I. On the Mechanism of Acid Promoted Rearrangement of PCU-Derived Pinacols II. Synthesis of a Trimethyltrishomocubyl Helical Tubuland Diol

PDF Version Also Available for Download.

Description

I. Reductive dimerization of pentacyclo[5.4.0.0.^2,6.0^3,10.0^5'9]undecane-8-one-(PCU-8-one, 53) affords a mixture of meso and d,l pinacols (55a and 55b respectively). Acid promoted rearrangement of 55a and 55b conceivably can proceed with migration of C(7)-C(8) and/or C(8)-C(9) to form the corresponding pinacolone(s). In our hands, acid promoted rearrangement of 55a and 55b each proceeds with exclusive migration of C(7)- C(8) bond, thereby affording 58a and 59a respectively. Mechanistic features of this rearrangement are discussed. II. 4,7,1 l-trimethylpentacyclo[6.3.0.0.^2,6.0^3,l0.0^5,9]undecane-exo-4,exo-7-diol (23a) was successfully synthesized. This diol crystallizes in a helical tubuland lattice although its molecular structure does not possess C2 rotational symmetry.

Physical Description

vii, 87 leaves : ill.

Creation Information

Liu, Zenghui May 1995.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 95 times . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Author

Chair

Committee Member

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Liu, Zenghui

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

I. Reductive dimerization of pentacyclo[5.4.0.0.^2,6.0^3,10.0^5'9]undecane-8-one-(PCU-8-one, 53) affords a mixture of meso and d,l pinacols (55a and 55b respectively). Acid promoted rearrangement of 55a and 55b conceivably can proceed with migration of C(7)-C(8) and/or C(8)-C(9) to form the corresponding pinacolone(s). In our hands, acid promoted rearrangement of 55a and 55b each proceeds with exclusive migration of C(7)- C(8) bond, thereby affording 58a and 59a respectively. Mechanistic features of this rearrangement are discussed.

II. 4,7,1 l-trimethylpentacyclo[6.3.0.0.^2,6.0^3,l0.0^5,9]undecane-exo-4,exo-7-diol
(23a) was successfully synthesized. This diol crystallizes in a helical tubuland lattice although its molecular structure does not possess C2 rotational symmetry.

Physical Description

vii, 87 leaves : ill.

Subjects

Keywords

Library of Congress Subject Headings

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • May 1995

Added to The UNT Digital Library

  • March 24, 2014, 8:07 p.m.

Description Last Updated

  • June 27, 2014, 11:03 a.m.

Usage Statistics

When was this thesis last used?

Yesterday: 1
Past 30 days: 3
Total Uses: 95

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Liu, Zenghui. I. On the Mechanism of Acid Promoted Rearrangement of PCU-Derived Pinacols II. Synthesis of a Trimethyltrishomocubyl Helical Tubuland Diol, thesis, May 1995; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc277859/: accessed November 12, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .