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As the marketplace becomes more competitive, companies are increasingly focusing 

on quality to maintain a competitive advantage. The use of statistical methods leads to 

improvements in quality and an associated increase in productivity. One of the most widely 

used statistical methods to improve quality and productivity is control charts. A fundamental 

assumption in the development of control charts is that the underlying distribution of the 

monitored quality characteristic is normal. However, in many industrial situations, the 

process means of the quality characteristics may not be normally distributed, in which 

different combinations of skewness and kurtosis of the quality data create an infinite number 

of potentially complicated nonnorma! situations. If a standard symmetrical x control chart 

is used when the normality assumption is violated, the error rates can be significantly 

affected. The need to better define approaches for handling nonnormal data is a partial 

motivation for this research. 

In this study, neural networks are developed under conditions of nonnormality as 

alternatives to standard control charts, and their performance is compared with those of 

standard x and CUSUM control charts. The performance of x control charts is also 

compared with that of CUSUM charts. The study examines the effects of nonnormality, 

mean shifts, and sample size on the performance of the three methods to detect out-of-control 



states. A heuristic procedure for specifying the parameters used in the neural network 

configurations is also discussed in detail. These problem specific parameters include learning 

rate, momentum, and number of hidden layers and neurons. The neural network approach 

presented in this study offers a competitive alternative to the existing control schemes. 

Extensive comparisons showed that the neural networks appeared to be a better control 

procedure for detecting sudden changes in the process mean. 
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CHAPTERI 

INTRODUCTION 

In 1925, Shewhart introduced the control chart in the Journal of the American 

Statistical Association. Since then, control charts have become a powerful tool to monitor 

process means and variability (Keats and Hubele 1989). Control charts, when used 

appropriately, help the production manager monitor processes to determine whether they are 

"in control" or "out of control." When a process being monitored is found to be "out of 

control," an improvement process can begin, reducing the variability of the process means 

(Aft 1988). 

Among the most widely used control charts are the x charts. A fundamental 

assumption in the development of x control charts is that the underlying distribution of the 

monitored quality characteristic is normal. However, in many industrial situations, the 

process means of the quality characteristics may not be normally distributed random 

variables. For example, we may know that the distribution of the process mean is nonnormal 

due to the small sample size used, coupled with the fact that the underlying distribution of 

the data is known to be exponential, Weibull, or some other nonnormal distribution. 

Knowing the underlying distribution, we can derive the sampling distributions of x and 

obtain exact probability control limits for the control charts. However, this approach could 

be difficult in cases in which the underlying distribution changes over time. In other cases, 

we may not know the form of the underlying distribution, and then our only choice may be 
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to use the usual control charts based on normality. In such cases, the nonnormality of the 

process means can have a significant effect on the performance of the x charts (Ryan 1989). 

If the standard symmetrical x charts are used when the normality assumption is violated, the 

error probabilities for the procedure can be significantly larger than expected. Therefore, 

design considerations for the x chart must include recognition of the degree of nonnormality 

of the underlying data (Ramsey and Ramsey 1990; Yourstone and Zimmer 1992). 

When the normality assumption is not valid, control chart users may choose from 

several different courses of action. Rigdon, Cruthis, and Champ (1994) suggested a 

transformation of the original data that yields an approximately normal distribution. They 

recommended the use of one family of transformations, the Box-Cox power transformations, 

which are often used in regression and analysis of variance models. The transformed data 

might be more closely modeled by the normal distribution, and the standard control charts 

could then be used. There are two primary problems with the transformation approach. First, 

there are difficulties in determining the appropriate transformation, and second, when a 

transformation has been chosen, there are difficulties in implementing the procedure and 

justifying the transformation (Montgomery 1991a; Yourstone and Zimmer 1992). Another 

means of dealing with nonnormality is to increase the sample size until the distribution of 

the data approaches normality. Some research supports this course of action in handling 

nonnormal situations. Schilling and Nelson (1976) concluded that it would be reasonable to 

use the standard control charts with four or more observations in each sample if the normality 

assumption is not severely violated. Their conclusion is supported by other research dealing 

with the design of control charts under nonnormality (Montgomery 1980). However, the use 
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of larger samples to overcome severe violations of the normality assumption may not be 

operationally feasible and is obviously costly. 

A third approach to dealing with nonnormal data is to modify the x chart. One way 

to modify the chart is to employ asymmetric control limits. Tagaras (1989) and Yourstone 

and Zimmer (1992) developed asymmetric x control charts with unequal distances from the 

center line as alternatives to the traditional x control chart. However, utilization of this 

approach requires either knowledge of the underlying distribution of the data or a good 

approximation. Finally, the cumulative sum (CUSUM) control chart is an alternative to the x 

chart for controlling nonnormal data (Ho and Case 1994). Lashkari and Rahim (1982) 

developed an economic design of the CUSUM chart which assumes that the observations 

obtained from the process are nonnormally distributed. Although many researchers have 

developed remedies for dealing with nonnormality, including those mentioned above, none 

of these is completely satisfactory. In this study, neural networks are developed as 

alternatives to the standard control charts to handle the nonnormality problem. 

This study is organized as shown in figure 1. In this chapter, the purpose of the study, 

the research problem, and the significance of the study are addressed. Chapter 2 addresses 

the background of the x, R, and cumulative sum control charts. Some important neural 

network concepts such as processing elements (PEs), feed-forward networks, training, 

testing, and backpropagation are also discussed. Chapter 3 is a discussion of the reported 

findings, limitations, and significance of the prior studies. Chapter 4 presents data generation 

and the methodologies used in comparing the performance of x and CUSUM control charts 

and neural networks for dealing with nonnormal processes. In chapter 5, results of extensive 
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simulation experiments are reported. Finally, in chapter 6, results and limitations of the study 

are discussed. 

Purpose of the Study 

In many manufacturing situations, the quality characteristic of interest is a random 

variable whose density function depends upon one or more parameters of the product quality 

and often has a nonnormal distribution. In such situations, the use of standard control charts, 

which are theoretically based on the normality assumption, could have a significant effect 

on the probabilities (Type I and II errors) associated with the control limits and may 

incorrectly indicate the process control state (Rahim 1985). In this "contaminated" 

nonnormal situation, neural networks might be good alternatives to the standard control 

charts for detecting out of control situations. As a first step, this study develops neural 

networks as alternatives to the standard x control charts. A heuristic procedure for 

specifying the parameters used in the neural network configuration is discussed in detail. 

These problem specific parameters include learning rate, momentum, and number of hidden 

layers and neurons. This study also examines and compares the performance of standard x 

and CUSUM control charts and neural networks for process means when dealing with 

nonnormal data. 

Research Problem 

When setting the upper and lower control limits for a x chart, the normality 

assumption should be justified by the central limit theorem, which essentially states that x 

will tend toward a normal random variable regardless of the underlying distribution of data 

as the sample size becomes large. However, there are cases where either the underlying 
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distribution of the original data is nonnormal, or the sample size is not large enough to apply 

the central limit theorem. In these situations, the problem is to find an economic design of 

the x chart. The economic design of a x chart involves determining the optimal parameters 

for the chart ~ the sample size, the sampling interval, and control limit coefficients that 

minimize the costs associated with designing the chart (Rahim 1985; Saniga 1989; Ho and 

Case 1994). A number of researchers have developed economic designs for x, CUSUM, and 

asymmetric control charts for dealing with the nonnormality problem. However, none of 

these designs is uniformly satisfactory. One of the main reasons is that numerous forms of 

nonnormality are possible for real-world quality characteristics. For example, a process may 

have been recorded only during a certain interval, resulting in a truncated distribution. 

Another example of nonnormality is a mixture-distribution, which occurs when products 

from two or more separate sources are mixed (Rahim 1985). 

Significance of the Study 

Neural networks are computer-based simulations of living nervous systems that have 

a mathematical basis. Recently, these computer-dependent neural networks have emerged 

as alternatives to traditional statistical techniques as the availability and capability of 

computer systems have increased. The application of neural networks to the quality control 

area is relatively new and is limited in scope. Although several researchers (Davis and 

Illingworth 1989; Pugh 1989, 1991; Velasco 1993; Hwarng and Hubele 1993a, 1993b; 

Prybutok, Sanford, and Nam 1995; Hwarng 1995 ) have developed neural networks as 

alternatives to the standard x control charts for monitoring process means, these studies 

have been limited in number and coverage. All of the previous research has involved 
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developing neural networks for monitoring only process means, which is equivalent to the 

standard x control chart. Also, the previous research was done only under the condition of 

normality. 

In a manufacturing environment, however, the characteristics of the process may not 

follow a normal distribution. Under nonnormality, different combinations of skewness and 

kurtosis of the quality data create an infinite number of potential complicated nonnormal 

situations. These rather significant limitations on developing generalizable approaches for 

nonnormal data are a partial motivation for this research into the application of neural 

networks to control charts. In this study, neural network alternatives to the standard control 

charts are developed under conditions of nonnormality. The performance of these neural 

networks is compared with those of the corresponding x and CUSUM control charts. The 

development of a new and better technique for the analysis of quality characteristics will 

allow companies to enhance product quality and reduce internal and external failure costs. 

If the neural networks show potential for improving product quality and/or reducing costs, 

the results will provide guidance as to the practical use of the neural network as an 

alternative to or a supplementary technique for standard control charts. 
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CHAPTER II 

THEORETICAL FRAMEWORK 

Background of Control Charts 

Introduction 

As the marketplace becomes more competitive, companies increasingly focus on 

quality for competitive advantage. From the customers' point of view, a quality product or 

service is one that meets or surpasses their needs and expectations at a price they are willing 

to pay. Quality characteristics for a product or service include such things as strength, 

appearance, durability, reliability, and maintainability. However, producers are also 

concerned that quality of product or service meets their prespecified process requirements. 

Scientific and systematic methods to monitor, analyze, and control processes allow 

simultaneously the meeting of the customers' need and expectations and the process quality 

requirements. 

Variation exists in every process and every sample of measurements. That is, the 

measured quality of a product or service is subject to process variation as a result of chance 

and assignable causes. We refer to the situation related only to chance causes of variation, 

as "in-control." Variation within this stable pattern is inevitable. Variation outside of this 

chance variability is called an "out-of-control" situation. Non-chance variation is attributable 

to assignable causes that may be the result of such events as an improperly adjusted 

machine, an operator error, or defective raw material. 



Statistical methods can be employed to identify and pinpoint the causes of such 

unusual variation, whether it is for a manufacturing or general business process. The use of 

statistical methods leads to improvements in quality and an associated increase in 

productivity. Statistical process control (SPC) includes all the statistical methods for 

monitoring, analyzing, and controlling manufacturing and manufacturing related processes. 

SPC is the application of statistical methods to the measurement and analysis of variation in 

any process (Juran and Gryna 1993). SPC, taken in a narrow definition, constitutes only those 

statistical procedures that are used in the actual control of a process. However, in a wider 

sense, SPC includes the entire body of knowledge and the entire toolbox of statistical 

procedures required to measure, analyze, and characterize a process (Evans and Lindsay 

1989). 

A statistical control chart is a graphical method used to monitor various aspects of 

a process and determine whether the process is in-control or out-of-control. Ideally, an out-

of-control state is detected immediately after its occurrence. Conversely, we would like to 

have as a low false alarm rate as possible. A false alarm rate is the probability that the 

monitoring process detects an out-of-control state when the process is in-control. The use of 

statistics allows the establishing of an appropriate balance between the two. When control 

charts are implemented, it is important that they be used where the potential for cost 

reduction is substantial. Control charts should also be used where trouble is likely to occur 

(Ryan 1989). Modern computer technology makes it easy to implement control charts, in real 

time, for numerous processes. The general form of several control charts (x, R, c, and p) 

contains a center line (CL), which represents the average value of the quality characteristic 
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corresponding to the in-control state. The other two horizontal lines are the upper control 

limit (UCL) and the lower control limit (LCL). A point that should be emphasized is that 

there is no connection or relationship between the control limits for the control charts and 

the specification limits for the process. The control limits are driven by the natural variability 

of the process and are based on past process data. The specification limits are the process 

requirements specified by the producers. Therefore, it is possible that the process might be 

in-control based on control charts but not be capable of meeting the process requirements 

(Ryan 1989). 

There are various types of control charts, including x, CUSUM, R, p, c, moving 

average, multivariate, and others. The type of control chart that is appropriate for a situation 

depends on the quality characteristic that is measured and the type of data being collected. 

Quality characteristics such as the weight, diameter, or concentration of a product yield 

variables in the form of continuous data. Quality defects such as scratches or blemishes on 

a product result in what are referred to as attribute (discrete) data. The x and R charts are 

used for measuring variables data, whereas p and c charts are used for measuring attribute 

data. The multivariate control chart is used when the characteristics of the process consist 

simultaneously of more than one variable (Tracy, Young, and Mason 1992; Hayter and Tsui 

1994). The x and R charts are used most often in practice, whereas multivariate and 

CUSUM charts are among the least used. 

Control charts are based on the assumption that data observations are randomly and 

independently collected. Another important assumption underlying the use of a x control 

chart is that the sample mean is normally distributed. If a control chart is constructed based 
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on samples of at least four or five and the distribution of x is reasonably symmetric and bell 

shaped, the central limit theorem states that distribution of x will not differ greatly from a 

normal distribution and therefore the normality assumption is appropriate. However, if the 

underlying distribution of the data is severely nonnormal, the effectiveness and efficiency of 

the control charts are subject to question. In this chapter, the background of the x, R, and 

cumulative sum (CUSUM) control charts is addressed. 

x Control Charts 

The x chart is the most widely used among the control charts for monitoring the 

central tendency of a process quality characteristic. Its relative ease of computation and 

application and its excellent performance in recognizing out-of-control conditions account 

for a portion of its popularity (Wadsworth et al. 1986; Ryan 1989). The x chart is used to 

monitor variation in the process mean and to indicate whether shifts in the mean occur. As 

noted before, the general form of a x control chart contains the CL, UCL, and LCL. The 

center line and two control limits are defined as follows (Grant and Leavenworth 1988; 

Montgomery 1991b): 

Center Line = ]x 

Upper Control Limit = ]i + z a / 2 o - = p + z a / 2 o / J n 

Lower Control Limit = yi - z a / 2 o - = p - z a / 2 a / / n 

where the process characteristic x = (xx + x2 +. . . + xn) / n has a normal distribution 

with mean p. and standard deviationa--a/yjri. In practice, p and a are unknown and are 

estimated from preliminary in-control samples. Suppose that m samples are obtained, each 

of size n. Generally, m ranges from 20 to 30, and the number of observations in each sample 
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is recommended to be 4 to 6, if available (Quesenberry 1993). Let xx , x2 , . . . , xm be 

the averages for each sample, where xL, i=l,2, m, is the mean of the process 

characteristic for each of the m samples. The best estimator of ]i, the true mean of the 

process, is x = ( xx, x2, . . . , xj / jn. It is very common to use 3 for the Za/2 value, 

and the resulting control limits are called 3-sigma limits. It should be noted that the value 3 

can be changed to fit the quality requirement for the process. The UCL and LCL representing 

3-sigma limits for sample data are as follows (Ryan 1989): 

CL = x 

UCL = x + 36/^/n 

LCL = x - 3 d/sfn 

where & = R/d2. 

We note that the quantity 

3 A2 = 
d2/ri 

is a constant that depends on the sample size, so it is possible to rewrite the equations above 

as 

CL = I 

UCL = x + A2R 

LCL = x -A2R. 

If a computed sample mean falls between the LCL and UCL, the process is considered to be 

in-control. If not, it is considered to be out-of-control. 

In general, averages are used to develop a x control chart because individual 

observations are not as sensitive as an x or CUSUM control chart in detecting mean shifts 
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(Juran and Gryna 1988). However, using means is not always possible or practical. If items 

selected from an assembly line are produced at such a slow rate as to preclude the forming 

of subgroups, individual observation control charts without subgrouping are more 

appropriate (Ryan 1989). 

R Control Charts 

R stands for range, the difference between the maximum and the minimum values in 

a sample. Before interpreting patterns on a x chart, it is important first to determine whether 

or not the corresponding R chart is in-control because, when an R chart indicates an out-of-

control condition, interpretation of the x chart is not meaningful. However, some assignable 

causes show up on both the x and R charts. If both x and R charts exhibit out-of-control 

conditions, then the best strategy is to eliminate the assignable causes in the R chart first. In 

many cases, this will also eliminate the out-of-control condition on the x chart 

(Montgomery 1991b). The range (R) is easier to conduct than the sample standard deviation 

and provides nearly as much information about the sample variation for sample sizes less 

than 10. Since control charts are typically used to monitor small samples, the sample range 

is generally used to measure sample variation. An R control chart is used to monitor the 

range of the characteristic of interest in the process. In general, the narrower the range, the 

better the process. Let Rir Rz, . . . , Rm be the ranges of the m samples. The average 

range is R = {R% + R2 + . . . + RJ / m. 

The established relationship between the range of a sample from a normal distribution 

and the standard deviation of that distribution is W = R/a, where W is called the relative 

range, with an expected value of d2. An estimator of o is Q = R/d2. The standard 
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deviation of W, say d3, is a known function of the sample size n. Thus, since R = Wo, the 

standard deviation of R is oR = d3o. Since a is unknown, we may estimate aR by 

D 
a = cL — . The center line and control limits for sample data are defined as follows 

cL 2 

(Montgomery 1991b): 

UCL= R + 30 = R + 3d ,— 
R 3 d2 

CL= R 

LCL = R - 36 = R - 3 d , — . 
d„ 

2 

d d 
If we let O, = 1 - 3 — and £>. = 1 + 3 — , 

3 d2 d2 
then 

UCL = RD 
4 

CL = i? 

LCL = RD3 

Cumulative Sum fCUSUM) Control Charts 

A major disadvantage of all Shewhart control charts is that they only use the 

information about the process contained in each of the plotted points separately, and they 

ignore any information given by the entire sequence of points. As a result, Shewhart control 

charts are relatively insensitive to small shifts in process characteristics. It is also suggested 

that other criteria be applied to Shewhart control charts, such as runs rules, which attempt 

to incorporate information from the entire set of points into the decision procedure (Hwarng 

and Hubele 1993a; Prybutok, Sanford, and Nam 1995). However, the use of supplementary 

runs rules requires experience to identify patterns in the process and reduces the simplicity 
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and ease of interpretation of the Shewhart control charts. The CUSUM control chart is an 

effective alternative to the Shewhart control chart for detecting small shifts (0.5 a to 1.5 a ) 

in process means (Ryan 1989; Montgomery 1991b). 

The CUSUM control chart is a chronological plot of the cumulative sum of 

deviations of process means. It is well known that the CUSUM chart identifies small shifts 

in a process much faster than the standard x control chart (Juran and Gryna 1993). The 

CUSUM chart focuses on a target value rather than the actual average of process data. Its 

limits are typically displayed using a v-shaped mask that is constructed and moved as a new 

point is plotted. The control limits are neither parallel nor fixed. CUSUM charts directly 

incorporate all the information in the sequence of sample values by plotting the cumulative 

sums of the deviations of the sample values from a target value. The steps in constructing the 

CUSUM chart are as follows (Ryan 1989: Montgomenry 1991b). 
i 

First, find SJ = 2 (3T - ]iQ) 

where S i = the cumulative sum up to the ith sample 

x . = the average of the jth sample 

|a0 = the target value for the process mean. 

If the process remains at the target value p0 , the cumulative sum defined above should 

fluctuate stochastically around zero. In fact, the cumulative sum is a random walk process 

with mean zero. However, if the mean shifts upward to some value p1>U0, then an upward 

or positive drift will develop in the S i . Conversely, if the mean shifts downward, then a 

downward or negative drift will develop in the S i . Using a V mask to monitor a process 

signals an out-of-control condition when all of the cumulative points are not within the arms 
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of the V mask. The mask is moved backward after each point is plotted, with the slope of the 

arms of the mask remaining constant. 

The main step in the design procedure for a CUSUM control chart is to determine the 

lead distance d and the angle 0 of the V mask. 

d = ( JL) i n ( a n d 
5 a 

0 = t an" 1 (-^A) 

where a = the probability of a false alarm 

(3 = the probability of failing to detect a shift in the mean 

A = the shift in the process mean that it is desired to detect 

5 = A 

A = a scale factor relating the vertical scale unit to the horizontal scale unit 

CUSUM control charts have several advantages relative to Shewhart control charts. 

First, as mentioned, CUSUM charts are more effective in detecting relatively small shifts 

in the process mean. CUSUM charts will detect small shifts approximately twice as fast as 

a Shewhart chart. Second, it is relatively easy to detect the starting point of a process shift 

by examining the plotted data. Third, the CUSUM chart has proved to be a good alternative 

to the x chart when dealing with nonnormal data (Lashkari and Rahim 1982). On the other 

hand, some disadvantages of the CUSUM charts should be noted. First, the CUSUM control 

chart is not as good as Shewhart control charts in detecting large shifts in process mean 

(more than 2 a). Second, diagnosis of patterns on CUSUM charts is difficult since the 

assumption in pattern recognition is uncorrelated sequence of points. 
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Background on Neural Networks 

Introduction 

For neural network researchers in the quality control area, the objective is to develop 

practical neural network models that can stand as alternatives to or as supplements to 

standard control charts. In a computer integrated manufacturing (CIM) environment, the 

neural network approach can be implemented in software and applied to the same data that 

would normally be used for a standard control chart. In this situation, an operator may not 

routinely monitor the control chart but, rather, would be alerted by an out-of-control signal 

generated by the neural network pattern recognition algorithm. Eventually, real time 

feedback to the system and automated process control will be used to increase the efficiency 

and productivity of a process (Hwarng and Hubele 1993b; Velasco and Rowe 1993). 

A neural network is a computing system consisting of two primary components: (1) 

a set of processing elements (PEs: the neural network equivalent of a biological neuron) and 

(2) the interconnections among the PEs. There are three types of PEs in a neural network: 

input, hidden, and output PEs. These PEs can be organized into many different types of 

neural networks. One of these, the feed-forward neural network, is especially suited for 

classification applications and is used in this study. A typical feed-forward neural network 

is composed of an input layer, one hidden layer, and an output layer. 

