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Random number generators (RNGs) are widely used in conducting Monte Carlo 

simulation studies, which are important in the field of statistics for comparing power, 

mean differences, or distribution shapes between statistical approaches. Statistical results, 

however, may differ when different random number generators are used. Often older 

methods have been blindly used with no understanding of their limitations. Many random 

functions supplied with computers today have been found to be comparatively 

unsatisfactory. 

In this study, five multiplicative linear congruential generators (MLCGs) were 

chosen which are provided in the following statistical packages: RANDU (IBM), RNUN 

(IMSL), RANUNI (SAS), UNIFORM (SPSS), and RANDOM (BMDP). Using a personal 

computer (PC), an empirical investigation was performed using five criteria: period length 

before repeating random numbers, distribution shape, correlation between adjacent 

numbers, density of distributions and normal approach of random number generator 

(RNG) in a normal function. All RNG FORTRAN programs were rewritten into Pascal 

which is more efficient language for the PC. Sets of random numbers were generated 

using different starting values. 



A good RNG should have the following properties: a long enough period; a well-

structured pattern in distribution; independence between random number sequences; 

random and uniform distribution; and a good normal approach in the normal distribution. 

Findings in this study suggested that the above five criteria need to be examined when 

conducting a simulation study with large enough sample sizes and various starting values 

because the RNG selected can affect the statistical results. Furthermore, a study for 

purposes of indicating reproducibility and validity should indicate the source of the RNG, 

the type of RNG used, evaluation results of the RNG, and any pertinent information 

related to the computer used in the study. Recommendations for future research are 

suggested in the area of other RNGs and methods not used in this study, such as additive, 

combined, mixed and shifted RNGs. 
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CHAPTER 1 

INTRODUCTION 

Overview 

Statistical results may differ in Monte Carlo simulation studies when different 

random number generators are used. The different random number generators produce 

random numbers that are useful in many different kinds of applications: simulation, 

sampling, numerical analysis, computer programming, decision making, etc. (Knuth 1981). 

Findings, however, may differ simply because of the type of random number generator 

used in the application program. 

Random numbers are typically generated using a deterministic algorithm that is 

implemented in the computer, and as such, one is really working with pseudorandom 

numbers (Niederreiter 1992). These traditional uses of random numbers have coined the 

name "Monte Carlo method," a general term used to describe any algorithm that employs 

random numbers (Knuth 1981). 

Random number sampling is at the heart of the Monte Carlo method (Niederreiter 

1992). Hamilton (1993) reported that many random number generators in use today are 

not very good. Quite often some old method that is comparatively unsatisfactory has been 

used blindly, passed down from one programmer to another, and today's users have no 

understanding of its limitations (Knuth 1981). It has been a widely accepted tradition to 

use the l andom number generator supplied by the manufacturer of the computer. The 
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main reasons for this were probably ease of access, the superior technical expertise of the 

manufacturer, the belief that any random number generator would do, and the fact that 

some RNGs exploit particular hardware features of the computer in order to produce, in 

mysterious ways, code in an unknown language whose source is not available (James 

1990). 

Monte Carlo Simulation Study 

The Monte Carlo method can be described as a numerical method based on 

random sampling (Niederreiter 1992). Monte Carlo tests typically compared actual data 

with simulated data from a supposed model. The similarity of the real and simulated data 

provided a test of goodness-of-fit (Ripley 1987). The two most important advantages of 

the Monte Carlo method are: (1) no advanced mathematics are required and (2) realistic 

simulation methods become possible (Kleijnen and Groenendaal 1992). 

Importance of Random Number Generators 

A crucial task in the application of any Monte Carlo method is the generation of 

appropriate random samples. Generating random numbers uniformly distributed in a 

specific interval is fundamental to simulation (Bratley, Fox, and Schrage 1987). The 

success of a Monte Carlo calculation often stands or fails given the "quality" of the 

random samples that are used, where quality means how well the random samples reflect 

true randomness (Niederreiter 1992). 

Most computers have functions in their program library for producing the required 

number of random numbers. All practical "random number" generators only produce a 
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finite sequence which is repeated. These periodic sequences are clearly not random 

(Bratley, Fox, and Schrage 1987). 

Differences in Random Number Generators 

Random number generators for Monte Carlo calculations can be classified 

according to the type of numbers generated: true random numbers and pseudorandom 

numbers. 

True random numbers are unpredictable in advance and must be produced by a 

random physical process, such as radioactive decay. True random number series are 

available on magnetic tape or published in books, but they are extremely cumbersome to 

use, and are generally insufficient in both number and accuracy for serious calculations 

(James 1990). 

Pseudorandom numbers are produced by the computer through a simple numerical 

algorithm, and are therefore not truly random, but any given sequence of pseudorandom 

numbers is supposed to appear random to someone who doesn't know the algorithm 

(James 1990). Certain desirable properties of random number generators help distinguish 

the differences in them: good distribution, long period, repeatability (reproducibility), long 

disjoint subsequences, portability, and efficiency. 

There are bad random number generators, especially on microcomputers 

(Modianos, Scott and Cornwell 1987; Park and Miller 1988). Other generators widely 

used on medium-sized computers are perhaps not so obviously flawed, but still fail some 

theoretical and/or empirical statistical tests, and/or generate easily detectable regular 
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patterns (L'Ecuyer 1988). Sometimes, using a not-so-good generator can give totally 

misleading results. This may happen only rarely, but can be disastrous (L'Ecuyer 1990). 

Types of Random Number Generators 

Some common techniques for generating random numbers are the ten-sided die, 

throwing a coin, other physical devices (mechanical and electronic devices), random 

number tables, and pseudorandom numbers. 

The disadvantage of a die, coin, or physical device is that the resulting sequence of 

numbers is not reproducible. Without reproducibility, it is difficult to debug the simulation 

program; upon adjusting the computer program and feeding in the same numbers, the 

program should yield similar results. Reproducibility is important because it permits other 

researchers to repeat the simulation experiment (Kleijnen and Groenendaal 1992). 

Various mathematical techniques have been developed for pseudorandom number 

generation: (1) the midsquare method; (2) the congruential methods; (3) the additive 

congruential method; and (4) the Tausworthe method or shift-register generators. 

The Midsquare Method 

This method was invented by John von Neumann (1952) in the 1940s. Given a 

starting number x0 that consists of m digits, when we square x0 we get a number with up 

to 2m digits. If the squared number has fewer than 2m digits, we add zeros to the front. 

To obtain the next number, xh the middle m digits of x0
2 are taken. To get a number in the 

interval 0 to 1, x{ is divided by 10™. If we repeat this procedure, it gives the sequence x,: 

i=0,1,... (Kleijnen and Groenendaal 1992). 



The Congruential Method 

Currently, the congruential method is the most popular. Let N represent the set 

of natural numbers (nonnegative integers). Let "mod" stand for modulus, so "x mod m" 

means that x is divided by m and the remainder is taken as a result. Now consider the 

relation: 

ni+I = (an, + b) mod m (1-a) 

withwo, a, b, m eN; i=0, 1, 2,..., m-1. 

The initial number n0 is called the seed, a the multiplier, b the additive constant, 

and m the modulo. The modulo operation, (1-a), means that at most m different numbers 

can be generated, namely the integers 0, 1,..., m-\. The actual number of different 

numbers, say p, where p <; m, is called the cycle length, or period of the generators. 

When the additive constant b is zero, the generator is called multiplicative; otherwise, it is 

called a mixed generator. A congruential generator produces all m different numbers (and 

thus has maximum cycle length) only if the constants a, b, m, and n0 meet a number of 

requirements. The constants a, b, and m have important effects on the independence of 

pseudorandom numbers (Kleijnen and Groenendaal 1992). 

The Additive Congruential Method 

The additive congruential method is defined by: 

w>+;= (",+ni-k) mod m (1 -b) 

This method can yield a cycle longer than m, because the pair («,-, nf.k) must be reproduced; 

it does not suffice that either n,or nuk is reproduced. Furthermore, after m cycles, n0 and 
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wM are not necessarily equal to nm and nm.k. This approach, for k = 1 (1-b), is called the 

"Fibonacci method." In practice, the Fibonacci method is no longer applied since 

applications have been developed that behave better (Marsaglia 1985). 

Tausworthe Generator or Shift-register Generators 

The Tausworthe (1965) developed a generator that operates on bits as defined by: 

bj = CjbUj) mod 2 (l-c) 
>=i 

with cq = 1 and Cj e (0,1) for j = 1 , 2 , q - l , with at least one c; = 0. Tausworthe 

generators are mostly of the simpler form: 

b,= (b/ -h + bf.q) mod 2 (1-d) 

with 0 <h<q. The first q bits, must be specified which is analogous to specifying the 

seed for other generators. The maximum period of the bits is set at 29 -1. An important 

advantage of the Tausworthe generators is that they are independent of the word size of 

the computer (Kleijnen and Groenendaal 1992). 

Statement of the Problem 

Random number generators are widely used in conducting Monte Carlo simulation 

studies. Monte Carlo simulation studies are important in the field of statistics for 

comparing power, mean differences, or distribution shapes between statistical approaches. 

Results, however, may differ giving different interpretations, depending upon the random 

number generator used. 
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Random number sampling is at the heart of the Monte Carlo method. The success 

of a Monte Carlo calculation depends on the appropriateness of the underlying stochastic 

model and, to a large extent, on how well random numbers used in the computation 

simulate the random variable in the model (Niederreiter 1992). Unfortunately, many of 

the so-called random functions supplied with computers today are far from random, and 

many simulation studies have been invalidated as a consequence (Ripley 1987). Many 

random number generators in use today are not very good. Quite often some old method 

that is comparatively unsatisfactory has been blindly used and passed down from one 

programmer to another, and today's users have no understanding of its limitations (Knuth 

1981). 

Purpose of the Study 

The purpose of this study was to examine presently used random number 

generators on five basic criteria, with and without a widely used adjustment technique. 

More specifically, the following random number generators: (a) RANDU (IBM); (b) 

RNUN (IMSL); (c) RANUNI (SAS); (d) UNIFORM (SPSS); and (e) RANDOM 

(BMDP), were compared on: (1) random number sequence length before repeating 

numbers; (2) distribution shape; (3) correlation between adjacent numbers; (4) density of 

distribution; and (5) implementation of random number generator in a normal function. 

Delimitations of the Study 

This study examined only well-known multiplicative linear congruential generators 

which are provided in the following statistical packages: RANDU (IBM), RNUN (IMSL), 



RANUNI (SAS), UNIFORM (SPSS), and RANDOM (BMDP). 

Limitations of the Study 

Findings in this study were limited to personal computers (PCs) based on the Intel 

Corporation's 8086 processor and the pseudorandom number generators that are provided 

for use with these computers. The findings can therefore be generalized to the following 

commonly used microcomputers: IBM PS2/90 and IBM compatible 486 DX2/50. The 

operating system under which the random number generator program is executed is 

limited to MS-DOS or the equivalent, supporting Microsoft software or Borland Turbo 

Pascal compilers. The programming language used in this study was Borland Turbo 

Pascal 7.0 (Borland 1992). 



CHAPTER 2 

REVIEW OF LITERATURE 

In the past, researchers who needed random numbers in their scientific work would 

draw balls out of a "well-stirred urn," would roll die, or would deal out cards. Many 

researchers today still use a table of over 40,000 random digits which was published in 

1927. Since 1939, a number of devices have been built to generate random numbers 

mechanically, and in 1955, the RAND Corporation published a widely used table of a 

million digits (Knuth 1981; Sobol 1974; RAND 1955). 

Shortly after computers were introduced, people began to search for efficient ways 

to obtain random numbers within computer programs. A table generated by a computer 

could be used, but this method was of limited utility because of the memory space and 

input time requirement. The table was also too short and impractical to reproduce 

calculations exactly a second time when checking out a program (Knuth 1981). 

The first algorithm for obtaining pseudorandom numbers was proposed by John 

von Neumann (1952) in about 1946. It was called the "middle-of-squares" method. His 

idea was to take the square of previous random numbers and to extract the middle digits 

(Sobol 1974). This method is unfortunately not suitable because it tends to give too many 

small numbers (Sobol 1974). It has proved to be a comparatively poor source of random 

numbers. Using this method, the sequence tends to get into a short cycle of repeating 

elements (Knuth 1981). 
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The overwhelming majority of computations currently performed by the Monte 

Carlo method use pseudorandom numbers. Sequences generated in a deterministic way are 

usually called pseudorandom or quasirandom sequences. Random numbers generated 

deterministically on computers have worked quite well in nearly every application, 

provided that a suitable method has been carefully selected (Knuth 1981). 

By far the most popular pseudorandom number generators in use today are special 

cases of the following scheme, introduced by D.H. Lehmer in 1949. He chose four 

numbers: m the modulus, a the multiplier, c the increment, and x0 the starting value, 

where m > 0, 0 < a < m, 0 z c < m, 0 z x0< m. The desired sequence of random numbers 

{*„} is then obtained by setting the following: 

*«+i = (a 'x
n

 + c) m°d m, n z. 0 (2-a) 

This is called a linear congruential sequence. The congruential sequences always get into a 

loop, that is, there is ultimately a cycle of numbers that is repeated endlessly. The 

repeating cycle is called the period. A useful sequence will have a relatively long period 

(Knuth 1981). When c=0, the generator (2-a) is usually referred to as a multiplicative 

congruential generator. Since a computer can represent a real number with only finite 

accuracy, a sequence of random fractions, that is, random real number U„, shall be 

generated by integers x„ between zero and some number m. Thus, the fraction, 

U„ - xjm (2-b) 

will then lie between zero and one. Usually m is the word size of the computer (Knuth 

1981). 



11 

In recent years, three classes of simple generators have been used the most. These 

generators are generally known as the multiplicative linear congruential generator 

(MLCG), the Fibonacci generator (additive generator), and the shift register generator 

(also known as the Tausworthe generator) (James 1990). 

Currently Used Random Number Generators 

A simple generator can be defined as one for which the maximum period is limited 

by the number of states that can be represented in one computer word. Thus, for the 

popular 32-bit computers, simple generators are limited to a period of about 2.2xl09. The 

general purpose generators combine two or more simple generators to attain a longer 

period and better distribution (James 1990). These are described below. 

RANDU 

The RANDU general purpose generator was distributed by IBM for use with its 

System/360 series computers and has the modulus w=231=2147383648, multiplier a = 

65539, and increment c = 0; as illustrated in the following equation: 

x„+1 = 65539x„ mod 231 (2-c) 

This generator was based on a theoretical expression which showed that this multiplier 

should produce the smallest possible serial correlation. Unfortunately, it turns out to have 

catastrophic higher-order correlation, which many users have observed (James 1990). 

Many multiplicative linear congruential generators are descendants of the RANDU 

formula defined by (2-c). This generator was first introduced in the early 1960s; its use 

soon became widespread. The non-prime modulus selected to facilitate the mod operation 
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and the multiplier, 65539, which is equal to 216 + 3, was selected primarily because of the 

simplicity of its binary representation. Research and experience have now made it clear 

that RANDU represents a flawed generator with no significant redeeming feature. It does 

not have a full period, and it has some distinctly non-random characteristics. As noted by 

Park and Miller (1988), Knuth (1981) described it as really horrible. Because of its 

widespread use at the time, RANDU was commonly found in the literature of the 1960s 

and early 1970s. The inadequacies of this generator became so well known, however, that 

it was never recommended in the computer science literature of the 1980s (Park and 

Miller 1988). 

RNUN 

The routine RNUN in the IMSL generators uses the congruential method with 

modulus m = 231-1 = 2147483647, increment c = 0, and three different multipliers, namely, 

a = 16807, a = 397204094, or a = 950706376. It uses a very simple subroutine for 

retrieving the current value of the seed so that simulation can be restarted (namely 

RNGET) to initialize with a fixed seed, or with a clock-generated seed (RNSET), and to 

shuffle the numbers (RNOPT). The routine RNUN generates uniform numbers between 

0 and 1. 

Fishman and Moore's study (1986) indicated that the performance of a = 

950706376 is best among these three choices, but the choice of 16807 will result in the 

fastest execution time. If no selection is made explicitly, the routine uses the multiplier a = 

16807, which has been used for some time (Lewis, Goodman, and Miller 1969). The 
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seed of the generator is an integer value between 1 and 2147483646. If the seed is not 

initialized, a random seed is obtained from the computer system clock. The generator has 

a maximal period of 231 - 2 (IMSL 1991). 

RANUNI 

The RANUNI function in S AS returns a number generated from the uniform 

distribution on the interval (0, 1) using a prime modulus multiplicative generator with 

modulus 231 - 1 and multiplier 397204094 (Fishman and Moore 1982). This generator is 

xn+l = 397204094x„ mod (231 -1) (2-d) 

The seed is an integer less than 231 -1. If the seed is ^ 0, then the time of day is used to 

initialize the seed. The generator has a maximal period of 231 - 2 (SAS 1990). 

UNIFORM 

The UNIFORM routine, a SPSS pseudorandom number generator, produces a set 

of random numbers from a uniform distribution with a minimum of 0 and a user-specified 

maximum with modulus 231 -1, and multiplier 16807: 

x„+1 = 16807x„ mod (231 -1) (2-e) 

Uniform numbers are generated using the algorithm of Lewis, Goodman, and Miller 

(1980). Within a session, the seed value changes each time a random number series is 

needed in a session. The seed can be any positive integer value up to 2,000,000,000, 

which approaches the limit on some computers. With SPSS for Windows, the seed value 

is up to 999,999,999. To duplicate the same series of random numbers, the seed should 

be set before the series is generated for the first time. Since SPSS resets the seed as it 
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generates a series of random numbers, it is virtually impossible to determine what seed 

value was used previously, unless the value was specified (SPSS 1990). 

RANDOM 

The BMDP random number generator, RANDOM, generates one random number 

for each case. The generator starts by using a integer between 1 and 30,000 as a seed 

number. It then generates uniform pseudorandom numbers on the interval from zero to 

one. BMDP provides a FORTRAN statement in the subroutine BIMEDT. The 

FORTRAN code used in the uniform random generator is from an algorithm by Wichman 

and Hill (1982). The algorithm uses three simple multiplicative congruential generators: 

xn+1 = 17\xn mod 30269 (2-f) 

xr„+1= I72x„ mod 30307 (2-g) 

x:n+1 = 170x„ mod 30323 (2-h). 

Each uses a prime number for its modulus and a primitive root for its multiplier. The three 

results are added, and the fractional part is taken (BMDP 1983). 

Criteria for Comparing Random Number Generators 

Period Length (Random Number Sequence Repetition) 

Pseudorandom number generators always have a period, after which they begin to 

generate the same sequence of numbers over again. Traditional pseudorandom number 

generators are based on a single integer "seed," which means that the period is limited to 

the number of different states that can be represented in one computer word. Two bits are 
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usually lost (for positivity and to avoid even integers), so for a 32-bit computer, a simple 

generator can have a maximum period of 230, or about 109. James (1990) insisted that 

although it is easy to achieve this maximum, it is no longer enough for any present day 

problems in simulation study. Also he suggested that traditional methods can be extended, 

even on 32-bit computers, to give periods equal to the number of states representable in 

60 bits. Some modern methods have periods much longer than 260 . 

Knuth (1981) stated that the period of a generator cannot exceed the size of its bit-

state for a computer word. For optimal memory use, it should be close to that size. So, if 

b bits are required to represent a computer word, the period will be close to 2b. Maximal 

period linear congruential generators (LCGs), in scalar or matrix form, as well as 

Tausworthe generators, inverse non-linear generators, and many kinds of combined 

generators, have periods equal (or very close) to 2h for a Z>-bit state, if the parameters are 

chosen appropriately (Knuth 1981; L'Ecuyer 1990). 

Becuase of fast computers, modern computer simulations are getting increasingly 

challenging, and require more and more random numbers. Any generator must have a very 

long period before deserving any further consideration for general use. L'Ecuyer (1992) 

insists that standard LCGs with modulo near 231, which are still recommended in most 

simulation books, should be discarded because their period is too short and anything less 

than 250 for the period is too low. In fact, with the latest developments in random number 

generation, there is no reason for not taking a much longer period than that, for example, 

over 2200. L'Ecuyer (1992) has stated that no generator should be used for any serious 

purpose if its period (or a low bound on it) is unknown. 
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It is well known that generators have a full cycle, generating every integer in [1, m-

1] before repeating, if multiplier a is a primitive element modulo m, that is, if d-\ is a 

multiple of m for i = m - 1, but for no smaller i (Bratley et al., 1987). 

Shape of Distribution (Lattice Structure) 

None of the random number generators are truly random in the classical sense. A 

set of empirical statistical tests can be applied for testing randomness. If the generator 

passes all the tests, it proves nothing formally, but improves confidence in the simulation 

results that could be obtained by using that generator. Some "standard" statistical tests for 

random number generators are described in Dudewicz and Rally (1981) and Knuth (1981). 

Besides the empirical tests, most generators can also be analyzed theoretically. For 

example, in some cases computation can be bounded on the serial correlation, bounded on 

the discrepancy, or characterized by the geometrical behavior of the set of all t -

dimensional vectors formed by taking t successive values produced by the generator over 

its full period (L'Ecuyer 1992). Randomness provides a sequence of independent uniform 

random variables suitable for all reasonable applications. In particular, the uniform random 

variable passes all the latest tests for randomness and independence (Marsaglia and Zaman 

1991). 

Correlation between Random Nnumbers (Serial Correlation) 

The correlation for two stochastic variables, say x and^, is usually denoted by p. 

The well-known relation between the correlation coefficient and the covariance is p = 

cov(xty)/SxSy, where cov(xj>) =£[{*-£(*)} {j-£(y)}] and Sx
2 = E{x-E(x)}2. Let the symbol 
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Y represent the covariance. If the z'-th and the (/+/)th pseudorandom numbers in the 

sequence (r,) are distributed independently, then 

Vj = £{(r, - 0.5)(r/+, - 0.5)} = 0 forj>0, (2-0, 

whereE(r) = 0.5 and E(ri+J) = 0.5 because r, and ri+jare assumed to be uniformly 

distributed on [0,1). The ' lag/ covariance y,can be estimated through 

Yj = {l / ( " - 7 ) } S f e -0.5)(/;,;. -0.5)} (2-j) 
1=1 

Kleijnen and Gronendaal (1992) indicated that even if a specific generator passes a number 

of statistical tests, there is no guarantee that it is a good generator. Park and Miller (1988) 

demonstrated that constructing a good generator is very difficult. 

Density of Distribution (Uniform Distribution) 

In a typical simulation, one needs a large number of random numbers with the 

proper statistical properties. All the methods to be presented for generating random 

variates transform uniformly distributed random numbers. Most computer languages have 

built-in functions for producing random variables uniform over the interval (0,1). 

Generators may also rate differently, depending on whether they are implemented in a 

high-level language or in an assembly language (Bratley, Fox, and Schrage 1987). 

Implementation of Random Number Generator in Normal Function (Efficiency) 

Uniform random numbers are often used to generate nonuniform random numbers. 

The most important nonuniform continuous distribution is the normal distribution with 

mean 0 and standard deviation 1, given by the equation: 



18 

F { S ) ~ ' 2 d t ( 2 " k ) 

Many of the methods for the generation of independent random variables with a 

given distribution function, F, or probability density function (pdf), / , were originally 

suggested by John von Neumann in the early 1950s, and they have been gradually 

improved upon by others, for example, Marsaglia, Ahrens, and Dieter (Knuth 1981). The 

best-known "exact" method for the normal distribution is that of Box and Muller 

developed in 1958 (Ripley 1987). 

The rejection method, first suggested by von Neumann (1951), can be used when 

/ is known. In its simplest form the rejection method requires that the f value be bounded 

and nonzero only on some finite interval (Bratly, Fox, and Schrage 1987). Ripley (1987) 

recommended some simple methods for normal distributions: Marsaglia's polar method 

and the ratio-of-uniform method which is supported by others (Knuth 1981; Ripley 1983). 

Leva (1992a) introduced an algorithm for a fast normal RNG which modified the 

ratio-of-uniform deviates method by Kinderman and Monahan. The FORTRAN function, 

RANDN, returns normally distributed pseudo-RNs with mean of zero and unit standard 

deviation (Leva 1992b). 

Algorithms for Random Number Generators 

The algorithms of the following computer programs were used to generate data for 

comparative purposes in this study. 
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IBM (RANDU) 

A FORTRAN code for RANDU, a uniform random number generator, is 

presented as fig. 2-1 (Bratley, Fox, and Schrage 1987). 

FUNCTION RANDU(IX) 
C INPUT: IX, A RANDOM NUMBER. 
C 0< IX <2**31-1 

M=65539 
C M=2**16+3 

IX=M*IX 
IF (IX .LT. 0) IX=IX+2147483647+1 
RANDU=FLOAT(IX)* .4656613E-9 
RETURN 
END 

Fig. 2-1. RANDU - FORTRAN code 

Algorithm: 

a. Let IX be a large odd integer. 

b. Then IXis multiplied by 65539(=216+3). 

c. This yields an integer (mod 231, still called IX). 

d. This integer is now turned into a uniform random number (RANDU) by dividing 

by 231 (multiplying by 0.4656613 x 10"9). 

IMSL (RNUN) 

A FORTRAN code for RNUN, a uniform random number generator with a double 

precision in real mode, is presented as fig. 2-2 (IMSL 1991). RNUN is a single precision 
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in real mode and its FORTRAN code is the same as double precision except that it uses 

DMOD instead of MOD. 

FUNCTION DRNUN(IX) 
C INPUT: IX, A RANDOM NUMBER. 
C 0 < IX <2**31-1 

M=950706376D0 
IX=DMOD(M*IX, 2147483647D0) 
RNUN=IX/2147483647.0 
RETURN 
END 

Fig. 2-2. RNUN - FORTRAN code 

Algorithm: 

a. Let IX be a large odd integer. 

b. Then IXis multiplied by 950706376. 

c. This yields an integer (mod 231-1 still called IX). 

d. This integer is now turned into a uniform random number (RNUN) by dividing 

by 231 -1. 

SAS (RANUNI) 

A FORTRAN code for RANUNI, a uniform random number generator with a 

double precision in real mode, is presented as fig. 2-3 (SAS 1990). This generator has a 

multiplier 397204094, a modulus 231-1=2147483647, and the range of starting value, seed 

between 0 and 231-1. 
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FUNCTION RANUNI(IX) 
C INPUT: IX, A RANDOM NUMBER. 
C 0 < IX <2**31-1 

M=397204094D0 
IX=DMOD(M*IX, 2147483647D0) 
RNUN=IX/2147483647.0 
RETURN 
END 

Fig. 2-3. RANUNI - FORTRAN code 

Algorithm: 

a. Let IX be a large odd integer. 

b. Then IXis multiplied by 397204094. 

c. This yields an integer (mod 231-1 still called IX). 

d. This integer is now turned into a uniform random number (RANUNI) by 

dividing by 231 -1. 

SPSS (UNIFORM) 

A FORTRAN code for UNIFORM, a uniform random number generator with a 

double precision in real mode, is presented as fig. 2-4 (SPSS 1990). 

FUNCTION UNIFORM(IX) 
C INPUT: IX, A RANDOM NUMBER. 
C 0 < IX <2**31-1 

M=16807D0 
IX=DMOD(M*IX, 2147483647D0) 
UNIFORM=IX/2147483647.0 
RETURN 
END 

Fig. 2-4. UNIFORM - FORTRAN code 
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The original program introduced by Lewis, Goodman and Miller (1969) was 

written in assembly language and it was translated into FORTRAN code (Bratley, Fox, 

and Schrage 1987). This generator has a multiplier 16807, a modulus 2147483647, and 

the range of starting value seed between 0 and 2147483647. 

Algorithm: 

a. Let IX be a large odd integer. 

b. Then IX is multiplied by 16807. 

c. This yields an integer (mod 231-1 still called IX). 

d. This integer is now turned into a uniform random number (UNIFORM) by 

dividing by 231 -1. 

BMDP (RANDOM) 

RANDOM, a uniform random number generator written in FORTRAN code, was 

introduced by Wichmann and Hill (1982) and is presented as fig. 2-5. (BMDP 1983, 

1992). 

FUNCTION RANDOM(IX) 
C INPUT: IX, IY, IZ RANDOM NUMBERS. 
C 0 < IX, IY, IZ < 30000 

IX=MOD(171 * IX, 30269) 
IY=MOD(172 * IY, 30307) 
IZ=MOD(170 * IZ, 30323) 
RANDOM=AMOD(FLO AT (IX)/30269.0+FLO AT(I Y) 

* /30307.0 + FLOAT(IZ)/30323.0, 1.0) 
RETURN 
END 

Fig. 2-5. RANDOM - FORTRAN code 
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Algorithm: 

a. Let IX, IY, IZ be integers. 

b. Then IX is multiplied by 171, IY is multiplied by 172 and IZ is multiplied by 

170. 

c. These yield integers (mod 30269 called IX, mod 30307 called IY, and mod 

30323 called IZ),. 

d. The integers are now turned into a uniform random number (RANDOM) by 

dividing by 30269 or 30307 or 30323 and adding the results. 

Algorithms Not Used in Study 

Lagged-Fibonacci Generators 

F(r, s, 0) starts with r initial (seed) elements xh x2,..., xrfrom some set X, then 

successive elements are generated by the recursion xn = xn.r 0 xn.s, where 0 is some binary 

operation on the set X. It is a generalization of the classical Fibonacci sequence with X the 

set of integers, r = 2,s=\, and 0 the binary operation of addition (Marsaglia and Zaman 

1991). 

Subtract-with-Borrow Generator(SWB) for PC 

Marsaglia and Zaman (1991) introduced the SWB generators. These are related to 

lagged-Fibonacci generators. The SWB x„= (xn.r - x„.s - c) mod b has period br- bs if br- bs 

+ 1 is a prime and has b as a primitive root: for example, b = 232- 5 = 4294967291 and r = 

43, s = 22. The principal component of combination generator is the SWB generator x„= 
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(x„.22 - - c) mod b, with b = 232 - 5. With an initial set of seed values xu x 2 , , x43, each 

a 32-bit integer in the inclusive range 0 to 232 - 6, and an initial carry bit ce{0,1}, m = Z>43 -

b22 + 1 is a prime and b is a primitive root. Thus the period is m-\ = Z>43- b22, or about 21376 

or 10414 

Algorithm: 

a. Form t = x„.22 - x„^ - c. 

b. I f t i 0 p u t x n - t a n d c = 0. 

c. if / < 0 put x„ = t + 4294967291 and c = 1. 

d. Then the new c is ready for forming the next x. 

Many researchers developed RNGs for fast and portable implementation 

(Campagner, 1992; Carta 1990; Clark 1985; Marsaglia, Narasimhan, and Zaman 1990; 

Schrage 1979) with various technical methods (Deng and Chu 1991; Haas 1987; 

L'Ecuyer, Blouin, and Couture 1993) and studied structures of RNGs (Coveyou and 

MacPherson 1967; Tezuka and L'Ecuyer 1992; Tezuka, L'Ecuyer, and Coutre 1993). 

Since all the generators are pseudo-random number generators, one of the tasks for RNG 

remains to find a single way to generate a uniform and normal random number, and to 

develop a near-true random number generator. 
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CHAPTER 3 

METHODS AND PROCEDURES 

Research Questions 

The research questions for investigating the random number generators (RNG) 

1. At what sample size does the RNG sequence repeat? (Period) 

2. What shape does the distribution of RNG have? (Structure) 

3. What are the correlations between adjacent numbers? (Correlation) 

4. What is the density of the distribution of random numbers? (Density) 

5. When do the random numbers reach a normal distribution? (Efficiency) 

Procedures 

A set of random numbers(RNs) were produced using algorithm and Pascal 

programs which were translated from FORTRAN coding. In the RNGs the seed had a 

starting value of 1 or 101 for all RNGs: RANDU, RNUN, RANUNI, UNIFORM, and 

RANDOM. It was assumed that these random numbers were independent and come from 

a particular specified distribution. This assumption was tested statistically for randomness, 

correlation, and distribution if the observed numbers did not indicate this assumption. 

The first research question examined the sample size at which the RNG sequence 

repeats itself (period). It was investigated as follows. Every pseudo-RNG used in 

25 
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computers has a sequence or sequences of random draws called cycles or periods. Once all 

of the numbers in the cycle have been produced, the numbers repeat in the same sequence. 

Usually the problem of repeating a sequence in a given study is avoided by having a cycle 

size which is so large that the user will not use more that a small portion of the numbers in 

the cycle. Because this is a crucial consideration with any generator, the cycles on the 

RNGs should be checked (Modianos, Scott, and Cornwell 1984). 

It is known that the linear congruential method will produce a sequence of 

numbers of full period m, if and only if, the following three conditions are present: 

1. The constants m and c are relatively prime (i.e., gcd(m, c) = 1). 

2. The constants m and a are selected such that all prime factors of m also divide 

by a-1 (i.e., a = 1 modp for each prime factor p of m). 

3. If the constant m is divisible by 4, then 4 also divides by a-\ (a = 1 mod 4 if 4 

divides m). 

If c is 0, this would save some computation time in the generation of pseuorandom 

numbers such as provided by the multiplicative linear congruential generators RANDU, 

RNUN, RANUNI, UNIFORM, and RANDOM. However, the sequences generated can 

not be of full period m. They have a maximum period of m-1 only if m is prime. Then the 

period is divided by m-1 and is m-1, if and only if, a is a primitive root, that is, a* 0 and 

cfm'l)/p * 1 mod m for each prime factorp of/w-1 (Ripley 1987). 

RNUN, RANUNI, and UNIFORM have modulus /w=2147483647=231 - 1 and m is 

prime, and m-1=2147483646=231-2= 2- 32 -7-11- 31- 151-331. UNIFORM has a multiplier 

16807(=75) and 7 is a primitive root, hence so is 75 = 16807. Then UNIFORM has a 
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period of m-l=2147483646. RNUN and RANUNI have the multiplier 950706376 = 23 

•118838297 and 397204094=2-72-4053103, respectively. Therefore RNUN and RANUNI 

have a period of m-\. RANDU has the shortest period, 1.6lxl09, among generators and 

RANDOM has the longest period, 9.27xl012. The nonprime modulus for RANDU can not 

reach the maximum length of period, 231-2=2647483646. RANDOM is not a simple 

generator but a combined generator with three prime moduli which reach the period of 

(30269-30307- 30323)/3 « 9.27xl012. The period (sample size) at which each RNG 

repeats the same sequence of numbers will be presented in chapter 4. 

The second research question involving the shape of the distribution of random 

number generators (structure) was investigated as follows. A program was written to call 

a generator repeatedly, the resulting values were grouped into pairs that represented 

points in a unit square, and then they were plotted. It is normally necessary to magnify the 

image by selecting only those points that fall into some smaller square, and drawing only 

that region, so as to cover the full plotting surface. The resulting pattern of points will be a 

lattice pattern produced by the algorithm from the random number generator, where 

Marsaglia's "planes" can be observed (Hamilton 1993). Marsaglia (1968) pointed out that 

the ^-tuples (Uj,...,Ui+k,^) will always lie on a finite number of hyperplanes in [0, 1]* (Ripley 

1987). The pairs, triples, and so forth from most congruential pseudo-RNGs are known to 

lie in the lattice pattern, and the "uniformity" of these lattices is reflected in the quality of 

the generators (Ripley 1983). 

Pairs (x„ xiH) of random numbers were generated from a Pascal program in the 

range of 0 < x, <, 0.000001, 0< xiH <1. In this range, 2,136 to 2,147 pairs were selected, 
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and these pairs were plotted in the rectangle, as shown in fig. 3-1. The specific choice of 

the smaller square was purely arbitrary, and the same kind of image can be seen anywhere 

in the unit square, if appropriate magnification is applied. 

Also, triples (x,, x,+2) of random numbers were selected in the range of 0 < x, < 

0.000001, 0 < x,+1 < 1, 0 < xi+2 < 1. In this range, 2,136 to 2,147 points were selected, and 

these points were plotted in the cube, as shown in fig. 3-2. The lattice structure of the 

RNGs will be presented in chapter 4. 

o.oo 
0.000000 .000001 

Fig. 3-1. Plots of pairs (Xh 

.000001 

Fig. 3-2. Plots of triplets (X„ Xi+l, Xl+2) 

The third research question involving the correlation between sequences of random 

numbers was examined as follows. After generating disjoint sequences, Knuth's serial test 

was applied (Knuth 1981). This test measures the relationship between x, and xt+h. It is a 

correlation coefficient that measures the extent to which they covary. The serial 

correlation coefficient is given by the equation: 
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C = (N- SUM1 - SUM2) / (N • SUM2 - SUM2) (3-a) 

where N = sample size, SUM= sum of jq, SUM1 = sum of xt • xt+h, SUM2 = xt • xt. The 

coefficient C will vary from -1 to +1, and C = 0 indicates no relationship and C=±l for 

perfect relationship. 

If a new seed happens to be a number used in one of the preceding runs, then these 

two runs use the same pseudorandom numbers and become dependent. This dependence 

violates the assumptions of the statistical analysis techniques which form the basis for the 

simulation. Therefore, different starting seed values are used for each type of generator. 

Starting numbers will be separated by numeric values, h = 1 to 45. For a 

multiplicative generator, the first two seeds, s0 and Sj will be related by the expression ^ = 

(c^SQ) mod m. Tables with these h values will be presented in chapter 4. 

The fourth research question examined the density of the distribution of random 

numbers. The density research question is the most commonly cited, used, and the most 

versatile procedure for evaluating distributional assumptions because it uses a chi-square 

goodness-of-fit test (Payne 1982). The data were grouped into k intervals and the number 

of samples in each interval counted. Using these frequency values, a chi-square statistic 

was calculated which has a chi-square distribution with k-1 degrees of freedom. 

For a sample size of N> 30, the following formula (Selby 1975) was used to 

calculate the chi-square value at the 0.05 level of significance: 

%2 = D (1-A + Z A05 )3 (3-b) 

where D = degree of freedom, Z = the normal deviate, and A = 2 / (9D). The chi-square 

values were calculated using the above formula, and the chi-square values and associated 
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degrees of freedom are presented in chapter 4. Since chi-square tables of significance 

typically do not include values beyond D >30, the above formula was also used to 

generate chi-square significant values for various N sizes between 100 and 40,000 (see 

table B-5). 

The last research question investigated when the random numbers reached a 

normal distribution (efficiency), and at what sample size. This was tested by calculating 

the area mean (average of random numbers generated in a specific interval) and the 

standard deviation of the random numbers. A number of algorithms that generate the 

normal distribution of random numbers are available today, and they vary in speed, 

complexity, and machine space requirements (Leva 1992a). Leva introduced an algorithm 

for a fast normal RNG, which returns normally distributed pseudo-RNs with zero means 

and unit standard deviations (Leva 1992b). Given a normal distribution function with 

mean (n) 0 and standard deviation ( a ) 1, the area under the curve of this function is equal 

to 1. In each interval of the standard deviation, the area under the normal curve is known: 

0.68, 0.95 or 0.99 for -1 <o< 1, -2 <o< 2, or -3 <o< 3, respectively. Means, standard 

deviations, and areas under the curve in the normal distribution are calculated and 

presented in chapter 4. 

Algorithms Used 

Each FORTRAN algorithm for the RNG used in the statistical package was 

rewritten in Pascal. This was necessary to compare the RNGs of each package and to 

make it feasible to run the programs on a personal computer (see appendix A for Pascal 
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algorithm and programs). The Pascal programs were checked against the FORTRAN 

programs to assure that they yielded equivalent results. The same seed values were used 

when comparing all RNGs in the packages. 

The RNGs were compared on various combinations of criteria: modulo(m), 

multiplier (a), increment (c), and length of period (p), in the following five statistical 

packages: RANDU (IBM), RNUN (IMSL), RANUNI (SAS), UNIFORM (SPSS), and 

RANDOM (BMDP). The a, m, andp values used are presented in table 3-1. 

TABLE 3-1. 
MULTIPLIER, MODULUS, AND PERIOD VALUES IN SELECTED RNGS 

Generator Multiplier (a) Modulus (m) Period (p) 

RANDU 65539 2147483648 1610612736 

RNUN 950706376 2147483647 2147483646 

RANUNI 397204094 2147483647 2147483646 

UNIFORM 16807 2147483647 2147483646 

RANDOM b 171 30269 9272395201440 
172 30307 
170 30323 

The increment, c, for all generators was set to 0. 
) 

RANDOM is a combined generator; therefore, different criteria for a and m are 
possible. 

