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The nonlinear dynamics of three physical systems has been investigated.
Diode resonator systems are experimentaily shown to display a period doubling
route to chaos, quasiperiodic states, periodic locking states, and Hopf bifurcation
to chaos. Particularly, the transition from quasiperiodic states to chaos in line-
coupled systems agrees well with the Curry-Yorke model. The SPICE program has
been modified to give realistic models for the diode resonator systems.

A proportional feedback technique is applied to both single and line-coupled
diode resonator systems. For single diode system, periodic orbits up to period 17
from a typical chaotic attractor are successfully stabilized. More interestingly, for
the line-coupled diode systems not only are high periodic oscillations obtained
easily, but for the first time quasiperiodic orbits are also stabilized.

Synchronization of chaos to a common orbit has been observed by weakly
coupling two tunnel diode relaxation oscillators. In addition, the "frequency-locked
entrainment" states of two chaotic attractors have also been observed when
appropriate coupling is applied.

The dynamical Hall effect in n-InSb at liquid helium temperatures has been
investigated. The experimental results are consistent with the theoretical
predictions of Happer and Schéll. The stability of chaos in this system against an
external AC-driven source has been investigated and compared to that for a simple

driven oscillator. The induced transitions from chaos to periodicity by an AC-driven



source have been found in good agreement with a conjectured scaling law.
Resonant Impact lonization (RIl) Spectroscopy, a new technique for
studying low concentrations of trap levels in narrow-gap semiconductors, has been
employed to investigate Hg interstitials in both bulk and LPE samples of Hg,.
.Cd,Te with x value from 0.22 to 0.24. The RII spectroscopy of these samples,
which are processed under different conditions to control the concentration of Hg
interstitials, provide direct evidence that these Hg interstitials are responsible for

the formation of trap levels near midgap.



TABLE OF CONTENTS

Page
LIST OF TABLES .. ... . v
LIST OF ILLUSTRATIONS .. .. . .. . .. . e, vi
CHAPTERS
1. INTRODUCTION .. . . e 1
1.1 Nonlinear Dynamics of Electronic Circuits and
Semiconductor n-inSb
1.2 Characterization of Deep Energy Levels in HgCdTe by
Magneto-Optical Spectroscopy
2. EXPERIMENTAL AND NUMERICAL METHODS ............ 14
21 Experimental Setup for Oscillatory Instability Studies
of n-InSb in Low Temperature and High Magnetic Field
2.2 Experimental Setup for Nonlinear Dynamical Study
of Diode Resonator Systems
2.3 Method to Stabilize Chaos in the Diode Resonator
Systems.
2.4 Magneto-Optical measurement technigues
2.5 Numerical Integration Methods
3. NONLINEAR DYNAMICS OF DRIVEN DIODE RESONATOR
SYSTEMS AND SYNCHRONIZATION OF CHAOS IN COUPLED
TUNNEL DIODE OSCILLATOR SYSTEMS 32



TABLE OF CONTENTS--Continued
34 Time Series Analysis Methods
3.2 Simulation and Characterization of Nonlinear Dynamics
in Driven Diode Resonator Systems
3.3 Stabilization of Periodic and Quasiperiodic Oscillations
in Diode Resonator Systems
3.4 Synchronization of Chaos in Coupled Tunnel Diode
Relaxation Oscillators
AUTONOMOUS AND EXTERNALLY DRIVEN PERIODIC
AND CHAOTIC OSCILLATIONS INn-InSb . ........ ... ... . 123
41 Introduction
4.2 Hipper and Schéll Model
4.3 Experimental Results and Discussion
44 Conclusions
CHARACTERIZATION OF DEEP LEVELS IN HgCdTe
BY RESONANT IMPACT-IONIZATION SPECTROSCOPY ...... 145
51 Introduction
5.2 Resonant Impact lonization Mechanism
5.3 Experimental Results and Discussion
5.4 Conclusions and Final Remarks

CONCLUSIONS . ., 190

BIBLIOGRAPHY . . . 193



Table
2.1
3.1
3.2

3.3
34

3.5

5.1

5.2

5.3

LIST OF TABLES

Page
Electrical Properties of Bulk HgCdTe Samples .. .. ... ... .. 19
Parameters for a Single Diode Resonator System  .... ... ... 47
Lyapunov Exponents for a Single Diode Resonator System from
Both Experimental Time Series and a Theoretical Simulated
System . .. 49
Parameters for a Line-Coupled Diode Resonator System |
Lyapunov Exponents for a Line-Coupled Diode Resonator System
from Both Experimental Time Series and a Theoretical Simulated
System ... e 55
Parameter Values of a Coupled Tunne! Diode Oscillator System . 64
Comparison of Experimental and Theoretical Magnetic Field
Positions of RIl Resonances for a x =~ 0.22 Bulk Sample ... .. 158
Comparison of Experimental and Theoretical Magnetic Field
Positions of RlI Resonances for an x =~ 0.22 Bulk Control and
"Doped" Sample . ... .. 159
Comparison of Experimental and Theoretical Magnetic Field
Positions of RIl Resonances for an x~0.22 LPE Sample ....., 160



Figure

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

3.4

3.5

3.6

3.7

LIST OF ILLUSTRATIONS

Sample Configuration for the Autooscillatory Dynamic Study of
n-InSb L
Experimental Setup for the Autooscillatory Dynamic Study of
n-InSb .
Experimental Setup for the Diode Resonator Systems
Experiments . ... .. .. ...
Logic Diagram of the Stabilizer Circuit ... .. ..... .. ... ..
Experimental Setup for the Magneto-Optical Study of HgCdTe
Schematic Diagram of a Diode Model In SPICE ... ... ... ..
Circuit of a Single Diode Resonator System ... .. ... ... ...
Wave Form of Period-8 Oscillations in a Single Diode Resonator
System .
Wave Form of Chaotic Oscillations in a Single Diode Resonator
System ..
Wave Form of Period-8 Oscillations for the Simulated Single
Diode Resonator System . .. .. .. .. ... ... ... ...
Wave Form of Chaotic Oscillations for the Simulated Single Diode
Resonator System . . . ... ... ...
Phase Portrait of Period-8 Oscillations in a Single Diode

Resonator ... .. . ...,

Vi

Page

74

75

76

77



Figure

3.8
3.9

3.10

3.11

3.12
3.13

3.14
3.15

3.16

3.17

3.18
3.19

3.20

LIST OF ILLUSTRATIONS--Continued

Phase Portrait of Chaotic Oscillations in a Single Diode Resonator
Phase Plot of Period-8 Oscillations for the Simulated Single Diode
Resonator System ... ... ... .. ... ... ... ...
Phase Plot of Chaos for the Simulated Single Diode Resonator
System L e
Power Spectrum of Period-8 Oscillation for the Single Diode
Resonator System . ... ... . ... ...
Power Spectrum of Chaos for the Single Diode Resonator System
Power Spectra of Period-8 Oscillations And Chaos for the
Simulated Single Diode Resonator System .. ...........
Bifurcation Diagram for the Single Diode Resonator System
Bifurcation Diagram for the Simulated Single Diode Resonator
System e
Enlarged Bifurcation Diagram for the Simulated Single Diode
Resonator System . . ... ... .. ...
Enlarged Bifurcation Diagram for the Simulated Singie Diode
Resonator System .. ... ...
Circuit of the Line-Coupled Diode Resonator System ... ...
Phase Plots for Period-1 And Quasiperiodic Oscillations for the
Line-Coupled Diode Resonator System .. ... ... .. .......
Sequence of Phase Plots from the Periodic State to the

Quasiperiodic State, to Chaos . .. ... ... ... . ... .. .. ....

Vil

Page

79

80

81

82
83

84
85

86

88

20
92

93



Figure

3.21
3.22
3.23
3.24

3.25

3.26

3.27
3.28
3.29
3.30
3.31
3.32

3.33

3.34

3.39
3.36

LIST OF ILLUSTRATIONS--Continued

Page
Power Spectrum of the Quasiperiodic State .. ............ 95
Power Spectrum of Frequency Locked State ... ... ... ... ... 96
Power Spectrum of the Chaotic State e 97
Bifurcation Diagram for the Simulated Line-Coupled Diode
Resonator System (part 1) .. ........ ... .. ... . ... ... 98
Bifurcation Diagram for the Simulated Line-Coupled Diode
Resonator System {(part2) .. ... ... ... . ... .. ... ... 100
Poincaré Section of a Chaotic Attractor for a Simulated Four-Line-
Coupled Diode Resonator System .. ............ ... ... 102
System and Control Signals Before and after Stabilization ... 103
Phase Plots of the Stabilization of a Chaotic Attractor ... ... 104
Power Spectrum for a Chaotic Attractor .. ... ... .. ... .. 105
Power Spectrum for a Stabilized Quasiperiodic Oscillation .. 106
Power Spectrum for a Stabilized Periodic Locked State oL 107
Poincare Sections of a Four-Line-Coupled Diode Resonator
System Before and after Stabilizaton .. ......... ... ... .. 108
Power Spectra Before and after Stabilization for a Four-Line-
Coupled System . . ... ... .. 110
Tunnel Diode Relaxation Oscillator Unit .. ........ ... ... 112
Two Coupled Relaxation Oscillators .. ... ... ... ... .. .... 113
Synchronized Chaotic Voltages and Corresponding Power
Spectra . ... 114

viil



LIST OF ILLUSTRATIONS--Continued
Figure
3.37 Chaotic Voltages Before and After Coupling . .............
3.38 Power Spectrum for the Synchronized Voltages . ..........
3.39 Synchronized Chaotic Voltages and Corresponding Power
Spectrum . ... e
3.40 Digitized Voltages for Synchronized Chaos . ............ ...
3.41 Chaotic Voltages Entrained At2/3 . ... ... .. ... ......
3.42 Variation of the Principal Lyapunov Exponent with respect to
Replacement Time ... .. ... ... . ... . . . . .
4.1 Parameter Phase Plot Showing Autooscillatory Instability and
Static Regions . ... ... ... ... ... ... e
42 Comparison of Actual and Filtered Signals . ... ............
4.3 Hall and Longitudinal Voltages for Period-1, Period-2, Period-4
and Chaotic Motions ... ....... ... .. ... ... . . .. ...
4.4 Power Spectra for Period-1, Period-2, Period-4 and Chaotic
Motions . ... .. .. . .
45 Autocorrelation Functions for Period-1, Period-2, Period-4 and
Chaotic Motions . . . ... .. ... .. ... ..

4.6 Phase Portraits for Period-1, Period-2, Period-4 and Chaotic

47 Plot of Driving Amplitude versus Driving Frequency for Simple

Driven Oscillator . . . .. . .. .



Figure

4.8

49

5.1

5.2

5.3

5.4

55

5.6
57

5.8

5.9

5.10

LIST OF ILLUSTRATIONS--Continued

Page
Plot of Critical Amplitude versus Driving Frequency . ......... 143
Plot of Critical Amplitude versus Largest Lyapunov Exponent . 144
Wavelength Dependence of OPMA and RIl Spectra for an x =
0.24 Bulk Sample ... .. ... 163
Schematic Diagram of Electronic Transitions Showing Resonance
Condition for RIl ... ............... e 165
Photoconductive Response versus Magnetic Field for Control and
"Doped" Bulk Sample . ... ... .. ... ... .. L 166
Wavelength Dependence of OPMA Photoconductive Response
for an x = 0.22 Control Bulk Sample .. ...... ... ... ... ... 168
Fan Chart of Transition Energies for an x = 0.22 Control Bulk
Sample ... 170

Comparison of Rit Spectra for Control and "Doped” Bulk Sample 172
The Same Spectra As Fig. 5.6 with Background Removed for

Better Comparison . ... ... ... 174
Comparison of TPMA Resonances for Control and "Doped”

Samples ... ... ... ... . e 176
Wavelength Dependence of RIl Spectra for an x = 0.22 LPE

Sample L e 178
Wavelength Dependence of RIl Spectra for the x =~ 0.22 LPE

Sample . e 179



Figure

5.11

5.12

5.13

5.14

5.15

5.16

5.17

LIST OF ILLUSTRATIONS--Continued

Fan Chart of OPMA and RIl Resonance Positions for the x =~

022 LPE Sample . ..... ... .. . . ... 180
Comparison of RIl Spectra Before and After 140 °C Bake for the x

~ (.22 LPE Sample Passivated with an Oxide Layer ........ 181
Transition Energies of OPMA and RIl Resonance Positions for x

=~ an 0.22 LPE Unbaked Samples Passivated With ZnS . ... .. 182
Transition Energies of OPMA and Resonance Peaks for an x =

0.22 LPE Sample Passivated With ZnS After 220°C Bake ... 183
Wavelength Dependence of OPMA Photoconductive Response for
anx = 023 LPE Sample . ...... . ... .. ... .. 184
Fan Chart of Transition Energies for OPMA fit with Resonance

Peak Positions for the x ~ 0.23 LPE Sample . .. ..... ... .. 186
Wavelength Dependence of RIl Spectra foran x = 0.24 LPE

Sample ... 188

Xi



CHAPTER 1
INTRODUCTION

This dissertation encompasses investigations in two disciplines: nonlinear
dynamics of semiconductor device circuits, and characterization of deep energy
levels in Hg, Cd, Te by using Magneto-Optical Spectroscopy. The experimental
systems for the nonlinear dynamics studies included driven diode resonator
systems, coupled tunnel diode relaxation oscillators, and the dynamical Hall
effect in n-InSb. For the deep energy level studies of Hg,,Cd Te, a new
technique called Resonant Impact lonization (RIl) spectroscopy was extensively
used to investigate deep trap levels in both bulk and LPE Hg, Cd Te samples
with x value from 0.22 to 0.24. The backgrounds on these two fields are

presented in Sec. 1.1 and Sec. 1.2 respectively.

1.1 Nonlinear dynamics of electronic circuits and semiconductor n-inSbh

A variety of oscillatory instabilities in a wide range of physical systems due
to nonlinear effects have been observed and investigated for the past two
decades. These systems include electronic circuits!"™, semiconductors®'",
chemical reactions!®**’! optical systems” ! and continuum hydrodynamics
systems®*%). Particularly in the last several years, hany new results have been
found in experimental chaos®". Many esoteric theoretical predictions from chaos
theory and concepts have been explored®", e.g., mode locking, tori, Curry-Yorke
scenario to chaos, golden means, fractals, strange attractors, stability of chaotic

attractor, scaling laws, efc. The studies of these experimental dynamical systems

1
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not only confirm many theoretical predictions, but also facilitate the dramatic shift
of emphasis toward applications of chaos®'l. Two most notable examples are the
synchronization of chaos and the stabilization of chaotic attractors.

In ali of the chaos experiments an enormous challenge is that of data
analysis. For example, many concepts in nonlinear dynamics are complex and
abstract. These include concepts such as: fractal dimension, phase space,
phase portrait, Poincare section, autocorrelation function, and bifurcations. Thus,
they are very difficult to observe directly from the experiments. In addition, partly
because nonlinear dynamics is still a young discipline and partly because of the
nature of nonlinear dynamics itself, there are very limited gquantities which can
quantitatively characterize a chaotic attractor. Quite often these quantities require
high quality data in large amounts. One such quantity commonly used is the
Lyapunov exponent.

Taken’s theorem® allows one to extract most of the important concepts
from a single system observable. In other words, if a time series for one system
observable from the experiment is obtained, then one can reconstruct the phase
portrait, and this phase portrait is diffeomorphic to.the original dynamics of the
system. This means that one can obtain estimates of quantities such as phase
portrait, Poincaré maps, autocorrelation functions, and most importantly
Lyapunov exponents directly from a single time series.

Several experimental techniques are employed to obtain the singie time
series, its power spectrum, and autocorrelation function. Then these quantities
are used to reconstruct the phase portrait and Poincaré sections (Sec. 2.1, 2.2).
Practically, the calculation of Lyapunov exponents from a time series is

complicated, and different approaches have to be taken for different dynamical
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systems and circumstances. Three algorithms (Sec. 3.1) developed recently are
employed in this dissertation, and Lyapunov exponents for all of the experiments
reported here are successfully evaluated.

A driven diode resonator system is a simple electronic circuit that consists
of pn-diodes, inductors, and resistors. Early work®* has shown that (1) a
single diode resonator system exhibits a period doubling cascade, hysteresis,
efc. and (2) a coupled system exhibits quasiperiodicity, Hopf bifurcation and
periodic locking. However, there still remains controversy on the proper
approaches for modeling of the systems. Testa, Perez, and Jefferies®** insisted
that the observed period doubling and chaotic behavior were due fo the
nonlinearity of the effective capacitance on the diode pn-junctions. On the other
hand, Hunt, Rollins and Su™ argued that the nonlinear reverse bias capacitance
of the pn-junction is not responsible for the behavior observed. Instead, the
rather large reverse recovery time of such diodes was essential. Recently Yu ef
al®™ gave a third approach, which is to employ the well-known SPICE
program® to achieve a realistic modeling of the diode. This model, which is
detailed in this dissertation, gives more detailed expressions and realistic
parameters corresponding to the particular type of diode. Although it does not
resolve the controversy surrounding the modeling, this model is shown to
achieve excellent agreement with experiment for both the single and coupled
diode resonator systems. More importantly, this model becomes more useful for
complex coupling diode resonator systems that represent higher dimensional
dynamical systems.

The importance to carefully study diode resonator systems can be seen

if one realizes that much more complex dynamical systems can be built out of
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this simple building block (single diode resonator). In addition one can
experiment and explore many different ideas to study the contro! of chaos and
the synchronization of chaos. Doing the experiments on such systems is also
superior over computer simulation because it is cheaper, easier to implement,
and much faster.

One typical example to extend the diode resonator experiments is to study
the stabilization of chaos. The idea that one can stabilize periodic orbits in a
chaotic system was coined by Ott, Grebogi and Yorke (OGY)P'L It is well
known®™® that a typical chaotic attractor contains infinitely many unstable periodic
orbits of all periods. By choosing small time dependent perturbations in an
accessible system parameter, one can stabilize the system to an existing
periodic orbit embedded in the original chaotic attractor. The stabilization of
chaos not only has theoretical interests, but also potential applications. One
possible application is to apply this technique to a laser system to achieve stable
and high power output®™. These stabilization schemes have been realized
experimentally in several different dynamical systems, including electronic
circuits™®, laser systems® 'l However, most of the experiments were done
on the most simple chaotic attractor, namely, a three-dimensional dynamical
system, and researchers were only considering controlling a chaotic attractor to
a periodic state.

In the investigation of chaos stabilization reported in this dissertation, the
proportional feedback technique has been applied to the single and line-coupled
diode resonator systems. As a result, both high period periodic states and
quasiperiodic states have been stabilized. These stabilized quasiperiodic states

have important implications for further investigation, which is whether there exist
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any quasiperiodic orbits embedded in chaotic attractor. The fact that the
quasiperiodic orbits can only be stabilized in coupled-diode resonator systems
indicates that this is associated with higher dynamical systems. Therefore,
quasiperiodic oscillations can possibly be used to characterize chaotic aitractors
of high dimensional systems. | _

Another interesting idea to exploit chaos is to investigate the possible
synchronization of chaos“**". The study of this synchronization scheme not only
can be provided as a model for nonlinear systems with many degrees of
freedom, but also can help to explore biological information processing and even
engineering applications. in this dissertation, experimental observations have
shown that by weakly coupling the two tunnel diode oscillators while both are in
chaotic regimes, a synchronization to a common chaotic orbit can be obtained.

Spontaneous or periodic externally driven oscillations and chaotic behavior
related to impact ionization have been studied experimentally in a number of
semiconductors: n-GaAs™* ™", p-Gel#*, n-InSb* ¥ 1" and n-Si®. Various types
of periodic oscillations and chaotic behaviors were observed in these
experiments, including period doubling bifurcation to chaos (Feigenbaum
scenario), quasiperiodic oscillations, intermittency, and the Ruelle-Takens-
Newhouse scenarioc. Semiconductors, with generation-recombination kinetics and
easily tunable parameters, provide an ideal testing ground for low dimensional
models of dynamical systems with chaotic states.

In this dissertation, further investigations on both the self-generated and
driven oscillations in InSb in the presence of a transverse magnetic field at liquid
helium temperatures are presented. The experiments have shown that the

system can have a period doubling route to chaos. More importantly, there is a



6
good agreement on the magnetic field versus cufrent density phase diagram
between the experiment and theory that was proposed by Hipper and Schéll.
Lyapunov exponents were also obtained to confirm the existence of chaos. For
the AC-driven system, the stability of a chaotic attractor against an external AC-
driven source was investigated and the results were compared to that of a
simple driven oscillator. The induced transitions from chaos to periodicity by the
AC-driving source are also studied. The experimental result agrees well with a

conjectured scaling law.

1.2 Characterization of deep energy levels in Hg, Cd,Te

Impurities and defects in semiconductor Hg,,Cd,Te have long been
considered as an important factor®®*2 which limits the performance and yield of
infrared detector systems made from this material. Particularly, those energy
levels which lie deep in the forbidden gap region and have large capture cross-
sections can make an enormous impact on the detector performance. Even
though considerable effort has been made in characterizing these impurities and
defects, many of these defects are still remain poorly understood because of the
lack of sensitive techniques to detect and measure these trap levels. Deep Level
Transient Spectroscopy (DLTSY**® which is usually used to study deep levels
in silicon and III-V semiconductors, is not appropriate for narrow gap
semiconductor like HgCdTe since it does not provide larger enough temperature
range for DLTS measurement as the wide gap semiconductor does. Other
techniques, such as thermally stimulated capacitance (TSCY*® is limited by the
background drift due to leakage currents, and the admittance spectroscopy

(AS)®"! is appropriate only for majority carrier traps. Other reasons for the
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difficulty to detect deep trap levels are that deep trap states usually have very
small absorption cross-sections and are of low density. Very recently, a new
technique, which involves the resonant impact ionization (Ril)*®*7" of a valence
electron by a conduction band electron, has been developed to sensitively and
accurately detect the deep trap levels.

The mercury (Hg) vacancy is a natural defect in HgCdTe due to the rather
weakly bound nature of the Hg lattice and is commonly believed to act as an
acceptor™. During the manufacturing process, the Hg vacancy concentration in
HgCdTe is generally reduced from a large as-grown concentration by a post-
anneal in a Hg-rich atmosphere. During this anneal, Hg atoms enter the lattice
as interstitials and move through the crystal until they encounter and fill vacancy
sites. Other methods!"™" such as ion-beam milling and the baking of an anodic
oxide at the surface exist to introduce Hg atoms, as interstitials, into the HgCdTe
lattice and can be used to convert vacancy-doped p-HgCdTe to n-HgCdTe. Until
now, a very limited amount of work has been done to study the electrical
properties of Hg Interstitials in HgCdTe. Recently, two separate
experiments™™! on bulk HgCdTe samples have provide evidence that Hg
interstitials appears to form deep trap levels. The Hg interstitials in these
experiments are introduced to the sample by either ion-beam milling or oxide
baking.

In this dissertation, the investigation of Hg interstitials in both bulk and
LPE HgCdTe samples by using the RIl technique is presented and described.
The samples are grown and/or processed under different conditions to control
the concentration of Hg interstitials. The effect of deep trap levels on the Two

Photon Magneto-Absorption (TPMA) process is also studied and the result is



compared with theory.

This dissertation consists of six chapters. Chapter 2 describes the
experimental apparatus, techniques and numerical methods used in this
dissertation. Chapter 3 presents the time series ahalysis methods used for the
data analysis of nonlinear dynamical experiments. Chapter 3 also include the
investigation results on the nonlinear dynamics of driven diode resonator system,
the stabilization of chaos in driven diode system, and synchronization of chaos
in coupled tunnel diode oscillator system. Chapter 4 shows the experimental
resuits on the autonomous and externally driven periodic and chaotic oscillations
in n-InSb under transverse magnetic field. Chapter 5 reports the investigations
of Hg interstitials in both bulk and LPE samples by using RIl spectroscopy.
Chapter 6 is the conclusion of this thesis. Suggestions for the future work are

also included in Chapter 6.
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CHAPTER 2
EXPERIMENTAL AND NUMERICAL METHODS

This chapter describes the experimental setup, techniques, and apparatus
for the following experiments: (1) oscillatory instability study of n-InSb in low
temperature and high magnetic field (Chapter 4), (2) nonlinear dynamical study
of diode resonator systems (Chapter 3), (3) control of chaos in the diode
resonator systems (Chapter 3), (4) investigation of the deep energy levels in
HgCdTe by using magneto-optical spectroscopy (Chapter 5). Lastly, the

numerical methods used in this dissertation are presented.

21 Experimental Setup for Oscillatory Instability Studies of n-inSb in

Liguid Helium Temperature and High Magnetic Field.

Fig. 2.1 is a diagram that shows the sample layout for this experiment. In
this sample configuration, the magnetic field B is transverse to the sample
current 1. The InSb samples were obtained from Cominco American Inc., and
they have the following specifications: at 77K extrinsic electron carrier
concentration is 9x10™ /cm®, and electron mobility is 7x10° cm?/(V-sec). By
using a Servomat sparkgap cutting machine, the samples were cut into
rectangular bars, with thickness from 0.1 mm to 0.4 mm, width from 0.6 mm to
0.9 mm, and length from 5 mm to 10 mm. Then sample surfaces were polished
mechanically. Finally the ohmic electric contacts were made to the sample using
pure indium as solder, and 60ym gold wires as electric leads. A constant current

was supplied, and the resulting longitudinal voltage and Hall voltage were
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measured simultaneously.

Fig. 2.2 is a block diagram showing the experimental setup. All outputs
were buffered to eliminate the effects of external influences on the sample itself.
An X-Y recorder was used to record the Hall voltage versus current or
longitudinal voltage versus current characteristics of the samples under different
magnetic field. The phase plots and Poincaré sections were obtained using
oscilloscopes, as detailed in Sec. 2.2. The oscilloscope and spectrum analyzer
were used to monitor the signals and their power spectra, respectively. The
digitizer employed here has two channels with 64 K memory each, 8-bit
precision, and up to 1 MHz digitizing speed. There are tradeoffs between
choosing high precision and high speed for digitizers for the same cost. High
speed was chosen here because the output signals of oscillatory voltages are
not spiky and well behaved; however, the interested frequencies are often as
high as around 50 KHz. A Turbo-c program was written to transfer data from the
digitizer to IBM personal computer for data analysis. The autocorrelation
functions for each time series can be computed and displayed on the IBM/PC

in the real time.

2.2 Experimental Setup for Nonlinear Dynamical Study of Diode

Resonator Systems.

Fig. 2.3 shows a schematic diagram of the experimental apparatus used
for the nonlinear dynamical studies of the diode resonator systems. The diode
circuits are very sensitive to external noise, so buffers were used to measure the
voltages across a resistor or a diode throughout the experiments. The driving

source is a signal generator which can supply a sinusoidal signal with
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frequencies up to 100 KHz and adjustable amplitude. In addition it can also
sweep the amplitude from zero to the maximum voltage with various time
constants. An oscilloscope and an HP 3585A spectrum analyzer were used to
monitor the output signals.

Electronic techniques, first used by Perez et al!, were employed here
to directly observe bifurcation diagrams, Poincaré sections, phase plots, and
return maps on the oscilloscope in real time. The key idea to obtain the
bifurcation diagram is to detect the peak position of the current signals with zero
crossing detectors, and use a pulse generator triggered by the output of a zero
crossing detector to strobe the oscilloscope. With an adjustment of timing delay
one can achieve strobing at each peak of the system signal. By sweeping the
amplitude of the driving voltage and using this as the input for the horizontal
deflection voltage, a diagram of peak values versus driving amplitude is
displayed on the CRT of the oscilloscope. Conceptually, this diagram
corresponds to the Poincaré map on the plane of de¢/dt = 0 and d?g/dt? < 0 in
a {@, de/dt, d°@/dt*} phase space. By changing the control parameter of the
system (driving amplitude in this case), this map will undergo bifurcation between
different changing system states (periodic, chaotic, efc.). All bifurcation diagrams
presented in this dissertation were constructed for this type of Poincare map.

In addition, if one feeds the horizontal deflection with system output signal
and the vertical deflection with a certain timing delayed the same signal, one will
obtain a reconstructed 2-D phase plot for the system on the oscilloscope.
According to Takens®, this reconstruction should faithfully reflect the real phase
plot (See Section 3.2 for details). In the same plot, the strobed trace will be the

Poincaré section. All of the pictures shown on the oscilloscope and on the
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spectrum analyzer were taken by a 35 mm SLR camera.
To obtain the time series of the system signals, an Analog Devices
FAST-16 series digitizer was used. It has 16-bit resolution, 1 MHz speed and 1
Mega-word memory. A Turbo-C program was written to control the digitizer and

transfer the data from digitizer memory to IBM/PC.

2.3 Method to Stabilize Chaos in the Diode Resonator Systems.

(Proportional Feedback Technique)

The implementation of a stabilizer is based on an idea by Ott, Grebogi
and York™ (OGY). It is similar to a method developed by Hunt™, but with some
modifications. Basically, one samples the peak current | of the diode system; for
all peaks within a preselected adjustable window, the difference between the
peak position and the center of the window is then computed. This difference is
amplified with an adjustable gain and used as a control signal by superposition
with the driving sinusoidal signal. The time delay and duration of the control
signals are also adjustable parameters of the control circuit.

Fig. 2.4 is a schematic diagram of the logic and electronic components for
the stabilizer. A signal generator drives the diode resonator system (single diode
resonator or line-coupled diode resonator system). The current through each
system is converted to a voltage by the |/V converter. The dc level of this signal
may be adjusted by the offset. One unique property of the driven diode resonator
system is that a current peak occurs at every driving cycle, therefore one can
detect the peak position and generate a peak reference pulse from the driving
source by the zero crossing. Using this pulse to trigger a Sample/Hold with the

above voltage as input, one can obtain the peak level voltage which reflects the
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peak value of the system current. This peak level can then be fed into a window
comparator and another Sample/Hold. The window’s width and position level can
be adjusted. Thus if the peak level is within the selected window, the difference
is generated. After it goes through an analog switch and an amplifier, the
resultant feedback control signal is generated and fed to the multiplier. This
multiplier modulates the system’s driving signal by the feedback signal. If the

peak leve! falls out of the window, a zero control signal is generated.
2.4 Magneto-Optical Measurement Technique

(1) Sample Preparations

The sample preparation was carried out both at Texas Instruments and
the University of North Texas. The measurements were performed at University
of North Texas. Different kinds of samples used in this investigation are
discussed as follows.

Bulk Samples (x = 0.22 and x_~ 0.24): The bulk samples were rectangular

slabs of dimensions = 8mm x 1mm x 0.2mm, cut from larger rectangular
slices obtained from ingois grown by standard solid state
recrystallization methods and thinned to =0.2mm in such a manner that
the p-type core was no longer present. The thinning of the larger slices was
accomplished by lapping both sides with alumina grit and then chemo-
mechanically polishing with a 2% solution of bromine-methano!. The electrical
properties of the bulk x = 0.22 and x = 0.24 samples at 77K were listed in table
2.1

Before cutting the final slabs to be used as samples, each slice was cut

into two pieces. One piece was anodized in a 0.1M KOH solution (90% ethylene
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glycol and 10% de-ionized water) at a 200mA constant current. The anodization
was terminated after achieving a voltage drop of 15 V, which corresponding to
an oxide thickness of approximately = 600 A. This sample was then baked at
140°C for approximately five hours to partially decompose the oxide and
to introduce Hg interstitials into the materials. The second piece did
not receive the treatment and served as a control. The electrical
contacts were made to the bulk samples by using pure indium. The samples

were free standing, held in place by the current leads and Hall leads.

x values N, - N, (cm™) g (em?V' s
X = 0.22 3.3 x 10™ 1.51 x 10°
X =~ 0.24 2.5 x 10" 1.21 x 10°

Table 2.1 Electrical Properties of the Bulk Hg,,Cd,Te

LPE samples (x = 0.23 and x = 0.24): The LPE samples were grown on

<111B>-oriented CdZnTe substrates using a tellurium-rich solution, where one
of the meits contained indium at a mid-10* em™ concentration as a dopant. Both
the indium-doped and undoped samples were annealed after growth in a Hg-
saturated atmosphere to reduce the concentration of metal vacancy levels.
Surface passivation is extremely important for HgCdTe devices®™. Two
different passivation technologies have been used. The first involves the

deposition of a thick ZnS film. The second is a two-layer combination of a thin
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native film and a thick deposited dielectric film (ZnS, or CdTe). For the second
one, the native layer is made by anodic oxide, which is a mixture of HgTeO,,
CdTeO,, and TeO,. It has been found™ that this anodic oxide can be thermally
decomposed by baking and thus introduce Hg interstitials deeply into the LPE
sample. The details of passivation procedure for LPE samples used in this
dissertation are proprietary technologies of Texas Instruments, Inc. and therefore
cannot be discussed here.

The electrical contacts were made to the LPE samples by using pure
indium. Then the samples/substrates were attached to a holder by using a heat

sink compound.

(2) Experimental Apparatus (Fig. 2.5)

Laser system and optics: The primary laser used is a Mode! 150 CO, system of

Apollo Lasers Inc. It is an axial-flowing gas, electric discharge, water-cooled
laser system that can produce up to 150 Watts/line. it can operate in the CW,
chopped, pulsed modes and output more than 100 .grating—tunable wavelengths
in the 9.14um - 11.01um region. Most of the operation are controlled by
IBM Microcomputer.

For the experiments as described in Chapter 4, the laser was
operated in CW mode. The beam was first condensed and collimated by a
ZnSe telescope. A variable frequency light chopper was used to produce
laser pulses. The chopper was located at the focal point of a ZnSe lens
with focal length of 2 inches. A HeNe laser was transmitted through the
exact position on the chopper as the CO, beam on a Si detector to produce

synchronized reference pulses. Then the CO, beam was collimated using
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another 2 inch focal length ZnSe [ens. Usually the CO, laser was chopped into
20usec wide pulse with a low duty cycle to prevent the lattice-heating effect. In
addition, an attenuator was used to adjust beam intensity before it was focused
onto the sample by another ZnSe lens. The HeNe laser pulses obtained from the
chopper were detected by a Si photodiode, and used to trigger the sampling
electronics. During the experiments a CO, spectrum analyzer was used fo
monitor the excitation mode of the laser system.

Magnetic field and low temperature environment: High magnetic fields and low

temperatures were obtained by using a Janis Research Superconducting
Magnet/Cryostat System. Within the system, the magnetic field was produced by
a superconducting solenoid that is made from filamentary niobium tin wire and
niobium titanium wire. It can reliably produce fields of up to 12.0 Tesla at 4.2K
in a 53mm bore, and it is capable of being ramped up and down uniformly at an
adjustable speed. A modulation coil is also contained in the solenoid, and it can
be used to produce a +500 Gauss modulation field in the bore, superimposed
on the DC magnetic field. The main solenoid and modulation coil are immersed
in a liquid helium bath, and the sample chamber is located at the center of
magnet. There is a capillary tube with a needle valve control from helium bath
to sample chamber. The temperature of the sample can be controlled from 2K
to 300K (within +0.5K) by the flowing of liquid helium and the DRC-82
temperature controller from Lake Shore Cryogenics, Inc.

