
3 7 ^

N&iJ.

PRACTICAL CURSIVE SCRIPT RECOGNITION

DISSERTATION

Presented to the Graduate Council of the

University of North Texas in Partial

Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

By

Johnny Carroll, B.S., M.S.

Denton, Texas

May, 1995

3 7 ^

N&iJ.

PRACTICAL CURSIVE SCRIPT RECOGNITION

DISSERTATION

Presented to the Graduate Council of the

University of North Texas in Partial

Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

By

Johnny Carroll, B.S., M.S.

Denton, Texas

May, 1995

Carroll, Johnny, Practical Cursive Script Recognition. Doctor of Philosophy

(Computer Science), August, 1995, 161 pp., 3 tables, 30 figures, references, 153 titles.

This research focused on the off-line cursive script recognition application. The

problem is very large and difficult and there is much room for improvement in every

aspect of the problem. Many different aspects of this problem were explored in pursuit of

solutions to create a more practical and usable off-line cursive script recognizer than is

currently available.

The scope of the project involved a complete solution to most aspects of the

problem. Preprocessing was refined via a new thinning algorithm and a new Finite

Induction (FI) based vectorization algorithm. Feature extraction was performed by

extracting features from the singularity graph of the line drawing instead of the line

drawing itself. The feature graph was designed to provide a very expressive, flexible, and

efficient data structure so all existing features of a singularity graph can be easily scanned

and associated locally. A new and powerful FI based character extraction mechanism was

created and studied. Character extraction, word segmentation, and word classification

were performed iteratively in light of the context of the lexicon using split n-gram indices

to assist in word classification and search space reduction. The use of heuristics was

employed and studied in the recognition of punctuation. Also, an adaptable system was

designed so that the system could adapt to individual handwriting styles of experiment

participants.

Another focus of this dissertation involved exploring how the pattern recognition

technology known as Finite Induction could be employed in pursuit of applications of this

nature. FI was a major contributor in two of the phases. FI technology was adapted for

use and successfully employed in the line segmentation process and in the character

extraction process.

An experiment was conducted which demonstrated that with reasonable training of

the system and reasonable restrictions placed upon the writer of the cursive script,

successful hand written cursive script recognition is feasible and usable systems are within

reach.

Copyright by

Johnny Carroll

1995

HI

ACKNOWLEDGMENTS

First and foremost, I would like to thank my wife, Jan Carroll, for understanding,
sympathy, support, motivation, and tender love during the work on the project. I also
appreciate her endurance during months and years without the attention that she needed
and deserved.

I would also like to thank my children, John Phillip and JoEtta Carroll, for enduring the
long hours without their father while I was working on this project and for continuing to
love and support me when I did not deserve it.

Also, mountains of thanks go to my parents, Arthur and La Verne Carroll, who provided
unending support and motivation to continue.

In addition, I really appreciate my research advisor, Dr. Paul Fisher, for his direction and
motivation, the hours he spent as reviewer and editor, and the FI technology which was
employed in this research.

Finally, I would like to say thanks to the members of my committee, Dr. C. C. Yang, Dr.
Gerald Knezek, and Dr. Steve Tate, for the encouragement to finish and also for the hours
of work they spent in scrutinizing the document.

IV

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS iv

LIST OF TABLES ix

LIST OF FIGURES x

Chapter

I. INTRODUCTION 1

1.1 Background 1

1.1.1 Pattern Recognition 1
1.1.2 Recognition of Human Readable Text 3

1.1.2.1 On-Line Recognition 5
1.1.2.2 Off-Line Recognition 6

1.2 Off-line Recognition of Cursive Script 8
1.2.1 Difficulties In Performing Off-line Recognition 8
1.2.2 Discussion of Application Constraints 8
1.2.3 Contextual Analysis 13
1.2.4 General Methodology Used in Script Recognition 14
1.2.5 Preprocessing the Input Image 15
1.2.6 Feature Extraction 19
1.2.7 Character Extraction 20
1.2.8 Character Extraction, Word Segmentation, and

Word Classification 20
1.3 In Pursuit of a Practical Cursive Script Recognizer 21
1.4 Organization of the Remainder of the Document 25

II. REVIEW OF LITERATURE 27

2.1 Overview 27
2.2 Off-Line Script Recognition 30
2.3 Literature Regarding Present Contributions 32

2.3.1 Thinning and Skeletonization 32
2.3.2 Vectorization or Line Segment Approximation 33

TABLE OF CONTENTS (Continued)

Page

2.3.3 Feature Extraction and Character Segmentation 34
2.3.3.1 Extracting Features From Template

Matching and Correlations 35
2.3.3.2 Extracting Features Using Statistical

Distribution of Points 35
2.3.3.3 Extracting Features Using Transforms

and Series Expansion 37
2.3.3.4 Extracting Features Via a Structural Analysis 38

2.3.4 Character and Word Segmentation 40
2.3.5 Word Recognition 42

2.3.5.1 Word Recognition with Unambiguous Segmentation . 43
2.3.5.1.1 N-Gram Techniques 43
2.3.5.1.2 Viterbi Algorithm 43
2.3.5.1.3 Modified Viterbi Algorithm 44

2.3.5.2 Word Recognition with Ambiguous Segmentation 44
2.3.5.2.1 Binary N-Gram Graph Reduction 45
2.3.5.2.2 Dictionary-Tree Mechanism 46

III. THINNING THE INPUT IMAGE 48

3.1 Review of Thinning 48
3.2 Notation and the BRT Algorithm 51

3.2.1 BRT Implementation 53
3.3 Analysis 57

3.3.1 Skeleton Quality and Problems 62

IV. LINE SEGMENT APPROXIMATION 67

4.1 Overview 67
4.2 Notations and Definitions 69
4.3 Methodology 70
4.4 Marking Singularities with FI 71

4.4.1 Input to the FI Following 73
4.4.2 Using FI Following to Mark Singularities 74
4.4.3 Creation of the Singularity Graph 75
4.4.4 Final Analysis and Comments 77

4.5 Post-processing the Singularity graph 78

VI

TABLE OF CONTENTS (Continued)

Page

V. FEATURE EXTRACTION 80

5.1 Background 80

5.2 Features Extracted 83
5.3 Feature Extraction Mechanism 84

5.3.1 Loop Extraction Methodology 85
5.3.2 Extracting Non-Loop Features 87

5.3.2.1 Design of Non-Loop Feature Extractor 88
5.3.2.2 Feature Base Data Structure 90
5.3.2.3 The Process of Extracting Features 91

5.4 The Feature Graph 93
5.5 Analysis and Comments 96

VI. CHARACTER EXTRACTION, WORD SEGMENTATION, AND
WORD CLASSIFICATION 97

6.1 Background Discussion 97
6.2 Character Extraction 99

6.2.1 Creating the FI ruling base 102
6.2.2 Performing Character Extraction 105

6.3 Word Segmentation 106
6.4 Word Classification 108
6.5 Overall Methodology 109

6.5.1 Character Extraction 110
6.5.2 The Letter Graph 112
6.5.3 Word Segmentation 113
6.5.4 Word Classification 115
6.5.5 FI Constraint Relaxation 118

6.6 Analysis of the Classification Scheme 120

VII. TRAINING AND EXPERIMENTATION 122

7.1 System Setup and Training 122
7.1.1 Experiment Design 125

7.2 Performance Evaluation 129

Vll

TABLE OF CONTENTS

Page

VIII. CONCLUDING REMARKS 132

8.1 Overview 132
8.2 Achievements 133

8.3 Future Work 136

APPENDIX

AN INTRODUCTION TO FINITE INDUCTIVE SEQUENCES (FI) 138

A.1 A Detailed Introduction 139
A. 2 The FI Definition 144

REFERENCES 150

vm

LIST OF FIGURES

Figure 1.1. Connectivity Constraints 11
Figure 1.2. The Cursive Script Recognition Process 14
Figure 1.3. Example of Image After Thinning 17
Figure 1.4. Example of Drawn Singularity Graph 19
Figure 2.1. Simple Template Matching 35
Figure 2.2. Example of Structural Feature Extraction 39
Figure 2.3. Example Dictionary Tree 46
Figure 3.1. An Example Image and Its Numeric Representation 55
Figure 3.2. Example Image with its Border Marked 56
Figure 3.3. The BRT algorithm / Driver Portion 58
Figure 3.4. Routine: Window_around_border 59
Figure 3.5. Example BRT Skeletons 64
Figure 4.1. An Example Singularity Graph 68
Figure 4.2. More Examples of Drawn Singularity Graphs 78
Figure 5.1. Features Extracted 84
Figure 5.2. Examples of Loops 85
Figure 5.3. An Example of Subsumed Features 86
Figure 5.4 Example Feature Exemplars 88
Figure 5.5. A Subset of an Exemplar Feature Tree 90
Figure 5.6 Example Labeled Singularity Graph 92
Figure 5.7 Feature Graph Example 94
Figure 6.1. A Graphical View of Chapter VI Phases 100
Figure 6.2. Vectorized Singularity Graph 101
Figure 6.3. Character Extraction Algorithm I l l
Figure 6.4. Example Letter Graph 113
Figure 7.1. Original Training Alphabet 122
Figure A. 1. Process of Recognition: Mapping from Unknown to Known 141
Figure A. 2. FI Process Representation 142
Figure A 3. FOLLOWING Applied to Input String to Produce a RESIDUAL

Using a RULING 143
Figure A.4. RULING Containing Implicants from Three Objects 148

CHAPTER I

INTRODUCTION

1.1 Background

1.1.1 Pattern Recognition

In the broad field of Computer Science, the sub-field of pattern recognition has

always been of great importance. In recent years, this importance has grown. If an

application requires pattern recognition, then the application needs to examine a set of

input data and determine if a certain pattern is present within the data; or, there may be a

set of patterns and the application must search the input data to determine the presence of

one or more of the patterns while retaining the knowledge of which pattern was

recognized.

In the field of Artificial Intelligence, this process is known as classification and the

part of the application that performs the classification is known as the classifier [Rich,

1983], Actually an entire sub-field in AI known as expert systems is concerned primarily

with pattern matching of various types. Rules are placed in expert system's rule bases

along with certainty values and when an expert system notices that the input matches a

pattern recognized by some of the rules and certainty values, it can produce a diagnosis of

the situation described by the input and prescribe whatever actions are associated with the

given rules [Forsyth and Rada, 1986],

Many applications exist that use pattern recognition to accomplish some or all of

their goals. Applications exist that successfully perform object recognition in an image

[Karbacher, 1990] [Jagadish and Ikeuchi, 1991], speech recognition [Lowerre and Reddy,

1980] [White, 1990], optical character recognition [Crawford 1991], target detection

[Clark and Velten, 1991] [Sadjadi and Bazakos, 1991], illness diagnosis from a recognized

pattern of symptoms (Mycin/Neomycim project) [Barr and Feigenbaum, 1981], and

countless others.

The field of pattern recognition continues to grow almost exponentially in

importance as the state of the art in computer hardware and software moves toward

computers that have the capacity for:

• vision, where recognition of an object in the field of view is
important,

• hearing sound and speech, where recognition of sounds and even
spoken language is possible,

• reading, where information in documents, created on-line, can be
extracted,

• reading, where information in documents created off-line and
entered into the computer with a camera or scanner can be
extracted; and,

• many others.

Much research is continuing in the area of pattern matching as the requirements

become more and more demanding and the amount of data involved grows rapidly. Even

though many issues in the general field of pattern matching are currently being addressed

[Cantoni, et al., 1989] [Kyung, 1991] and innovative methodologies to perform general

pattern matching are under development [Fisher and Case, 1984] [Tavakoli, 1986], much

of the research currently centers around discovering ways to create new applications and

enhance existing applications. However, the solutions to problems in the general field of

pattern matching and the new methodologies can assist in the development of the new

applications as is the case with this research.

1.1.2 Recognition of Human Readable Text

Over the past several years, an extensive amount of research has involved

attempting to create a program that performs computer reading. The term reading is

used in the loosest possible sense. For the purposes of this paper, computer reading refers

to the process of examining the binary image representing an input document and

determining which words are on the document. The other processes involved when a

human performs reading such as the extraction of meaning from the words read are not

examined. The task of performing reading, while seeming simple, is much more difficult

than it appears.

As research has progressed, this general reading task has been separated into

several categories according to constraints that are placed upon the task by the available

hardware as well as the constraints that are imposed by the types of human readable text

or script to be read by the computer program. Current hardware constraints and industry

needs have effectively divided the possible solutions into two distinct categories:

• On-Line recognition; and

• Off-Line recognition.

The hardware requirements for each of these categories differ greatly.

In on-line recognition, the computer recognizes text or script as it is entered via an

electronic pen and pad. The writing surface, commonly known as a digitizing tablet,

typically has a resolution of 200 points per inch and is sampled at a rate of 100 times per

second [Impevodo et. al., 1991], This provides an environment from which pen velocity,

stroke definition, and stroke ordering can be easily determined. This information, along

with the actual pixel information, provides a rich alphabet of symbols, known as ink, to

the on-line hand-written text or script recognizer.

Off-line recognition involves the use of a digital scanner or camera. After the

writing or printing of a document is completed (usually on paper), the text or script is

digitized by the scanner and this produces an image represented by a two-dimensional

array of pixels. This array of pixels represents a white background (paper) with one or

more line drawings made in the foreground in black. Each of the line drawings represents

a word, letter, punctuation mark, or other symbol that may be present in text and possibly

require recognition. Characters, text, script, or other patterns that may be present are

recognized by the computer application using only the information provided in the pixels

of the black and white image.

1.1.2.1 On-Line Recognition

With on-line recognition, symbols are recognized as they are drawn on a digitizing

tablet which is also known as electronic paper. When used in conjunction with a pen

based operating system or some pen user interface, an on-line recognizer can be extremely

useful in many applications. At the present time, small computers called 'Personal Digital

Assistants", or PDAs, which use a pen based operating system and pen based user

interface have now become widely available [Reinhardt, 1994] [Andrews, 1994], Users

keep appointment calendars, order information for salesman, signature verifications, lists

of phone numbers, and a wide variety of other information on these PDAs.

Interaction with the on-line pen driven machine involves pointing the pen at an

object (possibly being viewed under the digitizing tablet), drawing some picture or

character on the tablet, or writing on the tablet. The PDA then recognizes whatever

message that the user is trying to convey and performs appropriate actions—data entry,

etc. In the opinion of many, a windows type interface driven by a pen is much more

convenient on some portable computers and at least as user friendly as one driven by a

mouse and keyboard. A fairly recent survey of on-line handwriting recognition is given in

[Tappert et. al., 1988]

Recent announcements and accompanying reviews of commercial pen-based

notebook computer systems indicate that, although the leading edge of this technology

lacks refinement, the potential for revenue is great [Baran, 1992] [Andrews, 1994],

1.1.2.2 Off-Line Recognition

As previously mentioned, off-line recognition involves the use of a digital scanner

or camera. After the writing or printing of a document is completed (usually on paper),

the text is digitized by a scanner or camera and an image of the document represented by

pixels is produced, generally in a bit-mapped black and white or gray-scale format.

Characters, text, or script are represented by black drawings in the foreground of a

document that has a white background. The characters, text, or script is subsequently

recognized by the computer using only the information contained in the image.

The task of reading documents prepared off-line has been separated into several

categories of research according to the constraints that are imposed by the types of text or

script to be read. These categories are listed below according to the perceived level of

difficulty in their solutions ranging from relatively easy to very difficult. These are:

machine generated (or typewritten) text [Impedovo et. al., 1991];
hand-printed text and numerals [Cohen et. al. 1991];

• hand-written connected cursive script; [Srihari and Bozinovic, 1987]
• some combination of hand-written cursive script and hand-printed

text and numerals [Parisse et. al, 1990],

Computer recognition of each of these has been studied, and at least partial solutions have

been proposed for each.

Currently, the most important application for off-line recognition involves

recognizing machine generated text. Recognition of this type of printed text involves the

software technology known as Optical Character Recognition (OCR). The OCR

technologies are well developed and many high quality commercial systems are now in

existence.

In a typical OCR system, a two dimensional set of pixels comprises the input. The

image is broken down into lines and then each line is broken down into characters. The

internal form of each character is then fed into a preprocessor that performs smoothing,

noise reduction, and size and orientation normalization. Each character is then classified

or recognized using distinctive features extracted from the character's preprocessed

internal form.

There are many problems that must be overcome by any high quality OCR

software. It must be able to distinguish from a myriad of type faces or fonts. It must be

able to handle noise and other categories of deformed images. It must be able to handle

different sizes of characters. The list is much longer but these three problems alone should

convince the reader that there are serious problems to be solved. The reader can refer to

an excellent survey paper on the subject of OCR by Impedovo [Impedovo et al., 1991],

Intensive research in this area is on going [Kyung, 1991],

Other important applications of off-line recognition involve the recognition of hand

printed text and handwritten cursive script. Software that performs off-line recognition of

hand printed text is a generalization of the software that performs OCR. The same

methodologies that solve the OCR problem must be present to solve this problem.

However, recognition of hand printed text involves recognizing a possibly infinite number

of different ways that the same character may be formed. These differences may be

caused by the fact that more than one writer is involved, a single writer may change styles

for some reason, the hard surface used to write on might be uneven, or any number of

other possibilities.

The original goal of this research was to pursue reading of cursive script produced

off-line. Algorithms that read off-line cursive script are a generalization of algorithms that

read off-line hand printed text. Even though there has been a significant amount of

research toward the solution of this problem, there are still many major problems to solve.

In the sections that follow, a detailed description of the research area is provided.

As a convention, in the areas in which this research made significant contributions, the

review of the specific literature in that area was postponed until Chapter II. Otherwise, a

brief discussion of the relevant literature is included.

1.2 Off-line Recognition of Cursive Script

1.2.1 Difficulties In Performing Off-line Recognition

Extracting words from an image known to contain text involves two processes:

recognition and contextual analysis. For images known to contain machine printed text or

possibly even highly constrained handwriting or hand printing, the contextual analysis

becomes less important. The contextual analysis is used to help make choices when the

image processing encounters uncertainty or ambiguity.

1.2.2 Discussion of Application Constraints

In many instances, constraints are placed upon the writers involved with the

creation of the image. These constraints can greatly simplify the problem of text

recognition because they decrease the amount that different handwritings can vary. These

constraints can take various forms including '^re-printed boxes to limit the size and

location of characters, guidelines to specify location of words, suggestions for forming

letters, suggestions for joining letters and ligatures in cursively written words, rigidly fixed

syntax, and no spelling errors" [Cohen et. al., 1990] plus a host of other possibilities. The

fewer constraints placed upon the writer, the more dependent the recognizer will be on the

contextual analysis.

If text is totally unconstrained, the writing style and writing implements are not

restricted.' Text appearance can vary according to the individual writing style, size and

orientation of the text, writing implements used, and writing surface. A system that can

recognize handwriting in the above unconstrained environment should also be prepared to

work in an arena where digitization methodology and image thresholding could vary as

well.

In the current state of the art, only when considerable constraints are placed on the

images containing text does the process become tractable. [Cohen et. al. 1990] describe a

project for the United States Postal Service (USPS) which attempts to recognize zip codes

from envelopes. There are spatial layout conventions (not necessarily constraints)

specified by the USPS to assist in the addressing of envelopes. Using the spatial layout

contextual knowledge of how addresses are supposed to look and contextual knowledge

about which states have what zip code, the goal was to examine the otherwise

unconstrained image representing the envelope and to:

• segment out the zip code (discover which set of line drawings on the digitized
image representing the envelope make up the zip code); and

• then classify the zip code (determine what the zip code was).

10

Even considering the seemingly simple specifications, at the time of the writing,

their system had only managed to recognize about 80% of the 508 zip codes in the test

data provided by USPS. Although this recognition process did have many obstacles such

as widely varying interpretations of the spatial layout conventions and the fact that other

sequences of numbers, such as box numbers and street addresses, can be part of an

address, the project did not encounter some of the problems that are involved when

attempting to recognize connected cursive script. Zip codes usually consist of five or nine

disconnected numeric digits. Even though there is no hard and fast rule saying that digits

in a zip code cannot accidentally touch each other, recognition of the digits generally does

not require that digits are somehow extracted from a connected line drawing containing

other characters or digits.

When the objective is recognizing unconstrained and possibly connected or

disconnected handwritten text or script, the problem becomes much more difficult.

Research in the area of recognition of handwritten cursive script generally concentrates in

one or two emphasis areas with a considerable number of constraints placed on the input.

Most of the systems do not even consider the spatial layout of the image and just

concentrate on the recognition process. Possible constraints might include word

connectivity constraints, size and normalization constraints, constraints on the formation

of characters, constraints on how characters must be connected, constraints on the size of

the recognizable lexicon, and various other constraints.

Figure 1.1 shows four possible word connectivity constraints for images assumed

to contain text to be recognized. Figure 1.1a contains machine generated disconnected

11

text. There are many OCR systems that can recognize disconnected machine generated

text with a success rate of over 98%.

[Tappert, 1982] identified five separate cases that must be dealt with when

concerned with the recognition of hand printed text or hand written cursive text. The

categories he specified were: boxed discrete printed characters, spaced discrete printed

characters, run-on discretely written/printed characters, pure cursive script writing, and

mixed cursive and discrete characters. Figure 1.1b, 1.1c, and 1. Id show three of the

cases.

Figure 1.1b contains disconnected hand printed text. The level of difficulty in the

off-line recognition of hand printed text compared to machine generated text increases at

least one order of magnitude. A large number of researchers are looking into this

application. This disconnected constraint greatly simplifies the character extraction

Machine Printed Text

a.

f> ft fifed disconnected,

b.

c. d.

Figure 1.1. Connectivity Constraints.
Four Types of Connectivity Constraints.

12

requirement as each line drawing is considered a character, but complicates word

segmentation as the beginnings and endings of words might not be obvious in the absence

of other constraints like '& large distance between characters is required to assist in word

segmentation" or "put words or characters in provided boxes".

Requiring that all words are totally connected cursive script completely removes

the word segmentation problem but greatly increases the difficulty extracting characters.

The line drawing representing a script word must be examined and the recognition of

characters or character constructs must extracted from the script word.

Allowing words to contain both connected and disconnected script greatly

complicates things. Words must be segmented in light of the fact that each drawing

representing text might be one or possibly more characters. This problem is difficult for

various reasons that are not obvious. The problems of ambiguity abound. For example,

consider the word 'kmen". If the leading character is disconnected from the rest of

the word, then the word could reasonably be segmented as two words: and 'hien". A

further contextual analysis might require a syntax check to determine whether the

correctly extracted characters represent the word 'kmen" or the two words and

"men".

Most research into cursive script recognition does not attempt to recognize capital

letters since capital letters involve many more strokes and features than lower case letters.

Further constraints might specify that all writing requires no normalization and the size of

the letters may be restricted.

13

1.2.3 Contextual Analysis

The fact that human readers sometimes use vast amounts of contextual information

in order to determine the correct stream of words is uncontested. Examples of such

contextual information include the following:

• idiosyncrasies of a known individual's writing style;

• using phonetic pronunciation for mis-spelled words;
• spelling rules (generally i comes before e except after c);
• knowledge of syntax (if a verb is expected, then the search space of words

is reduced);
• knowledge of the current semantics (knowing what a writer is trying to say

cuts down the search space); and
• pre-knowledge of a constrained lexicon (if someone is to place the color of

his/her eyes into a box, then the lexicon should only contain colors);

The use of contextual heuristics to assist in reading unconstrained text is an

enormous amount of help to human readers, yet the process is not easily formalized and

for the most part is not well understood. Researchers, including the author of this paper,

have not pursued totally unconstrained text as of yet. [Cohen et. al., 1990], as described

earlier, have pursued unconstrained text recognition in an extremely restricted domain.

In general, some types of context are widely used in the research. Use of a lexicon

that must contain all the words that may be recognized is contextual information which is

used in virtually all research dealing with text and cursive script recognition. Also, as real

world applications employ some type of off-line character recognition, then heavy use of

contextual knowledge of some type will generally be required.

14

1.2.4 General Methodology Used in Script Recognition

A block diagram representing the components of a system that reads off-line

cursive script is given in Figure 1.2. The different phases of the system involve inputting a

document via an optical scanner and the concomitant creation of an image file. Next,

software applies a thresholding algorithm that maps the gray-scale or color image into

black and white. Noise removal, smoothing, and other preprocessing is then applied to the

image. Then the various lines drawings on the page are located and segmented into

possible words, punctuation, and other items.

Once the segmentation and preprocessing are complete, features are extracted

from each line drawing. The features discovered in the line drawing are used by the

character construct extraction mechanism to discover which characters or character

Document Scanner *• Image
File

Preprocessing * Internal representation
of image

*

• Feature » Character » Word » Word
Extraction Extraction

A 1
Segmentation Classification

^.Recognized
Words

Context Info Lexicon

Figure 1.2. The Cursive Script Recognition Process
A Block Diagram of the Cursive Script Recognition Process

15

constructs make up the line drawing by comparing the statistics of the features obtained

with the sets of sample features that were trained into the system at an earlier time.

At some point in this process, line drawings must be grouped in a manner so the

characters contained in the drawings selected, represent a word. This is called the word

segmentation process. Next, linguistic, contextual, or statistical information can be used

to resolve ambiguities in the similarly shaped characters predicted. Finally, when the

characters have been grouped either positively or tentatively into words, the characters in

the word groupings must be classified into words.

1.2.5 Preprocessing the Input Image

Preprocessing is an important phase of any pattern recognition process. Similar

types of preprocessing are performed on any input image for all applications of off-line

text or script recognition including OCR applications, hand printed text applications, and

hand written script applications. The main preprocessing techniques that are used include:

thresholding, smoothing, thinning, normalization, and line segment approximation of the

line drawings in an input image, along with segmentation of the document.

There are many different segmentation processes that are involved in the reading

of text and script. An initial segmentation is performed to separate the drawings on the

original document into text, script, graphics, etc. This is done so that subsequent

processing which performs reading only need look at the text and script parts. Several

researchers have addressed this type of segmentation including [Rosenfield and Thurston,

1971], [O'Gorman and Clowes, 1976], [Sun and Wee, 1982], [Haralick, 1978] and

16

[Horowitz and Pavlidis, 1974], Of more direct interest to this paper is the work by

[Fletcher and Kasturi, 1988] which is directly concerned with the separation of text from

graphics in mixed text/graphics environments.

There are many other segmentation phases in a text or script reading system. With

respect to disconnected text, segmentation is the isolation of characters. With respect to

connected cursive script, segmentation is the isolation of words. With respect to partially

connected cursive script, segmentation is still the isolation of words but it has become a

much greater problem [Netvia, 1986],

Thresholding [Chanda et. al., 1986] [Bernsen, 1986] [Kahan et. al., 1987] is the

action of modifying a gray scale image into a binary image. A thresholding function is

determined according to the current gray scale values of the pixels in the image. This

function is then applied to each pixel in the image.

Smoothing [Seun, 1982] removes noise and corrects minor flaws that are apparent

in an input image. These algorithms are mainly responsible for the filling action which

eliminates breaks, gaps, and holes in a line.

Thinning is the process of reducing a line in an image from several pixels wide

down to a single pixel with the reduced image called a skeleton. Figure 1.3 shows the

result of applying a thinning algorithm to an input character. Various thinning algorithms

have been developed including sequential, parallel, and hybrid algorithms. The most

common variety of thinning algorithms are based on iterative edge erosion techniques

where a window is moved over the image and rules are applied to the contents of the

window which may allow the deletion of some of the pixels in the window.

17

Z

Figure 1.3. Example of Image After Thinning
An Original Image Representing a Lower Case d with its Skeleton (greatly enlarged)

It was discovered in the analysis phase for this research that most of the thinning

algorithms in the literature produce skeletons that do not lend themselves well to thinning

line drawings which encompass possibly much more than a single character. Even though

there are many thinning algorithms in the literature, none of the simple ones produce a

skeleton that is clean enough to be of much use. For this reason, a new thinning algorithm

was created that produces smooth skeletons which retain virtually all the original line

18

drawing's shape, connectivity, and end-points. A review of the literature dealing with

thinning algorithms is provided in Chapter II.

Normalization algorithms perform corrections on the line drawing in an attempt to

cause all characters, words, or other textual images to conform to some norm for the input

[Nagy and Tuong, 1970] [Srihari and Bozinovic, 1987]. This includes algorithms which

correct the slant of individual characters or words and algorithms which adjust the

character sizes.

Vectorization, or line segment approximation, is the conversion of the pixels in a

skeleton into a set of coordinates, which, when joined with straight line segments, form an

approximation of the original skeleton. In this research, the result of the approximation is

known as a singularity graph. This approximation is performed mainly to reduce the

volume of data that must be processed. Figure 1.4 shows a thinned image and along with

the drawing of the singularity graph which approximates the skeleton. A review of the

literature dealing with vectorization algorithms is provided in Chapter II.

A new line segment approximation algorithm was also created for this system. It

involves the use of the pattern recognition technology called Finite Induction (FI) [Fisher

and Case, 1984], FI is exploited to recognize patterns of pixels that should represent

vectors, or line segments, and when it discovers a candidate, it marks the ends of the

pattern within the thinned skeleton as critical points or singularities. A follow up pass

performs a recursive descent traversal through the skeleton recording singularity and

connectivity information. The singularity graphs of the skeletons produced in this fashion

very closely approximate the actual shape of the skeleton. It is these singularity graphs

19

Figure 1.4. Example of Drawn Singularity Graph
A Skeleton for the Lower Case d and a Drawn Singularity Graph (greatly enlarged).

that are used as input to the feature extraction phase. The singularity graph drawn in

Figure 1.4 was produced by the vectorization algorithm developed for use in this research.

1.2.6 Feature Extraction

Feature extraction algorithms involve examining the line drawings representing

characters, words, or partial words and noticing the presence and location of features.

Many different feature types have been proposed and many different algorithms have been

examined that perform feature extraction. Some of the main feature extraction techniques

are discussed in detail in Chapter II. A completely new feature extraction technique is

20

proposed for this research. While most of the feature extracting algorithms were designed

with either the disconnected printed text or connected cursive script in mind, the new

feature extraction methodology can be easily modified for use in either domain.

1.2.7 Character Extraction

Character extraction involves recognizing multiple characters within a single line

drawing. This is the only required algorithm for this project that is not also required in an

OCR system or a hand printed text reading system. This is true because in the other

applications, each drawing is assumed to represent only one letter, while in cursive script,

each drawing may contain one or many letters.

In this system, after the preprocessing is complete, a singularity graph of the

skeleton of an input drawing is available. This singularity graph is processed one

singularity at a time, checking to see if a character begins at that singularity. In this phase,

FI [Fisher and Case, 1984] is used to perform the extraction. The FI following algorithm

is modified so that the algorithm itself predicts the required input during a recursive

descent traversal over a localized area of the singularity graph starting at the selected

singularity. The prediction is made in cases where multiple paths are available and the

input predictor knows which path is expected by the FI ruling and chooses that path if it is

available.

1.2.8 Character Extraction. Word Segmentation, and Word Classification

The initial character extraction pass should discover the presence of some

characters. This set of characters consists of the highest confidence characters. They are

21

maintained in a list of characters in what is referred to as a letter graph in this research.

Note that in many cases, characters may partially overlap in the letter graph and in some

cases, characters may overlap totally in the graph. As an example, consider a hurriedly

written lower case T' where what would be the short upward stroke is really a short

upward narrow loop. The T' will be extracted and so will an 'fe". The ambiguity will

have to be solved later when more information is known. Many other similar cases exist.

When considering disconnected script, the word template is managed by the word

segmentation sub-system. It selects which drawings go together to make a word. If the

constraints are lenient, this job involves dealing with lots of ambiguity and is quite a

difficult process. Most research on cursive script recognition requires that words be

connected and ignore this problem.

1.3 In Pursuit of a Practical Cursive Script Recognizer

The major goal of this research was to analyze the difficulties of performing

cursive script recognition and to solve enough of the problems involved to demonstrate

that cursive script recognition is feasible, at least in certain constrained domains.

The word classification phase involves searching the word template and comparing

the extracted characters against words in a lexicon. As extracted characters are placed in

the word template, the search space for subsequent queries to the lexicon can be reduced.

The final result of this phase is the list of classified words and rejected words. This is the

end to which the entire reading process is pointed.

22

Another important primary goal was the experimentation with a pattern

recognition technology known as Finite Induction to perform much of the actual

recognition of the patterns involved. This involves mapping the information in the image

into an appropriate input alphabet for an FI recognizer.

In the analysis phase it was determined that there were indeed major problems to

solve. To prove that it is feasible, a working cursive script recognizer was constructed,

including all of the phases mentioned in Figure 1.2. In experimental usage of the

recognizer, a reasonable correct classification rate was observed. After each experiment

phase, the classification rate improved because the system adapted to individual writers.

The specifications for the recognizer follow:

• Constraints placed upon the input image:
a. cursive script to be recognized must all be roughly the same size

script;
b. the script must be written in a straight line across the page;
c. cursive script words must be connected with the exception that capital

letters can be disconnected to the left of the word to which it belongs
and dots may be disconnected over letters;

d. punctuation must be carefully written;

• Constraints placed upon the spatial layout of the script are that script must
consist of lines written in a straight line across the page and well positioned
on the page so that one line does not interfere with another;

• All phases of the cursive script recognition process should be examined in
light of the diagram of Figure 1.2 so that the system should input an image
file representing a document to be examined (following the above
mentioned constraints) and a text document containing the classified text
and punctuation should be produced;

• New methods of performing the steps of the cursive script reading process
should be created when the previous state of the art is found lacking;

23

The feature recognition system should be flexible and allow easy encoding
and entry of new features for experimental purposes;

The recognizer is to classify words from a limited lexicon; however, the
lexicon management should be flexible as words might need to be added or
deleted as requirements change;

• The system should be easily modifiable to operate in the realm of parallel
computing with the new low cost SMP (Symmetric Multiprocessor)
machines soon to become available;

• The recognizer should allow for an adaptation phase so that the recognizer
might learn the idiosyncrasies of the personal writing style of a writer; and

A reasonable level of noise and fuzziness is allowed in the original
document images, but all images should be scanned on a similar scanner so
all images suffer from the same deficiencies and enjoy the same advantages.

Also the scanning resolution is 300 dots per inch.

The actual design involves all aspects of the cursive script reading process

described in the previous sections. Major contributions were not made in every area but

were made in many areas. Smoothing was not employed as the scanner used for the

purposes of the experiment produced very clean line drawings; and the thresholding

algorithms have already been well studied in the literature.

The system initially examines the mostly connected script across the page,

segmenting each script item into a separate line drawing. Images are all assumed to

contain line drawings representing cursive script as no graphics or other non-script

information is allowed on the page. Segmenting mixed text and graphics was studied by

[Fletcher and Kasturi, 1988],

24

There were contributions made in the area of preprocessing. This includes a new

algorithm to perform thinning and a new FI based method to perform vectorization of an

image.

A new method to perform feature extraction is another contribution. Other

contributions include a new FI based method to perform character extraction and a

methodology of classifying words with split n-gram tree indices into the lexicon.

[Kondo, 1990] has shown that even when writers write very carefully, there is no

way to successfully contrast many characters from one writer to the next. This means that

even if writers take extreme care, one writer's lower case ' f ' could look exactly like

another writer's lower case 'b". Various other similar situations exist. It is his contention

that to be successful, an off-line cursive script recognizer must adapt itself to the

idiosyncrasies of each individual writer. This approach was taken in this research even

though there may be methods to use context to assist in the resolution of the ambiguity.

Even though this context utilization is generally used by human readers, these approaches

are not very well defined. The application of only a minimal amount of context was

studied in this research.

Also, it was part of the original design specifications that the system be written

with flexibility in mind with respect to the feature recognizer. Little research in this area

was applicable to this project with respect to the choice of a set of features to extract in

the feature extraction phase. It was decided to select a few simple features to start with,

but leave room to easily expand the feature set, if the original set is found lacking.

25

An important goal of the project was to explore the capabilities of the theory of

Finite Inductive Sequences [Fisher and Case, 1984] as a pattern matching mechanism in

the arena of off-line processing of written documents. Finite Induction (FI) was used as

the recognition mechanism in two of the sub-systems, the vectorization sub-system and the

character extraction sub-system. A short description of the FI pattern recognition

technology is provided in the Appendix and an expanded discussion can be found in

[Fisher and Case, 1984] and [Tavakoli, 1986]

1.4 Organization of the Remainder of the Document

This dissertation contains seven more chapters:

• Chapter II discusses previous work in a literature survey. In this
chapter a detailed review of the literature is provided for each area in
which a significant contribution was made by this research.

Chapter III discusses the Border Reduction Thinning Algorithm
developed during this research. The algorithm itself is discussed with
advantages and disadvantages analyzed.

Chapter IV discusses the FI based vectorization algorithm developed
during this research.

Chapter V discusses the feature extraction algorithm developed during
this research. Also discussed is the mechanism used to store the data
base of recognizable features.

Chapter VI discusses the FI based character extraction mechanism,
word and punctuation segmentation, and Also discussed is the data
structure used to store the lexicon for efficient searching.

Chapter VII discusses the design and implementation of an experiment
that demonstrates the effectiveness of the overall system. Performance
measures are shown. The mechanism that provides adaptation of the
system to the individual writer is also discussed.

26

Chapter VIII is the conclusion. It offers concluding discussions,
reviews the list of contributions made by this research, and mentions
future directions that the research will take.

CHAPTER II

REVIEW OF THE LITERATURE

2.1 Overview

Most of the initial research on the topic of automatic cursive script recognition was

in the area of on-line approaches and was closely tied into the study of how humans

perform the task [Frishkopf and Harmon, 1961] [Eden, 1961] [Mermelstein and Eden,

1964]. Since then, the study of handwriting has moved into several directions, including:

• automatic signature verification [Plamondon and Lorette, 1989] [Liu, Herbst,
and Anthony, 1979] [Sato and Kogure, 1982],

• modeling the motor control activities involved in handwriting [Dooijes, 1983]
[Denier Van Der Gon and Thuring, 1965] [Plamondon and Lamarche, 1986],

• handwriting simulation [Denier Van Der Gon, Thuring and Strackee, 1962]
[Vredenbregt and Koster, 1971],

• mathematical modeling of handwriting and the handwriting process [Morasso
and Mussa Ivaldi, 1982] [Plamondon, 1989] [Schomaker, Thomassen and
Teulings, 1989],

• cognitive modeling of handwriting [Teulings, Thomassen, and Van Galen,
1986] [Van Galen and Teulings, 1983] [Van Galen, Smyth, Meulenbroek, and
Hylkema, 1989] [Van Galen, Meulenbroek, and Hylkema, 1986],

• parsing and recognition of multi-dimensional languages (for text recognition,
parsing and recognition of 2 dimensional languages) [Rosenfield, 1979] [Inoue
and Takanami, 1991] [Inoue and Takanami, 1994] [Aizawa and Nakamura,
1994]

27

28

• modeling and recognition of Chinese characters [Casey and Nagy, 1966] [Chen,
Hsu, and Cheng, 1986] [Cheng and Hsu, 1991] [Huang and Huang, 1991], and

• applications of neural networks to script recognition [Le Cun et. al., 1989]
[Guyon et. al, 1989] [Guyon et. al., 1991],

Research in the area of the direct reading of script has continued as the industrial

need for high quality on-line and off-line readers has grown. [Earnest, 1962] presented an

interesting off-line mechanism for the reading of handwritten cursive script involving

global word characterizations, such as counting ascenders and descenders, to bypass the

character segmentation phase. There were other similar important works for on-line

recognition including [Farag, 1979] and [Bridle, Brown and Chamberlain, 1983], The

research of [Simon and Baret, 1991] considers an off-line mechanism which recognizes

words without character segmentation. This research considers the pertinent information

in a written word to consist of Singularities" which include forks, crossings, changes of

directions, and extremities. If these singularities are removed from the line drawing, only

an 'bscillating wiggle", which can be discarded, remains. The word is recognized only

from the restored arrangement of singularities within the word.

During the 1970's, some research was initiated in pursuit of off-line cursive word

recognition. [Ehrich and Koehler, 1975] and [Sayer, 1973] studied aspects of character

segmentation and the use of context to assist in resolving ambiguities.

Beginning in the early 1980's, interest began to pick up once again in on-line

methodologies. [Burr, 1982], [Tappert, 1982], and many others studied the use of

dynamic programming methodologies, also called elastic matching and/or time warping, as

the recognition mechanism. Using this algorithm, a distance is calculated between a

29

current template representing a character and each template in a character lexicon. The

lexicon entry with the shortest distance is declared the correct classification. The distance

between two templates is calculated by modifying one template in a series of simple

transformations until it becomes the same as the other template. The distance is a function

of the number and types of transformations made.

An on-line system, which allows users to train the system, was given in [Berthod

and Ahyan, 1980], The system used knowledge of letter formation from strokes using a

syntactic-style approach. A brief sketch of an off-line system to recognize Roman cursive

script was given in [Badie and Shimura, 1982], An on-line system which ignored contour

segmentation and character level feature extraction was given in [Brown, 1981], Other

early works on character recognition include [Frishkopf and Harmon, 1961], [Dutta,

1974], and [Stillman, 1974],

The interest in recognition of on-line handwritten print and cursive script is now

intensifying, brought on by the availability of high quality digitizing tablets, industry

requirements, and large markets for pen driven PDA's and other similar devices. More

information about on-line recognition methodologies is available in the survey of recent

research provided by [Tappert, Suen, and Wakahara, 1990], [Higgins and Duckworth,

1990] describes an early electronic paper project providing an overview of the hardware

and software mechanisms involved in on-line recognition, [Kadirkamanathan and Rayner,

1990] focuses on a methodology to segment on-line cursive script into strokes, and

[Oulhadj et. al., 1990] describes a practical implementation of an on-line recognition

system.

30

2.2 Off-Line Script Recognition

There are several recent efforts in the area of off-line cursive script recognition. A

practical solution or even partial solution to the problem of computer reading of

unconstrained text and script would be of great value to several industries. For example, a

very important benefit would be the ability to automate aspects of the postal services

around the world.

One of the more influential projects is described in [Bozinovic and Srihari, 1985],

[Srihari and Bozinovic, 1987], and [Bozinovic and Srihari, 1989], This project is

characterized by the authors' view that script recognition is a perception problem in

which there exists a natural hierarchy of representation levels, each level identifiable with a

conceptual entity: points, contours, shapes, letters, words, sentences, paragraphs, etc."

[Srihari and Bozinovic, 1987],

Constraints are placed upon the input which require that words are carefully

written in that each word is assumed to be a single well-framed binary-valued word image

that is written in such a way that an upper, middle, and lower zone can be identified during

the processing. After slant normalization on the input, character segmentation points are

predicted by passing a vertical line over the input. Areas where there is only a single

intersection point between the vertical line and the input are possible segmentation points.

After character segmentation, words were predicted using a stack-decoding search

algorithm with a trie-structured dictionary with a small lexicon of 1027 words.

[Bozinovic and Srihari, 1989] added a depth of search heuristic to limit the computation.

31

The results of this project were quite good in that, with the small lexicon, a 70%+

accuracy level was obtained for correct selection in the top two choices.

Another project is detailed in [Aoki and Yamaya, 1986] and [Aoki and Yoshino,

1989], This project views script recognition as a syntactic pattern recognition problem

[Shaw, 1972] [Fu, 1976] [Bunke, 1992], In this project, special grammars for each

character to be recognized are hand encoded using a list of features as terminal symbols.

After thinning, the original image is translated into a tree-type chain code representation of

the image [Fu, 1976], Then the chain code internal representation is compressed to

remove some of the complexity. Using special heuristics, the tree representation of the

line drawing is 'feasily" segmented into characters. A bottom up parse is performed and

the results of this parse, along with some simple post-processing and a lexicon lookup, are

used to perform the word classification.

The results of the project are hard to analyze. The experiment involved choosing

130 words from the lexicon and 3 experiment participants. Each participant wrote all 130

words and these words were supplied to the recognizer. A very good correct recognition

ratio of 85.4% was obtained with an average recognition time of 180 seconds per word.

[Cohen, Hull, and Srihari, 1991] is a description of an approach for reading a block

of hand-written text when there are only certain loose constraints placed upon the spatial

layout and syntax of the text. A system which reads handwritten postal addresses, in

particular the zip code, is described as an implemented instance of this approach. As

described in Chapter 1 of this paper, this research emphasizes the use of the context of

spatial layout and limited domain of words to assist in word recognition.