The various types of multiplicative linear congruential generators (MLCG) from various 

sources are presented in table 3-2, in which the RNGs in table 3-1 were included. Most of 

RNGs are written in FORTRAN, and some old program for RNG code were written in 

assembly language. 
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TABLE 3-2 
MULTIPLICATIVE LINEAR CONGRUENTIAL GENERATOR: 

X„+1 = (A X„ + C) modM 

Modulus 
m 

Multiplier 
a 

Increment 
c 

Period 
P 

Source 
Seed range 

16807 0 231-2 
IMSL (RNUN, seed = 1 to 23,-2) 
SPSS (UNIFORM, seed=l to 2x10s) 
APL, SIMPL/1 
IBM 360 (Lewis et al. 1969) 

231-1 
397204094 0 231-2 

IMSL (RNUN, seed=l to 231-2) 
SAS (RANUNI, seed= 1 to 231-2) 
SPSS (UNIFORM, 1991). 
SPSS for Windows(seed =1 to 
999,999,999) 

950706376 0 231-2 IMSL (RNUN, seed= 1 to 231-2) 
48271 0 231-2 Park, Miller and Stockmeyer (Jul. 1993) 

630360016 0 231-2 SimScript II, DEC-20 
IBM 370 (Payne et al., 1969) 

742938285 
950706376 

1226874159 
62089911 

1343714438 

0 231-2 Fishman and Moore (1986) 

231 65539 0 1.61xl09 IBM (RANDU) 
232- 2 16807 0 231-2 Marsaglia (Jul. 1993) 
232- 5 69070 0 232-6 Marsaglia (Jul. 1993) 
2s2 69069 1 Marsaglia (1972) VAX of DEC 
232 2147001325 715136305 BCPL (Richards and Whitby-Strevens 

1979) 
216+ 1 75 0 BASIC on Sinclair ZX81 (Tootill, 

1982) 
108+ 1 23 0 Lehmar 
109 314159221 211324863 Van Esetal. (1983) 
235 8404997 1 GLIM3(Baker and Nelder, 1978) 

30269 
30307 
30323 

171 
172 
170 

0 
0 
0 

9.27xl012 BMDP (RANDOM, seed= 1 to 30000) 

Note: 231- 1 =2147483647 « 2-15-109; 231 - 2 = 2-32-7-ll-31-151-331=2147483646; 
75= 16807; 2-72-4053103 = 397204094 ; 23-118838297 = 9507063 76 
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The RNGs in table 3-2, found in simulation computer programs, can be modified in 

various formulae to avoid the limitation of the computer word size, and obtain larger 

periods in the random number sequences, which yields more speed and more portability. 

MLCGs can also have their capabilities expanded by the techniques; combining, shuffling, 

or shifting methods. 

Random Number Set Generation 

Random number set generation for investigating the period of number sequences 

was performed for each RNG. While generating number sequences, the same seed value 

was used for RANDU, RNUN, RANUNI and UNIFORM (seed=l), but for RANDOM 

the seed values were: seedl=l, seed2=l and seed3=l. The next seed and random 

numbers were produced from the previous seed, repeating seeds and random numbers 

were checked if the first values were detected. (Results of RNG are in Chapter 4. 

Computer programs and sample results are in appendix A and appendix B, tables A-l 

through A-4). 

For the structure of the RNGs, sets of random numbers with dependent pairs and 

triplets were generated with seed values equal to 1 and saved into memory. All the 

generated data were imported and translated to SPSS (Microsoft-Windows version) 

format to use the graphic function which produced the graphical figures. Using the SPSS 

graphic function, Scatterplot, two-dimensional and three-dimensional graphics were 

produced. For more visual effect, the three-dimensional graphic was produced by rotation 

of various angles of view in windows (see figures in chapter 4). 
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For the serial correlation test on adjacent numbers, x, and xi+h, random number sets 

were generated by various starting numbers, h = 1 to 45, and the size of random numbers 

in the test was 100,000. For a multiplicative generator, the first two seeds, s0 and sh were 

related by the expression = (C/'SQ) mod m. Pascal programs for the serial correlation test 

were written for each generator (Results are in chapter 4, and programs 11 and 12 in 

appendix A). 

In the density test, random number sets were generated by grouping them into 100 

and 1,000 cells from 1,000,000 and 10,000,000 random numbers. Pascal programs were 

written to generate the numbers and compute the chi-square statistic. Conventional tables 

of chi-square values are for degrees of freedom < 30, but since the degrees of freedom in 

the chi-square test exceeded 30, the Pascal programs were written using the Knuth's 

formula (3-b )and chi-square values were calculated . (see program 13 in appendix A and 

table B-5). 

For testing the normal approach of RNGs, 100 sets of random normal numbers 

between 1,000 and 100,000 were generated by Leva's random normal generator (Leva 

1992a, 1992b). In the generation of random normal numbers, seed=l and seed=101 were 

the starting values for each generator. The numbers were counted by four intervals based 

on standard deviation (o ) for estimation of the normal distribution: -1 i o s 1, -2 ^ o ^ 

2, -3 £ o <; 3. Also Pascal programs were written for generating the random normal 

number correlated with the distribution of the normal density function. Each set of 

numbers were imported in SPSS mode for drawing the estimated normal curve if this 

curve matched with the curve from the theoretical normal density function. For testing 
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normality, the mean, standard deviation, and total area under the curve were generated 

and plotted. 



CHAPTER 4 

RESULTS 

The results of this study are presented for the five criteria chosen as research 

questions using five different random number generator: RANDU, RNUN, RANUNI, 

UNIFORM and RANDOM. 

Period of the RNG Sequence 

The sample size at which the RNG sequence repeats (period) was determined as 

follows. After generating random numbers for each random number generator, periods 

were detected in the repeating sequence. Periods for each generator are shown in table 

4-1. Initial random numbers and last random numbers near the period within repeating 

sequences are listed in appendix C. Also, the Pascal programs used to generate the 

random numbers are listed in appendix A. 

TABLE 4-1 
PERIOD OF RANDOM NUMBER GENERATORS 

Generator Period (Sample size) 

RANDU (IBM) 1,610,612,736 

RNUN (IMSL) 2,147,483,646 

RANUNI (SAS) 2,147,483,646 

UNIFORM (SPSS) 2,147,483,646 

RANDOM (BMDP) 9,272,395,201,440 
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According to the conditions for modulus and multipliers in chapter 3, RNUN, 

RANUNI, and UNIFORM have prime modulus m=231 - 1 and also have a multiplier which 

is a primitive root. Therefore, these three generators have a maximum period of m-1 =231-

2 = 2147483646. Since RANDU has a nonprime modulus, it can not reach a maximum 

length of period. RANDU has the shortest period, 1.61xl09, among the generators. 

RANDOM is not a simple generator, but a combined generator with three prime moduli 

which reach the longest period of (30269-30307- 30323)/3 « 9.27xl012. 

Findings indicated that RNUN, RANUNI and UNIFORM had the same length 

period, 2.17xl09; RANDU had the shortest period, 1.61xl09; and RANDOM had the 

longest period, 9.27x1012. Therefore, in a simulation study, if the sample size exceeds 

2xl09, then RANDOM should be used. If the sample size is less than 2xl09, then any RNG 

can be used, with the exception of RANDU. 

Structure of the RNG Sequence 

The shape of the distribution of random number generators (structure) in two-

dimensional and three-dimensional space was determined as follows. 

Pairs (Xh Xi+l) of random numbers and triples (X„ Xl+1Xi+2) of random numbers 

were generated from a Pascal program in the range of 0 <Xf<= 0.000001, 0 < Xi+1 < 1. In 

this range, 2,136 to 2,147, points were selected and these points were plotted in the 

rectangle, as seen in fig. 4-1 through 4-10. The specific choice of the smaller square or 

cube was purely arbitrary, and the same kind of image can be seen anywhere in the unit 

square or cube, if appropriate magnification is applied. In fig. 4-1 and fig. 4-2, RANDU 
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had a very simple and linear structure in both two-dimensional and three-dimensional 

space, with a range of 0 < Xt < 0.0000001. The linear tendency was a result of the 

relatively small multiplier, 65539. 

.000001 

0.00 
0.000000 .000001 

Fig. 4-1. RANDU: Plots of (X(, Xi+x) Fig. 4-2. RANDU: Plots of(Xv XM, Xi+2) 

The lattice pattern for RANDU can be computed algebraically. Since 

o=65539=216+3, c=0 and m=2147483648=231, then: 

XH2 = (216 +3) Xi+l + cx 2
31 

= (216+ 3)X, + c^31 (216+ 3) + cx2
31 

= (6.216 + 9)Xt + {(216+3)c, + C2 + 2Xt) 231 

= 6(216 + 3)Xj - 9Xj + C32
31 

= 6Xi+1- 9Xt + C42
31 

where each q is an integer. Thus Ui+2 - 6Ui+l + 9Ut is an integer and {Ut, Ui+l, U{+2) lies 
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on one of 15 planes in the unit cube (Ripley 1987). 

In fig. 4-3 and fig. 4-4, UNIFORM also had a very simple and linear structure in 

both two-dimensional and three-dimensional space. The relatively small multiplier, 

16807, caused a monotonic linear tendency in the lattice pattern. In fig. 4-4 a sliced 

parallel plane containing points can be shown in the cube. 
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.000001 

Fig. 4-3. UNIFORM: Plots of (Xp XM) Fig. 4-4. UNIFORM: Plots of (Xh Xi+h Xi+2) 

The cube represents a very small part of the total space which was magnified by 

1,000,000 times in an axis in the total space. In two-dimensional space, UNIFORM had a 

similar shape to that of RANDU, but in three-dimensional space, UNIFORM had a 

different shape, a plane, compared to RANDU's lattice pattern, which was a line. 

Lattice structures from RNUN in figs. 4-5 and 4-6 had orderly scattered points 

over the plane. Two-dimensional space can be covered by a finite number of lines. These 
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lines can be observed in fig. 4-5, and a finite number of planes can be observed in the cube. 

Both in two-dimensional and three-dimensional space, horizontal axes were magnified by 

1,000,000 times for visual observation. These figures reflect a uniform distribution of 

random numbers over the plane. 

.0 
.000000 

000001 

.000001 

Fig. 4-5. RNUN: Plots of (X„ XM) Fig.4-6. RNUN: Plots of (X„ Xi+1, Xi+2) 

In figs. 4-7 and 4-8, lattice structures from RANUNI also had orderly scattered 

points over the plane. As figs. 4-5 and 4-6 show, the shape of RANUNI and RNUN were 

similar. RNUN and RANUNI have relatively larger multipliers, 950706376 and 

397204094, respectively, than RANDU and UNIFORM; thus well-ordered hyperplanes 

can be observed in the structure. Parallel lines from two-dimensional space and sliced 

planes from three-dimensional space can be observed in figs. 4-7 and 4-8, respectively. 
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Fig. 4-7. RANUNI: Plots of (X„ XM) Fig. 4-8. RANUNI: Plots of(Xh XM, Xi+2) 

RANDOM had a very disordered scattering of points as noted in figs. 4-9 and 

4-10. This lattice pattern indicates a more randomized structure thus producing random 

numbers with a very large period in its repeating sequence. 
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Fig. 4-9. RANDOM: Plots of (X„ Xi+l) Fig. 4-10. RANDOM: Plots of (Xh Xi+1, Xi+2) 
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In the algorithm, RANDOM is a combined generator with three simple MLCGs. 

Each generator has a maximum length of period, so period is one third of a multiplication 

of these three periods. 

Based on the lattice pattern in two-dimensional and three-dimensional space, there 

was evidence that RANDU had a poor structure. UNIFORM had a small multiplier, so it 

yielded easy and fast computations, but the lattice pattern was relatively poor compared to 

RNUN, RANUNI, and RANDOM. The combined prime modulus linear generator, 

RANDOM, had a well-scattered lattice structure thus producing more randomized 

numbers. 

Correlation Between RNG Sequences 

The correlation between sequences of random numbers was determined as follows. 

All serial correlation coefficients from the five generators with seed=l and seed=101 are 

listed in tables 4-2 and 4-3, respectively. In each sequence, 100,000 random numbers 

were generated with distance h= 1 to 40, but only five distances were presented. The other 

distances are presented in tables B-6 through B-10. The serial correlations were 

calculated using Knuth's formula (1982), as shown in chapter 3. The serial correlation 

programs are in appendix A (see programs 11 and 12). 

In table 4-2, serial correlations of five RNGs, in which random numbers were 

generated with the starting value seed=l, are presented. None of the RNGs had a 

significant correlation between adjacent sequences with distance h. Sequences generated 

with seed=101 were investigated for correlation between adjacent sequences, and the 
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results are presented in table 4-3. None of these sequences with seed=101 had a 

significant correlation with other adjacent ones. 

TABLE 4-2 
SERIAL CORRELATIONS OF Xt WITH Xt+h NUMBER SEQUENCE 

(SEED=1, #=100,000)* 

Distance between Sequence (h) 

Generator 1 5 10 15 20 25 

RANDU 0.0008 0.0055 0.0003 0.0031 -0.0071 -0.0061 

RNUN 0.0066 -0.0004 -0.0031 0.0023 0.0005 -0.0050 

RANUNI -0.0012 0.0023 0.0035 0.0056 -0.0029 -0.0030 

UNIFORM 0.0024 -0.0009 -0.0014 0.0023 -0.0006 0.0036 

RANDOM 0.0040 0.0020 0.0022 -0.0018 0.0016 -0.0002 

Correlation values are reported to the fourth decimal place in the table. 

TABLE 4-3 
SERIAL CORRELATIONS OF Xt WITH Xt+h NUMBER SEQUENCE 

(SEED=101, JV=100,000)' 

Distance between Sequence (h) 

Generator 1 5 10 15 20 25 

RANDU -0.0058 -0.0059 0.0011 0.0023 -0.0026 -0.0020 

RNUN -0.0016 -0.0008 0.0013 0.0005 -0.0024 0.0006 

RANUNI -0.0056 -0.0036 -0.0008 -0.0008 0.0042 -0.0002 

UNIFORM -0.0024 0.0038 -0.0001 0.0022 -0.0002 -0.0077 

RANDOM 0.0065 0.0001 0.0027 0.0013 -0.0002 0.0017 

Correlation values are reported to the fourth decimal place in the table. 
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Based on serial correlations of random number sequences from five RNGs, all 

sequences are independent of each other. In a simulation study with a set of sequences, 

the serial correlation should still be investigated to determine if different seeds will 

generate different results, because the above tabular results are only the results from two 

different starting values, seed=l and seed=101. 

Density of RNG Sequence 

To evaluate the density of the distribution of random numbers, a chi-square 

goodness-of-fit test was computed (Payne 1982). In a normal distribution with mean 0 

and standard deviation 1, if p = 0.95 (a < 0.05), then Z = 1.645. Given the degrees of 

freedom, df= 99, df=999, or dj=9,999, then the chi-square values are 123.23, 1073.65, or 

10232.8, respectively, from formula (3-a) in chapter 3 (chi-square values for df >30 are in 

table B-5). Given, «=1,000,000 generated numbers divided by 100 cells and 1,000 cells, 

and »=5,000,000 and n=\0,000,000 generated numbers divided by 1,000 cells and 10,000 

cells, then the expected frequency in each cell should be 10,000 or 1,000, respectively. A 

chi-square value less than a given criteria indicates a uniform distribution of random 

numbers in the range of total generated numbers. The chi-square values for the 

distributions of each generator are listed in table 4-4 for seed=l and table 4-5 for 

seed=101. 

In table 4-4, RANUNI was significant with the generated number »=5,000,000 

divided by 1,000 cells. Also, RANDOM was significant with the generated number 

«=1,000,000 with 1,000 cells. 
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TABLE 4-4 
CHI-SQUARE VALUES FOR UNIFORM DISTRIBUTION (SEED=1) 

«=1,000,000 »=5,000,000 «=10,000,000 

Generator 100 
cells 

1,000 
cells 

1,000 
cells 

10,000 
cells 

1,000 
cells 

10,000 
cells 

RANDU 80.04 925.15 954.51 10121.12 982.60 9911.94 

RNUN 109.54 920.62 966.49 9925.34 991.54 9804.65 

RANUNI 83.73 992.54 1103.10* 10160.54 1054.22 9757.99 

UNIFORM 115.98 1053.05 975.03 9876.76 930.81 9675.34 

RANDOM 96.46 1123.37* 988.15 9961.99 1003.67 9789.38 

For chi-square critical values with p < 0.05: df=99, chi-square=123.23; df=999, 
chi-square=1073.65; df=9999, chi-square=10232.76 

Significant at df=999, chi-square > 1073.65. 

TABLE 4-5 
CHI-SQUARE VALUES FOR UNIFORM DISTRIBUTION (SEED=101) 

w=l,000,000 m=5,000,000 «=10,000,000 

Generator 100 
cells 

1,000 
cells 

1,000 
cells 

10,000 
cells 

1,000 
cells 

10,000 
cells 

RANDU 108.38 1031.40 1049.26 9932.03 972.05 9663.82 

RNUN 72.94 966.52 977.19 9896.14 1007.02 9832.75 

RANUNI 93.56 1015.74 973.66 9894.08 970.87 9765.99 

UNIFORM 82.07 1008.62 983.86 9931.54 1019.42 10033.51 

RANDOM 104.39 1029.65 1009.22 9939.92 959.76 9923.83 

For chi-square critical values with 
chi-square=1073.65; df=9999, chi-

p < 0.05: #=99, chi-square=123.23; df=999, 
square=10232.76 
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None of the other generators produced a significant result in the chi-square test when 

seed=101. 

Therefore, this finding indicates that different sample sizes and different seed 

values can have an effect on certain intervals of random numbers, so a selection of random 

numbers in any generator needs to be investigated for uniformness and randomness when 

research is performed. 

Efficiency of the Normal Approach 

The research question pertaining to when the RNGs reached a normal distribution 

and at what sample size was also investigated. 

For testing the normal approach of RNGs, sets of 1,000 to 100,000 normal 

random numbers (NRNs) with seed=l and seed=101 were generated using Leva's normal 

random number generator. The numbers were then grouped into four intervals based on 

the standard deviation of the normal distribution, -1^ o ^ 1, -2 < o ^ 2, -3 ^ o ^ 3, a < 3 

and a > 3. Each set of numbers was imported into SPSS and distributions plotted to see if 

the samples approximated normality. In figs. 4-11 to 4-20, each of the sample sizes for the 

NRNs, «= 1,000 and «= 10,000, from the five generators are presented with two different 

starting values, seed= 1 and seed=101. The curves from the five generators are plotted 

with the curve from the normal density function. In figs. 4-21 to 4-27, the means, standard 

deviations and area under the curve more closely approximated normality as the number of 

cases increased, surprisingly requiring 100,000 cases for most RNGs. 
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Fig. 4-11. Normal approach ofNRNs 
from RANDU: ^=1,000 (seed=l and 
seed=101) 

Fig. 4-12. Normal approach ofNRNs 
from RANDU: ^=10,000 (seed=l and 
seed=101) 

F .3 

Seed=101 

-4.00 -3.00 -2.00 -1.00 .00 1.00 2.00 3.00 4.00 

X 

F .3 

— Seed=l 
— Seed=101 

y \ 
/ \ 

0.0 
-4.00 -3.00 -2.00 -1.00 .00 1.00 2.00 3.00 4.00 

X 

Fig. 4-13. Normal approach ofNRNs 
fromRNUN: «= 1,000 (seed=l and 
seed=101) 

Fig. 4-14. Normal approach ofNRNs 
fromRNUN: «=10,000 (seed=l and 
seed=101) 
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Fig. 4-15. Normal approach ofNRNs 
from RANUNI: w=l,000 (seed=l and 
seed=101) 

Fig. 4-16. Normal approach ofNRNs 
from RANUNI: «=10,000 (seed=l and 
seed=101) 
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Fig. 4-17. Normal approach of NRNs Fig. 4-18. Normal approach of NRNs 
from UNIFORM: n=\,000 (seed=l and from UNIFORM: «=10,000 (seed=l and 
seed=101) seed=101) 
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Fig. 4-19. Normal approach ofNRNs 
from RANDOM: «=1,000 (seed=l and 
seed=101) 

Fig. 4-20. Normal approach ofNRNs 
from RANDOM: «=10,000 (seed=l and 
seed=101) 

The figs. 4-11 through 4-20 indicated that when w=l,000, the curve is very rough 

and not well fitted to the normal curve, but when n=10,000 the curves closely approach 

the normal curve. This implies that when sampling from NRN generators, sample size 

needs to be large enough, and n > 10,000 is preferred. 

In tables 4-6 through 4-8, the sample means and standard deviations departed from 

the expected normality; mean= 0, standard deviation =1, and total area =1. In table 4-8, to 

estimate the area, p, under the normal curve within three intervals, a count of the NRNs 

in the interval was divided by the total number ofNRNs generated. The estimated area 

should be 0.6826, 0.9544, or 0.9927 in tl̂ e intervals with o, 2o, or 3a, respectively. 

Means and standard deviations were calculated after generating either 1,000, 

10,000 or 100,000 random numbers using two different seed values: 1 and 101. 
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TABLE 4-6 
RESULTS OF NORMAL APPROACH OF MEANS AND 

STANDARD DEVIATIONS (SEED=l)a 

Generator 

«=1,000 w=l 0,000 «=100,000 

Generator Mean StdDev Mean StdDev Mean StdDev 

RANDU 0.0239 0.9999 0.0141 1.0023 0.0024 1.0035 

RNUN -0.0221 0.9842 -0.0139 0.9962 -0.0016 0.9997 

RANUNI 0.0091 0.9192 -0.0031 0.9978 0.0006 1.0018 

UNIFORM -0.0558 0.9764 -0.0104 0.9946 0.0023 0.9975 

RANDOM 0.0239 0.9856 -0.0035 0.9924 0.0052 1.0000 

Expected values in the table are mean=0 and standard deviation^!. 