Signal processing techniqgues: The signal processing procedure without magnetic

field modulation is the following: A He-Ne laser beam passed through the same
chopper as CO, beam is detected by a Si photodiode, and generates a pulse to

trigger the boxcar averager unit. The signal from either Hall l[eads or longitudinal
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leads of the sample are amplified, and then input to the boxcar. The aperture
delay of the boxcar was adjusted so that it samples the desired position of the
signal. The integrated output of the boxcar yield averaged output for the selected
position of the input signal.

In order to do magnetic field modulation, a 22 Hz small ac magnetic field
(500 Gauss) was superimposed on the dc field. The same ac signal used to
excite modulation field is also used as external reference to the lock-in amplifier.
When frequency is set to 22 Hz and 0 degree phase difference between
reference and input signals, the lock-in amplifier will phase-sensitively detect 22
Hz component of boxcar averager output signal. To obtain fine details in the
photoconductive response, the dc magnetic field is slowly swept. By setting lock-
in amplifier frequency to 22 Hz and 0 degree phase difference, the first derivative
photoconductive versus magnetic field is obtained. If the lock-in amplifier is set
to 44 Hz and 90 degree difference with the input signal, second-derivative type
spectra is obtained’.

Data acquisition and processing. In this dissertation, most of the time data are

needed in the digital form so that further data analysis can be performed.
Therefore, data acquisition and processing are a very important part of the
experiments.

Two kinds of micro-computers were used in the experiments of this
dissertation: An HP9000 and IBM/PC. The HP 9000 series 300 computer in the
solid state lab of UNT has the following specifications:

Operating System: Basic 5.1

Processor: MC68030
Display: Bitmap (512x512)
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Memory: 1 Megabytes
Hard disk: 40 Megabytes
Interfaces: GP-IB(IEEE488), GPIO, R§232.

This computer provides a central control over a variety of instruments to achieve
instrument control, data acquisition, data displays, data transformations, and data
outputs, efc. Through the GP-IB interfaces (also called IEEE488 interface), one
can connect GP-IB compatible instruments. The instruments used in this work
were: HP3585A power spectrum analyzer, HP7080A plotting system which has
three channels of built-in digitizers, SRS SR850 lock-in amplifier, Fluke 8840A
multimeter, Keithley 175 muttimeter, Keithley 220 Programmable Current Source,
Tektronix 7904 oscilioscope with 7D20 programmable digitizer, and Palm Beach
Cryophysics Inc.’s 4025 cryogenic thermometer/controller. Through the same
interface it can also communicate with IBM/PC which has a Tecmar IEEE488
interface board.

A typical example of these applications is to design a system which can
display magneto-transport or magneto-optical spectra in real time, plot the result
when the hardcopy is needed, and store the data if it is necessary for further
processing. Each run of the experiment can take between zero and 20 min;
thus, the signal variation over this period is very slow. Therefore the speed of the
digitizer can be in the range of 10 to 100 Hz (one data point per 0.01 sec up to
one data point per 0.1 sec). However, the memory storage has to be very large
(approximately 50, 000 data points). A further complication is that the range of
the signal is not known a prior, so the parameter settings for the digitizer and
display must be adjustable during the run without stopping the experiment. To

solve this problem, the HP computer was connected to the HP 7090A plotter
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through GP-IB. The plotter has built-in digitizers with 12-bit resolution, up to 500
Hz speed and signal range +100V. It has both internal trigger mode and external
trigger mode. All of the functions can be remotely controlled by computer through
GP-IB interface. A program that was used to perform these functions. The basic
algorithm was as follows: The HP 8000 will initiate the digitizer in the plotter to
digitize the data (both axises, x: magnetic field, y: signal), and then transfer them
to the computer memory. The data collected is displayed on its monitor by
drawing a curve representing signal versus magnetic field. When a run is
finished one has the options to plot the data on the plotter or store data on the
hard disk, or both. Several hardware interrupts were set up to handle the
parameter changes during the run. These parameters include digitizer speed and
its range to customize the digitizer, vertical range and horizontal range on the

display so that one can have customized view of the signal.

2.5 Numerical Integration Methods.

Most of the models describing the physical systems are in the form of
differential equations. A differential equation with one independent variabie is
called Ordinary Differential Equation. In this thesis, models for the diode
resonator systems, autonomous oscillation of Hall voltage in n-InSh, and tunnel
diode relaxation oscillators are all in the form of ODEs. Due to the instabilities
of dynamical systems, accuracy, stability and efficiency of numerical methods
becomes even more important. The three numerical methods which were used

in this dissertation are Runge-Kutta, Gear, and Adams-Mouiton Methods.®
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Figure 2.3 Schematic diagram of experimental setup for the nonlinear dynamic
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Figure 2.4 Logic diagram of the circuit which was used to stabilize chaos in

diode resonator systems.



30

wewsnlpy
anuq

>l —AAA

sunsnipy
yoeqpasd

ndul

1018|1980 | °

YOHMS

Jondnnw

PIoy

A__ Bojeue

> >

sjusuocdwon
[ruswedxg

uogenq
Xoeqpes

S/0 ..\\l_l

—Ap—

Avi3a ./(JlTl

MODUIM
1adsuy

| SIO

AvV13d

S/O
dAYS

UISSGI0
013z




31

&)
o
=
«@
CO_Laser ZnSe Collimator Apollo Laser System
< a
Spectrum Analyzen : Condenser Model 150
Y
< >ZnSelens
Y
o] R
Chopper -
” Ethernet Connection to:
<> ZnSe Lens Mainframe
v LAN/WAN/Internet
Sample v
Superconductin
Mggn ot (1 20kG)g Tempreture Controller
Magnet Controller E
Modullation Controller E
0
Current
Suppl
Half or Resistivity pey
| Amélifier l
Moduiation Ref.,
Boxcar Averager/
: Lock-in Amp. HP70S0 HPS000 IBM/PC
Trigger Oscitloscope Plotting System Computer

Figure 2.5 Experimental setup for magneto-optical study of HgCdTe materials.



CHAPTER 3

NONLINEAR DYNAMICS OF DRIVEN DIODE RESONATOR SYSTEMS
AND SYNCHRONIZATION OF CHAQOS IN COUPLED
TUNNEL DIODE OSCILLATOR SYSTEMS

This chapter concerns the investigation of nonlinear dynamics in two
different electronic circuits: coupled tunnel diode and driven diode resonator
systems. The advantage of studying these systems is that they are easy to
implement and expand, yet they can exhibit a variety of phenomena of nonlinear
dynamics.

Sec. 3.1 is devoted to the data analysis methods used in this chapter and
next chapter. Sec. 3.2 describes the simulation and characterization of nonlinear
dynamics in driven diode resonator systems. In Sec. 3.3, the stabilization of
periodic and quasiperiodic oscillations in driven diode resonator systems is
presented. Sec. 3.4 presents experimental results on the synchronization of

chaos in coupled tunnel diode resonator relaxation oscillators.

3.1 Time Series Analysis Methods

This section describes some important concepts and techniques for time
series analysis in nonlinear dynamic experiments. These include phase portraits,
Poincare sections, power spectra, autocorrelation functions, and Lyapunov

exponents.
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(1) Phase portraits and Poincaré Sections

In general, state space is defined as the space whose axes are the
coordinates of position and momentum of the system, and a given dynamic state
at a particular time is represented as a single point in this space. A phase
trajectory is a curve in the phase space representing the time evolution of the
system originating from any initial state. The set of phase trajectories for all
possible initial conditions constitutes a phase portrait.

For illustration, consider only a system with a three-dimensional phase
space. Rather than directly studying the solution to the dynamical system,
sometimes it is fruitful to observe the points of intersection of the trajectory with
a surface. Starting with an initial condition, one thus obtains a set of points
comprising a Poincaré Section, that is, a graph in two dimensions. The
transformation leading from one point to the next is a continuous mapping called
Poincare Map.

It has been shown!"! that the Poincaré section and map have the same
kind of topological property as the flow from which they arise. Therefore, the
study of Poincaré sections and maps can help one obtain direct information on
complex attractors, which otherwise is difficult to do. In most of the experiments
discussed in this dissertation, the Poincaré sections can be obtained on the
oscilloscope in real time (See Chapter 2 for details). For a periodic oscitlation,
the corresponding Poincaré section is a single point. For a two-frequency (f,, f,)
quasiperiodic solution the Poincare section is a closed curve C; but when the
ratio f,/f, is rational, the Poincaré section is composed of a finite set of points.
The Poincaré sections for chactic attractors generally have more complicated

structures.
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(2) Embedding Theorem

Given a time series of a single scalar observable B(t) for a complex
system, {B(t, ), B(t, ), ..., Bty )} and t,, - { = 7, one can reconstruct an m-
dimensional phase portrait from vectors {8(f, ), B(t.., ), ..., Blt,...., )} for k=1,
2, ...(N-m+1). Takens® has proved that this reconstruction is diffeomorphic to the
original dynamics provided m > 2d + 1, where d is the dimension of the
underlying attractor. In practice d is not generally known a priori. The easiest
approach to this problem is to increase m systematically until additional structure

fails to appear when an extra dimension is added. Several more advanced

techniques have been proposed to improve this approach®I*®!

(3) Power Spectrum

For discrete finite sequence {x,, x,, ..., X}, the power at frequency k is:

P,= Na?, P,= g(ak% by, O<k=< g (3.1)

where a, and b, are discrete Fourier cosine (sine) transform of the original
sequence. Plot of power versus frequency is called power spectrum.

The power spectrum indicates whether the system is periodic or
quasiperiodic. For a periodic system with frequency fits spectrum has peaks at
fand its harmonics 2f, 3f, ... For a quasiperiodic system with fundamental
frequencies f, f,, .. ., f its spectrum has peaks at these positions and also
possibly at all linear combinations with integer coefficients. In experimental
situations, the peaks are not infinitely sharp; they have at least an "instrumental
width" 2n/T in addition to the effects of system noise, where T is the length of

the time series used. Generally, two-frequency quasiperiodic phenomena (k =
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other hand, if the signal is chaotic or mostly noisy, the autocorrelation function
amplitude will usually exponentially decay. Again, only quantitative information

can be obtained from the autocorrelation function.

(5) Lyapunov Exponents

The concepts described above can only qualitatively identify chaos. To
quantitatively characterize a chaotic attractor, one need a new concept:
Lyapunov exponents.

lLyapunov exponents are defined by the time-dependent behavior of small
derivations from the flow. Given a d-dimensional system of ODEs:

% =F(x) (3-3)

the solution is designated as:

x(f) =T'x, (3.4)

where Xx, is the initial condition, T'is a matrix representing the "flow map". Small
deviations from the orbit x(f} are denoted by &x(t). Their time evolution is

governed by the variational equation:
ax =5F (1% ) ox (3.3a)
X
or:

8% =J(x(D) 6x (3.3b)
where J is the Jacobian matrix of F. The solution of Egs. (3.3a) or (3.3b) is

written as:

ox(t) =U', 6x, (3.5)

Uis called the fundamental matrix. Now consider a set of vectors e, i= 1, 2, .
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.. d, each representing a deviation &x(t) from the orbit x(t). The volume Vol(e°)
is the volume of the parallelpiped spanned by these vectors, defined as:

Vol(e?) = | e,xe,x - xe, l (3.6)

The symbol *| | " denotes Euclidean norm in a d-dimensional Euclidean

space. The time dependent volume of the parallelpiped is given by:
Vol(e®,f) = | U', ,(0)x U, &,(0)x ~ xU', e,0) | (3.7
The d-dimensional Lyapunov exponent then defines the average expansion rate

of the d-dimensional parallelepiped:

m 1In Voi(e’ 1)

A ed’x ) = Ii —
(€% = e T Vol (e°,0) (3.8)
If U is a multiplicative cocycle with respect to T, i.e., if the condition:
u % =U¥GU“XD (3.9)

is satisfied, then the limit in Eq.(3.8) exists for all e and for almost all initial
orbits x,”!. The quantity A(e®, x,) is independent of the choice €. There exists

any subset of Vol(e®, t). In particular the following limit:

. ! i Ut eIO
A(ef,xo):tllm 1IHM: lim 1|n X, (0)

>o { Vol(e) t>o f &0 (3.10)

is of interest. The Eqg. (3. 10) is the definition of the 1-dimensional Lyapunov
exponent. There are d different limits for /=1, 2, . .., d. They can be ordered
as:

A=A, = — =4, (3.11)
These are the complete Lyapunov spectrum.

Lyapunov exponents describe the exponential divergence and
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convergence of trajectories toward an attractor in a multi-dimensional dynamic
flow. These exponents reflect the properties of an attractor by their sign and
magnitude. The sum of the exponents is the time-average divergence of the
phase space velocity; therefore any dissipative dynamical system will have at
least one negative exponent, the sum of all of the exponents is negative. An
attractor for a dissipative system with one or more positive Lyapunov exponents
is said to be "strange" or "chaotic”.

A stable fixed point has all negative exponents. A periodic attractor is
characterized by one zero exponent, and the rest of the exponents are negative.
A two-frequency quasiperiodic attractor has two zero exponents and negative
exponents for the rest. A chaotic attractor has at least one positive exponent
indicating the divergence of the trajectories, i.e., the sensitivity with respect to
initial conditions. For example, in a three-dimensional continuous phase space
a fixed point has spectrum (-, -, -}, a periodic limit cycle (0, -, -), a quasiperiodic
attractor (torus) (0, 0, -) and a chaotic attractor (+, 0, -). A zero exponent
corresponds to the slowly changing magnitude of a principle axis tangent to the
flow. The magnitude of the negative exponents quantitatively describes the
contraction of the attractor along certain axes in phase space.

The magnitude of Lyapunov exponents measures the rate at which the
systemn processes create or destroy information® Thus the exponents are
expressed in bits of information per second, or bits/orbit for a continuous system
and bits for a discrete system. In this dissertation, all the Lyapunov exponents
computed from experimental time series are in bits/iteration.

The Lyapunov spectrum is closely related to the fractional dimension of

the associated strange attractor. There is a number'” of different fractional-like
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guantities such as the fractal dimension, information dimension, and the
correlation dimension. It has been conjectured by Kaplan and Yorke" that the

information dimension d; is related to the Lyapunov spectrum by the equation:.

J
A (3.12)
= )‘ +
' IA;'+1|
where j is defined by the condition that:
J j+1
Y 4>0 and Y 4, <0 (3.13)
t=1 t=1

The conjectured relation between d; and the Lyapunov exponents appears to be
satisfied for some model system."'”

In most of the experimental situations there are no dynamical equations,
therefore no Jacobians A and fundamental matrix U available to calculate
Lyapunov exponents. Fortunately, from the time series one can reconstruct the
attractor, and then estimate a linearized flow map A’ of the tangent space by
using a different technique. Experimental data inevitably contain noise due to
environment fluctuations and limited experimental resolution. Therefore the ability
to obtain good estimates of A depends largely on the quantity and quality of the
data as well as the complexity of the dynamical system. There has been
considerable effort to provide algorithms for the determination of the Lyapunov

S4sIel?l  1n this dissertation the three most

exponents from time series alone
popular aigorithms developed by Wolf ef al.'¥, Sano ef al.'™, and Bryant et al"®
were employed.

In Wolf ef al’s algorithm™ a single vector is chosen between nearby

trajectories, and propagated along the attractor. After reaching a certain size
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along the system’s fiducial trajectory, it is replaced by a new vector with minimal
length and most similar orientation. The largest exponent can be estimated
reliably and easily, but the other exponents, especially the negative ones, are
difficult to obtain because the evolved vectors tend to fall in the direction of
strongest divergence. Selection of the embedding dimension and delay time is
very important here. It was found that attractors reconstructed using smaller
values of m often yield reliable value for the largest Lyapunov exponent, even
though it has been suggested™ to choose m to be greater than twice the
dimension of the underlying attractor to have a good embedding. But when m is
too small "catastrophes” that interleave distinct parts of the attractor are likely to
result. On the other hand increasing m past what is minimally required will
effectively increase the noise level. Therefore itis recommended that the stability
of results with m and r are checked to ensure robust estimates. The amount
of the data required to calculate Lyapunov exponents is recommended to
be in the range of 10° to 30°, where d is the information dimension of the
dynamical system.

The basic idea of Sano ef al.'s algorithm!™™! is to approximate the local
tangent space to the attractor by a flow map A, which is computed by a least-
squares method from a number of pseudo-tangent vectors propagated over a
certain time span. These vectors are generated from near-by trajectories of the
attractor, and serve as an approximation for the true tangent space. Lyapunov

exponents can be computed as:

fi~» oo

. n -
A= plim o Liny | ae/] (3.14)
tn j=1
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fori=1,2 ..., d where{e/}(i=1,2 ...,d)is aset of basis vectors of the
local tangent space. In the numerical procedure, an arbitrary set {e/ } was
chosen, operated on with matrix A, and renormalized to Aje{. The Gram-Schmidt
procedure!® was then used to maintain orthogonality. This procedure was
repeated for n iterations and used to compute the Lyapunov spectrum given by
Eq. 3.11. The advantage of this algorithm is that it can compute all of the
components to a good accuracy with relative ease. However in some locations
of the chaotic attractors flow is very "thin" in certain directions associated with
negative exponents. When the local data-set curvature is too large in these
locations the linear least-squares method becomes inappropriate. In some cases
Ithe reconstructed data are close to degenerate; then a Singular-Value
Decomposition technique has to be used to achieve a reasonable result.

Bryant ef al.’s algorithm!"® is similar to Sano ef al’s except it finds the
required Jacobians by making local polynomial maps, allowing for a more
accurate determination of A. The calculation based on this algorithm is quite
sensitive to the noise level compared to the above two. But with careful setting
of the parameters it can find the negative exponents quite accurately as well as
the positive ones.

When only the largest Lyapunov exponent is needed, Wolf's algorithm is
always the best choice. it can be easily implemented, and the calculation results
are often stable and reliable. This algorithm was used for all three nonlinear
dynamic systems described in this chapter and next chapter: driven diode
resonator systems {Sec. 3.2), coupled tunnel diode relaxation circuits (Sec. 3.4)
,and autonomous and externally driven oscillations in n-InSb (Chapter 4).

On the other hand, if one is interested in the complete Lyapunov spectra,
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Sano’s or Bryant's approach has to be considered. An implementation of Sano's
algorithm by Kruel et a/.""" is used in this dissertation for the experiment of diode
resonator systems(Sec. 3.2); Bryant's approach was used in the system of
electrical oscillations of n-InSb (chapter 4). Kruel's program is stable and fast for
most of the experimental data. It can give reasonably accurate estimates for
system’'s complete spectra, but sometimes has difficulty to find good negative
exponents. Bryant's program can be used to calculate more accurate negative
exponents, but it often takes longer computing time, and fails for some

experimental data.

(6) Summary

Several different concepts, which include phase portraits, Poincaré
sections, power spectrum and autocorrelation functions, all can be used to
identify periodic and quasiperiodic oscillations. They can be also used to
separate periodic or quasiperiodic motions from chaoctic evolutions. However to
quantitatively characterize chaotic attractor, one has to use Lyapunov exponents.
Lyapunov exponents are the average exponential rates of divergence or
convergence of nearby orbits in phase space. But the orbits in phase space can
only be obtained from the equations of the dynamic systems. In real world
applications, most of time these equations are not available. Fortunately, from
a time series of single system variable, the Takens’ embedding reconstruction
technique allows one to obtain a phase space diffeomorphic to the original one.
In addition, Lyapunov exponent is invariant with respect to diffeomorphic
transformation of variables for an infinite amount of noise-free data. In practice,

one can use a finite segment of a time series obtained from the experimental
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system to give good estimates for the exponents.

3.2 Simulation and Characterization of Nonlinear Dynamics in Driven

Diode Resonator Systems

(1) Introduction

Harmonically driven diode resonator systems have been found to exhibit
several universal behaviors representing particular routes to chaos. These
behaviors include period doubling route to chaos in the single diode resonator
system!™212' - and quasiperiodic route to chaos in the coupled diode resonator
systems??. However there is still controversy about the modeling of these
systems. Testa, Perez, Buskirk and Jefferies®®** insisted on that the observed
period doubling and chaotic behavior were due to the nonlinearity of the effective
capacitance on the diode pn-junctions. They showed that this model gives
reasonable qualitative agreement with experiments. On the other hand, Hunt,
Rollins and SuP®I?’l grgued that the nonlinear reverse bias capacitance of the
pn-junction is not responsible for the behaviors observed, but the rather large
reverse recovery time of such diodes was essential here. A third approach® is
to employ the well-known SPICE program® trying to achieve a maximally
realistic modeling of the diode. This model is similar to the model by Testa et
af in that both introduce a voltage-dependent differential capacitance. The
difference is the model with SPICE gives more detailed expressions and realistic
parameters corresponding to the particular type of diode. Under some
circumstances an accurate and realistic model is very important. For example
an accurate model is very useful for complex coupling diode resonator systems

that represent a higher dimensional dynamical system.
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it is known that high-dimensional Iine—coupléd diode resonator systems
can reach the chaotic state via a quasiperiodic route®*”_One important theory
about this route was put forward by Rulle, Takens and Newhouse®. In the
Ruelle-Takens theory, the sequence of transitions leading to chaos is as follows:
fixed point S — limit cycle P - quasiperiodic with two frequencies T° —
quasiperiodic with three frequencies T°- chaos. As soon as the third frequency
arrives, the broad-band noise characteristic of chaos should start to appear. But
as Curry and Yorke pointed out® there is another route to chaos via
quasiperiodic regimes, where chaos appears directly from a quasiperiodic regime
with two frequencies. In this case, the manifestation of another degree of
freedom is not in the form of a third frequency, but rather by the gradual
departure of the trajectories from T?, which amounts to the destruction of tori
(quasiperiodic orbits). The typical transitions to chaos are as follows: periodic P
- quasiperiodic with two frequencies T? - periodic locking states L - chaos.
In this section, the diode resonator model from SPICE is discussed first.
Then detailed comparisons between experimental and simulation results on the
single diode resonator system are presented. These include wave forms, power
spectra, phase portraits, bifurcation diagrams, and Lyapunov exponents. Thirdly,
the transitions from quasiperiodic oscillations to chaos in line-coupled systems
are shown, in good agreement with the Curry-Yorke model. A comparison of
Lyapunov exponents from the experimental time series and simulation model is
given to show that the SPICE model also accurately describes the coupled

systems.

(2) Diode Model from SPICE?®
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A SPICE model for a diode pn-junction is composed of an ohmic

resistance r,, an ideal static diode /,, and an effective capacitance C,, which

reflects the dynamic properties of diode, and is essential for the observed
chaotic behaviors (Fig. 3.1).

Static Model of a pn-junction: It is well known that a pn-junction can be modeled

as follows:*?"!
ki KT
I(e™ ~ 1) + V,G,,, for V,> -57¢
I =RV, = 9 (315
-l + VG for V,< 5 kT
q

Here n is the emission coefficient (1 < n < 2), and /, is the saturation current.
A small conductance G,,, is added in SPICE in parallel with pn-junction to aid

convergence of numerical integration. The default value for G, is 10" F.

min

Charge-storage effects of a pn-junction: There are two forms of charge storage:

minority-carrier injection Q and the space charge Q,. The first one results from
excess minority carriers injected across the junction in forward bias. This charge
is proportional to the total current injected across the junction:

Q.= 1,1,(V,) (3.16)
Where 71, is called the transit time, which represents the minimum time required
to either store or remove the charge.

A second kind of charge is associated with the changing of the space-

charge region when V, changes. It can be given as:

Qp=2¢,C40) '1 - -:—D (3.17)
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Here C,(0) is the diode junction capacitance at zero bias (V, =0), and ¢, is the
junction potential (built-in voltage).

There are two points that can be made on Eq (3.17). First, for reverse
bias and small forward bias, Q, is the dominant stored charge. Second, for
moderate forward bias and beyond, the injected charge Qg dominates. The
second observation is important because as V, approaches ¢,, Eq (3.17) is no
longer valid. A more exact analysis of real diode gives the following resuits. For
forward-bias voltage up to about ¢,/2, the values of Q, are more accurately
predicted by Eq. (3.17). For voltage V, = ¢, a linear extrapolation of Eq. (3.17)
can be used to achieve the best simulation result.

Therefore the charge storage element Q, = Q, + Q, can be determined
by the following relations:

V,

o

1.0y + C,(0), !(1 - ¢l)-mdv for V, < FCxg,
0

Qp= ’ (3.18)
c,0) ”
1.0y + CAOF, + ;’:( ) J F, + ™)av  for V, < FCxo,
FCxp,

2 0

the above equation can ailso be defined equivalently by the effective capacitance

relations:
df Vv
L _dg, [T o+ Co0)(1 - ?D)-m for V, < FCxo,
T de C.(0) Ov e
m
Ty + — L (F, + 2y for V, < FCxg,
dv, F, b,

where mis the junction grading coefficient, and FC determines how the depletion

capacitance is calculated when the junction forward-biased. Usually FC is set
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equal to 0.5, which means linear extrapolation is taken; F,, F, and F, are

SPICE constants whose values are determined as follows:

Fo= -2 (1-(1- FO)'~m)
1-m

F,=(1- FC)!*m (3.20)

F,=1- FC(1 + m)

(3) Results and Discussion

Single diode resonator system: The single diode resonator system is composed
of a diode, a resistance, and an inductance in series with an external sinusoidal
driving source. Fig. 3.1 shows the schematic diagram of the circuit used in our

experiment. The parameters used in this experiment are listed as in Table 3.1.

R 100Q

L 100mH
D IN4004
f 50KHz

Table 3.1 Parameters for a Single Diode Resonator System.

A set of Ordinary Differential Equations (ODE) derived from the model

described above are listed as follows:



48

dl _ VsinQ - V- IR+ R (3.21)
dt L

-1,

when V < FC+ ¢,

af vV
dv 1,2+ CL0)(1- =)™
— = av ®,
dt " (3.22)

J PR when V = FC+ ¢,
CAO)F,+ )
0
Td_+

dv F,
e (3.23)
dt

v

where Iy = ls(exp ™ - 1)+ V+ G ;.

The first thing obtained from the experiment is the wave form of the
current signals. Fig. 3.3 and Fig. 3.4 are pictures taken from the oscilioscope.
Fig. 3.3 shows wave form of a period-8 signal, and Fig. 3.4 shows a typical
chaotic signal. The time series of Fig. 3.4 was captured using a digitizer, and
used to calculate the Lyapunov exponents. Brown's algorithm was employed,
and a typical run gave the results listed in Table 3.2. Note that the sum of all
three components is -2.18, which means the system is dissipative. One positive
component, one negative component, and one much smaller compared to the
other two indicate that the system has a strange attractor (See Sec. 3.2).

By integrating the simulated equations and plotting their solutions verse

time, wave forms of periods 8 (Fig. 3.5) and chaos(Fig. 3.6) are obtained. Note
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that Fig. 3.5 and Fig. 3.6 closely resemble Fig. 3.3 and Fig. 3.4, respectively.

The complete Lyapunov spectra from the ODE equations for the chaotic regime
are also calculated, and the results are listed in Table 3.2. The accumulated
error for this calculation is estimated around 1%. Comparing the Lyapunov
spectra from experimental time series and simulated equations as in Table 3.2,

one can see they are in good agreement.

Experimental Time Series Simulated Equations
A, 0.5610.2 0.378
A, 0.016+0.01 0.0
A, -2.76+1.5 -3.86
d, 22106 2.098

Table 3.2 Lyapunov Exponents for a Single Diode Resonator System from Both

Experimental Time Series and Theoretical Simulated System

Phase portraits were also obtained, as described in Chapter 2, for periods
8 and chaotic oscillations (Fig. 3.7 and Fig. 3.8). In the period-8 phase portrait
one can identify 8 different stable curves in the upper right part, although most
of the portraits have more than one curves overlapping with each other. Both
portraits have a characteristic "hump" near the center of the upper region in the
pictures.

From the simulated system, phase portraits for period-8 and chaotic
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oscillations were produced, as shown in Fig. 3.9 and Fig. 3.10. These phase
plots are obtained by integrating the simulated equations to produce a time
series for one system variable (Current ! in Fig. 3.1 is used in this dissertation),
and then plotting the series versus a certain time delay of the same time series.
The time delay was chosen so that the portraits resemble those from
experiments. One can see the similarities between the experimental phase
portraits and portraits from simulated system, including the characteristic
"humps".

Fig. 3.11 and Fig. 3.12 show the power spectra corresponding to period
8 and chaotic oscillations, respectively. Fig. 3.13(a)(b) show the power spectra
calculated from simulated system for the same two dynamical regimes.

A bifurcation diagram from the experimental diode system is shown in Fig.
3.14. It shows period doubling, chaos, band merging, windows of period 5 and
period 3, and hysteresis. This is the simplest type of bifurcation diagram
observed , and it is displayed by different diode systems with variety of element
parameters and diode types, provided that the driving frequency fis close to the
resonance frequency for that diode f.

The bifurcation diagram from the simulation was obtained as follows. For
different driving amplitudes, the equations were integrated first. Then, a certain
amount of the consecutive peaks values of the current variable (usually around
500 peak values in our simulations) were picked and stored. Plotting those
peaks values verses their driving amplitude gave the bifurcation diagram as
shown in Fig. 3.15, Fig. 3.16, and Fig. 3.17 (See Sec. 2.2). Figures 3.16 and
3.17 are enlarged diagrams showing some of details of Fig. 3.15. Compared to

Fig. 3.14 of the experimental bifurcation diagram, these bifurcation diagrams has
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period doubling, chaos, band merging, windows of periods 5 and periods 3,
hysteresis, etc. One can notice that all the transitions to chaos in this diagram
are going through period doubling route.

Line-coupled diode resonator systems: A two-line-coupled diode resonator

system consists of two parallel, single diode resonators coupled through a series
of a resistor and a conductor as shown in Fig. 3.18. Many different sets of
parameters in these line-coupled diode resonator systems were experimented,
and in most cases similar results have been obtained. A typical set of

parameters used in the experiments are listed as in Table 3.3.

R, & R, 100Q

L, &L, 100mH

D, & D, IN4007
f 53.21KHz

Table 3.3 Parameters for a Line-Coupled Diode Resonator System

A set of Ordinary Differential Equations can be derived from the SP/CE

model as follows:

di _ VsinQ -V, - (R, + R

hald (3.24)
dt L
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di, VsinQ-2V,+V,- I (R,+R) (3.25)

dt L

I -1 '
S when V, < FC« ¢,

dl V
av 7, — 2+ C0)(1— L) M
& " v e
11_ "df TYSY when V1 > FC+ @, (326)
" |
C0)(F, + 1)
d“d‘r Py
Td +
av, F,
y " h e - when V, < FC+ ¢,
dv, Ty—2+ C0)(1- 2) ¥
& W, %
mh e when V, = FCs o, (327)
c 0 F,+ 1Yz
+
d, 777 @,
74 +
dav, F,
E_‘;_ - 2nf (3.28)
where: v and v

l, =1(exp™ - 1)+ V. % G__ I, = ls(@xp ™ — 1)+ V, % G_, .

in these coupled diode resonator systems, two different transitions have
been found: the first one is the conventional period-doubling bifurcation route,
just like the transitions to chaos in the single diode resonator systems; the

second one however follows quasiperiodic oscillations, and was called Hopf

bifurcation scenario.
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One typical transition to chaos is described as follows. For an increasing
amplitude of the driving signal with fixed frequency 7, = 53.21 KHz the following
sequence has been observed. (1) For V, < 6.07V the system resides on a
simple stable limit cycle with frequency equal to the driving frequency f; as
shown in Fig. 3.19(a), (these are period-one "oscillations” of the system). (2)
For 6.07V < V, < 987V the system has a quasiperiodic attractor (two-
dimensional torus) as shown in Fig. 3.19(b). (3) For 8.87V < V, < 10.50V the
system appears to be chaotic. (4) The chaotic regime is followed by clear period-
three stable oscillations which occur for 10.50V < V, < 13.00V. The Poincaré
section and phase portrait of the system, is represented by three bright dots in
Fig. 3.20(a). (5) Further increase in the amplitude of the driving signal, when
13.01V < V, < 14.21V, brings the system again to a different two-frequency
quasiperiodic attractor, with intermittent period three windows as shown in Fig.
3.20(b). Poincaré sections of these tori consist of three nearly circular closed
curves, centered on the three dots of the periodic orbit as in Fig. 3.20(a). The
radii of the circles grow rapidly with increasing amplitude of the driving signal.
The power spectrum of this regime is shown in Fig. 3.21, where one can
identify the fundamental frequency f,and another incommensurate frequency f|
with all other frequencies occurring at linear combinations of f,and f with rational
multipliers. The value of f, slowly increases with an increase of the amplitude V,,.
(6) For yet higher driving amplitudes, 14.25V < V, < 15.31V, frequency locked
states were observed. Fig. 3.20(c) shows a typical frequency locked state with
an orbit of high period residing on the torus. The Poincaré section initially
consists of three groups of dots falling on nearly circular closed curves. These

closed curves deformed away from circles with increasing V,. The power
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spectrum shown in Fig. 3.22 shows that all peaks occur at frequencies (p/gjf;
where p and g are integers and a particularly strong peak is observed at the
period-3 positions. The frequency locking ratio is £,/ f, = 33/3. (7) Finally with
further increase of the driving voltage, 15.40V < V, < 16.20V, again the chaotic
regime is reached as shown in Fig. 3.20(d). The attractor still bears
resemblance to that in the quasiperiodic regime, but the presence of wrinkles
and corrugations indicates that folding is taking place. Broad band features, seen
in the power spectrum with period-3 windows, is shown in Fig. 3.23. This
sequence of transitions is in agreement with the Curry-Yorke scenario®

Additional evidence for the existence of chaotic and quasiperiodic regimes
can be provided, as usual, by Lyapunov spectra. Kruel and Eisworth!'d’s
algorithm has been used to calculate Lyapunov exponents in this dynamical
system. Guided by the dimensionality of the phase space of the SPICE
simulated model, d = 5 was selected as embedding dimensions for line coupled
systems. Data series obtained from these systems are well behaved, and
singular-value decomposition is unnecessary. The obtained spectra of a line
coupled system for typical quasiperiodic and chaotic regimes are listed in Table
3.4. As emphasized by Kruel and Eisworth!'”, reliable exponents’ estimates must
be stable in all parameters which enter the program. The two most important
parameters are g

the maximum distance to locate the neighbors, and t__,, the

max’ avolv?

evolution time. The exponents listed in Table 3.4 have piateaus when g, is in
the range of [0.01, 0.08] and t_,,, in the range [0.5x10®, 8.0x10®]. The maximum
variations of the exponents with respect to the above two parameters are
entered as the error estimates. The other two algerithms developed by Wolf ef

al" and by Bryant et al. "' were used for the same time series. The positive
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exponents of the chaotic regimes and the largest negative exponents were all

in qualitative agreement.