To better understand this work, it is important to provide background on neural 

networks. This section contains a summary of the relevant theory on neural networks. The 

general descriptions provided within the subsections below (Neural Network Models, 

Training and Testing, Backpropagation Network, Proposed Neural Network Model, 
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Advantages of Neural Networks, and Limitations of Neural Networks) represent a synthesis 

and summary of material from numerous fundamental references (Rumelhart, McClelland, 

and PDP Research Group 1986; Wasserman 1989; Caudill 1990; NeuralWare 1991; Burke 

and Ignizio 1992; Nam 1993). 

Artificial Neurons and Architecture 

The human brain is the most complex computing device known to man. The brain 

consists of tens of billions of neurons densely interconnected. In an artificial neural network, 

the unit analogous to this biological neuron is referred to as a processing element. A neural 

network is defined as a computing system made up of a number of simple, highly 

interconnected processing elements, which processes information by its dynamic state 

response to external inputs. Processing elements, the neural network equivalent of neurons, 

are generally simple devices that receive a number of input signals, and based on those 

inputs, either generate a single output signal or do not. Figure 2 shows the activities that take 

place at the processing element. The process of computing that takes place in a neural 

network can best be understood by examining these activities. 

The output signal of an individual processing element is sent to many other 

processing elements (and possibly back to itself) as input signals via the interconnections 

between processing elements. A processing element is generally an extremely simple device 

that has a number of input signals and a single output signal. Each input signal (xj is 

assigned a relative weight (w;), so the effective input to the processing element is the 

weighted total input, or I = ]T (WjXj) for all input signals. The simplest kind of processing 

element compares this weighted sum input to an arbitrary threshold. If the input is greater 
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than the threshold value, the processing element fires or generates an input signal. If the input 

is less than the threshold, the processing element does not fire and no output is generated. 

Neural Network Models 

Figure 3 shows a fully connected feed-forward neural network in which all processing 

elements in any one layer are connected to all processing elements in the next higher layer. 

The arrows indicate the flow of information. A typical feed-forward neural network has three 

layers of neurons: input, hidden, and output layer neurons. Input values in the input layer are 

weighted and sent to the hidden layer. Neurons in the hidden layer produce outputs based on 

the sum of the weighted values sent to them. In the same way, the values in the hidden layer 

are weighted and sent to the output layer to produce the final results. 

Training and Testing 

There are two main phases in the operation of a neural network: training (learning) 

and testing. Training is the process of adjusting the connection weights in response to the 

amount of error that the network is generating. Unlike traditional expert systems in which 

knowledge is made explicit in the form of rules, neural networks tend to generate their own 

rules by learning. Learning is achieved through a learning rule that adapts or changes the 

connection weights of the network in response to the inputs and optionally, the desired 

outputs of those inputs. Testing is the process that examines whether the neural network has 

generalized over the data set rather than memorizing. 

There are two kinds of learning: unsupervised learning and supervised learning. In 

unsupervised learning, only input stimuli are shown to the network, and the network 

organizes itself internally so that each hidden processing element responds strongly to a 



20 

different set of input stimuli or closely related group of stimuli. In supervised learning, for 

each input stimulus, a desired output stimulus is presented to the system, and the network 

gradually configures itself to achieve that desired input/output mapping. 

Backpropagation Network 

Currently the most widely used technique to train the feed-forward neural networks 

is backpropagation which uses the generalized delta rule. As shown in figure 4, the typical 

backpropagation neural network always has an input layer, an output layer, and at least one 

middle (hidden) layer. Each layer is fully connected to the succeeding layer. 

The generalized delta rule procedure involves two phases: a forward phase and a 

backward phase. During the forward phase, the input is presented and propagated forward 

through the hidden layer to an output value, which is compared with the desired output to 

compute the error. After the appropriate weight changes are made, the backward phase 

propagates the errors back to the input layer from the output layer through the hidden layer 

to update the connection weights. 

Perhaps most unique to neural networks, and an increasingly fruitful research area, 

is the ability of the system to generalize. If a neural system has been trained on a set of data 

which consists of examples of object attributes and associated evaluations, its ability to 

generalize is measured by its performance on objects that lie outside the training set. 

Obviously, generalization ability depends on the adequacy of the training set. The algorithm 

for backpropagation takes the following steps: 

1. Apply the input vector to the network input. 

2. Compute the output of the network. 
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3. Compare the output to the desired output. 

4. Compute the error between the network output and the desired output. 

5. Adjust the weights of the network in a way that minimizes the error. 

6. Repeat steps 1 through 5 for each vector in the training set until the error for the 

entire set is acceptably low. 

Proposed Neural Network Model 

The following notation will be used to describe the backpropagation least mean 

square (BPLMS) algorithm with the generalized delta rule applied to the feed-forward neural 

network used in this study (Archer and Wang 1993; Philipoom, Rees, and Wiegmann 1994): 

x = the [(5+1) x 1] vector consisting of a bias PE (x Q =l) and the five input PEs; 

Wj r = the connection weight from the ith input PE to the rth hidden PE, r (number 

of hidden neurons) = 1,..., h, i (number of input neurons) = 0 , 5 and wi 0 

is the weight from the bias PE; 

v r k = the connection weight from the ith hidden PE to the kth output PE, i = 1,..., 

h, k (number of output neurons) =1,2,3 and vQ is the weight from the bias 

PE to the output PE; 

NET = Wj o + £(w i rXj) at each hidden layer PE; 

Zj = [ 1 +exp (-NET) ] _ 1 , r = 1,..., h, is the output value of the ith hidden layer 

PE; 

NET = v0 + £(vrkxr), r = 1,..., h, at the output PE; 

F(NET) = [ 1 +exp (-NET) ] _ 1 , is the output value of the output node. 

y} = desired output for each input vector, j = l , n 
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n = number of training set pairs 

E = O/2) £ [yj-F(NET>]2, j = 1 , n , is the global error function. 

The proposed neural network model (figure 5) consists of an input layer with five 

input PEs, one hidden layer consisting of h PEs, and an output layer with two output PEs for 

"in-control" and "out-of-control." The inputs to the neural network include one bias value 

and the five observations in each subgroup created by Monte Carlo simulation. During 

training, a set of n pairs of input vectors and corresponding outputs, {[X(l), y(l)], [X(2), 

y(2)],..., [X(n), y(n)]} is presented to the network one pair at a time. A weighted sum of the 

inputs, NET = wi0 + £(w i rXj), i = l,...,h, is calculated at each hidden layer PE. Each hidden 

layer PE then uses a sigmoid transfer function to generate an output, zs 

= [ 1 +exp (-NET) ] ~1, i = 1,..., h, between 0 and 1. The outputs from each of the h hidden-

layer PEs, along with the bias input, are then sent to the output PE, and again a weighted sum 

is calculated, NET = v0 + £ ( v i x i ) > i = 1,..., h, k = 1, 2 at each output layer neuron. The 

weighted sum becomes the inputs to the sigmoid transfer function of the output PEs. The 

resulting output, F(NET)= [1+exp (-NET) ] _ 1 , is then scaled to determine whether the 

processes are "in-control" or "out-of-control." At this point, the second phase of the BPLMS 

algorithm, adjustment of the connection weights, begins. 

The weights are adjusted so as to minimize the global error, E=(V2) * £[yj-F(NET)]2. 

There are four basic steps in the weight change procedure. They are as follows: 

1. Compute how fast the global error, E, changes as the activity of the output unit 

[F(NET)] is changed: 

5E/5F(NET) = F(NET)-y = e. 
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2. Compute how fast the error, E, changes as the total input (NET) received by an 

output unit is changed: 

5E/5NET=[5E/5F(NET)][5F(NET)/5NET] 

= e*F(NET)*[1-F(NET)] 

3. Compute how fast the error E changes as a weight v i k on the connection into an 

output unit is changed: 

5E/5v.k=(5E/5NET) (5NET/5v.k) 

= e*F(NET)*[1-F(NET)]*zi 

4. Finally, compute how fast the error, E, changes as the activity of a unit in the 

hidden layer ( z i ) is changed: 

5E/5z.=(5E/5NET)(5NET/5z.) 

= e*F (NET) * [1-F (NET) ] *v.k 

Once the difference between actual and desired outputs is determined from step 1, step 3 is 

used to determine how much to change each weight vik in the output layer. Then step 4 is 

used to determine how much to change each weight w.. r in the hidden layer. The process 

of forward propagation of inputs and backpropagation of errors with corresponding updates 

of weights continues until training of the neural network is considered complete. 

The second step in the development of a neural network model is testing, which is 

the process that examines whether the neural network has generalized over the data set rather 

than memorizing. It is important that a neural network be able to generalize beyond the data 

set with which it was trained. Testing consists of presenting new data pairs to the network 

and measuring the model's performance. In this study, the performance of the standard x 
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and CUSUM control charts and neural networks is measured by the average run length 

(ARL). 

Advantages of Neural Networks 

There are a number of reasons why the most often used parametric classification and 

prediction tools do not always provide satisfactory results. Parametric statistical techniques 

require that the functional form of the relationship among variables be known and specified. 

In most real world cases, the functional forms are not known, and in very many cases, no 

existing form can be determined (Dutta and Shekhar 1988). In addition, parametric 

techniques require that a variety of assumptions concerning the data be satisfied. These 

assumptions, which often go untested and are often violated, include such items as data 

normality, error independence, and homoscedasticity (Tam and Kiang 1992). This leads to 

abuse of these techniques and erroneous inferences (Marquez et al. 1991). Another reason 

for a lack of traditional statistical model success rests on the fact that many real-world 

problems require complex statistical models and sophisticated data transformations, which 

are often beyond the expertise of the practitioner to execute successfully. 

Neural networks, unlike parametric statistical techniques, do not require that a list of 

assumptions be satisfied. For example, it is not necessary that the functional relationships 

between independent and dependent variables be specified to a neural network. In fact, it is 

not necessary that a domain specific model exist for a neural network to discern relationships 

and build its own model (Dutta and Shekhar 1988). Neural networks are able to learn 

complex linear and nonlinear relationships from data. As a result of this ability, they tend 

to be suitable for two basic types of tasks: recognition and generalization (Duliba 1991). 
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Included in the generalization category are both classification and prediction tasks (Dutta and 

Shekhar 1988). Both of these tasks can involve forecasting the future state of one or more 

dependent variables, based on the current and past values of one or more independent 

variables. Neural networks are also relatively immune to such problems as multicollinearity, 

heteroscedasticity, and outliers (Raghupathi, Schkade, and Raju 1991). These characteristics 

of neural networks make them suitable for classification and prediction tasks (Raghupathi, 

Schkade, and Raju 1991; Salchenberger, Cinar, and Lash 1992). This suitability has led to 

a number of studies that have tested the utility of neural networks, often contrasting them 

with one or more statistical methods, in classification and prediction problems. 

Limitations of Neural Networks 

A disadvantage of neural networks is that they have the potential problem of 

converging to a local minimum rather than to a global minimum (Archer and Wang, 1993). 

The avoidance of such convergence is dependent on the model building procedure. For 

example, one of the important questions is when to stop the learning process to obtain the 

best results and how to determine the neural network parameters to obtain the best possible 

convergence of the learning process. Therefore, like all quantitative methodologies, neural 

networks require an experienced or informed practitioner. Suggestions for avoiding the local 

minimum problem include: (1) training the neural network many times, each with different 

initial random weights; (2) increasing the momentum; (3) lowering the learning rate; and (4) 

adding extra hidden neurons (Wong 1991). The longer the neural network learns the training 

data, the closer it comes to memorizing the training data. If the neural networks memorize 

the training data, they may give the perfect prediction for the training data. However, they 
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may not be able to generalize well on the testing data. One method for preventing 

memorization is to add a small amount of random noise to the training data set The neural 

network design is more of an art than a science. It is often a matter of trying several transfer 

functions, learning rates, and momentum with a different number of hidden layers and/or 

hidden neurons. 
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figure 2. Artificial processing element 

X, 

X, 

Xs 

Sum 
Net Transfer 

Function -F(Net) 

1. Xj = input variables 
2. Wjj = weight 
3. Net = (XjW^ + (X2W2j) +. . . + (XkWkj) 
4. F(Net) = l/(l+e*Net) 

for Sigmoid transfer function 

Where: 
i= 1,2,...5 andj = 1 , 2 , 5 
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CHAPTER III 

LITERATURE REVIEW 

Introduction 

There are two main approaches to control chart design (Saniga 1989). The statistical 

approach, primarily attributable to Shewhart, prespecifies the Type I error rate and power 

(which determine control limits). Type I error rate is the probability of the chart indicating 

that a shift in mean occurs when there is actually no shift. Alternatively, sample size and 

sampling interval are determined using the Type I error rate and power. This approach is used 

in the United Kingdom and parts of Western Europe, whereas in the United States the control 

limits are specified as a multiple of the standard deviation (usually three) of a quality 

characteristic (Montgomery 1991b). The U.S. type heuristic version of the statistical design 

of control charts frequently specifies a sample of four or five to satisfy the normality 

assumption of control charts. The main criticism of the statistical design approach is that it 

ignores economic performance. 

The other approach to control chart design is based on economic criteria. Since 

Duncan (1956) pioneered his work on the economic design of control charts, numerous new 

approaches and applications have been developed (Chiu and Cheung 1977; Montgomery 

1980; Vance 1983; Woodall 1986; Collani 1986; Rahim 1989). The economic design of 

control charts involves optimal determination of the design parameters; the sample size, the 

sampling interval, and the control limits so as to minimize the expected total cost. The main 

n 
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criticism of this approach is that it ignores the statistical performance of the control charts. 

The basic criticisms of the statistical and economic approaches to control chart design lead 

directly to a third synthetic approach called the economic statistical design of control charts. 

Saniga (1989) developed an economic statistical design methodology in which an economic 

loss function is minimized subject to minimum value of power, maximum value of Type I 

error probability, and average time to signal at a specified shift in quality characteristics. His 

approach is a compromise of the statistical and economic design approaches and is readily 

adapted to any Shewhart control chart. This approach yields both good statistical and 

economic results, which is something neither approach alone provides. 

Both the statistical and economic approaches assume that the underlying distribution 

of the quality characteristic is normal. However, in many real world manufacturing 

situations, the normality assumption may not hold. When normality is not a given, the use 

of standard control charts could have a significant effect on the Type I and Type II errors 

associated with the control limits and may incorrectly indicate the in or out-of-control state 

of a process. Type II error rate is the probability of not detecting a given shift in a process. 

This nonnormality problem has been investigated in a number of studies. In this section, 

previous research investigating x, CUSUM, and asymmetric control charts under 

nonnormality is discussed. Also, several neural network applications to control charts under 

normality are examined. 

Previous Research on Control Charts under Nonnormality 

As early as 1967, Burr studied the effects of nonnormality on control limits for x 

and R control charts. When a x control chart employs three a limits under conditions of 
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normality, the Type I error associated with these control limits is .0027. According to Burr, 

this is also frequently appropriate when the underlying distribution is nonnormal. He 

presented a set of tables of three o limits for various nonnormal distributions and concluded 

that the ordinary control charts based on the normality assumption can be used unless the 

population is markedly nonnormal. Burr (1967) noted that the standard control charts are 

robust to the normality assumption and can be used if the assumption is not severely violated. 

Since Burr (1967) investigated the effect of nonnormality on control charts, several 

researchers have investigated the effect of nonnormality on the control limits of the control 

chart. Schilling and Nelson (1976) presented a numerical method for determining the 

cumulative probabilities of the distribution of sample means by inverting its characteristic 

function. By numerically inverting the appropriate characteristic functions, they provided the 

tables which show the approach to normality for various underlying distributions and 

samples. The authors examined the uniform, right triangular, gamma, and bimodal 

distributions. The bimodal distributions of interest to Schilling and Nelson were those that 

resulted from the mixtures of two normal distributions. Because characteristic functions of 

mixtures are linear combinations of characteristic functions, this method allowed the authors 

to investigate such things as contaminated normal populations, previously studied using only 

Monte Carlo techniques. The authors used the characteristic functions to verify Shewhart's 

results and to investigate the shape of the distribution of sample means for several underlying 

populations not easily simulated by Monte Carlo methods (i.e., those not having a finite 

domain). Their results showed that, in most cases, the normality assumption, based on the 

central limit theorem, holds with samples of four or more. 
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Rahim (1985) investigated the effects of nonnormality and measurement error on the 

design of the x control chart. This study successfully incorporated measurement errors (i.e., 

human errors) in designing an economic model of the x control chart under nonnormality 

conditions. The author developed an economic model of a x control chart in which the 

sample size, sampling interval, and control limits were determined based on minimizing the 

expected total cost. The optimal value of the design parameters was obtained using a 

computerized search technique. The author showed that conventional control plans would 

result in misleading values of the design parameters and the loss-cost if the quality 

characteristic is not normally distributed and/or subject to measurement errors. 

Tagaras (1989) compared the performance of x control charts with those of 

asymmetric control charts. He examined the effect of violations of three common 

assumptions concerning process and measurement characteristics: (1) equal probabilities of 

upward and downward shifts in the process mean; (2) constant process variability, 

independent of the process mean; and (3) perfect measurement of the quality characteristic 

without errors. He performed a sensitivity analysis regarding the effects of misspecification 

of the cost and the operating and model parameters (probability of shift, variance, and error 

of measurement) on the optimal design parameters and the resulting operating loss. His 

results showed that the probability of a shift in the process mean and the accuracy of 

measurement have significant effects on the optimal design and the resulting loss. The 

assumption of constant variance was, however, shown to be relatively unimportant. 

Yourstone and Zimmer (1992) examined the effect of nonnormality, as measured by 

skewness and kurtosis, on the performance of a x chart and demonstrated an alternative 
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method under nonnormality, which they called an asymmetricx control chart. They 

employed the generalized Burr distribution to determine the control limits for the asymmetric 

x control chart. The first detailed study of the application of the generalized Burr 

distribution to control charts was done in 1973 (Austin 1973). The family of Burr 

distributions covers a wide range of the standardized third and fourth central moments and 

allows fitting a wide variety of practical data distributions. For example, certain gamma 

distributions are approximated with Burr distribution. Yourstone and Zimmer (1992) carried 

out a detailed simulation experiment that compared the average run length (ARL) for 

symmetric x control charts and asymmetric control charts for more than twenty-seven 

different combinations of skewness and kurtosis. The results showed that the impact of 

skewness and kurtosis on the performance of a x control chart can be substantial. The results 

also showed that both skewness and kurtosis are important in the consideration of the effect 

of nonnormality on the operating characteristics of control charts. As the authors noted, the 

major criticism of their study relates to the applicability of the Burr distribution. The authors 

recognized, as pointed out by Austin (1973), that the Burr distribution is applicable only to 

the distributions whose coefficients of skewness and kurtosis are within a particular range 

of values. 

A cumulative sum control chart (CUSUM) is an alternative to the x control chart for 

monitoring process means. Lashkari and Rahim (1982) developed an economic design of the 

CUSUM chart, assuming that the observations obtained from the process were nonnormally 

distributed. The nonnormal situation was measured by the skewness and kurtosis of the 

underlying distribution of the process. The economic design of the CUSUM chart involved 
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the determination of the design parameters that minimize a relevant cost function. The design 

parameters considered in their study include sample size, sampling interval, reference value, 

and decision interval. The authors introduced an iterative optimization algorithm for 

determining the design parameters for the CUSUM chart that minimizes loss for nonnormal 

processes. The algorithm was also used to determine ARLs and to conduct a sensitivity 

analysis regarding the effects of nonnormality on the minimum loss for a given set of cost 

and operating parameters. They concluded that the economic design of CUSUM charts 

would serve as an alternative to x control charts under conditions of nonnormality. 

Neural Network Applications for Monitoring Process Means under Normality 

Numerous authors have used neural networks to monitor process means when data 

are normally distributed (Davis and Illingworth 1989; Pugh 1989,1991; Hwarng and Hubele 

1993a, 1993b; Velasco 1993; Cheng 1995; Hwarng 1995; Prybutok, Sanford, and Nam 

1995). Davis and Illingworth(1989) applied neural networks in a real-time manufacturing 

environment. The authors tested and evaluated three different neural network paradigms, 

including Madaline, Hopfield, and backpropagation. The results showed that the 

backpropagation paradigm was best suited for their study. They used actual historical process 

control data from a thin-film manufacturing process. Their results demonstrated that neural 

networks show promise as an alternative to control charts. They also explained how to select, 

evaluate, and verify the optimal architecture for a neural network model. 

Pugh (1989) compared the performance of neural networks to those of several 

standard control charts in a series of experiments under normality. The data for this 

experiment were generated by Monte Carlo simulation. The input nodes correspond to 
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observations in a subgroup, and a single output represents either an in-control state or an out-

of-control state. The neural networks were trained with both in-control and out-of-control 

data. The results of this preliminary study showed that a backpropagation neural network 

could be designed which approximately equals the performance of standard x control charts 

in terms of Type I and Type II errors. Pugh performed a similar experiment in 1991 that 

showed improvement in the performance of neural networks but failed to demonstrate their 

superiority to standard control charts for detecting shifts in process means. 

Hwarng and Hubele (1993a) presented a backpropagation pattern recognition 

algorithm to detect patterns of a process such as trends, cycles, systematic patterns, 

stratification, mixtures, and sudden shifts. This classification algorithm is suitable for real-

time statistical process control. The foundation of the algorithm is based on the concepts of 

constructing and training a neural network for recognition and detection of patterns. The 

backpropagation pattern recognizer (BPPR) and Boltzmann machine pattern recognizer 

(BMPR) are trained and tested with consideration of Type I and Type II errors. They divided 

the range of data into seven zones. Each observation was first normalized into a standard 

normal variate and mapped into one of the seven zones. A series of normalized and scaled 

observations constituted the input pattern presented to the neural network. Since each zone 

is represented by a binary digit, seven digits were required to represent one observation. This 

input scheme resulted in a considerably large network. The authors used performance 

measures such as average run length and rate of target, which are sensitive to these types of 

patterns, to evaluate the algorithm's performance. The performance evaluation was carried 

out in a comprehensive manner based on an extensive series of simulated patterns of data. 
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Hwarng and Hubele conducted an experimental design to examine the effects of the number 

of hidden nodes, the number of scale zones, and their interaction effects on the performance 

of neural networks. Their results indicated that the number of scale zones has significant 

effect on the pattern recognition performance of neural networks. The results showed that 

the BPPR successfully detected target patterns while maintaining reasonable Type I and 

Type II error rates. However, there is one important issue that should be noted. The neural 

network was trained and evaluated with low levels of random noises. The results indicated 

that the performance varied quite dramatically depending on the random noises. As 

Cheng(1995) mentioned, this implies that Hwarng and Hubele's approach is applicable only 

to the situations in which the signal-to-noise ratio of the target patterns is very high. 

