaxation oscillators. In addition, the frequency-locked entrainment 

states of two chaotic attractor are found by appropriate couplings. This clearly 

is a interesting phenomenon falling in between synchronization with strong 

coupling and nonsynchronization with weak coupling. As pointed by Ditto and 

Pecora (1993), the synchronization of chaos may well be applied for the 

construction of secure private communication systems. The further investigation 

on the synchronization of chaos in the coupled tunnel diode relaxation oscillators 

clearly will help to explore this possibility. 

The electrical oscillations in n-lnSb under transverse magnetic field at low 

temperature are further investigated. The experimental results are consistent with 

Hupper and Scholl's theory in that there exists a boundary in the two parameter 

(Magnetic field B versus Current density j) phase space. This boundary 

separates oscillatory instability region from static region. By changing magnetic 
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field B at a fixed current density j, the system will yield a period doubling 

cascade to chaos. Lyapunov exponents were calculated and found to be 

consistent with the observed phenomena. The stability of chaotic attractor in this 

system was studied against AC-driven source, and the result show that this 

stability is similar to that in a simple driven oscillator. In addition, the induced 

transitions from chaos to periodicity by AC-driving source agrees well with the 

conjectured scaling law for chaotic systems. 

Finally, Rll spectroscopy has been used to investigate impurity and defect 

(trap) levels that presumably are caused by Hg interstitials in both bulk and LPE 

crystals of Hg^CdJe with x values of «0.22 to «0.24. For the bulk samples, 

deliberately introductions of Hg interstitials have provide direct evidence for the 

formation of trap levels near 45 and 60meV above the valence band edge. The 

60meV level in the x « 0.24 (Eg = 121meV at 5K) sample is seen to enhance 

the transition strength of resonant TPMA observed at high fields by acting as a 

near-resonant intermediate state for the two-photon transition process, which 

further supports the formation of deep trap levels by Hg interstitials. LPE 

samples with different processing conditions have been investigated by Rll 

spectroscopy. Like the bulk samples, the Hg interstitials are found to form trap 

levels near 40meV, 45meV, and 59meV. The Rll spectroscopy clearly is a very 

sensitive technique to investigate deep energy levels caused by Hg interstitials 

in Hg^CdxTe. This technique is generally applicable to the investigation of other 

defects and impurities in HgCdTe as long as the trap levels created are 

accessible via Rll mechanism. 
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