32

Another project which attempts to recognize the semi-unconstrained text of postal

addresses is given in [Downton, Tregidgo and Kabir, 1991], They present an algorithmic

architecture for a 'high-performance optical character recognition (OCR) system for hand

printed and hand written addresses". The architecture integrates syntactic and contextual

post-processing with character recognition to optimize British postcode recognition

performance. The strategy used involves extracting the postcode and then verifying its

correctness by using information drawn from the rest of the address.

The rest of this chapter provides a review of the literature for specific areas where

a significant contribution was made by this research.

2.3 Literature Regarding Present Contributions

The areas in which this research made a significant contribution include thinning,

vectorization, feature extraction, character and word segmentation, and word recognition.

This section is divided into five sub-sections in which the literature within each of the five

areas is reviewed.

2.3.1 Thinning and Skeletonization

Thinning and skeletonization is an area of research in pattern recognition that has

received an enormous amount of interest during the past several years. There have been

literally hundreds of papers discussing thinning and aspects of thinning. Some of the

important early efforts are discussed here along with some of the thinning methodologies

that represent the state-of-the-art. Some good surveys of thinning methodologies can be

found in [Smith, 1987], [Lam, Lee, and Suen, 1992], and in [Chen, 1993].

33

Some of the famous thinning algorithms in the literature are [Pavlidis, 1982],

[Naccache and Shinghal, 1984], [Deutsch, 1981], [Arcelli, 1981], [Arcelli and Sanniti di

Baja, 1985], [Zhang and Suen, 1984], [Hilditch, 1969] [Xu and Wang, 1987], and

[Rosenfeld and Davis, 1984], The preceding list represents only a few of the more famous

algorithms.

There is also much research into the comparison of thinning algorithms [Lee, Lam,

and Suen, 1994] [Zhang and Wang, 1994] [Plamondon, et. al., 1994], Two of the better

known and higher ranking algorithms, according to the above comparisons, were [Wang

and Zhang, 1989] and [Kwok, 1988].

The Border Reduction Thinning algorithm, which is introduced in this research, is

a very simple algorithm which produces a very high quality skeleton. It has not been

compared and ranked with the more famous algorithms; however, it is anticipated that it

will compete well in at least the quality of skeleton area.

2.3.2 Vectorization or Line Segment Approximation

Vectorization or line segment approximation involves the conversion of a list of

pixel coordinates or chain-coded pixels into a vectorization graph. A vectorization graph

is a small set of vertices and edges where the vertices represent critical points on the

skeleton and the edges represent connection information so that when the critical points

are plotted and the edges are drawn on the plot, the picture represented by the drawn

vectorization graph is a close approximation of the picture represented by the original

34

skeleton [Hung and Kasvand, 1983] [Jimenez and Navalon, 1982] [Ramer, 1972] [Slansky

and Gonzalez, 1981],

This approximation is then used as input to the feature recognition engine which

must extract features from the geometry or topology of the drawing [Nishida and Mori,

1992], [Pavlidis, 1984] and [Pavlidis, 1986] proposed a line vectorization method in

which a skeleton is constructed from a Line-Adjacency Graph (LAG) where only

horizontal runs are used in the LAG.

In some instances, the vectorization process of a line drawing is only concerned

with tracing a skeleton from an end/junction point to another end/junction point [Lam and

Suen, 1988] [Ramer, 1972], Each curve can be approximated by a polygon as in [Ramer,

1972], In this fashion, mathematical methods for polygon matching can be used for

feature extraction.

The methodology proposed by this research uses FI to determine the singularities

(critical points) in a skeleton and a connection analysis to prepare a vectorization graph to

make it convenient to use topological and structural information during the feature

extraction process.

2.3.3 Feature Extraction and Character Segmentation

'It is generally accepted that feature extraction is one of the most difficult and

important problems of pattern recognition" [Impedovo et. al., 1991], In the area of off-

line text and script recognition, most of the research has been directed toward recognizing

features in the OCR arena. Many of these techniques are presented in this subsection.

35

2.3 .3 .1 Extracting Features From Template Matching and Correlations

Using this technique, an input character matrix, such as the one in Figure 2.1, is

matched against a set of templates and the distance between the pattern and each template

is calculated [Shimura, 1973] [Tubbs, 1989], The pattern is then classified as the

character represented by the template more closely matching the input pattern.

0000000000
0000000000
0011111000
0111111100
0110001110
0000000110
0000000110
0000001100
0000011000
0000110000
0011100000
0111111110
0111111110
0000000000

Figure 2.1. Simple Template Matching

This mechanism is easy to implement for OCR applications and it is used in many

commercial products. The templates used varies from product to product from very

simple templates and matching criteria to sophisticated templates with built-in truth tables

or logical rules.

2.3.3.2 Extracting Features Using Statistical Distribution of Points

There are several techniques that fall into this category. The most widely used

techniques involve moments and crossings [Tucker and Evans, 1974] [Cash and Hatamian,

1987],

36

In the moments technique, the features used are the moments of black pixels about

a chosen center. The more natural moments include raw, central, and normalized

moments. For a binary image, the raw moments are a function of the coordinates of each

pixel in the image. They are calculated:

M-\N-\

mPi=

x—0 y-0

where p, q = 0, 1, 2, ..., ao, M and N are the horizontal and vertical dimensions of the

image and is the pixel value at the point (x,y) in the image. The central moments

depend upon the distances of points from the center of gravity of the character and are

given by:

M - U V - l

x-0 y-0

where are the coordinates of the center of gravity. The normalized central

moments can be calculated by dividing the central moments by the moment of order zero.

Raw moments generally produce poor recognition rates. Central moments, however, are

much better and have an added bonus of being invariant to the translation of the image.

Normalized moments are also invariant to the scale of the image.

Another popular technique in this category is the crossing technique [Calvert,

1970] [Holt, 1974] [Kwon and Lai, 1976], In this technique, features are represented as

count templates. Once an input character is framed, line segments are drawn in regular

intervals over the character along certain directions. The directions generally being 0°,

37

45°, 90°, and 135° with respect to the horizontal axis. Features are represented by the

number of times the black portion of the image is crossed by the line segments.

The crossing technique is widely used because it can be performed at high speeds

as the algorithm is of low complexity. It is also tolerant to distortions and small stylistic

variations as the crossing counts also encode topological and structural information.

There are several other proposed techniques that derive features from the

statistical distribution of points in an image [Suen, Berthod, and Mori, 1980], One such

technique is known as zoning. In this technique, the frame containing the input character

is divided into zones or regions and represents features as a template containing the

densities of black pixels in each region. The features used by the characteristic-loci

method are counts of the number of times that vertical or horizontal line segments

intersect the black part of the line drawing for every white pixel in the background of the

input character [Knoll, 1969] [Spanjersberg, 1974] [Downton, Tregidgo and Kabir, 1991],

2.3.3.3 Extracting Features Using Transforms and Series Expansion

These methodologies involve using Fourier descriptors [Person and Fu, 1977] and

Fourier boundary descriptors S and T as introduced by [Granlund, 1972] and continued in

[Krzyzak, Leung, and Suen, 1989], These descriptors are interesting because of their

invariance to scaling, rotation, translation of the character, and to shifts in the starting

point [Impedovo, et. al., 1991], The negative side of using these descriptors is that they

have a smoothing effect and are insensitive to spurs along the boundary.

38

2.3.3.4 Extracting Features Via a Structural Analysis

There are many examples in the literature concerning extracting structural features,

including [Iwata, Yoshido, and Tokunaga, 1978] [Parks et. al., 1974] [Baptista and

Kulkarni, 1988] [Sue and Chen, 1976] [Aoki and Yoshino, 1989] [Cohen, Hull, and

Srihari, 1991],

Structural features generally describe structural, topological, or geometrical

properties of the input image. Such features include loops, strokes, curves, bays, end-

points, line segment intersections, cups, hats, and commas. Topological information is

used many times to assist in structural feature information. [Impedovo, et. al., 1991]

provides an example similar to the example given in Figure 2.2. The mechanism can

discern between lines and curves. The thinned image is divided into nine regions, A

through I. The character is considered as a set of strokes where a stroke is a line (L) or a

curve (C) which joins two vertices in the character. It is a curve if the following

expression is true:

+ byt + c/-J a2 + b2

i=i
n

>0.69

otherwise it is a line. The equation of the line passing through the extremities of the

stroke is ax + by + c = 0, (*, ,>',) are the points of the stroke, and 0.69 was decided by

experimentation. The features of Figure 2.2 are GLI and GCA which means that there is a

line from G to I and a curve from G to A.

39

Figure 2.2. Example of Structural Feature Extraction

According to [Impedovo et. al, 1991], the main advantages of using structural

features is their high tolerance to distortion and style variations, and moderate tolerance to

rotation and translation. He goes on to say that features of this type are very difficult to

extract and it is still a topic of research.

The work performed during this project continues the research into the extraction

of structural features. The methodology used is quite successful. It is believed that the

extraction of structural features is much more usable in the arena of connected cursive

script recognition than the other methodologies. The other methodologies were designed

to quickly recognize features in a low resolution image representing a single already

segmented character. Structural features and topological information can be used to

express information of a larger scale.

40

Note that, since a connected cursive script word might contain large numbers of

features, an expressive mechanism to represent the features of a word is required to enable

the character recognition engine to conveniently examine the word to perform character

extraction and recognition. In this research, the vehicle chosen is known as the feature

graph.

2.3.4 Character and Word Segmentation

Character segmentation is the process of determining what regions of a connected

script word or partial word make up separate characters. This phase has not received a lot

of research interest as most of the research was directed at OCR. In OCR applications,

this phase does not exist since each line drawing represents exactly one character.

However, this is a very important phase for any type of text recognition where two

characters may touch and become one connected line drawing. [Tappert, 1982] discusses

a simple taxonomy which describes the various levels of difficulty of performing character

segmentation while attempting to read handwritten text and/or script. Level 1 is boxed

discrete characters, level 2 is spaced discrete characters, level 3 is run-on discretely

written characters, level 4 is pure cursive script, and level 5 is mixed cursive and discrete

text. The last level is not necessarily totally unconstrained as requirements on word

spacing and alignment may be present.

Much of the research about character segmentation involves trying to avoid it. As

discussed above, each of [Earnest, 1962], [Farag, 1979], [Bridle, Brown, and

Chamberlain, 1983] attempt to avoid character segmentation. [Simon and Baret, 1991] do

41

something similar as an attempt is made to classify words by recognizing irregularities

instead of characters.

[Srihari and Bozinovic, 1987] present an interesting mechanism to perform

character segmentation. After normalizing a line drawing, which corrects any non-vertical

slants in ascenders or descenders, a vertical line is passed over the image and any place in

the line drawing in which the vertical line and the line drawing only have one intersecting

point is assumed to be a probable segmentation point.

[Aoki and Yoshino, 1989] use special heuristics to assist in segmenting characters.

Using these heuristics, not presented in the paper, the tree chain code representation of the

line drawing is "easily" segmented into characters.

Many of the early text or script readers, such as those of [Srihari and Bozinovic,

1987] and [Aoki and Yoshino, 1989], assumed that it is possible to unambiguously

segment a line drawing into characters. The other alternative is to assume that this is not

possible and allow ambiguous segmentation [Bozinovic and Srihari, 1989], [Hayes, 1980],

[Higgins and Whitrow, 1985], [Peleg, 1979], [Ford and Higgins, 1990],

In an ambiguous character segmentation system, a list of possible candidates is

produced for each segment position, usually together with a value representing a

'bertainty weight". For example, if the connected cursive script word 'hian" was

presented to the system, two or three options are possible for the second character. The

second character may be an 'a' with a high certainty, 'o' with a lower certainty, and

possibly even a 'u' with a still lower certainty.

42

Word segmentation is the process of determining which line drawings on the input

image represent characters, partial words, or words. Under some constraints, such as

'there should be extra space between words" and 'tursive script words should be totally

connected", word segmentation is simplified. However, with totally unconstrained text as

mentioned in Tappert's taxonomy, this becomes a much more difficult problem abounding

in ambiguity. [Cohen et. al., 1991] points out that image layout is important for the word

segmentation phase of the project. They demonstrate that it is not always easy to divide

the input image into horizontal lines each containing script. If the text is unconstrained,

then it may appear that some text should be segmented with the line above or below as

writers preparing postal addresses do not always write in a straight line.

This research has constrained away much of the word segmentation problem by

requiring words be completely connected script with the exception of the case of a word

beginning with a disconnected capital letter. Even this small exception adds many difficult

problems with ambiguity.

2.3.5 Word Recognition

The process of word recognition involves examining the output of previous phases

that have preprocessed a line drawing and discovering exactly which word is represented.

Post-processing is applied to the predicted characters (or whatever the output from

previous phases) to make the choice and to insure the choice is a legal word in the system

lexicon. One possible choice that must be available is that of a rejection, meaning that the

characters do not represent a word known to the system.

43

2.3.5.1 Word Recognition with Unambiguous Segmentation

Word recognition is usually performed by using contextual information during a

post-processing phase. If it can be assumed that characters can be unambiguously

segmented, various techniques can be applied. Some of the more widely used techniques

are discussed below.

2.3.5.1.1 N-Gram Techniques
i

This mechanism calculates the probability of all n-letter sequences occurring in

text. These probabilities can then be used to predict the most likely candidate from the

lexicon [Riseman and Ehrich, 1971],

2.3.5.1.2 Viterbi Algorithm

The algorithm described in [Viterbi, 1967] takes the predicted word and, using

statistical information, calculates the most likely input word. The statistical information

used includes statistical information of the sequence of letters in English, and likely errors

from the recognition system. [Forney, 1973] provides a clear discussion of the theory

involved, and [NeuhofF, 1975], [Riseman and Hanson, 1974] and [Hull and Srihari, 1982]

have discussed applying the algorithm to text recognition.

This algorithm uses a 'fconfusion" matrix of a priori probabilities that is observed

from the activities of the recognition system, together with the transition probabilities

between characters. The confusion matrix represents the probability that one letter may be

mis-recognized as another. This value is stored in the node part of a graph data structure

44

called a trellis along with the probability that the letter can be preceded or followed by any

other character as edge labels on the graph.

A 26 x / trellis graph is constructed, where / is the length of the word, linking

every letter with every other letter. By tracing a path through this trellis while combining

the probabilities on the nodes and edges of the path, the probability that the traced word

might have been the input word is calculated. This word is also the most likely path

through the trellis graph and therefore is the most likely prediction of the input word.

2.3.5.1.3 Modified Viterbi Algorithm

The Viterbi algorithm always produces the most likely prediction for the input

word. However, there is no guarantee that the word is in the system lexicon. [Srihari,

Hull, and Choudary, 1983] and [Shinghal and Toussaint, 1979b] suppliment the straight

Viterbi algorithm with a dictionary lookup to guarantee the presence of the word in the

dictionary while [Shinghal and Toussaint, 1979a] describes another variant of the Viterbi

algorithm that uses heuristics to limit search depth in the trellis as the graph is very large.

2.3.5.2 Word Recognition with Ambiguous Segmentation

An almost overriding problem with systems based upon the Viterbi Algorithm is

that incorrect letter segmentation cannot be handled properly. For example, the word

duck written in script might easily be mis-recognized as cluck. The Viterbi Algorithm fails

as it requires the correct letter segmentation. A system allowing ambiguous letter

segmentation retains all possible segmentation points within a line drawing.

