Spectrofluorometric Probe Methods for Examining Preferential Solvation in Binary Mixtures

PDF Version Also Available for Download.

Description

Spectrofluorometric probe methods are developed and examined regarding their ability to model preferential solvation around probe molecules in binary solvents. The first method assumes that each fluorophore is solvated by only one type of solvent molecule and that each fluorophore contributes to the emission intensity. Expressions for this model are illustrated using fluorescence behavior of pyrene, benzo[e]pyrene, benzo[ghi]perylene, and coronene dissolved in binary n-heptane + 1,4-dioxane and n-heptane + tetrahydrofuran mixtures. The second method treats the solvational sphere as a binary solvent microsphere, with the fluorophore's energy in both the ground and the excited states mathematically expressed using the "nearly ... continued below

Physical Description

x, 153 leaves : ill.

Creation Information

Wilkins, Denise C. August 1994.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 17 times . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Chair

Committee Member

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Wilkins, Denise C.

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Spectrofluorometric probe methods are developed and examined regarding their ability to model preferential solvation around probe molecules in binary solvents. The first method assumes that each fluorophore is solvated by only one type of solvent molecule and that each fluorophore contributes to the emission intensity. Expressions for this model are illustrated using fluorescence behavior of pyrene, benzo[e]pyrene, benzo[ghi]perylene, and coronene dissolved in binary n-heptane + 1,4-dioxane and n-heptane + tetrahydrofuran mixtures. The second method treats the solvational sphere as a binary solvent microsphere, with the fluorophore's energy in both the ground and the excited states mathematically expressed using the "nearly ideal binary solvent" (NIBS) model. Expressions derived from this model are illustrated using fluorescence behavior of 9,9'-bianthracene and 9,9*-bianthracene-10-carboxaldehyde in binary toluene + acetonitrile and dibutyl ether + acetonitrile.

Physical Description

x, 153 leaves : ill.

Subjects

Keywords

Library of Congress Subject Headings

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • August 1994

Added to The UNT Digital Library

  • March 24, 2014, 8:07 p.m.

Description Last Updated

  • May 7, 2015, 11:35 a.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 17

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Wilkins, Denise C. Spectrofluorometric Probe Methods for Examining Preferential Solvation in Binary Mixtures, thesis, August 1994; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc277883/: accessed December 11, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .