
37?
/V8/J
Afo. V/<2 7

AN EMPIRICAL COMPARISON OF RANDOM NUMBER GENERATORS:

PERIOD, STRUCTURE, CORRELATION, DENSITY,

AND EFFICIENCY

DISSERTATION

Presented to the Graduate Council of the

University of North Texas in Partial

Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

By

Jung Woong Bang, B.S., M.B.A., M.S.

Denton, Texas

August, 1995

37?
/V8/J
Afo. V/<2 7

AN EMPIRICAL COMPARISON OF RANDOM NUMBER GENERATORS:

PERIOD, STRUCTURE, CORRELATION, DENSITY,

AND EFFICIENCY

DISSERTATION

Presented to the Graduate Council of the

University of North Texas in Partial

Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

By

Jung Woong Bang, B.S., M.B.A., M.S.

Denton, Texas

August, 1995

—"y

(Md

Bang, Jung Woong, An empirical comparison of random number generators:

period, structure, correlation, density and e fficiency. Doctor of Philosophy (Educational

Research), August, 1995, 96 pp., 20 tables, 38 illustrations, bibliography, 48 titles.

Random number generators (RNGs) are widely used in conducting Monte Carlo

simulation studies, which are important in the field of statistics for comparing power,

mean differences, or distribution shapes between statistical approaches. Statistical results,

however, may differ when different random number generators are used. Often older

methods have been blindly used with no understanding of their limitations. Many random

functions supplied with computers today have been found to be comparatively

unsatisfactory.

In this study, five multiplicative linear congruential generators (MLCGs) were

chosen which are provided in the following statistical packages: RANDU (IBM), RNUN

(IMSL), RANUNI (SAS), UNIFORM (SPSS), and RANDOM (BMDP). Using a personal

computer (PC), an empirical investigation was performed using five criteria: period length

before repeating random numbers, distribution shape, correlation between adjacent

numbers, density of distributions and normal approach of random number generator

(RNG) in a normal function. All RNG FORTRAN programs were rewritten into Pascal

which is more efficient language for the PC. Sets of random numbers were generated

using different starting values.

A good RNG should have the following properties: a long enough period; a well-

structured pattern in distribution; independence between random number sequences;

random and uniform distribution; and a good normal approach in the normal distribution.

Findings in this study suggested that the above five criteria need to be examined when

conducting a simulation study with large enough sample sizes and various starting values

because the RNG selected can affect the statistical results. Furthermore, a study for

purposes of indicating reproducibility and validity should indicate the source of the RNG,

the type of RNG used, evaluation results of the RNG, and any pertinent information

related to the computer used in the study. Recommendations for future research are

suggested in the area of other RNGs and methods not used in this study, such as additive,

combined, mixed and shifted RNGs.

TABLE OF CONTENTS

Page

LIST OF TABLES v

LIST OF ILLUSTRATIONS vii

Chapter

1. INTRODUCTION 1

Overview

Monte Carlo Simulation Study
Types of Random Number Generators (RNG)
Statement of the Problem
Purpose of the Study
Delimitations of the Study
Limitations of the Study

2. RE VIEW OF LITERATURE 9

Currently Used Random Number Generators
Criteria for Comparing Random Number Generators
Algorithms for Random Number Generators
Algorithms Not Used in Study

3. METHODS AND PROCEDURES 25

Research Questions
Procedures
Algorithms Used
Random Number Set Generation

4. RESULTS... 36

Period of the RNG Sequence
Structure of the RNG Sequence
Correlation Between RNG Sequences

iii

TABLE OF CONTENTContinued

Density of RNG Sequence
Efficiency of the Normal Approach

5. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 55

Summary
Conclusions
Recommendations

APPENDIX A 61

APPENDIX B 77

APPENDIX C 88

BIBLIOGRAPHY 93

IV

LIST OF TABLES

Table Page

3-1. Multiplier, Modulus, and Period Values in Selected RNGs 31

3-2. Multiplicative Linear Congruential Generator: xn+1 = (ax„ + c) mod m 32

4-1. Period of Random Number Generators 36

4-2. Serial Correlations of xt with xt+h Number Sequence (seed=l, n=100,000) 43

4-3. Serial Correlations ofx, withxl+hNumber Sequence (seed=101, «=100,000) 43

4-4. Chi-square Values for Uniform Distribution (Seed =1) 45

4-5. Chi-square Values for Uniform Distribution (Seed =101) 45

4-6. Results ofNormal Approach of Means and Standard Deviations (seed=l) 50

4-7. Results ofNormal Approach of Means and Standard Deviations (seed=101) 50

4-8. Area Under the Distribution Curve for n^l,000, n2=10,000 or n3=l00,000 51

B-l. RANDOM(BMDP): Seeds Apart 1,000,000 78

B-2. RNUN(IMSL): Seeds Apart 1,000,000 79

B-3. RANUNI(SAS): Seeds Apart 1,000,000 80

B-4. UNIFORM(SPSS): Seeds Apart 1,000,000 81

B-5. Chi-square Values: N=100s and iV=l,000s 82

B-6. Serial Correlation: RANDU(DBM) 83

B-7. Serial Correlation: RNUN(IMSL) 84

B-8. Serial Correlation: RANUNI(SAS) 85

v

LIST OF TABLES—Continued

Table Page

B-9. Serial Correlation: UNIFORM(SPSS) 86

B-10. Serial Coirelation: RANDOM(BMDP) 87

VI

LIST OF ILLUSTRATIONS

Figure Page

2-1. RANDU - FORTRAN code 19

2-2. RNUN - FORTRAN code 20

2-3. RANUNI - FORTRAN code 21

2-4. UNIFORM - FORTRAN code 21

2-5. RANDOM - FORTRAN code 22

3-1. Plots of pairs (Xf, Xm) 28

3-2. Plots of triplets (Xb Xi+l, X&?) 28

4-1. RANDU: Plots of (Xj, X ^ 38

4-2. RANDU: Plots of (Xb XM, X^ 38

4-3. UNIFORM: Plots of (Xt X^ 39

4-4. UNIFORM: Plots of (X^ X ^ 39

4-5. RNUN: Plots of (X* XM) 40

4-6. RNUN: Plots of (X, X^, Xi+J 40

4-7. RANUNI: Plots of {Xb Xm) 41

4-8. RANUNI: Plots of (X^ XM, X ^ ! 41

4-9. RANDOM: Plots of (X^ XH1) 41

4-10. RANDOM: Plots of (X^ XM, X ^ 41

Vll

LIST OF ILLUSTRATIONS-Continued

Figure Page

4-11. Normal approach of NRNs from RANDU: «=1,000
(seed=l and seed=101) 47

4-12. Normal approach of NRNs from RANDU: «= 10,000
(seed=l and seed=101) 47

4-13. Normal approach of NRNs from RNUN: »=1,000
(seed=l and seed=101) 47

4-14. Normal approach of NRNs from RNUN: «=10,000
(seed=l and seed=101) 47

4-15. Normal approach of NRNs from RANUNI: «= 1,000
(seed=l and seed=101) 48

4-16. Normal approach of NRNs from RANUNI: »=10,000
(seed=l and seed=101) 48

4-17. Normal approach of NRNs from UNIFORM: «= 1,000
(seed=l and seed=101) 48

4-18. Normal approach of NRNs from UNIFORM: n=10,000
(seed=l and seed=101) 48

4-19. Normal approach ofNRNs from RANDOM: »=1,000
(seed=l and seed=101) 49

4-20. Normal approach ofNRNs from RANDOM: n=\0,000

(seed=l and seed=101) 49

4-21. Normal approach of means: UNIFORM (seed=l and seed=l 01) 52

4-22. Normal approach of means: RANUNI (seed=l and seed=101) 52

4-23. Normal approach of standard deviation: UNIFORM
(seed=l and seed=101) 52

vm

LIST OF ILLUSTRATIONS—Continued

Figure Page

4-24. Normal approach of standard deviation: RANUNI
(seed=l and seed=101) 52

4-25. Normal approach of area under curve within ±lo: RANDOM
(Seed=l and Seed=101) 53

4-26. Normal approach of area under curve within ±2o: RANDOM
(Seed=l and Seed=101) 53

4-27. Normal approach of area under curve within ±3o: RANDOM
(Seed=l and Seed=101) 53

C-l. Find period of random number sequence: RANDU (IBM)
(MLCG; «=65539, /w=2147483647) 89

C-2. Find period of random number sequence: RNUN (IMSL)
(MLCG; «=950706376, w=2147483647) 90

C-3. Find period of random number sequence: RANUNI (SAS)
(MLCG; a=397204094, m=2147483647) 91

C-4. Find period of random number sequence: UNIFORM (SPSS)
(MLCG; 0=16807, m=2147483647) 92

IX

CHAPTER 1

INTRODUCTION

Overview

Statistical results may differ in Monte Carlo simulation studies when different

random number generators are used. The different random number generators produce

random numbers that are useful in many different kinds of applications: simulation,

sampling, numerical analysis, computer programming, decision making, etc. (Knuth 1981).

Findings, however, may differ simply because of the type of random number generator

used in the application program.

Random numbers are typically generated using a deterministic algorithm that is

implemented in the computer, and as such, one is really working with pseudorandom

numbers (Niederreiter 1992). These traditional uses of random numbers have coined the

name "Monte Carlo method," a general term used to describe any algorithm that employs

random numbers (Knuth 1981).

Random number sampling is at the heart of the Monte Carlo method (Niederreiter

1992). Hamilton (1993) reported that many random number generators in use today are

not very good. Quite often some old method that is comparatively unsatisfactory has been

used blindly, passed down from one programmer to another, and today's users have no

understanding of its limitations (Knuth 1981). It has been a widely accepted tradition to

use the l andom number generator supplied by the manufacturer of the computer. The

2

main reasons for this were probably ease of access, the superior technical expertise of the

manufacturer, the belief that any random number generator would do, and the fact that

some RNGs exploit particular hardware features of the computer in order to produce, in

mysterious ways, code in an unknown language whose source is not available (James

1990).

Monte Carlo Simulation Study

The Monte Carlo method can be described as a numerical method based on

random sampling (Niederreiter 1992). Monte Carlo tests typically compared actual data

with simulated data from a supposed model. The similarity of the real and simulated data

provided a test of goodness-of-fit (Ripley 1987). The two most important advantages of

the Monte Carlo method are: (1) no advanced mathematics are required and (2) realistic

simulation methods become possible (Kleijnen and Groenendaal 1992).

Importance of Random Number Generators

A crucial task in the application of any Monte Carlo method is the generation of

appropriate random samples. Generating random numbers uniformly distributed in a

specific interval is fundamental to simulation (Bratley, Fox, and Schrage 1987). The

success of a Monte Carlo calculation often stands or fails given the "quality" of the

random samples that are used, where quality means how well the random samples reflect

true randomness (Niederreiter 1992).

Most computers have functions in their program library for producing the required

number of random numbers. All practical "random number" generators only produce a

3

finite sequence which is repeated. These periodic sequences are clearly not random

(Bratley, Fox, and Schrage 1987).

Differences in Random Number Generators

Random number generators for Monte Carlo calculations can be classified

according to the type of numbers generated: true random numbers and pseudorandom

numbers.

True random numbers are unpredictable in advance and must be produced by a

random physical process, such as radioactive decay. True random number series are

available on magnetic tape or published in books, but they are extremely cumbersome to

use, and are generally insufficient in both number and accuracy for serious calculations

(James 1990).

Pseudorandom numbers are produced by the computer through a simple numerical

algorithm, and are therefore not truly random, but any given sequence of pseudorandom

numbers is supposed to appear random to someone who doesn't know the algorithm

(James 1990). Certain desirable properties of random number generators help distinguish

the differences in them: good distribution, long period, repeatability (reproducibility), long

disjoint subsequences, portability, and efficiency.

There are bad random number generators, especially on microcomputers

(Modianos, Scott and Cornwell 1987; Park and Miller 1988). Other generators widely

used on medium-sized computers are perhaps not so obviously flawed, but still fail some

theoretical and/or empirical statistical tests, and/or generate easily detectable regular

4

patterns (L'Ecuyer 1988). Sometimes, using a not-so-good generator can give totally

misleading results. This may happen only rarely, but can be disastrous (L'Ecuyer 1990).

Types of Random Number Generators

Some common techniques for generating random numbers are the ten-sided die,

throwing a coin, other physical devices (mechanical and electronic devices), random

number tables, and pseudorandom numbers.

The disadvantage of a die, coin, or physical device is that the resulting sequence of

numbers is not reproducible. Without reproducibility, it is difficult to debug the simulation

program; upon adjusting the computer program and feeding in the same numbers, the

program should yield similar results. Reproducibility is important because it permits other

researchers to repeat the simulation experiment (Kleijnen and Groenendaal 1992).

Various mathematical techniques have been developed for pseudorandom number

generation: (1) the midsquare method; (2) the congruential methods; (3) the additive

congruential method; and (4) the Tausworthe method or shift-register generators.

The Midsquare Method

This method was invented by John von Neumann (1952) in the 1940s. Given a

starting number x0 that consists of m digits, when we square x0 we get a number with up

to 2m digits. If the squared number has fewer than 2m digits, we add zeros to the front.

To obtain the next number, xh the middle m digits of x0
2 are taken. To get a number in the

interval 0 to 1, x{ is divided by 10™. If we repeat this procedure, it gives the sequence x,:

i=0,1,... (Kleijnen and Groenendaal 1992).

The Congruential Method

Currently, the congruential method is the most popular. Let N represent the set

of natural numbers (nonnegative integers). Let "mod" stand for modulus, so "x mod m"

means that x is divided by m and the remainder is taken as a result. Now consider the

relation:

ni+I = (an, + b) mod m (1-a)

withwo, a, b, m eN; i=0, 1, 2,..., m-1.

The initial number n0 is called the seed, a the multiplier, b the additive constant,

and m the modulo. The modulo operation, (1-a), means that at most m different numbers

can be generated, namely the integers 0, 1,..., m-\. The actual number of different

numbers, say p, where p <; m, is called the cycle length, or period of the generators.

When the additive constant b is zero, the generator is called multiplicative; otherwise, it is

called a mixed generator. A congruential generator produces all m different numbers (and

thus has maximum cycle length) only if the constants a, b, m, and n0 meet a number of

requirements. The constants a, b, and m have important effects on the independence of

pseudorandom numbers (Kleijnen and Groenendaal 1992).

The Additive Congruential Method

The additive congruential method is defined by:

w>+;= (",+ni-k) mod m (1 -b)

This method can yield a cycle longer than m, because the pair («,-, nf.k) must be reproduced;

it does not suffice that either n,or nuk is reproduced. Furthermore, after m cycles, n0 and

6

wM are not necessarily equal to nm and nm.k. This approach, for k = 1 (1-b), is called the

"Fibonacci method." In practice, the Fibonacci method is no longer applied since

applications have been developed that behave better (Marsaglia 1985).

Tausworthe Generator or Shift-register Generators

The Tausworthe (1965) developed a generator that operates on bits as defined by:

bj = CjbUj) mod 2 (l-c)
>=i

with cq = 1 and Cj e (0,1) for j = 1 , 2 , q - l , with at least one c; = 0. Tausworthe

generators are mostly of the simpler form:

b,= (b/ -h + bf.q) mod 2 (1-d)

with 0 <h<q. The first q bits, must be specified which is analogous to specifying the

seed for other generators. The maximum period of the bits is set at 29 -1. An important

advantage of the Tausworthe generators is that they are independent of the word size of

the computer (Kleijnen and Groenendaal 1992).

Statement of the Problem

Random number generators are widely used in conducting Monte Carlo simulation

studies. Monte Carlo simulation studies are important in the field of statistics for

comparing power, mean differences, or distribution shapes between statistical approaches.

Results, however, may differ giving different interpretations, depending upon the random

number generator used.

7

Random number sampling is at the heart of the Monte Carlo method. The success

of a Monte Carlo calculation depends on the appropriateness of the underlying stochastic

model and, to a large extent, on how well random numbers used in the computation

simulate the random variable in the model (Niederreiter 1992). Unfortunately, many of

the so-called random functions supplied with computers today are far from random, and

many simulation studies have been invalidated as a consequence (Ripley 1987). Many

random number generators in use today are not very good. Quite often some old method

that is comparatively unsatisfactory has been blindly used and passed down from one

programmer to another, and today's users have no understanding of its limitations (Knuth

1981).

Purpose of the Study

The purpose of this study was to examine presently used random number

generators on five basic criteria, with and without a widely used adjustment technique.

More specifically, the following random number generators: (a) RANDU (IBM); (b)

RNUN (IMSL); (c) RANUNI (SAS); (d) UNIFORM (SPSS); and (e) RANDOM

(BMDP), were compared on: (1) random number sequence length before repeating

numbers; (2) distribution shape; (3) correlation between adjacent numbers; (4) density of

distribution; and (5) implementation of random number generator in a normal function.

Delimitations of the Study

This study examined only well-known multiplicative linear congruential generators

which are provided in the following statistical packages: RANDU (IBM), RNUN (IMSL),

RANUNI (SAS), UNIFORM (SPSS), and RANDOM (BMDP).

Limitations of the Study

Findings in this study were limited to personal computers (PCs) based on the Intel

Corporation's 8086 processor and the pseudorandom number generators that are provided

for use with these computers. The findings can therefore be generalized to the following

commonly used microcomputers: IBM PS2/90 and IBM compatible 486 DX2/50. The

operating system under which the random number generator program is executed is

limited to MS-DOS or the equivalent, supporting Microsoft software or Borland Turbo

Pascal compilers. The programming language used in this study was Borland Turbo

Pascal 7.0 (Borland 1992).

CHAPTER 2

REVIEW OF LITERATURE

In the past, researchers who needed random numbers in their scientific work would

draw balls out of a "well-stirred urn," would roll die, or would deal out cards. Many

researchers today still use a table of over 40,000 random digits which was published in

1927. Since 1939, a number of devices have been built to generate random numbers

mechanically, and in 1955, the RAND Corporation published a widely used table of a

million digits (Knuth 1981; Sobol 1974; RAND 1955).

Shortly after computers were introduced, people began to search for efficient ways

to obtain random numbers within computer programs. A table generated by a computer

could be used, but this method was of limited utility because of the memory space and

input time requirement. The table was also too short and impractical to reproduce

calculations exactly a second time when checking out a program (Knuth 1981).

The first algorithm for obtaining pseudorandom numbers was proposed by John

von Neumann (1952) in about 1946. It was called the "middle-of-squares" method. His

idea was to take the square of previous random numbers and to extract the middle digits

(Sobol 1974). This method is unfortunately not suitable because it tends to give too many

small numbers (Sobol 1974). It has proved to be a comparatively poor source of random

numbers. Using this method, the sequence tends to get into a short cycle of repeating

elements (Knuth 1981).

10

The overwhelming majority of computations currently performed by the Monte

Carlo method use pseudorandom numbers. Sequences generated in a deterministic way are

usually called pseudorandom or quasirandom sequences. Random numbers generated

deterministically on computers have worked quite well in nearly every application,

provided that a suitable method has been carefully selected (Knuth 1981).

By far the most popular pseudorandom number generators in use today are special

cases of the following scheme, introduced by D.H. Lehmer in 1949. He chose four

numbers: m the modulus, a the multiplier, c the increment, and x0 the starting value,

where m > 0, 0 < a < m, 0 z c < m, 0 z x0< m. The desired sequence of random numbers

{*„} is then obtained by setting the following:

*«+i = (a 'x
n

 + c) m°d m, n z. 0 (2-a)

This is called a linear congruential sequence. The congruential sequences always get into a

loop, that is, there is ultimately a cycle of numbers that is repeated endlessly. The

repeating cycle is called the period. A useful sequence will have a relatively long period

(Knuth 1981). When c=0, the generator (2-a) is usually referred to as a multiplicative

congruential generator. Since a computer can represent a real number with only finite

accuracy, a sequence of random fractions, that is, random real number U„, shall be

generated by integers x„ between zero and some number m. Thus, the fraction,

U„ - xjm (2-b)

will then lie between zero and one. Usually m is the word size of the computer (Knuth

1981).

11

In recent years, three classes of simple generators have been used the most. These

generators are generally known as the multiplicative linear congruential generator

(MLCG), the Fibonacci generator (additive generator), and the shift register generator

(also known as the Tausworthe generator) (James 1990).

Currently Used Random Number Generators

A simple generator can be defined as one for which the maximum period is limited

by the number of states that can be represented in one computer word. Thus, for the

popular 32-bit computers, simple generators are limited to a period of about 2.2xl09. The

general purpose generators combine two or more simple generators to attain a longer

period and better distribution (James 1990). These are described below.

RANDU

The RANDU general purpose generator was distributed by IBM for use with its

System/360 series computers and has the modulus w=231=2147383648, multiplier a =

65539, and increment c = 0; as illustrated in the following equation:

x„+1 = 65539x„ mod 231 (2-c)

This generator was based on a theoretical expression which showed that this multiplier

should produce the smallest possible serial correlation. Unfortunately, it turns out to have

catastrophic higher-order correlation, which many users have observed (James 1990).

Many multiplicative linear congruential generators are descendants of the RANDU

formula defined by (2-c). This generator was first introduced in the early 1960s; its use

soon became widespread. The non-prime modulus selected to facilitate the mod operation

12

and the multiplier, 65539, which is equal to 216 + 3, was selected primarily because of the

simplicity of its binary representation. Research and experience have now made it clear

that RANDU represents a flawed generator with no significant redeeming feature. It does

not have a full period, and it has some distinctly non-random characteristics. As noted by

Park and Miller (1988), Knuth (1981) described it as really horrible. Because of its

widespread use at the time, RANDU was commonly found in the literature of the 1960s

and early 1970s. The inadequacies of this generator became so well known, however, that

it was never recommended in the computer science literature of the 1980s (Park and

Miller 1988).

RNUN

The routine RNUN in the IMSL generators uses the congruential method with

modulus m = 231-1 = 2147483647, increment c = 0, and three different multipliers, namely,

a = 16807, a = 397204094, or a = 950706376. It uses a very simple subroutine for

retrieving the current value of the seed so that simulation can be restarted (namely

RNGET) to initialize with a fixed seed, or with a clock-generated seed (RNSET), and to

shuffle the numbers (RNOPT). The routine RNUN generates uniform numbers between

0 and 1.