TABLE 4-7 
RESULTS OF NORMAL APPROACH OF MEANS AND 

STANDARD DEVIATIONS (SEED=101)a 

Generator 

w=l,000 «= 10,000 m=100,000 

Generator Mean StdDev Mean StdDev Mean StdDev 

RANDU -0.0087 1.0068 -0.0002 1.0031 0.0024 0.9998 

RNUN -0.0350 0.9792 -0.0258 1.0063 0.0012 1.0015 

RANUNI 0.0082 0.9803 0.0116 1.0105 -0.0019 1.0006 

UNIFORM 0.0077 1.0144 0.0060 0.9888 -0.0001 0.9951 

RANDOM 0.0031 0.9872 0.0025 0.9948 0.0005 0.9980 

Expected values in the table are mean=0 and standard deviation=l. 
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TABLE 4-8. 
AREA UNDER THE DISTRIBUTION CURVE FOR 

#,=1,000, #2=10,000 AND #3=100,000 

Generator 

-1 < a < 1 (P=0.6826) -2 <a <2 (P=.9544) -3 < o < 3 (jD=0.9974) 

Generator »i n2 »3 "i »2 «3 «2 

RANDU 0.6860 0.6761 0.6802 0.9550 0.9567 0.9541 0.9970 0.9971 0.9972 

RNUN 0.6940 0.6836 0.6821 0.9580 0.9554 0.9553 0.9970 0.9972 0.9973 

RANUNI 0.7290 0.6833 0.6827 0.9650 0.9571 0.9547 0.9980 0.9969 0.9970 

UNIFORM 0.6940 0.6833 0.6847 0.9620 0.9552 0.9549 0.9980 0.9981 0.9975 

RANDOM 0.6930 0.6876 0.6826 0.9560 0.9563 0.9549 0.9960 0.9973 0.9972 

Based on the above tables and figures, a small number of sample sizes from a 

random number generator causes unstable means and standard deviations. Sample sizes 

greater than 10,000 random numbers are recommended. 

When seed=l, «= 10,000 and «=100,000, RNUN and RANUNI had good 

approximations to normality. But when seed=101 and n k 10,000, RANDOM was best. 

Choosing different seeds results in different means and standard deviations; therefore, for 

normality purposes, means and standard deviations should be checked before using normal 

random numbers in an actual study. 

The distribution of means and standard deviations from UNIFORM and RANUNI 

are presented in figs. 4-21 through 4-24. Each distribution from RANDU, RNUN, and 

RANDOM had a similar graph as UNIFORM and RANUNI. Sample sizes, therefore, 

need to be large enough to insure a smaller departure from the expected mean = 0 and 

standard deviation = 1. Different RNGs also have different approaches to normality when 

various seed values and sample sizes are being utilized. 
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In figs. 4-25 through 4-27, the area under the normal curve within three different 

intervals using the RANDOM approach is presented. The estimated area is theoretically 

0.6826, 0.9544, or 0.9927 in intervals with a, 2a, or 3a, respectively. 
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Fig. 4-21. Normal approach of means: 
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Fig. 4-22. Normal approach of means: 
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Fig. 4-24. Normal approach of standard 
deviation: RANUNI (seed=l and seed 
=101) 
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From the figures and tables, it is clear that the normal approach of NRNs from 

each generator vary with the type of generator, seed value, sample size, and interval of 

confidence. Therefore, prior investigations of normality are crucial if the results of a 

research study using random numbers from the RNGs are to be valid and meaningful. 

Findings indicated that normality will differ based on the size of sample, and the area 

under the normal curve will differ for each of the three intervals investigated (lo, 2a, and 

3o). Departures from the expected normality, mean = 0, standard deviation = 1, and area 

under curve, needs to be reported in any simulation study. Also, a sample size n > 10,000 

is recommended. 



CHAPTER 5 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

Summary 

In this study, five multiplicative linear congruential generators (MLCG) were 

chosen in which each random number generator (RNG) had a prime modulus, a multiplier 

as a primitive root, and an increment 0. Using a personal computer (PC), an empirical 

investigation was performed involving five criteria: period of generator, random number 

structure, serial correlation, density in the distribution, and normal approach of normal 

random numbers (NRN). All RNG FORTRAN programs were rewritten into the Pascal 

language to facilitate comparison on the PC. Sets of random numbers were generated with 

two different starting values which were arbitrarily selected. Figures were produced using 

SPSS for Windows 6.1 (SPSS 1994). 

The period of random number sequence is determined based on multiplier (a) and 

modulus (m), and is not affected by increment (c). The size of period from a simple 

MLCG can not exceed the size of modulus which is limited by the size of the computer 

word. Most users can not recognize the full period because the period of RNGs is much 

larger than they actually use for the sampling in a study. After empirical investigation, 

RNUN, RANUNI, and UNIFORM reached the same period (2.17xl09), RANDU had the 

shortest period (1.61xl09), and RANDOM to the longest period (9.27xl012). Therefore, 

in a simulation study, if the sample size exceeds 2xl09, then RANDOM should be used. If 

55 
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the sample size is less than 2xl09, then any RNG can be used, with the exception of 

RANDU. 

The structure pattern in two-dimensional and three-dimensional space differs by 

multiplier and modulus. RANDU had a poor structure and UNIFORM had a structure 

similar to that of RANDU in two-dimensional space, but a better structure in three-

dimensional space. UNIFORM had a small multiplier, so it yielded easy and fast 

computations, but the lattice pattern was relatively poor compared to those of RNUN, 

RANUNI, and RANDOM. The combined prime modulus linear generator, RANDOM, 

had a well scattered lattice structure, thus producing more randomized numbers. 

The serial correlation in the random number sequences from the five RNGs in this 

study were not significant, so each sequence was independent of other distanced 

sequences. In this study, forty-five different distances were investigated with two starting 

values; however, more extended distances can be investigated using varied starting values 

and sample sizes. In a simulation study with a set of sequences, the serial correlation 

should still be investigated to determine if different seeds will generate different results. 

The density of random numbers was affected by the multiplier, the starting values, 

and the sample size used in this study. Significant cases were derived from RNUN and 

RANDOM, both of which are used widely in the research area. This indicates that a 

careful investigation is necessary in research even if a generator is well known. 

The normality of random number has the most concern in simulation studies. The 

means, standard deviations, and area under the the curve more closely approximated 

normality as the number of cases increased, surprisingly requiring 100,000 cases for most 
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RNGs. The figs. 4-11 through 4-20 indicated that when n=1,000, the curve is very rough 

and not well fitted to the normal curve, but when n=10,000 the curves closely approach 

the normal curve. This implies that when sampling from NRN generators, sample size 

needs to be large enough, and n > 10,000 is preferred. Based on the tables and figures, a 

small number of sample sizes from a random number generator causes unstable means and 

standard deviations. Sample sizes greater than 10,000 random numbers are recommended. 

When seed=l, «=10,000 and «=100,000, RNUN and RANUNI had good 

approximations to normality. But when seed=101 and n £ 10,000, RANDOM was best. 

Choosing different seeds results in different means and standard deviations; therefore, for 

normality purposes, means and standard deviations should be checked before using normal 

random numbers in an actual study. Different RNGs also have different approaches to 

normality when various seed values and sample sizes are being utilized. 

From the figures and tables, it is clear that the normal approach of NRNs from 

each generator varies with the type of generator, seed value, sample size, and interval of 

confidence. Therefore, prior investigations of normality are crucial if the results of a 

research study using random numbers from the RNGs are to be valid and meaningful. 

Findings indicated that normality will differ based on the size of sample, and the area 

under the normal curve will differ for each of the three intervals investigated (lo, 2a, and 

3o). Departure from the expected normality, mean =? 0, standard deviation = 1, and area 

under curve, needs to be reported in any simulation study. 

For reliable results, the sample size should be large enough, n z 10,000, but even a 

large sample size is not a guarantee of normality in all intervals of the NRN range. 
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Therefore, an intensive investigation of normality is necessary in any type of study using 

NRNs. 

Conclusions 

When a "Monte Carlo study" is conducted, any type of computer can be used in 

the study, including a main frame or personal computer (PC) with very different 

algorithms. A high-speed PC with a floating-point chip affords advanced scientific 

computing without the traditional headaches of a mainframe, interference from other uses, 

and support from a large main frame in the computer center (Hamilton 1993). However, 

when using a PC in a Monte Carlo study, the following criteria should be observed: 

1. Period of RNG should be long enough for the simulation. 

2. Well-structured RNG should be chosen to avoid unexpected troubles. 

3. Serial correlation should be tested when more than two sequences are used. 

4. Uniformity of RNG needs to be investigated. 

5. Normality should be checked in statistical decision making, including mean, 

standard deviation, area mean and distribution in normal curve. 

6. Sample size should be large enough; n > 10,000 is preferred. 

7. Various starting values need to be tested for reliable results. 

When reporting results from a simulation study, the following information should be 

provided to the reader for reproducibility and validity: 

a) Sources of the RNG: type of RNG, multiplier (a), modulus (m), increment (c), 

period (p), and starting value (seed) (X0). 

b) Evaluation results of the RNG: period, structure, correlation, uniformity, and 
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normality. 

c) Computer information: type of computer used, language used, and program 

code. 

Recommendations 

Ripley (1987) suggested that one should choose a generator for which theoretical 

tests are available and have been performed before it is put to serious use. It is better to 

use simple and well-understood algorithms. Therefore, a well-tested RNG is 

recommended because unknown RNGs could cause serious problems. In addition to 

Ripley's suggestion, any RNG needs to be tested before or after research is performed, 

because although an RNG has passed certain criteria, there is no guarantee the RNG has 

validity for the study. As findings in this study, the following recommendations are 

therefore made: 

1. Other MLCGs not used in this study can be tested. 

2. Other more high level computer languages can be used in the algorithm, for 

example, C++. 

3. Other types of generators can be used, for example, combined, shifted, and 

additive generator. 

4. Computer word size greater than 32-bits can be used with Pentium or more 

powerful PCs with 64-bit chips, or more powerful chips. 

5. Various testing techniques for investigating uniformness of RNGs, for example, 

Run-Up Run-Down, Run-Over Run-Below, and Gap might be utilized. 
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6. Various nonuniform methods can be used, for example, Box-Muller, Rejection, 

and Alias. 

7. More portable RNGs, for example, SWC-AWC, Tausworthe can be adopted. 

8. Generate graphical images and use faster computers; computer clock time 

greater than 100 Mhz. 

9. The testing level can be extended to a multidimensional level. 

In current Monte Carlo study, many findings were reported without enough information 

for the RNG used in research. Therefore, the validity of findings were solely depended on 

researcher's professionalism. All the generators are pseudorandom number generators, 

and random numbers can be reproduced if sources of the RNG are provided. Without 

reporting the information on the RNG, researchers will be unable to replicate other studies 

and further research their findings. 

In this study five well known RNGs were chosen and empirical comparisons were 

performed on five criteria. Each criteria can be adopted and enforced depending on the 

characteristics of the study, but the suggestion from Ripley should be considered. Because 

a simple and well-tested RNG can help researches avoid unexpected troubles. 

Other testing methods and criteria can be performed on comparison of RNGs. 

Different methods yields different outcomes; therefore, the outcomes that past studied 

might be different from this results. But as a result of findings in this study, RANDOM is 

the most recommendable generator among five RNGs. 
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Function 
{* 

{* 
{* 
{* 

Const 
A1 

Program 1 
Pascal Function Code: RANDOM (BMDP) 

RandomR(seedl,seed2,seed3 : longint) :double; 
Real version with double precision. *} 
RANDOM(BMDP) is a combined RNG with three 
simple MLCGs. Seed value should be less 
than 30,000. Period is 9.27x10 \12 

Var 

171; A2 = 172; A3 = 170; 
Ml = 30269; M2 = 30307; M3 = 30323, 

{ seed < 30,000 } 
nseedl, nseed2, nseed3 : longint; 
tempi, temp2, 
I : Integer; 
xr : double; 

Begin 
tempi 
temp2 
temp3 
nseedl 
nseed2 
nseed3 
seedl 

temp3 : longint; 

= Al * seedl; 
= A2 * seed2; 
= A3 * seed3; 
= tempi - Ml * 
= temp2 - M2 * 
= temp3 - M3 * 

= nseedl; seed2 
xr := seedl / 
randomr := xr 

End; 

Ml + seed2 / 
- trunc(xr); 

Trunc(tempi / Ml) 
Trunc(temp2 / M2) 
Trunc (temp3 / M3) 
:= nseed2; seed3 

M2 + seed3 / 

*} 
*} 

} 

= nseed3 
M3 ; 

Program 2 
Pascal Function Code: RANDU (IBM) 

Function RandomR(seed : longint) :double; 
{* Real version with double precision. 
{* RANDU(IBM) is a simple MLCGs. Period is 
{* 1.61xl09. 

Const 
a = 65539; 
m = 2147483647; 

Var 
temp : longint; 

Begin 
temp := a * seed; 
If temp < 0 then 

temp : = 1 + (temp + m ) ; 
seed := temp; 
RandomR := seed*0.4656613E-9 ; 

End; 

*} 
*} 

* } 
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Program 3 
Pascal Function Code: RNUN (IMSL) 

Function RandomR(seed : longint) :double; 
{* Real version with double precision. *> 
{* RNUN(IMSL) is a simple MLCGs. Period is *} 
{* 2.72xl09. *} 

Const 
a = 950706376.0; 
m = 2147483647.0; 

Var 
I : integer; 
temp, nseed : comp; 

Begin 
temp := a * seed; 
nseed := temp - m * Trunc(temp / m); 
seed := round(nseed); 
RandomR := seed/m; 

End; 

Program 4 
Pascal Function Code: RANUNI (SAS) 

Function RandomR (seed : longint) -.double; 
{* Real version with double precision. *} 
{* RANUNI(SAS) is a simple MLCGs. Period is *} 
{* 2.72x10s. *} 

Const 
a = 397204094.0; 
m = 2147483647.0; 

Var 
I : integer; 
temp, nseed : comp; 

Begin 
temp := a * seed; 
nseed := temp - m * Trunc(temp / m); 
seed := round(nseed); 
RandomR := seed/m; 

End; 
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Program 5 
Pascal Function code: UNIFORM (SPSS) 

function RandomR(seed : longint) :double; 
{* Real version with double precision. *} 
{* UNIFORM(SPSS) is a simple MLCGs. Period *} 
{* is 2.72x10®. *} 

const 
a = 16807.0; 
m = 2147483647.0; 

var 
I : integer; 
temp, nseed : comp; 

begin 
temp := a * seed; 
nseed := temp - m * Trunc(temp / m); 
seed := round(nseed); 
RandomR := seed/m; 

end; 
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Program 6 
Generating Random Numbers: RANDOM 

PROGRAM SDBMDlOX; 
{* BMDP - Real Version 1 - Double Precision * } 
{* Generating 1,000,000 random numbers *} 

{ $N+} 
uses Crt; 

const Al = 171; A2 = 172; A3 = 170; 
Ml = 30269; M2 = 30307; M3 = 30323; 

VAR seedl, seed2, seed3 : longint; { seed < 30,0000 } 
nseedl, nseed2, nseed3 : longint; 
tempi, temp2, temp3 : longint; 
K, I : longint; 
RandomB,xr : double; 
outfile : text; 

BEGIN 
clrscr; 
assign (Outfile, 
rewrite (Outfile) 
seedl 
seed2 
seed3 

= 1 
= 1 
= 1 

1RNUMbmd.out') ; 

{ 1 < seed < 30,000 } 
K := 1000000; 
writeln(Outfile,'BMDP - Real Version - Double 

Precision'); 
writeln(Outfile,' 

Random number'); 
For I : = 1 to K do 

BEGIN 
tempi 
temp2 
temp 3 
nseedl 
nseed2 

Sequence seedl seed2 seed3 

nseed3 

= Al * seedl; 
= A2 * seed2; 
= A3 * seed3; 
= tempi - Ml * Trunc(tempi / Ml) 
= temp2 - M2 * Trunc(temp2 / M2) 
:= temp3 - M3 * Trunc(temp3 / M3) 

xr := nseedl / Ml + nseed2 / M2 + nseed3 / M3; 
RandomB := xr - trunc(xr); 
writeln(Outfile,I:14, SEED1:7, SEED2:7, SEED3:7,' 

RandomB); 
seedl := nseedl; seed2 := nseed2; seed3 := nseed3; 
END; 

close(outfile) 
END. 
{ $N- } 
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Program 7 
Generating Random Numbers: RANDU 

PROGRAM SDIBMlOX; 
{* RANDU(IBM) - Real Version - Long Integer *} 
{* Generating 1,000,000 random numbers *} 

{$N+} 
uses Crt; 

const 
a = 65539; 
mx = 2147483647; 

var 
seed, nseed, temp, I, K : longint; 
RandomR : double; 
outfile : text; 

BEGIN 
clrscr; 
assign (Outfile, 'RNUMibm.out1); 
rewrite (Outfile); 
seed := 1; 
K := 1000000; 
writeln(Outfile,'IBM - Real Version - Long integer'); 
writeln(Outfile,'f(seed) = a*seed - m*Trunc(a*seed / 

m) ' ) ; 
writeln(Outfile,'MLCG; a = 65539, m = 2147483648'); 
writeln(outfile); 
writeln(Outfile,' Seq Seed Random Number'); 
For I := 1 to K do 
BEGIN 

temp := a * Seed; 
if temp < 0 then 

temp : = 1 + (temp + mx ) ; 
nseed := temp; 
RandomR := nseed*0.4656613E-9; 

{ S / 2^31 = S * 0.4656613E-9 } 
writeln(I:12,' ',seed:12,' ',RandomR ); 
writeln(Outfile,1:12,' ',seed:12,' ',RandomR ); 
seed := round(nseed); 

END; 
close(outfile); 

END. 
{ $N- } 



67 

Program 8 
Generating Random Numbers: RNUN, RANUNI, UNIFORM 

PROGRAM SDIMSloX; 
{* RNUN(IMSL) - Real Version - Comp Precision *} 
(* Generating 1,000,000 random numbers *} 
{* Program for RANUNI(SAS) AND UNIFORM(SPSS) *} 

{ $N+} 
uses Crt; 

const 
a = 950706376.0; 

{RANUNI:a=397204094, UNIFORM:a=l6807} 
m = 2147483647.0; 

var 
seed, I, K : longint; 
RandomR : double; 
temp, nseed : comp; 
outfile : text; 

BEGIN 
Clrscr; 
assign (Outfile, 1RNUMims.out'); 
rewrite (Outfile); 
seed := 1; 
K := 1000000; 
writeln(outfile); 
writeln(Outfile,' Seq Seed Random 

Number'); 
For I := 1 to K do 

BEGIN 
temp := a * seed; 
nseed := temp - m * Trunc(temp / m); 
Randomr := nseed/m; 
writeln(outfile,1:12,1 seed:12,' ',RandomR); 
seed := round(nseed); 
END; 

close(outfile); 
END. 
{ $N- } 
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Program 9 
Generating Normal Random Numbers: RANDOM 

PROGRAM NRBMD6; 
{* RANDOM(BMDP) - Real Version - Comp Precision 
{* A fast normal random number generator - Leva 1992 
{* Generating random numbers with a normal distribution 
{* - Compute Area under curve in intervals, Means, 
{* Standard deviation, Lowest and Highest Number 
{* Generating Numbers N=100, 1000, 10000, 100000, 
{* and 1000000 

*} 
*} 
*} 
*} 
*} 
*} 
*} 

{ $N+ } 
uses Crt; 

Const S = 0.449871; T = -0.386595; 
A = 0.19600; B = 0.25472; 
Rl = 0.27597; R2 =0.27846; 

Var U, V, VY, X, Y, Q, V2, U2, RANDN, PS1, PS2, PS3, 
MEAN, STDEV, LOW, HIGH : double; 
seedl, seed2, seed3, CI, K, SI, S2, S3, NI : longing-

function RandomR : double; 
{* Real Version *} 

const 
Al = 171; A2 = 172; A3 = 170; 
Ml = 30269; M2 = 30307; M3 = 30323; 

var 
nseedl, nseed2, nseed3 : longint; 
tempi, temp2, temp3 : longint; 
xr : double; 

begin 
tempi := Al * seedl; 
temp2 := A2 * seed2; 
temp3 := A3 * seed3; 
nseedl := tempi - Ml * Trunc(tempi / Ml); 
nseed2 := temp2 - M2 * Trunc(temp2 / M2); 
nseed3 := temp3 - M3 * Trunc(temp3 / M3); 
seedl := nseedl; seed2 := nseed2; seed3 := nseed3; 
xr := seedl / Ml + seed2 / M2 + seed3 / M3; 
RandomR := xr - trunc(xr); 

end; 

BEGIN 
NI := 10; 
clrscr; 
writeln('RANDOM(BMDP) - Normal Random Numbers'); 
writeln('MLCG; al=171, a2=172, a3=170, ml=30269, 

m2=30307m, m3=30323'); 
writeln('seed = 101'); 
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END. 
{ $N- } 