Experimental Time Series

Simulated System

-0.0038+0.0002 0.00
-0.0038+0.0006 -0.00175
Quasiperiodic
, -0.14+0.015 -0.100
regime
-0.8210.2 -3.25
-4.0+1.5 -3.27
+0.1310.02 +0.0876
-0.0017+0.00015 0.00
Chaotic Regime
-0.45+0.08 04
-1.28+0.17 -3.06
-5.96+2.0 -3.42

Table 3.4 Complete Lyapunov spectra of a quasiperiodic regime and a chaotic

regime calculated from both experimental time series and SPICE simulated

equations (Eqgs. 3.24-3.28) for line-coupled diode resonator system.

Less difficult, but by no means trivial, are calculations of the complete

Lyapunov spectra for a simulated model system.

In particular, error bars for
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calculated values are difficult to estimate and the obtained values show
variations for changing parameters of the algorithm. After numerical integration
of these equations using Runge Kutta’s method for the line coupled diode
system, an identical sequence of transitions have been found, i e. periodic
solution — quasiperiodic solution T?> - frequency locked state - chaotic state,
occurs. Lyapunov spectra calculations based on this model are listed in Table
3.4, for comparison with those obtained from the experimental time series. The
error for this calculation is around 10°. One can see a very good agreement
between the estimated exponents from the experimental data and those
calculated from simulated system. |

Bifurcation diagrams from simulation system of Eq. 3.24-3.28 were shown
in Fig. 3.24 and Fig. 3.25. One interesting thing about this bifurcation diagram
is that at the critical point of the Hopf bifurcation in Fig. 3.24, the convergence
rate is very slow as theory indicated. Therefore it took extremely long computing
times to locate the critical position. One can compare bifurcation diagram Fig.
3.24 from the simulation to the Fig. 27 of Ref. {24], which is a bifurcation picture
for a two-coupled diode resonator system. The two bifurcation diagrams have
many similarities, e.g. Hopf bifurcation, period doubling, periodic locking, chaos,
efc.

To compare the simulation model and its experimental systems for higher
dimensional line-coupled resonators, a phase plot was obtained for the chaotic
regime of a four line-coupled diode resonator system (Fig. 3.26). One can

compare this with the corresponding phase plot from experiment as shown in

Fig. 3.33(a).
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{4) Conclusions

The single diode resonator system displays a typical period doubling
cascade and transitions to chaos. Experimentally the wave form, phase portrait,
and power spectra can be used to study the periodic oscillations and to delineate
between the periodic states and chaotic states. But only the Lyapunov exponents
can quantitatively describe the chaotic attractor. The model derived from SPICE
program is capable of simulating the system quite accurately, as shown by good
agreement for experimental observables including the wave form, phase portrait,
power spectra, bifurcation diagram, and more importantly by the agreement of
Lyapunov exponents.

Comparing to the single diode resonator systems, the line coupled system
can follow a quasiperiodic route to chaos, in addition to the period doubling
route. More accurately, the transitions to chaos for these systems agree with
Curry-Yorke model very well, that is: periodic states P » quasiperiodic states
with two frequencies T° — periodic locking states L - chaos. The simulation
model for line-coupled system derived SPICE gives consistent results. In
addition, Lyapunov exponents calculated from experimental time series and
simulation system are in good agreement for both quasiperiodic regimes and
chaotic regimes.

Diode resonator systems are simple, yet they can display varieties of
interesting nonlinear dynamics features: period doubling, band merging,
windows of period-5 and period-3, hysteresis, quasiperiodic states, periodic
locking states, and Hopf bifurcation to chaos. The last three features are
associated with higher dimensional systems (usually higher than 3).

The line-coupled systems are higher dimensional sysiems. For example,



58
for two line-coupled system d = 5, and for three line-coupled system d = 7. So
for every branch added to the system two extra freedom are added to the
dynamical systems. Therefore these simple systems provide ideal test ground
for the more complex dynamical system experiments. One example is to explore
the possibility to stabilize unstable orbits in a chaotic attractor, as described in

Sec. 3.3 of this dissertation.

3.3 Stabilization of Periodic and Quasiperiodic Oscillations in Diode

Resonator Systems

(1) Introduction

The idea of stabilizing high-period orbits in a chaotic system was first
coined by Ott, Grebogi, Yorke®? (OGY). As is well known™"), a typical chaotic
attractor contains infinitely many unstable periodic orbits of all periods. In the
original paper by OGY® it was proposed that an unstable orbit can be stabilized
by small and carefully chosen perturbations in an accessible system parameter.
These perturbations "turn-on" when the system begins to move away from
unstable orbit along the unstable manifold. Shortly afterwards, several
experimental chaos control schemes were reported P47 which converted
chaotic motions into stable period-1 and period-2 oscillations by a proportional
feedback technique. Hunt®® modified this method and applied it to a single diode
resonator system. He stabilized periodic orbits up to period-23 on a typical
chaotic attractor. More recently, Fillie, Grebogi and Ott®" pointed out the
possibility of stabilization of periodic orbits from chaotic attractor that has more

than one unstable eigendirection. So far, most of the experiments were done on



59
the most simple chaotic attractors, namely, three-dimensional dynamic system,
and researchers are only considered controlling a chaotic attractor to a periodic
state.

To understand the details of chaos stabilization and explore the possibility
of stabilizing more complex dynamical systems, a stabilization circuit based upon
the so-called proportional feedback technigue was designed and built. By
applying this circuit to both single diode resonator systems and line-coupled
diode systems, one not only can stabilize a chaotic attractor to a periodic
oscillation as high as period-17, but also obtain quasiperiodic orbits from the line-

coupled diode resonator systems.

(2) Experimental Results and Discussions

Single diode resonator system. Fig. 3.27(a) is a picture showing the wave forms

before employing the control feedback, in which the top trace is the chaotic
signal, and the bottom one is the control feedback signal. After turning on the
control and adjusting the control parameters, the result shown in Fig. 3.27(b)
was obtained, where the system becomes period-2 oscillation. It is interesting
to note that the control feedback back signal becomes erratic when the
stabilization of the resonator is obtained. By careful tuning the control
parameters, a stabilized period-6 oscillation from the same chaotic attractor was
obtained, as shown in Fig. 3.27(c). The stabilization of higher-period orbits is
more difficult (more precise control parameter tuning required), though periodic
orbits up to the period 17 can be stabilized. These results confirm those obtained

by Hunt with somewhat different single diode circuit and control circuit.

Line coupled diode resonator system: For the line-coupled diode resonator
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system, it was found that the stabilization of high period orbits is typically easier
than the single diode system. What is more important, careful stabilization allows
one to restore some of the quasiperiodic orbits with two incommensurate
frequencies. Fig. 3.28(a) is the phase plot and Poincaré section of a typical
chaotic attractor, Fig 3.28(b) shows the phase plot and Poincaré section of the
same system stabilized from chaotic attractor Fig. 3.28(a). One can see that its
phase plot is a winding torus, and its Poincaré section consists of two circles,
which are indications of quasiperiodic oscillations. In addition, a periodic locked
state from the same attractor has been obtained by adjusting the control circuit.
Fig. 3.28(c) shows the phase plot and Poincaré section of this periodic locked
state. By counting the dot of its Poincaré section, a locked ratio of 22/2 is
obtained. The above stabilization results can be confirmed by their power
spectra. Figures 3.29, 3.30 and 3.31 show the power spectra corresponding the
chaos of Fig. 3.28(a), quasiperiodic oscillation of Fig. 3.28(b), and periodic
locked state of Fig. 3.28(c).

The same control technique was also applied to a line coupled system
consisting of four single diode resonators. This systém, as shown in Section 3.3,
has periodic, quasiperiodic and chaotic regimes. The stabilization of periodic and
quasiperiodic orbits was also found to be possible, as shown in Fig. 3.32 and
Fig. 3.33.

The above stabilization results were also possible for a variety of line-
coupled diode resonator systems with different elements (resistors and inductors)
as well as diode types.

The control signals in the experiments described above were always small

when compared to the system signals (less than 5%). Unfortunately, a simple
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operational recipe for the stabilization for all of the observed orbits within the
Hunt's technique was not found. Both high periodic and apparently quasiperiodic
orbits are equally difficult to stabilize, and there was not any specific difference
in the stabilization procedures for orbits of these two types. The orbits classified
as quasiperiodic appeared less often than the periodic ones, as may be
expected. A word of comment should be added on the observed quasiperiodic
orbits. Obviously, a strictly quasiperiodic orbit is an experimental and simulational
impossibility (all measured frequencies are commensurate, all simulated orbits
are ultimately periodic). Additionally, a high periodic orbit perturbed by a small
amount of noise residing on a torus will behave as an almost periodic orbit,
which can be well approximated by a quasiperiodic orbit. In this situation, an
experimental observation of quasiperiodicity must first localize tori on which
these orbits may live, and secondly provide an example of an orbit which
appears dense on this torus. All of the high period orbits stabilized clearly belong
to some common tori, similar to those observed in the system before the
transition to chaos. Additionally, orbits of period as high as 17 are still classified
as such, which indicates the relatively low noise level in the system.

It was well known that a typical attractor has embedded within it an infinite
number of unstable periodic orbits“”. Based on the experiments described above
it is conjectured that the chaotic attractors for systems considered in this section
contain both unstable periodic and unstable quasiperiodic orbits. These
quasiperiodic orbits within a chaotic attractor could provide another invariant set
besides the unstable periodic orbits used in characterization of complex fractal

structure of strange attractors™*".



62

(3) Conclusions
By applying the stabilization circuit to single diode system, periodic orbits
up to period 17 from a typical chaotic attractor were successfully stabilized. More
interestingly, for the line-coupled diode systems not only were high periodic
oscillations obtained easily, but quasiperiodic orbits were also stabilized.
Theoretically, this raises a serious question: Does there exist any unstable
quasiperiodic orbits in addition to the well-known unstable periodic orbits? On the
other hand, these results and techniques directly aid in the investigation of the
stabilization of laser arrays, which is higher dimensional system, and its

stabilization has potential applications in the laser manufacturing industry“?.

3.4 Synchronization of Chaos in Coupled Tunnel Diode Relaxation
Oscillators
{1) Introduction

Recently, synchronization of chaos has been found in several different
dynamical systems: coupled lattice maps (Kaneko™”), dynamical systems driven
by a common "master system" (Pecora and Caroll“Y), and finally systems of
coupled “virtual" chaotic nonlinear oscillators which for some values of the
coupling parameters produce synchronized auto-oscillations ranging from
periodic to chaotic (Kowalski et al.“”). The study of synchronized chaos is
important not only as a mode! for nonlinear systéms with many degrees of
freedom, but also from the view point of biological information processing and
possible engineering applications. For example, the synchronized chaos circuit
might be used for a military communication system™. In this section,

experimental observations!*”! of synchronization to a common chaotic orbit in a
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coupled relaxation oscillator system through weak coupling are presented.

(2) Circuit layout and dynamical equations

Fig. 3.34 shows a basic relaxation circuit in which there are two branches
connected in parallel. Each branch contain a nonlinear element tunnel diode, and
two linear elements consisting of a resistance and a inductance. For any real
tunnel diode there is an effective capacitance associated with it in addition to the
ideal tunnel diode. This circuit is a simplified version of a circuit proposed
earlier®® where two branches were coupled by a resistor R. With this coupling
the circuit can display much more complex dynamics. But even for R = 0 the two
branches remain coupled due to the finite internal resistance of the voltage
source, and therefore some common periodic and chaotic regimes can still be
observed. The reason for choosing R = 0 is to simplify the system to study the
coupling behavior of several such relaxation units. Fig. 3.35 shows a circuit of
two coupled relaxation oscillators. The typical values of the circuit elements are
listed in Table 3.5. The coupling resistance was chosen as R, = 50kQ. The
tunnel diodes used were purchased from Custom Components, inc. P/N
151100G. Two separate power supplies were used to drive the two units. The
voltage signals were taken at points A and B by using high impedance buffer
amplifiers fo minimize external perturbations to the circuit. As with the other
nonlinear dynamic experiments, the signals can be displayed on a digital
oscilloscope or digitized by using 10MHz 8-bit sampler and stored in the
computer. The frequency spectra was obtained using Hewlett-Packard 3585A

spectrum analyzer.
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R, = 1.35Q R, = 1.51Q
R, = 1.20Q R, = 1.25Q
L, = 220.0uH L, = 270.0uH
L, = 180.0uH L, = 220.0uH
R, = 1.00Q R, = 1.0Q

Table 3.5 Parameter Values of a Coupled Tunnel Diode Oscillator systems

The dynamics of a single relaxation unit can be described by:

dl

Lk?;‘ =V- IR -V, k=12 (3.29)

V+(l +1)R, =€ (3.30)
dv

C, d;" =/ - f(V,) k=12 (3.31)

where ¢ is the applied bias voltage, V,, and |, are the voltages and currents,
respectively, in the k-th tunnel diode, f, is the current-voltage characteristic of the
k-th diode, which is well approximated by a cubic polynomial, C, are the small
effective diode capacitances which are essential for the generation of relaxation
oscillations, and R, is the internal resistance of the voltage source. The system
described by the four equations given above (Eq. (3.29) & Eq. (3.31)) represents
a pair of relaxational Van der Pol type oscillators with linear coupling via slow
variables (Eq.(3.30)). These systems were originally considered as hardware

(48]

models of coupled Fitzhugh-Nagumo neuromimes'™ with fast voltage variable
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representing the membrane potential and the current modeling the slow

"recovery" variable.

(3) Experimenta! results

In the many different decoupled units both periodic and aperiodic behavior
have been observed. It is well known that two such similar units in periodic
regimes residing on stable limit cycles with close frequencies may synchronize
in the presence of weak coupling to a common periodic orbit. Even more
interesting is the possibility of synchronization of two weakly coupled chaotic
attractors. Fig. 3.36(a) shows an oscilloscope picture of periodic synchronized
diode voltages near the start of auto-oscillations. Fig. 3.36{(b} shows the
corresponding power spectra. Fig. 3.37(a) shows two unsynchronized chaotic
diode voltages when the units are uncoupled and when a slightly smaller bias
voltage is applied to one of the units than in Fig. 3.36(a). Fig. 3.37(b) shows
synchronized chaotic pulses when the units are coupled via resistor R for the
same experimental conditions as Fig. 3.37(a). Fig. 3.38 shows the power spectra
for the synchronized chaotic pulses. Fig. 3.39(a) shows synchronized chaotic
signals for qualitatively different behavior with shorter time intervals between
pulses when slightly larger bias voltage is applied than in Fig. 3.37(b). Fig.
3.39(b) shows the corresponding chaotic power spectra. The synchronization can
be observed over long periods of time by digitizing the signals and displaying
them on a computer, as shown in Fig. 3.40 for the experimental conditions of
Fig. 3.37(b). The synchronization in Fig. 3.40 is observed at each pulse as the
puises form bursts.

The observed synchronization is only the simplest result of two similar
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chaotic attractor interactions, similar to the case of two coupled limit cycles. The
"frequency-locked entrainment” states of two chaotic attractors have also been
observed when one of the units is modified. This behavior is shown in Figs.
41(a)-(b) for 2/3 entrainment, that is every two peaks in the top trace are
entrained with every three peaks in the bottom trace. This clearly is a interesting
phenomenon falling in between synchronization with strong coupling and
unsynchronization with weak coupling. The experimental circuit to observe this
behavior is that of Fig. 3.35 with the addition of a coupling resistance R of 16Q
between the two branches of Unit |, as in the scheme of Gollub et al. A wide
range of entrained chaos and synchronized chaocs was observed as a function
of R.

To make sure that such units did not act as "noise amplifiers”, one has to
study the experimental time series in terms of Lyapunov spectra. By using
Takens' embedding technique and the algorithm of Wolf et al the principal
Lyapunov exponent was estimated. A stability analysis was made of the time
series shown in Fig. 3.38(a) and Fig. 3.40. The number of data points is 30, 000,
and was sampled at a rate of 5MHz. The evolution time of the Wolf algorithm
was varied for both signals and the resultant calculated exponents are shown in
Fig. 3.42(a)-(b). The variation in the calculated principal exponent with respect
to maximum replacement distance was examined for several parameter values.
In these instances, changing the maximum replacement distance from 10
percent to 5 percent of the lateral extent of the embedding changed the
calculated principal exponent by at most 10 percent. These calculations suggest
a principal Lyapunov exponent of 50x10%(bits/s) for the time series of Fig.

3.38(a) and 70x10%bits/s) for time series of Fig. 3.40. The positivity of the
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exponent and its degree of stability with respect to changes in the evolution time
are consistent with a chaotic voltage train, which has around 40 KHz oscillations;

so the signal will lose almost all of the information within one cycle.

(4) Conclusions

Through a weak coupling, the simple system of Fig. 3.35 shows mutual
entrainment of two chaotic relaxation oscillators. This is first time that the
synchronization of chaos has been observed in the coupled tunnel diode
systems. This result also experimentally confirm the idea of synchronization in
chaotic systems, which was proposed by Pecora and Carrol*. In addition, the
"frequency-locked entrainment”" states of two chaotic attractors have also been
observed when appropriate coupling is applied. LLarge communities of interacting
chaotic relaxational units would be worthy of further investigation. In addition
numerical simulations for a model of the coupled units shown in Fig. 3.35 will

also be interesting to confirm the synchronization phenomena.
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Figure 3.1 Schematic diagram of a diode model in SPICE.
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Figure 3.2 Circuit of a single diode resonator system.
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Figure 3.3 Picture taken from a oscilloscope showing the wave form of period-8

oscillations in a single diode resonator system.
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Figure 3.4 Picture taken from a oscilloscope showing the wave form of chaotic

oscillations in a single diode resonator system.
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Figure 3.5 Wave form of period-8 oscillation obtained from simulated system of
single diode resonator. Vertical axis is current / through the system and horizotal

axis is time 1.
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Figure 3.6 Wave form of chaotic oscillation obtained from simulated system of
single diode resonator. It has the same fundamental frequency as the driving

source, but the amplitudes of peaks are randomly distributed.
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Figure 3.7 Picture taken from oscilloscope showing the phase portrait of the
period-8 oscillation in the single diode resonator. There are 8 winding cuves in

the upper right region, although those cuvres tend to overlap with each other.
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Figure 3.8 Picture taken from oscilloscope showing the phase portrait of the
chaotic motion in the single diode resonator. It expanded in one diagonal

direction and contracted in another.
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Figure 3.9 Phase plot of period-8 oscillation from simulated Egs. 3.21-3.23 for

single diode resonator. Compare this plot with Fig. 3.7.
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Figure 3.10 Phase plot of a chaos from simulated Eqs. 3.21-3.23

diode resonator. Compare this plot with Fig. 3.8.

for single
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Figure 3.11 Power spectrum corresponding periods 8 of Fig. 3.7 and Fig. 3.9 for

the single diode resonator system. The second peak from the right is the

fundamental frequency.
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Figure 3.12 Power spectrum corresponding chaos of Fig. 3.8 and Fig. 3.10 for
the single diode resonator system. Broad hand spectrum indicated that the

system is truely in chaotic.
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Figure 3.13 Power spectra for (a) period-8 oscillations and (b) chaotic

oscillations obtained from simulated systems.



85

‘UIB)SAS 10}eu0sSal apol

p ojbuls e 10} Juswuadxa Woij pauteo

uwesbelp uonedinyig vi

¢ ainbi4




86

Figure 3.15 Bifurcation diagram obtained from simulated Eqgs. 3.21-3.23 of a
single diode resonator system. Compare this plot with Fig. 3.14 of experimental

result. This plot contains 500,000 data points.
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Figure 3.16 Enlarged bifurcation diagram showing the first portion of the Fig.

3.15. It has period doublings, period 5, period 7, efc.
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Figure 3.17 Enlarged bifurcation diagram showing the second portion of the

Fig. 3.15.
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Figure 3.18 Circuit of a line-coupled diode resonator system.
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(b)

Figure 3.19 Phase plots for (a) period-1 with driving amplitude V, < 6.07V and
(b) two fequency quasiperiodic oscillations with driving amplitude in the range:

.07V < V, < 9.87V.
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(a) (b)

Figure 3.20 Sequence of phase plot for the driving amplitude V, = 10.05V ie,
after the first transition to chaos. (a) Period three state. (b) Quasiperiodic state.

(c) Frequency locked state. (d) Second chaotic state.
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Figure 3.21 Power spectrum of the quasiperiodic state shown in Fig. 3.20(b).

Here the two basic frequencies are f, = 50.22KHz and f = 4.43KHz.
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Figure 3.22 The power spectrum of frequency locked state corresponding to

the phase plot shown in Fig. 3.20(c). The locking ration is 33/3.
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Figure 3.23 Power spectrum of chaotic state corresponding to the phase piot

shown in Fig. 3.20(d).
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Figure 3.24 Bifurcation diagram obtained from Egs. 3.24-3.28 of the simulated
line-coupled diode resonator system. The drving amplitude ranges from 2.0V to

3.0V. This plot contains 300,000 data points.
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Figure 3.25 Ancther bifurcation diagram obtained from Eqgs. 3.24-3.28 of
simulated line-coupled diode resonator system. The driving amplitude is ranging

from 3.0V to 4.0V. This plot contains 300,000 data points.
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Figure 3.26 The Poincaré section of a chaotic attractor for a simulated four-line-

coupled diode resonator system. Compare this plot with Fig. 3.32(a) of the

experimental result.
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Figure 3.27 System signals (top) and control signals (bottom) for (a) chaotic

attractor with control off, (b) stabilized period-2 and (c) stabilized period-8.
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(c)

Figure 3.28 Phase plot for (a) chaotic attractor before the control (b) stabilized

quasiperiodic oscillation and (c) stabilized periodic locked state.
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Figure 3.29 Power spectrum for the chaotic attractor before the stabilization; the

corresponding pahse plot is shown in Fig. 3.28(a).
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Figure 3.30 Power spectrum for the stabilized quasiperiodic oscillation; the

corresponding phase plot is shown in Fig. 3.28(b).
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Figure 3.31 Power spectrum for the stabilized periodic locked state, where the

locked ratio is 22/2; corresponding phase plot is shwon in Fig. 3.28(c}.
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Figure 3.32 Poincare sections of a four-line-coupled diode resonator system for
(a) a chaotic attractor before the control on and (b) the two-frequencies
quasiperiodic oscillation stabilized from the above chaotic attractor. Their power

spectra are shown in Fig. 3.33(a) and (b) respectively.
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Figure 3.33 Power spectra for the (a) chaotic motion before the stabilization and
(b) quasiperiodic oscillation with two incommensurate frequencies as result of the

stabilization.
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Figure 3.34 A Tunnel diode relaxation oscillator unit. L, and L, are inductors; R,

R, and R, are resistors; D, and D, are tunnel diodes; k£ is the power supply. The

effective capacitors (C, and C,) for two tunnel diodes and an extra coupling

resistor (R) for another version of oscillator circuit are drawn in dashed lines.
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Figure 3.35 Two coupled relaxation oscillators. Voltages are measured at A and

B. The values for elements in this circuit are listed in the Table 1.
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Figure 3.36 (a) Synchronized chaotic voltages. Top trace and bottom traces are

measured at A and B respectively. (b) Corresponding power spectra.
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Figure 3.37 (a) Chaotic voltages before coupling (without R.). (b) Synchronized

chaotic voltages with coupling of R...
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Figure 3.38 Power spectrum for synchronized voltages of Fig. 3.37(b).
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Figure 3.39 (a) Synchronized chaotic voltages. (b) Corresponding power

spectrum.
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Figure 3.40 Syncronized chaotic voltages for the same experimental conditions
as Fig 3.37(b). The data were obtained by digitizing the signals at 8-bit resolution
and 5Mhz speed.



118

Tunnel Diode Voltages (Arb. Units)
S

-

S

o

Time (Arb. Units)

10



120

Figure 3.41 (a) Chaotic voltages entrained at 2/3. (b) Corresponding power

spectrum.
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Figure 3.42 (a) Variation of the principal Lyapunov exponent with respect to
replacement time for time series of Fig. 3.38(a). (b) Variation of the principal
Lyapunov exponent with respect to replacement time for the time series of Fig.

3.38.



122

I
100.00 P-I

(a)

3
8
—
b

80.00 — —

70.00 —

60.00 — ~

50.00 -

Exponent (1/sec) x 10°

40.00 —

30.00 - -

1 I l
0.00 50.00 100.00

Replacement Time (Arb. Units)

130.00 —

ool () | )

0’
5
8

:

100.00

8
8
;

3 3
2 8
!

3 &
8 8
1

Exponent (1/sec) x 1
8
8
T

30.00 —
20.00 -

I ] l
0.00 50.00 100.00

Replacement Time (Arb. Units)



CHAPTER 4

AUTONOMOUS AND EXTERNALLY DRIVEN PERIODIC AND
CHAOTIC OSCILLATIONS IN n-InSb

4.1 Introduction

Spontaneous and externally driven periodic and chaotic oscillations! have
been studied experimentally in a number of semiconductors: n-GaAs?®®! p-Ge®
"% high purity n-InSb"""®!and n-Si". Various types of periodic and chaotic
oscillations were observed in these experiments including period-doubling
bifurcation (Feigenbaum scenario), Hopf bifurcation to a simple periodic
oscillation, and intermittency. In this chapter, further investigations on periodic
and chaotic voltage oscillations in n-InSb at low temperature and under

transverse magnetic field are presented.

4.2 Hiipper and Schll Model"!

The basic idea of this model is to consider both the applied field and the
induced Hall field as dynamic variables whose time dependence is governed by
dielectric relaxation. These two field components are linearly dependent on the
carrier density. The field relaxation process combined with the generation-
recombination(GR) kinetics of the carrier density yields oscillatory instabilities at
a threshold value of the magnetic field.

in this theory quantum effects leading to the formation of Landau levels
are neglected. The dynamics of the electric field E in this case is thus

determined by :

123
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jy=j+ € E (4.1)
where j is the conduction current density vector, eE is the displacement current
density, the dot denotes the time derivative. When a magnetic field is applied
perpendicular to the current density it will gives rise to a Hall field E, which leads
to a spatially inhomogeneous transverse carrier density distribution. If the effect
of these nonuniformities is neglected, the conduction current density can be
given by!'®

J= enuu E - enuu ExB (4.2)
where wu is the mobility of the carriers, e is the electric charge of carriers, n is
the carrier density, and gy = p/(1+ ¢/B?) is the mobility reduction factor due
to magnetoresistance!'. Now choosing the coordinate system such that j,=(j,,
0, 0) and B = (0, B, 0), from Eq. (4.1), Eq. (4.2) and the kinetic eguation
describing the generation-recombination processes one can obtain the following
set of dynamic equations for the electric field components E,, E,, and carrier

density n:

EE_ = j,- enuy(E, + uBE)

£E, = enu,E, - enup BE, 4-3)
n = f(n, E, B)

Here E = (E? + E»". For a constant carrier density, Eq. (4.3) becomes a

simple harmonic oscillator. However, if there exists a nonlinear dependence of

non the field E, Eq. (4.3) form a three-dimensional nonlinear coupled differential

system. Hupper and Scholl showed!™ that without the magnetic field in this

system, oscillatory instabilities and chaos are found only if an AC drive is applied
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or if an additional, excited impurity level is considered. But the presence of
magnetic field changes this situation dramatically. Even in the case of constant
mobility and a single impurity level, self-generated periodic and chaotic
oscillations can be induced due to the coupling of longitudinal field with the
dynamic Halt field.

To simplify the numerical simulation, one can assume that GR processes
are related to a single (donor or acceptor) impurity level and restricted to thermal
ionization, impact ionization, and trapping processes. Then n can expressed as

follows:

A=Rfn E B) = XNy, - -Tnn + N) + XN, , -n (44

where N4 = Ny - N, is the effective concentrations of donors, Na the
concentration of acceptors, and X,, T, and X, are the field dependent rates for
the thermal ionization, trapping, and impact ionization processes respectively.
Clearly this theory is not restricted to any particular semiconductor
materials. Until now the oscillatory instabilities induced by transverse magnetic
field have been experimentally found in p-Ge®™, n-GaAs'®, and n-InSb!""'? . The
simulation of this Hipper-Schéll theory based on p-Ge!"*I" have shown that for
some parameter values the system exhibits period doubling route to chaos.
There exists a boundary that separates the oscillatory instability region with the
static region in the control-parameter plane of magnetic field B versus current
density j. For any fixed current density, increasing magnetic field yields a

sequence of period doubling route to chaos.

4.3 Experimental Results and Discussion
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Autonomous Oscillations: An overview of the autooscillatory behavior for n-InSb

under transverse magnetic field is provided by the two parameter (B, j,) phase
diagram, a plot of the boundaries between oscillatory instability regimes and
static regimes shown in Fig. 4.1. Increasing B upward along a line of constant
current density yields a simple period-doubling sequence to chaotic regime. This
result agrees very well with the theoretical simulations!™!'¥, (Compare the Fig.
4.1 with the Fig. 2(d) of Ref. [15]).

The experimental data were significantly contaminated with noise. Thus
after obtaining time series with high speed digitizer, software filtering was used
exclusively to smooth the data in the construction of wave form plots and phase
plots. Fig. 4.2 shows a wave form before and after filtering. One can see that the
significant portion of random noise are smoothed out while almost all
components of signal itself are kept.

Typical changes induced by increasing the magnetic filed B are presented
in the autooscillatory time evolutions of V| (t) and V,(t) (Fig. 4.3}, in their power
spectra (Fig. 4.4), in their autocorrelation functions(Fig. 4.5), and in selected
phase plots of (V (1), V/(1)), (V,(t), V (1)), and (V_ (1), V(1)) (Fig. 4.6). The DC
current density supplied to the sample was held constant at j, = 0.15A/cm?. The
lattice temperature is kept at 1.8K.

For field close to B = 0.5T a single periodic orbit of frequency ~ 30 kHz
emerges. The time evolutions of the Hall voltage and longitudinal voltage in this
regime are shown in Fig. 4.3(a) and 4.3(b) respectively. The power spectrum
corresponding the time series of Fig. 4.3(a) is shown in Fig. 4.4(a), in which the
first peak from left is the fundamental frequency (= 30kHz), and all other peaks

are subharmonic oscillations. When increasing the magnetic field this
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fundamental frequency will slowly increase. In the autocorrelation function Fig.
4 .5(a) for the same time series as Fig. 4.4(a) one can see single periodic
oscillations with very slow decay of amplitude. This decay is due to the inevitable
system noise. In the phase plot Fig. 4.6(a) for the same time series of Fig. 4.3(a)
the phase ftrajectory is approximately a single closed curve, which is the
characteristic of period-1 limit cycle.

At B = 0.55T, a period doubling bifurcation occurs with a new frequency
of = 17kHz in addition to the fundamental frequency = 34kHz, which can be
seen in power spectrum Fig. 4.4(b). Fig. 4.3(c) is the longitudinal voltage, and
the signal is nearly repeated every other cycle. Fig. 4.5(b) shows its
autocorrelation function; the function is oscillating with period-2 and slowly
decay over time. Fig. 4.6(b) is the phase plot, in which one can see double
closed curve corresponding the fundamental frequency oscillation and period-2
oscillation.

At B = 0.4T a subsequent period-doubling bifurcation occurs. Now the
fundamental frequency is around 72kHz, and other three peaks are located at
around 18kHz, 36kHz, and 54kHz (Fig. 4.4(c)). The autocorrelation function
corresponding to the same time series (Fig. 4.5(c)) has period-4, and its
amplitude is decaying slowly due to the noise. Fig. 4.6(c) shows the phase plot
for this period-4 oscillations, in which one can identify four closed curves.

At B = 0.89 T the system is at the onset of a chaotic regime, and the
wave form can be seen in Fig. 4.3(e). Its power spectrum, as shown in Fig.
4.4(d), is broad band. The correlation function of the same signal is seen to
exponentially decay (see Fig. 4.5(d)). This means that the signal lose the

correlation over a certain period of time, and this reflect the unpredictability
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(sensitivity on initial conditions) of the chaotic system. Fig. 4.6(d)} shows the
phase plot in this regime. From the phase plot one can see features of
converging, spreading, and folding of the system phase trajectory, which is a
typical for a strange attractor.

The above sequence of transition phenomena can also be observed while
one keeps magnetic field constant, and uses current density as confrol
parameters . These results are consistent with the fact that in Hiipper-Schéli
system like n-InSb self-generated periodic and chaotic oscillations can be
induced by magnetic field as predicted by Hipper and Schall'®.

Lyapunov Exponents Calculation: Stronger evidence for the existence of a

chaotic regime can be provided by estimations of the Lyapunov spectrum
obtained directly from the experimental time series. To accomplish this, the Wolf
et al”"! algorithm (See Sec. 3.2 for details) was employed first. The sampling
rate was selected as r, = 0.2us to produce enough data points in the intervals
of the rapid variation of the system relaxational signals (with typical duration of
5us), at the same time to have long enough time series for Lyapunov exponents
calculations.

Data filtering allows one to show much more clearly the underlying
structure of the attractor, as seen in Fig. 4.3 and 4.5. However, since heavy
filtering may change the values of the Lyapunov spectrum, one has to use the
unfiltered data for Lyapunov analysis. The Wolf algorithm is known to be quite
sensitive to noise, consequently, the numerical stability of calculated exponents
with the parameters of this routine is carefully checked. Assuming that one can
build good embeddings from each of the two observed scalar signals

(longitudinal and Hall voltages) one compares first the values for the maximal
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Lyapunov exponents obtained from these two time series for a chaotic attractor
corresponding to B = 0.89T and j,= 0.15mA/cm’. The Lyapunov exponent
obtained from the longitudinal signal was estimated to be 9 (in units of the basic
frequency, which was selected to be 10° Hz), and the best estimate for the same
exponent from the Hall voltage was 2. In all of the measurements the Hall
voltage was always considerably noisier than the longitudinal voltage. It is
known™ that added noise typically lowers the value of the calculated principal
exponent. This therefore explains the discrepancy of two exponenis. Additionally,
the numerical stability of each caiculated exponent was only satisfactory when
using the less noisy longitudinal signal. The positive exponent obtained indicates
that the system is truly in a chaotic regime. In addition, the consistency of the
order of magnitude between exponent from longitudinal voltage and that from
Hall voltage provide a good example that Wolf ef al. ’s algorithm is stable for the
largest Lyapunov exponent calculation.

AC-Driven system: To further investigate this dynamic system, one can added

a periodic driving source to the original current source. Choosing a fixed driving
amplitude and driving frequency (f = 100kHz), the following sequence of
transitions as one increases the current density has been observed: (see Fig.
4.15 of Ref. 20) periodic oscillations with driving frequency f, -> period doubling
f,/2 -> chaos -> period 3 f /3. (see Fig. 4.16 of Ref. 20) period 7 f,/7 -> chaos ->
periods-3 f,/3 -> chaos.