Fishman and Moore's study (1986) indicated that the performance of a =

950706376 is best among these three choices, but the choice of 16807 will result in the

fastest execution time. If no selection is made explicitly, the routine uses the multiplier a =

16807, which has been used for some time (Lewis, Goodman, and Miller 1969). The

13

seed of the generator is an integer value between 1 and 2147483646. If the seed is not

initialized, a random seed is obtained from the computer system clock. The generator has

a maximal period of 231 - 2 (IMSL 1991).

RANUNI

The RANUNI function in S AS returns a number generated from the uniform

distribution on the interval (0, 1) using a prime modulus multiplicative generator with

modulus 231 - 1 and multiplier 397204094 (Fishman and Moore 1982). This generator is

xn+l = 397204094x„ mod (231 -1) (2-d)

The seed is an integer less than 231 -1. If the seed is ^ 0, then the time of day is used to

initialize the seed. The generator has a maximal period of 231 - 2 (SAS 1990).

UNIFORM

The UNIFORM routine, a SPSS pseudorandom number generator, produces a set

of random numbers from a uniform distribution with a minimum of 0 and a user-specified

maximum with modulus 231 -1, and multiplier 16807:

x„+1 = 16807x„ mod (231 -1) (2-e)

Uniform numbers are generated using the algorithm of Lewis, Goodman, and Miller

(1980). Within a session, the seed value changes each time a random number series is

needed in a session. The seed can be any positive integer value up to 2,000,000,000,

which approaches the limit on some computers. With SPSS for Windows, the seed value

is up to 999,999,999. To duplicate the same series of random numbers, the seed should

be set before the series is generated for the first time. Since SPSS resets the seed as it

14

generates a series of random numbers, it is virtually impossible to determine what seed

value was used previously, unless the value was specified (SPSS 1990).

RANDOM

The BMDP random number generator, RANDOM, generates one random number

for each case. The generator starts by using a integer between 1 and 30,000 as a seed

number. It then generates uniform pseudorandom numbers on the interval from zero to

one. BMDP provides a FORTRAN statement in the subroutine BIMEDT. The

FORTRAN code used in the uniform random generator is from an algorithm by Wichman

and Hill (1982). The algorithm uses three simple multiplicative congruential generators:

xn+1 = 17\xn mod 30269 (2-f)

xr„+1= I72x„ mod 30307 (2-g)

x:n+1 = 170x„ mod 30323 (2-h).

Each uses a prime number for its modulus and a primitive root for its multiplier. The three

results are added, and the fractional part is taken (BMDP 1983).

Criteria for Comparing Random Number Generators

Period Length (Random Number Sequence Repetition)

Pseudorandom number generators always have a period, after which they begin to

generate the same sequence of numbers over again. Traditional pseudorandom number

generators are based on a single integer "seed," which means that the period is limited to

the number of different states that can be represented in one computer word. Two bits are

15

usually lost (for positivity and to avoid even integers), so for a 32-bit computer, a simple

generator can have a maximum period of 230, or about 109. James (1990) insisted that

although it is easy to achieve this maximum, it is no longer enough for any present day

problems in simulation study. Also he suggested that traditional methods can be extended,

even on 32-bit computers, to give periods equal to the number of states representable in

60 bits. Some modern methods have periods much longer than 260 .

Knuth (1981) stated that the period of a generator cannot exceed the size of its bit-

state for a computer word. For optimal memory use, it should be close to that size. So, if

b bits are required to represent a computer word, the period will be close to 2b. Maximal

period linear congruential generators (LCGs), in scalar or matrix form, as well as

Tausworthe generators, inverse non-linear generators, and many kinds of combined

generators, have periods equal (or very close) to 2h for a Z>-bit state, if the parameters are

chosen appropriately (Knuth 1981; L'Ecuyer 1990).

Becuase of fast computers, modern computer simulations are getting increasingly

challenging, and require more and more random numbers. Any generator must have a very

long period before deserving any further consideration for general use. L'Ecuyer (1992)

insists that standard LCGs with modulo near 231, which are still recommended in most

simulation books, should be discarded because their period is too short and anything less

than 250 for the period is too low. In fact, with the latest developments in random number

generation, there is no reason for not taking a much longer period than that, for example,

over 2200. L'Ecuyer (1992) has stated that no generator should be used for any serious

purpose if its period (or a low bound on it) is unknown.

16

It is well known that generators have a full cycle, generating every integer in [1, m-

1] before repeating, if multiplier a is a primitive element modulo m, that is, if d-\ is a

multiple of m for i = m - 1, but for no smaller i (Bratley et al., 1987).

Shape of Distribution (Lattice Structure)

None of the random number generators are truly random in the classical sense. A

set of empirical statistical tests can be applied for testing randomness. If the generator

passes all the tests, it proves nothing formally, but improves confidence in the simulation

results that could be obtained by using that generator. Some "standard" statistical tests for

random number generators are described in Dudewicz and Rally (1981) and Knuth (1981).

Besides the empirical tests, most generators can also be analyzed theoretically. For

example, in some cases computation can be bounded on the serial correlation, bounded on

the discrepancy, or characterized by the geometrical behavior of the set of all t -

dimensional vectors formed by taking t successive values produced by the generator over

its full period (L'Ecuyer 1992). Randomness provides a sequence of independent uniform

random variables suitable for all reasonable applications. In particular, the uniform random

variable passes all the latest tests for randomness and independence (Marsaglia and Zaman

1991).

Correlation between Random Nnumbers (Serial Correlation)

The correlation for two stochastic variables, say x and^, is usually denoted by p.

The well-known relation between the correlation coefficient and the covariance is p =

cov(xty)/SxSy, where cov(xj>) =£[{*-£(*)} {j-£(y)}] and Sx
2 = E{x-E(x)}2. Let the symbol

17

Y represent the covariance. If the z'-th and the (/+/)th pseudorandom numbers in the

sequence (r,) are distributed independently, then

Vj = £{(r, - 0.5)(r/+, - 0.5)} = 0 forj>0, (2-0,

whereE(r) = 0.5 and E(ri+J) = 0.5 because r, and ri+jare assumed to be uniformly

distributed on [0,1). The ' lag/ covariance y,can be estimated through

Yj = {l / (" - 7) } S f e -0.5)(/;,;. -0.5)} (2-j)
1=1

Kleijnen and Gronendaal (1992) indicated that even if a specific generator passes a number

of statistical tests, there is no guarantee that it is a good generator. Park and Miller (1988)

demonstrated that constructing a good generator is very difficult.

Density of Distribution (Uniform Distribution)

In a typical simulation, one needs a large number of random numbers with the

proper statistical properties. All the methods to be presented for generating random

variates transform uniformly distributed random numbers. Most computer languages have

built-in functions for producing random variables uniform over the interval (0,1).

Generators may also rate differently, depending on whether they are implemented in a

high-level language or in an assembly language (Bratley, Fox, and Schrage 1987).

Implementation of Random Number Generator in Normal Function (Efficiency)

Uniform random numbers are often used to generate nonuniform random numbers.

The most important nonuniform continuous distribution is the normal distribution with

mean 0 and standard deviation 1, given by the equation:

18

F { S) ~ ' 2 d t (2 " k)

Many of the methods for the generation of independent random variables with a

given distribution function, F, or probability density function (pdf), / , were originally

suggested by John von Neumann in the early 1950s, and they have been gradually

improved upon by others, for example, Marsaglia, Ahrens, and Dieter (Knuth 1981). The

best-known "exact" method for the normal distribution is that of Box and Muller

developed in 1958 (Ripley 1987).

The rejection method, first suggested by von Neumann (1951), can be used when

/ is known. In its simplest form the rejection method requires that the f value be bounded

and nonzero only on some finite interval (Bratly, Fox, and Schrage 1987). Ripley (1987)

recommended some simple methods for normal distributions: Marsaglia's polar method

and the ratio-of-uniform method which is supported by others (Knuth 1981; Ripley 1983).

Leva (1992a) introduced an algorithm for a fast normal RNG which modified the

ratio-of-uniform deviates method by Kinderman and Monahan. The FORTRAN function,

RANDN, returns normally distributed pseudo-RNs with mean of zero and unit standard

deviation (Leva 1992b).

Algorithms for Random Number Generators

The algorithms of the following computer programs were used to generate data for

comparative purposes in this study.

19

IBM (RANDU)

A FORTRAN code for RANDU, a uniform random number generator, is

presented as fig. 2-1 (Bratley, Fox, and Schrage 1987).

FUNCTION RANDU(IX)
C INPUT: IX, A RANDOM NUMBER.
C 0< IX <2**31-1

M=65539
C M=2**16+3

IX=M*IX
IF (IX .LT. 0) IX=IX+2147483647+1
RANDU=FLOAT(IX)* .4656613E-9
RETURN
END

Fig. 2-1. RANDU - FORTRAN code

Algorithm:

a. Let IX be a large odd integer.

b. Then IXis multiplied by 65539(=216+3).

c. This yields an integer (mod 231, still called IX).

d. This integer is now turned into a uniform random number (RANDU) by dividing

by 231 (multiplying by 0.4656613 x 10"9).

IMSL (RNUN)

A FORTRAN code for RNUN, a uniform random number generator with a double

precision in real mode, is presented as fig. 2-2 (IMSL 1991). RNUN is a single precision

20

in real mode and its FORTRAN code is the same as double precision except that it uses

DMOD instead of MOD.

FUNCTION DRNUN(IX)
C INPUT: IX, A RANDOM NUMBER.
C 0 < IX <2**31-1

M=950706376D0
IX=DMOD(M*IX, 2147483647D0)
RNUN=IX/2147483647.0
RETURN
END

Fig. 2-2. RNUN - FORTRAN code

Algorithm:

a. Let IX be a large odd integer.

b. Then IXis multiplied by 950706376.

c. This yields an integer (mod 231-1 still called IX).

d. This integer is now turned into a uniform random number (RNUN) by dividing

by 231 -1.

SAS (RANUNI)

A FORTRAN code for RANUNI, a uniform random number generator with a

double precision in real mode, is presented as fig. 2-3 (SAS 1990). This generator has a

multiplier 397204094, a modulus 231-1=2147483647, and the range of starting value, seed

between 0 and 231-1.

21

FUNCTION RANUNI(IX)
C INPUT: IX, A RANDOM NUMBER.
C 0 < IX <2**31-1

M=397204094D0
IX=DMOD(M*IX, 2147483647D0)
RNUN=IX/2147483647.0
RETURN
END

Fig. 2-3. RANUNI - FORTRAN code

Algorithm:

a. Let IX be a large odd integer.

b. Then IXis multiplied by 397204094.

c. This yields an integer (mod 231-1 still called IX).

d. This integer is now turned into a uniform random number (RANUNI) by

dividing by 231 -1.

SPSS (UNIFORM)

A FORTRAN code for UNIFORM, a uniform random number generator with a

double precision in real mode, is presented as fig. 2-4 (SPSS 1990).

FUNCTION UNIFORM(IX)
C INPUT: IX, A RANDOM NUMBER.
C 0 < IX <2**31-1

M=16807D0
IX=DMOD(M*IX, 2147483647D0)
UNIFORM=IX/2147483647.0
RETURN
END

Fig. 2-4. UNIFORM - FORTRAN code

22

The original program introduced by Lewis, Goodman and Miller (1969) was

written in assembly language and it was translated into FORTRAN code (Bratley, Fox,

and Schrage 1987). This generator has a multiplier 16807, a modulus 2147483647, and

the range of starting value seed between 0 and 2147483647.

Algorithm:

a. Let IX be a large odd integer.

b. Then IX is multiplied by 16807.

c. This yields an integer (mod 231-1 still called IX).

d. This integer is now turned into a uniform random number (UNIFORM) by

dividing by 231 -1.

BMDP (RANDOM)

RANDOM, a uniform random number generator written in FORTRAN code, was

introduced by Wichmann and Hill (1982) and is presented as fig. 2-5. (BMDP 1983,

1992).

FUNCTION RANDOM(IX)
C INPUT: IX, IY, IZ RANDOM NUMBERS.
C 0 < IX, IY, IZ < 30000

IX=MOD(171 * IX, 30269)
IY=MOD(172 * IY, 30307)
IZ=MOD(170 * IZ, 30323)
RANDOM=AMOD(FLO AT (IX)/30269.0+FLO AT(I Y)

* /30307.0 + FLOAT(IZ)/30323.0, 1.0)
RETURN
END

Fig. 2-5. RANDOM - FORTRAN code

23

Algorithm:

a. Let IX, IY, IZ be integers.

b. Then IX is multiplied by 171, IY is multiplied by 172 and IZ is multiplied by

170.

c. These yield integers (mod 30269 called IX, mod 30307 called IY, and mod

30323 called IZ),.

d. The integers are now turned into a uniform random number (RANDOM) by

dividing by 30269 or 30307 or 30323 and adding the results.

Algorithms Not Used in Study

Lagged-Fibonacci Generators

F(r, s, 0) starts with r initial (seed) elements xh x2,..., xrfrom some set X, then

successive elements are generated by the recursion xn = xn.r 0 xn.s, where 0 is some binary

operation on the set X. It is a generalization of the classical Fibonacci sequence with X the

set of integers, r = 2,s=\, and 0 the binary operation of addition (Marsaglia and Zaman

1991).

Subtract-with-Borrow Generator(SWB) for PC

Marsaglia and Zaman (1991) introduced the SWB generators. These are related to

lagged-Fibonacci generators. The SWB x„= (xn.r - x„.s - c) mod b has period br- bs if br- bs

+ 1 is a prime and has b as a primitive root: for example, b = 232- 5 = 4294967291 and r =

43, s = 22. The principal component of combination generator is the SWB generator x„=

24

(x„.22 - - c) mod b, with b = 232 - 5. With an initial set of seed values xu x 2 , , x43, each

a 32-bit integer in the inclusive range 0 to 232 - 6, and an initial carry bit ce{0,1}, m = Z>43 -

b22 + 1 is a prime and b is a primitive root. Thus the period is m-\ = Z>43- b22, or about 21376

or 10414

Algorithm:

a. Form t = x„.22 - x„^ - c.

b. I f t i 0 p u t x n - t a n d c = 0.

c. if / < 0 put x„ = t + 4294967291 and c = 1.

d. Then the new c is ready for forming the next x.

Many researchers developed RNGs for fast and portable implementation

(Campagner, 1992; Carta 1990; Clark 1985; Marsaglia, Narasimhan, and Zaman 1990;

Schrage 1979) with various technical methods (Deng and Chu 1991; Haas 1987;

L'Ecuyer, Blouin, and Couture 1993) and studied structures of RNGs (Coveyou and

MacPherson 1967; Tezuka and L'Ecuyer 1992; Tezuka, L'Ecuyer, and Coutre 1993).

Since all the generators are pseudo-random number generators, one of the tasks for RNG

remains to find a single way to generate a uniform and normal random number, and to

develop a near-true random number generator.

are:

CHAPTER 3

METHODS AND PROCEDURES

Research Questions

The research questions for investigating the random number generators (RNG)

1. At what sample size does the RNG sequence repeat? (Period)

2. What shape does the distribution of RNG have? (Structure)

3. What are the correlations between adjacent numbers? (Correlation)

4. What is the density of the distribution of random numbers? (Density)

5. When do the random numbers reach a normal distribution? (Efficiency)

Procedures

A set of random numbers(RNs) were produced using algorithm and Pascal

programs which were translated from FORTRAN coding. In the RNGs the seed had a

starting value of 1 or 101 for all RNGs: RANDU, RNUN, RANUNI, UNIFORM, and

RANDOM. It was assumed that these random numbers were independent and come from

a particular specified distribution. This assumption was tested statistically for randomness,

correlation, and distribution if the observed numbers did not indicate this assumption.

The first research question examined the sample size at which the RNG sequence

repeats itself (period). It was investigated as follows. Every pseudo-RNG used in

25

26

computers has a sequence or sequences of random draws called cycles or periods. Once all

of the numbers in the cycle have been produced, the numbers repeat in the same sequence.

Usually the problem of repeating a sequence in a given study is avoided by having a cycle

size which is so large that the user will not use more that a small portion of the numbers in

the cycle. Because this is a crucial consideration with any generator, the cycles on the

RNGs should be checked (Modianos, Scott, and Cornwell 1984).

It is known that the linear congruential method will produce a sequence of

numbers of full period m, if and only if, the following three conditions are present:

1. The constants m and c are relatively prime (i.e., gcd(m, c) = 1).

2. The constants m and a are selected such that all prime factors of m also divide

by a-1 (i.e., a = 1 modp for each prime factor p of m).

3. If the constant m is divisible by 4, then 4 also divides by a-\ (a = 1 mod 4 if 4

divides m).

If c is 0, this would save some computation time in the generation of pseuorandom

numbers such as provided by the multiplicative linear congruential generators RANDU,

RNUN, RANUNI, UNIFORM, and RANDOM. However, the sequences generated can

not be of full period m. They have a maximum period of m-1 only if m is prime. Then the

period is divided by m-1 and is m-1, if and only if, a is a primitive root, that is, a* 0 and

cfm'l)/p * 1 mod m for each prime factorp of/w-1 (Ripley 1987).

RNUN, RANUNI, and UNIFORM have modulus /w=2147483647=231 - 1 and m is

prime, and m-1=2147483646=231-2= 2- 32 -7-11- 31- 151-331. UNIFORM has a multiplier

16807(=75) and 7 is a primitive root, hence so is 75 = 16807. Then UNIFORM has a

27

period of m-l=2147483646. RNUN and RANUNI have the multiplier 950706376 = 23

•118838297 and 397204094=2-72-4053103, respectively. Therefore RNUN and RANUNI

have a period of m-\. RANDU has the shortest period, 1.6lxl09, among generators and

RANDOM has the longest period, 9.27xl012. The nonprime modulus for RANDU can not

reach the maximum length of period, 231-2=2647483646. RANDOM is not a simple

generator but a combined generator with three prime moduli which reach the period of

(30269-30307- 30323)/3 « 9.27xl012. The period (sample size) at which each RNG

repeats the same sequence of numbers will be presented in chapter 4.

The second research question involving the shape of the distribution of random

number generators (structure) was investigated as follows. A program was written to call

a generator repeatedly, the resulting values were grouped into pairs that represented

points in a unit square, and then they were plotted. It is normally necessary to magnify the

image by selecting only those points that fall into some smaller square, and drawing only

that region, so as to cover the full plotting surface. The resulting pattern of points will be a

lattice pattern produced by the algorithm from the random number generator, where

Marsaglia's "planes" can be observed (Hamilton 1993). Marsaglia (1968) pointed out that

the ^-tuples (Uj,...,Ui+k,^) will always lie on a finite number of hyperplanes in [0, 1]* (Ripley

1987). The pairs, triples, and so forth from most congruential pseudo-RNGs are known to

lie in the lattice pattern, and the "uniformity" of these lattices is reflected in the quality of

the generators (Ripley 1983).

Pairs (x„ xiH) of random numbers were generated from a Pascal program in the

range of 0 < x, <, 0.000001, 0< xiH <1. In this range, 2,136 to 2,147 pairs were selected,

28

and these pairs were plotted in the rectangle, as shown in fig. 3-1. The specific choice of

the smaller square was purely arbitrary, and the same kind of image can be seen anywhere

in the unit square, if appropriate magnification is applied.

Also, triples (x,, x,+2) of random numbers were selected in the range of 0 < x, <

0.000001, 0 < x,+1 < 1, 0 < xi+2 < 1. In this range, 2,136 to 2,147 points were selected, and

these points were plotted in the cube, as shown in fig. 3-2. The lattice structure of the

RNGs will be presented in chapter 4.

o.oo
0.000000 .000001

Fig. 3-1. Plots of pairs (Xh

.000001

Fig. 3-2. Plots of triplets (X„ Xi+l, Xl+2)

The third research question involving the correlation between sequences of random

numbers was examined as follows. After generating disjoint sequences, Knuth's serial test

was applied (Knuth 1981). This test measures the relationship between x, and xt+h. It is a

correlation coefficient that measures the extent to which they covary. The serial

correlation coefficient is given by the equation:

29

C = (N- SUM1 - SUM2) / (N • SUM2 - SUM2) (3-a)

where N = sample size, SUM= sum of jq, SUM1 = sum of xt • xt+h, SUM2 = xt • xt. The

coefficient C will vary from -1 to +1, and C = 0 indicates no relationship and C=±l for

perfect relationship.

If a new seed happens to be a number used in one of the preceding runs, then these

two runs use the same pseudorandom numbers and become dependent. This dependence

violates the assumptions of the statistical analysis techniques which form the basis for the

simulation. Therefore, different starting seed values are used for each type of generator.

Starting numbers will be separated by numeric values, h = 1 to 45. For a

multiplicative generator, the first two seeds, s0 and Sj will be related by the expression ^ =

(c^SQ) mod m. Tables with these h values will be presented in chapter 4.

The fourth research question examined the density of the distribution of random

numbers. The density research question is the most commonly cited, used, and the most

versatile procedure for evaluating distributional assumptions because it uses a chi-square

goodness-of-fit test (Payne 1982). The data were grouped into k intervals and the number

of samples in each interval counted. Using these frequency values, a chi-square statistic

was calculated which has a chi-square distribution with k-1 degrees of freedom.

For a sample size of N> 30, the following formula (Selby 1975) was used to

calculate the chi-square value at the 0.05 level of significance:

%2 = D (1-A + Z A05)3 (3-b)

where D = degree of freedom, Z = the normal deviate, and A = 2 / (9D). The chi-square

values were calculated using the above formula, and the chi-square values and associated

30

degrees of freedom are presented in chapter 4. Since chi-square tables of significance

typically do not include values beyond D >30, the above formula was also used to

generate chi-square significant values for various N sizes between 100 and 40,000 (see

table B-5).

The last research question investigated when the random numbers reached a

normal distribution (efficiency), and at what sample size. This was tested by calculating

the area mean (average of random numbers generated in a specific interval) and the

standard deviation of the random numbers. A number of algorithms that generate the

normal distribution of random numbers are available today, and they vary in speed,

complexity, and machine space requirements (Leva 1992a). Leva introduced an algorithm

for a fast normal RNG, which returns normally distributed pseudo-RNs with zero means

and unit standard deviations (Leva 1992b). Given a normal distribution function with

mean (n) 0 and standard deviation (a) 1, the area under the curve of this function is equal

to 1. In each interval of the standard deviation, the area under the normal curve is known:

0.68, 0.95 or 0.99 for -1 <o< 1, -2 <o< 2, or -3 <o< 3, respectively. Means, standard

deviations, and areas under the curve in the normal distribution are calculated and

presented in chapter 4.