For CI := 1 to 5 do 
BEGIN 
seedl := 101; seed2 := 101; seed3 := 101* 
LOW := 100.0; 
HIGH := -100.0; 
K := 0; 
NI := NI*10; 
SI : — 0; S2 : = 0; S3 : = 0; 
REPEAT 

BEGIN 
U := RandpmR; 
VY := RandomR; 
V := 1.7156 * (VY - 0.5); 

X := U - S; 
Y := ABS(V) - T; 
Q := X*X + Y*(A*Y - B*X); 

{* Evaluate the quadratic form *} 

V2 : = V*V; 
U2 := (-4*U*U)*LN(U); 
IF (Q < Rl) OR ((Q <= R2) AND (V2 <= U2)) THEN 

rihhm A c^® p t p i f inside inner ellipse *} 
RANDN := Round(10000*V/U)/10000; 
MEAN := MEAN + RANDN; 
STDEV := STDEV + RANDN * RANDN; 
If RANDN < LOW then LOW := RANDN; 
If RANDN > HIGH then HIGH := RANDN; 
If (RANDN >= -1) and (RANDN <= 1) then 

51 := SI + 1; 
If (RANDN >= -2) and (RANDN <= 2) then 

52 : = S2 + 1 ; 
If (RANDN >= -3) and (RANDN <= 3) then 

53 := S3 + 1; 
K := K + 1; 
END; 

END; 
UNTIL (K = NI); 
PS1 := Sl/K; PS2 := S2/K; PS3 := S3/K-
MEAN := MEAN/K; ' 
STDEV := SQRT((STDEV - (MEAN*MEAN/K))/(K-l))• 
Writeln('K=',K:8); / > / t , 
Writeln('PS1=',PS1:10:5,', PS2=' PS2•10•5 ' 

PS3= ' , PS3 :10 : 5) ; , 
Write(1MEAN=',MEAN:10:5,1, STDEV=',STDEV:10:5)• 

Writeln- L 0 W ='' L 0 W : 1 0 : 5''' HIGH=',HIGH:10:5); 

END; 
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Program 10 
Generating Normal Random Numbers: RNUN, RANUNI, UNIFORM 

PROGRAM NRIMS6; 
{* RNUN(IMSL) RANUNI(SAS) UNIFORM(SPSS) *} 
{* Real Version with Comp Precision *} 
{* A fast normal random number generator - Leva 1992 *> 
{* Generating random numbers with a normal distribution *} 
{* - Compute Area under curve in intervals, Means, *} 
{* Standard deviation, Lowest and Highest Number *} 
{* Generating Numbers N=100, 1000, 10000, 100000, *} 
{* and 1000000 *} 

{ $N+} 
uses Crt; 

Const 
S = 0.449871; T = -0.386595; 
A = 0.19600; B = 0.25472; 
Rl = 0.27597; R2 =0.27846; 

Var U, V, VY, X, Y, Q, V2, U2, RANDN, 
MEAN, STDEV, LOW, HIGH, PS1, PS2, PS3 : double; 
seed : comp; 

CI, NI, K, SI, S2, S3 : longint; 

Function RandomR : double; 

const 
a = 950706376.0; {RANUNI:a=397204094, UNIFORM:a=16807> 
m = 2147483647.0; 

var 
temp : comp ; 

begin 
temp := a * seed; 
seed := temp - m * Trunc(temp / m); 
RandomR := seed/m; 

end; 

BEGIN 
NI := 10; 
Clrscr; 
writeln{'Normal Random Numbers - Leva 1992'); 
writeln; 
FOR CI := 1 TO 5 DO 
BEGIN 
seed := 1.0; 
LOW := 100.0; 
HIGH := -100.0; 
K := 0; 
NI := NI * 10; 
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END. 
{ $N- } 

{ N =100, 1000, 10000, 100000, 1000000 } 
si := 0; S2 := 0; S3 := 0; 
REPEAT 

BEGIN 
U := RandomR; 
VY := RandomR; 
V := 1.7156 * (VY - 0.5) ; 
X := U - S; 
Y := ABS(V) - T; 
Q := X*X + Y*(A*Y - B*X); 

{* Evaluate the quadratic form *} 

V2 : = V*V; 
U2 := (-4*U*U)*LN(U); 
I f (BKrTMR1!*°r

a
((Q T R 2l a n d ( v 2 <= u2>) then 

S := V/3T l n S l d e i M l e r e l l i p s e *> 
MEAN := MEAN + RANDN; 
STDEV := STDEV + RANDN * RANDN; 
If RANDN < LOW then LOW := RANDN* 
If RANDN > HIGH then HIGH := RANDN* 
If (RANDN >= -1) and (RANDN <= 1) then 

51 := SI + 1; 
If (RANDN >= -2) and (RANDN <= 2) then 

52 := S2 + 1; 
If (RANDN >= -3) and (RANDN <= 3) then 

53 := S3 + 1; 
K := K + 1; 
END; 

END; 
UNTIL(K = NI); 

S 1 / K ; P S 2 := S 2 / K ; P S 3 := S3/K; 
MEAN := MEAN/K; 
STDEV := SQRT((STDEV - (MEAN*MEAN/K))/(K-l))• 
Writeln ( ' K= 1 , K: 8) ; " M 

Writeln(•PSl=g,psi,10:5,-. PS2 =',PS2:10:5,', 

'MEAN: 10: 5, ' , STDEV= ' , STDEV: 10 -5) • 
Writ e £ ; ' h0W"^'^:S,', HIGH=',HIGH: 10 i 5) 

END; 
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Program 11 
Computing Serial Correlation: RANDOM 

(Seed=101, #=100,000, h= 1 to 40) 

PROGRAM CORRBMDl; 
{* Serial Correlation - RANDOM(BMDP)- Knuth 1981 *} 

{ $N+ } 
uses Crt; 

const 
Al = 171; A2 = 172; A3 = 170; 
Ml = 30269; M2 = 30307; M3 = 30323; 

var 
seed, seedl, seed2, seed3, nseedl, nseed2, nseed3, 
seedln, seed2n, seed3n, tempi, temp2, temp3, 
I, J, H, N, D : longint; 
SUMl, SUMll, SUM12 : comp; 
xr, RandomR, CORR : double; 
RN : array [1..3] of longint; 
outfile : text; 

BEGIN 
Clrscr; 
assign (outfile, 'CORRBMD2.out'); 
rewrite(outfile); 
N := 100000; { Total number of cases } 
D := 10000; { Integer range } 
writeln(1 Serial Correlation - RANDOM(BMDP) -

seed=1011); 
writeln(outfile,'Serial Correlation - RANDOM(BMDP)'); 
WRITELN(OUTFILE,'N = ',N,', D = ',D); 
WRITELN("N = ' ,N, 1 , D = ' ,D); 
For H := 2 to 41 do { Disjoint distance = H-l } 
BEGIN 
seedl := 101; seed2 := 101; seed3 := 101; 
SUMl := 0; 
SUMll := 0; 
SUMl2 := 0; 

For I := 1 to N do 
BEGIN 

For J := 1 to H do 
BEGIN 
tempi := Al * seedl; 
temp2 := A2 * seed2; 
temp3 := A3 * seed3; 
nseedl := tempi - Ml * Trunc(tempi / Ml) 
nseed2 := temp2 - M2 * Trunc(temp2 / M2) 
nseed3 := temp3 - M3 * Trunc(temp3 / M3) 
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xr := nseedl / Ml + nseed2 / M2 + nseed3 / M3; 
RandomR := xr - trunc(xr); 
seedl := nseedl; seed2 := nseed2; 
seed3 := nseed3; 

IF J = 1 THEN 
BEGIN 
RN[1] := Round(RandomR * D); 
seedln := nseedl; seed2n := nseed2; 

seed3n := nseed3; 
END; 

END; 
RN[2] := Round(RandomR * D); 
seedl := seedln; seed2 := seed2n; seed3 := seed3n; 
SUMl := SUMl + RN[1]; 
SUM12 := SUM12 + RN[1]*RN[2]; 
SUMll := SUMll + RN[1]*RN[1]; 

END; 
Corr := (N*SUM12 - SUMl*SUM1)/(N*SUMll - SUM1*SUM1); 
Writeln('H= 1

#H-1:4,', Corr = ',corr:8:5); 
Writeln(outfile,'H= •,H-1:4,', Corr = •,corr:8:5); 

END; 
close(outfile); 

END. 

{ $N- } 
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Program 12 
Computing Serial Correlation: RNUN, RANUNI, UNIFORM 

(Seed=101, JV-100,000, h= 1 to 40) 

PROGRAM CORRSPS1; 
{* Serial Correlation - Knuth 1981 } 
{* RNUN(IMSL), RANUNI(SAS) and UNIFORM(SPSS) * } 

{ $N+ } 
uses Crt; 

const 
a = 16807.0; {RNUN:a=950906376f RANUNI:a=397204094 } 
m = 2147483647.0; 

var 
seed, seedl, seed2, I, J, H, N, D : longint; 
temp, nseed, SUMl, SUMll, SUMl 2 : comp; 
RandomR, Corr : double; 
RN : array [1..3] of longint; 
outfile : text; 

BEGIN 
Clrscr; 
assign (outfile, 'CORRSPS2.out1); 
rewrite(outfile) ; 
N := 100000; { Total number of cases } 
D := 10000; { Integer range } 
writeln('Serial Correlation - seed=101'); 
writeln(outfile,1 Serial Correlation - seed=101'); 
WRITELN(OUTFILE,'N = ',N,', D = ' ,D); 
WRITELN('N = ',N,', D = ',D); 
For H := 2 to 41 do { Disjoint distance = H-l } 
BEGIN 
seedl := 101; 
SUMl := 0; 
SUMll := 0; 
SUMl2 := 0; 

For I := 1 to N do 
BEGIN 

For J := 1 to H do 
BEGIN 

seed := seedl; 
temp := a * seedl; 
Nseed := temp - m * Trunc(temp / m); 
RandomR := nseed/m; 
seedl := Round(nseed); 
IF J = 1 THEN 
BEGIN 
RN[ 1] := Round(RandomR * D); 
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seed2 := round(nseed); 
END; 

END; 
RN[2] := Round(RandomR * D); 
seedl := seed2; 
SUMl := SUM1 + RN[1]; 
SUM12 := SUMl 2 + RN[1]*RN[2]; 
SUMll := SUMll + RN[1]*RN[1]; 

END; 
Corr := (N*SUM12 - SUMl*SUMl)/(N*SUMll - SUMl*SUMl); 
Writeln('H= ',H-1:4,', Corr = ',corr:8:5); 
Writeln(outfile,'H= ',H-l,', Corr = ',corr:10:5); 

END; 
close(outfile); 

END. 

{ $N- } 
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Program 13 
Computing Chi-square Values 

PROGRAM CHISQR; 

{ Chi-square value ( N > 30 ) - Selby, 1975 } 
{ chi-square = D * (1 - A + Z * A ** 0.5 ) ** 3, } 
{ where D = degree of freedom, Z = 1.645 } 
{ A = 2 / ( 9 * D) 

{ $N+ } 
uses Crt; 

VAR I, N, D : longint; 
A, Z, CHI_SQR : double; 
outfile : text; 

BEGIN 
clrscr; 
assign (outfile, 'chisqr2.out'); 
rewrite(outfile); 
N := 0; 
Z := 1.645; 
Writeln(outfile,'Chi-Square Value (95% level), 

Z = ' , Z : 6 : 3 ) ; 
Writeln(outfile); 
Writeln(' N Chi-square'); 
Writeln(outfile,1 N Chi-square'); 
For I := 1 to 40 do 

BEGIN 
N 
D 
A 

= N + 1000; 
= N - 1; 
= 2/(9*D); 

CHI_SQR := D*(1-A+Z*SQRT(A))*(1-A+Z*SQRT(A)) 
*(1-A+Z*SQRT(A)); 

Writeln(N:10,CHI_SQR:15:4); 
Writeln(outfile,N:10,CHI_SQR:15:4); 
END; 

close(outfile); 
END. 
{ $N- } 
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TABLE B-l 
RANDOM(BMDP): SEEDS APART 1,000,000 

(a!=171, a2=\ll, a3=170, mx=30269, m2=30307, w3=30323) 
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Sequence seedl seed2 seed3 Random number 

1 0 0 0 0 0 0 1 7 3 4 0 1 2 9 1 6 2 9 9 6 . 0 0 5 0 2 8 5 4 1 6 7 4 7 7 E - 0 0 0 1 
2 0 0 0 0 0 0 2 9 0 8 9 2 5 5 2 6 1 9 0 8 1 1 . 7 4 2 8 6 4 9 4 1 5 6 9 7 9 E -•0001 
3 0 0 0 0 0 0 1 9 3 1 7 2 3 5 9 8 2 0 7 8 6 5 . 8 5 7 5 1 0 1 0 7 5 6 6 0 2 E - 0 0 0 1 
4 0 0 0 0 0 0 4 4 4 6 2 4 0 2 4 7 7 8 3 9 . 3 2 2 2 8 0 0 0 7 1 6 6 8 8 E - 0 0 0 2 
5 0 0 0 0 0 0 1 5 4 0 8 3 0 0 2 9 2 3 6 6 3 1 . 2 9 3 8 0 0 6 2 1 1 7 6 6 1 E - •0001 
6 0 0 0 0 0 0 2 9 0 1 1 4 9 0 3 2 9 5 3 9 3 . 2 3 5 6 4 3 3 3 1 4 7 9 1 4 E - •0001 
7 0 0 0 0 0 0 2 3 8 2 6 2 5 9 5 2 2 1 8 1 6 . 8 2 0 2 7 0 2 6 1 5 6 0 9 5 E - •0001 
8 0 0 0 0 0 0 3 4 0 6 2 8 2 5 6 1 3 6 8 4 3 . 1 8 3 9 8 9 3 0 3 9 8 4 0 9 E - •0001 
9 0 0 0 0 0 0 1 4 9 9 0 2 4 9 4 4 1 1 8 4 6 6 . 5 9 5 6 3 2 2 7 7 0 8 2 6 7 E - 0 0 0 1 

1 0 0 0 0 0 0 0 2 5 2 3 4 1 8 3 8 2 1 2 6 7 9 . 8 1 3 0 6 6 2 7 1 0 4 1 6 5 E - •0001 
1 1 0 0 0 0 0 0 8 1 6 3 1 3 1 0 4 2 9 9 4 4 3 . 5 9 3 6 8 7 7 0 0 9 2 5 6 0 E - 0 0 0 1 
1 2 0 0 0 0 0 0 1 3 5 8 4 2 4 6 4 5 2 8 7 8 5 9 . 8 4 8 9 1 4 8 5 5 5 3 3 4 5 E - 0 0 0 1 
1 3 0 0 0 0 0 0 1 8 0 3 3 2 7 4 7 1 2 6 8 8 2 4 . 8 8 2 9 9 6 1 6 3 3 5 4 1 1 E - 0 0 0 1 
1 4 0 0 0 0 0 0 2 9 7 7 5 9 6 8 1 3 6 3 8 5 . 4 7 1 2 1 7 4 3 5 9 3 8 0 4 E - 0 0 0 1 
1 5 0 0 0 0 0 0 2 8 5 5 7 9 9 0 2 2 3 0 8 4 9 . 4 0 6 6 7 8 6 5 0 0 3 8 4 4 E - 0 0 0 1 
1 6 0 0 0 0 0 0 3 5 0 3 1 6 3 6 1 3 0 2 7 6 . 1 2 8 1 1 6 3 4 9 4 7 1 8 9 E - 0 0 0 1 
1 7 0 0 0 0 0 0 1 7 5 3 2 1 7 6 1 2 5 3 2 5 1 . 8 1 1 4 9 0 8 7 1 3 4 4 4 7 E - 0 0 0 2 
1 8 0 0 0 0 0 0 6 3 4 8 1 2 6 5 8 1 1 6 0 2 . 0 2 7 4 8 6 8 4 4 4 6 3 6 5 E - 0 0 0 1 
1 9 0 0 0 0 0 0 2 1 8 7 7 2 4 2 2 1 1 4 2 8 4 . 0 5 0 3 3 3 2 5 2 9 5 1 6 3 E - 0 0 0 1 
2 0 0 0 0 0 0 0 2 4 1 0 2 1 2 2 2 9 2 2 4 5 3 4 . 4 1 5 8 2 6 2 9 8 3 8 9 5 2 E - 0 0 0 1 
2 1 0 0 0 0 0 0 2 9 3 6 2 2 7 3 2 2 2 7 0 2 9 4 . 6 8 2 3 3 8 8 7 3 6 9 0 5 1 E -•0001 
2 2 0 0 0 0 0 0 1 8 6 7 0 1 9 1 7 7 8 9 5 5 5 . 1 2 1 1 6 4 1 8 7 0 2 8 7 9 E -•0001 
2 3 0 0 0 0 0 0 8 0 8 6 6 1 6 9 2 8 0 9 9 2 . 2 2 8 3 1 6 0 5 5 9 4 5 5 8 E - •0001 
2 4 0 0 0 0 0 0 1 6 8 7 1 2 3 0 0 2 1 2 1 7 7 1 . 2 0 3 1 8 5 9 2 2 1 3 5 3 2 E -•0001 
2 5 0 0 0 0 0 0 2 7 0 9 6 1 3 9 4 4 5 0 5 . 0 8 7 7 5 8 7 9 2 2 2 4 0 0 E -•0001 
2 6 0 0 0 0 0 0 2 9 7 4 1 5 0 9 7 1 0 7 0 7 5 . 0 7 2 1 0 0 9 3 0 4 5 0 8 6 E - 0 0 0 1 
2 7 0 0 0 0 0 0 2 8 3 2 1 1 1 6 0 7 9 2 6 1 . 3 9 5 2 0 1 4 8 0 3 8 2 2 8 E - •0002 
2 8 0 0 0 0 0 0 1 9 4 7 4 1 1 2 7 2 1 2 0 3 2 . 8 1 8 3 7 6 8 1 0 8 5 2 7 0 E - •0001 
2 9 0 0 0 0 0 0 2 4 4 7 5 7 7 0 5 7 3 9 5 4 . 5 4 1 8 0 0 4 1 7 5 9 1 8 3 E - 0 0 0 1 
3 0 0 0 0 0 0 0 2 7 5 9 1 1 9 8 9 6 2 7 3 6 9 2 . 2 4 9 3 4 0 5 9 9 8 5 8 4 4 E - 0 0 0 1 
3 1 0 0 0 0 0 0 3 4 6 4 4 2 8 1 2 8 9 4 8 . 9 7 4 9 5 6 6 4 4 3 6 0 4 1 E - 0 0 0 2 
3 2 0 0 0 0 0 0 4 6 5 2 2 5 5 5 7 1 7 4 3 9 . 5 0 7 1 0 9 9 9 5 8 8 4 4 9 E - 0 0 0 2 
3 3 0 0 0 0 0 0 5 8 2 8 2 7 5 2 1 1 5 3 9 4 • 4 . 1 6 5 7 9 3 6 8 1 5 4 4 1 0 E - 0 0 0 1 
3 4 0 0 0 0 0 0 2 1 6 6 8 1 9 9 1 9 1 6 1 4 5 9 . 6 9 2 2 6 8 7 2 1 2 3 7 0 6 E - 0 0 0 1 
3 5 0 0 0 0 0 0 7 0 7 9 1 9 9 0 1 1 3 1 9 2 8 . 9 3 3 6 9 5 4 4 6 3 6 8 0 4 E - 0 0 0 1 
3 6 0 0 0 0 0 0 6 3 9 6 2 3 4 8 9 2 5 6 1 1 2 . 2 3 9 5 2 3 5 1 7 6 7 9 2 9 E - 0 0 0 2 
3 7 0 0 0 0 0 0 2 3 7 5 9 5 3 4 2 2 6 5 6 3 4 . 6 0 2 8 1 1 4 1 7 8 2 6 0 5 E - 0 0 0 1 
3 8 0 0 0 0 0 0 2 4 7 4 2 1 6 1 1 1 2 7 7 8 6 9 . 8 6 9 3 5 7 5 6 8 4 8 7 9 1 E - 0 0 0 1 
3 9 0 0 0 0 0 0 4 0 0 7 1 1 1 8 5 2 5 0 6 1 . 6 4 0 6 8 1 2 3 6 3 1 8 1 8 E - 0 0 0 1 
4 0 0 0 0 0 0 0 7 0 2 4 2 3 2 7 7 5 4 4 9 3 . 3 2 6 9 8 6 3 8 2 2 9 9 7 3 E - 0 0 0 1 



TABLE B-2 
RNUN(IMSL): SEEDS APART 1,000,000 

(a=950706376, w=2147483647) 
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Sequence Seed Random Number 