Training a neural network for detecting assignable causes of a process based on 

neural network backpropagation algorithms is neither easy nor straightforward. In order to 

test and demonstrate the classification capability of their proposed BPPR, Hwarng and 

Hubele (1993b) extended their research (1993a) and focused on the efficiency of off-line 

neural network training. They investigated the training and learning speed of the BPPR using 

simulated data. Hwarng (1995) also investigated the proper and effective training of the 

BPPR as an alternative to the standard x control charts for detecting cyclic patterns of data. 

This work showed that building an effective cyclic pattern recognition, a neural network 

requires proper training strategies to improve its performance. Hwarng conducted a series 

of experiments to study the effects of the number of output pattern classes and noise on 

neural network training and performance. The results showed that reducing the number of 

output pattern classes does not guarantee effective learning and that noise added to the 
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training data should be maintained at a reasonable level to achieve a balanced performance. 

These results are supported by reference to general characteristics of neural networks. 

Prybutok, Sanford, and Nam (1995) evaluated the ability of neural networks to detect 

shifts in a process mean. They provided a heuristic procedure for specifying parameters such 

as learning rate, momentum, and the number of hidden neurons in a hidden layer for neural 

network configurations. The effects of the number of hidden neurons of a neural network, 

its training time, learning rate, and momentum on the performance of the neural networks 

were examined. They also compared the performance of neural network backpropagation 

models to those of x control charts with and without supplemental run rules. Data from four 

normal populations, one with no shift and three with different shifts of the process mean, 

were used to train the neural networks. The authors found that neural networks are more 

sensitive to small and large shifts of process means as compared to the x control charts 

without supplementary runs rules. However, neural networks perform less effectively than 

x control charts with supplementary runs rules to detect small shifts. These results indicated 

that neural networks might be an alternative to standard x control charts when there are 

large shifts in process mean. 

Cheng (1995) proposed a different neural network approach as an alternative means 

of process control. The neural network he developed is concerned with the detection of two 

different types of out-of-control situations, linear trends and sudden shifts in the process 

mean. A sudden shift of mean could be caused by the introduction of new workers, new raw 

materials, a change in the measurement system, and so on. The neural network chosen is a 

three-layer fully connected feed-forward network with a backpropagation training algorithm. 
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His research is unique in terms of data representation and features selection. A coding 

scheme was proposed to characterize the important features contained in the input data. This 

approach divides the range of input data into zones of width 0.5 a_. The data were 

represented by the midpoint of the zone interval. This data smoothing scheme was used to 

discover the important features in the data. To further improve the sensitivity of the neural 

network, a supplementary index was proposed. The index is set to one if any observation is 

beyond 3 o - limits. The neural network was set to analyze a window of sixteen observations 

plus one supplementary index. The primary focus is on the problem of detecting both small 

and large changes in the process mean. 

In Cheng's (1995) research, the performance of the neural network was evaluated on 

the basis of ARL. Since the described neural network is designed to detect both small and 

large changes in the process mean, he compared the performance of the neural network with 

that of the combined Shewhart-CUSUM scheme. To obtain a fair comparison between the 

combined Shewhart-CUSUM schemes and the neural network, the cutoff values of the neural 

network were chosen so that the in-control ARLs would match those of the combined 

Shewhart-CUSUM schemes. The results indicated that the proposed neural network was 

superior to the combined Shewhart-CUSUM schemes for detecting both sudden shifts and 

linear trends of the process mean. The proposed neural network has 20-30 percent faster 

detection of small trends than the combined Shewhart-CUSUM schemes. 
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Research Questions 

As mentioned in the previous chapters, a fundamental assumption in the development 

of x control charts is that the underlying distribution of the monitored quality characteristic 

is normal. However, in many industrial situations, the process means of the quality 

characteristics may not be normally distributed. If a standard symmetrical x control chart is 

used when the normality assumption is violated, the Type I and Type II errors can be 

significantly larger than expected. Therefore, design considerations for the x chart must 

include recognition of the degree of nonnormality of the underlying data (Ramsey and 

Ramsey 1990; Yourstone and Zimmer 1992). To date, however, no research related to the 

application of neural networks to control charts dealing with nonnormality has been 

published, and no research related to control charts under nonnormality has yielded generally 

satisfactory results. 

In this study, neural networks are developed as an alternative to standard control 

charts under conditions of nonnormality, and their performance is compared with that of 

standard x and CUSUM control charts. The x chart is the most widely used among the 

quality control charts for monitoring the central tendency of a process quality characteristic. 

Its relative ease of computation and application and its excellent performance in recognizing 

out-of-control conditions account for a portion of its popularity (Wadsworth et al. 1986; 

Ryan 1989). The x chart is used to monitor variation in the process mean and to indicate 

whether shifts in the mean occur. The standard x control chart is less efficient than CUSUM 

control charts in detecting small shifts in process means, but it is more efficient for detecting 

large shifts. However, neither of these two popular control charts is able to handle the 
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nonnormality problem. This fact leads to the development of a third method, neural 

networks, to deal with this problem. 

As noted above, the main purpose of this study is to develop neural networks as 

alternatives to control charts under conditions of nonnormality and to compare their 

performance to those of standard x and CUSUM control charts. Thus, the following 

research questions are addressed. 

1 .What are the differences in the performance of the three methods when the underlying 

distributions of quality characteristics are normally distributed? The following three 

detailed research questions are delineated to further address this main research question. 

a. Do the neural networks perform better than x control charts? 

b. Do the neural networks perform better than CUSUM control charts? 

c. Do the x control charts perform better than CUSUM control charts? 

2. What are the differences in the performance of the three methods when the underlying 

distributions of quality characteristics are not normally distributed? The following 

three detailed research questions are delineated to further address this main research 

question. 

a. Do the neural networks perform better than x control charts? 

b. Do the neural networks perform better than CUSUM control charts? 

c. Do the x control charts perform better than CUSUM control charts? 

3. What are the effects of degrees of nonnormality measured by skewness and kurtosis on 

the performance of the three methods when a population is nonnormal? 



43 

4. What are the effects of mean shifts on the performance of the three methods when a 

population is nonnormal? 

5. What is the effect of sample size on the performance of the three methods when a 

population is normal? 

6. What is the effect of sample size on the performance of the three methods when a 

population is nonnormal? 



CHAPTER IV 

SIMULATION METHODOLOGY 

Introduction 

Chapter 3 was devoted to a literature review of standard control charts and neural 

network applications to control charts. In this chapter, the simulation methodologies used in 

this study are discussed. This chapter is organized as follows: The introduction contains the 

definition of a sudden shift, the shift pattern of major interest in this study, and the 

assumptions used for the simulation experiments are described. This is followed by a 

description of the Burr distribution, skewness, and kurtosis. In the next section, the 

simulation methodology is discussed. This discussion includes method of data generation; 

building of x and CUSUM control charts; data preparation, training, and testing for neural 

networks; and definition of the performance measure. 

Sudden Shifts 

The experiment focuses on detection of out of control conditions caused by sudden 

shifts. A sudden shift is defined as a series of points with a sudden change in a quality 

characteristic. The occurrence of a sudden shift may result from the introduction of new 

workers, methods, raw materials, or machines; a change in the inspection method or 

standards; or a change in either the skill or motivation of the operators (Montgomery 1991 b). 

Some potential causes of a sudden shift on x, R, and p charts are shown in table 1 (Western 

Electric 1956). 
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Assumptions 

The assumptions for this simulation experiment are listed below. 

1. The type of the nonnormal distribution measured by skewness and kurtosis is 

known in advance. 

2. The process mean and standard deviation of each nonnormal distribution are 

known. 

3. The type of process change (a sudden shift in the mean) to be detected is known 

in advance. 

4. All the process changes, regardless of the magnitude of the mean shift, are to be 

detected at the same rate. 
5. No in control data precede the out of control data in the test data sets. 

Table 1. Potential causes of a sudden shift on various charts 

x chart R chart p chart 

New operator New operators New lot of material 

New inspector New equipment Change from one machine or 
operator to another 

New machine Change in motivation of 
operators 

Change in methods 

New machine setting Change of raw material Change in standards 

Change in set-up or 
method 

Change in maintenance 
schedule 

Change in a calibration of a 
test set 

Change of raw material 
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Assumption 1 is required for developing a neural network as an alternative to a 

conventional control chart. However, this assumption should not be considered as 

advantageous only to the neural network, because this information can be easily obtained 

while constructing any conventional control chart. The general form of a x control chart 

contains a center line which represents the mean of the quality characteristic corresponding 

to the in control state and two other horizontal lines, upper and lower control limits. The 

upper control limit and the lower control limit are equidistant (the same number of standard 

deviations) from the center line. These limits are chosen, so that if the process is in control, 

nearly all of the plotted points fall between the two control limits. When constructing a 

control chart for a process, a number of preliminary samples (usually 20 to 25) are obtained, 

each of size 4, 5, or 6, when the process is thought to be in control. Therefore, assumption 

2 is required for developing both control charts and neural networks. Based on this 

information, the distribution of the measure of the quality characteristic can also be 

examined. 

The third assumption, that the type of process change (a sudden shift in the mean) to 

be detected is known in advance, allows the neural network to detect either positive or 

negative shifts. This results in a neural network that works well for detecting only sudden 

shifts. In this study, only sudden shifts are investigated. The fourth assumption, that any 

process change, regardless of the magnitude of the mean shift, is to be detected as quickly 

as possible, implies that equal size of training samples for each magnitude of mean shifts is 

appropriate to develop the neural networks. 
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Burr Distribution 

Burr (1942) introduced a system of distributions that resulted from distribution 

functions, F(x), that satisfy the differential equation dF/dx = A(F)g(x). The differential 

equation is a generalization of the Pearson equation: the objective was to fit a distribution 

function, rather than a density function, to data and then obtain the density function by 

differentiation (Rodriguez 1977). The cumulative distribution function of the Burr 

distribution for a random variable x is (Burr 1967; Austin 1973; Yourstone and Zimmer 

1992): 

FX(x) = 0 x<0 (1) 

= i - x^O c,k^l 
(1+x °)K 

where c and k are positive numbers greater than or equal to 1. The c and k values specify a 

member of the family of Burr distributions that is used to approximate an empirical 

distribution. 

The Burr family covers a wide and important range of standardized third and fourth 

central moments and is used to fit a wide variety of practical data distributions. The 

distribution given by (1) covers a region or area of points on the skewness and kurtosis plane, 

whereas the normal curve (skewness=0, kurtosis=3) and the uniform distribution 

(skewness=0, kurtosis=1.8) occupy the respective single points. The gamma distribution 

covers only a curve on the plane. Burr also found that by using the reciprocal transformation 

x = 1/y, yielding the distribution function shown below, 



48 

G(y) = 0 y<0 (2) 

= 1 - - y^O c,kz 1 
(l+y'c) K 

the region of coverage is greatly extended toward low kurtosis for a given skewness. This 

extension of the region covers virtually all of the bell-shaped and J-shaped regions of the beta 

region. Thus, by using either (1) or (2), one can match up the first four moments for almost 

any ordinary distribution likely to occur in practical situations (Burr 1973). 

The first four moments, or the first two moments and the skewness and kurtosis of 

an empirical distribution, may be used to determine values of c and k. These c and k values 

then specify a member of the Burr family that approximates the observed empirical 

distribution. Therefore, if the first four moments of a distribution are in the range of those 

covered by the Burr family, the empirical distribution can be easily approximated by a 

combination of c and k. Two distributions with the same first four moments will not 

necessarily be identical, but it is reasonable to assume that they will not differ practically. 

With c= 4.874 and k=6.158, the Burr distribution approximates a normal distribution. For 

other values of c and k, the Burr distribution becomes distinctly nonnormal (Yourstone and 

Zimmer 1992). Distribution systems (1) and (2) have far greater coverage of skewness and 

kurtosis than other functions such as beta, gamma, and so on. The coverage of the Burr 

distribution includes up to the skewness equal to 2 and kurtosis equal to 9, which are the 

moments of the exponential (Burr 1973). 
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Skewness and Kurtosis 

To measure the degree of departure from normality of a distribution, skewness and 

kurtosis are usually used. When data tend toward a nonsymmetric distribution, the 

distribution is referred to as skewed. Skewness measures the tendency of a distribution to 

stretch in a particular direction. The sign of skewness shows the direction of skewness, + 

(positive) if above, - (negative) if below. The magnitude of the skewness measure is the 

relative extent of the lack of symmetry. If a distribution is symmetric, skewness is 0. The 

other measure of shape of a distribution, referred to as the kurtosis, measures the peakedness 

of a distribution. Kurtosis measures the relative rate at which the frequency curve approaches 

zero frequency in the two directions. For the normal curve, kurtosis is 3, while for a uniform 

distribution, it is 1.8. The minimum possible value of kurtosis is 1. The quantity (a4 - 3) is 

referred to as excess and is sometimes used as the measure of kurtosis (Burr 1967). 

E ( x . - x ) 3 

skewness = a =-

kurtosis = a = 

[S (x.-x) 2] 

2 ( x v - x ) 4 

4 [ S ( x i - x ) 2 ] 2 

Notice that these estimates are based on individual data values x i . After the sample size, 

n, is determined for the samples in the control process, the estimates for the skewness and 

kutosis of the sample averages are: 

a 3 
Skewness = a,-= — (3) 

•ix i/2 n 
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Kurtosis = of̂ —= —~—+3 (4) 

Burr (1967,1973) tabulated c and k values giving combinations of skewness and kurtosis for 

various Burr distributions. The table was used in this study to obtain the c and k parameters 

of the Burr distribution as well as the mean and standard deviation for a given skewness and 

kurtosis. Thus, the Burr distribution to approximate the distribution of a quality characteristic 

is generally applicable to any distributions whose coefficients of skewness and kurtosis are 

in the Burr distribution range of values. 

Simulation Methodology 

The rpain purpose of this study is to explore the viability of neural networks as 

alternatives to standard x and CUSUM control charts under conditions of nonnormality. 

This study compares the performance of neural networks to those of standard x and 

CUSUM control charts for monitoring process means. To accomplish the obj ectives of the 

study, numerous experiments and simulations were conducted. The simulations in this study 

consist of four stages: the generation stage, the training stage, the testing stage, and the 

comparison stage. In the generation stage, the data sets for neural network training and 

testing were generated from the Burr distribution for nine combinations of skewness and 

kurtosis. In the training stage, neural networks with different numbers of hidden layers and 

neurons, different values of momentum, learning rate, and different learning rules, and 

transfer functions were tested to obtain better architecture for each one of the nine nonnormal 

distributions. In the testing stage, FORTRAN programs were used to calculate average run 

lengths (ARLs) for the three methods for each of the nine nonnormal distributions. ARL is 
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the average number of subgroups that are observed from a process before an out of control 

signal is detected. In the comparison stage, the three major experiments were carried out as 

noted earlier. 

Data Generation 

Monte Carlo simulation was used to generate training and testing data for each of the 

nine nonnormal distributions examined in this study. The nine nonnormal distributions with 

different skewness and kurtosis were created from the generalized Burr distribution. The nine 

combinations of skewness and kurtosis yield distributions that vary from one similar to a 

uniform distribution to one that resembles an exponential distribution. Control chart schemes 

with exponentially distributed observations arise naturally in the context of monitoring the 

occurrence rate of rare events, since interarrival times for a homogeneous Poisson process 

are independent and identically distributed exponential random variables (Vardeman and Ray 

1985). Vardeman and Ray (1985) examined ARLs for CUSUM schemes when observations 

are exponentially distributed. They provided some tables of ARLs for an exponential case 

and commented on an application of exponential CUSUM charts to controlling the intensity 

of a Poisson process. There are many possible cases in which observations might be 

exponentially distributed. Consider a manufacturing environment (such as the manufacture 

of plastic film or copper wire) with a long continuous stream of a product that can develop 

flaws along its extent. Suppose further that there is a mechanism, human or automatic, for 

detecting such flaws as the line of product passes by on its way to being cut into sheets, rolls, 

or other more manageable units. Suppose finally that the rate at which the continuous stream 

of product passes the inspection mechanism is uniform. Then, it is natural to use the 
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occurrence times of a Poisson process as a model of the occurrence of defects (Vardeman 

and Ray 1985). 

Table 2. Parameters of the nine nonnormal distributions generated from the Burr 
distribution 

Skewness Kurtosis c k U a 

0.00 2.00 -18.148445 0.062932 0.538666 0.290634 

0.00 3.00 -11.251863 0.146295 0.641872 0.283920 

0.00 4.00 27.068908 1.325754 0.985829 0.059999 

1.00 3.00 -13.068026 0.030050 0.285705 0.300232 

1.00 4.00 -7.176003 0.078658 0.378436 0.339226 

1.00 5.00 2.347094 4.428629 0.506046 0.262382 

2.00 6.20 -21.416286 0.007433 0.137895 0.236343 

2.00 7.20 -7.507666 0.027031 0.174654 0.272662 

2.00 8.80 -5.864337 0.044223 0.218459 0.308432 

* c and k - two parameters of the Burr distribution 

Eighteen different mean shifts (±.25, ±.50, ±.75, ±1.0, ±1.5, ±2, ±3, ±4, ±5) 

were examined for each of the combinations of skewness and kurtosis, and the performance 

of the neural networks was compared with those of the x and CUSUM control charts. 

Seventeen hundred samples (see Table 3) were generated from each of the nine combinations 

of skewness and kurtosis. A sample size of five in each sample was used, because the control 

chart procedure, based on sample averages of five observations, is believed to be 

approximately normal due to the central limit theorem. Another reason that five was selected 
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as the sample size is that it is a common value used in practice. The parameters of the nine 

combinations of skewness and kurtosis generated from the Burr distribution are shown in 

table 2. 

Development of x Control Charts 

A x control chart consists of a center line and two control limits. To construct the 

control limits, an estimator of a standard deviation is needed. The estimator may be obtained 

from either the standard deviations or the ranges of preliminary samples. If a sample size is 

relatively small, the range method yields almost as good an estimator of the variance as does 

the estimator from the standard deviation (when n = 3, the relative efficiency is 0.992). 

However, the range method loses efficiency rapidly as the sample size becomes larger. 

When n = 5, the relative efficiency is 0.955. In this study, the standard deviation method is 

used to obtain more accuracy. 

Development of CIJSUM Control Charts 

An effective alternative to Shewhart x control charts when small shifts are of 

interest is the CUSUM procedures. It is well known that CUSUM procedures perform better 

than Shewhart charts in detecting small process shifts. Cumulative sum charts were first 

proposed by Page (1954), and a number of modifications have resulted since then. The 

CUSUM is so named because an observation (which may be a single reading or a statistic 

obtained from a sample) is accumulated if it exceeds a prespecified goal value by more than 

k units. 

A relatively small percentage of firms in the U.S. uses CUSUM charts. Workers 

engaged in quality improvement are still primarily interested in learning about x and R 
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control charts (Ryan 1989). Some CUSUM procedures are easy to learn (and to program) and 

are also quite intuitive, while others are somewhat more involved. If quality control 

personnel are to make the transition fromx charts to CUSUM control charts, it seems 

reasonable to assume that they will be drawn toward procedures that are easy to understand 

and that bear some relationship to a x chart. Therefore, in this study, the method proposed 

by Lucas (1982) and Lucus and Crosier (1982) was used because it meets both requirements 

above and its performance is very competitive. 

This CUSUM procedure is an algorithmic version based on the recursive statistics: 

SHi = m a x [ 0 , (Z.-k) + 5 ^ ^ ] 

SLi = max [ 0 , ( -Z±-k) +S i i_1] 

where z± = (x.-]i) /a~. The first equation is for detecting positive mean shifts, and the 

second equation is for detecting negative mean shifts. The starting values are SHO=SLO=0. 

The value of k is usually selected as one-half of the mean shift (in z units) that one wishes 

to detect. If the process remains in control at the target mean, the cumulative sum defined 

above should fluctuate stochastically around zero because the CUSUM is a random walk 

with mean zero. However, if the mean shifts upward, then an upward or positive drift will 

develop in the SHi. Conversely, if the mean shifts downward, then a downward or negative 

drift in S£ i will develop. CUSUM procedures are alternatives to x charts when small shifts 

are of interest. The performance of the CUSUM control chart is determined by two 

parameters, k and h. The usual choice is k = 0.5, which is the appropriate choice for detecting 

a 1 sigma mean shift. Two sums, SHiand SLi, are computed for each zi;i designates the 

ith subgroup. There is a minus sign in front of z i in the formula for computing SLi. This 



55 

simply ensures that - z i will be positive whenever there is a negative mean shift. Neither SHi 

nor S . will ever be negative since they will always be the maximum of 0 and 
Li 

(z.-k) +SHi xand ( - z ^ k ) +SLi_1, respectively. The sums are reset after an out of control 

signal is issued. That is, whenever the absolute value ofz. is greater than k, SHi or SLi are 

zero and accumulation starts again (Ryan 1989). 

The process is considered out of control, and action should be taken whenever 

S .or S is greater than h. The threshold, h, is chosen to be either 4 or 5. Different choices 
Hi Li 

of h change the performance of the CUSUM procedures. When a large h value is used, the 

Type I error rate decreases (i.e., in control ARL increases), while Type II error increases (i.e., 

out of control ARL increases). On the other hand, when a small h value is used, Type I error 

rate increases (i.e., in control ARL decreases), while Type II error decreases (i.e., out of 

control ARL decreases). For example, the in control ARL value when h=4 is used is much 

smaller than that when h=5 is used. However, this is offset to some extent by the fact that the 

out of control ARL values are larger using h=5 for every mean shift. Thus, the CUSUM 

procedure with h=5 delays the detection of an out of control state because an out of control 

state is detected when the accumulated sum is 5 or larger. If the shift could cause a 

considerable increase in the number of defects, the extra delay might be critical. Conversely, 

if the cost of searching for assignable causes when none exists is substantial, the difference 

between the in control ARLs might be of critical importance. Thus, the choice of h should 

be made with careful consideration of all the relevant factors, both statistical and 

nonstatistical. In practice, the CUSUM procedure with h=5 is frequently used. In this study, 

to obtain a fair comparison among x and CUSUM control charts and neural networks, the 
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h value was chosen so that the in control ARLs of the CUSUM procedure would match those 

of the x control chart and the neural network for each one of the nine different combinations 

of skewness and kutosis. 

Data Preparation for Neural Network 

For neural network control chart applications, the data may require conversion into 

another form to be meaningful to a neural network. Regardless of which network model is 

used, the general approach to solving the data representation problem will be the same. 

Understanding the problem at hand well enough to know what kind of information is relevant 

is one key to the successful design of a neural network. How data are represented and 

translated also plays an important role in designing the neural network. When data represent 

naturally occurring groups, binary categories are often the best method for making 

correlations. When the data are continuous, artificially breaking them up into groups can be 

a mistake. It is difficult for a neural network to learn from examples that have values on or 

near the border between two groups (Lawrence 1991). 

Often, however, the choice between binary and continuous representations is not so 

simple. In this study, a continuous data entry scheme was used for the five observations in 

each sample subgroup because a measure of a characteristic of a product such as length, 

weight, or width is considered to be continuous data. On the other hand, because this study 

can be considered to be three group discriminant problems, a binary data entry scheme was 

used for the output of each subgroup. The three groups include an in control state and 

positively and negatively shifted out of control states. That is, an output of [0 0 1] represents 

a subgroup from a population with no mean shift. An output of [0 1 0] represents a subgroup 
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from a population with a positive mean shift, and an output of [1 0 0] represents a subgroup 

from a population with a negative mean shift. 

Neural Network Training 

The construction of a training set for the present study was complicated because many 

magnitudes of process changes are considered at the same time. There are a number of 

issues that require addressing to obtain an adequate training set (Cheng 1995). First, the 

neural network should be trained across a wide spectrum of possible mean shifts in order to 

yield satisfactory performance over the entire range of possible process changes. In other 

words, the range of mean shifts included in the training set should be representative of the 

whole spectrum of the shifts of interest. However, the determination of the range of mean 

shifts is subject to the required recognition capability and the expected training time. A 

neural network trained at a single magnitude might not work well for other magnitudes of 

mean change. In essence, while the network can generalize to some extent, the network can 

only identify patterns that resemble those it has seen during its training. Therefore, care in 

selecting the range of mean shifts is required. 

Extensive preliminary experiments were conducted to determine the range of mean 

shifts to be included in the main study. The experiments showed that when small magnitudes 

of process changes (.25, .5, and .75 sigma) are included in the training set, the resulting 

performance is poor as measured by the Type I error rate (the rate of false alarms). When 

data examples with small mean shifts were included, the overlap between the in control data 

examples and out of control examples was too severe for the neural network to distinguish 

one from the other. The results of these experiments were consistent with the general rule 
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that the training data should include both in control data and out of control data, but these 

out of control data should be readily distinguishable from in control data. 

The second consideration is the number of training examples to be used for each 

magnitude of a process mean shift. In this study, it is assumed that any process change, 

regardless of the magnitude of the mean shift, is to be detected as quickly as possible. 

Accordingly, an equal number of training examples was used for each magnitude of a process 

mean shift. The third issue concerns the size of the training set. It is well known that a neural 

network performs best when trained with a sufficient number of examples to achieve good 

generalization. Also, during training, the best results are obtained when training examples 

are presented to the neural network in a random fashion. A neural network trained with an 

insufficient set of examples often leads to poor performance in terms of Type I and Type II 

errors. 

Table 3 outlines the contents of the training data sets. The magnitude of the mean 

shifts is expressed by the standardized shift parameters defined as follows: 

5 = |ja - p 0 | / ( a / / n ) 

where 

p0= process mean before a shift, 

p. = process mean after a shift, 

o = process standard deviation, 

n = subgroup size. 

A target mean (p0) of zero is used in this study, which is consistent with the values used in 

several other control chart simulation studies (Crowder 1987; Runger and Pignatiello 1991; 
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Walker, Philpot, and Clement 1991). The number of training examples used in this study 

was determined through experimentation. There were 1,700 examples in each of nine 

training sets, corresponding to the nine combinations of skewness and kurtosis. It is 

important to note that each of the training sets includes both in control data and out of control 

data. This application requires that the neural network distinguish between in control patterns 

Table 3. Training data 

Shift (5) Training sample size 

0 500 

±1 200 

±2 200 

±3 200 

±3 200 

±4 200 

±5 200 

±6 200 

total 1700 

and out of control patterns. The training method of the neural networks for control chart 

applications is the same as that used in discriminant analysis. As shown in table 3, each data 

set consists of three basic groups. One group with no mean shift consists of 500 in control 

data examples. The other two groups consist of 600 data examples each and represent 

positively shifted (+15 to +65) and negatively shifted (-15 to -65) out of control data. 

The simulation experiments in this study used the back-propagation learning 

algorithm to train the neural networks. The back-propagation algorithm is widely used, not 
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only because it is based on solid mathematical principles, but also because it has produced 

a number of successful solutions to various business statistical problems. The speed of 

learning is one of the issues related to neural network training and has been one of the major 

concerns in real-time applications. Although the slowness of learning is often a concern 

when using backpropagation networks, the learning speed with the training sets used in this 

study was fast enough. In this study, only five input neurons, five hidden neurons, and three 

output neurons were used. The simplicity of the neural network architecture used guaranteed 

a reasonable training time. In general, the somewhat lengthy learning process can be done 

prior to using the neural network online. 

Another concern related to training time is the determination of the optimal stopping 

point. The performance of the neural network is affected by the number of presentations of 

the training examples. During the training process, the performance of the neural network 

on the training data set improves continuously. However, the performance on the testing data 

set may become worse because the neural network has the potential to over learn or 

memorize the training data set. In other words, the longer the neural network learns the 

training data set, the closer the neural network comes to memorizing it. Thus, the neural 

network can make very accurate predictions for the training data set. However, it may not 

be able to generalize well to the testing data set. The memorization problem causes the 

nongeneralization of predictive ability of the neural network to the testing data set. There 

currently exists no method of optimizing the selection of a stopping point or the selection of 

the various neural network parameters. Therefore, any neural network solution is potentially 

suboptimal. 
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The selection of the neural network training architecture is crucial to the performance 

of the trained neural network. The selection includes for use the best combination of learning 

rate, momentum, number of hidden layers, number of hidden layer neurons, learning rule, 

and transfer function. In this study, a learning rate of 0.1 and a momentum of 0.6 were used 

after testing more than thirty different combinations of the parameters for each of the nine 

different nonnormal distributions examined in this study. The architecture also affects one 

of the major issues in neural network training, the convergence of the learning algorithm. To 

ensure efficient convergence and the desired performance of the trained network, the training 

parameters, including the learning coefficient, momentum, number of hidden layers, and the 

number of hidden neurons, must be selected with care. More important, proper selection of 

the activation function is required to ensure better performance of the neural network. In this 

study, a sigmoid activation function is used. This function is frequently used in neural 

network applications in the business area primarily because of its desirable function features 

and its relative insensitivity to noise. The sigmoid transfer function is monotonic, 

differentiable, and semilinear. 

A number of experiments were performed to determine the best combination of 

learning rate, momentum, number of hidden layers, number of hidden layer neurons, learning 

rule, and transfer function. The two most popular learning rules, the generalized delta and 

cumulative delta, were tested. A fully connected feed-forward network with five input 

neurons was employed. Each of the first five neurons represents an observation in a 

subgroup (n=5). The desired output was set to be [0 0 1] if the data were from the target 

process with mean equal to zero and [0 1 0] or [1 0 0] if the data were from distributions with 
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positive mean shifts or negative mean shifts, respectively. There are some general guidelines 

for determining the number of neurons to be placed in the hidden layer of a fully connected 

feed-forward network (NeuralWare 1993). One such guideline specifies that H = (number 

of training cases)/5*(I + O), where H, I, and O are numbers of neurons in the hidden, input, 

and output layers, respectively. This guideline was followed in this study. A single hidden 

layer was used because neural networks tested with more than one hidden layer did not 

produce any significant performance improvement. To examine the performance of neural 

networks with different numbers of hidden layer neurons, the experiments were conducted 

with 3,4, 5,6,7,10,15 neurons in a single hidden layer. Although the neural networks for 

some of the cases of the nine different skewness/kurtosis combinations with four or six 

hidden neurons worked almost the same as or a little better than the neural networks with 5 

hidden neurons, the differences were marginal. Therefore, five neurons in a single hidden 

layer were used for all the nine different nonnormal distributions examined in this study. 

Several other rules of thumb are suggested in the literature. They include the following: 

1. The number of hidden neurons is equal to 

2 * -Jnumber of input neurons + number of output neurons 

rounded down to the nearest integer (Neuroshell 1991). 

2. The number of hidden neurons falls between the total number of input layer and 

output layer neurons (Neuralware 1991). 

3. The number of hidden neurons should be 75percent of the number of input layer 

neurons (Salchenberger, Cinar, and Lash 1992). 

A common feature of the rules of thumb above is that the numbers of input and/or 
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output neurons are used to determine the number of hidden neurons. Three output neurons, 

as mentioned above, are used in this study. In neural network training, the connection 

weights are adjusted after every presentation of a training example. Throughout the training, 

the NeuralWare utility, SAVEBEST was used to monitor and save the connection weights 

that yielded the lowest root mean square error (RMS). SAVEBEST provides a means of 

dealing with the problem of when to stop training the network. The fixing of the neural 

network connection weights is similar to establishing the three sigma control limits for a x 

control chart. It is the configuration of connection weights that leads to an observation being 

classified as either in or out of control. 

Since the pairing of each input vector with a target vector representing the desired 

output was available, a supervised training neural network was used. The generalized delta 

rule was used for error correction. The backpropagation neural network in this study was 

trained using NeuralWorks Professional II/PLUS software by NeuralWare Inc. The 

performance of the neural networks was evaluated on the basis of the number of 

misclassifications observed on testing data set. The misclassification rate of in control data 

is analogous to the Type I error rate (i.e., the rate of false alarms; concluding the process is 

out of control when it is really in control). The misclassification rate of out of control data 

is simply another way of stating the Type II error rate (i.e., concluding the process is in 

control when it is really out of control). In general, a preferable control scheme is supposed 

to maintain a balanced performance with acceptable classification accuracy (1-

probability[Type II error]) and a reasonably low Type I error rate. It is believed that a low 
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Type I error rate is as important as high classification accuracy. Therefore, a balance between 

Type I and Type II error rates is desirable. 

Neural Network Testing 

After the neural networks were trained, they were used to identify in control and out 

of control states. Each output value from the testing data consists of three numbers, [a, b, c], 

one from each of the three output neurons. The values from each of the output neurons is 

between 0 and 1 because the sigmoid tranfer function was used to train the neural networks. 

The neural networks were trained using [0 0 1] to represent a subgroup from a population 

without a mean shift, [0 1 0] to represent a subgroup from a population with a positive mean 

shift, and [1 0 0] to represent a subgroup from a population with a negative mean shift. 

Therefore, if the value c is close to one, then the subgroup in the testing data set is considered 

to be in control. One the other hand, if the value a or b is close to one, then the subgroup is 

considered to be out of control. 

There are several options for setting the cutoff value for the in control state. One 

possibility is to increase or decrease the cutoff value for the last output neuron, c. Lowering 

the cutoff point for c increases the probability of a Type I error, but reduces the probability 

of a Type II error. On the other hand, increasing the cutoff point increases the probability of 

Type II error, but reduces the probability of a Type I error. Another option is to increase 

and/or decrease the cutoff values for a and/or b. In this study, nonnormal distributions, 

including various nonsymmetric distributions, are investigated. Except for the symmetric 

cases, nonnormal distributions do not have mirror images. Therefore, the second method 

described above was used because the cutoff value 'a' can be used to handle positive mean 



65 

shifts and the cutoff value 'b' can be used to handle negative mean shifts. Tests of the two 

methods showed that neural networks with two cutoff points, one for 'a' and one for 'b', 

performed better than those with only one cutoff point for 'c'. In this study, to obtain fair 

comparisons among the x chart and CUSUM charts, and neural networks, the cutoff values 

for 'a' and 'b' were chosen by trial and error simulations so that the in-control ARLs of the 

neural networks would match those of the x and CUSUM charts for each one of the nine 

different combinations of skewness and kurtosis. The cutoff points for neural networks and 

the 'h' values for the CUSUM charts used in this study are shown in table 4. 

Table 4. Cutoff points for neural networks and CUSUM charts 

Case Neural network 
cutoff point (a) 

Neural network 
cutoff point (b) 

CUSUM (h) 

1 0.8236 0.9224 5.465 

2 0.7675 0.8738 4.785 

3 0.5235 0.8578 4.485 

4 0.7001 0.8718 4.450 

5 .8700 .4850 4.375 

6 0.8375 0.5170 4.202 

7 0.5185 0.6370 3.815 

8 0.6400 0.5330 3.780 

9 0.8400 0.3820 3.790 
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Definition of Performance Measure 

The performance of each of the three methods discussed above is evaluated using 

average run length (ARL). Conventionally, the average run length serves as a useful and 

standard caliber for measuring the effectiveness of a control chart scheme. ARL is defined 

as the average number of subgroups that are observed from a process before an out-of-control 

signal is detected. When the process is in-control (shift parameter 5=0), it is desirable to 

have a large ARL. However, if the mean of the process has shifted ( shift parameters* 0), 

it is desirable to have a small ARL. In other words, the monitoring process should generate 

signals as quickly as possible (i.e., shorter ARLs) if the production process is out-of-control 

and as late as possible (i.e., longer ARLs) if the production process is in-control. The 

problem associated with nonnormal data is that both the in-control ARL and the out-of-

control ARL are impacted. For a x control chart, the in-control ARL is calculated as 

i 
a 

where a is the probability of the chart indicating that a shift in mean occurs when there is 

actually no shift. To calculate the ARL for the out-of-control situation, 3 values are 

calculated for the 135 combinations of determined mean shifts, skewness, and kurtosis. 

Once these values are determined, the out-of-control ARL is calculated as 

ARL = — L _ 
1 " (3 

where 3 is the probability of not detecting a given shift in a process. Calculation of ARLs for 

CUSUM control charts and neural networks is not as straightforward as it is for x control 

charts. There are several ways to calculate the ARLs for CUSUM charts. Champ and 

Woodall (1987) used Markov chains to obtain the ARL for CUSUM control charts. Another 
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method employed in this study is the use of simulation. The ARLs for neural networks are 

calculated by using a simulation as well. 

For calculating ARLs for neural networks, the basic procedure is as follows. After 

a neural network is trained, it classifies observations as either in-control or out-of-control. 

Control status is determined by the value of the networks output neurons. The number of 

subgroups created since the previous action signal is recorded and the number of subgroups 

between two action signals is called the run length. This procedure is repeated until the 

10,000th action signal occurs. The average of these 10,000 run lengths is the ARL for the 

given combination of skewness and kurtosis. 

Since the proposed neural networks are designed to detect both small and large mean 

shifts in a process, they can be compared with a combined Shewhart-CUSUM scheme, 

which, is a combination of x and CUSUM control charts. This combined scheme is 

designed to take advantage of the respective strengths of both x and CUSUM control charts 

so that it detects small shifts as quickly as a CUSUM chart and large shifts as quickly as a x 

chart. In this Shewhart-CUSUM scheme, an out-of-control signal would be received if either 

the absolute value of z exceeds three or either SHorSL exceeds h (Ryan 1989). From a 

practical point of view, however, it is better to compare the neural network with the x and 

CUSUM control charts separately. The reason is that x control charts are usually used for 

detecting mean shifts in the real world (although some use is made of the CUSUM scheme). 

The main experiment in this study involves comparing the performance of neural 

networks to those of standard x and CUSUM control charts for monitoring process means. 

The three methods are compared for nine different combinations of skewness and kurtosis 
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generated from Burr distribution by Monte Carlo simulation. The hypotheses for comparing 

the ARLs of the methods for each of the nine combinations are as follows: 

H0
:PDij * 0 

Ha:^lDij
 > 0 i= 1,2,3 andj = 1,2,3 i * j 

where D.. is the difference between each pair of ARLs generated by the methods. Each of 

the three levels of skewness is represented by the value i, and each of the three levels of 

kurtosis is represented by the value j. The parameters used in this study are specified in table 

5. 

Table 5. Parameter specification in the simulation 

Methods Mean shifts 
(5) 

Skewness Kurtosis Sample size 

x chart 0 normal low 3* 

CUSUM ±.25 skewed (+) medium 5 

Neural network ±.50 skewed (++) high 

±.75 

± 1 

± 1.5 

±2 

±3 

± 4 

± 5 

Sample size of 3 is examined only for the selective cases, 2,4, and 7. 



CHAPTER V 

EXPERIMENT AND PERFORMANCE ANALYSES 

Introduction 

Chapter 4 was devoted to a discussion of simulation methodologies used in this study. 

In this chapter, the results of three extensive simulation experiments are reported. The first 

experiment compares the performance of the neural networks with those of the x and 

CUSUM control charts for each of the nine normal and nonnormal distributions with 

different degrees of skewness and kurtosis. This experiment also examines the effects of 

nonnormality measured by different skewness and kurtosis on the ability of the three methods 

to detect out-of-control states. The second experiment investigates the effects of mean shifts 

on the performance of the three methods. The third experiment examines the effects of 

sample size on the performance of the three methods. 

Comparisons of the Three Methods 

A randomized block design allows comparison of the performance of the three 

methods. The randomized block design is an experimental design for comparing two or more 

treatment means when an extraneous source of variability (blocks) is present (Ott 1988). By 

choosing mean shifts to represent the blocks, the variability among the mean shifts is 

effectively filtered out, allowing more precise comparisons among the three methods. After 

running the block design, Tukey's multiple comparisons technique allows identification of 

which methods differ from each other. 
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Case 1 fskewness=0- kurtosis=2>> 

In case 1, nonnormal data with skewness of 0 and kurtosis of 2 were examined. A 

skewness of 0 and kurtosis of 2 indicate that the underlying distribution is symmetric, but has 

lighter tails than the normal distribution (kurtosis for the normal distribution = 3) (figure 6 -

all the figures are located in Appendix B to avoid complexity of the manuscript). Actually, 

the shape of the distribution is close to a uniform distribution, which is why the in-control 

ARL (784) of this distribution is much higher than the ARL (371) of the normal distribution. 

With symmetric distributions, process changes in positive and negative directions will be 

detected equally well because of the directional invariance property. As the mean shift 

becomes larger, the out-of-control ARL becomes dramatically smaller, as shown in table 6 

(All the tables are located at the end of the chapter to avoid complexity of the manuscript) 

due to the fact that, with heavy tails, mean shifts result in more area under the distribution 

exceeding the control limits. The slight differences in ARLs between positive shifts and 

negative shifts can be attributed to randomness in the simulation. The Type I error rates 

(represented by in-control ARL, the ARLs corresponding to a mean shift of zero) of the x 

charts, CUSUM charts, and neural networks were kept the same to maintain fairness in each 

of the nine cases examined in this study. The out-of-control ARLs characterize the speed 

with which a control procedure is capable of detecting a process change in a sequence of 

data. Therefore, a small ARL is desired when the process is out-of-control. On the other 

hand, a large ARL is desired when the process is in-control because the in-control ARL 

provides the rate of false alarms. 
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Table 6 contains the ratios, px, p2, and p3. px and p2 represent the ratio of the ARL 

values for the neural networks to the corresponding ARL values for the x and CUSUM 

control charts, respectively. p3 represents the ratio of the ARL values for thex charts to the 

corresponding ARL values for the CUSUM control charts. These three ratios are used 

because they provide concise and convenient comparisons of the performance of the three 

methods. It can be concluded that the proposed neural networks perform better than the 

corresponding x control charts when px is less than one and perform better than the 

corresponding CUSUM control charts when p2 is less than one. For example, the px value 

for a mean shift of -0.25 5 is 0.94. This implies that the proposed neural network detected 

the out-of-control state 6 percent faster than the x chart. It can also be concluded that the 

proposed x charts perform better than the CUSUM control charts when p3 is less than one. 

As shown in table 6, the values of for both positive and negative shifts in the mean are 

approximately one. This implies that the neural network performs as well as the x control 

chart. The values of p2 and p3 for large mean shifts (± 3 5 to ± 5 5 ) are smaller than one. 

This implies that the x control chart and the neural network perform better than the 

corresponding CUSUM chart to detect out-of-control states. However, the values of p2 and 

p3 for small mean shifts ( ± 0.25 5 to ± 2 6 ) are much larger than one. This implies that the x 

control chart and the neural network perform worse than the corresponding CUSUM control 

chart. 

These results are supported statistically by the results from the analysis of variance 

employed in this study. The results from the analysis of variance show that there is a 

significant difference among the performances of the three methods (p-value = .0022) (table 
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7). Furthermore, the multiple comparisons technique indicates that the CUSUM chart 

performs better than the x control chart and the neural network for the symmetric nonnormal 

distribution with kurtosis = 2 at a = .05. The multiple comparisons also indicate that there 

is no significant difference between the x control chart and the neural network at a— .05 

as shown in Table 8 (Table 8 contains all the results from the multiple comparisons for the 

nine cases examined in this study). The comparison of the ARLs of the three methods is 

shown in figure 7 in Appendix B. Notice that the values on the vertical axis are ARLs for the x 

chart, CUSUM chart, and neural network and the values on the horizontal axis are the 

magnitudes of the mean shifts in terms of 5. The resulting ARL curves are symmetric 

because the distribution examined here is symmetric. 

Case 2 (skewness = 0. kurtosis = ^ 

In case 2, the normal distribution (skewness = 0 and kurtosis = 3) was examined 

(figure 8). With a normal distribution, process changes in positive and negative directions 

will be detected equally well because of the directional invariance property. As shown in 

table 9, the ratios, px, p2, andp3 in case 2 are similar to those in case 1. This implies that 

the relative performance of the three methods in case 2 is about the same as in case 1. 

These results are supported statistically by the results from the analysis of variance, 

which shows that there is a significant difference among the performances of the three 

methods (p-value = .0004) (table 10 ). In addition, the multiple comparisons technique 

indicates that the CUSUM chart performs better than the x control chart and the neural 

network at a= .05 when the distribution is normal. The multiple comparisons also show that 

there is no significant difference between the x control chart and the neural network at a= 
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.05. Basically, there is no difference in the performance results between cases 1 and 2 due 

to the symmetry of the distributions. The resulting ARL curves are symmetric because the 

distribution examined here is normal, as shown in figure 9. 

Case 3 fskewness = 0. kurtosis = 4"> 

In case 3, nonnormal data with skewness of 0 and kurtosis of 4 were examined. A 

skewness of 0 indicates that underlying distribution is not skewed, similar to the cases 1 and 

2, while a kurtosis of 4 indicates that the peakedness of the distribution is higher than for the 

normal distribution (figure 10). As in cases 1 and 2, process changes in positive and negative 

directions are detected equally well because of the directional invariance property. As shown 

in table 11, the ratios, px, p2, and p3 in case 3 are similar to those in cases 1 and 2. This 

implies that the relative performance of the three methods in case 3 is about the same as in 

cases 1 and 2. This result is mainly due to the symmetry of the distributions in cases 1-3. 

These results are supported statistically by the results from the analysis of variance, 

which shows that there is a significant difference among the performances of the three 

methods (p-value = .0001) (table 12). The multiple comparisons technique indicates that the 

CUSUM chart performs better than the x control chart and the neural network at a= .05 for 

the nonnormal distribution. The multiple comparisons also show that there is no significant 

difference between the x control chart and the neural network at a= .05. The analysis of 

variance indicates that there is a significant effect due to mean shift (p-value = .0001). 

Basically, the results from this case are the same as those from cases 1 and 2, which again 

is due to the symmetry of the distribution. The resulting ARL curves are symmetric because 

the distribution examined here is symmetric, as shown in figure 11. 
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Case 4 (skewness = 1.0. kurtosis = 3.0^ 

In case 4, nonnormal data with skewness of 1 and kurtosis of 3 were examined. A 

skewness of 1 indicates that the underlying distribution is positively skewed, while a kurtosis 

of 3 indicates that the peakedness of the distribution is the same as for the normal 

distribution (figure 12). As shown in table 13, the values of px for positive mean shifts are 

approximately one. This implies that the neural network performs as well as the x control 

chart for positive mean shifts. On the other hand, the values of p2 for negative mean shifts 

are much smaller than one. This means that the performance of the neural network is 

considerably superior to that of the x control chart for negative mean shifts. 

The values of p2 for positive large mean shifts (35 to 5 5 ) and all negative mean 

shifts are much smaller than one. This implies that the neural network performs better than 

the corresponding CUSUM chart for these mean shifts. The values of p2for small positive 

mean shifts (.25 5 to 2 5 ) are larger than one. This implies that the neural network performs 

worse than the corresponding CUSUM chart for these mean shifts. The values of p2 for large 

positive and negative mean shifts are smaller than one. This indicates that x control chart 

performs better that the corresponding CUSUM chart. The values of p3 for small positive 

and negative mean shifts (± .25 6 to ±25) are larger than one. Specifically, the values ofp3 

for the negative mean shifts (-0.25 5 to -15) are 30.07,128.81, and 43. This implies that the x 

control chart performs much worse than the corresponding CUSUM chart for small mean 

shifts. The values ofp3 for the large negative mean shifts (±35 to ±55) are smaller than 

one. This suggests that the x control chart performs better than the corresponding CUSUM 

chart for these mean shifts. 
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The analysis of variance shows that there is no statistical significant difference among 

the performances of the three methods at a= .05 (p-value = .0521) (table 14). However, the 

means of the ARLs of the three methods indicate that the neural network performs better than 

the corresponding x and CUSUM control charts (the mean ARL of the x chart = 224.36; 

the mean ARL of the CUSUM chart = 26.87; and the mean ARL of the neural network = 

18.99). The results from the analysis of variance indicate that there is no statistically 

significant effect due to mean shift (p-value = .4136). 

This result is also shown in figure 13. The ARL curve of the neural network matches 

that of the x control chart for positive mean shifts, but the out-of-control ARLs of the neural 

network for negative mean shifts are considerably smaller, as seen in the figure. The out-of-

control ARLs of the x chart become larger as the mean shifts approach -.75 5 (ARL = 1876) 

and become smaller again after that point. This result can be explained by examining the 

shape of the distribution (figure 12). The nonnormal distribution with skewness = 1 and 

kurtosis = 3 has a long tail on the right-hand side and short but heavy tail on the left-hand 

side. When the distribution is shifted to the right, the light long tail on the right-hand side of 

the distribution moves beyond the upper control limit of the x control chart. This implies 

that, when the distribution is shifted to the right, the probability for the data observations to 

be beyond the upper control limit gradually increases just as in a normal case. On the other 

hand, when the distribution is shifted to the left, the probability for data observations to be 

beyond the lower control limit increases dramatically due to the heavy tail on the left-hand 

side of the positively skewed distribution. 
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Case 5 (skewness = 1.0. kurtosis = 4.0^ 

In case 5, nonnormal data with skewness of 1 and kurtosis of 4 were examined. A 

skewness of 1 indicates that the underlying distribution is positively skewed, and a kurtosis 

of 4 indicates that the peakedness of the distribution is higher than for the normal 

distribution. The shape of the distribution is similar to that of case 4, but is more peaked, as 

shown in figure 14. As a result of the high kurtosis, the distribution of the averages is closer 

to that of the normal distribution than in case 4. As shown in table 15, the values of p , p2, 

and p3 are about the same as those in case 4 except for the values of p2 for the small negative 

mean shifts (-.255 to -1.55 ). This result is mainly due to the similar shapes of the 

distributions in these two cases. 

The values of px for positive mean shifts are approximately one. This implies that the 

neural network performs as well as the x control chart for positive mean shifts. The values 

of p1for negative mean shifts are much smaller than one. This means that the performance 

of the neural network is considerably superior to that of the x control chart for negative 

mean shifts. Furthermore, the values of p2for the large mean shifts (±35 to ±55 ) are 

smaller than one. This implies that the neural network performs better than the corresponding 

CUSUM chart in detecting out-of-control states for these mean shifts. However, the values 

of p2 for the small mean shifts (± 0.25 5 to ± 2 5 ) are much larger than one. This implies 

that the neural network performs worse than the corresponding CUSUM control chart. On 

the other hand, the values of p3 for the small mean shifts ( ± 0.25 5 to ±25) are much larger 

than one. This implies that the x control chart performs worse than the corresponding 

CUSUM control chart for small mean shifts. In contrast, the values of p3 for large mean 
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shifts (±35 to ±55) are smaller than one which implies that the x control chart performs 

better than the corresponding CUSUM control chart for large mean shifts. 

These results are supported statistically by the results from the analysis of variance, 

which shows that there is a significant difference among the performances of the three 

methods at a= .05 (p-value = .0243) (table 16). The multiple comparisons indicate that the 

CUSUM chart and the neural network perform better than the x control chart at a= .05 for 

this positively skewed and kurtotic distribution. The multiple comparisons also show that 

there is no significant difference between the CUSUM chart and the neural network at a= 

.05. The results from the analysis of variance indicate that there is no significant effect due 

to mean shifts (p-value = .0516). 

This result is also shown in figure 15. The ARL curve of the neural network matches 

that of the x control chart for the positive mean shifts, but the out-of-control ARLs of the 

neural network for the negative mean shifts are considerably smaller, as seen in the figure. 

The out-of-control ARLs of the x chart become larger as the mean shifts approach -.50 5 

(ARL — 664) and become smaller again after that point. This result can be explained by 

examining the shape of the distribution as described in case 4. 

Case 6 (skewness = 1.0. kurtosis = 5.01 

In case 6, nonnormal data with skewness of 1 and kurtosis of 5 were examined. A 

skewness of 1 indicates that the underlying distribution is positively skewed, while a kurtosis 

of 5 indicates that the peakedness of the distribution is much higher than that of the normal 

distribution. The shape of the distribution is similar to those of cases 4 and 5, but is much 

more peaked, as shown in figure 16. As shown in table 17, the values of px for positive mean 



78 

shifts are approximately one. This implies that the neural network performs as well as the x 

control chart for positive mean shifts. The values of p1 for negative mean shifts are smaller 

than one. However, the values of p1 for negative mean shifts are much larger than those in 

cases 4 and 5. This means that the performance of the neural network is still superior to that 

of the x control chart for negative mean shifts, but not nearly as much so as in cases 4. 

This result can be attributed to the distribution of the sample averages, which is much 

closer to symmetric than in cases 4 and 5 as seen in figure 16. The performance of the neural 

networks proposed in this study seems to be equivalent to that of x control charts when the 

distribution is symmetric, as demonstrated in the results from cases 1,2, and 3. On the other 

hand, the values of p2 for large mean shifts (± 3 5 to ± 5 5) are smaller than one. This implies 

that the neural network performs better than the corresponding CUSUM chart in detecting 

out-of-control states for these mean shifts. However, the values of p2 for small mean shifts 

(± 0.25 5 to ±2 5) are much larger than one. This implies that the neural network performs 

worse than the corresponding CUSUM control chart for these mean shifts. The values of 

P3 for small mean shifts (± 0.25 5 to ±25) are much larger than one which implies that for 

these mean shifts the x control chart performs worse than the corresponding CUSUM 

control chart. The values of p3 for large mean shifts (+35 to +55) are smaller than one. 

This implies that the x control chart performs better than the corresponding CUSUM 

control chart for these mean shifts. Overall, the p15 p2, andp3 ratios in this case 6 are 

similar to those in case 5. This implies that the relative performance of the three methods in 

case 6 is about the same as in case 5. 
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The results above are statistically supported by the results from the analysis of 

variance. The analysis of variance shows that there is a significant difference among the 

performances of the three methods at a= .05 (p-value = .0044) (table 18). The multiple 

comparisons indicate that the CUSUM chart performs better than the x control chart and 

the neural network at a= .05. The multiple comparisons also show that there is no significant 

difference between the x chart and the neural network at ot= .05. The results also indicate 

that there is significant effect due to mean shifts (p-value = .0001). This result is also shown 

in figure 17. The ARL curve for the neural network matches that for the x control chart for 

positive mean shifts, while smaller out-of-control ARLs for the neural network for negative 

mean shifts can be seen in the figure. The ARL curves for the three methods are much more 

symmetric than those for cases 4 and 5 due to the fact that the shape of the distribution of 

sample averages is much closer to being symmetric. 

Case 7 (skewness = 2.0. kurtosis = 6.2) 

In case 7, nonnormal data with skewness of 2 and kurtosis of 6.2 were examined. A 

skewness of 2 indicates that the underlying distribution is severely skewed to the right, while 

a kurtosis of 6.2 indicates that the distribution is highly kurtotic (figure 18). As shown in 

table 19, the values of px, p2, and p3 for positive mean shifts are about the same as those 

in the previous cases, 1 -6. This implies that the relative performance of the three methods 

is about the same in detecting positive out-of-control states in all the cases 1-7. However, 

notice that the values of p2 and p3 tend to be smaller as the distributions become more 

skewed and/or more kurtotic. For example, the value of p3for a mean shift of .75 is 5.12 in 

case 2 (normal distribution), but becomes smaller, 5.0, 3.16, and 2.53 in cases 3,4, and 7, 
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respectively. On the other hand, the values of pxand p2for all the negative mean shifts are 

much smaller than one. The values are also much smaller than those in the previous cases 

1-6. This means that the performance of the neural network is considerably superior to that 

of thex and CUSUM control charts for negative mean shifts. The values of p3 for small 

negative mean shifts (-.25 5 to -2 5) are larger than one. Specifically, the values ofp3 for 

negative mean shifts (-0.55 to -1.55) are 14.04, 45.04, 118.93, and 556.74, respectively. 

This implies that x control chart performs much worse that the corresponding CUSUM 

chart for small mean shifts. The values ofp3 for the large negative mean shifts (±3 5 to 

± 5 5 ) are smaller than one which suggests that the x control chart performs better than the 

corresponding CUSUM chart for these mean shifts. 

The results from the analysis of variance show that there is no statistically significant 

difference at a= .05 among the performances of the three methods (p-value = .0662) (table 

20). However, the means of the ARLs of the three methods indicate that the neural network 

and the CUSUM chart perform much better than the corresponding x chart (the mean ARL 

of the x chart = 255.6; the mean ARL of the CUSUM chart = 13.4; and the mean ARL of 

the neural network = 13.2). The results also indicate that there is no statistically significant 

effect due to the mean shifts (p-value = .5028). 

This result is also shown in the figure 19. The ARL curve of the neural network 

matches that of the x control chart for positive mean shifts, but the considerably smaller out-

of-control ARLs of the neural network are shown in the figure for negative mean shifts. The 

out-of-control ARLs of the x chart become larger as mean shifts approach -1.5 5 (ARL = 

2449) and become dramatically smaller after that point. This result can be explained by 
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(a) 

Table 7-a & b. Analysis of variance 
case 1 (skewness = 0, kurtosis = 2, n=5) 

Mean shifts x chart CUSUM chart Neural network 

0.25 479.05 185.67 514.86 

0.5 202.53 43.93 218.27 

0.75 93.04 18.73 98.71 

1 46.11 11.26 48.56 

1.5 14.72 6.23 15.36 

2 6.15 4.34 6.37 

3 2.02 2.76 2.06 

4 1.2 2.12 1.21 
5 1.02 • 1.83 1.02 

-0.25 480.8 183.75 451.93 
-0.5 209.44 44.15 197.37 

-0.75 94.58 18.74 89.38 
-1 46.59 11.33 44.35 

-1.5 14.53 6.22 14.06 
-2 6.06 4.32 5.86 
-3 1.98 2.75 1.97 
-4 1.19 2.11 1.19 
-5 1.02 1.83 1.02 

(b) 

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 49373 24736 7.36 .0022 

block 17 764338 44961 13.37 .0001 

error 34 114336 3362 

total 53 928148 
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Table 8. Performance ranking from multiple comparisons for nonnormality (n = 5) 
(Tukey tests) 

Case x chart CUSUM chart Neural network 

1 2 1 2 

2 2 1 2 

3 2 1 2 

4 1(3) 1(1) 1(2) 

5 2 1(1) 1(2) 

6 2 1 2 

7 1(2) 1(1) 1(1) 

8 1(2) 1(1) 1(1) 

9 2 1 1 

* The numbers in parentheses represent the order of means that are not statistically 
significant. 
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Table 10-a & b. Analysis of variance 
case 2 (skewness = 0, kurtosis = 3, n=5) 

(a) 

Mean shifts x chart CUSUM chart Neural network 

0.25 280.16 122.54 272.85 

0.5 157.1 35.28 151.09 

0.75 83.27 16.27 79.48 

1 44.9 9.93 43.48 

1.5 15.01 5.57 14.73 

2 6.28 3.86 6.17 

3 1.98 2.48 1.97 

4 1.19 1.96 1.19 

5 1.02 1.6 1.02 

-0.25 282.48 122.7 292.57 

-0.5 153.81 35.53 163.16 

-0.75 81.06 16.11 85.7 

-1 43.94 9.93 45.87 

-1.5 14.99 5.53 15.68 

-2 6.31 3.88 6.51 

-3 2.02 2.49 2.05 

-4 1.18 1.96 1.19 

-5 1.02 1.61 1.02 

(b) 

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 22679 11339 10.03 .0004 

block 17 283260 16662 14.73 .0001 

error 34 38457 1131 

total 53 344397 
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Table 12-a & b. Analysis of variance 
case 3 (skewness = 0, kurtosis = 4, n=5) 

(a) 

Mean shifts * chart CUSUM chart Neural network 

0.25 205.27 101.01 215.31 

0.5 131.06 32.17 137.85 

0.75 75.6 15.12 80.22 

1 43.15 9.33 45.98 

1.5 15.27 5.26 16.24 

2 6.41 3.65 6.77 

3 1.98 2.37 2.04 

4 1.18 1.87 1.19 

5 1.02 1.48 1.03 

-0.25 208.63 101.36 202.11 

-0.5 127.6 31.5 121.93 

-0.75 73.82 14.96 70.25 

-1 41.75 936 40.33 

-1.5 15.35 5.22 14.81 

-2 6.41 3.67 6.3 

-3 2.02 2.38 2 

-4 1.18 1.89 1.17 

-5 1.02 1.5 1.02 

(b) 

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 14171 7085 11.84 .0001 

block 17 164560 9680 16.17 .0001 

error 34 20355 598 

total 53 199087 
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Table 14-a & b. Analysis of variance 
case 4 (skewness = 1, kurtosis = 3, n=5) 

(a) 

Mean shifts x chart CUSUM chart Neural network 

0.25 142.29 90.04 142.80 

0.5 81.2 31.36 81.71 

0.75 48.7 15.4 49.01 

1 30.23 9.49 30.79 

1.5 12.74 5.28 12.79 

2 6.13 3.68 6.22 

3 2.15 2.37 2.16 

4 1.20 1.85 1.21 

5 1 1.51 1 

-0.25 477.9 109.72 96.25 

-0.5 936.22 31.13 29.52 

-0.75 1876.82 14.57 13.7 

-1 392.54 9.13 7.73 

-1.5 19.17 5.12 3.46 

-2 5.99 3.6 2.07 

-3 1.88 2.38 1.25 

-4 1.21 1.89 1.05 

-5 1.03 1.45 1.01 

(b) 

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 487680 243840 3.23 .0521 

block 17 1381181 81245 1.08 .4136 

error 34 2569393 75570 

total 53 4438255 
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Table 16-a & b. Analysis of variance 
case 5 (skewness = 1, kurtosis = 4, n = 5) 

(a) 

Mean shifts x chart CUSUM chart Neural network 

0.25 131.65 86.3 132.36 

0.5 78.49 30.56 79.08 

0.75 48.59 15.12 48.81 

1 31.05 9.4 31.26 

1.5 13.17 5.2 13.32 

2 6.22 3.62 6.32 

3 2.15 2.34 2.16 

4 1.19 1.84 1.20 

5 1.01 1.48 1.01 

-0.25 389.85 104.36 208.32 

-0.5 664.78 30.37 79.52 

-0.75 541.05 14.25 31.48 

-1 131.67 9.05 15.36 

-1.5 19.1 5.04 5.38 

-2 6.13 3.56 2.73 

-3 1.88 2.34 1.37 

-4 1.18 1.84 1.07 

-5 1.03 1.42 1.01 

(b) 

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 94998 47499 4.15 .0243 

block 17 373486 21969 1.92 .0516 

error 34 388785 11434 

total 53 857270 
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Table 18-a & b. Analysis of variance 
case 6 (skewness = 1, kurtosis = 5, n = 5) 

(a) 

Mean shifts x chart CUSUM chart Neural network 

0.25 121.69 76.87 123.69 

0.5 76.02 29.18 77.54 

0.75 48.06 14137 48.73 

1 30.6 8.97 31.45 

1.5 13.23 5.02 13.66 

2 6.41 3.5 6.57 

3 2.11 2.26 2.15 

4 1.18 1.78 1.19 

5 1.01 1.4 1.01 

-0.25 297.93 90.83 267.52 

-0.5 336.35 28.46 223.12 

-0.75 203.6 13.71 112 

-1 88.08 8.6 49.66 

-1.5 19.19 4.9 12.77 

-2 6.46 3.46 4.85 

-3 1.9 2.28 1.69 

-4 1.18 1.78 1.14 

-5 1.03 1.36 1.02 

(b) 

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 26973 13486 6.38 .0044 

block 17 235662 13862 6.55 .0001 

error 34 71909 2114 

total 53 334542 
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Table 20-a & b. Analysis of variance 
case 7 (skewness = 2, kurtosis = 6.2, n = 5) 

1 Mean shifts | x chart CUSUM chart Neural network j 

0.25 81.04 57.08 81.07 

0.5 52.76 26.04 53.30 

0.75 34.83 13.76 35.22 

1 23.66 8.54 23.68 

1.5 11.77 4.76 11.91 

2 6.28 3.29 6.36 

3 2.27 2.12 2.29 

4 1.22 1.67 1.23 

5 1 1.32 1 

-0.25 195.17 68.66 6.62 

-0.5 319.48 22.75 3.84 

-0.75 523.42 11.62 2.78 

-1 888.38 7.47 2.24 

-1.5 2449.67 4.4 1.61 

-2 5.48 3.13 1.3 

-3 1.78 2.22 1.07 

-4 1.18 1.57 1.02 

-5 1.04 1.22 1 

(b) 

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 704334 352167 2.94 .0662 

block 17 1987518 116912 .98 .5028 

error 34 4067087 119620 

total 53 6758940 
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Table 22-a & b. Analysis of variance 
case 8 (skewness = 2, kurtosis = 7.2, n = 5) 

(a) 

Mean shifts * chart CUSUM chart Neural network 

0.25 77.6 54.79 78.96 

0.5 52.09 24.96 52.72 

0.75 34.77 13.35 35.26 

1 24.11 8.38 24.19 

1.5 11.95 4.66 12.10 

2 6.24 3.25 6.32 

3 2.27 2.1 2.30 

4 1.2 1.66 1.21 

5 1 1.28 1 

-0.25 182.48 70.4 10.29 

-0.5 285.78 23.51 5.17 

-0.75 449.97 11.84 3.37 

-1 713.79 7.57 2.53 

-1.5 1600 4.42 1.75 

-2 5.91 3.13 1.35 

-3 1.77 2.14 1.08 

-4 1.19 1.57 1.02 

-5 1.04 1.21 1 

(b) 

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 382166 191083 3.51 .0410 

block 17 900359 52962 .97 .5062 

error 34 1849277 54390 

total 53 3131802 
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Table 24-a & b. Analysis of variance 
case 9 (skewness = 2, kurtosis = 8.8, n = 5) 

Mean shifts x chart CUSUM chart Neural network 

0.25 77.69 55.15 77.55 

0.5 52.81 25.16 52.43 

0.75 36.03 13.36 35.74 

1 24.84 8.33 24.72 

1.5 12.28 4.64 12.32 

2 6.36 3.24 6.36 

3 2.27 2.1 2.27 

4 1.2 1.66 1.20 

5 1 1.27 1 

-0.25 175.65 69.13 57.31 

-0.5 265.88 23.51 12.72 

-0.75 400.02 11.85 6.31 

-1 597.13 7.59 3.9 

-1.5 74.26 4.43 2.2 

-2 6.16 3.13 1.54 

-3 1.77 2.13 1.13 

-4 1.18 1.57 1.03 

-5 1.04 1.21 1.01 

(b) 

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 79862 39931 4.39 .0202 

block 17 173114 10183 1.12 .3771 

error 34 309460 9101 

total 53 562437 
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examining the shape of the distribution (figure 18). The nonnormal distribution with 

skewness = 2 and kurtosis = 6.2 has a long tail on the right side and a short but heavy tail on 

the left side. When the distribution is shifted to the right, the light long right tail of the 

distribution moves beyond the upper control limit of the x control chart. This implies that 

when the distribution is shifted to the right, the probability for the data observations to be 

beyond the upper control limit gradually increases just as in a normal case. Therefore, the 

out-of-control ARLs for positive mean shifts become gradually shorter. On the other hand, 

when the distribution is shifted to the left, the probability for the data observations to be 

beyond the both upper and lower control limits gets smaller. The heavy negative tail of the 

distribution lies within the lower control limit with small negative mean shifts (up to -1.5 5 ), 

while the positive tail beyond the upper control limit becomes smaller. However, the heavy 

negative tail of the distribution moves beyond the lower control limit after that point of the 

mean shift. Therefore, the probability of the distribution to be beyond the lower control limit 

dramatically increases, resulting in a dramatic decrease of the out-of-control ARLs. On the 

other hand, the out-of-control ARLs of the CUSUM chart and the neural network decrease 

gradually and consistently as the magnitude of the mean shifts increases for both positive and 

negative mean shifts. 