Algorithms Used

Each FORTRAN algorithm for the RNG used in the statistical package was

rewritten in Pascal. This was necessary to compare the RNGs of each package and to

make it feasible to run the programs on a personal computer (see appendix A for Pascal

31

algorithm and programs). The Pascal programs were checked against the FORTRAN

programs to assure that they yielded equivalent results. The same seed values were used

when comparing all RNGs in the packages.

The RNGs were compared on various combinations of criteria: modulo(m),

multiplier (a), increment (c), and length of period (p), in the following five statistical

packages: RANDU (IBM), RNUN (IMSL), RANUNI (SAS), UNIFORM (SPSS), and

RANDOM (BMDP). The a, m, andp values used are presented in table 3-1.

TABLE 3-1.
MULTIPLIER, MODULUS, AND PERIOD VALUES IN SELECTED RNGS

Generator Multiplier (a) Modulus (m) Period (p)

RANDU 65539 2147483648 1610612736

RNUN 950706376 2147483647 2147483646

RANUNI 397204094 2147483647 2147483646

UNIFORM 16807 2147483647 2147483646

RANDOM b 171 30269 9272395201440
172 30307
170 30323

The increment, c, for all generators was set to 0.
)

RANDOM is a combined generator; therefore, different criteria for a and m are
possible.

The various types of multiplicative linear congruential generators (MLCG) from various

sources are presented in table 3-2, in which the RNGs in table 3-1 were included. Most of

RNGs are written in FORTRAN, and some old program for RNG code were written in

assembly language.

32

TABLE 3-2
MULTIPLICATIVE LINEAR CONGRUENTIAL GENERATOR:

X„+1 = (A X„ + C) modM

Modulus
m

Multiplier
a

Increment
c

Period
P

Source
Seed range

16807 0 231-2
IMSL (RNUN, seed = 1 to 23,-2)
SPSS (UNIFORM, seed=l to 2x10s)
APL, SIMPL/1
IBM 360 (Lewis et al. 1969)

231-1
397204094 0 231-2

IMSL (RNUN, seed=l to 231-2)
SAS (RANUNI, seed= 1 to 231-2)
SPSS (UNIFORM, 1991).
SPSS for Windows(seed =1 to
999,999,999)

950706376 0 231-2 IMSL (RNUN, seed= 1 to 231-2)
48271 0 231-2 Park, Miller and Stockmeyer (Jul. 1993)

630360016 0 231-2 SimScript II, DEC-20
IBM 370 (Payne et al., 1969)

742938285
950706376

1226874159
62089911

1343714438

0 231-2 Fishman and Moore (1986)

231 65539 0 1.61xl09 IBM (RANDU)
232- 2 16807 0 231-2 Marsaglia (Jul. 1993)
232- 5 69070 0 232-6 Marsaglia (Jul. 1993)
2s2 69069 1 Marsaglia (1972) VAX of DEC
232 2147001325 715136305 BCPL (Richards and Whitby-Strevens

1979)
216+ 1 75 0 BASIC on Sinclair ZX81 (Tootill,

1982)
108+ 1 23 0 Lehmar
109 314159221 211324863 Van Esetal. (1983)
235 8404997 1 GLIM3(Baker and Nelder, 1978)

30269
30307
30323

171
172
170

0
0
0

9.27xl012 BMDP (RANDOM, seed= 1 to 30000)

Note: 231- 1 =2147483647 « 2-15-109; 231 - 2 = 2-32-7-ll-31-151-331=2147483646;
75= 16807; 2-72-4053103 = 397204094 ; 23-118838297 = 9507063 76

33

The RNGs in table 3-2, found in simulation computer programs, can be modified in

various formulae to avoid the limitation of the computer word size, and obtain larger

periods in the random number sequences, which yields more speed and more portability.

MLCGs can also have their capabilities expanded by the techniques; combining, shuffling,

or shifting methods.

Random Number Set Generation

Random number set generation for investigating the period of number sequences

was performed for each RNG. While generating number sequences, the same seed value

was used for RANDU, RNUN, RANUNI and UNIFORM (seed=l), but for RANDOM

the seed values were: seedl=l, seed2=l and seed3=l. The next seed and random

numbers were produced from the previous seed, repeating seeds and random numbers

were checked if the first values were detected. (Results of RNG are in Chapter 4.

Computer programs and sample results are in appendix A and appendix B, tables A-l

through A-4).

For the structure of the RNGs, sets of random numbers with dependent pairs and

triplets were generated with seed values equal to 1 and saved into memory. All the

generated data were imported and translated to SPSS (Microsoft-Windows version)

format to use the graphic function which produced the graphical figures. Using the SPSS

graphic function, Scatterplot, two-dimensional and three-dimensional graphics were

produced. For more visual effect, the three-dimensional graphic was produced by rotation

of various angles of view in windows (see figures in chapter 4).

34

For the serial correlation test on adjacent numbers, x, and xi+h, random number sets

were generated by various starting numbers, h = 1 to 45, and the size of random numbers

in the test was 100,000. For a multiplicative generator, the first two seeds, s0 and sh were

related by the expression = (C/'SQ) mod m. Pascal programs for the serial correlation test

were written for each generator (Results are in chapter 4, and programs 11 and 12 in

appendix A).

In the density test, random number sets were generated by grouping them into 100

and 1,000 cells from 1,000,000 and 10,000,000 random numbers. Pascal programs were

written to generate the numbers and compute the chi-square statistic. Conventional tables

of chi-square values are for degrees of freedom < 30, but since the degrees of freedom in

the chi-square test exceeded 30, the Pascal programs were written using the Knuth's

formula (3-b)and chi-square values were calculated . (see program 13 in appendix A and

table B-5).

For testing the normal approach of RNGs, 100 sets of random normal numbers

between 1,000 and 100,000 were generated by Leva's random normal generator (Leva

1992a, 1992b). In the generation of random normal numbers, seed=l and seed=101 were

the starting values for each generator. The numbers were counted by four intervals based

on standard deviation (o) for estimation of the normal distribution: -1 i o s 1, -2 ^ o ^

2, -3 £ o <; 3. Also Pascal programs were written for generating the random normal

number correlated with the distribution of the normal density function. Each set of

numbers were imported in SPSS mode for drawing the estimated normal curve if this

curve matched with the curve from the theoretical normal density function. For testing

35

normality, the mean, standard deviation, and total area under the curve were generated

and plotted.

CHAPTER 4

RESULTS

The results of this study are presented for the five criteria chosen as research

questions using five different random number generator: RANDU, RNUN, RANUNI,

UNIFORM and RANDOM.

Period of the RNG Sequence

The sample size at which the RNG sequence repeats (period) was determined as

follows. After generating random numbers for each random number generator, periods

were detected in the repeating sequence. Periods for each generator are shown in table

4-1. Initial random numbers and last random numbers near the period within repeating

sequences are listed in appendix C. Also, the Pascal programs used to generate the

random numbers are listed in appendix A.

TABLE 4-1
PERIOD OF RANDOM NUMBER GENERATORS

Generator Period (Sample size)

RANDU (IBM) 1,610,612,736

RNUN (IMSL) 2,147,483,646

RANUNI (SAS) 2,147,483,646

UNIFORM (SPSS) 2,147,483,646

RANDOM (BMDP) 9,272,395,201,440

36

37

According to the conditions for modulus and multipliers in chapter 3, RNUN,

RANUNI, and UNIFORM have prime modulus m=231 - 1 and also have a multiplier which

is a primitive root. Therefore, these three generators have a maximum period of m-1 =231-

2 = 2147483646. Since RANDU has a nonprime modulus, it can not reach a maximum

length of period. RANDU has the shortest period, 1.61xl09, among the generators.

RANDOM is not a simple generator, but a combined generator with three prime moduli

which reach the longest period of (30269-30307- 30323)/3 « 9.27xl012.

Findings indicated that RNUN, RANUNI and UNIFORM had the same length

period, 2.17xl09; RANDU had the shortest period, 1.61xl09; and RANDOM had the

longest period, 9.27x1012. Therefore, in a simulation study, if the sample size exceeds

2xl09, then RANDOM should be used. If the sample size is less than 2xl09, then any RNG

can be used, with the exception of RANDU.

Structure of the RNG Sequence

The shape of the distribution of random number generators (structure) in two-

dimensional and three-dimensional space was determined as follows.

Pairs (Xh Xi+l) of random numbers and triples (X„ Xl+1Xi+2) of random numbers

were generated from a Pascal program in the range of 0 <Xf<= 0.000001, 0 < Xi+1 < 1. In

this range, 2,136 to 2,147, points were selected and these points were plotted in the

rectangle, as seen in fig. 4-1 through 4-10. The specific choice of the smaller square or

cube was purely arbitrary, and the same kind of image can be seen anywhere in the unit

square or cube, if appropriate magnification is applied. In fig. 4-1 and fig. 4-2, RANDU

38

had a very simple and linear structure in both two-dimensional and three-dimensional

space, with a range of 0 < Xt < 0.0000001. The linear tendency was a result of the

relatively small multiplier, 65539.

.000001

0.00
0.000000 .000001

Fig. 4-1. RANDU: Plots of (X(, Xi+x) Fig. 4-2. RANDU: Plots of(Xv XM, Xi+2)

The lattice pattern for RANDU can be computed algebraically. Since

o=65539=216+3, c=0 and m=2147483648=231, then:

XH2 = (216 +3) Xi+l + cx 2
31

= (216+ 3)X, + c^31 (216+ 3) + cx2
31

= (6.216 + 9)Xt + {(216+3)c, + C2 + 2Xt) 231

= 6(216 + 3)Xj - 9Xj + C32
31

= 6Xi+1- 9Xt + C42
31

where each q is an integer. Thus Ui+2 - 6Ui+l + 9Ut is an integer and {Ut, Ui+l, U{+2) lies

39

on one of 15 planes in the unit cube (Ripley 1987).

In fig. 4-3 and fig. 4-4, UNIFORM also had a very simple and linear structure in

both two-dimensional and three-dimensional space. The relatively small multiplier,

16807, caused a monotonic linear tendency in the lattice pattern. In fig. 4-4 a sliced

parallel plane containing points can be shown in the cube.

.02

.000001

.00
.000000

WMM wm/m
mmmm mm, WM/M/M mssmm WmMm

P_D O oao0na„aOO o,D

wmmm

mm
°!o0o000

.000001

Fig. 4-3. UNIFORM: Plots of (Xp XM) Fig. 4-4. UNIFORM: Plots of (Xh Xi+h Xi+2)

The cube represents a very small part of the total space which was magnified by

1,000,000 times in an axis in the total space. In two-dimensional space, UNIFORM had a

similar shape to that of RANDU, but in three-dimensional space, UNIFORM had a

different shape, a plane, compared to RANDU's lattice pattern, which was a line.

Lattice structures from RNUN in figs. 4-5 and 4-6 had orderly scattered points

over the plane. Two-dimensional space can be covered by a finite number of lines. These

40

lines can be observed in fig. 4-5, and a finite number of planes can be observed in the cube.

Both in two-dimensional and three-dimensional space, horizontal axes were magnified by

1,000,000 times for visual observation. These figures reflect a uniform distribution of

random numbers over the plane.

.0
.000000

000001

.000001

Fig. 4-5. RNUN: Plots of (X„ XM) Fig.4-6. RNUN: Plots of (X„ Xi+1, Xi+2)

In figs. 4-7 and 4-8, lattice structures from RANUNI also had orderly scattered

points over the plane. As figs. 4-5 and 4-6 show, the shape of RANUNI and RNUN were

similar. RNUN and RANUNI have relatively larger multipliers, 950706376 and

397204094, respectively, than RANDU and UNIFORM; thus well-ordered hyperplanes

can be observed in the structure. Parallel lines from two-dimensional space and sliced

planes from three-dimensional space can be observed in figs. 4-7 and 4-8, respectively.

41

.0
.000000

», ** • • • "**•»,

»•, **»» .*» . **»«.***»._
000001

.000001

Fig. 4-7. RANUNI: Plots of (X„ XM) Fig. 4-8. RANUNI: Plots of(Xh XM, Xi+2)

RANDOM had a very disordered scattering of points as noted in figs. 4-9 and

4-10. This lattice pattern indicates a more randomized structure thus producing random

numbers with a very large period in its repeating sequence.

% K-
.< .,S»
.Y£. vV*

* -
.0

.000000

V°««' K °°B

.000001

.000001

Fig. 4-9. RANDOM: Plots of (X„ Xi+l) Fig. 4-10. RANDOM: Plots of (Xh Xi+1, Xi+2)

42

In the algorithm, RANDOM is a combined generator with three simple MLCGs.

Each generator has a maximum length of period, so period is one third of a multiplication

of these three periods.

Based on the lattice pattern in two-dimensional and three-dimensional space, there

was evidence that RANDU had a poor structure. UNIFORM had a small multiplier, so it

yielded easy and fast computations, but the lattice pattern was relatively poor compared to

RNUN, RANUNI, and RANDOM. The combined prime modulus linear generator,

RANDOM, had a well-scattered lattice structure thus producing more randomized

numbers.

Correlation Between RNG Sequences

The correlation between sequences of random numbers was determined as follows.

All serial correlation coefficients from the five generators with seed=l and seed=101 are

listed in tables 4-2 and 4-3, respectively. In each sequence, 100,000 random numbers

were generated with distance h= 1 to 40, but only five distances were presented. The other

distances are presented in tables B-6 through B-10. The serial correlations were

calculated using Knuth's formula (1982), as shown in chapter 3. The serial correlation

programs are in appendix A (see programs 11 and 12).

In table 4-2, serial correlations of five RNGs, in which random numbers were

generated with the starting value seed=l, are presented. None of the RNGs had a

significant correlation between adjacent sequences with distance h. Sequences generated

with seed=101 were investigated for correlation between adjacent sequences, and the

43

results are presented in table 4-3. None of these sequences with seed=101 had a

significant correlation with other adjacent ones.

TABLE 4-2
SERIAL CORRELATIONS OF Xt WITH Xt+h NUMBER SEQUENCE

(SEED=1, #=100,000)*

Distance between Sequence (h)

Generator 1 5 10 15 20 25

RANDU 0.0008 0.0055 0.0003 0.0031 -0.0071 -0.0061

RNUN 0.0066 -0.0004 -0.0031 0.0023 0.0005 -0.0050

RANUNI -0.0012 0.0023 0.0035 0.0056 -0.0029 -0.0030

UNIFORM 0.0024 -0.0009 -0.0014 0.0023 -0.0006 0.0036

RANDOM 0.0040 0.0020 0.0022 -0.0018 0.0016 -0.0002

Correlation values are reported to the fourth decimal place in the table.

TABLE 4-3
SERIAL CORRELATIONS OF Xt WITH Xt+h NUMBER SEQUENCE

(SEED=101, JV=100,000)'

Distance between Sequence (h)

Generator 1 5 10 15 20 25

RANDU -0.0058 -0.0059 0.0011 0.0023 -0.0026 -0.0020

RNUN -0.0016 -0.0008 0.0013 0.0005 -0.0024 0.0006

RANUNI -0.0056 -0.0036 -0.0008 -0.0008 0.0042 -0.0002

UNIFORM -0.0024 0.0038 -0.0001 0.0022 -0.0002 -0.0077

RANDOM 0.0065 0.0001 0.0027 0.0013 -0.0002 0.0017

Correlation values are reported to the fourth decimal place in the table.

44

Based on serial correlations of random number sequences from five RNGs, all

sequences are independent of each other. In a simulation study with a set of sequences,

the serial correlation should still be investigated to determine if different seeds will

generate different results, because the above tabular results are only the results from two

different starting values, seed=l and seed=101.

Density of RNG Sequence

To evaluate the density of the distribution of random numbers, a chi-square

goodness-of-fit test was computed (Payne 1982). In a normal distribution with mean 0

and standard deviation 1, if p = 0.95 (a < 0.05), then Z = 1.645. Given the degrees of

freedom, df= 99, df=999, or dj=9,999, then the chi-square values are 123.23, 1073.65, or

10232.8, respectively, from formula (3-a) in chapter 3 (chi-square values for df >30 are in

table B-5). Given, «=1,000,000 generated numbers divided by 100 cells and 1,000 cells,

and »=5,000,000 and n=\0,000,000 generated numbers divided by 1,000 cells and 10,000

cells, then the expected frequency in each cell should be 10,000 or 1,000, respectively. A

chi-square value less than a given criteria indicates a uniform distribution of random

numbers in the range of total generated numbers. The chi-square values for the

distributions of each generator are listed in table 4-4 for seed=l and table 4-5 for

seed=101.

In table 4-4, RANUNI was significant with the generated number »=5,000,000

divided by 1,000 cells. Also, RANDOM was significant with the generated number

«=1,000,000 with 1,000 cells.

45

TABLE 4-4
CHI-SQUARE VALUES FOR UNIFORM DISTRIBUTION (SEED=1)

«=1,000,000 »=5,000,000 «=10,000,000

Generator 100
cells

1,000
cells

1,000
cells

10,000
cells

1,000
cells

10,000
cells

RANDU 80.04 925.15 954.51 10121.12 982.60 9911.94

RNUN 109.54 920.62 966.49 9925.34 991.54 9804.65

RANUNI 83.73 992.54 1103.10* 10160.54 1054.22 9757.99

UNIFORM 115.98 1053.05 975.03 9876.76 930.81 9675.34

RANDOM 96.46 1123.37* 988.15 9961.99 1003.67 9789.38

For chi-square critical values with p < 0.05: df=99, chi-square=123.23; df=999,
chi-square=1073.65; df=9999, chi-square=10232.76

Significant at df=999, chi-square > 1073.65.

TABLE 4-5
CHI-SQUARE VALUES FOR UNIFORM DISTRIBUTION (SEED=101)

w=l,000,000 m=5,000,000 «=10,000,000

Generator 100
cells

1,000
cells

1,000
cells

10,000
cells

1,000
cells

10,000
cells

RANDU 108.38 1031.40 1049.26 9932.03 972.05 9663.82

RNUN 72.94 966.52 977.19 9896.14 1007.02 9832.75

RANUNI 93.56 1015.74 973.66 9894.08 970.87 9765.99

UNIFORM 82.07 1008.62 983.86 9931.54 1019.42 10033.51

RANDOM 104.39 1029.65 1009.22 9939.92 959.76 9923.83

For chi-square critical values with
chi-square=1073.65; df=9999, chi-

p < 0.05: #=99, chi-square=123.23; df=999,
square=10232.76

46

None of the other generators produced a significant result in the chi-square test when

seed=101.

Therefore, this finding indicates that different sample sizes and different seed

values can have an effect on certain intervals of random numbers, so a selection of random

numbers in any generator needs to be investigated for uniformness and randomness when

research is performed.

Efficiency of the Normal Approach

The research question pertaining to when the RNGs reached a normal distribution

and at what sample size was also investigated.

For testing the normal approach of RNGs, sets of 1,000 to 100,000 normal

random numbers (NRNs) with seed=l and seed=101 were generated using Leva's normal

random number generator. The numbers were then grouped into four intervals based on

the standard deviation of the normal distribution, -1^ o ^ 1, -2 < o ^ 2, -3 ^ o ^ 3, a < 3

and a > 3. Each set of numbers was imported into SPSS and distributions plotted to see if

the samples approximated normality. In figs. 4-11 to 4-20, each of the sample sizes for the

NRNs, «= 1,000 and «= 10,000, from the five generators are presented with two different

starting values, seed= 1 and seed=101. The curves from the five generators are plotted

with the curve from the normal density function. In figs. 4-21 to 4-27, the means, standard

deviations and area under the curve more closely approximated normality as the number of

cases increased, surprisingly requiring 100,000 cases for most RNGs.

47

F .3

Seed=l
Seed=101

F .3

-4.00 -3.00 -2.00 -1.00 .00 1.00 2.00 3.00 4.00

X

Seed=l
Seed=101

-4.00 -3.00 -2.00 -1.00 .00 1.00 2.00 3.00 4.00

X

Fig. 4-11. Normal approach ofNRNs
from RANDU: ^=1,000 (seed=l and
seed=101)

Fig. 4-12. Normal approach ofNRNs
from RANDU: ^=10,000 (seed=l and
seed=101)

F .3

Seed=101

-4.00 -3.00 -2.00 -1.00 .00 1.00 2.00 3.00 4.00

X

F .3

— Seed=l
— Seed=101

y \
/ \

0.0
-4.00 -3.00 -2.00 -1.00 .00 1.00 2.00 3.00 4.00

X

Fig. 4-13. Normal approach ofNRNs
fromRNUN: «= 1,000 (seed=l and
seed=101)

Fig. 4-14. Normal approach ofNRNs
fromRNUN: «=10,000 (seed=l and
seed=101)

48

F .3

Secd=101

F .3

-4.00 -3.00 -2.00 -1.00 .00 1.00 2.00 3.00 4.00

X

— Seed»l
Seed»101

-4.00 -3.00 -2.00 -1.00 .00 1.00 2.00 3.00 4.00

X

Fig. 4-15. Normal approach ofNRNs
from RANUNI: w=l,000 (seed=l and
seed=101)

Fig. 4-16. Normal approach ofNRNs
from RANUNI: «=10,000 (seed=l and
seed=101)

F 3

i — Seed-1

1
I — Sced=101

/ \
A.-A-J 0.0

-4.00 -3.00 -2.00 -1.00 .00 1.00 2.00 3.00 4.00

X

F .3

- Seed®101

-4.00 -3.00 -2.00 -1.00 .00 1.00 2.00 3.00 4.00

X

Fig. 4-17. Normal approach of NRNs Fig. 4-18. Normal approach of NRNs
from UNIFORM: n=\,000 (seed=l and from UNIFORM: «=10,000 (seed=l and
seed=101) seed=101)

49

F .3

Seed»l
— Seed-JOl

-4.00 -3.00 -2.00 -1.00 .00 1.00 2.00 3.00 4.00

X

F .3

Seed"!
Seed-101

-4.00 -3.00 -2.00 -1.00 .00 1.00 2.00 3.00 4.00

X

Fig. 4-19. Normal approach ofNRNs
from RANDOM: «=1,000 (seed=l and
seed=101)

Fig. 4-20. Normal approach ofNRNs
from RANDOM: «=10,000 (seed=l and
seed=101)

The figs. 4-11 through 4-20 indicated that when w=l,000, the curve is very rough

and not well fitted to the normal curve, but when n=10,000 the curves closely approach

the normal curve. This implies that when sampling from NRN generators, sample size

needs to be large enough, and n > 10,000 is preferred.

In tables 4-6 through 4-8, the sample means and standard deviations departed from

the expected normality; mean= 0, standard deviation =1, and total area =1. In table 4-8, to

estimate the area, p, under the normal curve within three intervals, a count of the NRNs

in the interval was divided by the total number ofNRNs generated. The estimated area

should be 0.6826, 0.9544, or 0.9927 in tl̂ e intervals with o, 2o, or 3a, respectively.

Means and standard deviations were calculated after generating either 1,000,

10,000 or 100,000 random numbers using two different seed values: 1 and 101.

50

TABLE 4-6
RESULTS OF NORMAL APPROACH OF MEANS AND

STANDARD DEVIATIONS (SEED=l)a

Generator

«=1,000 w=l 0,000 «=100,000

Generator Mean StdDev Mean StdDev Mean StdDev

RANDU 0.0239 0.9999 0.0141 1.0023 0.0024 1.0035

RNUN -0.0221 0.9842 -0.0139 0.9962 -0.0016 0.9997

RANUNI 0.0091 0.9192 -0.0031 0.9978 0.0006 1.0018

UNIFORM -0.0558 0.9764 -0.0104 0.9946 0.0023 0.9975

RANDOM 0.0239 0.9856 -0.0035 0.9924 0.0052 1.0000

Expected values in the table are mean=0 and standard deviation^!.

TABLE 4-7
RESULTS OF NORMAL APPROACH OF MEANS AND

STANDARD DEVIATIONS (SEED=101)a

Generator

w=l,000 «= 10,000 m=100,000

Generator Mean StdDev Mean StdDev Mean StdDev

RANDU -0.0087 1.0068 -0.0002 1.0031 0.0024 0.9998

RNUN -0.0350 0.9792 -0.0258 1.0063 0.0012 1.0015

RANUNI 0.0082 0.9803 0.0116 1.0105 -0.0019 1.0006

UNIFORM 0.0077 1.0144 0.0060 0.9888 -0.0001 0.9951

RANDOM 0.0031 0.9872 0.0025 0.9948 0.0005 0.9980

Expected values in the table are mean=0 and standard deviation=l.

51

TABLE 4-8.
AREA UNDER THE DISTRIBUTION CURVE FOR

#,=1,000, #2=10,000 AND #3=100,000

Generator

-1 < a < 1 (P=0.6826) -2 <a <2 (P=.9544) -3 < o < 3 (jD=0.9974)

Generator »i n2 »3 "i »2 «3 «2

RANDU 0.6860 0.6761 0.6802 0.9550 0.9567 0.9541 0.9970 0.9971 0.9972

RNUN 0.6940 0.6836 0.6821 0.9580 0.9554 0.9553 0.9970 0.9972 0.9973

RANUNI 0.7290 0.6833 0.6827 0.9650 0.9571 0.9547 0.9980 0.9969 0.9970

UNIFORM 0.6940 0.6833 0.6847 0.9620 0.9552 0.9549 0.9980 0.9981 0.9975

RANDOM 0.6930 0.6876 0.6826 0.9560 0.9563 0.9549 0.9960 0.9973 0.9972

Based on the above tables and figures, a small number of sample sizes from a

random number generator causes unstable means and standard deviations. Sample sizes

greater than 10,000 random numbers are recommended.

When seed=l, «= 10,000 and «=100,000, RNUN and RANUNI had good

approximations to normality. But when seed=101 and n k 10,000, RANDOM was best.

Choosing different seeds results in different means and standard deviations; therefore, for

normality purposes, means and standard deviations should be checked before using normal

random numbers in an actual study.

The distribution of means and standard deviations from UNIFORM and RANUNI

are presented in figs. 4-21 through 4-24. Each distribution from RANDU, RNUN, and

RANDOM had a similar graph as UNIFORM and RANUNI. Sample sizes, therefore,

need to be large enough to insure a smaller departure from the expected mean = 0 and

standard deviation = 1. Different RNGs also have different approaches to normality when

various seed values and sample sizes are being utilized.

52

In figs. 4-25 through 4-27, the area under the normal curve within three different

intervals using the RANDOM approach is presented. The estimated area is theoretically

0.6826, 0.9544, or 0.9927 in intervals with a, 2a, or 3a, respectively.

Seed=l

Secd=101

1000 19000 37000 55000 73000 91000
10000 28000 46000 64000 82000 100000

Cases

M
e
a ,
n

.02

.01

0.00

-.01

-.02

A
i 1 ^ Seed=101

/
Seed'l

- -

1000 19000 37000 55000 73000 91000
10000 28000 46000 64000 82000 100000

Cases

Fig. 4-21. Normal approach of means:
UNIFORM (seed=l and seed=101)

Fig. 4-22. Normal approach of means:
RANUNI (seed=l and seed=101)

Seed=l

D 100

Sced=101

1.02

1000 19000 37000 55000 73000 91000
10000 28000 46000 64000 82000 100000

Cases

Fig. 4-23. Normal approach of standard
deviation: UNIFORM (seed=l and seed
=101)

/ \ Seed-101

D 100

Secd-1

1000 19000 37000 55000 73000 91000
10000 28000 46000 64000 82000 100000

Cases

Fig. 4-24. Normal approach of standard
deviation: RANUNI (seed=l and seed
=101)

53

.6926

P .6826

.6726

Seed~101

.9644

P .9544

1000 19000 37000 55000 73000 91000
10000 28000 46000 64000 82000 100000

Cases

Fig. 4-25. Normal approach of area
under curve within ±lo: RANDOM
(seed=l and seed=101)

.9444

Seed-101

Seed5*!

1000 19000 37000 55000 73000 91000
10000 28000 46000 64000 82000 100000

Cases

Fig. 4-26. Normal approach of area
Under curve within ±2a: RANDOM
(seed=l and seed=101)

.9994

.9984

P .9974

.9964

.9954

Seed«101

1000 19000 37000 55000 73000 91000
10000 28000 46000 64000 82000 100000

Cases

Fig. 4-27. Normal approach of area under
curve within ±3o: RANDOM (seed=l and
seed=101)

54

From the figures and tables, it is clear that the normal approach of NRNs from

each generator vary with the type of generator, seed value, sample size, and interval of

confidence. Therefore, prior investigations of normality are crucial if the results of a

research study using random numbers from the RNGs are to be valid and meaningful.

Findings indicated that normality will differ based on the size of sample, and the area

under the normal curve will differ for each of the three intervals investigated (lo, 2a, and

3o). Departures from the expected normality, mean = 0, standard deviation = 1, and area

under curve, needs to be reported in any simulation study. Also, a sample size n > 10,000

is recommended.

CHAPTER 5

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Summary

In this study, five multiplicative linear congruential generators (MLCG) were

chosen in which each random number generator (RNG) had a prime modulus, a multiplier

as a primitive root, and an increment 0. Using a personal computer (PC), an empirical

investigation was performed involving five criteria: period of generator, random number

structure, serial correlation, density in the distribution, and normal approach of normal

random numbers (NRN). All RNG FORTRAN programs were rewritten into the Pascal

language to facilitate comparison on the PC. Sets of random numbers were generated with

two different starting values which were arbitrarily selected. Figures were produced using

SPSS for Windows 6.1 (SPSS 1994).

The period of random number sequence is determined based on multiplier (a) and

modulus (m), and is not affected by increment (c). The size of period from a simple

MLCG can not exceed the size of modulus which is limited by the size of the computer

word. Most users can not recognize the full period because the period of RNGs is much

larger than they actually use for the sampling in a study. After empirical investigation,

RNUN, RANUNI, and UNIFORM reached the same period (2.17xl09), RANDU had the

shortest period (1.61xl09), and RANDOM to the longest period (9.27xl012). Therefore,

in a simulation study, if the sample size exceeds 2xl09, then RANDOM should be used. If

55

56

the sample size is less than 2xl09, then any RNG can be used, with the exception of

RANDU.

The structure pattern in two-dimensional and three-dimensional space differs by

multiplier and modulus. RANDU had a poor structure and UNIFORM had a structure

similar to that of RANDU in two-dimensional space, but a better structure in three-

dimensional space. UNIFORM had a small multiplier, so it yielded easy and fast

computations, but the lattice pattern was relatively poor compared to those of RNUN,

RANUNI, and RANDOM. The combined prime modulus linear generator, RANDOM,

had a well scattered lattice structure, thus producing more randomized numbers.

The serial correlation in the random number sequences from the five RNGs in this

study were not significant, so each sequence was independent of other distanced

sequences. In this study, forty-five different distances were investigated with two starting

values; however, more extended distances can be investigated using varied starting values

and sample sizes. In a simulation study with a set of sequences, the serial correlation

should still be investigated to determine if different seeds will generate different results.

The density of random numbers was affected by the multiplier, the starting values,

and the sample size used in this study. Significant cases were derived from RNUN and

RANDOM, both of which are used widely in the research area. This indicates that a

careful investigation is necessary in research even if a generator is well known.

The normality of random number has the most concern in simulation studies. The

means, standard deviations, and area under the the curve more closely approximated

normality as the number of cases increased, surprisingly requiring 100,000 cases for most

57

RNGs. The figs. 4-11 through 4-20 indicated that when n=1,000, the curve is very rough

and not well fitted to the normal curve, but when n=10,000 the curves closely approach

the normal curve. This implies that when sampling from NRN generators, sample size

needs to be large enough, and n > 10,000 is preferred. Based on the tables and figures, a

small number of sample sizes from a random number generator causes unstable means and

standard deviations. Sample sizes greater than 10,000 random numbers are recommended.

When seed=l, «=10,000 and «=100,000, RNUN and RANUNI had good

approximations to normality. But when seed=101 and n £ 10,000, RANDOM was best.

Choosing different seeds results in different means and standard deviations; therefore, for

normality purposes, means and standard deviations should be checked before using normal

random numbers in an actual study. Different RNGs also have different approaches to

normality when various seed values and sample sizes are being utilized.

From the figures and tables, it is clear that the normal approach of NRNs from

each generator varies with the type of generator, seed value, sample size, and interval of

confidence. Therefore, prior investigations of normality are crucial if the results of a

research study using random numbers from the RNGs are to be valid and meaningful.

Findings indicated that normality will differ based on the size of sample, and the area

under the normal curve will differ for each of the three intervals investigated (lo, 2a, and

3o). Departure from the expected normality, mean =? 0, standard deviation = 1, and area

under curve, needs to be reported in any simulation study.

For reliable results, the sample size should be large enough, n z 10,000, but even a

large sample size is not a guarantee of normality in all intervals of the NRN range.

58

Therefore, an intensive investigation of normality is necessary in any type of study using

NRNs.

Conclusions

When a "Monte Carlo study" is conducted, any type of computer can be used in

the study, including a main frame or personal computer (PC) with very different

algorithms. A high-speed PC with a floating-point chip affords advanced scientific

computing without the traditional headaches of a mainframe, interference from other uses,

and support from a large main frame in the computer center (Hamilton 1993). However,

when using a PC in a Monte Carlo study, the following criteria should be observed:

1. Period of RNG should be long enough for the simulation.

2. Well-structured RNG should be chosen to avoid unexpected troubles.

3. Serial correlation should be tested when more than two sequences are used.

4. Uniformity of RNG needs to be investigated.

5. Normality should be checked in statistical decision making, including mean,

standard deviation, area mean and distribution in normal curve.

6. Sample size should be large enough; n > 10,000 is preferred.

7. Various starting values need to be tested for reliable results.

When reporting results from a simulation study, the following information should be

provided to the reader for reproducibility and validity:

a) Sources of the RNG: type of RNG, multiplier (a), modulus (m), increment (c),

period (p), and starting value (seed) (X0).

b) Evaluation results of the RNG: period, structure, correlation, uniformity, and

59

normality.

c) Computer information: type of computer used, language used, and program

code.

Recommendations

Ripley (1987) suggested that one should choose a generator for which theoretical

tests are available and have been performed before it is put to serious use. It is better to

use simple and well-understood algorithms. Therefore, a well-tested RNG is

recommended because unknown RNGs could cause serious problems. In addition to

Ripley's suggestion, any RNG needs to be tested before or after research is performed,

because although an RNG has passed certain criteria, there is no guarantee the RNG has

validity for the study. As findings in this study, the following recommendations are

therefore made:

1. Other MLCGs not used in this study can be tested.

2. Other more high level computer languages can be used in the algorithm, for

example, C++.

3. Other types of generators can be used, for example, combined, shifted, and

additive generator.

4. Computer word size greater than 32-bits can be used with Pentium or more

powerful PCs with 64-bit chips, or more powerful chips.

5. Various testing techniques for investigating uniformness of RNGs, for example,

Run-Up Run-Down, Run-Over Run-Below, and Gap might be utilized.

60

6. Various nonuniform methods can be used, for example, Box-Muller, Rejection,

and Alias.

7. More portable RNGs, for example, SWC-AWC, Tausworthe can be adopted.

8. Generate graphical images and use faster computers; computer clock time

greater than 100 Mhz.

9. The testing level can be extended to a multidimensional level.

In current Monte Carlo study, many findings were reported without enough information

for the RNG used in research. Therefore, the validity of findings were solely depended on

researcher's professionalism. All the generators are pseudorandom number generators,

and random numbers can be reproduced if sources of the RNG are provided. Without

reporting the information on the RNG, researchers will be unable to replicate other studies

and further research their findings.

In this study five well known RNGs were chosen and empirical comparisons were

performed on five criteria. Each criteria can be adopted and enforced depending on the

characteristics of the study, but the suggestion from Ripley should be considered. Because

a simple and well-tested RNG can help researches avoid unexpected troubles.

Other testing methods and criteria can be performed on comparison of RNGs.

Different methods yields different outcomes; therefore, the outcomes that past studied

might be different from this results. But as a result of findings in this study, RANDOM is

the most recommendable generator among five RNGs.

APPENDIX A

COMPUTER PROGRAMS USED IN STUDY

61

62

Function
{*

{*
{*
{*

Const
A1

Program 1
Pascal Function Code: RANDOM (BMDP)

RandomR(seedl,seed2,seed3 : longint) :double;
Real version with double precision. *}
RANDOM(BMDP) is a combined RNG with three
simple MLCGs. Seed value should be less
than 30,000. Period is 9.27x10 \12

Var

171; A2 = 172; A3 = 170;
Ml = 30269; M2 = 30307; M3 = 30323,

{ seed < 30,000 }
nseedl, nseed2, nseed3 : longint;
tempi, temp2,
I : Integer;
xr : double;

Begin
tempi
temp2
temp3
nseedl
nseed2
nseed3
seedl

temp3 : longint;

= Al * seedl;
= A2 * seed2;
= A3 * seed3;
= tempi - Ml *
= temp2 - M2 *
= temp3 - M3 *

= nseedl; seed2
xr := seedl /
randomr := xr

End;

Ml + seed2 /
- trunc(xr);

Trunc(tempi / Ml)
Trunc(temp2 / M2)
Trunc (temp3 / M3)
:= nseed2; seed3

M2 + seed3 /

*}
*}

}

= nseed3
M3 ;

Program 2
Pascal Function Code: RANDU (IBM)

Function RandomR(seed : longint) :double;
{* Real version with double precision.
{* RANDU(IBM) is a simple MLCGs. Period is
{* 1.61xl09.

Const
a = 65539;
m = 2147483647;

Var
temp : longint;

Begin
temp := a * seed;
If temp < 0 then

temp : = 1 + (temp + m) ;
seed := temp;
RandomR := seed*0.4656613E-9 ;

End;

*}
*}

* }

63

Program 3
Pascal Function Code: RNUN (IMSL)

Function RandomR(seed : longint) :double;
{* Real version with double precision. *>
{* RNUN(IMSL) is a simple MLCGs. Period is *}
{* 2.72xl09. *}

Const
a = 950706376.0;
m = 2147483647.0;

Var
I : integer;
temp, nseed : comp;

Begin
temp := a * seed;
nseed := temp - m * Trunc(temp / m);
seed := round(nseed);
RandomR := seed/m;

End;

Program 4
Pascal Function Code: RANUNI (SAS)

Function RandomR (seed : longint) -.double;
{* Real version with double precision. *}
{* RANUNI(SAS) is a simple MLCGs. Period is *}
{* 2.72x10s. *}

Const
a = 397204094.0;
m = 2147483647.0;

Var
I : integer;
temp, nseed : comp;

Begin
temp := a * seed;
nseed := temp - m * Trunc(temp / m);
seed := round(nseed);
RandomR := seed/m;

End;

64

Program 5
Pascal Function code: UNIFORM (SPSS)

function RandomR(seed : longint) :double;
{* Real version with double precision. *}
{* UNIFORM(SPSS) is a simple MLCGs. Period *}
{* is 2.72x10®. *}

const
a = 16807.0;
m = 2147483647.0;

var
I : integer;
temp, nseed : comp;

begin
temp := a * seed;
nseed := temp - m * Trunc(temp / m);
seed := round(nseed);
RandomR := seed/m;

end;

65

Program 6
Generating Random Numbers: RANDOM

PROGRAM SDBMDlOX;
{* BMDP - Real Version 1 - Double Precision * }
{* Generating 1,000,000 random numbers *}

{ $N+}
uses Crt;

const Al = 171; A2 = 172; A3 = 170;
Ml = 30269; M2 = 30307; M3 = 30323;

VAR seedl, seed2, seed3 : longint; { seed < 30,0000 }
nseedl, nseed2, nseed3 : longint;
tempi, temp2, temp3 : longint;
K, I : longint;
RandomB,xr : double;
outfile : text;

BEGIN
clrscr;
assign (Outfile,
rewrite (Outfile)
seedl
seed2
seed3

= 1
= 1
= 1

1RNUMbmd.out') ;

{ 1 < seed < 30,000 }
K := 1000000;
writeln(Outfile,'BMDP - Real Version - Double

Precision');
writeln(Outfile,'

Random number');
For I : = 1 to K do

BEGIN
tempi
temp2
temp 3
nseedl
nseed2

Sequence seedl seed2 seed3

nseed3

= Al * seedl;
= A2 * seed2;
= A3 * seed3;
= tempi - Ml * Trunc(tempi / Ml)
= temp2 - M2 * Trunc(temp2 / M2)
:= temp3 - M3 * Trunc(temp3 / M3)

xr := nseedl / Ml + nseed2 / M2 + nseed3 / M3;
RandomB := xr - trunc(xr);
writeln(Outfile,I:14, SEED1:7, SEED2:7, SEED3:7,'

RandomB);
seedl := nseedl; seed2 := nseed2; seed3 := nseed3;
END;

close(outfile)
END.
{ $N- }

66

Program 7
Generating Random Numbers: RANDU

PROGRAM SDIBMlOX;
{* RANDU(IBM) - Real Version - Long Integer *}
{* Generating 1,000,000 random numbers *}

{$N+}
uses Crt;

const
a = 65539;
mx = 2147483647;

var
seed, nseed, temp, I, K : longint;
RandomR : double;
outfile : text;

BEGIN
clrscr;
assign (Outfile, 'RNUMibm.out1);
rewrite (Outfile);
seed := 1;
K := 1000000;
writeln(Outfile,'IBM - Real Version - Long integer');
writeln(Outfile,'f(seed) = a*seed - m*Trunc(a*seed /

m) ') ;
writeln(Outfile,'MLCG; a = 65539, m = 2147483648');
writeln(outfile);
writeln(Outfile,' Seq Seed Random Number');
For I := 1 to K do
BEGIN

temp := a * Seed;
if temp < 0 then

temp : = 1 + (temp + mx) ;
nseed := temp;
RandomR := nseed*0.4656613E-9;

{ S / 2^31 = S * 0.4656613E-9 }
writeln(I:12,' ',seed:12,' ',RandomR);
writeln(Outfile,1:12,' ',seed:12,' ',RandomR);
seed := round(nseed);

END;
close(outfile);

END.
{ $N- }

67

Program 8
Generating Random Numbers: RNUN, RANUNI, UNIFORM

PROGRAM SDIMSloX;
{* RNUN(IMSL) - Real Version - Comp Precision *}
(* Generating 1,000,000 random numbers *}
{* Program for RANUNI(SAS) AND UNIFORM(SPSS) *}

{ $N+}
uses Crt;

const
a = 950706376.0;

{RANUNI:a=397204094, UNIFORM:a=l6807}
m = 2147483647.0;

var
seed, I, K : longint;
RandomR : double;
temp, nseed : comp;
outfile : text;

BEGIN
Clrscr;
assign (Outfile, 1RNUMims.out');
rewrite (Outfile);
seed := 1;
K := 1000000;
writeln(outfile);
writeln(Outfile,' Seq Seed Random

Number');
For I := 1 to K do

BEGIN
temp := a * seed;
nseed := temp - m * Trunc(temp / m);
Randomr := nseed/m;
writeln(outfile,1:12,1 seed:12,' ',RandomR);
seed := round(nseed);
END;

close(outfile);
END.
{ $N- }

68

Program 9
Generating Normal Random Numbers: RANDOM

PROGRAM NRBMD6;
{* RANDOM(BMDP) - Real Version - Comp Precision
{* A fast normal random number generator - Leva 1992
{* Generating random numbers with a normal distribution
{* - Compute Area under curve in intervals, Means,
{* Standard deviation, Lowest and Highest Number
{* Generating Numbers N=100, 1000, 10000, 100000,
{* and 1000000

*}
*}
*}
*}
*}
*}
*}

{ $N+ }
uses Crt;

Const S = 0.449871; T = -0.386595;
A = 0.19600; B = 0.25472;
Rl = 0.27597; R2 =0.27846;

Var U, V, VY, X, Y, Q, V2, U2, RANDN, PS1, PS2, PS3,
MEAN, STDEV, LOW, HIGH : double;
seedl, seed2, seed3, CI, K, SI, S2, S3, NI : longing-

function RandomR : double;
{* Real Version *}

const
Al = 171; A2 = 172; A3 = 170;
Ml = 30269; M2 = 30307; M3 = 30323;

var
nseedl, nseed2, nseed3 : longint;
tempi, temp2, temp3 : longint;
xr : double;

begin
tempi := Al * seedl;
temp2 := A2 * seed2;
temp3 := A3 * seed3;
nseedl := tempi - Ml * Trunc(tempi / Ml);
nseed2 := temp2 - M2 * Trunc(temp2 / M2);
nseed3 := temp3 - M3 * Trunc(temp3 / M3);
seedl := nseedl; seed2 := nseed2; seed3 := nseed3;
xr := seedl / Ml + seed2 / M2 + seed3 / M3;
RandomR := xr - trunc(xr);

end;

BEGIN
NI := 10;
clrscr;
writeln('RANDOM(BMDP) - Normal Random Numbers');
writeln('MLCG; al=171, a2=172, a3=170, ml=30269,

m2=30307m, m3=30323');
writeln('seed = 101');

69

END.
{ $N- }

For CI := 1 to 5 do
BEGIN
seedl := 101; seed2 := 101; seed3 := 101*
LOW := 100.0;
HIGH := -100.0;
K := 0;
NI := NI*10;
SI : — 0; S2 : = 0; S3 : = 0;
REPEAT

BEGIN
U := RandpmR;
VY := RandomR;
V := 1.7156 * (VY - 0.5);

X := U - S;
Y := ABS(V) - T;
Q := X*X + Y*(A*Y - B*X);

{* Evaluate the quadratic form *}

V2 : = V*V;
U2 := (-4*U*U)*LN(U);
IF (Q < Rl) OR ((Q <= R2) AND (V2 <= U2)) THEN

rihhm A c^® p t p i f inside inner ellipse *}
RANDN := Round(10000*V/U)/10000;
MEAN := MEAN + RANDN;
STDEV := STDEV + RANDN * RANDN;
If RANDN < LOW then LOW := RANDN;
If RANDN > HIGH then HIGH := RANDN;
If (RANDN >= -1) and (RANDN <= 1) then

51 := SI + 1;
If (RANDN >= -2) and (RANDN <= 2) then

52 : = S2 + 1 ;
If (RANDN >= -3) and (RANDN <= 3) then

53 := S3 + 1;
K := K + 1;
END;

END;
UNTIL (K = NI);
PS1 := Sl/K; PS2 := S2/K; PS3 := S3/K-
MEAN := MEAN/K; '
STDEV := SQRT((STDEV - (MEAN*MEAN/K))/(K-l))•
Writeln('K=',K:8); / > / t ,
Writeln('PS1=',PS1:10:5,', PS2=' PS2•10•5 '

PS3= ' , PS3 :10 : 5) ; ,
Write(1MEAN=',MEAN:10:5,1, STDEV=',STDEV:10:5)•

Writeln- L 0 W ='' L 0 W : 1 0 : 5''' HIGH=',HIGH:10:5);

END;

70

Program 10
Generating Normal Random Numbers: RNUN, RANUNI, UNIFORM

PROGRAM NRIMS6;
{* RNUN(IMSL) RANUNI(SAS) UNIFORM(SPSS) *}
{* Real Version with Comp Precision *}
{* A fast normal random number generator - Leva 1992 *>
{* Generating random numbers with a normal distribution *}
{* - Compute Area under curve in intervals, Means, *}
{* Standard deviation, Lowest and Highest Number *}
{* Generating Numbers N=100, 1000, 10000, 100000, *}
{* and 1000000 *}

{ $N+}
uses Crt;

Const
S = 0.449871; T = -0.386595;
A = 0.19600; B = 0.25472;
Rl = 0.27597; R2 =0.27846;

Var U, V, VY, X, Y, Q, V2, U2, RANDN,
MEAN, STDEV, LOW, HIGH, PS1, PS2, PS3 : double;
seed : comp;

CI, NI, K, SI, S2, S3 : longint;

Function RandomR : double;

const
a = 950706376.0; {RANUNI:a=397204094, UNIFORM:a=16807>
m = 2147483647.0;

var
temp : comp ;

begin
temp := a * seed;
seed := temp - m * Trunc(temp / m);
RandomR := seed/m;

end;

BEGIN
NI := 10;
Clrscr;
writeln{'Normal Random Numbers - Leva 1992');
writeln;
FOR CI := 1 TO 5 DO
BEGIN
seed := 1.0;
LOW := 100.0;
HIGH := -100.0;
K := 0;
NI := NI * 10;

71

END.
{ $N- }

{ N =100, 1000, 10000, 100000, 1000000 }
si := 0; S2 := 0; S3 := 0;
REPEAT

BEGIN
U := RandomR;
VY := RandomR;
V := 1.7156 * (VY - 0.5) ;
X := U - S;
Y := ABS(V) - T;
Q := X*X + Y*(A*Y - B*X);

{* Evaluate the quadratic form *}

V2 : = V*V;
U2 := (-4*U*U)*LN(U);
I f (BKrTMR1!*°r

a
((Q T R 2l a n d (v 2 <= u2>) then

S := V/3T l n S l d e i M l e r e l l i p s e *>
MEAN := MEAN + RANDN;
STDEV := STDEV + RANDN * RANDN;
If RANDN < LOW then LOW := RANDN*
If RANDN > HIGH then HIGH := RANDN*
If (RANDN >= -1) and (RANDN <= 1) then

51 := SI + 1;
If (RANDN >= -2) and (RANDN <= 2) then

52 := S2 + 1;
If (RANDN >= -3) and (RANDN <= 3) then

53 := S3 + 1;
K := K + 1;
END;

END;
UNTIL(K = NI);

S 1 / K ; P S 2 := S 2 / K ; P S 3 := S3/K;
MEAN := MEAN/K;
STDEV := SQRT((STDEV - (MEAN*MEAN/K))/(K-l))•
Writeln (' K= 1 , K: 8) ; " M

Writeln(•PSl=g,psi,10:5,-. PS2 =',PS2:10:5,',

'MEAN: 10: 5, ' , STDEV= ' , STDEV: 10 -5) •
Writ e £ ; ' h0W"^'^:S,', HIGH=',HIGH: 10 i 5)

END;

72

Program 11
Computing Serial Correlation: RANDOM

(Seed=101, #=100,000, h= 1 to 40)

PROGRAM CORRBMDl;
{* Serial Correlation - RANDOM(BMDP)- Knuth 1981 *}

{ $N+ }
uses Crt;

const
Al = 171; A2 = 172; A3 = 170;
Ml = 30269; M2 = 30307; M3 = 30323;

var
seed, seedl, seed2, seed3, nseedl, nseed2, nseed3,
seedln, seed2n, seed3n, tempi, temp2, temp3,
I, J, H, N, D : longint;
SUMl, SUMll, SUM12 : comp;
xr, RandomR, CORR : double;
RN : array [1..3] of longint;
outfile : text;

BEGIN
Clrscr;
assign (outfile, 'CORRBMD2.out');
rewrite(outfile);
N := 100000; { Total number of cases }
D := 10000; { Integer range }
writeln(1 Serial Correlation - RANDOM(BMDP) -

seed=1011);
writeln(outfile,'Serial Correlation - RANDOM(BMDP)');
WRITELN(OUTFILE,'N = ',N,', D = ',D);
WRITELN("N = ' ,N, 1 , D = ' ,D);
For H := 2 to 41 do { Disjoint distance = H-l }
BEGIN
seedl := 101; seed2 := 101; seed3 := 101;
SUMl := 0;
SUMll := 0;
SUMl2 := 0;

For I := 1 to N do
BEGIN

For J := 1 to H do
BEGIN
tempi := Al * seedl;
temp2 := A2 * seed2;
temp3 := A3 * seed3;
nseedl := tempi - Ml * Trunc(tempi / Ml)
nseed2 := temp2 - M2 * Trunc(temp2 / M2)
nseed3 := temp3 - M3 * Trunc(temp3 / M3)

73

xr := nseedl / Ml + nseed2 / M2 + nseed3 / M3;
RandomR := xr - trunc(xr);
seedl := nseedl; seed2 := nseed2;
seed3 := nseed3;

IF J = 1 THEN
BEGIN
RN[1] := Round(RandomR * D);
seedln := nseedl; seed2n := nseed2;

seed3n := nseed3;
END;

END;
RN[2] := Round(RandomR * D);
seedl := seedln; seed2 := seed2n; seed3 := seed3n;
SUMl := SUMl + RN[1];
SUM12 := SUM12 + RN[1]*RN[2];
SUMll := SUMll + RN[1]*RN[1];

END;
Corr := (N*SUM12 - SUMl*SUM1)/(N*SUMll - SUM1*SUM1);
Writeln('H= 1

#H-1:4,', Corr = ',corr:8:5);
Writeln(outfile,'H= •,H-1:4,', Corr = •,corr:8:5);

END;
close(outfile);

END.

{ $N- }

74

Program 12
Computing Serial Correlation: RNUN, RANUNI, UNIFORM

(Seed=101, JV-100,000, h= 1 to 40)

PROGRAM CORRSPS1;
{* Serial Correlation - Knuth 1981 }
{* RNUN(IMSL), RANUNI(SAS) and UNIFORM(SPSS) * }

{ $N+ }
uses Crt;

const
a = 16807.0; {RNUN:a=950906376f RANUNI:a=397204094 }
m = 2147483647.0;

var
seed, seedl, seed2, I, J, H, N, D : longint;
temp, nseed, SUMl, SUMll, SUMl 2 : comp;
RandomR, Corr : double;
RN : array [1..3] of longint;
outfile : text;

BEGIN
Clrscr;
assign (outfile, 'CORRSPS2.out1);
rewrite(outfile) ;
N := 100000; { Total number of cases }
D := 10000; { Integer range }
writeln('Serial Correlation - seed=101');
writeln(outfile,1 Serial Correlation - seed=101');
WRITELN(OUTFILE,'N = ',N,', D = ' ,D);
WRITELN('N = ',N,', D = ',D);
For H := 2 to 41 do { Disjoint distance = H-l }
BEGIN
seedl := 101;
SUMl := 0;
SUMll := 0;
SUMl2 := 0;

For I := 1 to N do
BEGIN

For J := 1 to H do
BEGIN

seed := seedl;
temp := a * seedl;
Nseed := temp - m * Trunc(temp / m);
RandomR := nseed/m;
seedl := Round(nseed);
IF J = 1 THEN
BEGIN
RN[1] := Round(RandomR * D);

75

seed2 := round(nseed);
END;

END;
RN[2] := Round(RandomR * D);
seedl := seed2;
SUMl := SUM1 + RN[1];
SUM12 := SUMl 2 + RN[1]*RN[2];
SUMll := SUMll + RN[1]*RN[1];

END;
Corr := (N*SUM12 - SUMl*SUMl)/(N*SUMll - SUMl*SUMl);
Writeln('H= ',H-1:4,', Corr = ',corr:8:5);
Writeln(outfile,'H= ',H-l,', Corr = ',corr:10:5);

END;
close(outfile);

END.

{ $N- }

76

Program 13
Computing Chi-square Values

PROGRAM CHISQR;

{ Chi-square value (N > 30) - Selby, 1975 }
{ chi-square = D * (1 - A + Z * A ** 0.5) ** 3, }
{ where D = degree of freedom, Z = 1.645 }
{ A = 2 / (9 * D)

{ $N+ }
uses Crt;

VAR I, N, D : longint;
A, Z, CHI_SQR : double;
outfile : text;

BEGIN
clrscr;
assign (outfile, 'chisqr2.out');
rewrite(outfile);
N := 0;
Z := 1.645;
Writeln(outfile,'Chi-Square Value (95% level),

Z = ' , Z : 6 : 3) ;
Writeln(outfile);
Writeln(' N Chi-square');
Writeln(outfile,1 N Chi-square');
For I := 1 to 40 do

BEGIN
N
D
A

= N + 1000;
= N - 1;
= 2/(9*D);

CHI_SQR := D*(1-A+Z*SQRT(A))*(1-A+Z*SQRT(A))
*(1-A+Z*SQRT(A));

Writeln(N:10,CHI_SQR:15:4);
Writeln(outfile,N:10,CHI_SQR:15:4);
END;

close(outfile);
END.
{ $N- }

APPENDIX B

TABLES

77

TABLE B-l
RANDOM(BMDP): SEEDS APART 1,000,000

(a!=171, a2=\ll, a3=170, mx=30269, m2=30307, w3=30323)

78

Sequence seedl seed2 seed3 Random number

1 0 0 0 0 0 0 1 7 3 4 0 1 2 9 1 6 2 9 9 6 . 0 0 5 0 2 8 5 4 1 6 7 4 7 7 E - 0 0 0 1
2 0 0 0 0 0 0 2 9 0 8 9 2 5 5 2 6 1 9 0 8 1 1 . 7 4 2 8 6 4 9 4 1 5 6 9 7 9 E -•0001
3 0 0 0 0 0 0 1 9 3 1 7 2 3 5 9 8 2 0 7 8 6 5 . 8 5 7 5 1 0 1 0 7 5 6 6 0 2 E - 0 0 0 1
4 0 0 0 0 0 0 4 4 4 6 2 4 0 2 4 7 7 8 3 9 . 3 2 2 2 8 0 0 0 7 1 6 6 8 8 E - 0 0 0 2
5 0 0 0 0 0 0 1 5 4 0 8 3 0 0 2 9 2 3 6 6 3 1 . 2 9 3 8 0 0 6 2 1 1 7 6 6 1 E - •0001
6 0 0 0 0 0 0 2 9 0 1 1 4 9 0 3 2 9 5 3 9 3 . 2 3 5 6 4 3 3 3 1 4 7 9 1 4 E - •0001
7 0 0 0 0 0 0 2 3 8 2 6 2 5 9 5 2 2 1 8 1 6 . 8 2 0 2 7 0 2 6 1 5 6 0 9 5 E - •0001
8 0 0 0 0 0 0 3 4 0 6 2 8 2 5 6 1 3 6 8 4 3 . 1 8 3 9 8 9 3 0 3 9 8 4 0 9 E - •0001
9 0 0 0 0 0 0 1 4 9 9 0 2 4 9 4 4 1 1 8 4 6 6 . 5 9 5 6 3 2 2 7 7 0 8 2 6 7 E - 0 0 0 1

1 0 0 0 0 0 0 0 2 5 2 3 4 1 8 3 8 2 1 2 6 7 9 . 8 1 3 0 6 6 2 7 1 0 4 1 6 5 E - •0001
1 1 0 0 0 0 0 0 8 1 6 3 1 3 1 0 4 2 9 9 4 4 3 . 5 9 3 6 8 7 7 0 0 9 2 5 6 0 E - 0 0 0 1
1 2 0 0 0 0 0 0 1 3 5 8 4 2 4 6 4 5 2 8 7 8 5 9 . 8 4 8 9 1 4 8 5 5 5 3 3 4 5 E - 0 0 0 1
1 3 0 0 0 0 0 0 1 8 0 3 3 2 7 4 7 1 2 6 8 8 2 4 . 8 8 2 9 9 6 1 6 3 3 5 4 1 1 E - 0 0 0 1
1 4 0 0 0 0 0 0 2 9 7 7 5 9 6 8 1 3 6 3 8 5 . 4 7 1 2 1 7 4 3 5 9 3 8 0 4 E - 0 0 0 1
1 5 0 0 0 0 0 0 2 8 5 5 7 9 9 0 2 2 3 0 8 4 9 . 4 0 6 6 7 8 6 5 0 0 3 8 4 4 E - 0 0 0 1
1 6 0 0 0 0 0 0 3 5 0 3 1 6 3 6 1 3 0 2 7 6 . 1 2 8 1 1 6 3 4 9 4 7 1 8 9 E - 0 0 0 1
1 7 0 0 0 0 0 0 1 7 5 3 2 1 7 6 1 2 5 3 2 5 1 . 8 1 1 4 9 0 8 7 1 3 4 4 4 7 E - 0 0 0 2
1 8 0 0 0 0 0 0 6 3 4 8 1 2 6 5 8 1 1 6 0 2 . 0 2 7 4 8 6 8 4 4 4 6 3 6 5 E - 0 0 0 1
1 9 0 0 0 0 0 0 2 1 8 7 7 2 4 2 2 1 1 4 2 8 4 . 0 5 0 3 3 3 2 5 2 9 5 1 6 3 E - 0 0 0 1
2 0 0 0 0 0 0 0 2 4 1 0 2 1 2 2 2 9 2 2 4 5 3 4 . 4 1 5 8 2 6 2 9 8 3 8 9 5 2 E - 0 0 0 1
2 1 0 0 0 0 0 0 2 9 3 6 2 2 7 3 2 2 2 7 0 2 9 4 . 6 8 2 3 3 8 8 7 3 6 9 0 5 1 E -•0001
2 2 0 0 0 0 0 0 1 8 6 7 0 1 9 1 7 7 8 9 5 5 5 . 1 2 1 1 6 4 1 8 7 0 2 8 7 9 E -•0001
2 3 0 0 0 0 0 0 8 0 8 6 6 1 6 9 2 8 0 9 9 2 . 2 2 8 3 1 6 0 5 5 9 4 5 5 8 E - •0001
2 4 0 0 0 0 0 0 1 6 8 7 1 2 3 0 0 2 1 2 1 7 7 1 . 2 0 3 1 8 5 9 2 2 1 3 5 3 2 E -•0001
2 5 0 0 0 0 0 0 2 7 0 9 6 1 3 9 4 4 5 0 5 . 0 8 7 7 5 8 7 9 2 2 2 4 0 0 E -•0001
2 6 0 0 0 0 0 0 2 9 7 4 1 5 0 9 7 1 0 7 0 7 5 . 0 7 2 1 0 0 9 3 0 4 5 0 8 6 E - 0 0 0 1
2 7 0 0 0 0 0 0 2 8 3 2 1 1 1 6 0 7 9 2 6 1 . 3 9 5 2 0 1 4 8 0 3 8 2 2 8 E - •0002
2 8 0 0 0 0 0 0 1 9 4 7 4 1 1 2 7 2 1 2 0 3 2 . 8 1 8 3 7 6 8 1 0 8 5 2 7 0 E - •0001
2 9 0 0 0 0 0 0 2 4 4 7 5 7 7 0 5 7 3 9 5 4 . 5 4 1 8 0 0 4 1 7 5 9 1 8 3 E - 0 0 0 1
3 0 0 0 0 0 0 0 2 7 5 9 1 1 9 8 9 6 2 7 3 6 9 2 . 2 4 9 3 4 0 5 9 9 8 5 8 4 4 E - 0 0 0 1
3 1 0 0 0 0 0 0 3 4 6 4 4 2 8 1 2 8 9 4 8 . 9 7 4 9 5 6 6 4 4 3 6 0 4 1 E - 0 0 0 2
3 2 0 0 0 0 0 0 4 6 5 2 2 5 5 5 7 1 7 4 3 9 . 5 0 7 1 0 9 9 9 5 8 8 4 4 9 E - 0 0 0 2
3 3 0 0 0 0 0 0 5 8 2 8 2 7 5 2 1 1 5 3 9 4 • 4 . 1 6 5 7 9 3 6 8 1 5 4 4 1 0 E - 0 0 0 1
3 4 0 0 0 0 0 0 2 1 6 6 8 1 9 9 1 9 1 6 1 4 5 9 . 6 9 2 2 6 8 7 2 1 2 3 7 0 6 E - 0 0 0 1
3 5 0 0 0 0 0 0 7 0 7 9 1 9 9 0 1 1 3 1 9 2 8 . 9 3 3 6 9 5 4 4 6 3 6 8 0 4 E - 0 0 0 1
3 6 0 0 0 0 0 0 6 3 9 6 2 3 4 8 9 2 5 6 1 1 2 . 2 3 9 5 2 3 5 1 7 6 7 9 2 9 E - 0 0 0 2
3 7 0 0 0 0 0 0 2 3 7 5 9 5 3 4 2 2 6 5 6 3 4 . 6 0 2 8 1 1 4 1 7 8 2 6 0 5 E - 0 0 0 1
3 8 0 0 0 0 0 0 2 4 7 4 2 1 6 1 1 1 2 7 7 8 6 9 . 8 6 9 3 5 7 5 6 8 4 8 7 9 1 E - 0 0 0 1
3 9 0 0 0 0 0 0 4 0 0 7 1 1 1 8 5 2 5 0 6 1 . 6 4 0 6 8 1 2 3 6 3 1 8 1 8 E - 0 0 0 1
4 0 0 0 0 0 0 0 7 0 2 4 2 3 2 7 7 5 4 4 9 3 . 3 2 6 9 8 6 3 8 2 2 9 9 7 3 E - 0 0 0 1

TABLE B-2
RNUN(IMSL): SEEDS APART 1,000,000

(a=950706376, w=2147483647)

79

Sequence Seed Random Number

1 0 0 0 0 0 0 7 7 5 6 8 4 1 5 2 1 . 2 4 1 7 6 4 0 0 7 7 1 4 4 7 E - •0001
2 0 0 0 0 0 0 2 8 0 9 1 6 1 7 8 1 . 8 7 4 7 5 2 1 8 5 2 4 9 1 2 E -•0001
3 0 0 0 0 0 0 1 9 3 8 1 2 7 7 4 7 7 . 2 8 5 8 6 8 2 0 2 9 3 4 9 1 E -•0001
4 0 0 0 0 0 0 1 8 4 1 9 6 7 7 6 1 6 . 0 3 9 7 2 1 4 4 7 0 6 1 6 2 E -• 0 0 0 1
5 0 0 0 0 0 0 1 9 2 8 4 8 4 0 6 8 7 . 8 2 0 7 6 4 9 7 9 2 6 4 1 2 E -•0002
6 0 0 0 0 0 0 1 0 9 3 7 5 1 8 5 0 9 . 2 3 6 4 7 8 0 4 6 1 5 8 5 5 E - • 0 0 0 1
7 0 0 0 0 0 0 1 5 0 5 6 2 8 0 4 1 . 4 7 4 5 7 2 6 9 5 5 4 7 0 5 E -• 0 0 0 1
8 0 0 0 0 0 0 1 9 4 9 4 1 6 5 1 7 . 3 4 3 1 7 9 1 6 7 8 7 3 7 8 E - • 0 0 0 1
9 0 0 0 0 0 0 1 2 4 9 0 2 6 9 4 6 7 . 0 9 1 7 7 0 7 5 7 4 9 8 1 1 E - • 0 0 0 1