45

The mechanism used by this research to represent the ambiguously segmented

letters is that of a letter graph, as mentioned earlier and documented in [Ford and Higgins,

1990], Two important practical techniques that are used to perform word recognition on

such a letter graph are binary n-gram graph reduction and a dictionary tree mechanism.

2.3.5.2.1 Binary N-Gram Graph Reduction

Using this mechanism, a list of valid ^-letter sequences for members of the

dictionary of valid words is created. This list can be used to assist in the removal of

invalid w-letter sequences from the current letter graph.

[Higgins, 1985] discussed in detail the use of binary n-grams and decided that the

optimum length gram was four. This is because only 5% of the 4-grams are valid in

English. Also the number of 4-grams is 264 = 456,976 is not too large to reasonably store

in memory as a binary array. The choice of using the 4-gram is quite reasonable as a large

percentage of 3-grams are valid and 5-grams would provide only a small amount of extra

information.

Reducing the graph to a word using the 4-gram data structure involves tracing

through the letter graph and marking valid and invalid sequences of letters. Various

implementation methodologies are provided in [Whitrow and Higgins, 1987] and an

analysis of this mechanism compared with other mechanisms is given in [Ford and Higgins,

1990],

46

2.3.5.2.2 Dictionarv-Tree Mechanism

Using this mechanism, a dictionary (simply a list of words) is encoded as a tree.

This tree is an implementation of the trie structure given in [Knuth, 1973], Consider the

example in Figure 2.3 taken from [Ford and Higgins, 1990],

The words can be determined by searching left to right starting at the @ symbol

and ending at a # symbol. [Bozinovic and Srihari, 1982] used a stack-decoding algorithm

and a dictionary tree and [Bozinovic and Srihari, 1989] added a search depth heuristic to

cut down on required computation. The use of this mechanism was compared to the use

of binary «-grams in [Ford and Higgins, 1990],

Figure 2.3. Example Dictionary Tree.
Tree for a very limited list of words that might be recognized.

47

The work done in this project uses something very similar to a dictionary tree

when it is performing feature extraction. Once characters are extracted using FI and

placed into the letter graph, a split w-gram technique is used where n-grams with wild

cards are placed into search indices. These indices are used to help predict words where

the letter graph does not specify a word from the lexicon with high enough confidence or

where the letter graph is incomplete.

CHAPTER III

THINNING THE INPUT IMAGE

3.1 Review of Thinning

Thinning is the process of reducing the width of lines within a line drawing so that

each line in the resulting line drawing will be one pixel wide and pixels at line intersections

are kept at a minimum. The lines on the original line drawing will be of varying widths

from three pixels wide to ten or so pixels wide depending upon ink flow and the resolution

of the image. After an image is thinned, all lines should be exactly one pixel wide.

As with other types of pre-processing, information is lost when an image is

thinned. The width of a line contains information about the ink flow and pen velocity as a

slow pen can release more ink onto an document. Thinning can also introduce

deformities, distortion, and other flaws into the shape of a skeleton.

In general, the process of thinning involves examining the pixels in an image

containing a line drawing of connected black pixels on a white background and deleting

black pixels until a skeleton remains. Generally, multiple passes are made over the image

and in each pass, some pixels are deleted (set to white) in each pass and other pixels may

be marked for later processing. The process of deleting pixels in an iterative fashion is

known as iterative erosion.

48

49

The most famous of the algorithms [Pavlidis, 1982] moves a 3x3 two-dimensional

window across the rows or down the columns and any neighborhood that meets certain

criteria has a pixel removed from inside the window. Most of the other algorithms are

similar.

Many different thinning algorithms have been proposed. Different thinning

algorithms produce different kinds of skeletons and characteristic distortion. They can be

classified into two general types: sequential and parallel algorithms. A parallel algorithm

uses only the result from the previous pass or iteration to make decisions on whether

pixels are removed. A sequential algorithm makes use of information obtained in the

previous iteration and the current iteration to make pixel removal decisions.

Each of the various algorithms have their strong and weak points. Most were

designed to meet the needs of a specific application and perform well in that application

but perform poorly when applied to other applications. Survey studies [Chen, 1993]

[Naccache and Shinghal, 1984] have indirectly analyzed the appropriateness of several of

the more famous algorithms for use in recognizing hand-printed text or hand-written

script.

For the skeleton to be useful to the application of concern, the thinning algorithm

should:

• make sure that connectivity is maintained;
• make sure that end-points are maintained; and
• ensure that black pixels are stripped off symmetrically, so that the

algorithm is isotropic.

50

During the early stages of this research, it was planned to use one of the thinning

algorithms already existing in the literature. After searching the literature and

experimenting with many of the thinning algorithms, it was determined that none of the

famous algorithms produced skeletons that satisfy the three requirements mentioned

above.

Some algorithms generate a good shaped thinned image, but with poor

connectivity compared to the original image. This may be a critical fault when performing

character recognition. Other algorithms do not maintain end-points very well and yet

others leave the skeleton slightly deformed as pixels are not stripped off symmetrically.

These problems can have quite negative effects upon the recognition process.

Most of the algorithms were invented for use in OCR applications where the

resolution is much lower and line drawings are less complicated. Therefore a decision was

made to create a new thinning algorithm tailored to the goals of connectivity maintenance,

end-point maintenance, and guaranteed symmetric removal of pixels. The requirements

for this algorithm were:

1. the algorithm must be simple;

2. the algorithm must guarantee connectivity in places where there is
connectivity in the original image;

3. the algorithm must guarantee maintenance of end-points meaning
that a line with an end-point should not be shortened by the
stripping process; and

4. the algorithm must strip pixels from lines in a symmetric fashion so
that no unexpected distortions are introduced.

The BRT Algorithm described in the next section fulfills the requirements.

51

3 .2 Notation and the BRT Algorithm

Since the images that are of interest in this application are black and white images,

it is assumed that each element of the drawing to be thinned is a black or white pixel. For

the following discussion, it is assumed that a document exists in a binary image file. This

document may be viewed as a drawing F0 of connected black pixels residing on a

background of white pixels.

The eight pixels neighboring any pixel p (points no to n7 in the following diagram)

are defined to be the eight pixels surrounding pixel p.

»3 n2 n,
n4p n0

n5 n6 n7

Pixels n0, n2, n4, and n6 are known as the 4-neighbors of pixel p. Some

researchers call these pixels the orthogonal neighbors [Beun, 1973], All pixels n0...n7 are

known as the 8-neighbors of/?. It is assumed that for any F0that contains a recognizable

line drawing, a skeleton, S(Fo), exists where each pixel p e S(Fo) resides on the medial

axis of the drawing [Arcelli, 1985], Informally, the medial axis is the set of all p e F0

where p is exactly in the 'hiiddle" of a line both distance wise and in orientation. The

requirement for any thinning algorithm is that any pixel p e S(F0) should be very near the

medial axis.

A skeleton S(F0) of drawing F is said to be 4-connected, if between any two black

pixelsp0 top„ in the skeleton, there exists a pathp0, p,t p2, ... p„ where/>,./ is a 4-neighbor

of pi for all I <i <n. A skeleton S(F0) of drawing F is said to be 8-connected, if between

52

any two black pixelspotop„ in the skeleton, there exists a pathp0, pi, P2, ••• pn wherep,.i

is a 8-neighbor of pt for all 1 < z < n. An end-point is defined to be a black point with at

most one 8-neighbor.

Assume F0 is the original connected set or multiple connected sets of black pixels

in the original line drawing. Also define F0to be the set of border pixels of F0, where

a border pixel is a black pixel that has one or more white 4-neighbors. Let D0 c B0 be the

set of pixels that will be deleted in the 1st pass of the BRT algorithm. Further define Bi c

Fi to be the set of border pixels in Fi =F0- D0. Similarly, F, c Ft.i c F0 is the connected

set of black pixels remaining after z deletion passes have been made and Bt c= F, is the set

of border pixels of F„ Likewise, A.y £ Bt.i is the set of black pixels deleted during

deletion pass i where F, = F,.i - DhI.

A pixel p e Bt may be deleted during the i+Ist pass of the BRT algorithm if:

a. p is not an end-point

b. assuming p is deleted, then for all black 8-neighbors nj and nk of p
where nj e Bt uBi+i and nk e Bt uBH!, n} and nk must be
8-connected.

and Bi+i is the partially completed border currently being marked. Using the above

definition, A = /all pixels p e B, \ p may be deleted in the i+1st pass/. Without loss of

generality, assume that Fo is a single set of connected black pixels in the original image. A

high level specification of the BRT algorithm to thin F0 may be simply stated:

z = 0

repeat
z = z + 1
Ft = Fj.j - D,-i

until B, = Bi.i

53

When the algorithm terminates B, = F, = S(F0). The technical details of the

algorithm are given in Figures 3.3 and 3.4. In particular, the ordering of pixel selections

for step b above is provided.

The BRT algorithm resembles the contour thinning of [Arcelli, 1980] where each

Bi represents a figure contour. It is also related to the algorithm in [Arcelli and De Baja,

1985], Those algorithms are parallel algorithms and are more complicated than the BRT

algorithm. However, the parallel nature of the algorithms provide computational

advantages. These algorithms are intended for thinning more than just line drawings

representing handwriting and as such sometimes provide unexpected results.

The BRT algorithm, which is very simple and easy to code, produces an 8-

connected skeleton because a skeleton of this type is more useful for the types of

processing required later in this research. Another reason that 8-connected skeletons were

produced is that 8-connected skeletons have fewer noisy branches or dendrites [Rosenfeld

and Davis, 1976], If it is desired to create a 4-connected skeleton, deletion criteria for the

algorithm must be modified as follows. A pixel p e Bt may be deleted during the /+1st

pass of the BRT algorithm if:

a. p is not an end-point

b. assuming p is deleted, then for all black 4-neighbors rij and nk o f p
where e B, uBi+! and nk e B, uBi+/, rij and nk must be
4-connected.

3.2.1 BRT Implementation

The thinning strategy used by the BRT Algorithm is quite simple. In brief, the

strategy used is:

54

Loop through the following 2 steps until only a skeleton is left:
1. mark every pixel in the border of the line drawing;
2. delete every marked border pixel that can be deleted without

deleting part of the skeleton.

A border pixel is a black pixel that is neighbor to a white pixel in some direction. The very

simplicity of the strategy guarantees the symmetric removal of black pixels from the line

drawing. The only real difficulty involves determining when you are about to delete a

pixel in the skeleton.

Initially, the black and white image is read into a two dimensional array where each

item in the array is stored in at least two bits. Therefore each item in the array can contain

4 different values, 0 through 3. If 0 is assigned to white and 1 is assigned to black, the

values 2 and 3 can be used to mark border pixels. Figure 3.1 contains an image and its

numeric representation. The name q is given to the two dimensional array where the

image is stored.

Step 1 of the BRT algorithm involves marking every pixel in the border of the line

drawing. A black pixel is considered to be in the border of the line drawing if it has at

least one white 4-neighbor. Figure 3.2 shows the array q where the border pixels have

been marked with a 2.

Step 2 involves deleting all border pixels that are not part of the skeleton. To

determine whether a border pixel can be deleted or is part of the skeleton, each of the 8-

neighbors must be examined. Therefore at each border pixel, a 3 by 3 window is centered

on the pixel in question.

55

0000000000000000000000000000000
0000000000000111111000000000000
0000000000011111111110000000000
0000000000111100111111000000000
0000000001110000000011100000000
0000000011110000000001110000000
0000000011100000000001110000000
0000000011100000000001110000000
0000000011100000000001110000000
0000000011110000000011100000000
0000000001111000000111000000000
0000000000111000001110000000000
0000000000011110011110000000000
0000000000001111111100000000000
0000000000000111111100000000000
0000000000001111001110000000000
0000000000011110000111100000000
0000000000111100000011110000000
0001110001110000000001111111000
0001111111100000000000011111100
0000111110000000000000000111000
0000000000000000000000000000000

Figure 3.1. An Example Image and Its Numeric Representation

In contrast to most other thinning algorithms, the window is not moved across the

rows of the image or down the columns. Once a pixel p e Bt is discovered and becomes

the center of a window, it is guaranteed that at least one of the neighboring pixels pu e B{

in the window is also a border pixel unless p is the last pixel from the current connected

component of 5, to be considered. Using this information and the deletion criteria listed in

Section 3.3, it is decided if the center border pixel p should be deleted or not. The

window is then moved to be centered at one of the border pixels pk which was a black 8-

neighbor of the previous window center.

56

0000000000000000000000000000000
0000000000000222222000000000000
0000000000022122111220000000000
0000000000212200222212000000000
0000000002120000000021200000000
0000000021120000000002120000000
0000000021200000000002120000000
0000000021200000000002120000000
0000000021200000000002120000000
0000000021120000000021200000000
0000000002112000000212000000000
0000000000212000002120000000000
0000000000021220021120000000000
0000000000002112211200000000000
0000000000000211221200000000000
0000000000002112002120000000000
0000000000021120000212200000000
0000000000212000000021120000000
0002220002120000000002212222000
0002112222200000000000022111200
0000222220000000000000000222000
0000000000000000000000000000000

Figure 3.2. Example Image with its Border Marked.

In this fashion, once Bt is marked and the window is placed at some p e Bh the

window is moved along the border from one pixel in Bt to the next, removing border

pixels. Note, as the window is moved along the border, if a border pixel in the center of

the window is deleted, some of the neighboring pixels in the window can be marked as

new border pixels for the next iteration. Also, if the border pixel is not removed, that

pixel must be marked as a border pixel for the next iteration. Border pixels that are

marked in anticipation for the next iteration of the algorithm are marked with a different

mark than the current border pixels.

57

At some point in time, the window will encounter a border pixel with no

neighboring border pixels. This does not mean that the current iteration of the algorithm

is complete. For example, in the image in Figure 3.2, the window would move all the way

around the outside border removing border pixels first and then run out of neighboring

border pixels (that could be discovered via window movement). The algorithm would

then have to search further to discover the border pixels inside the middle of the loop.

After the window has finished traversing the border pixels in the middle of the loop, then it

will be time to move to the next iteration.

Figure 3.3 and Figure 3.4 give a pseudo-code version of the Border Reduction

Thinning Algorithm where the legal_to_remove condition is defined in Section 3.3. The

algorithm will make one or more iterations over the original image stored in array q. It

will terminate when it makes an entire iteration and no black border pixels are deleted.

When the algorithm falls out of the loop, the image stored in array q, containing only

white and the latest border pixel value, has been thinned.

3.3 Analysis

The fact that this algorithm should produce skeletons where most pixels in the

skeleton are very near the medial axis should be intuitively obvious. The boundary of the

black pixels in the original line drawing is removed, then the boundary of the black pixels

in the resulting line drawing is removed, in succession until only the skeleton remains.