1 0 0 0 0 0 0 7 7 5 6 8 4 1 5 2 1 . 2 4 1 7 6 4 0 0 7 7 1 4 4 7 E - •0001 
2 0 0 0 0 0 0 2 8 0 9 1 6 1 7 8 1 . 8 7 4 7 5 2 1 8 5 2 4 9 1 2 E -•0001 
3 0 0 0 0 0 0 1 9 3 8 1 2 7 7 4 7 7 . 2 8 5 8 6 8 2 0 2 9 3 4 9 1 E -•0001 
4 0 0 0 0 0 0 1 8 4 1 9 6 7 7 6 1 6 . 0 3 9 7 2 1 4 4 7 0 6 1 6 2 E -• 0 0 0 1 
5 0 0 0 0 0 0 1 9 2 8 4 8 4 0 6 8 7 . 8 2 0 7 6 4 9 7 9 2 6 4 1 2 E -•0002 
6 0 0 0 0 0 0 1 0 9 3 7 5 1 8 5 0 9 . 2 3 6 4 7 8 0 4 6 1 5 8 5 5 E - • 0 0 0 1 
7 0 0 0 0 0 0 1 5 0 5 6 2 8 0 4 1 . 4 7 4 5 7 2 6 9 5 5 4 7 0 5 E -• 0 0 0 1 
8 0 0 0 0 0 0 1 9 4 9 4 1 6 5 1 7 . 3 4 3 1 7 9 1 6 7 8 7 3 7 8 E - • 0 0 0 1 
9 0 0 0 0 0 0 1 2 4 9 0 2 6 9 4 6 7 . 0 9 1 7 7 0 7 5 7 4 9 8 1 1 E - • 0 0 0 1 

1 0 0 0 0 0 0 0 1 3 3 3 2 2 6 8 5 0 3 . 3 1 7 8 9 0 1 8 7 4 0 7 7 9 E -• 0 0 0 1 
1 1 0 0 0 0 0 0 1 3 8 4 8 1 2 2 8 3 5 . 8 4 8 5 3 4 4 8 2 4 6 0 7 2 E -•0001 
1 2 0 0 0 0 0 0 1 0 0 9 9 6 3 3 5 6 . 6 4 2 1 1 0 9 4 2 2 3 0 6 1 E -• 0 0 0 1 
1 3 0 0 0 0 0 0 7 9 7 5 9 1 0 8 3 3 . 7 8 8 5 1 2 6 2 0 9 7 6 4 3 E -•0001 
1 4 0 0 0 0 0 0 2 0 9 2 3 7 9 6 8 7 9 . 5 1 0 2 7 2 1 7 2 9 8 2 9 3 E -•0001 
1 5 0 0 0 0 0 0 1 2 4 3 2 7 7 5 6 4 2 . 3 9 5 6 8 2 9 9 2 5 9 7 8 9 E - • 0 0 0 1 
1 6 0 0 0 0 0 0 1 2 3 2 9 1 3 0 9 3 . 4 9 3 6 7 4 2 2 6 8 0 0 7 6 E - •0001 
1 7 0 0 0 0 0 0 2 1 4 3 2 3 2 2 2 0 1 . 3 6 6 6 9 0 4 8 6 3 7 4 6 3 E - •0001 
1 8 0 0 0 0 0 0 2 0 8 3 0 0 4 3 9 4 • 9 2 5 0 6 2 0 3 4 7 0 9 8 7 E - •0001 
1 9 0 0 0 0 0 0 1 7 0 5 3 8 6 1 0 4 3 . 3 4 6 9 5 0 5 8 0 9 9 3 1 8 E -•0001 
2 0 0 0 0 0 0 0 6 8 7 9 6 8 0 8 4 7 . 7 2 2 0 8 5 9 4 1 4 5 3 5 0 E - •0001 
2 1 0 0 0 0 0 0 1 1 0 9 7 0 8 5 6 0 1 . 1 1 5 3 3 9 3 8 9 5 9 0 2 4 E - 0 0 0 2 
2 2 0 0 0 0 0 0 1 9 0 2 8 1 0 1 4 2 7 . 4 7 8 2 5 8 8 4 1 4 2 8 0 9 E - •0001 
2 3 0 0 0 0 0 0 1 6 8 5 7 0 0 4 2 2 3 . 2 7 4 9 0 9 2 2 2 1 6 0 8 9 E - •0003 
2 4 0 0 0 0 0 0 3 9 2 7 0 7 8 6 3 5 . 2 9 8 1 5 0 4 1 2 4 1 1 5 0 E -•0001 
2 5 0 0 0 0 0 0 2 1 0 8 7 9 9 7 1 4 3 . 4 1 4 9 5 0 6 0 5 2 0 9 4 3 E - •0001 
2 6 0 0 0 0 0 0 9 2 8 5 2 0 8 3 4 5 . 8 9 9 7 5 5 4 8 7 1 7 1 8 2 E -•0001 
2 7 0 0 0 0 0 0 4 4 5 4 3 5 2 3 5 7 . 5 4 8 9 9 5 2 0 3 1 2 8 5 5 E - •0001 
2 8 0 0 0 0 0 0 5 5 6 3 7 7 6 8 2 8 . 5 4 3 6 8 7 8 4 3 9 7 0 8 1 E - •0001 
2 9 0 0 0 0 0 0 4 3 6 3 8 0 1 4 2 . 1 1 3 7 1 6 5 0 5 5 2 0 8 5 E -•0001 
3 0 0 0 0 0 0 0 1 1 0 6 6 7 1 3 4 3 5 . 4 9 7 2 6 1 0 3 2 2 2 8 0 1 E - 0 0 0 1 
3 1 0 0 0 0 0 0 4 5 2 3 5 2 7 6 2 3 • 2 5 6 3 3 1 0 3 6 4 5 2 3 6 E - 0 0 0 1 
3 2 0 0 0 0 0 0 1 8 5 5 8 1 8 5 4 1 4 . 6 6 8 1 2 3 3 3 3 0 9 4 7 0 E - 0 0 0 1 
3 3 0 0 0 0 0 0 1 9 4 6 2 5 9 0 8 8 4 . 5 6 0 4 6 4 1 4 7 7 3 9 3 3 E - 0 0 0 1 
3 4 0 0 0 0 0 0 1 1 0 9 3 0 0 6 6 4 5 . 1 8 7 7 3 2 4 9 1 2 6 4 0 0 E - 0 0 0 1 
3 5 0 0 0 0 0 0 1 7 8 0 0 4 0 4 9 9 8 . 2 4 0 7 2 6 3 6 1 1 6 3 3 0 E - 0 0 0 2 
3 6 0 0 0 0 0 0 8 4 4 4 5 4 9 7 6 4 . 5 9 9 9 7 9 7 5 4 8 1 6 7 3 E - 0 0 0 1 
3 7 0 0 0 0 0 0 1 1 4 5 0 7 7 8 2 7 5 . 2 8 1 9 6 4 7 8 0 4 2 8 4 3 E - 0 0 0 1 
3 8 0 0 0 0 0 0 3 4 3 7 0 3 3 0 9 2 . 8 8 9 9 0 4 3 6 7 2 2 0 5 4 E - 0 0 0 1 
3 9 0 0 0 0 0 0 1 8 1 4 3 1 5 2 7 7 1 . 0 1 3 6 8 3 5 5 6 1 1 9 7 6 E - 0 0 0 1 
4 0 0 0 0 0 0 0 2 0 6 6 9 7 5 2 5 0 9 . 9 8 6 2 4 2 3 2 5 9 7 0 0 8 E - 0 0 0 1 



TABLE B-3 
RANUNI(SAS): SEEDS APART 1,000,000 

(a=397204094, m=2147483647) 
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Sequence Seed Random Number 

1 0 0 0 0 0 0 7 7 5 6 8 4 1 5 2 1 . 2 4 1 7 6 4 0 0 7 7 1 4 4 7 E - • 0 0 0 1 
2 0 0 0 0 0 0 2 8 0 9 1 6 1 7 8 1 • 8 7 4 7 5 2 1 8 5 2 4 9 1 2 E - • 0 0 0 1 
3 0 0 0 0 0 0 1 9 3 8 1 2 7 7 4 7 7 . 2 8 5 8 6 8 2 0 2 9 3 4 9 1 E - • 0 0 0 1 
4 0 0 0 0 0 0 1 8 4 1 9 6 7 7 6 1 6 • 0 3 9 7 2 1 4 4 7 0 6 1 6 2 E - • 0 0 0 1 
5 0 0 0 0 0 0 1 9 2 8 4 8 4 0 6 8 7 . 8 2 0 7 6 4 9 7 9 2 6 4 1 2 E - •0002 
6 0 0 0 0 0 0 1 0 9 3 7 5 1 8 5 0 9 . 2 3 6 4 7 8 0 4 6 1 5 8 5 5 E - • 0 0 0 1 
7 0 0 0 0 0 0 1 5 0 5 6 2 8 0 4 1 . 4 7 4 5 7 2 6 9 5 5 4 7 0 5 E - • 0 0 0 1 
8 0 0 0 0 0 0 1 9 4 9 4 1 6 5 1 7 . 3 4 3 1 7 9 1 6 7 8 7 3 7 8 E - • 0 0 0 1 
9 0 0 0 0 0 0 1 2 4 9 0 2 6 9 4 6 7 . 0 9 1 7 7 0 7 5 7 4 9 8 1 1 E -• 0 0 0 1 

1 0 0 0 0 0 0 0 1 3 3 3 2 2 6 8 5 0 3 . 3 1 7 8 9 0 1 8 7 4 0 7 7 9 E - • 0 0 0 1 
1 1 0 0 0 0 0 0 1 3 8 4 8 1 2 2 8 3 5 . 8 4 8 5 3 4 4 8 2 4 6 0 7 2 E - • 0 0 0 1 
1 2 0 0 0 0 0 0 1 0 0 9 9 6 3 3 5 6 . 6 4 2 1 1 0 9 4 2 2 3 0 6 1 E - • 0 0 0 1 
1 3 0 0 0 0 0 0 7 9 7 5 9 1 0 8 3 3 . 7 8 8 5 1 2 6 2 0 9 7 6 4 3 E - • 0 0 0 1 
1 4 0 0 0 0 0 0 2 0 9 2 3 7 9 6 8 7 9 . 5 1 0 2 7 2 1 7 2 9 8 2 9 3 E - • 0 0 0 1 
1 5 0 0 0 0 0 0 1 2 4 3 2 7 7 5 6 4 2 . 3 9 5 6 8 2 9 9 2 5 9 7 8 9 E - •0001 
1 6 0 0 0 0 0 0 1 2 3 2 9 1 3 0 9 3 . 4 9 3 6 7 4 2 2 6 8 0 0 7 6 E - •0001 
1 7 0 0 0 0 0 0 2 1 4 3 2 3 2 2 2 0 1 . 3 6 6 6 9 0 4 8 6 3 7 4 6 3 E - •0001 
1 8 0 0 0 0 0 0 2 0 8 3 0 0 4 3 9 4 . 9 2 5 0 6 2 0 3 4 7 0 9 8 7 E - •0001 
1 9 0 0 0 0 0 0 1 7 0 5 3 8 6 1 0 4 3 . 3 4 6 9 5 0 5 8 0 9 9 3 1 8 E -•0001 
2 0 0 0 0 0 0 0 6 8 7 9 6 8 0 8 4 7 . 7 2 2 0 8 5 9 4 1 4 5 3 5 0 E -•0001 
2 1 0 0 0 0 0 0 1 1 0 9 7 0 8 5 6 0 1 . 1 1 5 3 3 9 3 8 9 5 9 0 2 4 E - 0 0 0 2 
2 2 0 0 0 0 0 0 1 9 0 2 8 1 0 1 4 2 7 . 4 7 8 2 5 8 8 4 1 4 2 8 0 9 E - •0001 
2 3 0 0 0 0 0 0 1 6 8 5 7 0 0 4 2 2 3 . 2 7 4 9 0 9 2 2 2 1 6 0 8 9 E -•0003 
2 4 0 0 0 0 0 0 3 9 2 7 0 7 8 6 3 5 . 2 9 8 1 5 0 4 1 2 4 1 1 5 0 E - 0 0 0 1 
2 5 0 0 0 0 0 0 2 1 0 8 7 9 9 7 1 4 3 . 4 1 4 9 5 0 6 0 5 2 0 9 4 3 E - •0001 
2 6 0 0 0 0 0 0 9 2 8 5 2 0 8 3 4 5 • 8 9 9 7 5 5 4 8 7 1 7 1 8 2 E - •0001 
2 7 0 0 0 0 0 0 4 4 5 4 3 5 2 3 5 7 . 5 4 8 9 9 5 2 0 3 1 2 8 5 5 E - •0001 
2 8 0 0 0 0 0 0 5 5 6 3 7 7 6 8 2 8 . 5 4 3 6 8 7 8 4 3 9 7 0 8 1 E - •0001 
2 9 0 0 0 0 0 0 4 3 6 3 8 0 1 4 2 . 1 1 3 7 1 6 5 0 5 5 2 0 8 5 E - 0 0 0 1 
3 0 0 0 0 0 0 0 1 1 0 6 6 7 1 3 4 3 5 . 4 9 7 2 6 1 0 3 2 2 2 8 0 1 E - 0 0 0 1 
3 1 0 0 0 0 0 0 4 5 2 3 5 2 7 6 2 3 . 2 5 6 3 3 1 0 3 6 4 5 2 3 6 E - 0 0 0 1 
3 2 0 0 0 0 0 0 1 8 5 5 8 1 8 5 4 1 4 . 6 6 8 1 2 3 3 3 3 0 9 4 7 0 E - 0 0 0 1 
3 3 0 0 0 0 0 0 1 9 4 6 2 5 9 0 8 8 4 . 5 6 0 4 6 4 1 4 7 7 3 9 3 3 E - 0 0 0 1 
3 4 0 0 0 0 0 0 1 1 0 9 3 0 0 6 6 4 5 . 1 8 7 7 3 2 4 9 1 2 6 4 0 0 E - 0 0 0 1 
3 5 0 0 0 0 0 0 1 7 8 0 0 4 0 4 9 9 8 . 2 4 0 7 2 6 3 6 1 1 6 3 3 0 E - 0 0 0 2 
3 6 0 0 0 0 0 0 8 4 4 4 5 4 9 7 6 4 . 5 9 9 9 7 9 7 5 4 8 1 6 7 3 E - 0 0 0 1 
3 7 0 0 0 0 0 0 1 1 4 5 0 7 7 8 2 7 5 . 2 8 1 9 6 4 7 8 0 4 2 8 4 3 E - 0 0 0 1 
3 8 0 0 0 0 0 0 3 4 3 7 0 3 3 0 9 2 . 8 8 9 9 0 4 3 6 7 2 2 0 5 4 E - 0 0 0 1 
3 9 0 0 0 0 0 0 1 8 1 4 3 1 5 2 7 7 1 . 0 1 3 6 8 3 5 5 6 1 1 9 7 6 E - 0 0 0 1 
4 0 0 0 0 0 0 0 2 0 6 6 9 7 5 2 5 0 9 . 9 8 6 2 4 2 3 2 5 9 7 0 0 8 E - 0 0 0 1 



TABLE B-4 
UNIFORM(SPSS): SEEDS APART 1,000,000 

(<2=16807, m=2147483647) 
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Sequence Seed Random Number 

1 0 0 0 0 0 0 1 5 3 1 8 1 7 7 6 9 5 . 7 1 4 9 8 3 4 3 5 2 1 4 9 6 E - •0001 
2 0 0 0 0 0 0 1 2 0 3 2 1 9 7 4 4 8 . 4 2 0 1 6 7 7 5 5 5 3 1 2 2 E - •0001 
3 0 0 0 0 0 0 1 2 6 3 4 8 8 9 3 8 5 . 3 0 9 8 3 9 8 7 5 1 1 5 9 4 E - •0001 
4 0 0 0 0 0 0 2 6 7 8 6 3 2 4 1 3 . 9 6 6 3 5 0 9 2 5 1 3 9 3 1 E - •0001 
5 0 0 0 0 0 0 1 1 2 0 5 5 5 1 2 1 8 . 7 8 1 5 2 4 8 6 3 4 5 8 0 2 E - •0001 
6 0 0 0 0 0 0 1 0 2 2 2 6 4 4 2 2 6 . 1 8 8 4 7 3 4 5 2 9 0 1 6 9 E -•0001 
7 0 0 0 0 0 0 1 7 4 7 9 6 3 7 5 3 2 . 0 9 7 8 3 0 6 9 4 2 1 4 3 6 E - •0001 
8 0 0 0 0 0 0 8 0 5 5 5 6 6 0 8 5 . 8 3 4 7 3 5 7 8 3 6 7 1 3 7 E - •0001 
9 0 0 0 0 0 0 1 8 2 0 9 5 2 2 7 1 • 4 4 4 8 6 8 8 0 9 2 8 5 0 5 E -•0001 

1 0 0 0 0 0 0 0 1 2 7 4 8 9 8 1 2 9 8 . 2 3 5 2 5 7 0 4 8 2 6 9 3 9 E - •0001 
1 1 0 0 0 0 0 0 1 8 9 4 4 1 1 0 6 7 3 . 6 0 5 3 9 4 8 4 4 7 1 3 3 4 E - •0001 
1 2 0 0 0 0 0 0 1 5 8 7 6 1 0 7 0 7 2 . 2 7 6 3 3 1 9 9 7 6 0 5 2 0 E - •0001 
1 3 0 0 0 0 0 0 4 4 5 5 8 2 1 4 6 2 . 9 0 4 1 0 0 0 3 2 9 4 4 2 8 E - •0001 
1 4 0 0 0 0 0 0 7 3 3 9 0 9 3 3 6 8 • 4 5 4 6 6 4 7 5 8 6 1 8 3 0 E - •0001 
1 5 0 0 0 0 0 0 1 7 5 8 7 0 4 6 4 9 2 . 7 2 0 0 1 3 4 2 5 0 8 9 4 3 E - •0001 
1 6 0 0 0 0 0 0 1 3 8 9 5 3 6 1 3 2 2 . 2 8 6 8 3 4 5 9 6 7 8 9 8 3 E - •0002 
1 7 0 0 0 0 0 0 1 5 0 5 9 5 7 5 4 5 1 . 7 9 8 3 6 1 8 8 0 6 1 0 8 7 E - •0001 
1 8 0 0 0 0 0 0 8 1 8 6 1 6 5 4 1 7 . 9 5 3 3 1 7 3 9 7 2 5 2 3 4 E - •0001 
1 9 0 0 0 0 0 0 3 4 5 3 0 7 6 6 8 5 . 0 5 3 1 7 8 7 9 1 4 4 7 1 6 E - •0001 
2 0 0 0 0 0 0 0 5 7 3 9 5 9 0 7 6 1 . 5 6 6 8 5 7 4 7 2 7 9 1 7 4 E -•0002 
2 1 0 0 0 0 0 0 3 9 3 2 6 4 7 0 5 8 . 3 4 7 9 8 0 2 9 0 8 1 3 3 6 E - •0001 
2 2 0 0 0 0 0 0 1 0 1 5 6 9 4 4 6 6 1 . 9 9 9 4 5 6 7 1 1 1 1 3 2 0 E - •0001 
2 3 0 0 0 0 0 0 1 8 1 0 2 2 1 2 1 4 4 . 5 9 6 6 2 0 0 9 7 1 0 2 8 9 E -•0001 
2 4 0 0 0 0 0 0 4 4 7 6 8 7 2 8 3 7 . 6 5 9 8 9 5 0 6 9 7 3 8 8 0 E - •0001 
2 5 0 0 0 0 0 0 1 3 9 6 1 6 2 8 2 1 8 . 8 5 7 8 3 4 2 7 3 4 1 7 4 0 E - •0001 
2 6 0 0 0 0 0 0 1 0 4 7 5 3 8 7 5 4 4 . 2 5 1 0 2 3 6 2 6 0 7 1 8 8 E - •0001 
2 7 0 0 0 0 0 0 1 4 7 2 2 5 3 3 2 4 3 . 9 8 1 5 7 0 4 0 7 7 3 9 6 4 E - 0 0 0 1 
2 8 0 0 0 0 0 0 1 9 5 4 2 4 3 6 8 3 6 . 3 2 6 8 6 0 5 7 8 8 8 2 9 1 E - •0001 
2 9 0 0 0 0 0 0 1 4 4 2 7 7 9 5 3 2 7 . 2 5 3 7 7 3 7 3 2 6 9 4 6 9 E - •0001 
3 0 0 0 0 0 0 0 1 2 9 8 6 2 3 1 4 0 5 . 0 4 2 2 2 4 7 4 7 6 1 4 1 1 E - 0 0 0 1 
3 1 0 0 0 0 0 0 7 9 1 7 4 1 0 4 9 4 . 5 7 8 0 7 3 1 8 9 8 6 3 0 4 E - 0 0 0 1 
3 2 0 0 0 0 0 0 3 1 5 9 3 9 7 7 . 2 6 6 0 7 5 5 9 1 2 1 4 9 7 E - 0 0 0 1 
3 3 0 0 0 0 0 0 3 2 6 4 7 5 0 2 9 1 . 1 4 1 3 0 9 3 5 6 8 4 8 3 9 E - 0 0 0 1 
3 4 0 0 0 0 0 0 5 8 9 7 6 8 1 7 7 7 . 4 3 5 3 0 6 6 0 2 8 2 6 0 2 E - 0 0 0 1 
3 5 0 0 0 0 0 0 4 6 6 4 1 6 6 2 7 3 . 4 8 7 5 1 6 3 7 7 8 1 3 8 9 E - 0 0 0 1 
3 6 0 0 0 0 0 0 1 5 4 9 1 5 8 7 0 6 2 . 8 8 0 7 4 6 0 9 9 5 7 6 7 0 E - 0 0 0 1 
3 7 0 0 0 0 0 0 7 1 0 6 0 9 7 8 4 4 . 9 4 5 6 8 9 4 4 6 7 3 3 1 9 E - 0 0 0 1 
3 8 0 0 0 0 0 0 9 5 8 1 3 7 8 9 0 7 . 4 0 9 2 8 5 8 6 9 1 7 4 3 O E - 0 0 0 1 
3 9 0 0 0 0 0 0 3 8 8 4 3 1 4 . 0 0 0 4 4 3 7 8 0 7 9 4 9 5 E - 0 0 0 2 
4 0 0 0 0 0 0 0 1 4 4 5 4 1 1 9 6 8 3 . 2 7 7 9 3 5 6 1 0 7 4 7 8 7 E - 0 0 0 1 