1 0 0 0 0 0 0 0 1 3 3 3 2 2 6 8 5 0 3 . 3 1 7 8 9 0 1 8 7 4 0 7 7 9 E -• 0 0 0 1
1 1 0 0 0 0 0 0 1 3 8 4 8 1 2 2 8 3 5 . 8 4 8 5 3 4 4 8 2 4 6 0 7 2 E -•0001
1 2 0 0 0 0 0 0 1 0 0 9 9 6 3 3 5 6 . 6 4 2 1 1 0 9 4 2 2 3 0 6 1 E -• 0 0 0 1
1 3 0 0 0 0 0 0 7 9 7 5 9 1 0 8 3 3 . 7 8 8 5 1 2 6 2 0 9 7 6 4 3 E -•0001
1 4 0 0 0 0 0 0 2 0 9 2 3 7 9 6 8 7 9 . 5 1 0 2 7 2 1 7 2 9 8 2 9 3 E -•0001
1 5 0 0 0 0 0 0 1 2 4 3 2 7 7 5 6 4 2 . 3 9 5 6 8 2 9 9 2 5 9 7 8 9 E - • 0 0 0 1
1 6 0 0 0 0 0 0 1 2 3 2 9 1 3 0 9 3 . 4 9 3 6 7 4 2 2 6 8 0 0 7 6 E - •0001
1 7 0 0 0 0 0 0 2 1 4 3 2 3 2 2 2 0 1 . 3 6 6 6 9 0 4 8 6 3 7 4 6 3 E - •0001
1 8 0 0 0 0 0 0 2 0 8 3 0 0 4 3 9 4 • 9 2 5 0 6 2 0 3 4 7 0 9 8 7 E - •0001
1 9 0 0 0 0 0 0 1 7 0 5 3 8 6 1 0 4 3 . 3 4 6 9 5 0 5 8 0 9 9 3 1 8 E -•0001
2 0 0 0 0 0 0 0 6 8 7 9 6 8 0 8 4 7 . 7 2 2 0 8 5 9 4 1 4 5 3 5 0 E - •0001
2 1 0 0 0 0 0 0 1 1 0 9 7 0 8 5 6 0 1 . 1 1 5 3 3 9 3 8 9 5 9 0 2 4 E - 0 0 0 2
2 2 0 0 0 0 0 0 1 9 0 2 8 1 0 1 4 2 7 . 4 7 8 2 5 8 8 4 1 4 2 8 0 9 E - •0001
2 3 0 0 0 0 0 0 1 6 8 5 7 0 0 4 2 2 3 . 2 7 4 9 0 9 2 2 2 1 6 0 8 9 E - •0003
2 4 0 0 0 0 0 0 3 9 2 7 0 7 8 6 3 5 . 2 9 8 1 5 0 4 1 2 4 1 1 5 0 E -•0001
2 5 0 0 0 0 0 0 2 1 0 8 7 9 9 7 1 4 3 . 4 1 4 9 5 0 6 0 5 2 0 9 4 3 E - •0001
2 6 0 0 0 0 0 0 9 2 8 5 2 0 8 3 4 5 . 8 9 9 7 5 5 4 8 7 1 7 1 8 2 E -•0001
2 7 0 0 0 0 0 0 4 4 5 4 3 5 2 3 5 7 . 5 4 8 9 9 5 2 0 3 1 2 8 5 5 E - •0001
2 8 0 0 0 0 0 0 5 5 6 3 7 7 6 8 2 8 . 5 4 3 6 8 7 8 4 3 9 7 0 8 1 E - •0001
2 9 0 0 0 0 0 0 4 3 6 3 8 0 1 4 2 . 1 1 3 7 1 6 5 0 5 5 2 0 8 5 E -•0001
3 0 0 0 0 0 0 0 1 1 0 6 6 7 1 3 4 3 5 . 4 9 7 2 6 1 0 3 2 2 2 8 0 1 E - 0 0 0 1
3 1 0 0 0 0 0 0 4 5 2 3 5 2 7 6 2 3 • 2 5 6 3 3 1 0 3 6 4 5 2 3 6 E - 0 0 0 1
3 2 0 0 0 0 0 0 1 8 5 5 8 1 8 5 4 1 4 . 6 6 8 1 2 3 3 3 3 0 9 4 7 0 E - 0 0 0 1
3 3 0 0 0 0 0 0 1 9 4 6 2 5 9 0 8 8 4 . 5 6 0 4 6 4 1 4 7 7 3 9 3 3 E - 0 0 0 1
3 4 0 0 0 0 0 0 1 1 0 9 3 0 0 6 6 4 5 . 1 8 7 7 3 2 4 9 1 2 6 4 0 0 E - 0 0 0 1
3 5 0 0 0 0 0 0 1 7 8 0 0 4 0 4 9 9 8 . 2 4 0 7 2 6 3 6 1 1 6 3 3 0 E - 0 0 0 2
3 6 0 0 0 0 0 0 8 4 4 4 5 4 9 7 6 4 . 5 9 9 9 7 9 7 5 4 8 1 6 7 3 E - 0 0 0 1
3 7 0 0 0 0 0 0 1 1 4 5 0 7 7 8 2 7 5 . 2 8 1 9 6 4 7 8 0 4 2 8 4 3 E - 0 0 0 1
3 8 0 0 0 0 0 0 3 4 3 7 0 3 3 0 9 2 . 8 8 9 9 0 4 3 6 7 2 2 0 5 4 E - 0 0 0 1
3 9 0 0 0 0 0 0 1 8 1 4 3 1 5 2 7 7 1 . 0 1 3 6 8 3 5 5 6 1 1 9 7 6 E - 0 0 0 1
4 0 0 0 0 0 0 0 2 0 6 6 9 7 5 2 5 0 9 . 9 8 6 2 4 2 3 2 5 9 7 0 0 8 E - 0 0 0 1

TABLE B-3
RANUNI(SAS): SEEDS APART 1,000,000

(a=397204094, m=2147483647)

80

Sequence Seed Random Number

1 0 0 0 0 0 0 7 7 5 6 8 4 1 5 2 1 . 2 4 1 7 6 4 0 0 7 7 1 4 4 7 E - • 0 0 0 1
2 0 0 0 0 0 0 2 8 0 9 1 6 1 7 8 1 • 8 7 4 7 5 2 1 8 5 2 4 9 1 2 E - • 0 0 0 1
3 0 0 0 0 0 0 1 9 3 8 1 2 7 7 4 7 7 . 2 8 5 8 6 8 2 0 2 9 3 4 9 1 E - • 0 0 0 1
4 0 0 0 0 0 0 1 8 4 1 9 6 7 7 6 1 6 • 0 3 9 7 2 1 4 4 7 0 6 1 6 2 E - • 0 0 0 1
5 0 0 0 0 0 0 1 9 2 8 4 8 4 0 6 8 7 . 8 2 0 7 6 4 9 7 9 2 6 4 1 2 E - •0002
6 0 0 0 0 0 0 1 0 9 3 7 5 1 8 5 0 9 . 2 3 6 4 7 8 0 4 6 1 5 8 5 5 E - • 0 0 0 1
7 0 0 0 0 0 0 1 5 0 5 6 2 8 0 4 1 . 4 7 4 5 7 2 6 9 5 5 4 7 0 5 E - • 0 0 0 1
8 0 0 0 0 0 0 1 9 4 9 4 1 6 5 1 7 . 3 4 3 1 7 9 1 6 7 8 7 3 7 8 E - • 0 0 0 1
9 0 0 0 0 0 0 1 2 4 9 0 2 6 9 4 6 7 . 0 9 1 7 7 0 7 5 7 4 9 8 1 1 E -• 0 0 0 1

1 0 0 0 0 0 0 0 1 3 3 3 2 2 6 8 5 0 3 . 3 1 7 8 9 0 1 8 7 4 0 7 7 9 E - • 0 0 0 1
1 1 0 0 0 0 0 0 1 3 8 4 8 1 2 2 8 3 5 . 8 4 8 5 3 4 4 8 2 4 6 0 7 2 E - • 0 0 0 1
1 2 0 0 0 0 0 0 1 0 0 9 9 6 3 3 5 6 . 6 4 2 1 1 0 9 4 2 2 3 0 6 1 E - • 0 0 0 1
1 3 0 0 0 0 0 0 7 9 7 5 9 1 0 8 3 3 . 7 8 8 5 1 2 6 2 0 9 7 6 4 3 E - • 0 0 0 1
1 4 0 0 0 0 0 0 2 0 9 2 3 7 9 6 8 7 9 . 5 1 0 2 7 2 1 7 2 9 8 2 9 3 E - • 0 0 0 1
1 5 0 0 0 0 0 0 1 2 4 3 2 7 7 5 6 4 2 . 3 9 5 6 8 2 9 9 2 5 9 7 8 9 E - •0001
1 6 0 0 0 0 0 0 1 2 3 2 9 1 3 0 9 3 . 4 9 3 6 7 4 2 2 6 8 0 0 7 6 E - •0001
1 7 0 0 0 0 0 0 2 1 4 3 2 3 2 2 2 0 1 . 3 6 6 6 9 0 4 8 6 3 7 4 6 3 E - •0001
1 8 0 0 0 0 0 0 2 0 8 3 0 0 4 3 9 4 . 9 2 5 0 6 2 0 3 4 7 0 9 8 7 E - •0001
1 9 0 0 0 0 0 0 1 7 0 5 3 8 6 1 0 4 3 . 3 4 6 9 5 0 5 8 0 9 9 3 1 8 E -•0001
2 0 0 0 0 0 0 0 6 8 7 9 6 8 0 8 4 7 . 7 2 2 0 8 5 9 4 1 4 5 3 5 0 E -•0001
2 1 0 0 0 0 0 0 1 1 0 9 7 0 8 5 6 0 1 . 1 1 5 3 3 9 3 8 9 5 9 0 2 4 E - 0 0 0 2
2 2 0 0 0 0 0 0 1 9 0 2 8 1 0 1 4 2 7 . 4 7 8 2 5 8 8 4 1 4 2 8 0 9 E - •0001
2 3 0 0 0 0 0 0 1 6 8 5 7 0 0 4 2 2 3 . 2 7 4 9 0 9 2 2 2 1 6 0 8 9 E -•0003
2 4 0 0 0 0 0 0 3 9 2 7 0 7 8 6 3 5 . 2 9 8 1 5 0 4 1 2 4 1 1 5 0 E - 0 0 0 1
2 5 0 0 0 0 0 0 2 1 0 8 7 9 9 7 1 4 3 . 4 1 4 9 5 0 6 0 5 2 0 9 4 3 E - •0001
2 6 0 0 0 0 0 0 9 2 8 5 2 0 8 3 4 5 • 8 9 9 7 5 5 4 8 7 1 7 1 8 2 E - •0001
2 7 0 0 0 0 0 0 4 4 5 4 3 5 2 3 5 7 . 5 4 8 9 9 5 2 0 3 1 2 8 5 5 E - •0001
2 8 0 0 0 0 0 0 5 5 6 3 7 7 6 8 2 8 . 5 4 3 6 8 7 8 4 3 9 7 0 8 1 E - •0001
2 9 0 0 0 0 0 0 4 3 6 3 8 0 1 4 2 . 1 1 3 7 1 6 5 0 5 5 2 0 8 5 E - 0 0 0 1
3 0 0 0 0 0 0 0 1 1 0 6 6 7 1 3 4 3 5 . 4 9 7 2 6 1 0 3 2 2 2 8 0 1 E - 0 0 0 1
3 1 0 0 0 0 0 0 4 5 2 3 5 2 7 6 2 3 . 2 5 6 3 3 1 0 3 6 4 5 2 3 6 E - 0 0 0 1
3 2 0 0 0 0 0 0 1 8 5 5 8 1 8 5 4 1 4 . 6 6 8 1 2 3 3 3 3 0 9 4 7 0 E - 0 0 0 1
3 3 0 0 0 0 0 0 1 9 4 6 2 5 9 0 8 8 4 . 5 6 0 4 6 4 1 4 7 7 3 9 3 3 E - 0 0 0 1
3 4 0 0 0 0 0 0 1 1 0 9 3 0 0 6 6 4 5 . 1 8 7 7 3 2 4 9 1 2 6 4 0 0 E - 0 0 0 1
3 5 0 0 0 0 0 0 1 7 8 0 0 4 0 4 9 9 8 . 2 4 0 7 2 6 3 6 1 1 6 3 3 0 E - 0 0 0 2
3 6 0 0 0 0 0 0 8 4 4 4 5 4 9 7 6 4 . 5 9 9 9 7 9 7 5 4 8 1 6 7 3 E - 0 0 0 1
3 7 0 0 0 0 0 0 1 1 4 5 0 7 7 8 2 7 5 . 2 8 1 9 6 4 7 8 0 4 2 8 4 3 E - 0 0 0 1
3 8 0 0 0 0 0 0 3 4 3 7 0 3 3 0 9 2 . 8 8 9 9 0 4 3 6 7 2 2 0 5 4 E - 0 0 0 1
3 9 0 0 0 0 0 0 1 8 1 4 3 1 5 2 7 7 1 . 0 1 3 6 8 3 5 5 6 1 1 9 7 6 E - 0 0 0 1
4 0 0 0 0 0 0 0 2 0 6 6 9 7 5 2 5 0 9 . 9 8 6 2 4 2 3 2 5 9 7 0 0 8 E - 0 0 0 1

TABLE B-4
UNIFORM(SPSS): SEEDS APART 1,000,000

(<2=16807, m=2147483647)

81

Sequence Seed Random Number

1 0 0 0 0 0 0 1 5 3 1 8 1 7 7 6 9 5 . 7 1 4 9 8 3 4 3 5 2 1 4 9 6 E - •0001
2 0 0 0 0 0 0 1 2 0 3 2 1 9 7 4 4 8 . 4 2 0 1 6 7 7 5 5 5 3 1 2 2 E - •0001
3 0 0 0 0 0 0 1 2 6 3 4 8 8 9 3 8 5 . 3 0 9 8 3 9 8 7 5 1 1 5 9 4 E - •0001
4 0 0 0 0 0 0 2 6 7 8 6 3 2 4 1 3 . 9 6 6 3 5 0 9 2 5 1 3 9 3 1 E - •0001
5 0 0 0 0 0 0 1 1 2 0 5 5 5 1 2 1 8 . 7 8 1 5 2 4 8 6 3 4 5 8 0 2 E - •0001
6 0 0 0 0 0 0 1 0 2 2 2 6 4 4 2 2 6 . 1 8 8 4 7 3 4 5 2 9 0 1 6 9 E -•0001
7 0 0 0 0 0 0 1 7 4 7 9 6 3 7 5 3 2 . 0 9 7 8 3 0 6 9 4 2 1 4 3 6 E - •0001
8 0 0 0 0 0 0 8 0 5 5 5 6 6 0 8 5 . 8 3 4 7 3 5 7 8 3 6 7 1 3 7 E - •0001
9 0 0 0 0 0 0 1 8 2 0 9 5 2 2 7 1 • 4 4 4 8 6 8 8 0 9 2 8 5 0 5 E -•0001

1 0 0 0 0 0 0 0 1 2 7 4 8 9 8 1 2 9 8 . 2 3 5 2 5 7 0 4 8 2 6 9 3 9 E - •0001
1 1 0 0 0 0 0 0 1 8 9 4 4 1 1 0 6 7 3 . 6 0 5 3 9 4 8 4 4 7 1 3 3 4 E - •0001
1 2 0 0 0 0 0 0 1 5 8 7 6 1 0 7 0 7 2 . 2 7 6 3 3 1 9 9 7 6 0 5 2 0 E - •0001
1 3 0 0 0 0 0 0 4 4 5 5 8 2 1 4 6 2 . 9 0 4 1 0 0 0 3 2 9 4 4 2 8 E - •0001
1 4 0 0 0 0 0 0 7 3 3 9 0 9 3 3 6 8 • 4 5 4 6 6 4 7 5 8 6 1 8 3 0 E - •0001
1 5 0 0 0 0 0 0 1 7 5 8 7 0 4 6 4 9 2 . 7 2 0 0 1 3 4 2 5 0 8 9 4 3 E - •0001
1 6 0 0 0 0 0 0 1 3 8 9 5 3 6 1 3 2 2 . 2 8 6 8 3 4 5 9 6 7 8 9 8 3 E - •0002
1 7 0 0 0 0 0 0 1 5 0 5 9 5 7 5 4 5 1 . 7 9 8 3 6 1 8 8 0 6 1 0 8 7 E - •0001
1 8 0 0 0 0 0 0 8 1 8 6 1 6 5 4 1 7 . 9 5 3 3 1 7 3 9 7 2 5 2 3 4 E - •0001
1 9 0 0 0 0 0 0 3 4 5 3 0 7 6 6 8 5 . 0 5 3 1 7 8 7 9 1 4 4 7 1 6 E - •0001
2 0 0 0 0 0 0 0 5 7 3 9 5 9 0 7 6 1 . 5 6 6 8 5 7 4 7 2 7 9 1 7 4 E -•0002
2 1 0 0 0 0 0 0 3 9 3 2 6 4 7 0 5 8 . 3 4 7 9 8 0 2 9 0 8 1 3 3 6 E - •0001
2 2 0 0 0 0 0 0 1 0 1 5 6 9 4 4 6 6 1 . 9 9 9 4 5 6 7 1 1 1 1 3 2 0 E - •0001
2 3 0 0 0 0 0 0 1 8 1 0 2 2 1 2 1 4 4 . 5 9 6 6 2 0 0 9 7 1 0 2 8 9 E -•0001
2 4 0 0 0 0 0 0 4 4 7 6 8 7 2 8 3 7 . 6 5 9 8 9 5 0 6 9 7 3 8 8 0 E - •0001
2 5 0 0 0 0 0 0 1 3 9 6 1 6 2 8 2 1 8 . 8 5 7 8 3 4 2 7 3 4 1 7 4 0 E - •0001
2 6 0 0 0 0 0 0 1 0 4 7 5 3 8 7 5 4 4 . 2 5 1 0 2 3 6 2 6 0 7 1 8 8 E - •0001
2 7 0 0 0 0 0 0 1 4 7 2 2 5 3 3 2 4 3 . 9 8 1 5 7 0 4 0 7 7 3 9 6 4 E - 0 0 0 1
2 8 0 0 0 0 0 0 1 9 5 4 2 4 3 6 8 3 6 . 3 2 6 8 6 0 5 7 8 8 8 2 9 1 E - •0001
2 9 0 0 0 0 0 0 1 4 4 2 7 7 9 5 3 2 7 . 2 5 3 7 7 3 7 3 2 6 9 4 6 9 E - •0001
3 0 0 0 0 0 0 0 1 2 9 8 6 2 3 1 4 0 5 . 0 4 2 2 2 4 7 4 7 6 1 4 1 1 E - 0 0 0 1
3 1 0 0 0 0 0 0 7 9 1 7 4 1 0 4 9 4 . 5 7 8 0 7 3 1 8 9 8 6 3 0 4 E - 0 0 0 1
3 2 0 0 0 0 0 0 3 1 5 9 3 9 7 7 . 2 6 6 0 7 5 5 9 1 2 1 4 9 7 E - 0 0 0 1
3 3 0 0 0 0 0 0 3 2 6 4 7 5 0 2 9 1 . 1 4 1 3 0 9 3 5 6 8 4 8 3 9 E - 0 0 0 1
3 4 0 0 0 0 0 0 5 8 9 7 6 8 1 7 7 7 . 4 3 5 3 0 6 6 0 2 8 2 6 0 2 E - 0 0 0 1
3 5 0 0 0 0 0 0 4 6 6 4 1 6 6 2 7 3 . 4 8 7 5 1 6 3 7 7 8 1 3 8 9 E - 0 0 0 1
3 6 0 0 0 0 0 0 1 5 4 9 1 5 8 7 0 6 2 . 8 8 0 7 4 6 0 9 9 5 7 6 7 0 E - 0 0 0 1
3 7 0 0 0 0 0 0 7 1 0 6 0 9 7 8 4 4 . 9 4 5 6 8 9 4 4 6 7 3 3 1 9 E - 0 0 0 1
3 8 0 0 0 0 0 0 9 5 8 1 3 7 8 9 0 7 . 4 0 9 2 8 5 8 6 9 1 7 4 3 O E - 0 0 0 1
3 9 0 0 0 0 0 0 3 8 8 4 3 1 4 . 0 0 0 4 4 3 7 8 0 7 9 4 9 5 E - 0 0 0 2
4 0 0 0 0 0 0 0 1 4 4 5 4 1 1 9 6 8 3 . 2 7 7 9 3 5 6 1 0 7 4 7 8 7 E - 0 0 0 1

TABLE B-5
CHI-SQUARE VALUES: #=100s AND iV=l,OOOs

82

N Chi-square N Chi-square

100 1 2 3 . 2 2 5 1 1000 1 0 7 3 . 6 4 9 0
200 2 3 2 . 9 1 3 5 2000 2 1 0 4 . 1 3 7 5
300 3 4 0 . 3 3 0 6 3000 3 1 2 7 . 5 2 6 8
400 4 4 6 . 5 7 7 7 4000 4 1 4 7 . 2 4 3 2
500 5 5 2 . 0 7 8 9 5000 5 1 6 4 . 6 1 2 8
600 6 5 7 . 0 5 0 7 6000 6 1 8 0 . 3 1 5 7
700 7 6 1 . 6 2 1 8 7000 7 1 9 4 . 7 5 5 7
800 8 6 5 . 8 7 5 8 8000 8 2 0 8 . 1 9 5 8
900 9 6 9 . 8 7 0 8 9000 9 2 2 0 . 8 1 9 0

