An Empirical Comparison of Random Number Generators: Period, Structure, Correlation, Density, and Efficiency

PDF Version Also Available for Download.

Description

Random number generators (RNGs) are widely used in conducting Monte Carlo simulation studies, which are important in the field of statistics for comparing power, mean differences, or distribution shapes between statistical approaches. Statistical results, however, may differ when different random number generators are used. Often older methods have been blindly used with no understanding of their limitations. Many random functions supplied with computers today have been found to be comparatively unsatisfactory. In this study, five multiplicative linear congruential generators (MLCGs) were chosen which are provided in the following statistical packages: RANDU (IBM), RNUN (IMSL), RANUNI (SAS), UNIFORM(SPSS), and RANDOM (BMDP). … continued below

Physical Description

ix, 96 leaves : ill.

Creation Information

Bang, Jung Woong August 1995.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by the UNT Libraries to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 689 times. More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Bang, Jung Woong

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Description

Random number generators (RNGs) are widely used in conducting Monte Carlo simulation studies, which are important in the field of statistics for comparing power, mean differences, or distribution shapes between statistical approaches. Statistical results, however, may differ when different random number generators are used. Often older methods have been blindly used with no understanding of their limitations. Many random functions supplied with computers today have been found to be comparatively unsatisfactory. In this study, five multiplicative linear congruential generators (MLCGs) were chosen which are provided in the following statistical packages: RANDU (IBM), RNUN (IMSL), RANUNI (SAS), UNIFORM(SPSS), and RANDOM (BMDP). Using a personal computer (PC), an empirical investigation was performed using five criteria: period length before repeating random numbers, distribution shape, correlation between adjacent numbers, density of distributions and normal approach of random number generator (RNG) in a normal function. All RNG FORTRAN programs were rewritten into Pascal which is more efficient language for the PC. Sets of random numbers were generated using different starting values. A good RNG should have the following properties: a long enough period; a well-structured pattern in distribution; independence between random number sequences; random and uniform distribution; and a good normal approach in the normal distribution. Findings in this study suggested that the above five criteria need to be examined when conducting a simulation study with large enough sample sizes and various starting values because the RNG selected can affect the statistical results. Furthermore, a study for purposes of indicating reproducibility and validity should indicate the source of the RNG, the type of RNG used, evaluation results of the RNG, and any pertinent information related to the computer used in the study. Recommendations for future research are suggested in the area of other RNGs and methods not used in this study, such as additive, combined, mixed and shifted RNGs.

Physical Description

ix, 96 leaves : ill.

Subjects

Keywords

Library of Congress Subject Headings

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • August 1995

Added to The UNT Digital Library

  • March 24, 2014, 8:07 p.m.

Description Last Updated

  • April 17, 2015, 9:45 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 689

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Bang, Jung Woong. An Empirical Comparison of Random Number Generators: Period, Structure, Correlation, Density, and Efficiency, dissertation, August 1995; Denton, Texas. (https://digital.library.unt.edu/ark:/67531/metadc277807/: accessed June 14, 2025), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; .

Back to Top of Screen