TABLE B-5 
CHI-SQUARE VALUES: #=100s AND iV=l,OOOs 
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N Chi-square N Chi-square 

100 1 2 3 . 2 2 5 1 1000 1 0 7 3 . 6 4 9 0 
200 2 3 2 . 9 1 3 5 2000 2 1 0 4 . 1 3 7 5 
300 3 4 0 . 3 3 0 6 3000 3 1 2 7 . 5 2 6 8 
400 4 4 6 . 5 7 7 7 4000 4 1 4 7 . 2 4 3 2 
500 5 5 2 . 0 7 8 9 5000 5 1 6 4 . 6 1 2 8 
600 6 5 7 . 0 5 0 7 6000 6 1 8 0 . 3 1 5 7 
700 7 6 1 . 6 2 1 8 7000 7 1 9 4 . 7 5 5 7 
800 8 6 5 . 8 7 5 8 8000 8 2 0 8 . 1 9 5 8 
900 9 6 9 . 8 7 0 8 9000 9 2 2 0 . 8 1 9 0 

1000 1 0 7 3 . 6 4 9 0 10000 1 0 2 3 2 . 7 5 8 1 
1100 1 1 7 7 . 2 4 2 3 11000 1 1 2 4 4 . 1 1 3 8 
1200 1 2 8 0 . 6 7 5 4 12000 1 2 2 5 4 . 9 6 3 8 
1300 1 3 8 3 . 9 6 8 0 13000 1 3 2 6 5 . 3 7 0 4 
1400 1 4 8 7 . 1 3 6 1 14000 1 4 2 7 5 . 3 8 3 9 
1500 1 5 9 0 . 1 9 2 8 15000 1 5 2 8 5 . 0 4 5 6 
1600 1 6 9 3 . 1 4 9 2 16000 1 6 2 9 4 . 3 9 0 2 
1700 1 7 9 6 . 0 1 4 4 17000 1 7 3 0 3 . 4 4 7 1 
1800 1 8 9 8 . 7 9 6 4 18000 1 8 3 1 2 . 2 4 1 2 
1900 2 0 0 1 . 5 0 2 1 19000 1 9 3 2 0 . 7 9 4 3 
2000 2 1 0 4 . 1 3 7 5 20000 2 0 3 2 9 . 1 2 5 1 
2100 2 2 0 6 . 7 0 7 6 21000 2 1 3 3 7 . 2 5 0 1 
2200 2 3 0 9 . 2 1 7 3 22000 2 2 3 4 5 . 1 8 3 8 
2300 2 4 1 1 . 6 7 0 5 23000 2 3 3 5 2 . 9 3 9 1 
2400 2 5 1 4 . 0 7 0 9 24000 2 4 3 6 0 . 5 2 7 6 
2500 2 6 1 6 . 4 2 1 7 25000 2 5 3 6 7 . 9 5 9 6 
2600 2 7 1 8 . 7 2 5 9 26000 2 6 3 7 5 . 2 4 4 3 
2700 2 8 2 0 . 9 8 6 3 27000 2 7 3 8 2 . 3 9 0 3 
2800 2 9 2 3 . 2 0 5 1 28000 2 8 3 8 9 . 4 0 5 0 
2900 3 0 2 5 . 3 8 4 6 29000 2 9 3 9 6 . 2 9 5 6 
3000 3 1 2 7 . 5 2 6 8 30000 3 0 4 0 3 . 0 6 8 4 
3100 3 2 2 9 . 6 3 3 6 31000 3 1 4 0 9 . 7 2 9 2 
3200 3 3 3 1 . 7 0 6 7 32000 3 2 4 1 6 . 2 8 3 4 
3300 3 4 3 3 . 7 4 7 6 33000 3 3 4 2 2 . 7 3 6 0 
3400 3 5 3 5 . 7 5 7 8 34000 3 4 4 2 9 . 0 9 1 5 
3500 3 6 3 7 . 7 3 8 6 . 3 5 0 0 0 3 5 4 3 5 . 3 5 4 2 
3600 3 7 3 9 . 6 9 1 3 36000 3 6 4 4 1 . 5 2 8 0 
3700 3 8 4 1 . 6 1 7 1 37000 3 7 4 4 7 . 6 1 6 7 
3800 3 9 4 3 . 5 1 7 0 38000 3 8 4 5 3 . 6 2 3 7 
3900 4 0 4 5 . 3 9 2 0 39000 3 9 4 5 9 . 5 5 2 1 
4000 4 1 4 7 . 2 4 3 2 40000 4 0 4 6 5 . 4 0 5 0 

Note: 95% level, Z= 1.645 



TABLE B-6 
SERIAL CORRELATION: RANDU(IBM) 

APART DISTANCE (h), SEED=1 AND 101, #=100,000 

83 

h seed=l seed=101 

1 0 .00081 - 0 . 0 0 5 8 0 
2 0 .00202 - 0 . 0 0 0 6 3 
3 - 0 . 0 0 7 4 9 - 0 . 0 0 6 9 4 
4 0 .00192 - 0 . 0 0 0 0 8 
5 0 .00549 - 0 . 0 0 5 8 9 
6 0 .00136 - 0 . 0 0 0 4 6 
7 - 0 . 0 0 4 9 8 - 0 . 0 0 0 1 7 
8 - 0 . 0 0 7 8 3 - 0 . 0 0 0 2 2 
9 - 0 . 0 0 2 7 7 0 .00128 

10 0 .00031 0 .00114 
11 0 .00582 - 0 . 0 0 1 9 4 
12 0 .00430 - 0 . 0 0 1 2 8 
13 - 0 . 0 0 2 2 9 - 0 . 0 0 2 6 3 
14 0 .00349 0 .00275 
15 0 .00310 0 .00225 
16 - 0 . 0 0 3 5 7 - 0 . 0 0 2 7 0 
17 0 .00136 - 0 . 0 0 0 8 7 
18 - 0 . 0 0 3 5 9 - 0 . 0 0 3 2 5 
19 0 .00479 0 .00453 
20 - 0 . 0 0 7 1 1 - 0 . 0 0 2 5 6 
21 - 0 . 0 0 1 7 2 - 0 . 0 0 0 5 6 
22 - 0 . 0 0 1 7 7 - 0 . 0 0 2 4 1 
23 - 0 . 0 0 0 5 7 - 0 . 0 0 0 8 8 
24 - 0 . 0 0 3 2 3 - 0 . 0 0 3 6 8 
25 - 0 . 0 0 6 0 5 - 0 . 0 0 2 0 3 
26 0 .00563 0 .00610 
27 0 .00226 0 .00143 
28 - 0 . 0 0 5 9 0 0 .00210 
29 - 0 . 0 0 2 5 4 0 .00440 
30 0 .00197 0 .00116 
31 - 0 . 0 0 2 9 4 - 0 . 0 0 0 3 6 
32 0 .00365 - 0 . 0 0 7 9 5 
33 0 .00052 - 0 . 0 0 1 8 3 
34 - 0 . 0 0 3 5 3 - 0 . 0 0 5 4 7 
35 0 .00461 0 .00037 
36 - 0 . 0 0 0 8 6 - 0 . 0 0 0 6 1 
37 - 0 . 0 0 1 9 7 0 .00293 
38 0 .00238 - 0 . 0 0 4 1 0 
39 - 0 . 0 0 2 3 1 - 0 . 0 0 2 1 2 
40 0 .00397 - 0 . 0 0 6 2 7 



TABLE B-7 
SERIAL CORRELATION: RNUN(IMSL) 

APART DISTANCE (/?), SEED=1 AND 101,7V=100,000 
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h seed=l seed=101 

1 0 . 0 0 6 5 7 - 0 . 0 0 1 6 0 
2 0 . 0 0 6 6 3 - 0 . 0 0 2 8 5 
3 - 0 . 0 0 1 1 5 - 0 . 0 0 0 0 6 
4 - 0 . 0 0 5 6 8 - 0 . 0 0 4 1 1 
5 - 0 . 0 0 0 3 8 - 0 . 0 0 0 7 7 
6 0 . 0 0 4 0 1 0 . 0 0 6 7 3 
7 - 0 . 0 0 2 5 8 - 0 . 0 0 1 3 6 
8 - 0 . 0 0 3 3 5 - 0 . 0 0 1 7 3 
9 0 . 0 0 1 3 2 - 0 . 0 0 1 2 3 

10 - 0 . 0 0 3 0 5 0 . 0 0 1 3 4 
11 - 0 . 0 0 2 4 2 - 0 . 0 0 1 6 2 
12 0 . 0 0 2 2 3 0 . 0 0 7 1 0 
13 0 . 0 0 0 5 8 - 0 . 0 0 2 1 4 
14 - 0 . 0 0 6 4 5 - 0 . 0 0 2 5 4 
15 0 . 0 0 2 2 8 0 . 0 0 0 4 5 
16 - 0 . 0 0 0 6 3 - 0 . 0 0 4 3 9 
17 0 . 0 0 1 2 7 0 . 0 0 7 3 7 
18 - 0 . 0 0 1 3 7 - 0 . 0 0 0 9 4 
19 - 0 . 0 0 4 4 3 0 . 0 0 0 7 7 
20 0 . 0 0 0 5 3 - 0 . 0 0 2 3 8 
21 0 . 0 0 6 9 3 0 . 0 0 3 3 8 
22 0 . 0 0 6 7 6 - 0 . 0 0 0 5 5 
23 - 0 . 0 0 3 3 3 0 . 0 0 1 4 8 
24 - 0 . 0 0 2 7 1 0 . 0 0 0 1 8 
25 - 0 . 0 0 5 0 3 0 . 0 0 0 5 7 
26 - 0 . 0 0 1 3 3 0 . 0 0 0 2 8 
27 0 . 0 0 1 6 3 - 0 . 0 0 3 4 5 
28 0 . 0 0 2 1 0 - 0 . 0 0 0 1 7 
29 - 0 . 0 0 2 4 2 0 . 0 0 3 1 0 
30 0 . 0 0 1 5 2 0 . 0 0 3 1 1 
31 - 0 . 0 0 6 3 0 0 . 0 0 1 8 5 
32 0 . 0 0 1 2 2 0 . 0 0 5 3 0 
33 0 . 0 0 3 3 7 0 . 0 0 0 3 1 
34 0 . 0 0 1 6 3 0 . 0 0 2 2 6 
35 - 0 . 0 0 4 3 3 ' - 0 . 0 0 3 0 7 
36 - 0 . 0 0 5 4 6 0 . 0 0 0 3 2 
37 - 0 . 0 0 5 3 6 - 0 . 0 0 0 6 4 
38 - 0 . 0 0 0 3 5 - 0 . 0 0 0 3 5 
39 - 0 . 0 0 0 7 7 - 0 . 0 0 0 5 7 
40 - 0 . 0 0 0 0 5 - 0 . 0 0 3 2 9 



TABLE B-8 
SERIAL CORRELATION: RANUNI(SAS) 

APART DISTANCE (h), SEED=1 AND 101, #=100,000 
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h seed=l seed=101 

1 - 0 . 0 0 1 2 3 - 0 . 0 0 5 5 8 
2 0 .00310 0 .00553 
3 - 0 . 0 0 3 6 0 - 0 . 0 0 1 8 9 
4 - 0 . 0 0 3 4 6 - 0 . 0 0 2 0 7 
5 0 .00231 - 0 . 0 0 3 6 0 
6 - 0 . 0 0 1 0 2 - 0 . 0 0 0 8 8 
7 0 .00409 0 .00054 
8 0 .00053 - 0 . 0 0 4 3 5 
9 - 0 . 0 0 7 5 9 0 .00387 

10 0 .00352 - 0 . 0 0 0 8 4 
11 0 .00002 - 0 . 0 0 4 4 2 
12 - 0 . 0 0 2 5 0 - 0 . 0 0 2 3 1 
13 0 .00017 - 0 . 0 0 1 1 2 
14 0 .00017 - 0 . 0 0 2 4 8 
15 0 .00560 - 0 . 0 0 0 8 3 
16 - 0 . 0 0 3 3 7 0 .00487 
17 - 0 . 0 0 2 1 0 - 0 . 0 0 2 0 3 
18 0 .00401 0 .00385 
19 0 .00230 - 0 . 0 0 0 2 6 
20 - 0 . 0 0 2 9 1 0 .00418 
21 0 .00329 0 .00237 
22 0 .00452 0 .00140 
23 0 .00521 0 .00336 
24 0 .00392 0 . 0 0 3 2 1 
25 - 0 . 0 0 2 9 9 - 0 . 0 0 0 2 0 
26 - 0 . 0 0 1 4 8 0 . 0 0 0 0 1 
27 0 .00225 0 .00328 
28 0 .00288 0 . 0 0 3 7 1 
29 0 .00612 0 .00235 
30 0 .00346 0 .00015 
31 - 0 . 0 0 1 2 0 - 0 . 0 0 5 8 7 
32 - 0 . 0 0 3 1 1 0 .00028 
33 - 0 . 0 0 1 1 6 - 0 . 0 0 1 9 5 
34 - 0 . 0 0 2 0 9 - 0 . 0 0 3 8 1 
35 - 0 . 0 0 0 9 9 - - 0 . 0 0 0 8 0 
36 0 .00436 - 0 . 0 0 3 7 2 
37 - 0 . 0 0 2 2 2 - 0 . 0 0 5 8 7 
38 0 .00060 0 . 0 0 9 5 1 
39 0 .00085 0 .00222 
40 0 .00202 0 .00164 



TABLE B-9 
SERIAL CORRELATION: UNBFORM(SPSS) 

APART DISTANCE (h), SEED=1 AND 101, iV=100,000 
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h seed=l seed=101 

1 0 .00240 - 0 . 0 0 2 3 5 
2 - 0 . 0 0 2 7 1 0 . 0 0 0 7 8 
3 0 .00347 0 .00289 
4 0 . 0 0 3 8 1 - 0 . 0 0 3 4 8 
5 - 0 . 0 0 0 8 7 0 .00376 
6 - 0 . 0 0 1 6 8 - 0 . 0 0 3 5 0 
7 - 0 . 0 0 5 0 9 - 0 . 0 0 1 3 2 
8 - 0 . 0 0 4 1 0 - 0 . 0 0 4 5 7 
9 0 .00349 - 0 . 0 0 1 3 4 

10 - 0 . 0 0 1 4 4 - 0 . 0 0 0 0 8 
11 0 . 0 0 3 3 1 - 0 . 0 0 0 0 8 
12 - 0 . 0 0 0 7 6 0 . 0 0 1 7 1 
13 - 0 . 0 0 4 3 4 - 0 . 0 0 2 3 3 
14 0 .00182 - 0 . 0 0 3 2 2 
15 0 .00234 0 . 0 0 2 1 5 
16 0 .00308 0 .00982 
17 - 0 . 0 0 3 3 4 - 0 . 0 0 0 9 5 
18 - 0 . 0 0 2 4 0 - 0 . 0 0 5 9 0 
19 - 0 . 0 0 0 1 6 0 . 0 0 3 0 1 
20 - 0 . 0 0 0 5 8 - 0 . 0 0 0 1 9 
21 0 .00678 - 0 . 0 0 2 5 8 
22 0 .00177 0 .00359 
23 0 .00075 - 0 . 0 0 4 1 4 
24 - 0 . 0 0 2 3 0 - 0 . 0 0 2 2 8 
25 0 . 0 0 3 5 5 - 0 . 0 0 7 7 4 
26 - 0 . 0 0 1 0 9 - 0 . 0 0 4 6 7 
27 - 0 . 0 0 0 8 1 0 . 0 0 3 6 8 
28 - 0 . 0 0 1 9 0 0 . 0 0 1 6 5 
29 - 0 . 0 0 0 4 4 - 0 . 0 0 0 8 0 
30 - 0 . 0 0 0 5 8 - 0 . 0 0 1 5 9 
31 0 .00630 0 .00204 
32 0 .00507 - 0 . 0 0 0 2 3 
33 - 0 . 0 0 1 5 5 - 0 . 0 0 2 7 8 
34 0 .00230 - 0 . 0 0 1 9 7 
35 - 0 . 0 0 5 7 7 - 0 . 0 0 0 8 8 
36 - 0 . 0 0 3 5 9 - 0 . 0 0 3 6 5 
37 0 .00632 - 0 . 0 0 3 2 2 
38 - 0 . 0 0 3 4 3 0 .00090 
39 - 0 . 0 0 0 5 2 0 .00822 
40 0 .00256 - 0 . 0 0 3 1 3 



TABLE B-10 
SERIAL CORRELATION: RANDOM(BMDP) 

APART DISTANCE (h), SEED=1 AND 101,7V=100,000 
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h seed=l seed=101 

1 0 .00399 0 .00645 
2 - 0 . 0 0 2 7 8 - 0 . 0 0 0 6 0 
3 - 0 . 0 0 2 6 1 - 0 . 0 0 1 0 7 
4 0 .00239 - 0 . 0 0 0 6 6 
5 0 .00204 0 .00007 
6 0 .00496 - 0 . 0 0 2 2 7 
7 - 0 . 0 0 1 9 1 0 .00657 
8 0 .00583 - 0 . 0 0 1 4 7 
9 - 0 . 0 0 4 6 0 0 .00050 

10 0 .00222 0 .00274 
11 0 .00302 - 0 . 0 0 0 5 4 
12 0 .00216 0 .00270 
13 - 0 . 0 0 1 3 9 - 0 . 0 0 1 5 1 
14 - 0 . 0 0 2 4 1 0 .00398 
15 - 0 . 0 0 1 7 6 0 .00133 
16 - 0 . 0 0 4 7 6 0 .00069 
17 - 0 . 0 0 3 8 2 - 0 . 0 0 0 6 3 
18 - 0 . 0 0 4 0 2 0 .00049 
19 - 0 . 0 0 1 5 6 - 0 . 0 0 0 0 8 
20 0 .00161 - 0 . 0 0 0 1 9 
21 0 .00071 - 0 . 0 0 1 6 9 
22 - 0 . 0 0 2 5 0 0 .00229 
23 0 .00122 - 0 . 0 0 2 3 5 
24 - 0 . 0 0 1 8 8 0 .00862 
25 - 0 . 0 0 0 2 4 0 .00174 
26 0 .00111 0 . 0 0 5 0 1 
27 - 0 . 0 0 5 5 3 - 0 . 0 0 3 0 0 
28 0 .00515 0 .00362 
29 - 0 . 0 0 3 9 9 - 0 . 0 0 0 2 2 
30 - 0 . 0 0 0 5 5 0 .00239 
31 - 0 . 0 0 3 7 8 - 0 . 0 0 1 6 7 
32 - 0 . 0 0 0 5 3 0 .00128 
33 0 .00611 0 . 0 0 3 3 1 
34 0 .00110 0 .00524 
35 0 .00557 - 0 . 0 0 2 0 6 
36 0 .00014 - 0 . 0 0 1 1 5 
37 - 0 . 0 0 0 6 8 - 0 . 0 0 1 5 2 
38 0 .00607 0 . 0 0 1 4 1 
39 - 0 . 0 0 4 0 8 - 0 . 0 0 1 2 8 
40 - 0 . 0 0 1 2 7 0 . 0 0 2 9 1 



APPENDIX C 

FIGURES 
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Fig. C-l. Find Period of Random Number Sequence: RANDU(IBM) 
(MLCG; a = 65539, m = 2147483648) 