1000 1 0 7 3 . 6 4 9 0 10000 1 0 2 3 2 . 7 5 8 1
1100 1 1 7 7 . 2 4 2 3 11000 1 1 2 4 4 . 1 1 3 8
1200 1 2 8 0 . 6 7 5 4 12000 1 2 2 5 4 . 9 6 3 8
1300 1 3 8 3 . 9 6 8 0 13000 1 3 2 6 5 . 3 7 0 4
1400 1 4 8 7 . 1 3 6 1 14000 1 4 2 7 5 . 3 8 3 9
1500 1 5 9 0 . 1 9 2 8 15000 1 5 2 8 5 . 0 4 5 6
1600 1 6 9 3 . 1 4 9 2 16000 1 6 2 9 4 . 3 9 0 2
1700 1 7 9 6 . 0 1 4 4 17000 1 7 3 0 3 . 4 4 7 1
1800 1 8 9 8 . 7 9 6 4 18000 1 8 3 1 2 . 2 4 1 2
1900 2 0 0 1 . 5 0 2 1 19000 1 9 3 2 0 . 7 9 4 3
2000 2 1 0 4 . 1 3 7 5 20000 2 0 3 2 9 . 1 2 5 1
2100 2 2 0 6 . 7 0 7 6 21000 2 1 3 3 7 . 2 5 0 1
2200 2 3 0 9 . 2 1 7 3 22000 2 2 3 4 5 . 1 8 3 8
2300 2 4 1 1 . 6 7 0 5 23000 2 3 3 5 2 . 9 3 9 1
2400 2 5 1 4 . 0 7 0 9 24000 2 4 3 6 0 . 5 2 7 6
2500 2 6 1 6 . 4 2 1 7 25000 2 5 3 6 7 . 9 5 9 6
2600 2 7 1 8 . 7 2 5 9 26000 2 6 3 7 5 . 2 4 4 3
2700 2 8 2 0 . 9 8 6 3 27000 2 7 3 8 2 . 3 9 0 3
2800 2 9 2 3 . 2 0 5 1 28000 2 8 3 8 9 . 4 0 5 0
2900 3 0 2 5 . 3 8 4 6 29000 2 9 3 9 6 . 2 9 5 6
3000 3 1 2 7 . 5 2 6 8 30000 3 0 4 0 3 . 0 6 8 4
3100 3 2 2 9 . 6 3 3 6 31000 3 1 4 0 9 . 7 2 9 2
3200 3 3 3 1 . 7 0 6 7 32000 3 2 4 1 6 . 2 8 3 4
3300 3 4 3 3 . 7 4 7 6 33000 3 3 4 2 2 . 7 3 6 0
3400 3 5 3 5 . 7 5 7 8 34000 3 4 4 2 9 . 0 9 1 5
3500 3 6 3 7 . 7 3 8 6 . 3 5 0 0 0 3 5 4 3 5 . 3 5 4 2
3600 3 7 3 9 . 6 9 1 3 36000 3 6 4 4 1 . 5 2 8 0
3700 3 8 4 1 . 6 1 7 1 37000 3 7 4 4 7 . 6 1 6 7
3800 3 9 4 3 . 5 1 7 0 38000 3 8 4 5 3 . 6 2 3 7
3900 4 0 4 5 . 3 9 2 0 39000 3 9 4 5 9 . 5 5 2 1
4000 4 1 4 7 . 2 4 3 2 40000 4 0 4 6 5 . 4 0 5 0

Note: 95% level, Z= 1.645

TABLE B-6
SERIAL CORRELATION: RANDU(IBM)

APART DISTANCE (h), SEED=1 AND 101, #=100,000

83

h seed=l seed=101

1 0 .00081 - 0 . 0 0 5 8 0
2 0 .00202 - 0 . 0 0 0 6 3
3 - 0 . 0 0 7 4 9 - 0 . 0 0 6 9 4
4 0 .00192 - 0 . 0 0 0 0 8
5 0 .00549 - 0 . 0 0 5 8 9
6 0 .00136 - 0 . 0 0 0 4 6
7 - 0 . 0 0 4 9 8 - 0 . 0 0 0 1 7
8 - 0 . 0 0 7 8 3 - 0 . 0 0 0 2 2
9 - 0 . 0 0 2 7 7 0 .00128

10 0 .00031 0 .00114
11 0 .00582 - 0 . 0 0 1 9 4
12 0 .00430 - 0 . 0 0 1 2 8
13 - 0 . 0 0 2 2 9 - 0 . 0 0 2 6 3
14 0 .00349 0 .00275
15 0 .00310 0 .00225
16 - 0 . 0 0 3 5 7 - 0 . 0 0 2 7 0
17 0 .00136 - 0 . 0 0 0 8 7
18 - 0 . 0 0 3 5 9 - 0 . 0 0 3 2 5
19 0 .00479 0 .00453
20 - 0 . 0 0 7 1 1 - 0 . 0 0 2 5 6
21 - 0 . 0 0 1 7 2 - 0 . 0 0 0 5 6
22 - 0 . 0 0 1 7 7 - 0 . 0 0 2 4 1
23 - 0 . 0 0 0 5 7 - 0 . 0 0 0 8 8
24 - 0 . 0 0 3 2 3 - 0 . 0 0 3 6 8
25 - 0 . 0 0 6 0 5 - 0 . 0 0 2 0 3
26 0 .00563 0 .00610
27 0 .00226 0 .00143
28 - 0 . 0 0 5 9 0 0 .00210
29 - 0 . 0 0 2 5 4 0 .00440
30 0 .00197 0 .00116
31 - 0 . 0 0 2 9 4 - 0 . 0 0 0 3 6
32 0 .00365 - 0 . 0 0 7 9 5
33 0 .00052 - 0 . 0 0 1 8 3
34 - 0 . 0 0 3 5 3 - 0 . 0 0 5 4 7
35 0 .00461 0 .00037
36 - 0 . 0 0 0 8 6 - 0 . 0 0 0 6 1
37 - 0 . 0 0 1 9 7 0 .00293
38 0 .00238 - 0 . 0 0 4 1 0
39 - 0 . 0 0 2 3 1 - 0 . 0 0 2 1 2
40 0 .00397 - 0 . 0 0 6 2 7

TABLE B-7
SERIAL CORRELATION: RNUN(IMSL)

APART DISTANCE (/?), SEED=1 AND 101,7V=100,000

84

h seed=l seed=101

1 0 . 0 0 6 5 7 - 0 . 0 0 1 6 0
2 0 . 0 0 6 6 3 - 0 . 0 0 2 8 5
3 - 0 . 0 0 1 1 5 - 0 . 0 0 0 0 6
4 - 0 . 0 0 5 6 8 - 0 . 0 0 4 1 1
5 - 0 . 0 0 0 3 8 - 0 . 0 0 0 7 7
6 0 . 0 0 4 0 1 0 . 0 0 6 7 3
7 - 0 . 0 0 2 5 8 - 0 . 0 0 1 3 6
8 - 0 . 0 0 3 3 5 - 0 . 0 0 1 7 3
9 0 . 0 0 1 3 2 - 0 . 0 0 1 2 3

10 - 0 . 0 0 3 0 5 0 . 0 0 1 3 4
11 - 0 . 0 0 2 4 2 - 0 . 0 0 1 6 2
12 0 . 0 0 2 2 3 0 . 0 0 7 1 0
13 0 . 0 0 0 5 8 - 0 . 0 0 2 1 4
14 - 0 . 0 0 6 4 5 - 0 . 0 0 2 5 4
15 0 . 0 0 2 2 8 0 . 0 0 0 4 5
16 - 0 . 0 0 0 6 3 - 0 . 0 0 4 3 9
17 0 . 0 0 1 2 7 0 . 0 0 7 3 7
18 - 0 . 0 0 1 3 7 - 0 . 0 0 0 9 4
19 - 0 . 0 0 4 4 3 0 . 0 0 0 7 7
20 0 . 0 0 0 5 3 - 0 . 0 0 2 3 8
21 0 . 0 0 6 9 3 0 . 0 0 3 3 8
22 0 . 0 0 6 7 6 - 0 . 0 0 0 5 5
23 - 0 . 0 0 3 3 3 0 . 0 0 1 4 8
24 - 0 . 0 0 2 7 1 0 . 0 0 0 1 8
25 - 0 . 0 0 5 0 3 0 . 0 0 0 5 7
26 - 0 . 0 0 1 3 3 0 . 0 0 0 2 8
27 0 . 0 0 1 6 3 - 0 . 0 0 3 4 5
28 0 . 0 0 2 1 0 - 0 . 0 0 0 1 7
29 - 0 . 0 0 2 4 2 0 . 0 0 3 1 0
30 0 . 0 0 1 5 2 0 . 0 0 3 1 1
31 - 0 . 0 0 6 3 0 0 . 0 0 1 8 5
32 0 . 0 0 1 2 2 0 . 0 0 5 3 0
33 0 . 0 0 3 3 7 0 . 0 0 0 3 1
34 0 . 0 0 1 6 3 0 . 0 0 2 2 6
35 - 0 . 0 0 4 3 3 ' - 0 . 0 0 3 0 7
36 - 0 . 0 0 5 4 6 0 . 0 0 0 3 2
37 - 0 . 0 0 5 3 6 - 0 . 0 0 0 6 4
38 - 0 . 0 0 0 3 5 - 0 . 0 0 0 3 5
39 - 0 . 0 0 0 7 7 - 0 . 0 0 0 5 7
40 - 0 . 0 0 0 0 5 - 0 . 0 0 3 2 9

TABLE B-8
SERIAL CORRELATION: RANUNI(SAS)

APART DISTANCE (h), SEED=1 AND 101, #=100,000

85

h seed=l seed=101

1 - 0 . 0 0 1 2 3 - 0 . 0 0 5 5 8
2 0 .00310 0 .00553
3 - 0 . 0 0 3 6 0 - 0 . 0 0 1 8 9
4 - 0 . 0 0 3 4 6 - 0 . 0 0 2 0 7
5 0 .00231 - 0 . 0 0 3 6 0
6 - 0 . 0 0 1 0 2 - 0 . 0 0 0 8 8
7 0 .00409 0 .00054
8 0 .00053 - 0 . 0 0 4 3 5
9 - 0 . 0 0 7 5 9 0 .00387

10 0 .00352 - 0 . 0 0 0 8 4
11 0 .00002 - 0 . 0 0 4 4 2
12 - 0 . 0 0 2 5 0 - 0 . 0 0 2 3 1
13 0 .00017 - 0 . 0 0 1 1 2
14 0 .00017 - 0 . 0 0 2 4 8
15 0 .00560 - 0 . 0 0 0 8 3
16 - 0 . 0 0 3 3 7 0 .00487
17 - 0 . 0 0 2 1 0 - 0 . 0 0 2 0 3
18 0 .00401 0 .00385
19 0 .00230 - 0 . 0 0 0 2 6
20 - 0 . 0 0 2 9 1 0 .00418
21 0 .00329 0 .00237
22 0 .00452 0 .00140
23 0 .00521 0 .00336
24 0 .00392 0 . 0 0 3 2 1
25 - 0 . 0 0 2 9 9 - 0 . 0 0 0 2 0
26 - 0 . 0 0 1 4 8 0 . 0 0 0 0 1
27 0 .00225 0 .00328
28 0 .00288 0 . 0 0 3 7 1
29 0 .00612 0 .00235
30 0 .00346 0 .00015
31 - 0 . 0 0 1 2 0 - 0 . 0 0 5 8 7
32 - 0 . 0 0 3 1 1 0 .00028
33 - 0 . 0 0 1 1 6 - 0 . 0 0 1 9 5
34 - 0 . 0 0 2 0 9 - 0 . 0 0 3 8 1
35 - 0 . 0 0 0 9 9 - - 0 . 0 0 0 8 0
36 0 .00436 - 0 . 0 0 3 7 2
37 - 0 . 0 0 2 2 2 - 0 . 0 0 5 8 7
38 0 .00060 0 . 0 0 9 5 1
39 0 .00085 0 .00222
40 0 .00202 0 .00164

TABLE B-9
SERIAL CORRELATION: UNBFORM(SPSS)

APART DISTANCE (h), SEED=1 AND 101, iV=100,000

86

h seed=l seed=101

1 0 .00240 - 0 . 0 0 2 3 5
2 - 0 . 0 0 2 7 1 0 . 0 0 0 7 8
3 0 .00347 0 .00289
4 0 . 0 0 3 8 1 - 0 . 0 0 3 4 8
5 - 0 . 0 0 0 8 7 0 .00376
6 - 0 . 0 0 1 6 8 - 0 . 0 0 3 5 0
7 - 0 . 0 0 5 0 9 - 0 . 0 0 1 3 2
8 - 0 . 0 0 4 1 0 - 0 . 0 0 4 5 7
9 0 .00349 - 0 . 0 0 1 3 4

10 - 0 . 0 0 1 4 4 - 0 . 0 0 0 0 8
11 0 . 0 0 3 3 1 - 0 . 0 0 0 0 8
12 - 0 . 0 0 0 7 6 0 . 0 0 1 7 1
13 - 0 . 0 0 4 3 4 - 0 . 0 0 2 3 3
14 0 .00182 - 0 . 0 0 3 2 2
15 0 .00234 0 . 0 0 2 1 5
16 0 .00308 0 .00982
17 - 0 . 0 0 3 3 4 - 0 . 0 0 0 9 5
18 - 0 . 0 0 2 4 0 - 0 . 0 0 5 9 0
19 - 0 . 0 0 0 1 6 0 . 0 0 3 0 1
20 - 0 . 0 0 0 5 8 - 0 . 0 0 0 1 9
21 0 .00678 - 0 . 0 0 2 5 8
22 0 .00177 0 .00359
23 0 .00075 - 0 . 0 0 4 1 4
24 - 0 . 0 0 2 3 0 - 0 . 0 0 2 2 8
25 0 . 0 0 3 5 5 - 0 . 0 0 7 7 4
26 - 0 . 0 0 1 0 9 - 0 . 0 0 4 6 7
27 - 0 . 0 0 0 8 1 0 . 0 0 3 6 8
28 - 0 . 0 0 1 9 0 0 . 0 0 1 6 5
29 - 0 . 0 0 0 4 4 - 0 . 0 0 0 8 0
30 - 0 . 0 0 0 5 8 - 0 . 0 0 1 5 9
31 0 .00630 0 .00204
32 0 .00507 - 0 . 0 0 0 2 3
33 - 0 . 0 0 1 5 5 - 0 . 0 0 2 7 8
34 0 .00230 - 0 . 0 0 1 9 7
35 - 0 . 0 0 5 7 7 - 0 . 0 0 0 8 8
36 - 0 . 0 0 3 5 9 - 0 . 0 0 3 6 5
37 0 .00632 - 0 . 0 0 3 2 2
38 - 0 . 0 0 3 4 3 0 .00090
39 - 0 . 0 0 0 5 2 0 .00822
40 0 .00256 - 0 . 0 0 3 1 3

TABLE B-10
SERIAL CORRELATION: RANDOM(BMDP)

APART DISTANCE (h), SEED=1 AND 101,7V=100,000

87

h seed=l seed=101

1 0 .00399 0 .00645
2 - 0 . 0 0 2 7 8 - 0 . 0 0 0 6 0
3 - 0 . 0 0 2 6 1 - 0 . 0 0 1 0 7
4 0 .00239 - 0 . 0 0 0 6 6
5 0 .00204 0 .00007
6 0 .00496 - 0 . 0 0 2 2 7
7 - 0 . 0 0 1 9 1 0 .00657
8 0 .00583 - 0 . 0 0 1 4 7
9 - 0 . 0 0 4 6 0 0 .00050

10 0 .00222 0 .00274
11 0 .00302 - 0 . 0 0 0 5 4
12 0 .00216 0 .00270
13 - 0 . 0 0 1 3 9 - 0 . 0 0 1 5 1
14 - 0 . 0 0 2 4 1 0 .00398
15 - 0 . 0 0 1 7 6 0 .00133
16 - 0 . 0 0 4 7 6 0 .00069
17 - 0 . 0 0 3 8 2 - 0 . 0 0 0 6 3
18 - 0 . 0 0 4 0 2 0 .00049
19 - 0 . 0 0 1 5 6 - 0 . 0 0 0 0 8
20 0 .00161 - 0 . 0 0 0 1 9
21 0 .00071 - 0 . 0 0 1 6 9
22 - 0 . 0 0 2 5 0 0 .00229
23 0 .00122 - 0 . 0 0 2 3 5
24 - 0 . 0 0 1 8 8 0 .00862
25 - 0 . 0 0 0 2 4 0 .00174
26 0 .00111 0 . 0 0 5 0 1
27 - 0 . 0 0 5 5 3 - 0 . 0 0 3 0 0
28 0 .00515 0 .00362
29 - 0 . 0 0 3 9 9 - 0 . 0 0 0 2 2
30 - 0 . 0 0 0 5 5 0 .00239
31 - 0 . 0 0 3 7 8 - 0 . 0 0 1 6 7
32 - 0 . 0 0 0 5 3 0 .00128
33 0 .00611 0 . 0 0 3 3 1
34 0 .00110 0 .00524
35 0 .00557 - 0 . 0 0 2 0 6
36 0 .00014 - 0 . 0 0 1 1 5
37 - 0 . 0 0 0 6 8 - 0 . 0 0 1 5 2
38 0 .00607 0 . 0 0 1 4 1
39 - 0 . 0 0 4 0 8 - 0 . 0 0 1 2 8
40 - 0 . 0 0 1 2 7 0 . 0 0 2 9 1

APPENDIX C

FIGURES

88

89

Fig. C-l. Find Period of Random Number Sequence: RANDU(IBM)
(MLCG; a = 65539, m = 2147483648)

Sequence Seed Random Number

1 1 3 . 0 5 1 8 9 7 5 9 4 0 7 0 0 0 E - 0 0 0 5
2 6 5 5 3 9 1. 8 3 1 0 9 6 6 4 6 9 2 5 0 0 E - 0 0 0 4
3 3 9 3 2 2 5 8 . 2 3 9 8 7 2 0 4 6 8 8 7 0 0 E - 0 0 0 4
4 1 7 6 9 4 9 9 3 . 2 9 5 9 3 6 2 4 5 8 9 9 7 0 E - 0 0 0 3
5 7 0 7 7 9 6 9 1. 2 3 5 9 7 3 2 6 3 3 1 9 9 9 E - 0 0 0 2
6 2 6 5 4 2 3 2 3 4 . 4 4 9 4 9 6 9 5 8 6 1 0 2 1 E - 0 0 0 2
7 9 5 5 5 2 2 1 7 1. 5 5 7 3 2 2 2 3 8 1 7 8 1 3 E - 0 0 0 1
8 3 3 4 4 3 2 3 9 5 5 . 3 3 9 3 8 6 1 6 6 3 1 9 6 2 E - 0 0 0 1
9 1 1 4 6 6 2 4 4 1 7 8 . 0 2 0 4 1 6 5 8 1 7 5 0 2 9 E - 0 0 0 1

10 1 7 2 2 3 7 1 2 9 9 6 . 8 0 2 3 9 9 3 6 2 5 1 3 3 0 E - 0 0 0 3
1 1 1 4 6 0 8 0 4 1 8 . 2 2 4 3 9 6 9 0 6 5 1 2 0 1 E - 0 0 0 1
12 1 7 6 6 1 7 5 7 3 9 8 . 7 3 4 1 6 4 4 0 6 1 8 8 9 5 E - 0 0 0 1
13 1 8 7 5 6 4 7 4 7 3 8 . 3 8 5 4 1 5 0 9 6 2 1 8 3 0 E - 0 0 0 1
14 1 8 0 0 7 5 4 1 3 1 1. 7 0 5 0 1 1 7 3 9 3 0 1 9 5 E - 0 0 0 1
15 3 6 6 1 4 8 4 7 3 4 . 7 6 1 3 3 6 4 7 7 7 9 6 5 4 E - 0 0 0 1
16 1 0 2 2 4 8 9 1 9 5 3 . 2 2 2 9 1 2 9 4 0 4 9 7 4 4 E - 0 0 0 1
17 6 9 2 1 1 5 2 6 5 6 . 4 8 5 4 5 0 1 6 0 5 0 8 5 3 E - 0 0 0 1
18 1 3 9 2 7 3 9 7 7 9 9 . 9 0 6 4 8 4 4 9 8 5 7 4 1 6 E - 0 0 0 1
19 2 1 2 7 4 0 1 2 8 9 1. 0 6 9 8 5 5 5 4 6 8 6 8 2 0 E - 0 0 0 1
20 2 2 9 7 4 9 7 2 3 7 . 2 6 0 7 7 5 2 4 7 1 1 9 8 0 E - 0 0 0 1

1 6 1 0 6 1 2 7 3 0 1 5 5 9 9 6 1 3 7 9 4 . 2 2 4 9 6 4 9 8 4 3 6 6 0 6 E - - 0 0 0 1
1 6 1 0 6 1 2 7 3 1 9 0 7 3 0 4 2 9 7 9 . 9 7 2 5 6 3 3 3 6 4 7 3 5 4 E -- 0 0 0 1
1 6 1 0 6 1 2 7 3 2 2 1 4 1 5 9 1 6 1 1 1 . 8 1 0 6 9 4 6 1 4 4 1 8 2 6 E -- 0 0 0 1
1 6 1 0 6 1 2 7 3 3 3 8 8 8 4 3 6 9 7 1 . 1 1 1 0 9 9 8 3 8 7 6 1 4 7 E -- 0 0 0 1
1 6 1 0 6 1 2 7 3 4 2 3 8 6 0 6 8 6 7 3 . 7 0 3 4 7 7 7 5 3 6 8 7 0 I E -- 0 0 0 2
1 6 1 0 6 1 2 7 3 5 7 9 5 3 1 5 7 7 2 . 2 2 2 1 8 8 3 7 5 9 2 3 1 9 E -- 0 0 0 1
1 6 1 0 6 1 2 7 3 6 4 7 7 2 1 1 3 0 7 4 . 6 5 6 6 1 3 0 0 0 0 0 0 0 0 E -- 0 0 1 0
1 6 1 0 6 1 2 7 3 7 1 3 . 0 5 1 8 9 7 5 9 4 0 7 0 0 0 E -- 0 0 0 5
1 6 1 0 6 1 2 7 3 8 6 5 5 3 9 1 . 8 3 1 0 9 6 6 4 6 9 2 5 0 0 E -- 0 0 0 4
1 6 1 0 6 1 2 7 3 9 3 9 3 2 2 5 8 . 2 3 9 8 7 2 0 4 6 8 8 7 0 0 E -- 0 0 0 4
1 6 1 0 6 1 2 7 4 0 1 7 6 9 4 9 9 3 . 2 9 5 9 3 6 2 4 5 8 9 9 7 0 E -- 0 0 0 3
1 6 1 0 6 1 2 7 4 1 7 0 7 7 9 6 9 1 . 2 3 5 9 7 3 2 6 3 3 1 9 9 9 E -- 0 0 0 2
1 6 1 0 6 1 2 7 4 2 2 6 5 4 2 3 2 3 4 . 4 4 9 4 9 6 9 5 8 6 1 0 2 1 E - - 0 0 0 2
1 6 1 0 6 1 2 7 4 3 9 5 5 5 2 2 1 7 1, . 5 5 7 3 2 2 2 3 8 1 7 8 1 3 E -- 0 0 0 1