58

mark all the border pixels in p to 2
initialize border_value = 2
initialize new_border_value = 3
initialize pixels_have_been_removed = true

loop while pixels_have_been_removed

initialize current_border_pixeI_found = true
loop while current_border_pixel_found

search array q for the upper/leftmost pixel containing: border_value
if there was a q(i, j) = border_value

set (x, y) to the coordinates (i, j)
call routine: window_around_border with x, y as parameters

else
current_border_pixel_found = false

end if
end loop

if border_value = 2 then
set border_value = 3

else
set border_value = 2

end if

end loop

Figure 3.3. The BRT algorithm / Driver Portion

As the window proceeds moving from one pixel in to the next deleting pixels,

it is an easy task to mark the pixels in Bt. If a pixel p is deleted, then for any black pixels n

<£ Bj.i which are 4-neighbors of/?, n e B,.

The only question remaining to discuss about the BRT Algorithm Implementation

is: When is it legal to remove a pixel? A pixel may be removed, if after removal, it is

59

Window_around_border(x, y) [parameters - (x, y) of a border pixel]

initialize ran_out_of_border = false
loop while not ranoutofborder

establish 3x3 box around q(x, y)
if q(x, y) has no non border black pixel 8-neighbors then

if it is legal to remove q(x, y) then
set q(x, y) = white
set pixels_have_been_removed = true

else
set q(x, y) = newbordervalue

end if
elseif it is legal to remove q(x, y) then

set q(x, y) = white
set pixels_have_been_removed = true
mark all black 4-neighbors of q(x, y) to new_border_value

end if
search current box for neighbors of q(x, y) that contain value = border value
if a border pixel is found in a neighboring pixel

set (x, y) to the coordinates of that pixel
else

set ran out of border = true
end if

end loop

Figure 3.4. Routine: Window_around_border
(legal_to_remove is defined in section 3.3)

guaranteed that the skeleton maintains connectivity and the end-points of lines are not

whittled away.

Connectivity can be guaranteed in the skeleton if connectivity among neighboring

pixels is maintained during deletion of a pixel. Assume the window is placed with its

center over a border pixel candidate for deletion. Also assume that the window has other

border pixels in it—generic border pixels including current border pixels (in B,) and those

60

marked for the next iteration (in Bi+I). Then, currently, there is connectivity between or

among each generic border pixel in the window because a connection can go through the

center pixel of the window. All that is required to guarantee connectivity in the skeleton is

to allow removal of that center pixel only if after the deletion and subsequent marking of

new border pixels, that connectivity still exists.

For example, consider the following 5 cases and assume the decision must be made

concerning deletion of the current border pixel p (in the center):

. . b . b * . . . t . b . b

. p * • P * • P • • P * • P
t * * . t t * b b * * t t
Case 1 Case 2 Case 3 Case 4 Case 5

Assume . (a dot) represents white pixels, * represents black non_border pixels, b

represents current border pixels with p representing the current window center border

pixel (p, b e B,), and t is a border pixel marked for next iteration (t e 5,w). Also assume

the pixel neighbor order:

n3 n2 nj
n4p n0

n5 n6 n7

In Case 1, if the center border pixel, p, is deleted, pixels in position n0 and would
become border pixels. This would leave generic border pixels in spots no, rti, n5,
and Wtf. There is a path from each border pixel to all others still, so the deletion of
the center is allowed. (Pixel «<; is connected to pixel n0 by a diagonal.)

In Case 2, if the center border pixel is deleted, the pixel no would be marked as a new
border pixel. This would leave generic border pixels in spots no, n2, and n7. There
is connectivity so the deletion is allowed.

61

In Case 3, if the center border pixel is deleted, the pixel n6 would be marked as a new
border pixel. This would leave generic border pixels in spots n5, n6, and n7. There
is connectivity so the deletion is allowed.

In Case 4, if the center border pixel is deleted, the pixels in positions n0 and n6 would be
marked as new border pixels. This would leave generic border pixels in spots n0,
ni, n3, n5, and n6. The border pixel n3 is not adjacent or connected to any of the
other border pixels. If this deletion was allowed, there would be disconnectivity in
the window and ultimately, this would cause disconnectivity in the skeleton as
well.

Case 5 is a situation where most of the black pixels have been deleted and the window is
searching the current border looking for any areas that may be left containing black
pixels. This window contains only white and border pixels. It should be clear that
if pixel p is deleted, then no new border pixels can be added and there will be a
break in the skeleton. Note that connectivity among the remaining border pixels
does not exist; therefore, the deletion would not be allowed.

In summary, all that is required to guarantee connectivity in the skeleton is to

allow deletion of a pixel only if the remaining border pixels in the window are connected

after the deletion. In other words, no pixel may be deleted that causes disconnectivity in

the border whether the border is B, or Bi+!.

To ensure that line end-points are not whittled away by the thinning process

requires one additional check. For instance, assume that a line 5 pixels wide comes to an

end-point. After the first thinning iteration is made and the outside border of the line is

removed, the remaining line is three pixels wide. Note that the line has become shorter by

one pixel. After the second thinning iteration is made and the outside border of the 3 pixel

width line is removed, the remaining line is one pixel wide and it consists totally of border

pixels. The next iteration, the window will move along this line and not delete any pixels

until it reaches the end pixel. The window situation might be:

62

t b

If the center pixel is deleted, then connectivity would still exist; but, if this is allowed, for

this and each subsequent iteration, the thinning algorithm would excessively erode the line

away each pass and it would continue because the loop terminates only when no pixels are

deleted. In order to prevent this, simply require that: if a border pixel is to be removed,

then there must be at least two remaining generic border pixels left in the window. With

this additional requirement, removal in the above case would not be allowed.

Applying the pixel deletion criteria to the Figure 3.4 routine

Window_around_border implies that the check:

it is legal to delete p(x, y)

is true when:

if the deletion of p(x, y) is allowed, there will be at least two remaining
generic border pixels left and there will be connectivity among the
remaining generic border pixels in the window

3.3.1 Skeleton Quality and Problems

The skeletons produced by the BRT thinning algorithm very closely approximate

the original shape, retain the same connectivity, and maintain almost the same end-points

as the original. These skeletons are much more appropriate for the application of hand-

printed text and handwritten cursive script recognition than the existing algorithms

studied. Note that the BRT algorithm is a sequential, multi-pass algorithm. The ever

present trade-off between quality and execution speed is present.

63

The application of cursive script recognition as it is implemented in this research

requires a very good skeleton or the recognition process will not perform well. For this

reason, the small amount of extra computation that is required by the BRT algorithm is

worth the trade-off. Figure 3.5 shows some originals and skeletons that are produced by

the BRT algorithm.

The problem of dendrites, a problem with thinning in general, was not solved in the

BRT algorithm. A dendrite or noisy branch is a short line existing in the thinned image

but one that should not be present. After some experimentation with thinning algorithms,

it was found that most of the thinning algorithms encounter dendrite problems.

The removal of dendrites from the skeleton is a particular sticky problem. It is not

clear that it even should be done. How is it really known that the extra line is a dendrite

and not an intended extra short line by the author of the original image? A good

compromise might be that short lines of length less than some threshold are removed

where the threshold is carefully chosen. This solution was chosen for the current research,

but only applied in a postprocessing fashion in the line segment approximation phase.

Large dendrites caused by large deformities in the original line drawing would cause

problems with even human recognition.

Dendrites are caused by minor flaws in the original image. A usual cause is an ink

smear on the original or a place were pixels that should be present have been noisily

removed. The two cases are analyzed below. Consider a line in a drawing that has a tiny

outgrowth of pixels such as the following, where periods represent white pixels and lower

case *'s represent non-border black pixels in the line and b's represent border pixels.

64

Figure 3 .5. Example BRT Skeletons
Several original images and the corresponding skeletons

b b b : : : :
b b b b b b b * * * b b b b

During the next iteration of the BRT algorithm, the algorithm would thin to the following:

b
b b b

p * * * b b b b
t ' t t t t t * * * * * * * *

where the t's represent border pixels for the next iteration and p represents the current

center of the window. The algorithm would delete p, mark its 6-neighbor and 0-neighbor

65

as new border pixels. The window will then move to be centered at the pixel represented

by the bold b in the above diagram. This window center was chosen because it is the only

current border pixel still surviving. This border pixel would then be deleted as it fulfills all

the requirements of deletion producing the following:

b b
t * * b b b b

t t t t t t t * * * * * * *

The algorithm would then choose the now bold b above. It could not remove that border

pixel because it is an end-point. Ultimately after a couple of iterations, these pixels would

create a short line, a dendrite, in the skeleton.

The other type of dendrite is caused by missing pixels usually near a turn in a loop.

Consider the following circumstance representing the turn in a loop:

. . . x x x x x . . .

. . x x x x . x x . .

. x x x x x x x x x .
x x x x . . . x x x x

Notice the missing black pixel in the line. The pixels around that missing pixel become

border pixels by default. As the thinning algorithm reduces the outer border and the inner

loop border, it also thins around that border. One iteration produces the following:

66

. . . . x x . . .

. . x x . . x . .

. X X . X X X X .
X X X X

After another pass, the final extra pixels will be removed:

x x

. x . x x x .
x x

So the ultimate result would be the correct loop with a tiny extra loop at a turn.

These dendrite problems plague thinning algorithms and, in many instances, they

can create problems in the recognition process. This is especially true if the recognition

methodology is based on structural analysis of the skeleton (as this research is based) and

the structure has an extra line or loop in it.

One possible solution to this problem involves a post-processing pass to the

thinning algorithm to remove dendrites. However, this extra work was not needed in this

research since the next phase of image pre-processing, the line segmentation

approximation phase discussed in the next chapter, eliminates the problems.

CHAPTER IV

LINE SEGMENT APPROXIMATION

4.1 Overview

Line segment approximation, or vectorization, involves the conversion of an input

skeletal line drawing, such as might be output from the BRT algorithm, into a set of points

and edges. These points and edges, when drawn on a two-dimensional graph,

approximate, in a piece-wise fashion, the shapes of the line drawing represented by the

skeleton. Figure 4.1 shows a thinned line drawing, its line segment approximation that

was created with the algorithm described in this chapter, along with a drawn version of the

line segment approximation.

The thinning process greatly reduces the amount of data in an original line drawing

while maintaining information about the shape and connectivity. The main purpose of line

segment approximation is the further reduction of data that must be processed in later

stages of application processing. If high quality line segment approximations, or

singularity graphs, such as that in Figure 4.1, can be accomplished, the amount of data

can be greatly reduced with only a small loss in shape information. For example, the

singularity graph shown in Figure 4.1 has only 10 singularity points and 11 edges which

join the points. In this case, a singularity point can be thought of as an end-point for one

or more of the graph edges.

67

68

Image:00 (005, 005) to (080, 139)

sing_start=G0 n_sings=10
path_start=00 n_path_items=ll
loop_start=01 n_loops=02

Singularities
NDX (j, i) stype nloop #
00 (040, 063) i 01 001
01 (039, 058) f 01 001
02 (075, 005) f 01 001
03 (080, 008) f 01 001
04 (025, 084) i 01 002
05 (029, 093) i 01 002
06 (053, 086) e 00
07 (008, 139) f 01 002
08 (005, 135) f 01 002
09 (010, 086) e 00

Singularity Path
edge fr-to theta
00. 00-01 01 .768
01. 01-02 00 . 974
02. 02-03 05 .743
03. 03-00 04 .084
04. 00-04 04 .092
05. 04-05 05 .131
06. 05-06 00 .284
07. 05-07 04 .284
08. 07-08 02 .214
09. 08-04 01 .197
10. 04-09 03 .274

Loops
loop nbr center singularities
01 (033, 059) 0 0 0 — 0 0 3 — 0 0 2 — 001
02 (113, 016) 004 — 008 — 007 — 005

Figure 4.1. An Example Singularity Graph
The skeleton of character ' f , its singularity graph, and its drawn singularity graph.

In this research, the singularity graph is used to extract features. Many other

methods have been proposed. For example, some methods

• analyze the entire line drawing without thinning [Srihari and Bozinovic, 1987]
• analyze the thinned figure [Aoki and Yamaya, 1986] [Aoki and Yoshino, 1989] or
• analyze the outer and inner contours of the line drawing [Cohen et. al., 1991],

69

These methods must examine possibly hundreds or thousands of pixels to recognize

individual features. However, examining only the edges and nodes in a singularity graph

can be quite a dramatic improvement over these methods.

The disadvantage to using singularity graphs is that during the vectorization

process some information is lost and deformities may be introduced. It is extremely

important to obtain a singularity graph that very closely approximates the original skeleton

and simultaneously reduces the data to allow efficiency in the recognition process.

4.2 Notations and Definitions

A singularity in a curve of a skeleton corresponds to a pixel p which is the

optimum point to subdivide the curve into two line segments such that when the segments

are drawn, the segments more closely approximate the given curve than any other possible

choice of singularity. Any intersection point in a line drawing, as well as an end point, are

also considered singularities.

A singularity graph for a skeleton S, SG(S), is a graph where

• the nodes represent the set N of all singularities of S and each node is labeled with
an (x, y) coordinate indicating the location of the singularity in the image;

• the edges represent a set E of connecting line segments that connect nodes.

such that when a two-dimensional drawing is made using the (x, y) coordinates that label

each of the nodes in N, the set of drawn edges E resembles the original skeleton.

The greater the number of singularities, the more closely the drawn singularity

graph can approximate the skeleton. In the extreme case where the set of singularities N

represents the entire set of pixels in the skeleton and there are edges between any two 8-

70

connected pixels, the singularity graph would be a duplicate of the original skeleton. The

problem with using this singularity graph is that there is, in essence, no data compression.

If one out of every two pixels are selected to be nodes in the singularity graph, then data

compression is 50% with very little loss of information.

The desired algorithm produces a singularity graph that chooses singularities at

irregular intervals in an effort to model the length of the pen strokes that created the

drawing with the exception of intersection singularities and end-point singularities.

Therefore, edges will have differing lengths but the lengths will more closely model the

pen strokes. This problem has been addressed in the literature and was discussed in

Chapter II.

4.3 Methodology

The process used to create a singularity graph in this research involves two phases:

1. Marking the points in the skeleton where the singularities exist; and
2. Examining the skeleton and creating the singularity graph

• with nodes for each singularity marked in step 1 and labeled
with singularity pixel coordinates; and

• with edges connecting nodes determined by connectivity
information present in the skeleton.

Marking the points in the skeleton where singularities exist is the most difficult

phase. Singularities must be selected such that the number of singularities chosen is

minimized, yet the shape of the drawn singularity graph created must closely resemble the

skeleton. The trade-off is that the more singularities chosen, then the more closely the

resulting drawn singularity graph can resemble the skeleton; conversely, the fewer chosen,

71

the less the drawn singularity graph will resemble the skeleton. The trick is to choose just

the right number.

Once the singularities are marked, the skeleton must be processed to determine the

nodes and edges of the graph. The mechanism used is a recursive traversal of the skeleton

starting at a known singularity such as an intersection or end-point. A node for the

beginning singularity is inserted into the graph and the traversal process begins. The

traversal recursively follows along the skeleton, in a specified order of travel, keeping

track of which node represents the last singularity it encountered, called the current

singularity. When another singularity is discovered, a new node is inserted into the

singularity graph along with an edge from the current singularity to the new singularity.