An additional interesting experiment on this system is to study the stability
and the transitions from chaos to periodicity triggered by a harmonic drive of
variable amplitude. It is well known that®” when a linear spring is driven by a

harmonic driven source, the motion of the spring will oscillate with the same
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frequency as the driving source, no matter what the initial condition the spring
is. More importantly, the oscillating amplitude of driven spring, as well as its
phase, will depend on the driving amplitude and its frequency. Suppose one was
trying to obtain a fixed value oscillating amplitude A, for the spring. Then for any
particular driving frequency f, one has to adjust the driving amplitude A, to a
certain value. Fig. 4.7 shows the dependence of this amplitude A, versus the
driving frequency f. One can see that it has a resonance minimum at the intrinsic
frequency of the spring, which means that it is easier to drive the spring to a
oscillation when the driving frequency is close to the intrinsic frequency of the
system.

For a typical chaotic attractor, the different frequencies of the driving
signals need to have different critical amplitude to make the transition from
chaos to periodicity. There is a resonant frequency f;, for which the transition
from chaos to periodicity takes place at the smallest possible amplitude A, of the
driving signal. Fig. 4.8 shows the dependency of five different critical amplitudes
upon their frequencies. In this case the initial fundamental frequency without the
driving source is 63.5kHz, which is very close to the frequency of the minimal
critical driving amplitude A.. This stability is very similar to that of the driven
harmonic oscillators shown in Fig. 4.7.

It has been conjectured® that critical amplitude A as described above
satisfies a scaling law A, = cK*, where K is the Kolmogorov entropy, ¢ is the
system dependent constant, and the exponent x is universal. Numerical
experiments with several specific systems® gave x = 0.3 + 0.1 with indications
that x could be equal 1/3. For a system that can be effectively described in a

three dimensional state space, the Kolmogorov entropy coincides with the
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positive Lyapunov exponent. To check this prediction on AC-driven n-InSb
system, four different chaotic attractors were chosen by changing the magnetic
field parameter, and their minimal critical driving amplitude A. can be estimated
by appropriately scanning the driving frequency. The Lyapunov exponents of the
chaotic attractors were estimated by using Bryant’s algorithm (See Sec. 3.1 for
details). The results are summarized in Fig. 4.9, and gave x = 0.4. Thus the
result is in excellent agreement with the numerical experiments just discussed
and indicate the presence of the scaling law in these systems. Since the chaotic
attractor has very few properties can be used to quantitatively characterize them,
the existence of the universal scaling law as described above becomes

extremely important.

4.4 Conclusions

In this chapter, the electrical oscillations in n-InSb at low temperatures
under transverse magnetic field has been studied. The results are consistent
with Hipper and Schéll’'s theory in that there exists a boundary in the two
parameter phase space (B, j,). This boundary separates oscillatory instability
regimes from static regimes. By changing magnetic field B at a particular current
density j, the system will follow the period doubling route to chaos. Lyapunov
exponents were obtained by using Wolf ef al’s algorithm and found to be
consistent with the observed phenomena. Forthe AC-driven system, the stability
of a chaotic attractor was studied, and its stability to the harmonic driving source
was found to be similar to that in a simple driven oscillator. The induced
transitions from chaos to periodicity by AC-driving source agrees well with the

conjectured scaling law for chaotic systems.
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Figure 4.1 Parameter phase plot shows the boundaries between autooscillatory

instability region and static region.
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Figure 4.2 (a) Actual signal of logitudinal voltage taken by a high speed digitizer.

(b) The same wave form after software filtering.
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Figure 4.3 (a) Hall voltage signal for period-1 oscillation. (b) Longitudinal
voltage signal for period-1 oscillation. (¢) Wave form for period-2. (d) Wave form

for period-4. (e). chaotic signal.
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Figure 4.4 Power spectra of longitudinal or hall voitage signals for (a) period-1

oscillations, (b) period-2 oscillations, (c) period-4 oscillations, (d) chaotic regime.
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regimes.
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Driving Amplitude (Arb. Unit)

Driving Frequency (Arb. Unit)

Figure 4.7 The plot of required driving amplitude A, versus driving frequency f
to drive a linear spring to a fixed amplitude oscillation. The dashed line

represents the position of intrinsic frequency for the spring.
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axises are in log scales. Therefore y = 0.4.



CHAPTER 5

CHARACTERIZATION OF DEEP LEVELS !N Hg,,Cd,Te BY USING
RESONANT IMPACT-IONIZATION SPECTROSCOPY

5.1 Introduction

For the last two decades, the ternary semiconductor Hg, Cd Te alloy has
been used as the material of choice for the construction of the intrinsic infrared
detectors in both military and commercial imaging systems. One important factor
which affects the detector’s response and quite often limits its performance is the
presence of impurity or defect levels.""®! Among these defects, those that lie
deep in the forbidden gap region are very important since they can act as
effective recombination centers controlling excess carrier lifetime. These deep
levels can also act as centers that enhance interband tunneling, giving rise to the
dark currents in intrinsic detectors based on p-n diode or metal-insulator-
semiconductor (MIS} device concepts.

On the other hand, details concerning these deep level defects still remain
poorly understood. In addition, these defects or impurities usually have very
small absorption cross section, and they are of sufficiently low density that they
are extremely difficult to detect. Deep level transient spectroscopy (DLTS) is one
of the most popular techniques to study deep levels in silicon and -V
semiconductors'®I®.. But for narrow gap semiconductors like Hg, Cd, Te, DLTS
will not provide enough data points to accurately determine the energy levels.

Other techniques include Thermally Stimulated Capacitance (TSC) and
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Admittance Spectroscopy (AS). However, the TSC" is limited by the background
drift and noise due to leakage currents. Also the AS® is appropriate only for
majority carrier traps. It is therefore highly desirable to employ new, sensitive
technique to characterize these deep level defects in Hg, ,Cd,Te.

The mercury (Hg) vacancy is a natural defect in HgCdTe due to the rather
weakly bound nature of the Hg lattice atom and is commonly believed™ to act
as an acceptor. The Hg vacancy concentration in HgCdTe is generally reduced
from a large as-grown concentration by a post-anneal in a Hg-rich atmosphere.
During this anneal, Hg atoms enter the lattice as interstitials and move through
the crystal until they encounter and fill a vacancy site. Other methods such as
ion-beam milling""*¥""! and the baking of an oxide surface exist to introduce Hg
atoms as interstitials into the HgCdTe lattice and can be used to convert
vacancy-doped p-HgCdTe to n-HgCdTe. Until now, a very limited amount of
work has been done to study the electrical properties of Hg interstitials in
HgCdTe!'"™"". Recently, two methods of Hg interstitial production mentioned
above (ion-beam milling and oxide baking) have been shown! to produce a
long-range, bias-dependent dark current in n-HgCdTe MIS devices.

A new method called RIl spectroscopy was recently!"'I'? developed and
used to investigate Hg interstitials in both bulk and LPE samples of HgCdTe
with x value from 0.22 to 0.24. For x =0.22 samples, Hg interstitials are
found to be responsible for the formation of defect states near 45 meV
and also appear to form states near 60 meV above the valence band edge.
For x = 0.24, the Hg interstitials are found to form states near 60 meV
above the valence band. These results are consistent with that obtained

by using other techniques. Therefore, RIl spectroscopy is a very
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sensitive technique to study deep levels in HgCdTe.

In this chapter, extended investigations of Hg interstitials in
both bulk and LPE samples are reported. After a theoretical discussion
of Rl mechanism (Sec. 5.2), the experimental results and data analysis
are presented and discussed (Sec. 5.3). The final conclusions and

remarks is included in Sec. 5.4.

5.2 Resonant Impact lonization Mechanism

Resonant Impact lonization (RIl) spectroscopy is a new type of magneto-
optical effect involving resonant oscillations in the photo-conductivity(PC) of
semiconductor due to impact ionization of valence electrons. This form of
spectroscopy has a unique magneto-optical signature, that is that the peak
positions of PC response are independent of laser photon energy.

Fig 5.1 shows a typical wavelength dependence of both One Photon
Magneto-Absorption (OPMA) and RIl spectra for an x = 0.24 bulk sample. The
RIl resonances are those between 1.5T and 3.0T, and they do not shift with
incident laser wavelength. On the other hand, the two peaks that appear at
higher magnetic fields are due to OPMA and impurity-to-band magneto-optical
transitions, and they are seen to shift rapidly with the laser wavelength. Note that
if the photon energy is less than the separation between the highest Landau
level in the valence band and the lowest in the conduction band, the PC signal
becomes very small, the remaining signal due only to Impurity Magneto-
Absorption(IMA) and Two Photon Magneto-Absorption(TPMA) processes.

The transition energies for OPMA, including the exciton corrections, can

be calculated by using Pidgeon-Brown model!"®l. These calculations can be fitted
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to the OPMA data from the experiment and used to determine the energy gap
of the sample E,.

In order to understand the resonance condition that lead to the RII
oscillations, the electronic band structure of a semiconductor material under
transverse magnetic field is schematically illustrated in Fig. 5.2. Electrons are
photoexcited across the energy gap via strong one photon magneto-
absorption{OPMA), creating a large photoexcited population of electrons in the
conduction band. Some of these photoexcited electrons are then subsequently
excited well into the conduction band by the absorption of a second photon. For
a Rl resonance, the transition energies AE,; between conduction-band Landau
levels must equal the transition energies AE, between the highest Landau-
valence-band Landau level and an impurity or trap level in the gap. Thus, the
process involves the resonant relaxation of conduction-band electrons via impact
ionization of a valence electron into a trap level. Landau levels that are more
than a photon energy above the lowest conduction-band Landau level are not
effectively populated and do not contribute. In the RIl process, changes in
mobility occur whenever the electron makes a resonant transition from higher-
lying Landau level to a lower-lying one. Since the conduction band of these
narrow-gap HgCdTe samples is highly nonparabolic, the mobility increases
rapidly with increasing energy as measured from the bottom of the conduction
band. Thus, resonant peaks in the PC response are seen whenever the RII
mechanism is present, and it does not depend on the incident photon energies.

in order to calculate the magnetic field positions of Rll resonances, a
computer program was written to incorporate the code that calculate Landau

level energies over magnetic field and to search for the impurity energy level and
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field positions that satisfy the RIl resonance condition. The sequence of the
algorithm is illustrated as follows:

(1) Calculate both the conduction-band and valence-band Landau level
energies for a wide range of quantum number n and over the appropriate
magnetic field range.

(2) Input a range of impurity energy levels [E,, E] and energy incremental
step AE.

(3) Input a range of magnetic field [B, B,] and magnetic field incremental
step AB.

(4) Input the experimental magnetic field positions (B,, B,, ..., B,) for the
Ril resonances.

(5) Given a impurity energy level E, do the following: For every magnetic
field B (start from B, and increment by AB each time), compare the difference of
E and highest (n = 0) valence-band Landau level energy (which is E,)with the
difference of each pair of conduction-band Landau levels (which is E)). If |E,-E,]
is less than a predefined constant e. and the magnetic field B can match any of
the input field positions b, within a predefined uncertainty €,, a match is found
and the energy E, the magnetic field B and the conduction band Landau level
numbers are output as a candidate for the RIl resonance. Otherwise, increment
the magnetic field by AB and repeat the comparison again, until the magnetic
field reaches B,

(6) Increment impurity energy E by AE. If this E is less than E,, go back
to (5), otherwise terminate the program.

Usually many matches can be found from this procedure for some

uncertainty parameters e and e;. Further confirmation of a particular level E
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comes from searching the successive matching of a multitude of field positions
yielding approximately the same energy E. Thus, the preciseness of individual
matchings is not as important as the trend of matches to the same energy. In
addition, since there are usually more than one trap level in each sample, the
spectra represent a superposition of peaks which at lower fields become

unresolved.

5.3 Experimental Results and Discussion

To study the effect of Hg interstitials, a control sample and a "doped"
sample were prepared from a same piece of bulk crystal. The "doped” samples
were prepared in such a manner to have a large Hg interstitial concentration as
compared to control sample. Fig. 5.3 shows the spectra obtained from both the
control and the "doped" x = 0.22 samples at a temperature of 5K. In spectra A
(the control sample), the only resonances seen are due to OPMA, which would
be expected for a sample with very low amounts of impurity or defects levels.
The verification that this structure arises from OPMA processes is seen in Fig.
5.4 and Fig. 5.5. Fig. 5.4 shows the wavelength dependence of the observed
structure. Fig. 5.5 shows the fit of this set of data to calculated OPMA transition
energies resulting in an energy gap of 10512 meV for this sample.

In spectra B (Fig. 5.3), the structure seen is entirely different; the
resonance peaks in the PC response do not shift with laser wavelength. These
resonances are thus due to the RIl process. In this figure, the RIl structure
dominates and obscures the OPMA resonances seen in the spectra A. In
addition, the RIl peaks seem to be superimposed on a broader resonance,

centered about B = 2.0T. This broad resonance is similar to that seen by Ipposhi
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et al'", and is possibly due to magnetophonon resonance trapping of excess
carriers involving the emission of LO phonons by a Shockley-Read center.

The resonant field positions of the RIl spectra can be used to estimate the
deep trap levels, and the results are listed in Table 5.1. The trap levels
responsible for spectra A, upon analysis, are found to be at =44 and =59 meV
above the valence band, which is consistent with values obtained by using other

technigque!'.

Therefore these results show that deliberately "doped” Hg
interstitials in HgCdTe produce deep trap levels in Hg, Cd,Te.

In addition to the OPMA resonances seen in Fig. 5.4, an additional weak
resonance is seen as a "shoulder”" at the high-field end of most of the spectra.
The transition energies versus magnetic field for this peak are represented by
the open squares lying about 4 meV below the lowest OPMA transition shown
in Fig. 5.5. These are due to the effect of bound excitons. Bound excitons are
typically difficult to observe in narrow-gap semiconductors because of the
extremely small binding energy of the complex. However, a similar transition has
been seen in n-InSb!"¥, and it corresponded to an exciton bound to a neutral
acceptor level. One way''"! that has been used to determine the nature of the
bound-exciton complex is to compare the observed binding energy of the
complex with simple theoretical estimates of the four possible complexes. The
four cases and their binding energies are!'®! as follows:

D*x (exciton bound to an ionized donor) = 0.06E,
D% (exciton bound to a neutral donor) = 0.13E,
A’ (exciton bound to a neutral acceptor) = 0.07E,
A'x (exciton bound to an ionized acceptor) = 0.4E,

For RIt modei to be valid the complex center must be able to receive electrons,
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i.e., an ionized donor, therefore the bound excitons can’t be A'x. Also, D and
A% can also be ruled out from energy considerations. Thus, using 59 meV as
donor energy E,, then the D'x bound-exciton has energy of = 3.5 meV, which
is in good agreement with the observed ~ 4 meV binding energy. Presumably,
the donor level in this case is ionized by the intense laser irradiation which
produces transitions from the =~ 59 meV level to the conduction band.

RIl structure is also seen in another bulk sample of x = 0.24 as shown
in Fig. 5.6(a). This structure is presumably due to residual Hg interstitials that
were introduced during the recrystalization step of this sample’s growth. For the
purpose of this investigation Hg interstitials were deliberately added to one of the
pieces of this sample to study how additional Hg interstitials would effect the RII
resonances. In Fig. 5.6 (b), the RII spectra for this "doped" sample was plotted
to compare with the control spectra (Fig. 5.6(a)). Note that for the field range
shown in the Fig. 5.6, the peaks in both spectra occur at essentially the same
magnetic field positions, but the resonances appear stronger in the "doped”
sample. Fig. 5.7 shows the same spectra with monotonic background for each
sample remove by fitting approximate Gaussian peaks to the original spectra.
Clearly, the resonances are stronger (by about a factor of 2) in the Hg 'doped"
sample, indicating that the introduction of Hg interstitials increases the population
of the trap levels responsible for the peaks shown (or Rl structure).

Fig. 5.8 shows a comparison of TPMA resonances obtained from the
same control and "doped" sample as discussed above(x=0.24). The TPMA
lifetimes were also determined by examining the PC decay and were seen to be
=~250pus for the control and =~ 150us for the "doped" sample. It is clearly seen

that the TPMA resonance (spectra B) for the "doped” sample is substantially
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stronger than the control sample (spectra A). It is well known!"® that the two-

photon absorption constant g(w) is proportional to a second-order matrix element

kk
v

r.* in the perturbation theory:

k_ k'

rctk’ = pcnpnv (5 1)
n  hw-(&h)-¢)

where g, is the energy of an intermediate level n and £°k) is the energy of
electron in the conduction band(ail the energies are measured from the bottom
of the conduction band); p.,* and p,* are the matrix elements of the electron
momentum operator. From the above equation (Eq. 5.1) one can see that the
absorption constant B(w) should rise strongly near the absorption edge in the
presence of an impurity level located near the middle of the forbidden energy
gap, i.e., these intermediate states are provided by the impurity level, and these
deep levels are located at £, ~ -E /2. Thus, the addition of trap levels at
approximately mid-gap has effectively increased the TPMA transition strength by
providing more near-resonant intermediate states for the TPMA transitions.
Therefore the enhancement of TPMA for "doped" sample in Fig. 5.8 is consistent
with the results from RIl spectra that the addition of Hg interstitials increased the
concentration of deep trap levels.