Case 8 (skewness = 2.0. kurtosis = 1.2) 

In case 8, nonnormal data with skewness of 2 and kurtosis of 7.2 were examined. A 

skewness of 2 indicates that the underlying distribution is severely skewed to the right, while 

a kurtosis of 7.2 indicates that the distribution is highly kurtotic (figure 20). Basically, there 
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are no differences in the performance comparison results between cases 7 and 8, as can be 

seen from tables 19 and 21. 

The results from the analysis of variance show that there is a statistically significant 

difference among the performances of the three methods at a= .05 (p-value = .041) (table 

22). However, the multiple comparisons indicate that there is no pairwise difference among 

the methods. The means of the ARLs of the three methods indicate that the neural network 

and the CUSUM chart perform much better than the corresponding x chart (the mean ARL 

of the x chart = 191.84; the mean ARL of the CUSUM chart = 13.35; and the mean ARL 

of the neural network = 13.42). The results also indicate that there is no statistically 

significant effect due to mean shift (p-value = .5062). 

These results are also shown in figure 21. The ARL curve of the neural network 

matches that of the x control chart for positive mean shifts, but the out-of-control ARLs of 

the neural network are considerably smaller than those of the x chart for negative mean 

shifts, as can be seen in the figure. The out-of-control ARLs of the x chart become larger as 

the mean shifts approach -1.5 5 (ARL = 1600) and become dramatically smaller after that 

point. One main difference between cases 7 and 8 is that the out-of-control ARLs of case 8 

are smaller than those of case 7 for negative mean shifts. This result can be attributed to the 

more kurtotic shape of the distribution, which results in a distribution of sample averages that 

is more symmetric. 

Case 9 (skewness = 2.0. kurtosis = 8.8> 

In case 9, nonnormal data with skewness of 2 and kurtosis of 8.8 were examined. 

This distribution is very close to an exponential distribution (skewness = 2 and kurtosis = 9) 



102 

(figure 22). As mentioned before, exponentially distributed observations arise naturally in 

the context of monitoring the occurrence rate of rare events. Generally, the results for this 

case do not differ from those of cases 7 and 8, as can be seen by a comparison of table 19, 

21, and 23. 

The results from the analysis of variance show that there is a statistically significant 

difference among the performances of the three methods at a= .05 (p-value = .0202) (table 

24). The multiple comparisons indicate that the CUSUM chart and the neural network 

perform better than the x control chart at a= .05. The multiple comparisons also show that 

there is no significant difference between the CUSUM chart and the neural network at a= 

.05. The results also indicate that there is no statistically significant effect due to the mean 

shifts (p-value = .3771). 

These results are also shown in figure 23. The ARL curve of the neural network 

matches that of the x control chart for positive mean shifts, but the considerably smaller out-

of-control ARLs of the neural network are shown in the figure for negative mean shifts. The 

out-of-control ARLs of the x chart become larger as the mean shifts approach -1.06 (ARL 

= 597) and become dramatically smaller after that point of the mean shift. One main 

difference between this case and the previous two cases, 7 and 8, is that the out-of-control 

ARLs of case 9 are smaller than those of cases 7 and 8 for the negative mean shifts. This 

result can be attributed to the more kurtotic shape of the distribution, which results in a 

distribution of sample averages that is more symmetric. 
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Effects of Degrees of Nonnormality 

Clearly, the effects of skewness and kurtosis on the performance of a control chart 

for averages can be substantial because nonnormality can dramatically affect the in-control 

ARLs as well as the out-of-control ARLs for standard control charts. The more skewed 

and/or the kurtotic, the more nonnormal the distribution of the quality characteristic. Both 

of these aspects of nonnormality are important in the consideration of the effects of 

nonnormality on the operating characteristics of control charts. The quality management 

decision maker is well advised to consider neural networks when nonnormality is present in 

the underlying distribution of a quality characteristic. In the previous section, the effects of 

degrees of nonnormality on out of control ARLs were examined for each of the nine 

nonnormal cases. In this section, the effects of degrees of nonnormality on in-control ARLs 

are examined. Controlling Type I error rates as measured by in-control ARLs is as important 

as controlling Type II error rates as measured by out-of-control ARLs because responding 

to false alarms are sometimes more expensive than taking no action. 

The effect of kurtosis on in-control ARLs is significant. As shown in table 25, the in-

control ARLs for cases, 1,2, and 3 become dramatically smaller going from 787 to 372 and 

then to 260. Notice that the kurtosis of the cases becomes larger, starting at 2, then moving 

to 3 and 4, while their skewness is the same. The in-control ARLs for cases, 4, 5, and 6 

become smaller going from 257 to 224 and then to 194. Notice that the kurtosis for these 

cases becomes larger from 3 to 4, whereas their skewness is the same. The same happens for 

the last group of cases, 7, 8, and 9. Based on the three groups of cases above, it can be 

concluded that higher kurtosis causes higher false alarm rates. 
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The effect of skewness is important because the effects of skewness on the in-control 

ARLs are significant. The in-control ARLs of cases 2 and 4 get smaller, going from 372 to 

257 (table 25). Notice that the skewness of these cases becomes larger, going from 0 to 1, 

while their kurtosis is the same. The in-control ARLs of cases 3 and 5 also become smaller, 

going from 260 to 227. Notice that the skewness of these cases becomes larger, going from 

0 to 1, while their kurtosis is the same. Based on the two groups of cases above, it can be 

concluded that higher skewness causes higher false alarm rates. Just as with the effect of 

kurtosis, the effect of large skewness values is an inappropriately large value of false alarm 

rates. In summary, in-control ARLs become smaller as the degree of nonnormality as 

measured by skewness and kurtosis, become higher. 

Table 25. The effects of degrees of nonnormality on in-control ARLs 

Case Skewness Kurtosis ARLs Notes 

1 0 2 787 Almost uniform distribution 

2 0 3 372 Normal 

3 0 4 260 Symmetric and peaked 

4 1 3 257 Positively skewness 

5 1 4 227 Positively skewed and peaked 

6 1 5 194 Positively skewed and peaked 

7 2 6.2 126 Highly positively skewed and highly eaked 

8 2 7.2 119 Highly positively skewed and severely 
peaked 

9 2 8.8 116 Almost exponential distribution 
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Effects of Mean Shifts 

The eighteen different mean shifts are divided into four categories: small and 

intermediate mean shifts and large mean shifts for both the positive and negative directions. 

This categorization was selected because it allows a concise and comprehensive examination 

of the effects of the mean shifts on the performance of the three methods. 

Smal l and intermediate positive mean shifts (0.255 to 25) 

The analysis of variance shows that there is a statistically significant difference 

among the performances of the three methods at a= .05 for each of the mean shifts. The 

analysis of variance results for the mean shifts are shown in tables26 - 31, respectively. The 

multiple comparisons indicate that the CUSUM charts perform better than the corresponding x 

control charts and neural networks at a= .05 for each of the mean shifts. The multiple 

comparisons also show that there is no significant difference between the x charts and the 

neural networks at a= .05 for any of the mean shifts. The multiple comparisons for all four 

categories are shown in table 32. 

Small and intermediate negative mean shifts (-0.25 5 to -2 5 ) 

The analysis of variance shows that there is a statistically significant difference 

among the performances of the three methods at a= .05 for each of the mean shifts. The 

resulting analysis of variance tables for the mean shifts are shown in tables 33-38, 

respectively. The multiple comparisons (table 32) indicate that CUSUM charts and neural 

networks perform better than the corresponding x charts at a= .05 for any of the mean 

shifts. The multiple comparisons also show that there is no significant difference between 

the CUSUM charts and the neural networks at a= .05 for each of the mean shifts. It is well 
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known that a CUSUM chart performs better than a x chart for small and intermediate mean 

shifts. These findings from the study shows that the performance of the three methods when 

distributions are nonnormal is the same as when the distribution is normal for small and 

intermediate negative mean shifts . 

Large positive mean shifts (3.0 5 to 5.0 5 ) 

The analysis of variance shows that there is no significant statistical difference among 

the performances of the three methods at a= .05 for the 3.05 mean shifts. On the other 

hand, the results show that there is a statistically significant difference among the 

performances of the three methods at a= .05 for mean shifts of 4.05 and 5.05. The 

resulting analysis of variance tables for the mean shifts are shown in tables 39-41. The 

multiple comparisons indicate that x charts and neural networks perform better than the 

corresponding CUSUM charts at a= .05 for the 4.05 and 5.05 mean shifts. The multiple 

comparisons also show that there is no significant difference between the x charts and the 

neural networks at a= .05 for these mean shifts. 

Large negative mean shifts (-3.05 to -5.05) 

The analysis of variance shows that there is a statistically significant difference 

among the performances of the three methods at a = .05 for all of the large negative mean 

shifts. The resulting analysis of variance tables for the mean shifts are shown in tables 42 -

44, respectively. The multiple comparisons for the -3 5 mean shift indicate that neural 

networks perform better than the corresponding x charts and the CUSUM charts at a= .05. 

The multiple comparisons also show that the x charts perform better than the CUSUM 

charts at a= .05 for these mean shifts. 
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In addition, the multiple comparisons for mean shifts of -4 5 and -5 5 indicate that 

neural networks and x charts perform better than the corresponding CUSUM charts at a= 

.05. It is well known that a x chart performs better than CUSUM chart for large mean shifts 

when a distribution is normal. The experiment indicates that the neural networks proposed 

in this study perform statistically as well as the corresponding x charts for large negative 

mean shifts. However, the means of ARLs of the two methods indicate that the neural 

networks perform better than the corresponding x charts for most of the eight different types 

of nonnormal cases for mean shifts of -4 5 and -5 5. 

Effects of Sample Size 

Several authors have investigated the effects of departures from normality on control 

charts. Burr (1967) noted that the standard control charts are very robust to the normality 

assumption and can be employed unless the population is extremely nonnormal. Schilling 

and Nelson (1976) also studied the effect of nonnormality on the control limits of a x 

control chart. Their studies indicate that, in most cases, sample size 4 or 5 is sufficient to 

ensure reasonable robustness to the normality assumption. However, if we need a larger 

sample size to obtain the distribution of sample averages closer to normality, such an 

increase would be wasteful when other methods are available and easily implemented. 

Furthermore, in some industries, it is too costly or impossible to use large samples. In these 

situations, as Yourstone and Zimmer (1992) suggest, it is not reasonable to use large sample 

sizes to get the distribution of sample averages closer to normality. On the other hand, with 

the small samples typically used, the traditional control charts might perform poorly because 

of the potential nonnormality of production processes. 
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Large sample sizes can mitigate some of the effects of nonnormality in the 

distribution. However, it is difficult to specify a sample size which would guarantee that the 

normality assumption of the sample averages is satisfied. The degree of nonnormality in 

sample averages depends on the amount of nonnormality in the individual observations. If 

the amount of nonnormality is measured by a positive skewness, the skewness in the 

distribution of the sample averages becomes small at the rate of 1 /Jn. That is, if the 

distribution of the individual observations has a skewness of 2 and a sample size as large as 

5 is used, the distribution of sample averages has a skewness of .894. With a sample of 3, the 

skewness of the distribution of sample averages is 1.154. In this study, the effects of sample 

size are examined with selective combinations of the skewness and kurtosis (Yourstone and 

Zimmer 1992). 

In this section, the effects of sample size on the performance of x charts, CUSUM 

charts, and neural networks are examined. First, the analyses of the performance of the three 

methods are conducted for some selective cases with a sample size of three. These cases 

include case 2 (a normal distribution), case 4 (a nonnormal distribution with skewness = 1 

and kurtosis = 3), and case 7 (a nonnormal distribution with skewness = 2 and kurtosis = 

6.2). A randomized block design allows comparison of the performance of the three methods. 

Tukey's multiple comparisons are also used, as in the previous section. The ARLs of the 

three methods with sample size of three for each of the three cases are shown in tables 45 -

47, respectively. The orders of the performances of the three methods for each of the three 

cases are held the same as in the cases with sample size 5. The results from the analysis of 
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variance are shown in tables 48-50, respectively. The results from the multiple comparisons 

are shown in table 51. 

Second, each of the three methods with sample size 3 is compared to those with 

sample size 5 to investigate the effects of sample size on the performance of each of the 

methods. However, it is inappropriate to compare the three methods directly because their 

in-control ARLs are different. Therefore, the effects of sample size on the performance of 

each of the three methods in detecting out-of-control states are examined taking into 

consideration the changes of in-control ARLs. The out-of-control ARLs characterize the 

speed with which a control procedure is capable of detecting a process change in a sequence 

of data. Therefore, a small ARL is desired when the process is out-of-control. On the other 

hand, a large ARL is desired when the process is in-control. The in-control ARL represents 

the rate of false alarms. 

Table 45 - 47 contains the ratios, \|/2, and i|/3, of the ARL values for x charts, 

CUSUM charts, and neural networks with sample size of three to those with sample size of 

five, respectively. The ratios, \|/x, , and i|/3, are used because they provide more concise 

comparisons of the performance of the methods. Assuming that controlling Type I error rates 

is as important as controlling Type II error rates, it can be concluded that x charts with 

sample size three perform better than those with sample size five, if the values of when 

the means are shifted are smaller than the values of f x when the means are not shifted. For 

example, the ijx1 value for no mean shift is 0.99, and the value for a mean shift of 0.5 5 

is 0.98 for case 2. This implies that the Type II error rate for the x chart is decreased by 

about 2 percent, whereas its false alarm rate is increased by about 1 percent. The same 
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conclusion can be made for CUSUM charts and neural networks. On the other hand, the 

values of i^for mean shifts are 0.99, .86, and .74 for cases 2,4, and 7, respectively. These 

results support the conclusion in the previous section that higher nonnormality causes higher 

false alarm rates. 

Case 2 fskewness = 0. kurtosis = 3") 

As seen in table 45, the values of ^ , f 2 , and for both no mean shift and mean 

shifts are approximately one for all three methods. This implies that there is no significant 

effect of sample size on the performance of the three methods. The value ofi|r1, .99, when 

the mean is not shifted, implies that there is no big difference between in-control ARLs of x 

charts for sample sizes of three and five. This is because the underlying distribution is 

normal. 

Case 4 fskewness = 1. kurtosis = 3̂  

As seen in the table 46, the value o f ^ , 0.86, for no mean shift, implies that the false 

alarm rate of the x chart with sample size three has increased by about 14 percent. The 

values of \|/3 for the mean shifts of -0.25 5 to -25 are 0.18, 0.26,0.35,0.27,0.61, and 0.73, 

respectively, which are significantly smaller than the ^ values for no mean shift. This 

implies that the neural network with sample size of three performs better than that with a 

sample size of five when the means are shifted. However, most of the values of , f 2 , and \J/3 

for mean shift conditions are higher than those for the no mean shift condition. This implies 

that each of the three methods with a sample size 3 performs worse than the corresponding 

method with sample size 5. 
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Case 7 (skewness = 2. kurtosis = 6.2) 

As seen in table 47, the value of ^ , 0.74, for no mean shift, implies that the false 

alarm rate of the x chart with a sample size of three has increased by about 26 percent. Most 

of the values of i|j 2 , and i|;3 for mean shift conditions are significantly higher than those 

for the no mean shift condition. This implies that each of the three methods with a sample 

size of three performs worse than the corresponding method with a sample size of five. 
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Table 45. Effects of sample size, Case 2 (skewness = 0, kurtosis =3) 

Mean 
shifts 

x chart 
n = 3 

x chart 
n = 5 

CUSUM 
n = 3 

CUSUM 
n = 5 

^2 Neural 
n = 3 

Neural 
n = 5 

^3 

0 368.33 372.28 0.99 368.46 371.87 0.99 369.82 371.96 0.99 

0.25 280.06 280.16 1.00 121.25 122.54 0.99 277.96 272.85 1.02 

0.5 153.34 157.1 0.98 34.88 35.28 0.99 153.89 151.09 1.02 

0.75 81.14 83.27 0.97 16.17 16.27 0.99 81.80 79.48 1.03 

1 44.65 44.9 0.99 9.9 9.93 1.00 45.10 43.48 1.04 

1.5 15.16 15.01 1.01 5.5 5.57 0.99 15.33 14.73 1.04 

2 6.37 6.28 1.01 3.86 3.86 1.00 6.47 6.17 1.05 

3 1.99 1.98 1.01 2.48 2.48 1.00 2.01 1.97 1.02 

4 1.18 1.19 0.99 1.95 1.96 0.99 1.19 1.19 1.00 

5 1.02 1.02 1.00 1.6 1.6 1.00 1.02 1.02 1.00 

-0.25 286.93 282.48 1.02 119.89 122.7 0.98 295.73 292.57 1.01 

-0.5 156.32 153.81 1.02 34.82 35.53 0.98 162.98 163.16 1.00 

-0.75 81.96 81.06 1.01 16 16.11 0.99 84.8 85.7 0.99 

-1 44.38 43.94 1.01 9.91 9.93 1.00 45.77 45.87 1.00 

-1.5 14.94 14.99 1.00 5.51 5.53 1.00 15.37 15.68 0.98 

-2 6.33 6.31 1.00 3.83 3.88 0.99 6.49 6.51 1.00 

-3 2 2.02 0.99 2.47 2.49 0.99 2.04 2.05 1.00 

-4 1.19 1.18 1.01 1.96 1.2 1.00 1.20 1.19 1.01 

-5 1.02 1.02 1.00 1.61 1.03 1.00 1.03 1.02 1.01 

* = (ARL of x chart with n=3) / (ARL of X chart with n=5) 

* l|/2 = (ARL of CUSUM chart with n=3) / (ARL of CUSUM chart with n=5) 

* \|J3 = (ARL of neural network with n=3) / (ARL of neural network with n=5) 
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Table 46. Effects of sample size, Case 4 (skewness = 1.0, kurtosis = 3.0) 

Mean 
shifts 

x chart 
n = 3 

x chart 
n = 5 

*1 CUSUM 
n = 3 

CUSUM 
n = 5 

*2 Neural 
n = 3 

Neural 
n = 5 

*3 

220.21 256.7 0.86 222.29 255.86 0.87 222.46 256.38 0.87 

0.25 124.29 142.29 0.87 78.03 90.04 0.87 124.02 142.80 0.87 

0.5 73.55 81.2 0.91 29.87 31.36 0.95 73.41 81.71 0.90 

0.75 44.70 48.7 0.92 14.80 15.4 0.96 44.70 49.01 0.91 

1 27.80 30.23 0.92 9.24 9.49 0.97 27.69 30.79 0.90 

1.5 12.04 12.74 0.95 5.15 5.28 0.98 12.23 12.79 0.96 

2 6.13 6.13 1.00 3.59 3.68 0.98 6.24 6.22 1.00 

3 2.17 2.15 1.01 2.31 2.37 0.97 2.26 2.16 1.05 

4 1.22 1.20 1.02 1.81 1.85 0.98 1.24 1.21 1.02 

5 1 1 1.00 1.46 1.51 0.97 1 1 1.00 

-0.25 412.16 477.9 0.86 102.56 109.72 0.93 17.17 96.25 0.18 

-0.5 812.31 936.22 0.87 29.29 31.13 0.94 7.76 29.52 0.26 

-0.75 1691.28 1876.82 0.90 13.84 14.57 0.95 4.85 13.7 0.35 

-1 31.38 392.54 0.08 8.74 9.13 0.96 3.44 7.73 0.45 

-1.5 3257.13 19.17 8.30 4.97 5.12 0.97 2.11 3.46 0.61 

-2 5.57 5.99 0.93 3.50 3.6 0.97 1.52 2.07 0.73 

-3 1.86 1.88 0.99 2.33 2.38 0.98 1.11 1.25 0.89 

-4 1.19 1.21 0.98 1.79 1.89 0.95 1.02 1.05 0.97 

-5 1.04 1.03 1.01 1.38 1.45 0.95 1 1.01 0.99 

*\[;1 = (ARL of x chart with n=3) / (ARL of x chart with n=5) 

* f 2 = (ARL of CUSUM chart with n=3) / (ARL of CUSUM chart with n=5) 

* i|j = (ARL of neural network with n=3) / (ARL of neural network with n=5) 
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Table 47. Effects of sample size, Case 7 (skewness = 2.0, kurtosis - 6.2) 

Mean 
shifts 

x chart 
n = 3 

x chart 
n = 5 

CUSUM 
n?=3 

CUSUM 
n = 5 

*2 Neural 
n = 3 

Neural 
n = 5 

*3 

0 93.08 125.58 0.74 93.45 126.17 0.74 93.51 125.78 0.74 

0.25 62.40 81.04 0.77 46.29 57.08 0.81 63.97 81.07 0.79 

0.5 43.69 52.76 0.83 23.00 26.04 0.88 44.27 53.30 0.83 

0.75 30.63 34.83 0.88 12.76 13.76 0.93 30.95 35.22 0.88 

1 22.06 23.66 0.93 8.19 8.54 0.96 21.83 23.68 0.92 

1.5 11.23 11.77 0.95 4.60 4.76 0.97 11.37 11.91 0.95 

2 5.87 6.28 0.93 3.13 3.29 0.95 6.42 6.36 1.01 

3 2.52 2.27 1.11 2.02 2.12 0.95 2.65 2.29 1.16 

4 1.16 1.22 0.95 1.63 1.67 0.98 1.23 1.23 1.00 

5 1 1 1.00 1.19 1.32 0.90 1 1 1.00 

-0.25 143.30 195.17 0.73 58.55 68.66 0.85 3.41 6.62 0.52 

l ©
 

l/»
 

232.28 319.48 0.73 20.04 22.75 0.88 2.43 3.84 0.63 

-0.75 389.64 523.42 0.74 10.50 11.62 0.90 1.97 2.78 0.71 

-1 642.03 888.38 0.72 6.86 7.47 0.92 1.71 2.24 0.76 

-1.5 1678.85 2449.67 0.69 4.10 4.4 0.93 1.41 1.61 0.88 

-2 7.22 5.48 1.32 2.98 3.13 0.95 1.23 1.3 0.95 

-3 1.65 1.78 0.93 2.17 2.22 0.98 1.05 1.07 0.98 

-4 1.20 1.18 1.02 1.44 1.57 0.92 1.01 1.02 0.99 

-5 1.05 1.04 1.01 1.18 1.22 0.97 1 1 1.00 

* \|f = (ARL of X chart with n=3) / (ARL of x chart with n=5) 

* f = (ARL of CUSUM chart with n=3) / (ARL of CUSUM chart with n=5) 

* i|/ = (ARL of neural network with n=3) / (ARL of neural network with n=5) 
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Table 48-a & b. Analysis of variance 
Case 2 (skewness = 0, kurtosis = 3, n = 3) 

Mean shifts x chart CUSUM chart Neural network 

0.25 280.06 121.25 277.96 

0.5 153.34 34.88 153.89 

0.75 81.14 16.17 81.80 

1 44.65 9.9 45.10 

1.5 15.16 5.5 15.33 

2 6.37 3.86 6.47 

3 1.99 2.48 2.01 

4 1.18 1.95 1.19 

5 1.02 1.6 1.02 

-0.25 286.93 119.89 295.73 

-0.5 156.32 34.82 162.98 

-0.75 81.96 16 84.8 

-1 44.38 9.91 45.77 

-1.5 14.94 5.51 15.37 

-2 6.33 3.83 6.49 

-3 2 2.47 2.04 

-4 1.19 1.96 1.2 

-5 1.02 1.61 1.03 

(b) 

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 23507 11753 9.95 .0004 

block 17 286234 16837 14.25 .0001 

error 34 40179 1181 

total 53 349921 
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Table 49-a & b. Analysis of variance 
Case 4 (skewness = 1, kurtosis = 3, n = 3) 

P = I = T 
Mean shifts I x chart CUSUM chart Neural network | 

0.25 124.29 78.03 124.02 

0.5 73.55 29.87 73.41 

0.75 44.70 14.80 44.70 

1 27.80 9.24 27.69 

1.5 12.04 5.15 12.23 

2 6.13 3.59 6.24 

3 2.17 2.31 2.26 

4 1.22 1.81 1.24 

5 1 1.46 1 

-0.25 412.16 102.56 17.17 

-0.5 812.31 29.29 7.76 

-0.75 1691.28 13.84 4.85 

-1 31.38 4.97 2.11 

-1.5 31.38 4.97 2.11 

-2 5.57 3.50 1.52 

-3 1.86 2.33 1.11 

-4 1.19 1.79 1.02 

-5 1.04 1.38 1 

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 324494 162247 2.66 .0844 

block 17 1076760 63338 1.04 .4454 

error 34 2072763 60963 

total 53 3474018 
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Table 50-a & b. Analysis of variance 
Case 7 (skewness = 2, kurtosis = 6.2, n= 3) 

a) 

Mean shifts 1 x chart CUSUM chart Neural network 

0.25 62.40 46.29 63.97 

0.5 43.69 23.00 44.27 

0.75 30.63 12.76 30.95 

1 22.06 8.19 21.83 

1.5 11.23 4.60 11.37 

2 5.87 3.13 6.42 

3 2.52 2.02 2.65 

4 1.16 1.63 1.23 

5 1 1.19 1 

-0.25 143.30 58.55 3.41 

-0.5 232.28 20.04 2.43 

-0.75 389.64 10.50 1.97 

-1 642.03 6.86 1.71 

-1.5 1678.85 4.10 1.41 

-2 7.22 2.98 1.23 

-3 1.65 2.17 1.05 

-4 1.20 1.44 1.01 

-5 1.05 1.18 1 

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 349759 174879 3.07 .0594 

block 17 941771 55398 .97 .5070 

error 34 1935846 56936 

total 53 3227377 
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Table 51. Performance ranking from multiple comparisons for nonnormality (n -3) 
(Tukey tests) 

Case x chart CUSUM chart Neural network 

2 2 1 2 

4 1 1(1) 1 (1) 

7 1 K D 1(1) 

* The numbers in parentheses represent the order of means that are not statistically 
significant. 



CHAPTER VI 

CONCLUSION AND DISCUSSION 

Chapter 5 was devoted to a discussion of the results of three simulation experiments. 

In this chapter, the results from the experiments are summarized and the six research 

questions defined in Chapter 3 are addressed. This is followed by discussions of the 

contributions of the study. Finally, this chapter discusses the study limitations and future 

research, detailing where attention must be directed in order to improve the performance of 

the neural networks and compare them with other possible quality control methods. 

Conclusion 

The first experiment in this study compares the performance of x and CUSUM 

control charts, and neural networks for the normal distribution and eight nonnormal 

distributions with different degrees of skewness and kurtosis. This experiment also examines 

the effects of nonnormality on the ability of the three methods to detect out-of-control states. 

The second experiment investigates the effects of mean shifts on the performance of the three 

methods for some selected cases. The third experiment examines the effects of sample size 

on the performance of the three methods. In this section, the results from the experiments are 

summarized to address the six research questions of the study. 

The first and second research questions are about the differences in the performance 

of the three methods when the underlying distribution is normal and nonnormal, respectively. 

Overall, for both the normal and symmetric nonnormal distributions, the CUSUM charts 

1 1Q 
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perform better than the corresponding x charts and neural networks for small mean shifts. 

For large mean shifts, on the other hand, the CUSUM charts perform worse than the 

corresponding x charts and neural networks. This result indicates that the performance of 

the x and CUSUM charts is the same for symmetric nonnormal distributions as for the 

normal distribution. While it is well known that a CUSUM chart performs better than a x 

chart for small mean shifts and performs worse than a x chart for large mean shifts when the 

distribution is normal, this study has shown that this remains true for nonnormal 

distributions. In addition, the results of this study show that neural networks perform as well 

as the corresponding x charts for both normal and symmetric nonnormal distributions. 

For skewed and/or kurtotic distributions, neural networks generally perform better 

than the corresponding x and CUSUM charts. While for some cases with the skewed and/or 

kurtotic distributions CUSUM charts seem to outperform neural networks, neural networks 

appear advantageous even for small mean shifts as the degree of skewness and kurtosis 

increases. Just as for the normal distribution, CUSUM charts perform better than x charts 

for small mean shifts and worse than x charts for large mean shifts when the underlying 

distributions are skewed and/or kurtotic. These results also addressed the fourth research 

question concerning the effects of mean shifts on the performance of the three methods. 

The third research question is about the effects of degrees of nonnormality of a 

population, as measured by skewness and kurtosis, on the performance of the three methods. 

Clearly, the effects of skewness and kurtosis on the performance of the methods were 

substantial because nonnormality dramatically affected the in-control ARLs as well as the 

out-of-control ARLs for the methods. For example, consistent with our expectation, in-
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control ARLs become smaller as the degree of nonnormality, as measured by skewness and 

kurtosis, become higher. 

The fifth and sixth research questions are about the effect of sample size on 

performance of the three methods when the underlying distribution is normal and nonnormal, 

respectively. It can be concluded that there is no significant performance effect due to 

sample size when the distribution is normal. However, consistent with the Central Limit 

Theorem, each of the three methods when using a sample size of three performs worse than 

the corresponding method with a sample size of five for skewed and/or kurtotic distributions. 

Discussion 

Contribution 

In the last decade, neural networks have received a great deal of attention and 

are being explored extensively to examine their appropriateness for statistical applications. 

Such applications include discriminant analysis, regression analysis, time series forecasting, 

production operations management, and quality control charts. Numerous authors (Archer 

and Wang 1993; Hill et al. 1994; Prybutok and Nam 1995) suggest that, under some 

conditions, neural networks offer an advantageous alternative to traditional statistical 

methods. Among these advantages is the employment of a pattern recognition approach 

rather than a complex statistical approach. The pattern recognition approach of neural 

networks can be used as an alternative to conventional control charts for detecting out-of-

control conditions. 

In this study, neural network alternatives to standard control charts are developed 

under conditions of nonnormality. The performance of these neural networks is compared 
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with those of corresponding x and CUSUM control charts. The development of a new and 

better technique for the analysis of quality characteristics will allow companies to enhance 

product quality and reduce internal and external failure costs. This study shows that neural 

networks have potential for improving quality control monitoring systems by effectively 

detecting defects when the underlying distribution is not normally distributed. The results 

provide guidance concerning the practical use of neural networks as alternatives or as 

supplements to standard control charts. The major contributions of this study are summarized 

as follow: 

1. Neural networks are developed as alternatives to standard control charts under conditions 

of nonnormality. 

2. This study pursued the most extensive range of nonnormality of any current research 

investigation into the effects of nonnormality on control chart performance. The 

nonnormality encompasses nine different combinations of skewness and kurtosis from 

the generalized Burr distribution that vary from one similar to a uniform distribution to 

one that resembles an exponential distribution. 

3. This is the first study to compare the performance of* neural network models with both x 

and CUSUM control charts. 

4. This study also shows the effects of nonnormality, as measured by different skewness and 

kurtosis, on the ability of the three methods to detect out-of-control states. 

5. This study investigates the effects of mean shifts and sample size on the performance of 

the three methods. 
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6. This study utilizes a unique methodology for comparing the relative performance of the 

three methods. A randomized block design is used to compare the performance of the 

three methods. By choosing mean shifts to represent the blocks, the variability among 

the mean shifts is effectively filtered out, allowing more precise comparisons among the 

three methods. 

7. This study is the first to utilize the method of determining cutoff values for neural 

networks by performing simulations, so that the in-control ARLs of the neural networks 

match those of the x and CUSUM charts. 

8. This study is the first to adjust the cutoff value, h, for CUSUM charts for each of the 

different cases. Developing this method was necessary to obtain fair comparisons among 

the x and CUSUM charts, and neural networks. 

Limitations and Future Research 

The limitations and future research of this study are listed below. 

1. The parameters of the neural networks, such as number of hidden layers, number of 

hidden neurons, momentum, and learning rate, are determined through experimentation. 

The chosen parameters do not guarantee optimal performance of the neural networks. 

2. Backpropagation used to train the neural networks in this study has the potential to 

converge to a local minimum because it employs a gradient decent algorithm. Various 

neural network paradigms have been developed such as genetic algorithms, probability 

neural networks, and adaptive resonance theory. Different paradigms are effective for 

solving different types of problems. When a user selects a neural network to solve a given 

problem, the user needs to decide which is the correct paradigm. Thus, further research 
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is needed to compare backpropagation with other paradigms to find the strengths, 

limitations, and applications for each paradigm. 

3. This study is exploratory, not only because it is the first study that develops neural 

networks for detecting out-of-control states for nonnormal distributions, but also because 

it covers only a small portion of all possible nonnormal distributions. In this study, nine 

different nonnormal distributions are examined to compare neural networks with two 

conventional quality control charts, x and CUSUM. There exist an infinite number of 

possible nonnormal distributions, including a variety of bimodal distributions and many 

unimodal distributions with combinations of skewness and kurtosis different from those 

used in this study. Therefore, other types of nonnormal distributions should be examined 

in the future to better evaluate the performance of the three methods. 

4. The neural networks developed in this study are designed to detect a sudden shift in the 

process mean. There are many other patterns that may exist in the process indicating out 

of control situations such as trends, cycles, systematic and stratification patterns, and 

mixtures. Each one of these patterns should be investigated in future research. However, 

the characteristics of these out-of-control patterns should be considered and might need 

to be redefined under nonnormality. 

5. The neural networks developed in this study are compared with the two conventional 

symmetric quality control charts. Because nonnormality has a significant effect on the 

performance of control charts, design considerations for these charts must include 

recognition of the degree of nonnormality of the underlying distribution. Some previous 

research has developed asymmetric x control charts and asymmetric CUSUM charts to 
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deal with the nonnormal data. The neural networks should be compared with these 

asymmetric control charts. 

6. The neural networks can be trained with additional information such as a particular range 

of previous data points, the ranges of each subgroup, the mean of each subgroup, and 

standardized values of the means, as discussed earlier. Similar to x control charts, a major 

disadvantage of the neural networks developed in this study is that they utilize only the 

information about the process contained in the last plotted point and ignore any 

information provided by the entire sequence of points. This feature might make the neural 

network relatively insensitive to small mean shifts. This might be remedied by including 

a certain range of previous points. Additional information might also be provided by 

including the ranges of each subgroup, the means of the subgroups, and/or standardized 

values of the means in addition to the last input point. Although the use of these 

supplementary inputs reduces the simplicity and ease of interpretation of the neural 

networks, it might substantially improve their performance. 

7. In this study, one neural network is used to detect both positive and negative mean shifts. 

Instead of incorporating one neural network for both mean shifts, two parallel dedicated 

neural networks could be utilized in future research, one for detecting positive mean shifts 

and the other for detecting negative mean shifts. Training a neural network to distinguish 

two groups is easier and generally yields better results than training it to distinguish three 

groups as done in this study. 

8. The simulation study performed here is restricted to only two sample sizes (n = 3 and 5). 

Further research with different numbers of sample sizes is needed to examine the effects 
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of sample size on the performance of neural networks, x charts, and CUSUM charts. 

9. In this study, the performance of the neural networks was evaluated by estimating the 

ARLs. The neural network approach presented in this study offers a competitive 

alternative to existing control schemes. The performance of the neural network depends 

heavily on the selection of training samples. Hence, the results reported in this study 

do not offer a universally optimal solution. Rather, this study demonstrates the feasibility 

of applying neural network models to process monitoring. 
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Table 26-a & b. Analysis of variance 
(mean shift = .25) 

Nonnormality 
(skewness / kurtosis) x chart CUSUM chart Neural network 

symmetric/flatter 
(0/2) 

479.05 185.67 514.86 

normal 
(0/3) 

280.16 122.54 272.85 

symmetric/peaked 
(0/4) 

205.27 101.01 215.31 

skewed right 
(1/3) 

142.29 90.04 142.80 

skewed right / peaked 
(1/4) 

131.65 86.3 132.36 

skewed right / peaked 
(1/5) 

121.69 76.87 123.69 

severely skewed right / 
highly picked (2 / 6.2) 

81.04 57.08 81.07 

severely skewed right / 
highly picked (2 / 7.2) 

77.6 54.79 78.96 

severely skewed right/ 
highly picked (2 / 8.8) 

77.69 55.15 77.55 

m 
Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 46156 23078 7.59 .0048 

block 8 262587 32823 10.8 .0001 

error 16 48646 3040 

total 26 357390 
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Table 27-a & b. Analysis of variance 
(mean shift = .50) 

Nonnormality 
(skewness / kurtosis) x chart CUSUM chart Neural network 

symmetric/flatter 
(0/2) 

202.53 43.93 218.27 

normal 
(0/3) 

157.1 35.28 151.09 

symmetric/peaked 
(0/4) 

131.06 32.17 137.85 

skewed right 
(1/3) 

81.2 31.36 81.71 

skewed right / peaked 
(1/4) 

78.49 30.56 79.08 

skewed right / peaked 
(1/5) 

76.02 29.18 77.54 

severely skewed right / 
highly picked (2 / 6.2) 

52.76 26.04 53.03 

severely skewed right / 
highly picked (2 / 7.2) 

52.09 24.96 52.72 

severely skewed right / 
highly picked (2 / 8.8) 

52.81 25.16 52.43 

"i 
Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-vialue 

method 2 28073 14036 17.04 .0001 

block 8 35946 4493 5.46 .002 

error 16 13178 823 

total 26 77198 
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Table 28-a & b. Analysis of variance 
(mean shift = .75) 

I H I 

Nonnormality 
(skewness / kurtosis) x chart CUSUM chart Neural network 

symmetric/flatter 
(0/2) 

93.04 18.73 98.71 

normal 
(0/3) 

83.27 16.27 79.48 

symmetric/peaked 
(0/4) 

75.6 15.12 80.22 

skewed right 
(1/3) 

48.7 15.4 49.01 

skewed right / peaked 
(1/4) 

48.59 15.12 48.81 

skewed right / peaked 
(1/5) 

48.06 14.37 48.73 

severely skewed right / 
highly picked (2 / 6.2) 

34.83 13.76 35.22 

severely skewed right / 
highly picked (2 / 7.2) 

34.77 13.35 35.26 

severely skewed right / 
highly picked (2 / 8.8) 

36.03 13.36 35.74 

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 10229 5114 33.2 .0001 

block 8 5925 740 4.84 .0036 

error 16 2448 153 

total 26 18603 
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Table 29-a & b. Analysis of variance 
(mean shift = 1.0) 

Nonnormality 
Cskewness / kurtosis) x chart CUSUM chart Neural network 

L===================================
::===f 

symmetric/flatter 
(0 / 2) 

46.11 11.26 48.56 

normal 
(0/3) 

44.90 9.93 43.48 

symmetric/peaked 
(0/4) 

43.15 9.33 45.98 

skewed right 
(1/3) 

30.23 9.49 30.79 

skewed right / peaked 
(1/4) 

31.05 9.40 31.26 

skewed right / peaked 
(1/5) 

30.60 8.97 31.45 

severely skewed right / 
highly picked (2 / 6.2) 

23.66 8.54 23.68 

severely skewed right / 
highly picked (2 / 7.2) 

24.11 8.38 24.19 

severely skewed right / 
highly picked (2 / 8.8) 

24.84 8.33 24.72 

m 
Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 3514 1757 69.27 .0001 

block 8 1026 128 5.06 .0029 

error 16 405 25 

total 26 4946 
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Table 30-a & b. Analysis of variance 
(mean shift = 1.5) 

a ' 

Nonnormality 
(skewness / kurtosis) x chart CUSUM chart Neural network 

symmetric/flatter 
(0/2) 

14.72 6.23 15.36 

normal 
(0/3) 

15.01 5.57 14.73 

symmetric/peaked 
(0/4) 

15.27 5.26 16.24 

skewed right 
(1/3) 

12.74 5.28 12.79 

skewed right / peaked 
(1/4) 

13.17 5.2 13.32 

skewed right / peaked 
(1/5) 

13.23 5.02 13.66 

severely skewed right / 
highly picked (2 / 6.2) 

11.77 4.76 11.91 

severely skewed right / 
highly picked (2 / 7.2) 

11.95 4.66 12.10 

severely skewed right / 
highly picked (2 / 8.8) 

12.28 4.64 12.32 

A! 
Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 413.24 206.62 475.91 .0001 

block 8 28.25 3.53 8.13 .0002 

error 16 6.95 .43 

total 26 448.45 
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Table 31-a & b. Analysis of variance 
(mean shift = 2.0) 

Nonnormality 
(skewness / kurtosis) x chart CUSUM chart Neural network 

symmetric/flatter 
(0/2) 

6.15 4.34 6.37 

normal 
(0/3) 

6.28 3.86 6.17 

symmetric/peaked 
(0/4) 

6.41 3.65 6.77 

skewed right 
(1/3) 

6.13 3.68 6.22 

skewed right / peaked 
(1/4) 

6.22 3.62 6.32 

skewed right / peaked 
(1/5) 

6.41 3.5 6.57 

severely skewed right / 
highly picked (2 / 6.2) 

6.28 3.29 6.36 

severely skewed right / 
highly picked (2 / 7.2) 

6.24 3.25 6.32 

severely skewed right / 
highly picked (2 / 8.8) 

6.36 3.24 6.36 

n i 
Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 44.66 22.33 382.93 .0001 

block 8 .40 .050 .86 .5694 

error 16 .93 .058 

total 26 45.99 
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Table 32 Performance ranking from multiple comparisons for mean shift (n - 5) 
(Tukey tests) 

Mean shifts 1 x chart CUSUM chart Neural network | 

0.25 2 1 2 

0.5 2 1 2 

0.75 2 1 2 

1 2 1 2 

1.5 2 1 2 

2 2 1 2 

3 1 1 1 

4 1 2 1 

5 1 2 1 

-0.25 2 1(1) 1(2) 

-0.5 2 1(1) 1(2) 

-0.75 2 1(1) 1(2) 

-1 2 1(1) 1(2) 

-1.5 1(3) 1(1) 1(2) 

-2 2 1(1) 1(2) 

-3 2 3 1 

-4 1 2 1(1) 

-s 1 i m 

* The numbers in parentheses represent the 
significant. 

order of means that are not statistically 
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Table 33-a & b. Analysis of variance 
(mean shift = -.25) 

at 
Nonnormality 

(skewness / kurtosis) x chart CUSUM chart Neural network 

symmetric/flatter 
(0/2) 

480.80 183.75 451.93 

normal 
(0/3) 

282.48 122.7 292.57 

symmetric/peaked 
(0/4) 

208.83 101.36 202.11 

skewed right 
(1/3) 

477.9 109.72 96.25 

skewed right / peaked 
(1/4) 

389.85 104.36 208.32 

skewed right / peaked 
(1/5) 

297.93 90.83 267.52 

severely skewed right / 
highly picked (2 / 6.2) 

195.17 68.66 6.62 

severely skewed right / 
highly picked (2 / 7.2) 

182.48 70.4 10.29 

severely skewed right / 
highly picked (2 / 8.8) 

175.65 69.13 57.31 

Dl 
Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 177406 88703 13.59 .0004 

block 8 203772 25471 3.9 .0099 

error 16 104458 6528 

total 26 485637 
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Table 34-a & b. Analysis of variance 
(mean shift = -.5) 

Nonnormality 
(skewness / kurtosis) x chart CUSUM chart Neural network 

symmetric/flatter 
(0/2) 

209.44 44.15 197.37 

normal 
(0/3) 

153.81 35.53 163.16 

symmetric/peaked 
(0/4) 

127.6 31.5 121.93 

skewed right 
(1/3) 

936.22 31.13 29.52 

skewed right / peaked 
(1/4) 

664.78 30.37 79.52 

skewed right / peaked 
(1/5) 