Sequence Seed Random Number 

1 1 3 . 0 5 1 8 9 7 5 9 4 0 7 0 0 0 E - 0 0 0 5 
2 6 5 5 3 9 1. 8 3 1 0 9 6 6 4 6 9 2 5 0 0 E - 0 0 0 4 
3 3 9 3 2 2 5 8 . 2 3 9 8 7 2 0 4 6 8 8 7 0 0 E - 0 0 0 4 
4 1 7 6 9 4 9 9 3 . 2 9 5 9 3 6 2 4 5 8 9 9 7 0 E - 0 0 0 3 
5 7 0 7 7 9 6 9 1. 2 3 5 9 7 3 2 6 3 3 1 9 9 9 E - 0 0 0 2 
6 2 6 5 4 2 3 2 3 4 . 4 4 9 4 9 6 9 5 8 6 1 0 2 1 E - 0 0 0 2 
7 9 5 5 5 2 2 1 7 1. 5 5 7 3 2 2 2 3 8 1 7 8 1 3 E - 0 0 0 1 
8 3 3 4 4 3 2 3 9 5 5 . 3 3 9 3 8 6 1 6 6 3 1 9 6 2 E - 0 0 0 1 
9 1 1 4 6 6 2 4 4 1 7 8 . 0 2 0 4 1 6 5 8 1 7 5 0 2 9 E - 0 0 0 1 

10 1 7 2 2 3 7 1 2 9 9 6 . 8 0 2 3 9 9 3 6 2 5 1 3 3 0 E - 0 0 0 3 
1 1 1 4 6 0 8 0 4 1 8 . 2 2 4 3 9 6 9 0 6 5 1 2 0 1 E - 0 0 0 1 
12 1 7 6 6 1 7 5 7 3 9 8 . 7 3 4 1 6 4 4 0 6 1 8 8 9 5 E - 0 0 0 1 
13 1 8 7 5 6 4 7 4 7 3 8 . 3 8 5 4 1 5 0 9 6 2 1 8 3 0 E - 0 0 0 1 
14 1 8 0 0 7 5 4 1 3 1 1. 7 0 5 0 1 1 7 3 9 3 0 1 9 5 E - 0 0 0 1 
15 3 6 6 1 4 8 4 7 3 4 . 7 6 1 3 3 6 4 7 7 7 9 6 5 4 E - 0 0 0 1 
16 1 0 2 2 4 8 9 1 9 5 3 . 2 2 2 9 1 2 9 4 0 4 9 7 4 4 E - 0 0 0 1 
17 6 9 2 1 1 5 2 6 5 6 . 4 8 5 4 5 0 1 6 0 5 0 8 5 3 E - 0 0 0 1 
18 1 3 9 2 7 3 9 7 7 9 9 . 9 0 6 4 8 4 4 9 8 5 7 4 1 6 E - 0 0 0 1 
19 2 1 2 7 4 0 1 2 8 9 1. 0 6 9 8 5 5 5 4 6 8 6 8 2 0 E - 0 0 0 1 
20 2 2 9 7 4 9 7 2 3 7 . 2 6 0 7 7 5 2 4 7 1 1 9 8 0 E - 0 0 0 1 

1 6 1 0 6 1 2 7 3 0 1 5 5 9 9 6 1 3 7 9 4 . 2 2 4 9 6 4 9 8 4 3 6 6 0 6 E - - 0 0 0 1 
1 6 1 0 6 1 2 7 3 1 9 0 7 3 0 4 2 9 7 9 . 9 7 2 5 6 3 3 3 6 4 7 3 5 4 E -- 0 0 0 1 
1 6 1 0 6 1 2 7 3 2 2 1 4 1 5 9 1 6 1 1 1 . 8 1 0 6 9 4 6 1 4 4 1 8 2 6 E -- 0 0 0 1 
1 6 1 0 6 1 2 7 3 3 3 8 8 8 4 3 6 9 7 1 . 1 1 1 0 9 9 8 3 8 7 6 1 4 7 E -- 0 0 0 1 
1 6 1 0 6 1 2 7 3 4 2 3 8 6 0 6 8 6 7 3 . 7 0 3 4 7 7 7 5 3 6 8 7 0 I E -- 0 0 0 2 
1 6 1 0 6 1 2 7 3 5 7 9 5 3 1 5 7 7 2 . 2 2 2 1 8 8 3 7 5 9 2 3 1 9 E -- 0 0 0 1 
1 6 1 0 6 1 2 7 3 6 4 7 7 2 1 1 3 0 7 4 . 6 5 6 6 1 3 0 0 0 0 0 0 0 0 E -- 0 0 1 0 
1 6 1 0 6 1 2 7 3 7 1 3 . 0 5 1 8 9 7 5 9 4 0 7 0 0 0 E -- 0 0 0 5 
1 6 1 0 6 1 2 7 3 8 6 5 5 3 9 1 . 8 3 1 0 9 6 6 4 6 9 2 5 0 0 E -- 0 0 0 4 
1 6 1 0 6 1 2 7 3 9 3 9 3 2 2 5 8 . 2 3 9 8 7 2 0 4 6 8 8 7 0 0 E -- 0 0 0 4 
1 6 1 0 6 1 2 7 4 0 1 7 6 9 4 9 9 3 . 2 9 5 9 3 6 2 4 5 8 9 9 7 0 E -- 0 0 0 3 
1 6 1 0 6 1 2 7 4 1 7 0 7 7 9 6 9 1 . 2 3 5 9 7 3 2 6 3 3 1 9 9 9 E -- 0 0 0 2 
1 6 1 0 6 1 2 7 4 2 2 6 5 4 2 3 2 3 4 . 4 4 9 4 9 6 9 5 8 6 1 0 2 1 E - - 0 0 0 2 
1 6 1 0 6 1 2 7 4 3 9 5 5 5 2 2 1 7 1, . 5 5 7 3 2 2 2 3 8 1 7 8 1 3 E -- 0 0 0 1 



90 

Fig. C-2. Find Period of Random Number Sequence: RNUN (IMSL) 
(MLCG; a=950706376, m=2147483647) 

Sequence Seed Random Number 

1 1 4 • 4 2 7 0 7 1 5 5 1 0 5 9 8 7 E - • 0 0 0 1 
2 9 5 0 7 0 6 3 7 6 6 . 0 0 8 2 9 5 8 5 7 3 5 1 4 1 E - •0002 
3 1 2 9 0 2 7 1 7 1 8 . 0 4 7 8 3 7 2 9 7 4 5 4 4 0 E - •0001 
4 1 7 2 8 2 5 9 8 9 9 1 . 7 0 0 5 0 7 2 1 2 2 9 0 7 8 E - •0001 
5 3 6 5 1 8 1 1 4 3 9 . 1 5 8 8 2 6 8 0 9 9 1 6 1 0 E -•0001 
6 1 9 6 6 8 4 3 0 8 0 4 . 8 6 6 9 7 5 3 2 4 6 3 2 1 2 E - •0001 
7 1 0 4 5 1 7 4 9 9 2 2 . 9 6 2 4 2 8 9 9 8 6 5 0 2 5 E - 0 0 0 1 
8 6 3 6 1 7 6 7 8 3 7 . 4 6 4 0 8 9 4 2 0 3 7 4 5 2 E - 0 0 0 1 
9 1 6 0 2 9 0 0 9 9 7 2 . 9 8 4 2 0 4 7 5 9 3 4 8 2 8 E - 0 0 0 1 

10 6 4 0 8 5 3 0 9 2 2 . 0 0 1 9 5 4 6 5 7 9 5 7 8 7 E -•0001 
1 1 4 2 9 9 1 6 4 8 9 7 . 7 8 3 4 4 4 2 7 1 3 2 2 0 8 E - •0001 
12 1 6 7 1 4 8 1 9 2 9 5 . 9 8 6 5 7 6 3 4 8 5 3 6 9 2 E -•0001 
13 1 2 8 5 6 0 7 4 8 1 4 . 9 6 4 8 4 4 5 4 0 2 1 0 8 3 E - 0 0 0 1 
14 1 0 6 6 1 9 2 2 4 6 2 . 2 7 2 2 8 2 9 1 4 3 8 5 3 3 E - 0 0 0 2 
15 4 8 7 9 6 9 0 4 5 . 4 7 8 1 9 9 6 5 7 7 4 1 1 0 E - 0 0 0 1 
16 1 1 7 6 4 3 4 4 1 8 3 . 6 1 5 4 7 7 4 5 0 0 1 2 9 2 E - 0 0 0 1 
17 7 7 6 4 1 7 8 7 0 4 . 0 1 1 5 0 1 8 3 0 0 7 6 5 7 E - 0 0 0 1 
18 8 6 1 4 6 3 4 5 8 7 . 1 8 9 4 6 0 6 4 2 2 5 8 3 9 E - 0 0 0 1 
19 1 5 4 3 9 2 4 9 1 6 2 . 5 9 6 1 0 2 1 2 9 9 4 5 5 8 E - 0 0 0 1 
20 5 5 7 5 0 8 6 8 7 7 . 6 8 6 4 4 2 5 3 1 4 9 9 2 9 E - 0 0 0 1 

2 1 4 7 4 8 3 6 4 1 
2 1 4 7 4 8 3 6 4 2 
2 1 4 7 4 8 3 6 4 3 
2 1 4 7 4 8 3 6 4 4 
2 1 4 7 4 8 3 6 4 5 
2 1 4 7 4 8 3 6 4 6 
2 1 4 7 4 8 3 6 4 7 
2 1 4 7 4 8 3 6 4 8 
2 1 4 7 4 8 3 6 4 9 
2 1 4 7 4 8 3 6 5 0 
2 1 4 7 4 8 3 6 5 1 
2 1 4 7 4 8 3 6 5 2 
2 1 4 7 4 8 3 6 5 3 
2 1 4 7 4 8 3 6 5 4 
2 1 4 7 4 8 3 6 5 5 

2 6 9 6 4 9 0 7 0 
1 4 1 0 1 9 9 2 3 6 
1 9 3 7 4 5 2 4 5 9 

5 9 4 8 2 9 8 8 2 
1 7 8 7 2 4 3 3 6 4 

3 4 0 3 6 3 8 8 9 
1 

9 5 0 7 0 6 3 7 6 
1 2 9 0 2 7 1 7 1 

1 7 2 8 2 5 9 8 9 9 
3 6 5 1 8 1 1 4 3 

1 9 6 6 8 4 3 0 8 0 
1 0 4 5 1 7 4 9 9 2 

6 3 6 1 7 6 7 8 3 
1 6 0 2 9 0 0 9 9 7 

6 . 5 6 6 7 5 1 9 1 9 0 1 9 3 9 E - 0 0 0 1 
9 . 0 2 1 9 6 6 0 6 5 7 5 6 0 3 E - 0 0 0 1 
2 . 7 6 9 8 9 2 4 8 7 1 0 2 1 4 E - 0 0 0 1 
8 . 3 2 2 5 0 0 4 6 0 0 0 0 0 1 E - 0 0 0 1 
1 . 5 8 4 9 4 2 8 6 7 7 8 6 1 3 E - 0 0 0 1 
4 . 6 5 6 6 1 2 8 7 5 2 4 5 8 0 E - 0 0 1 0 
4 . 4 2 7 0 7 1 5 5 1 0 5 9 8 7 E - 0 0 0 1 
6 . 0 0 8 2 9 5 8 5 7 3 5 1 4 I E - 0 0 0 2 
8 . 0 4 7 8 3 7 2 9 7 4 5 4 4 0 E - 0 0 0 1 
1 . 7 0 0 5 0 7 2 1 2 2 9 0 7 8 E - 0 0 0 1 
9 . 1 5 8 8 2 6 8 0 9 9 1 6 1 0 E - 0 0 0 1 
4 . 8 6 6 9 7 5 3 2 4 6 3 2 1 2 E - 0 0 0 1 
2 . : 9 6 2 4 2 8 9 9 8 6 5 0 2 5 E - 0 0 0 1 
7 . 4 6 4 0 8 9 4 2 0 3 7 4 5 2 E - 0 0 0 1 
2 . 9 8 4 2 0 4 7 5 9 3 4 8 2 8 E - 0 0 0 1 
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Fig. C-3. Find Period of Random Number Sequence: RANUNI(SAS) 
(MLCG; a=397204094, ^=2147483647) 

Sequence Seed Random Number 

1 1 1 . 8 4 9 6 2 5 6 9 8 2 2 0 7 4 E - 0 0 0 1 
2 3 9 7 2 0 4 0 9 4 9 . 7 0 0 8 8 7 1 5 6 5 1 1 1 4 E - 0 0 0 1 
3 2 0 8 3 2 4 9 6 5 3 3 . 9 9 8 2 4 3 0 6 0 8 9 3 4 9 E - 0 0 0 1 
4 8 5 8 6 1 6 1 5 9 2 . 5 9 3 9 8 6 4 5 3 7 6 5 0 7 E - 0 0 0 1 
5 5 5 7 0 5 4 3 4 9 9 . 2 1 6 0 2 5 7 7 8 6 5 8 7 0 E - 0 0 0 1 
6 1 9 7 9 1 2 6 4 6 5 9 . 6 9 2 7 7 3 4 9 7 5 2 0 3 7 E - 0 0 0 1 
7 2 0 8 1 5 0 7 2 5 8 5 . 4 2 9 7 9 1 7 3 1 4 9 4 3 8 E - 0 0 0 1 
8 1 1 6 6 0 3 8 8 9 5 5 . 3 1 6 9 1 7 2 2 8 1 9 4 3 8 E - 0 0 0 1 
9 1 1 4 1 7 9 9 2 8 0 4 . 9 7 9 4 0 2 6 2 0 8 0 1 4 2 E - 0 0 0 2 

10 1 0 6 9 3 1 8 5 7 6 . 6 5 6 6 5 5 1 6 0 0 8 4 6 7 E - 0 0 0 2 
1 1 1 4 2 9 5 0 5 8 1 8 . 1 9 3 1 8 5 7 0 5 7 8 1 5 3 E - 0 0 0 1 
12 1 7 5 9 4 7 3 2 3 2 5 . 2 3 8 7 0 5 2 1 4 6 8 9 8 1 E - 0 0 0 1 
13 1 1 2 5 0 0 3 3 7 8 8 . 5 3 3 9 4 3 1 0 8 5 3 1 6 2 E - 0 0 0 1 
14 1 8 3 2 6 5 0 3 2 7 6 . 7 1 8 4 5 7 6 7 9 5 9 8 8 0 E - 0 0 0 2 
15 1 4 4 2 7 7 7 8 0 9 . 5 7 0 2 3 8 5 7 6 0 7 0 5 2 E - 0 0 0 1 
16 2 0 5 5 1 9 3 0 8 4 2 . 9 7 1 9 3 9 6 4 1 5 0 3 5 9 E - 0 0 0 1 
17 6 3 8 2 1 9 1 7 8 2 . 7 2 6 1 1 7 8 9 0 6 6 6 2 9 E - 0 0 0 1 
18 5 8 5 4 2 9 3 5 9 6 . 8 9 9 2 9 6 3 0 9 2 8 6 4 0 E - 0 0 0 1 
19 1 4 8 1 6 1 2 6 0 0 9 . 7 6 7 6 4 8 6 2 4 1 4 8 0 6 E - 0 0 0 1 
20 2 0 9 7 5 8 6 5 6 9 2 . 2 6 5 0 7 5 1 8 5 4 5 9 6 1 E - 0 0 0 1 

2 1 4 7 4 8 3 6 4 0 
2 1 4 7 4 8 3 6 4 1 
2 1 4 7 4 8 3 6 4 2 
2 1 4 7 4 8 3 6 4 3 
2 1 4 7 4 8 3 6 4 4 
2 1 4 7 4 8 3 6 4 5 
2 1 4 7 4 8 3 6 4 6 
2 1 4 7 4 8 3 6 4 7 
2 1 4 7 4 8 3 6 4 8 
2 1 4 7 4 8 3 6 4 9 
2 1 4 7 4 8 3 6 5 0 
2 1 4 7 4 8 3 6 5 1 
2 1 4 7 4 8 3 6 5 2 
2 1 4 7 4 8 3 6 5 3 
2 1 4 7 4 8 3 6 5 4 
2 1 4 7 4 8 3 6 5 5 

1 2 4 1 6 1 4 6 6 1 
9 1 7 6 7 0 1 4 8 

1 7 6 7 5 5 7 5 9 6 
5 6 8 4 1 2 2 5 9 
3 0 7 1 1 2 5 2 2 
6 3 0 6 2 6 3 8 1 

5 8 7 4 3 2 4 2 
1 

3 9 7 2 0 4 0 9 4 
2 0 8 3 2 4 9 6 5 3 

8 5 8 6 1 6 1 5 9 
5 5 7 0 5 4 3 4 9 

1 9 7 9 1 2 6 4 6 5 
2 0 8 1 5 0 7 2 5 8 
1 1 6 6 0 3 8 8 9 5 
1 1 4 1 7 9 9 2 8 0 

4 . 2 7 3 2 3 4 6 2 6 4 0 5 5 2 E - 0 0 0 1 
8 . 2 3 0 8 3 1 4 5 9 2 7 2 1 1 E - 0 0 0 1 
2 . 6 4 6 8 7 5 8 4 3 7 0 6 9 5 E - 0 0 0 1 
1 . 4 3 0 1 0 4 1 2 4 0 9 4 4 1 E - 0 0 0 1 
2 . 9 3 6 5 8 2 9 2 5 2 3 4 2 6 E - 0 0 0 1 
2 . 7 3 5 4 4 5 3 7 0 3 0 8 8 0 E - 0 0 0 2 
4 . 6 5 6 6 1 2 8 7 5 2 4 5 8 0 E - 0 0 1 0 
1 . 8 4 9 6 2 5 6 9 8 2 2 0 7 4 E - 0 0 0 1 
9 . 7 0 0 8 8 7 1 5 6 5 1 1 1 4 E - 0 0 0 1 
3 . 9 9 8 2 4 3 0 6 0 8 9 3 4 9 E - 0 0 0 1 
2 . 5 9 3 9 8 6 4 5 3 7 6 5 0 7 E - 0 0 0 1 
9 . 2 1 6 0 2 5 7 7 8 6 5 8 7 0 E - 0 0 0 1 
9 . 6 9 2 7 7 3 4 9 7 5 2 0 3 7 E - 0 0 0 1 
5 . 4 2 9 7 9 1 7 3 1 4 9 4 3 8 E - 0 0 0 1 
5 . 3 1 6 9 1 7 2 2 8 1 9 4 3 8 E - 0 0 0 1 
4 . 9 7 9 4 0 2 6 2 0 8 0 1 4 2 E - 0 0 0 2 



Fig. C-4. Find Period of Random Number Sequence: UNIFORM (SPSS) 
(MLCG; a=16807, w=2147483647) 
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Sequence Seed Random Number 

1 1 7 .82636925942561E-•0006 
2 16807 1 .31537788143166E-•0001 
3 282475249 7 .55605322195033E-•0001 
4 1622650073 4 . 58650131923449E-•0001 
5 984943658 5 .32767237412169E-•0001 
6 1144108930 2 .18959186328090E-•0001 
7 470211272 4 . 70446162144861E-•0002 
8 101027544 6 .78864716868319E-•0001 
9 1457850878 6 . 79296405836612E-•0001 

10 1458777923 9 . 34692895940828E-•0001 
11 2007237709 3 . 83502077489859E-•0001 
12 823564440 5 . 19416372067955E-•0001 
13 1115438165 8 .30965346112365E-•0001 
14 1784484492 3 .45721105274614E-•0002 
15 74243042 5 .34616350445252E-•0002 
16 114807987 5 . 29700193335163E-•0001 
17 1137522503 6 . 71149384077242E-•0001 
18 1441282327 7 . 69818621114743E-•0003 
19 16531729 3 . 83415650754895E- 0001 
20 823378840 6 . 68422375185612E- 0002 

2147483641 1483866096 2 .83998838292434E- 0001 
2147483642 609882861 1 .68475180942786E- 0001 
2147483643 361797696 5 .62366105412303E-•0001 
2147483644 1207672015 6 .87133664585246E- 0001 
2147483645 1475608308 6 .55500684238738E-•0001 
2147483646 1407677000 4 .65661287524580E- 0010 
2147483647 1 7 . 82636925942561E- 0006 
2147483648 16807 1 . 31537788143166E- 0001 
2147483649 282475249 7 . 55605322195033E- 0001 
2147483650 1622650073 4 . 58650131923449E- 0001 
2147483651 984943658 5 . 32767237412169E- 0001 
2147483652 1144108930 2 . 1 8 9 5 9 i 8 6 3 2 8 0 9 0 E - 0001 
2147483653 470211272 4 . 70446162144861E- 0002 
2147483654 101027544 6 . 78864716868319E- 0001 
2147483655 1457850878 6 . 79296405836612E- 0001 
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