Then the new singularity is marked as the current singularity and the traversal continues.

When a situation is encountered that involves a recursive backup, such as reaching

an end-point in the skeleton or reaching an intersection where all exiting lines have already

been traversed, then the traversal algorithm returns to a place on the skeleton where it can

continue. The singularity, that is returned to, is then marked as the current singularity and

the traversal continues.

4.4 Marking Singularities with FI

The method used to mark singularities is a variation of a pattern recognition

technique called Finite Induction (FI) [Fisher and Case, 1984], A short introduction to FI

is presented in the Appendix. It is a generalized pattern matching technique that is a

mathematical pre-algebra and can be very effective as is demonstrated in this research.

72

Using FI, patterns that the system has learned (has been trained with) are stored in

FI rulings in a process called FI factorization. A ruling is similar to a context free

grammar and can automatically be generated by FI factorization. Once a database of one

or more FI rulings has been acquired, the FI rulings can then be used to recognize patterns

from input data. The recognition process is called FI following. The activity of

performing FI following on input data according to an FI ruling produces a 'bloseness to a

match" measurement called an FI residual. The FI residual, or the length of the residual,

may be used to measure the closeness of the pattern in the input data and the pattern that

is represented by the FI ruling. A short residual length generally implies a very close

match between the input pattern and the pattern represented by the FI ruling.

For this application, a short target pattern must be recognized as present in a long

stream of data. For this reason the actual residual length can not be used as a closeness

measurement. What is used is the local residual density. In this research, the local

residual density is defined as the length of the residual in a contained local area where the

size of the local area to be checked is maintained in the exemplar and is a relative

measurement dependent upon the height of the text. Actually, the residual density is

calculated and maintained for three contained local areas of the skeleton, where each local

area is of a different length. If the density of the residual in any of the local contained

areas ever gets low enough, then a match is signaled.

73

4 4.1 Input to the FI Following

In previous work, a chain-graph mechanism was used to represent the shape of a

skeletal figure by specifying directions of movement when following along the skeleton

[Aoki and Yoshino, 1989], For example, if a skeleton contains the following set of pixels

(where . represents white and x represents black):

x .
x . .

. . . . X X . . .
X X X X

and directional indicators are specified by the following diagram:

3 2 1
4 p 0
5 6 7

Directional Indicators

where each number in the perimeter of the diagram represents a direction from pixel p,

then from the given leftmost starting point, the chain graph 0-0-0-1-0-1-1 represents the

skeleton information above.

To begin the singularity search, a recursive traversal of the skeleton is begun from

a known singularity pixel (at an end-point in the skeleton or at a line intersection). The

traversal then recursively moves over the skeleton providing chain-graph type directional

indicators to the FI following process as it continues. The traversal continues until there is

no more skeleton to process.

74

4.4.2 Using FI Following to Mark Singularities

A set of twelve FI rulings was created to represent straight lines in various

directions. Twelve directions were chosen to match the directions in the following

diagram:

L t

"A
^ B

w
H (

V
j F

where each angle, Z AB, Z BC, Z CD, etc. are each 30°. Assume that O is the mid-point

in the above diagram, sets of pixels in the equivalent of each segment OA, OB, OC, OD,

... OL were used in FI factoring for 12 FI rulings. Each of the twelve FI rulings will be

used to recognize any curve in a line drawing that travels approximately in the direction Oi

for 'A' < i < 'L\ These rulings were created only once during the development of the

algorithm to mark singularities

Given that the FI rulings for each vector type are known, the algorithm to mark the

singularities is quite simple. Begin a traversal at an already known singularity. This will

be at an intersection or an end point as singularities automatically exist in these places.

The chain code directional indicators from the skeleton traversal will be provided by the

traversal as input to the FI following process. Then the FI following process is initiated.

75

As the traversal continues, whenever the FI following process determines a 'tnatch" using

the local residual density indicator, a singularity is marked in the skeleton. The FI

following process continues until the skeleton has been completely traversed. The FI

following process over a skeleton must be repeated for each FI ruling in the above ruling

set to determine all singularities.

As the FI following proceeds, the residual density of three local areas is

maintained, a long, a medium, and a short area. If the density gets below the threshold for

any of the three areas, then a singularity is marked by placing a marker into the image.

The density thresholds were carefully selected by hand and work exceptionally well. The

marker can be any color pixel other than black or white in the already mentioned array that

contains the line drawing.

4 .4.3 Creation of the Singularity Graph

Once the singularities are marked within the skeleton, one more pass is needed to

create the singularity graph. As described earlier, a recursive traversal is started at an

important singularity, usually an intersection singularity or an end-point singularity. A

node is created in the singularity graph labeled with the (x, y) coordinates of the initial

singularity. The traversal recursively follows along the skeleton, in a specified order of

travel, keeping track of the last singularity that it passed. It is referred to as the current

singularity.

When another singularity is discovered, a new node is inserted into the graph along

with an edge that connects the current singularity with the new singularity. This new

76

singularity is a point in the skeleton that one of the following passes had marked as a

singularity or it is an intersection or end-point in the skeleton. The new singularity is then

established as the current singularity and the process continues. When a situation is

encountered where the traversal can not continue, such as reaching an end-point in the

skeleton or reaching an intersection where all exiting lines have already been traversed,

then the traversal returns to a recursion point in the skeleton, and takes a remaining

untraversed path.

A recursion point is a place in the skeleton that is at the intersection of two lines.

Previously during this pass, the traversal had encountered this point in the skeleton. There

were two or more paths that could be selected to continue. The traversal had selected one

of the paths and had continued in that direction. When the traversal encounters a spot in

the skeleton where it cannot continue, such as an end-point or an intersection point where

all other paths have previously been processed, it will return to this recursion point. If

there still exists an untraversed path from this point, the traversal will continue in that

direction; otherwise, it will return to the next previous recursion point. When it returns to

the initial recursion point and there are no other paths to take, the FI following is complete

along with the singularity graph. See Figure 4.1 for an example containing a thinned letter

' f , the drawn singularity graph for the thinned letter ' f , and a listing of the singularity

graph in tabular form.

77

4.4.4 Final Analysis and Comments

Once the vectorization process is completed, a singularity graph is available. The

nodes of the graph are labeled with the (x, y) coordinates for the singularities with respect

to the skeleton. Along with the (x, y) coordinates for each singularity, the type of

singularity is also recorded. Singularity types are: end-point singularities, intersection

singularities where lines cross, and flow-through singularities which represent the

singularities selected in a curved line used to approximate the curve with line segments.

The edges of the singularity graph consist of a list of (si, s2) pairs where Si and s2

represent the singularities that are the end-points of the edges. Also for each edge (si, s2)

in the set of edges, an (r, 9) field is maintained such that if (x, y) is the vector representing

the si component of the (si, s2) singularity pair, and (x', y') is the rectangular coordinates

of the vector represented by (r, 0), then (x + x', y + y') equals the (x, y) coordinate of s2.

The above process produces very high quality vectorized approximations of input

skeletons. Figure 4.2 shows several thinned images with their drawn vectorized

approximations. The quality of the singularity graph is good enough for the singularity

graph to be used as the basis of the feature extraction process instead of the skeleton itself.

Note that the drawn images in Figure 4.2 only approximate the singularity graph and that

imperfections are caused by the enlargement process and the quality of the line drawing

routine.

Using this method to perform vectorization has a trade-off. The high quality

singularity graphs produced by this method require 13 passes over the input skeleton, one

78

Figure 4.2. More Examples of Drawn Singularity Graphs
Original line drawings (greatly enlarged)and the (similarly enlarged) drawn

for each ruling to mark the singularities and one to create the set of singularity graph

nodes and edges. Other algorithms discussed in Chapter II only required one pass.

However, the other algorithms performed much more work per pass than this algorithm,

and, even if more passes were involved, it was decided that a high quality singularity graph

was worth the extra effort.

4.5 Post-processing the Singularity graph

The dendrites produced by the thinning process have to be addressed at this point.

An easy method to recognize and remove dendrites is to look through the singularity

graph and find edges where the r coordinate of the (r, 0) component is less than an

established dendrite length threshold. If one singularity in the (si, s2) pair is an end

singularity and the other is an intersection singularity, then the edge can be removed from

the set of edges and the node representing the end singularity of the pair can be deleted.

79

Other simplifications are also possible. As an example, consider the following situation in

a skeleton where s represents a singularity and an x represents a black pixel in the

skeleton:

s i
X
X
X
X S3
S 2 x
X
X
s

There are three edges in the set of edges for this singularity graph, (s,, s2), (s2, s3),

(s2, S4). Obviously the (s2, s3) edge is a dendrite. Also the (x, y) coordinates for each

singularity is known, so it is easy to remove the dendrite from the skeleton. However,

since later processing only involves the singularity graph, there is no longer a need for the

skeleton. So simply remove the (s2, s3) edge from the singularity graph, combine the

vectors (s,, s2) and (s2, s4) into a single vector (s,, s4), and delete the two singularity nodes

s2ands3.

As one final note, the mechanism to build a singularity graph builds the graph as a

di-graph. It is an easy matter to add extra edges in the graph to create an undirected

graph at a later time. In this case, for each edge (si, sj) in the singularity graph, (sj, s.)

must be added as a new edge.

CHAPTER V

FEATURE EXTRACTION

5.1 Background

This phase of the application involves examining the input, consisting now of a

singularity graph containing a vectorized approximation of a skeleton, and attempting to

discover the presence of features. These features will be used later as input to the

recognition engine which finds higher level features—characters and character constructs.

The feature extraction phase is considered by many to be one of the most difficult

phases in the entire area of pattern recognition [Impedovo et. al., 1991], It has been

widely studied with respect to OCR and handprinted text recognition (see Chapter II) but

much of that work is not directly applicable to recognition of cursive script. In OCR and

handprinted text recognition, sets of features at this level are extracted for use in

classifying entire small line drawings representing characters. In this research into

connected cursive script recognition, sets of features at this level are extracted for use in

extracting larger features called character constructs in large line drawings representing

words or partial words. The character construct features are used, in turn, in classifying

the large line drawings representing words and word constructs.

If features are to be recognized within a large line drawing representing several

characters, then a method of managing large numbers of features is required so that the

80

81

features and their topological organization are conveniently available during the character

extraction phase. In this fashion, a subset of features in the total set of features must be

used to recognize a character construct within the large line drawing.

For example in OCR, once features are extracted, character recognition is

straightforward. Feature extraction many times involves discovering the feature vector for

an input line drawing (character). If the character contains one hump, two loops, a slash

and a zero count for other features, the feature vector might be (1,0,0,2,0,1). To classify

the character, these feature vectors are compared against known exemplar feature vectors

for each character that may be recognized possibly using a Euclidean or weighted

Euclidean distance as the measurement:

where Df represents the Euclidean distance between the input character and feature j in

the library L of known feature vectors. is the zth feature in theyth vector in library L.

F' is the /th feature of the input vector, wi is the weight applied to feature i as some

features may be more reliable than others. N is the number of features. The character

would be classified as the one with the smallest distance.

Feature extraction in OCR and handprinted text recognition reflects the

requirements of the classification process used. Feature extraction in cursive script

recognition must do the same. In cursive script recognition, a feature count vector is of

little use. The relative position of the features in the line drawing, or singularity graph for

82

the line drawing, is important—not just the feature counts. If unambiguous character

segmentation were possible, it would be less important. However, assuming fairly

unconstrained script, assessing where characters begin and end in the line drawing involves

large amounts of ambiguity. An efficient mechanism for organizing features, which may

overlap, so that they can be easily scanned and associated locally with other features is

important. In this research, the feature graph, which is output from this phase, was the

mechanism chosen. The mechanism used to perform character extraction is discussed in

Chapter VI.

The vectorization phase, that was discussed in Chapter IV, can also be considered

part of the feature extraction phase. Each edge and singularity of the singularity graph can

be considered a feature. In this case, the features recognized in this phase are joined

together with the singularity graph of the skeleton to create an expanded singularity graph,

known as the feature graph. The feature graph is then used as input to the higher level

feature recognition engine which recognizes the characters and character constructs.

Many different kinds of features are present in cursive script and handprinted text.

It is important to consider very carefully the kinds of features that will be extracted. It is

obvious that the types of features useful for cursive script recognition differ from those

used in OCR and handprinted text recognition. The problem is to extract features which

will enable the system to discriminate efficiently between and among characters and

character constructs in later phases.

83

The main requirements for a feature extracting mechanism in this research are:

• the mechanism has to be computationally efficient;
• the recognition mechanism must be very thorough in that it recognizes

every feature for which it has been trained;
• the mechanism must be flexible in that it may easily be trained with new

features and new shape possibilities for existing features; and
• the data structure created to contain the features that are discovered must

be an efficient mechanism for organizing features so that they can be easily
scanned and associated locally with other features.

5.2 Features Extracted

After a close examination of the alphabet, especially the lower case alphabet, a

small set of features was selected for extraction. This set consists of several kinds of

loops, a feature that looks like a c, a feature that looks like a backwards c, a feature called

a hump which is part of an m, and a feature that looks like a u. These features along with

FI rulings of the feature graph for each character construct will be used to extract

characters. These features were purposefully chosen to keep the number of features small.

See Figure 5 .1 for a hand drawn visual image of the features chosen.

The features were selected to enable a high correct classification rate for lower

case letters. The same features were used in the description of upper case characters with

less success. It was for this reason that the design of the feature extraction mechanism

includes the flexibility for the implementor to add features as new and desirable features

are discovered. Use of these new features must be coordinated with the character

extraction mechanism that will use the features to build new abstractions for recognizable

characters.

84

a

C D A U
Figure 5.1. Features Extracted (hand drawn).

Features include a long narrow up loop, long narrow down loop, round loop,
small round loop, c-type, backwards c type, hump, and cup.

The data structure used to store exemplar features is described in Section 5.3.2.2.

The structure can store and efficiently access large numbers of features, with many

different variations on each feature.

5.3 Feature Extraction Mechanism

The features discovered by the feature extraction mechanism are divided into two

categories reflecting the method used to extract the features. There are loop type and

non-loop type features. A loop is any set of vectors in the singularity graph where there is

a path from a singularity back to the same singularity. The other four features fall into the

non-loop category.

85

5.3.1 Loop Extraction Methodology

The types of loops extracted were subdivided into categories. The two main

categories were: single intersection loop and multiple intersection loop. Single

intersection loops involve loops that have exactly one intersection point. Consider Figure

5.2.a containing a cursive '1' (lower case L) and a cursive 'y\ Both are single intersection

loops. The '1' contains a single intersection loop with direction 80° from the intersection

point. The y contains a single intersection loop with direction 260° from the intersection

point. The loop directions may be used for heuristic purposes during the later recognition

process. The length, width, and center of a loop is also recorded so that the loops can be

further subdivided into long loops and round loops. A multiple intersection loop is shown

A
c.

Figure 5.2. Examples of Loops
Single intersection and multiple intersection loops.