The RII peak positions from the complete spectra were obtained by using
magnetic-modulation and lock-in-amplifier techniques, which yields more RII
positions. The results for both control sample and "doped"” sampie are tabulated
in Table 5.2. For the control sample, two levels were obtained by a best fit: one
at =16 meV and one at =61 meV. The 16 meV activation energy corresponds

closely with that of the lowest Hg vacancy level®, and the 81 meV level lies
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close to the middle of the gap for this x=0.24 sample. However, upon analysis
of the "doped" sample, only 61 meV level can be found from the spectra. Since
the introduction of additional Hg interstitials should not only create additional trap
levels but also fill some of the remaining Hg vacancies in the sample, one would
expect to see both an increase in the trap concentration and a decrease in
vacancy concentration, resulting in the observed spectral feature shown in Fig.
5.6 and the absence of the vacancy level in the doped sample in Table 5.2.

RIl resonances have also been observed in LPE samples. Fig. 5.9 and
Fig. 5.10 shows wavelength dependence of the spectra obtained from a x=0.22
sample of LPE Hg, Cd Te. This sample was subjected to numerous damaging
fabrication steps, e.g., devices were fabricated on this film and then removed,
and anodic oxides were grown, baked and then removed. Finally, for this study,
anodic oxide was grown, Hall bars were delineated and metalization deposited.
Note that the spectra seen in Fig. 5.9 and Fig. 5.10 are almost identical to that
of spectra B of Fig. 5.3, a bulk x =~ 0.22 sample. Fig. 5.11 shows the
theoretically calculated transition energies for OPMA and experimental
absorption peaks for the same LPE sample as Fig. 5.9 and Fig. 5.10. It can be
seen that some of the peaks are possibly OPMA, while other peaks fall on five
different vertical lines, i.e. they do not depend on photon energy. So they are
due to the RIl mechanism. In addition, the energy gap of this sample is 99.5
meV from the calculation, thus the x-value is = 0.22. This energy gap and x-
value is confirmed by FTIR measurements performed at Texas Instruments, Inc.

Again, the impurity levels responsible for the Rl peaks were estimated ,
and the result is listed in Table 5.3. One can see that the there are three deep

levels: 40 meV , 45 meV and 59 meV. These results are consistent with those
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for the bulk samples. It is important to note that in Table 5.3, any one of the
deep levels are responsible for multiple resonance field positions; e.g., 2.53T,
3.08T, 5.50T, and 8.31T are all caused by 40 meV level. On the other hand,
each resonance position might contributed by several resonances from different
deep levels, e.g., all three deep levels can contribute to the resonance position
of 3.08T.

This LPE sample was also subjected to a 140°C bake to "dope” the
sample with additional Hg interstitials. Fig. 5.12 shows the comparison of spectra
before and after a bake. It can be seen that the RIl resonances are larger in the
baked sample . This result is similar to the results from the bulk sample, where
additional Hg interstitials were shown to provide more deep trap levels and
enhance the RIl transition strengths.

Another LPE sample of x = 0.22 was passivated with a sulfide rather than
an oxide in order to investigate the effects resulting from the introduction of the
Hg vacancies rather than Hg interstitials. Since the passivation layer is a sulfide
rather than an oxide, no Hg interstitials will be created by a high temperature
bake. Fig. 5.13 shows the resonance peak positions obtained from magneto-
optical spectra for unbaked LPE sample. It also shows the calculated OPMA
transition energies calculated. One can see some of the peaks are fitted with
OPMA transitions. But there are clearly some other peaks caused by RII
transitions. From the data fit, the energy band gap for this sample is determined
as around 89.5 meV.

Similarly, the experimental peaks and calculated OPMA transition energies
for the same sample after a bake at 220°C are shown in Fig. 5.14. Now, all of

the peak positions are described well by OPMA, and there are no RIl structures.
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The energy gap for this baked sample is around 88.2 meV, which is slightly less
than that before the sample was baked.

Fig. 56.15 shows the spectra obtained from an x = 0.23 sample of LPE
Hg,,Cd Te. This sample was obtained form a sample which was grown from a
melt in which indium was included as a dopant at a concentration of =
5x10™cm™. The broad set of OPMA resonances are seen to shift with laser
wavelength. The results of a band-mode! analysis, shown in Fig. 5.16, yield two
distinct energy gaps: one at = 111 meV and the other at ~ 120 meV. itis
known that in LPE HgCdTe there sometimes exists a graded energy gap near
the CdZnTe substrate interface. Thus the resonances which yield the higher gap
presumably come from OPMA in the region near the interface, whereas the
lower energy gap resonances are representative of the bulk of the remaining
sample region.

Fig. 5.17 shows spectra from an x =~ 0.24 LPE sample which was not
doped with indium. Note that the resonances resemble that of the RIl spectra;
i.e. the resonances positions do not shift with laser wavelength. The results of
an RIl analysis on these peaks yields a trap level of approximately 58 meV for
this sample (the energy gap for this sample E;, = 126 meV at 5K). Indium
incorporation in LPE HgCdTe is known®™ to improve device or detector
properties; therefore the above experimental results provide evidence for the

reduction of the trap levels via incorporation of indium in the melt.

5.4 Conclusions and Final Remarks
Rii spectroscopy has been used to investigate impurity and defect (trap)

levels that presumably are caused by Hg interstitials in both bulk and LPE
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crystals of Hg,,Cd,Te. Hg interstitials were deliberately introduced into bulk
samples with x = 0.22 and x = 0.24. RIl spectroscopy provide direct evidence
for the formation of trap levels near 45 and 60 meV above the valence band
edge for the x = 0.22 sample, and near 60 meV for the x = 0.24 sample. The
60 meV level in the x = 0.24 (E; = 121 meV at 5K) sample is seen to enhance
the transition strength of resonant TPMA observed at high fields by acting as a
near-resonant intermediate state for the two-photon transition process. In
addition, the weak resonance peaks in most of the spectra for x ~ 0.22 bulk
samples were identified as due to the effect of excitons are bound to ionized
donors.

For the LPE samples that have Hg interstitials introduced during the post-
anneal in Hg-rich atmosphere, their RIl spectra show that there are three deep
levels: 40 meV, 45 meV and 59 meV. Baking the LPE sample with a oxide layer
introduces more Hg into the samples and produces stronger RIl resonances. On
the other hand, baking the sample that does not have a oxide layer, causing the
Hg interstitials to either fill some vacancies or be drive out of the sample, make
the RIl structures disappeared. All these results consistently show that Hg
interstitials in both bulk and LPE Hg, ,Cd Te create deep trap levels in these
materials. Thus, RIl spectroscopy is a very sensitive technique to investigate
deep energy levels caused by Hg interstitials in Hg, ,Cd,Te. This technigue is
generally applicable to the investigation of other defects and impurities in

HgCdTe as long as the trap levels created are accessible via the RII

mechanism.



B**YT)
BM°Y(T) Transitions AE (meV)

(£0.02T)
1.26 1.20 7->2 43.4
1.39 1.36 8—+3,;5->1 43.5
1.52 3 -0 43.5
1.65 1.62 9-54,6-2 43.5
1.83 1.94 7-3;4->1 436
2.30 2.25 8-4,2-0 43.7
247 52 43.8
2.84 2.89 6+2;4->1 58.0
3.02 63 44.0
3.57 3.47 3-1 442
3.59 2~0 58.2
473 476 4 -2 44.6
5.83 573 3->1 58.9
8.20 8.37 4--2;1-0 59.8
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Table 5.1 Comparison of experimental B and theoretical B"°” magnetic field

positions for the x = 0.22 bulk sample, along with the transitions and the impact-

ionization energies AE,.
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B&Y(T) BMeY(T) Transitions AE,(meV)
(+0.02)
0.49 0.52 3-0 16.7
0.78 0.80 2->0 16.8
1.36 1.44 92 61.5
Control 1.69 1.70 1-0;8-2| 171;615
Sample 1.90 1.91 6~ 1 61.6
2.11 2.02 4-0;9-3 61.7
2.34 2.26 72 61.8
275 274 3-0 61.9
1.42 1.44 92 61.5
1.50 1.55 5-0,;,7->1 61.5
1.66 1.69 82 61.5
1.83 1.91 6 -1 61.6
Doped 2.01 2.02 4-0;9-3 61.7
Sample 2.30 2.26 7->2 61.8
2.63 2.57 5-1;,8->3 61.9
2.78 2.74 3-0 61.9
3.13 3.12 6>2;9-4 62.0
3.60 3.72 41,73 62.2

Table 5.2 Comparison of experimental B*® and theoretical B"™*°¥ magnetic field
positions for the x = 0.22 bulk control and "doped" sample, along with the

transitions and the impact-ionization energies AE,.
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Be! Bheer Trnasitions AE,(meV)
2.53 2.54 10 -6 40.0
3.08 3.07 3-»17-4 40.0
5.50 5.50 5-3 40.0
8.31 8.30 7-+5 40.0
2.53 2.53 2-0 45.0
3.08 3.08 10 -6 450
3.98 3.98 74 45.0
5.50 5.51 9-+6 45.0
3.08 3.07 10-5 58.0
3.98 3.99 84 58.0
5.50 5.51 6310 -6 59.0
8.31 8.30 8—>5 59.0

Table 5.3 Comparison of experimental B** and theoretical B"*°” magnetic field

positions for the x = 0.22 LPE sample, along with the transitions and the impact-

ionization energies AE,.
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Figure 5.1 Wavelength dependence of both OPMA and RIl spectra obtained
from an x = 0.24 sample at 5.0K. The Rll resonances are those between
1.5T and 3.0T, and do not shift with laser wavelength. The two peaks

that appear at higher magnetic fields are due to OPMA and impurity-to-
band magneto-optical transitions and are seen to shift with laser

wavelength.
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Figure 5.2 Schematic diagram of the electronic transitions that lead to the
observed resonances. AE,, is the energy difference between the initial and
final conduction-band Landau levels, and AE, is the difference between the
energy of the trap level and the highest-lying valence-band Landau level. Rl

resonances occur when AE,, = AE,.
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Figure 5.3 Photoconductive response versus magnetic field of the spectra
obtained at 5.0K from control {(A) and interstitially "doped" (B) samples with x
~ 0.22. Note that only OPMA is seen in the control sample, and only Rl is

seen in the "doped” sample.
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Figure 5.4 Wavelength dependence of the OPMA photoconductive response
of the x = 0.22 control sample. The broad peaks in the higher field region for

all the specitra are due to the bound excitons.



PHOTOCONDUCTIVE RESPONSE

169

| | I | I
0.0 2.0 4.0 6.0 8.0 10.0

MAGNETIC FIELD (T)




170

Figure 5.5 Fan chart of transition energies for the x = 0.22 control bulk
sample. The solid dots represent the magnetic-field positions of OPMA, and
the solid lines the calculated OPMA transition energies. The open squares

represent the observed bound-exciton transition energies.
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Figure 5.6 Comparison of RIl spectra of control (A) sample and "doped” (B)
sample with x value around 0.24. The control sample is a bulk sample which
contains a residual concentration of Hg interstitials; the doped sample which
was obtained by introducing more Hg interstitials into a piece of the control

sample via an oxide bake.
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Figure 5.7 The same comparison of control (A) and "doped" (B) RIl spectra
as that of Figure 5.6, but the monotonic background of each spectrum has

been removed for better comparison of the transition amplitudes. Clearly the
transition amplitudes of the RIl resonances from the "doped" sample are two

to three times larger than those from the control sample.
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Figure 5.8 Comparison of TPMA resonances at A = 10.32uym and 5.0K from
the control (A) and "doped" (B} samples, which are the same samples as
discussed in Fig. 5.6 and Fig. 5.7. The TPMA transition corresponding to the
observed resonance is b'(-1) -» b°(1). The TPMA transition amplitudes from
the "doped" samples are seen to be two to three times larger than those from

the control sample.
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Figure 5.9 Wavelength dependence of Rl spectra for a x ~ 0.22 LPE sample.

The wavelength is from 9.64um to 10.81um.
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Figure 5.10 Wavelength dependence of Ril spectra for a x = 0.22 LPE sample.
The wavelength is from 9.27pm to 8.55um.
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Figure 5.11 Fan chart of transition energies of OPMA for the x = 0.22 of Hg,.
Ld, Te (lines) and magnetic field positions of rescnance peaks from the

magneto-optical spectra (solid dots).
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Figure 5.12 Comparison of Rll spectra before and after the 140 °C bake for the

x = 0.22 LPE sample passivated with an oxide layer.
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Figure 5.13 Transition energies of OPMA for the x = 0.22 of Hg,,Cd Te (lines)
and magnetic field positions of resonance peaks from the magneto-optical

spectra (solid dots) for the unbaked x =0.22 LPE sample passivated with ZnS.
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Figure 5.14 Transition energies of OPMA for the x =~ 0.22 of Hg, ,Cd, Te (lines)
and magnetic field positions of resonance peaks from the magneto-optical

spectra (solid dots) for the x =0.22 LPE sample passivated with ZnS after
220°C bake.
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Figure 5.15 Wavelength dependence of the OPMA photoconductive response
of the LPE x = 0.23 sample. The two peaks seen corresponding to the OPMA
transitions K,(a'(-1) - a°(1)) and K,(b*(-1) = b%(1)). The energy gap is around
111meV.
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Figure 5.16 Fan chart of transition energies from the OPMA fit with the
resonance peak positions for a x = 0.23 LPE sample. Two distinct energy gaps
are determined from this fit of theory (lines) to experimental data (solid dots): E,

~ 111meV and E; =~ 120meV. The spectra are shown in Fig. 5.15.



187

(1) @1314 OIL3NDOVYN
14 A

1 J 1

GO}

o Yy o (Vy) O
(\p] N N ~— -
(ASW) ADHINTI NOILISNVHL

W
40
-

oF 1



188

Figure 5.17 Wavelength dependence of RIl spectra obtained from an x = 0.24

LPE sample.
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CHAPTER 6
CONCLUSIONS

The nonlinear dynamics of driven diode resonator systems has been
investigated. A varieties of interesting features have been observed: period
doubling route to chaos, band merging, windows of period 3 and period 5,
hysteresis, quasiperiodic states, periodic locking states, and Hopf bifurcation to
chaos. The last three features are found only in line-coupled diode resonator
systems.

The model for the single diode resonator system derived from SPICE
program can simulate the dynamics very well, as illustrated by good agreement
for the experimental observables: wave form, phase portrait, power spectra,
bifurcation diagram. In addition, the Lyapunov exponents calculated form the
experimental time series agrees very well with that obtained from the SPICE
model.

For the line-coupled diode resonator system, experiments show that it can
follow a quasiperiodic route to chaos. More specifically, the transitions to chaos
for these systems agree with Curry-Yorke model very well, that is: periodic states
P - quasiperiodic states with two frequencies T — periodic locking states
L - chaos. The simulation model for line-coupled system derived from SPICE
gives consistent resuits. In addition, Lyapunov exponents calculated from both
experimental time series and the simulated system are in good agreement for

both quasiperiodic regimes and chaotic regimes.
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OGY’s stabilization technique is employed to control the chaos in both
single and line-coupled diode resonator systems. For the single diode system,
periodic orbits up to period 17 can be obtained from a typical chaotic attractor.
As for line-coupled diode resonator systems, the stabilization can not only yields
high periodic orbits very easily, but also produce quasiperiodic orbits. This is the
first time that quasiperiodic states have been stabilized. This phenomenon has
raised a serious question: Does there exist any unstable quasiperiodic orbits in
addition to the well-known unstable periodic orbits in a chaotic attractor? On the
other hand, the experimental techniques and results obtained have directly
assisted the investigation of the stabilization of laser systems, which will certainly
have practical applications.

The synchronization of chaos is obtained by weakly coupling two coupled
tunnel diode relaxation oscillators. In addition, the frequency-locked entrainment
states of two chaotic attractor are found by appropriate couplings. This clearly
is a interesting phenomenon falling in between synchronization with strong
coupling and nonsynchronization with weak coupling. As pointed by Ditto and
Pecora (1993), the synchronization of chaos may well be applied for the
construction of secure private communication systems. The further investigation
on the synchronization of chaos in the coupled tunnel diode relaxation oscillators
clearly will help to explore this possibility.

The electrical oscillations in n-InSb under transverse magnetic field at low
temperature are further investigated. The experimental resuits are consistent with
Hipper and Schélf's theory in that there exists a boundary in the two parameter
(Magnetic field B versus Current density j) phase space. This boundary

separates oscillatory instability region from static region. By changing magnetic
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field B at a fixed current density j, the system will yield a period doubling
cascade to chaos. Lyapunov exponents were calculated and found to be
consistent with the observed phenomena. The stability of chaotic attractor in this
system was studied against AC-driven source, and the result show that this
stability is similar to that in a simple driven oscillator. In addition, the induced
transitions from chaos to periodicity by AC-driving source agrees well with the
conjectured scaling law for chaotic systems.

Finally, RIl spectroscopy has been used to investigate impurity and defect
(trap) levels that presumably are caused by Hg interstitials in both bulk and LPE
crystals of Hg, Cd,Te with x values of =0.22 to =0.24. For the bulk samples,
deliberately introductions of Hg interstitials have provide direct evidence for the
formation of trap levels near 45 and 60meV above the valence band edge. The
80meV level in the x ~ 0.24 (E; = 121meV at 5K) sample is seen to enhance
the transition strength of resonant TPMA observed at high fields by acting as a
near-resonant intermediate state for the two-photon transition process, which
further supports the formation of deep trap levels by Hg interstitials. LPE
samples with different processing conditions have been investigated by Rl
spectroscopy. Like the bulk samples, the Hg interstitials are found to form trap
levels near 40meV, 45meV, and 59meV. The RII spectroscopy clearly is a very
sensitive technique to investigate deep energy levels caused by Hg interstitials
in Hg, ,Cd,Te. This technique is generally applicable to the investigation of other
defects and impurities in HgCdTe as long as the trap levels created are

accessible via RIl mechanism.
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