90

Fig. C-2. Find Period of Random Number Sequence: RNUN (IMSL)
(MLCG; a=950706376, m=2147483647)

Sequence Seed Random Number

1 1 4 • 4 2 7 0 7 1 5 5 1 0 5 9 8 7 E - • 0 0 0 1
2 9 5 0 7 0 6 3 7 6 6 . 0 0 8 2 9 5 8 5 7 3 5 1 4 1 E - •0002
3 1 2 9 0 2 7 1 7 1 8 . 0 4 7 8 3 7 2 9 7 4 5 4 4 0 E - •0001
4 1 7 2 8 2 5 9 8 9 9 1 . 7 0 0 5 0 7 2 1 2 2 9 0 7 8 E - •0001
5 3 6 5 1 8 1 1 4 3 9 . 1 5 8 8 2 6 8 0 9 9 1 6 1 0 E -•0001
6 1 9 6 6 8 4 3 0 8 0 4 . 8 6 6 9 7 5 3 2 4 6 3 2 1 2 E - •0001
7 1 0 4 5 1 7 4 9 9 2 2 . 9 6 2 4 2 8 9 9 8 6 5 0 2 5 E - 0 0 0 1
8 6 3 6 1 7 6 7 8 3 7 . 4 6 4 0 8 9 4 2 0 3 7 4 5 2 E - 0 0 0 1
9 1 6 0 2 9 0 0 9 9 7 2 . 9 8 4 2 0 4 7 5 9 3 4 8 2 8 E - 0 0 0 1

10 6 4 0 8 5 3 0 9 2 2 . 0 0 1 9 5 4 6 5 7 9 5 7 8 7 E -•0001
1 1 4 2 9 9 1 6 4 8 9 7 . 7 8 3 4 4 4 2 7 1 3 2 2 0 8 E - •0001
12 1 6 7 1 4 8 1 9 2 9 5 . 9 8 6 5 7 6 3 4 8 5 3 6 9 2 E -•0001
13 1 2 8 5 6 0 7 4 8 1 4 . 9 6 4 8 4 4 5 4 0 2 1 0 8 3 E - 0 0 0 1
14 1 0 6 6 1 9 2 2 4 6 2 . 2 7 2 2 8 2 9 1 4 3 8 5 3 3 E - 0 0 0 2
15 4 8 7 9 6 9 0 4 5 . 4 7 8 1 9 9 6 5 7 7 4 1 1 0 E - 0 0 0 1
16 1 1 7 6 4 3 4 4 1 8 3 . 6 1 5 4 7 7 4 5 0 0 1 2 9 2 E - 0 0 0 1
17 7 7 6 4 1 7 8 7 0 4 . 0 1 1 5 0 1 8 3 0 0 7 6 5 7 E - 0 0 0 1
18 8 6 1 4 6 3 4 5 8 7 . 1 8 9 4 6 0 6 4 2 2 5 8 3 9 E - 0 0 0 1
19 1 5 4 3 9 2 4 9 1 6 2 . 5 9 6 1 0 2 1 2 9 9 4 5 5 8 E - 0 0 0 1
20 5 5 7 5 0 8 6 8 7 7 . 6 8 6 4 4 2 5 3 1 4 9 9 2 9 E - 0 0 0 1

2 1 4 7 4 8 3 6 4 1
2 1 4 7 4 8 3 6 4 2
2 1 4 7 4 8 3 6 4 3
2 1 4 7 4 8 3 6 4 4
2 1 4 7 4 8 3 6 4 5
2 1 4 7 4 8 3 6 4 6
2 1 4 7 4 8 3 6 4 7
2 1 4 7 4 8 3 6 4 8
2 1 4 7 4 8 3 6 4 9
2 1 4 7 4 8 3 6 5 0
2 1 4 7 4 8 3 6 5 1
2 1 4 7 4 8 3 6 5 2
2 1 4 7 4 8 3 6 5 3
2 1 4 7 4 8 3 6 5 4
2 1 4 7 4 8 3 6 5 5

2 6 9 6 4 9 0 7 0
1 4 1 0 1 9 9 2 3 6
1 9 3 7 4 5 2 4 5 9

5 9 4 8 2 9 8 8 2
1 7 8 7 2 4 3 3 6 4

3 4 0 3 6 3 8 8 9
1

9 5 0 7 0 6 3 7 6
1 2 9 0 2 7 1 7 1

1 7 2 8 2 5 9 8 9 9
3 6 5 1 8 1 1 4 3

1 9 6 6 8 4 3 0 8 0
1 0 4 5 1 7 4 9 9 2

6 3 6 1 7 6 7 8 3
1 6 0 2 9 0 0 9 9 7

6 . 5 6 6 7 5 1 9 1 9 0 1 9 3 9 E - 0 0 0 1
9 . 0 2 1 9 6 6 0 6 5 7 5 6 0 3 E - 0 0 0 1
2 . 7 6 9 8 9 2 4 8 7 1 0 2 1 4 E - 0 0 0 1
8 . 3 2 2 5 0 0 4 6 0 0 0 0 0 1 E - 0 0 0 1
1 . 5 8 4 9 4 2 8 6 7 7 8 6 1 3 E - 0 0 0 1
4 . 6 5 6 6 1 2 8 7 5 2 4 5 8 0 E - 0 0 1 0
4 . 4 2 7 0 7 1 5 5 1 0 5 9 8 7 E - 0 0 0 1
6 . 0 0 8 2 9 5 8 5 7 3 5 1 4 I E - 0 0 0 2
8 . 0 4 7 8 3 7 2 9 7 4 5 4 4 0 E - 0 0 0 1
1 . 7 0 0 5 0 7 2 1 2 2 9 0 7 8 E - 0 0 0 1
9 . 1 5 8 8 2 6 8 0 9 9 1 6 1 0 E - 0 0 0 1
4 . 8 6 6 9 7 5 3 2 4 6 3 2 1 2 E - 0 0 0 1
2 . : 9 6 2 4 2 8 9 9 8 6 5 0 2 5 E - 0 0 0 1
7 . 4 6 4 0 8 9 4 2 0 3 7 4 5 2 E - 0 0 0 1
2 . 9 8 4 2 0 4 7 5 9 3 4 8 2 8 E - 0 0 0 1

91

Fig. C-3. Find Period of Random Number Sequence: RANUNI(SAS)
(MLCG; a=397204094, ^=2147483647)

Sequence Seed Random Number

1 1 1 . 8 4 9 6 2 5 6 9 8 2 2 0 7 4 E - 0 0 0 1
2 3 9 7 2 0 4 0 9 4 9 . 7 0 0 8 8 7 1 5 6 5 1 1 1 4 E - 0 0 0 1
3 2 0 8 3 2 4 9 6 5 3 3 . 9 9 8 2 4 3 0 6 0 8 9 3 4 9 E - 0 0 0 1
4 8 5 8 6 1 6 1 5 9 2 . 5 9 3 9 8 6 4 5 3 7 6 5 0 7 E - 0 0 0 1
5 5 5 7 0 5 4 3 4 9 9 . 2 1 6 0 2 5 7 7 8 6 5 8 7 0 E - 0 0 0 1
6 1 9 7 9 1 2 6 4 6 5 9 . 6 9 2 7 7 3 4 9 7 5 2 0 3 7 E - 0 0 0 1
7 2 0 8 1 5 0 7 2 5 8 5 . 4 2 9 7 9 1 7 3 1 4 9 4 3 8 E - 0 0 0 1
8 1 1 6 6 0 3 8 8 9 5 5 . 3 1 6 9 1 7 2 2 8 1 9 4 3 8 E - 0 0 0 1
9 1 1 4 1 7 9 9 2 8 0 4 . 9 7 9 4 0 2 6 2 0 8 0 1 4 2 E - 0 0 0 2

10 1 0 6 9 3 1 8 5 7 6 . 6 5 6 6 5 5 1 6 0 0 8 4 6 7 E - 0 0 0 2
1 1 1 4 2 9 5 0 5 8 1 8 . 1 9 3 1 8 5 7 0 5 7 8 1 5 3 E - 0 0 0 1
12 1 7 5 9 4 7 3 2 3 2 5 . 2 3 8 7 0 5 2 1 4 6 8 9 8 1 E - 0 0 0 1
13 1 1 2 5 0 0 3 3 7 8 8 . 5 3 3 9 4 3 1 0 8 5 3 1 6 2 E - 0 0 0 1
14 1 8 3 2 6 5 0 3 2 7 6 . 7 1 8 4 5 7 6 7 9 5 9 8 8 0 E - 0 0 0 2
15 1 4 4 2 7 7 7 8 0 9 . 5 7 0 2 3 8 5 7 6 0 7 0 5 2 E - 0 0 0 1
16 2 0 5 5 1 9 3 0 8 4 2 . 9 7 1 9 3 9 6 4 1 5 0 3 5 9 E - 0 0 0 1
17 6 3 8 2 1 9 1 7 8 2 . 7 2 6 1 1 7 8 9 0 6 6 6 2 9 E - 0 0 0 1
18 5 8 5 4 2 9 3 5 9 6 . 8 9 9 2 9 6 3 0 9 2 8 6 4 0 E - 0 0 0 1
19 1 4 8 1 6 1 2 6 0 0 9 . 7 6 7 6 4 8 6 2 4 1 4 8 0 6 E - 0 0 0 1
20 2 0 9 7 5 8 6 5 6 9 2 . 2 6 5 0 7 5 1 8 5 4 5 9 6 1 E - 0 0 0 1

2 1 4 7 4 8 3 6 4 0
2 1 4 7 4 8 3 6 4 1
2 1 4 7 4 8 3 6 4 2
2 1 4 7 4 8 3 6 4 3
2 1 4 7 4 8 3 6 4 4
2 1 4 7 4 8 3 6 4 5
2 1 4 7 4 8 3 6 4 6
2 1 4 7 4 8 3 6 4 7
2 1 4 7 4 8 3 6 4 8
2 1 4 7 4 8 3 6 4 9
2 1 4 7 4 8 3 6 5 0
2 1 4 7 4 8 3 6 5 1
2 1 4 7 4 8 3 6 5 2
2 1 4 7 4 8 3 6 5 3
2 1 4 7 4 8 3 6 5 4
2 1 4 7 4 8 3 6 5 5

1 2 4 1 6 1 4 6 6 1
9 1 7 6 7 0 1 4 8

1 7 6 7 5 5 7 5 9 6
5 6 8 4 1 2 2 5 9
3 0 7 1 1 2 5 2 2
6 3 0 6 2 6 3 8 1

5 8 7 4 3 2 4 2
1

3 9 7 2 0 4 0 9 4
2 0 8 3 2 4 9 6 5 3

8 5 8 6 1 6 1 5 9
5 5 7 0 5 4 3 4 9

1 9 7 9 1 2 6 4 6 5
2 0 8 1 5 0 7 2 5 8
1 1 6 6 0 3 8 8 9 5
1 1 4 1 7 9 9 2 8 0

4 . 2 7 3 2 3 4 6 2 6 4 0 5 5 2 E - 0 0 0 1
8 . 2 3 0 8 3 1 4 5 9 2 7 2 1 1 E - 0 0 0 1
2 . 6 4 6 8 7 5 8 4 3 7 0 6 9 5 E - 0 0 0 1
1 . 4 3 0 1 0 4 1 2 4 0 9 4 4 1 E - 0 0 0 1
2 . 9 3 6 5 8 2 9 2 5 2 3 4 2 6 E - 0 0 0 1
2 . 7 3 5 4 4 5 3 7 0 3 0 8 8 0 E - 0 0 0 2
4 . 6 5 6 6 1 2 8 7 5 2 4 5 8 0 E - 0 0 1 0
1 . 8 4 9 6 2 5 6 9 8 2 2 0 7 4 E - 0 0 0 1
9 . 7 0 0 8 8 7 1 5 6 5 1 1 1 4 E - 0 0 0 1
3 . 9 9 8 2 4 3 0 6 0 8 9 3 4 9 E - 0 0 0 1
2 . 5 9 3 9 8 6 4 5 3 7 6 5 0 7 E - 0 0 0 1
9 . 2 1 6 0 2 5 7 7 8 6 5 8 7 0 E - 0 0 0 1
9 . 6 9 2 7 7 3 4 9 7 5 2 0 3 7 E - 0 0 0 1
5 . 4 2 9 7 9 1 7 3 1 4 9 4 3 8 E - 0 0 0 1
5 . 3 1 6 9 1 7 2 2 8 1 9 4 3 8 E - 0 0 0 1
4 . 9 7 9 4 0 2 6 2 0 8 0 1 4 2 E - 0 0 0 2

Fig. C-4. Find Period of Random Number Sequence: UNIFORM (SPSS)
(MLCG; a=16807, w=2147483647)

92

Sequence Seed Random Number

1 1 7 .82636925942561E-•0006
2 16807 1 .31537788143166E-•0001
3 282475249 7 .55605322195033E-•0001
4 1622650073 4 . 58650131923449E-•0001
5 984943658 5 .32767237412169E-•0001
6 1144108930 2 .18959186328090E-•0001
7 470211272 4 . 70446162144861E-•0002
8 101027544 6 .78864716868319E-•0001
9 1457850878 6 . 79296405836612E-•0001

10 1458777923 9 . 34692895940828E-•0001
11 2007237709 3 . 83502077489859E-•0001
12 823564440 5 . 19416372067955E-•0001
13 1115438165 8 .30965346112365E-•0001
14 1784484492 3 .45721105274614E-•0002
15 74243042 5 .34616350445252E-•0002
16 114807987 5 . 29700193335163E-•0001
17 1137522503 6 . 71149384077242E-•0001
18 1441282327 7 . 69818621114743E-•0003
19 16531729 3 . 83415650754895E- 0001
20 823378840 6 . 68422375185612E- 0002

2147483641 1483866096 2 .83998838292434E- 0001
2147483642 609882861 1 .68475180942786E- 0001
2147483643 361797696 5 .62366105412303E-•0001
2147483644 1207672015 6 .87133664585246E- 0001
2147483645 1475608308 6 .55500684238738E-•0001
2147483646 1407677000 4 .65661287524580E- 0010
2147483647 1 7 . 82636925942561E- 0006
2147483648 16807 1 . 31537788143166E- 0001
2147483649 282475249 7 . 55605322195033E- 0001
2147483650 1622650073 4 . 58650131923449E- 0001
2147483651 984943658 5 . 32767237412169E- 0001
2147483652 1144108930 2 . 1 8 9 5 9 i 8 6 3 2 8 0 9 0 E - 0001
2147483653 470211272 4 . 70446162144861E- 0002
2147483654 101027544 6 . 78864716868319E- 0001
2147483655 1457850878 6 . 79296405836612E- 0001

BIBLIOGRAPHY

BMDP 1983. Statistical Software. Berkeley: University of California Press, California.

BMDP 1992. BMDP Statistical software Manual, volume 1. Berkeley: University of
California Press, California.

Borland 1992. Turbo Pascal 7.0. Scott Valley: Borland International Inc., California.

Box, G. E. P. and Muller, M. E. 1958. A note on the generation of random normal
deviates. Annals of Mathematical Statistics 29: 610-613.

Bratley, P., Fox, B. L. and Schrage, L. E. 1987. A guide to simulation, 2nd edition.
New York: Springer-Verlag, New York.

Campagner, A. 1992. Fast and reliable random-number generation. Nelson, B. L., Kelton,
W. D., and Clark G. M. (editors). Proceedings of the 1992 Winter Simulation
Conference. Washington, DC: IEEE Press, 438-442.

Carta, D. G. 1990. Two fast implementations of the "minimal standard" random number
generator. Communications of the ACM 33, 1: 87-88.

Coveyou, R. R , and McPherson, R. D. 1967. Fourier analysis of uniform random number
generators. Journal of the Association for Computing Machinery 14\ 100-119.

Deng, L., and Chu, Y. 1991. Combining random number generators. Nelson, B. L.,
Kelton, W. D., and Clark G. M. (editors), Proceedings of the 1991 Winter Simulation
Conference. Washington DC: IEEE Press, 1043-1046.

Dudewicz E. J. and Rally T. G. 1981. The Handbook of Random Number Generation
and Testing with TESTRAND Computer Code. Columbus: American Science Press,
Ohio.

Fishman, G. S. and Moore, L. S., III. 1982. A statistical evaluation of multiplicative
congruential random number generators with modulus 231-1. Journal of the American
Statistical Association 77: 129-136.

Fishman, G. S. and Moore, L. S., III. 1986. An exhaustive analysis multiplicative
congruential random number generators with modulus 231-1. SIAM Journal on
Scientific and Statistical Computing 7, 1\ 24-45.

93

94

Haas, A. 1987. The multiple prime random number generator. ACM Transactions on
Mathematical Software 13, 14: 368-381.

Hamilton, K. G. 1993. Pseudorandom number generators for personal computers.
Computer Physics Communications 75: 105-117.

IMSL 1991. Library Users Manual, Stat/Library, version 2.0. Houston: IMSL Inc.,
Texas.

James F. 1990. A review of pseudorandom number generators. Computer Physics
Communications 60: 329-344.

Kleijnen, J. P. and Groenendaal W. 1992. Simulation: A statistical perspective. West
Sussex: John Wiley & Son, England.

Knuth, D. E. 1981. The Art of Computer Programming, volume 2:Seminumerical
Algorithm. 2nd edition. Reading: Addison-Wesley, Massachusetts.

Leva, J. L. 1992a. A fast normal random number generator. ACM Transactions on
Mathematical Software 18, 4: 449-453.

Leva, J. L. 1992b. Algorithm 712: A normal random number generator. ACM
Transactions on Mathematical Software 18, 4: 454-455.

L'Ecuyer, P. 1988. Efficient and portable combined random number generators.
Communications of the ACM 31, 6: 742-749.

L'Ecuyer, P. 1990. Random numbers for simulation. Communications of the ACM 33, 10:
85-97.

L'Ecuyer, P. 1992. Testing random number generators. Nelson, B. L., Kelton, W. D., and
Clark G. M. (editors), Proceedings of the 1992 Winter Simulation Conference.
Washington, DC: IEEE Press, 305-313.

L'Ecuyer, P., Blouin, F. and Couture, R. 1993. A search for good multiple recursive
random number generators. ACM Transactions on Modeling and Computer
Simulation, 3, 2: 87-98.

Lewis, P. A. W., Goodman, A. S. and Miller, J. M. 1969. A pseudo-random number
generator for the System/360. IBM Systems Journal 8, 2: 136-146.

Marsaglia, G. 1968. Random numbers fall mainly in the planes. Proceedings of the
National Academy of Sciences of the United States of America 61. Washington, DC:

95

GPO., 25-28.

Marsaglia, G. 1985. A current view of random number generators. Billard, L. (editor).
Computer Science and Statistics: Proceedings of Sixteenth Symposium on the
Interface. Amsterdam: Elsevier Science Publishers, North-Holland, 3-10.

Marsaglia, G., Narasimhan, B. and Zaman, A. 1990. A random number generator for
PC's. Computer Physics Communications 60: 345-349.

Marsaglia, G. and Zaman, A. 1991. A new class of random number generators. Annals
of Applied Probability, volume I, 3: 462-480

Marsaglia, G., Zaman A. and Tsang, W. W. 1990. Toward a universal random number
generator. Statistics & Probability Letters, 9: 35-39.

Modianos, D. T., Scott, R. C. and Cornwell, L. W. 1984. Random number generation on
microcomputers. Interfaces 14, 4: 81-87.

Niederreiter, H. 1992. Random number generation and quasi-Monte Carlo methods,
Philadelphia: SIAM, Pensilvania.

Park, S. K. and Miller, K. W. 1988. Random number generators: Good ones are hard to
find. Communications of the ACM 31, 10: 1192-1201.

Payne, J. A. 1982. Introduction to Simulation: Programming Techniques and Methods of
Analysis. New York: McGraw-Hill, New York.

RAND Corporation 1955. A Million Random Digits with 100000 Normal Deviates. New
York: The Free press, New York.

Ripley, B. D. 1983. The lattice structure of pseudorandom number generators.
Proceedings of the Royal Society of London, A 389: 197-204.

Ripley, B. D. 1987. Stochastic simulation. New York: John Wiley & Son, Inc., New
York.

SAS 1990. SASLanguage: Reference, volume 6. Cary: SAS Institute Inc., North
Carolina.

Selby, S. M. 1975. SCRC Standard Mathematical Tables. 23rd edition. Boca Raton: CRC
Press, Florida.

96

Schrage, L. 1979. A more portable FORTRAN random number generator. ACM
Transactions on Mathematical Software 5, 2: 132-138.

Sobol, I. M. 1974. The Monte Carlo method. Chicago: University of Chicago Press,
Illinois.

SPSS 1990. Statistical Algorithm. 2nd edition. Chicago: SPSS inc., Illinois.

SPSS 1994. SPSSfor Windows 6.1. Chicago: SPSS inc., Illinois.

Tausworthe, R. C. 1965. Random numbers generated by linear recurrence modulo two.
Mathematics of Computation: 201-209

Tezuka, S., and L'Ecuyer, P. 1992. Analysis of add-with-carry and subtract-with-borrow
generators. Swain, J. J., Goldsman, D., Crain, R. C., and Wilson, J. R. (editors).
Proceedings of the 1992 Winter Simulation Conference. Washington, DC: IEEE
Press, 443-447.

Tezuka, S., L'Ecuyer, P. and Coutre, R. 1993. On the lattice structure of the add-with-
carry and subtract-with-borrow random number generators. ACM Transaction on
Modeling and Computer Simulation 3, 4: 315-331.

von Neumann, J. 1952. Various techniques used in connection with random digits, U.S.
National Bureau Standard Applied Mathematics Series 12. Washington, DC: GPO.,
36-38.

Wichmann, B. A. and Hill, I. D. 1982. An efficient and portable pseudorandom number
generator. Applied Statistics 31: 188-190.