336.35 28.46 223.12 

severely skewed right / 
highly picked (2 / 6.2) 

319.48 22.75 3.84 

severely skewed right / 
highly picked (2 / 7.2) 

285.78 23.51 5.17 

severely skewed right / 
highly picked (2 / 8.8) 

265.88 23.51 12.72 

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 576201 288100 10.14 .0014 

block 8 166158 20769 .73 .6634 

error 16 454408 28400 

total 26 1196768 
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Table 3 5-a & b. Analysis of variance 
(mean shift = -.75) 

Nonnormality 
(skewness / kurtosis) x chart CUSUM chart Neural network 

symmetric/flatter 
(0/2) 

94.58 18.74 89.38 

normal 
(0/3) 

81.06 16.11 85.70 

symmetric/peaked 
(0/4) 

73.82 14.96 70.25 

skewed right 
(1/3) 

1876.82 14.57 13.70 

skewed right / peaked 
(1/4) 

541.05 14.25 31.48 

skewed right / peaked 
(1/5) 

203.60 13.71 112.00 

severely skewed right / 
highly picked (2 / 6.2) 

523.42 11.62 2.78 

severely skewed right / 
highly picked (2 / 7.2) 

449.97 11.84 3.37 

severely skewed right / 
highly picked (2 / 8.8) 

400.02 11.85 6.31 

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 1173843 586921 5.35 .0166 

block 8 772116 96514 .88 .5534 

error 16 1755304 109706 

total 26 3701264 
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Table 36-a & b. Analysis of variance 
(mean shift = -1.0) 

Nonnormality 
(skewness / kurtosis) x chart CUSUM chart Neural network 

symmetric/flatter 
(0/2) 

46.59 11.33 44.35 

normal 
(0/3) 

43.94 9.93 45.87 

symmetric/peaked 
(0/4) 

41.75 9.36 40.33 

skewed right 
(1/3) 

392.54 9.13 7.73 

skewed right / peaked 
(1/4) 

131.67 9.05 15.36 

skewed right / peaked 
(1/5) 

88.08 8.60 49.66 

severely skewed right / 
highly picked (2 / 6.2) 

888.39 7.47 2.24 

severely skewed right / 
highly picked (2 / 7.2) 

713.79 7.57 2.53 

severely skewed right / 
highly picked (2 / 8.8) 

597.13 7.59 3.90 

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 580824 290412 7.48 .0051 

block 8 259908 32488 .84 .5841 

error 16 620974 38810 

total 26 1461707 
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Table 37-a & b. Analysis of variance 
(mean shift = -1.5) 

— 
Nonnormality 

(skewness / kurtosis) x chart CUSUM chart Neural network 

symmetric/flatter 
(0/2) 

14.53 6.22 14.06 

normal 
(0/3) 

14.99 5.53 15.68 

symmetric/peaked 
(0/4) 

15.35 5.22 14.81 

skewed right 
(1/3) 

19.17 5.12 3.46 

skewed right / peaked 
(1/4) 

19.10 5.04 5.38 

skewed right / peaked 
(1/5) 

19.19 4.90 12.77 

severely skewed right / 
highly picked (2 / 6.2) 

2449.67 4.40 1.61 

severely skewed right / 
highly picked (2 / 7.2) 

1600.00 4.42 1.75 

severely skewed right / 
highly picked (2 / 8.8) 

74.26 4.43 2.20 

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 1286722 643361 2.34 .1289 

block 8 2175824 271978 .99 .4807 

error 16 4408067 275504 

total 26 7870614 
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Table 38-a & b. Analysis of variance 
(mean shift = -2.0) 

Nonnormality 
(skewness / kurtosis) x chart CUSUM chart Neural network 

symmetric/flatter 
(0/2) 

6.06 4.32 5.86 

normal 
(0/3) 

6.31 3.88 6.51 

symmetric/peaked 
(0/4) 

6.41 3.67 6.30 

skewed right 
(1/3) 

5.99 3.60 2.07 

skewed right / peaked 
(1/4) 

6.13 3.56 2.73 

skewed right / peaked 
(1/5) 

6.46 3.46 4.85 

severely skewed right / 
highly picked (2 / 6.2) 

5.48 3.13 1.30 

severely skewed right / 
highly picked (2 / 7.2) 

5.91 3.13 1.35 

severely skewed right / 
highly picked (2 / 8.8) 

6.16 3.13 1.54 

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 38.24214 19.12107 14.14 .0003 

block 8 20.45274 2.55659 1.89 .1324 

error 16 21.63206 1.35200 

total 26 80.32694 
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Nonnormality 
(skewness / kurtosis) x chart CUSUM chart Neural network 

symmetric/flatter 
(0/2) 

2.02 2.76 2.06 

normal 
(0/3) 

1.98 2.48 1.97 

symmetric/peaked 
(0/4) 

1.98 2.37 2.04 

skewed right 
(1/3) 

2.15 2.37 2.16 

skewed right / peaked 
(1/4) 

2.15 2.34 2.16 

skewed right / peaked 
(1/5) 

2.11 2.26 2.15 

severely skewed right / 
highly picked (2 / 6.2) 

2.27 2.12 2.29 

severely skewed right / 
highly picked (2 / 7.2) 

2.27 2.10 2.30 

severely skewed right / 
highly picked (2 / 8.8) 

2.27 2.1 2.27 

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 .19185 .09593 2.85 .0873 

block 8 .05256 .00657 .2 .9876 

error 16 .53841 .03365 

total 26 .78283 
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Table 40-a & b. Analysis of variance 
(mean shift =4.0) 

Nonnormality 
(skewness / kurtosis) x chart CUSUM chart Neural network 

symmetric/flatter 
(0/2) 

1.20 2.12 1.21 

normal 
(0/3) 

1.19 1.96 1.19 

symmetric/peaked 
(0/4) 

1.18 1.87 1.19 

skewed right 
(1/3) 

1.20 1.85 1.21 

skewed right / peaked 
(1/4) 

1.19 1.84 1.20 

skewed right / peaked 
(1/5) 

1.18 1.78 1.19 

severely skewed right / 
highly picked (2 / 6.2) 

1.22 1.67 1.23 

severely skewed right / 
highly picked (2 / 7.2) 

1.20 1.66 1.21 

severely skewed right / 
highly picked (2 / 8.8) 

1.20 1.66 1.20 

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 2.33570 1.16785 140.81 .0001 

block 8 .05852 .00731 .88 .5519 

error 16 .13270 .00829 

total 26 2.52692 
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Table 41-a & b. Analysis of variance 
(mean shift = 5.0) 

Nonnormality 
(skewness / kurtosis) x chart CUSUM chart Neural network 

symmetric/flatter 
(0/2) 

1.02 1.83 1.02 

normal 
(0/3) 

1.02 1.6 1.02 

symmetric/peaked 
(0/4) 

1.02 1.48 1.03 

skewed right 
(1/3) 

1.00 1.51 1.00 

skewed right / peaked 
(1/4) 

1.01 1.48 1.01 

skewed right / peaked 
(1/5) 

1.01 1.40 1.01 

severely skewed right / 
highly picked (2 / 6.2) 

1.00 1.32 1.00 

severely skewed right / 
highly picked (2 / 7.2) 

1.00 1.28 1.00 

severely skewed right / 
highly picked (2 / 8.8) 

1.00 1.27 1.00 

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 1.23610 .61805 63.87 .0001 

block 8 .09825 .01228 1.27 .3248 

error 16 .15484 .00968 

total 26 1.48919 
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Table 42-a & b. Analysis of variance 
(mean shift = -3.0) 

Nonnormality 
(skewness / kurtosis) x chart CUSUM chart Neural network 

symmetric/flatter 
(0/2) 

1.98 2.75 1.97 

normal 
(0/3) 

2.02 2.49 2.05 

symmetric/peaked 
(0/4) 

2.02 2.38 2.00 

skewed right 
(1/3) 

1.88 2.38 1.25 

skewed right / peaked 
(1/4) 

1.88 2.34 1.37 

skewed right / peaked 
(1/5) 

1.90 2.28 1.69 

severely skewed right / 
highly picked (2 / 6.2) 

1.78 2.22 1.07 

severely skewed right / 
highly picked (2 / 7.2) 

1.77 2.14 1.08 

severely skewed right / 
highly picked (2 / 8.8) 

1.77 2.13 1.13 

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 3.13460 1.56730 45.42 .0001 

block 8 1.21233 .15154 4.39 .0057 

error 16 .55213 .03451 

total 26 4.89907 
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Nonnormality 
(skewness / kurtosis) x chart CUSUM chart Neural network 

symmetric/flatter 
(0/2) 

1.19 2.11 1.19 

normal 
(0/3) 

1.18 1.96 1.19 

symmetric/peaked 
(0/4) 

1.18 1.89 1.17 

skewed right 
(1/3) 

1.21 1.89 1.05 

skewed right / peaked 
(1/4) 

1.18 1.84 1.07 

skewed right / peaked 
(1/5) 

1.18 1.78 1.14 

severely skewed right / 
highly picked (2 / 6.2) 

1.18 1.57 1.02 

severely skewed right / 
highly picked (2 / 7.2) 

1.19 1.57 1.02 

severely skewed right / 
highly picked (2 / 8.8) 

1.18 1.57 1.03 

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 2.61756 1.30878 127.76 .0001 

block 8 .17923 .02240 2.19 .087 

error 16 .16390 .01024 

total 26 2.96070 
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Table 44-a & b. Analysis of variance 
(mean shift = -5.0) 

Nonnormality 
(skewness / kurtosis) x chart CUSUM chart Neural network 

symmetric/flatter 
(0/2) 

1.02 1.83 1.02 

normal 
(0/3) 

1.02 1.61 1.02 

symmetric/peaked 
(0/4) 

1.02 1.50 1.02 

skewed right 
(1/3) 

1.03 1.45 1.01 

skewed right / peaked 
(1/4) 

1.03 1.42 1.01 

skewed right / peaked 
(1/5) 

1.03 1.36 1.02 

severely skewed right / 
highly picked (2 / 6.2) 

1.04 1.22 1.00 

severely skewed right / 
highly picked (2 / 7.2) 

1.04 1.21 1.00 

severely skewed right / 
highly picked (2 / 8.8) 

1.04 1.21 1.01 

(hi 

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F value P-value 

method 2 .97212 .48606 33.56 .0001 

block 8 .11261 .01408 .97 .4907 

error 16 .23175 .01448 

total 26 1.31647 
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figure 6. The shape of distribution 

case 1 (individual observations) 
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figure 7. Comparison of ARLs of the three methods 

case 1 (n=5) 
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figure 8. The shape of distribution 

case 2 (individual observations) 
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figure 9. Comparison of ARLs of the three methods 

case 2 (n=5) 
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figure 10. The shape of distribution 
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figure 11. Comparison of ARLs of the three methods 
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figure 12. The shape of distribution 
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figure 13. Comparison of ARLs of the three methods 
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figure 14. The shape of distribution 
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figure 15. Comparison of ARLs of the three methods 
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figure 16. The shape of distribution 

case 6 (individual observations) 

158 

15 

to 
c o 
a &> 
0U, 

U 

-0.5 0.0 0.5 1.0 1.5 

case 6 (averages, n=5) 

20 "I 

c <L> 
§ 

Oh 

10 

" I •= 
, | , 1 1 1 , , 

•0-4 "0-3 -0.2 4 .1 0.0 0.1 0.2 0.3 0.4 0.5 



figure 17. Comparison of ARLs of the three methods 
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figure 18. The shape of distribution 
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figure 19. Comparison of ARLs of the three methods 

case 7 (n=5) 

2 oc < 

10000 

1000 

100 

NN 
CUSUM 

XBAR 

0XBAR 

•CUSUM 

ONN 

mean shifts 



figure 20. The shape of distribution 
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figure 21. Comparison of ARLs of the three methods 
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figure 23. Comparison of ARLs of the three methods 
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integer inp, replic, loops, trials 
real tval, cutoffl, cutoff2, c, k, mean, stdv 
parameter (inp=5, replic= 1, loops= 100, 
+ trials=4000,tval=l .812,cutoffl=0.845,cutoff2=0.36, 
+ cutoff3=3.764, stdv=.308432, 
+ c=-5.864337, k=0.044223, mean=0.218459) 

c 5 input values, 1 output value, 11 reps to compute C.I., 
c 1000 loops to compute mean run length, 4000 trials to 
c determine run length for each loop 

integer i, j, m, q, iseed, runlnt(3), ranout(3) 
real xr(inp),xout(4),shift,ssqrl(3),uconl(3), z, shnew, 

+ sinew,shold,slold,lconl(3),meanrl(3), 
+ stdrl(3), grandm(3) 
logical cntrll, cntrl2, cntrl3 

c Note: xout(l) will store the sample output for xbar and cusum charts 
c while xout(2-4) will store the three node output for neural net 

c initialize variables 

open(unit=2,file-unsort/all3.out') 
open(unit=3 ,file-unsort/all3 .ind') 

c output file named for normal with shift 1 
c Start out by initializing rn seed, counters, and stats 

iseed = 123457 
call rnset (iseed) 
do 5 q=l,3 
grandm(q) = 0.0 
ssqrl(q) = 0.0 
ranout(q) = 0 

5 continue 
shift = 0.0 

c 
c set up for outputting individual results to a file 
c 

write(3,*)' xbar',' cusum V neural1 

c 
do 200 i=l, replic 
meanrl(l) = 0.0 
meanrl(2) = 0.0 
meanrl(3) = 0.0 
do 180 j = 1, loops 

c Secondary loop for computing run length stats starts here 
c Start in control and having run length value at least 1 
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cntrll = .true. 
cntrl2 = .true. 
cntrl3 = .true. 
runlnt(l) = 1 
runlnt(2) = 1 
runlnt(3) = 1 

c Initialize variables for use in cusum & to avoid warning 
shold = 0.0 
slold = 0.0 
shnew = 0.0 
sinew = 0.0 

z = 0.0 
c Now start tertiary loop for computing run length or 
c counting until data runs out 

do 100 m = 1, trials 
c Generate 5 burr random variates using inverse transform 
c & store in array xr 

dol0q=l,inp 
xr(q)=-mean+(( 1 -rnunf())* * (-1 /k)-1)* *(1/c) 
xr(q) = xr(q)+shifit 

10 continue 
c*nor call rnnor(inp,xr) 
c Compute new xbar only if xbar or cusum chart is still in 
c control for this loop 
c 

if(cntrll .or. cntrl2) then 
sumx=0.0 
do 20 q = 1, inp 
sumx=sumx+xr(q) 

20 continue 
xout(l )=sumx/real(inp) 

c 
c First check if xbar chart is in control before reusing it 
c 

if (cntrll) then 
c 
c Check the computed xbar with control limits adjusted for "n" 
c If value is within limits, process is in control, add 1 to counter 
c 

if((xout(l) .ge. -0.4138) .and. 
+ (xout(l) .le. 0.4138)) then 

runlnt(l) = runlnt(l) + 1 
else 
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c Else process is out of control, set flag then prepare to jump 
c out of loop for tallying run length 
c 

cntrll = .false. 
endif 

endif 
c 
c Then check if cusum is indeed in control before using this chart 

if (cntrl2) then 
c 
c Compute zvalue by multiplying xbar with reciprocal of stderr 
c 

z = xout(l)*sqrt(real(inp))/stdv 
c 
c Next call cusum subroutine to update sh and si new values 
c 

call cusum(z,shold,slold,shnew,sinew) 
c 
c Then update the sh and si old values with the new ones 
c 

shold = shnew 
slold = sinew 

c 
c Check the computed sh/sl values with control limits 
c 

if((shnew.le. cutoff3).and.(slnew.le. cutoffi)) then 
c 
c If both are less than 5 then still in control, add 1 to counter 

runlnt(2) = runlnt(2) + 1 
else 

c Else process is out of control, set flag then prepare to jump 
c out of loop for tallying run length 
c 

cntrl2 = .false. 
endif 

endif 
endif 

c Now whether or not xbar or cusum is in control, check if Neural 
c net still signals "in control" before calling neural subroutine 
c 

if(cntrl3) then 
call neural(xr,xout) 
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c If the index value is within a specified interval, process 
c is in control, add 1 to the separate neural net counter 
c 

if( (xout(2).le.cutoffl) .and. (xout(3).le.cutoff2)) then 
runlnt(3) = runlnt(3) + 1 
else 

c Else process is out of control, set flag then prepare to jump 
c out of loop for tallying run length 
c 

cntrl3 = .false. 
endif 

endif 
c 
c Jump out of loop only if all 3 monitors signal "out of control" 
c 

if((.not. cntrll) .and. (.not. cntrl2) .and. 
+ (.not. cntrl3)) then 

goto 120 
endif 

c 
c End tertiary (inner loop) 
100 continue 
c 
c Tally run lengths for the jth loop 
c 
120 do 140 q= 1,3 

meanrl(q) = meanrl(q) + runlnt(q) 
140 continue 
c 
c Check if "in-control" flags not switched then tally # times 
c ran out of data 
c 

if(cntrll) ranout(l) = ranout(l) + 1 
if(cntrl2) ranout(2) = ranout(2) + 1 
if(cntrl3) ranout(3) = ranout(3) + 1 

c 
c End the secondary "j" loop 
180 continue 
c Now compute the mean run lengths over the # of loops 
c 

do 190 q= 1,3 
meanrl(q) = meanrl(q)/real(loops) 

190 continue 
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c 
c write the individual mean values for each loop to a file for 
c ANOVA section of data analysis 
c 

c 
write(3,230)meanrl( 1 ),meanrl(2),meanrl(3) 

c Then begin to accumulate stats for the grand mean over all 
c the replications 
c 

do 195 q= 1,3 
grandm(q) = grandm(q) + meanrl(q) 
ssqrl(q) = ssqrl(q) + meanrl(q)**2 

195 continue 
200 continue 

c Compute overall mean and standard deviation 
do 210 q= 1,3 

grandm(q) = grandm(q)/real(replic) 
stdrl(q)=((ssqrl(q)-replic*grandm(q)* *2)/real(replic-1 ))* * „5 

c-
c Next compute confidence limits for overall mean run length 
c 

lconl(q) = grandm(q)-tval*stdrl(q)/sqrt(real(replic)) 
uconl(q) = grandm(q)+tval*stdrl(q)/sqrt(real(replic)) 

210 continue 
c 
c Then write output to file 

write(2,*) 'method meanrl stdrl Low High' 
write(2,220)' xbar',grandm(l ),stdrl( 1 ),lconl( 1 ),uconl( 1) 
write(2,220)' cusum',grandm(2),stdrl(2),lconl(2),uconl(2) 
write(2,220)'neurar,grandm(3),stdrl(3),lconl(3),uconl(3) 
write(2,*)'times xbar ran out of data = ',ranout(l) 
write(2,*)'times cusum ran out of data = ',ranout(2) 
write(2,*)'times neural ran out of data = ',ranout(3) 
call rnget(iseed) 
write(2,250)iseed 

220 format(a6,4fl0.2) 
230 format(3fl0.2) 
240 format(7f8.6) 
250 format(I17) 

close(unit=2,status-keep') 
stop 
end 
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subroutine neural(rayin, rayout) 
real rayin(*), rayout(*) 
real inpsum, a, b, c 
real inpnod(6), hidnod(5) 
real outnod(3) 
integer u,v 

c 
real rmin(5) /-l, -1, -1, -1, -1/ 

c 
real rmax(5) /2.7,2.7, 2.7,2.7,2.7/ 

c 
real wgtl(6,5) 15.5211, -2.4075, -2.5717, -2.9476, -2.6488, 
+-2.8981, -3.6721,1.6080,1.3728,1.8384,1.2456, 1.8865, 
+1.3999, -1.9442, -1.7115, -2.1664,-1.8643,-2.0200, 
+-1.7169,0.1495, 0.1932,0.2337,0.5272, -0.3038, 
+2.8305, -2.4705, -2.2854, -2.4717, -3.0897, -2.8317/ 

c 
c 
c 

real wgt2(6,3) / -1.1316,0.8302, -.9469,1.0797, -.4816, 
+1.9036, .6154, -2.5390,1.367, -.0156, .3363, -.1345, 
+-.2306,1.8431, -1.3074, -1.8502, -.3724, -2.1134/ 

do 400 u = 1,5 
a = rayin(u) 
b = rmin(u) 
c = rmax(u) 
inpnod(u+l) = scalin(a,b,c) 

400 continue 
inpnod(l) =1.0 

c 
do 430 v = 1,5 

inpsum = 0.0 
do 420 u =1,6 

inpsum = inpsum + inpnod(u)*wgtl(u,v) 
420 continue 

hidnod(v) = sgmoid(inpsum) 
430 continue 
c 

do 450 v = 1,3 
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inpsum = 0.0 
do 440 u =1,5 
inpsum = inpsum + hidnod(u)*wgt2(u+l,v) 

440 continue 
inpsum=inpsum+wgt2(l ,v) 
outnod(v) = sgmoid(inpsum) 

450 continue 
do 460 v — 1,3 
rayout(v+1 )=(outnod(v)-.2)/0.6 
if(rayout(v+l) .It. 0.0) rayout(v+l)=0.0 

c Note v+1 is used in ray out array to force 3 output node values into 
c the last 3 cells of the array. The first is being used in the main 
c program to store xbar and cusum chart sample output values. 
c 
460 continue 

return 
end 

c 
c 
c 

real function sgmoid(x) 
real x,k 
k = 1.0/( 1.0+exp(- x)) 
if (k .It. 0.01) k = 0.0 
sgmoid = k 
return 
end 

c 
c 
c 

real function scalin(value, rjtnin, r_max) 
real value, r_min, r_max 
if (value .It. r_min) value = r_min 
if (value .gt. r_max) value = r_max 
scalin = (value - r_min) /(r_max - r_min) 
return 
end 

c 
c 
c 
c real function scalout(value, r_min,r_max) 
c real value, r_min, r_max, x 
c x = (value - 0.2) / 0.6 
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c if (x .It. r_min) x = r min 
c if (x .gt. r max) x = r_max 
c scalout = x 
c return 
c end 
c 

subroutine cusum(zval,sho,slo,shn,sln) 
real zval, sho, slo, shn, sin 

shn = zval - .5 + sho 
if (shn .It. 0) then 

shn = 0.0 
endif 

sin = -zval - .5 + slo 
if (sin .It. 0) then 

sin = 0.0 
endif 

return 
end 
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