86

in Figure 5.2.b in the letter's'. A drawn singularity graph for the character containing the

loop of Figure 5.2.b is displayed in Figure 5.2.c. Notice how in the singularity graph for

' s \ there are two intersection singularities in the loop. An intersection singularity is any

node incident with more than two edges.

For the purposes of this research, a loop is any set of vectors in the singularity

graph where there is a path from a singularity in the loop back to the same singularity. For

example, the letter d shown in Figure 5.3 has six loops, 3 loops that do not contain any

other loops, 1 loop that subsumes the top two loops, 1 loop that subsumes the bottom two

loops, and 1 loop that subsumes all other loops. As will be discussed later, each loop is

considered a feature and is placed in the feature graph.

The process for the recognition of loops involves traversing the singularity graph

looking for situations where there is a path from a singularity back to that singularity.

Given a singularity graph, a two dimensional connection matrix form of the graph is

Figure 5.3. An Example of Subsumed Features
The original version, thinned version, and drawn singularity graph

of a 'd' containing 6 loops.

87

created containing singularity connection information. A traversal of the graph is done

stacking singularities as they are found. If a singularity is found that is already on the

stack, a loop has been discovered. The loop is recorded, the stack is popped back to the

last intersection singularity placed on the stack, another direction is chosen (if possible)

from that singularity and the process continues. If no other edges from that intersection

singularity can be found, then the stack is popped again to the next intersection singularity

in the stack and so on.

The different types of loops are distinguished heuristically by checking the known

height of the script with the length and width of the loop. If the length of the edges are

"long" relative to the known height of the script and the width is much smaller than the

height, a long narrow loop exists. If the length and width of the loop is near the same,

then a round loop exists which can be either large, regular, or small depending upon the

length of the edges relative to the known height of the script. The loop direction is the

angle of the vector that points from the loop intersection point to the singularity in the

loop that is the furthest Euclidean distance from the intersection singularity.

5.3.2 Extracting Non-Loop Features

After the pass is made over the singularity graph to extract loops, another pass is

made to extract non-loop features. As mentioned above, the non-loop features extracted

include the "c" shape, the "backwards c" shape, the "hump" shape, the "u" shape or

cup shape.

88

5.3.2.1 Design of Non-Loop Feature Extractor

As this phase is the most difficult and time consuming phase of similar projects in

the literature, steps were taken to make this phase a time efficient phase. Figure 5.4

contains three different edge groupings that represent a "c" shape. It should be apparent

that there are many other sets of edges that might be placed together to obtain a "c"

shape. The method chosen to extract features involves manual training of the feature

recognizer and storing the various possible edge direction/length combinations in an

efficiently accessible data structure.

a.

Figure 5.4 Example Feature Exemplars
Three different singularity graph edge patterns for representing the feature "c"

During early experimentation, many different edge combinations for each feature

were discovered. These approximate edge combinations were translated into an alphabet

suitable for storing into the data structure. The alphabet involves the approximate

direction of the edge as a vector beginning at the source singularity and an approximate

89

length of the vector, either short, medium, or long. The directions are illustrated in the

following diagram:

L t
K \

^ B

/ C

J

I /

H (

D

\ E

j F

The lengths were S for short, M for medium, and L for long. Therefore, the "c" feature

in Figure 5.4.a is represented as JS, HM, FM, DS. Figure 5.4.b is represented by the

sequence LS, HL, FS, DS, BS, and Figure 5.4.c is JS, HL, EM, BS. The definitions for

the 3 variations on the "c" type shape depend upon the starting singularity being the

upper right end-point. Each time a new possible representation for a c shape was

discovered, it was included in the list. The same process was followed for each of the

features. The resulting set of feature patterns are stored in an efficiently accessible data

structure which is placed in memory during the extraction process. As the number of

features to be recognized here is only four, then the entire feature extraction data structure

has less than 160 entries which averages a little less than 40 entries per feature.

90

5.3 .2.2 Feature Base Data Structure

The list of features is stored in a variant of the trie structure suggested in [Knuth,

1973], It is similar to the dictionary tree suggested in [Ford and Higgins, 1990] except

that it is used as an efficient mechanism to store patterns for features extracted from

singularity graphs instead of patterns of letters for words in a dictionary. As possible edge

combinations for features are discovered, they are inserted into this trie called the

exemplar feature tree. An example subset of the exemplar feature tree is shown in

Figure 5.5.

Figure 5.5 shows three different possibilities for subsets of singularity graphs for

the feature 'fc" taken from Figure 5.4. Notice at the right side that there are dotted

HL BS

LS ABS,

Figure 5.5. A Subset of an Exemplar Feature Tree. This represents
three different edge combinations representing the letter "c".

91

branches that point to a box containing the c. Each dotted line represents a recognition

point for the feature "c". Each dotted line is implemented as a confidence value

containing the experience of the feature recognition system. Compared to the total

number of c features that have been recognized, the dotted line specifies the number of

times this recognition point was used.

5.3.2.3 The Process of Extracting Features

The process of extracting features from an input singularity graph is fairly simple

given the exemplar feature tree. As a global traversal over the singularity graph

progresses, each singularity is assumed to be the beginning of a feature. A localized

traversal is begun starting at the currently selected singularity directed by the exemplar

feature tree. The direction and length of each edge of the singularity graph connected to

this singularity becomes the first edge in a predicted feature. If there is a feature in the

exemplar feature tree beginning with this edge, then the local traversal continues,

otherwise a failure is signaled and traversals, starting at the other edges, are begun. As a

traversal progresses, each possible edge in the path is compared with a corresponding

edge in the exemplar feature tree and the traversal continues as long as there are matches.

A success is reported when correct feature marker is discovered at a node in the exemplar

feature tree. This situation is equivalent to discovering a dotted line in Figure 5.5. A

failure is reported when the next edge in the input singularity graph does not match any

edge in the exemplar feature tree.

92

For example, consider Figure 5.6 which represents a sub-graph of a singularity

Figure 5.6 Example Labeled Singularity Graph
Subset of a singularity graph labeled showing the feature 'c'.

graph where the circles represent singularities and the gray boxes represent annotations.

Several features are present in the graph. These include:

• s3 - s2 - si - s5 hump
• s2 - s3 - s5 - si cup
• s2 - s3 - s6 - s7 - s8 cup
• s2 - si - s5 - s3 backwards c

• si - s2 - s3 - s5 small round loop

among others. Assume the traversal has reached singularity si and the (si, s2) edge is

next to be tested and assume the exemplar feature tree given in Figure 5.5. (si, s2)

represents a JS. There is at least one feature that begins with a JS so the local traversal

can continue. (s2, s3) represents a HM. There is a path in the exemplar feature tree for

93

an HM so the local traversal continues. (s3, s4) is a failure because no path exists in the

exemplar feature tree for an EM next. However, (s3, s6) represents an FM which is

present and followed by (s6, s7) representing a DS. If the traversal reaches this node in

the exemplar feature tree, then a "c" feature has been discovered.

5.4 The Feature Graph

The feature graph is an extension of the singularity graph. To review, the

singularity graph contains a set of nodes, which represent singularities, and edges, which

represent connections between singularities. The singularity nodes are labeled with:

• the (x, y) coordinates representing the actual location of the pixel to which
this singularity is associated, within the skeleton; and

• the type of the singularity—intersection singularity, end singularity, and
flow-through singularity.

Each edge is labeled with an (r, 6) which represents a vector length and direction from the

source singularity to the destination singularity. Note that a singularity graph is an

undirected graph and any edge (s„ sj) in the graph represents an edge from s, to Sj and

from Sj to Sj.

In the feature graph, every feature discovered is simply added to the singularity

graph as a new singularity. This "feature" singularity node is labeled with the (x, y)

coordinates of the relative center of the feature with respect to the singularities of which it

consists. It is also labeled with a feature type—long narrow down loop, long narrow up

loop, round loop, small round loop, c-type, backwards c-type, hump, or cup. As part of

adding a feature node, edges are added so that any singularity (or feature) adjacent to any

94

component of the new feature is connected to the new feature as well, with the exception

of any singularities that are contained in the new feature. These new edges are labeled in

the same fashion as before, with an (r, 9) which represents a vector from the source

singularity/feature of the edge to the destination singularity/feature. However, there is one

additional edge label, an edge-type label. There are four types of edge labels in a feature

graph:

• a "regular" edge—this represents an edge where at least one end-point is a
simple singularity (not one of the features);

• an "adjacent" edge—this represents an invisible edge between two
features such that the two features are adjacent (each feature contains some
singularities in the other feature but one feature does not totally contain the
other feature);

• a "subsume" edge—this represents an invisible edge between two features
such that the source feature contains all the singularities and edges in the
destination feature; and

• a "subsumed" edge—this represents an invisible edge between two
features such that all singularities of the source feature are also part of the
destination feature.

For example, consider an example cursive letter "o" in Figure 5.7.a. The

singularity graph might be drawn as in Figure 5.10.b where the circles represent

B j

a. b.

Figure 5.7 Feature Graph Example

95

singularities. The singularity graph would have nodes N= {si, s2, s3, s4, s5, s6, s7}. The

undirected edges would be {(si, s2), (s2, s3), (s3, s4), (s4, s5), (s5, s6), (si, s6), (s2, s5),

(s5, s8)}. Features discovered include:

sl-s2-s5-s6, cup (fl), hump(f2), c(f3), back-c(f4), loop(f5)
s2-s3-s4-s5, cup(f6), hump(f7), c(f8), back-c(f9), loop(flO)
sl-s2-s3-s4-s5-s6, cup(fll), hump(fl2), loop(fl3)
sl-s6-s5-s4-s3. back-c(fl4)
s6-sl-s2-s3-s4 c(fl5)

So nodes in the feature graph would be N = {sl...s7, fl...fl5} where si...sj or

signifies all singularities or features numbered between i and j. Edges added would be:

regular—<s3, fl...f5), (s4, fl...f5), (si, f6...fl0), (s6, f6...fl0), (s7, fl...fl5)
adjacent—(fl...f5, f6...fl0)
subsume—(fl 1, fl.flO), (fl l , fl2...fl5), (fl2, fl...fll), (fl2, fl3...fl5),
(fl3, fl...fl2), (fl3, fl4...fl5)
subsumed—(fl...flO, fl l) , (fl2...fl5, f l l) , (fl...fll, fl2), (fl3...fl5, fl2),
(fl. . .fl2,n3), (fl4...fl5, fl3)

When loops are involved, lots of new features are added. This is especially true when one

loop subsumes another as in the above example. In practice, when features are discovered

in a singularity graph and a feature graph is created, if a large sized original line drawing

containing a word with many cursive characters is encountered, the feature graph can have

as many as 300 to 500 feature/singularities. This means that the feature graph connection

matrix contains 500x500 entries. This is quite a large array considering the labeling

involved. In general, however, the matrix involved is very sparse. Even though the

current implementation did not do so, this matrix could have been implemented using a

96

sparse matrix data structure [Horowitz and Sahni, 1983] to minimize storage

requirements.

5.5 Analysis and Comments

In the original proposal for this research, it was planned to use a variety of FI to

perform this feature extraction. However, after the creation of the singularity graph, the

design of the feature recognizer utilizes patterns that make up features which are very

short and absolute. FI technology is badly under-utilized when the patterns are short and

absolute. Also, one of the key advantages of FI is that FI can provide more "fuzzy" type

recognition in that the residual provides a measurement of how close the new pattern is to

the pattern trained into the ruling. This simple pattern matching requires absolute

matching and does not require the fuzzy matching strong point of FI. For this reason, the

exemplar feature tree directed search mechanism was used for the advantage it provides

which is the speed of execution.

Nonetheless, the feature recognition phase quickly and easily finds all features

present in the singularity graph that match features stored in the exemplar feature tree.

The feature graph that is created by the feature extraction phase provides a flexible

environment for the recognition of characters in the next phase.

CHAPTER VI

CHARACTER EXTRACTION, WORD SEGMENTATION,

AND WORD CLASSIFICATION

6.1 Background Discussion

The next phase after thinning, vectorization, and feature extraction deals with three

important topics: character extraction, word segmentation, and word classification, each

of which is considered a worthy research area in the literature as discussed in Chapter II.

This research treats them together as they are closely related and they work together to

produce the desired word classifications.

The output from the feature extraction phase is a list of feature graphs where the

contents of each graph is as discussed in Section 5.5. There is one feature graph for each

line drawing assumed to contain a word or partial word to recognize. The construction of

the feature graph involved

• thinning the line drawing into a skeleton,
• vectorizing the skeleton into a singularity graph, and

• extracting features from the singularity graph and producing the feature graph.

Character extraction involves examining a feature graph and discovering characters

and character constructs in the graph. A character or character construct is a special

feature that may, in general, be much more complicated than one of the simple features

that currently exists in the feature graph.

97

98

Because of the extra complexity, the same methodology used to extract features

from the singularity graph can not be used to extract characters from the feature graph.

The process of extracting features from a singularity graph involved examining a feature

tree containing exemplars for all possible features. An exact match of singularity patterns

in the feature tree with singularity patterns in the input singularity graph was required.

This can be done because the number of singularities and edges in any feature is small.

On the other hand, the number of singularities and edges in a character can be very

large and the chances of an exact match are almost nil. For this reason, feature graphs are

constructed and a pattern matching methodology that can produce an approximate match

is used. An FI ruling base was constructed, with one ruling for each exemplar character

construct trained into the system. The FI rulings are used via FI following to examine the

feature graph for approximate matches with the exemplars represented by FI rulings in the

FI ruling base.

The phase of word segmentation involves examining the list of feature graphs for

likely combinations that might be segmented together to make a word. This is necessary

because words are not always totally connected line drawings, as defined in the research

specifications presented in Chapter I. Although it is planned to relax this constraint in the

near future, in the current form of this research, cursive script words must be connected

with only a couple of exceptions. The exceptions involve dots over letters, punctuation,

and capital letters which begin words. If a capital letter is extracted and is disconnected, it

is assumed to begin the word to its right or be a word in its own right.

99

The knowledge of which feature graphs represent capital letters and which

represent short words is not available at the time the character extraction process begins.

This requires that the word segmentation, even with the constraints, must at least wait

until after an initial pass at character extraction takes place and generally must wait longer.

The word classification phase involves examining the list of extracted characters

and determining which word in the vocabulary is the most likely match. When a character

extraction is made, the extracted character and a confidence measurement (representing

the expected correctness of the extraction) is placed in a data structure known as a letter

graph, described in Section 6.5.2. The word classifier examines the most likely of the

characters in the letter graph with respect to the confidence measurements and the

characters in the words of a lexicon query.

The character extraction, word segmentation, and word classification phases are

performed in an iterative fashion until at some point in time the most likely match is

discovered. Figure 6.1 shows a graphical view of each phase in the process.

6.2 Character Extraction

The character extraction phase, like the vectorization phase, involves the use of FI

to assist in the extraction. For each character construct that can be recognized, an FI

ruling is prepared. During the training process, several exemplars for each character

construct are FI factored to create several FI rulings. Each FI ruling recognizes one of

those many exemplars. Also, any time during the use of the system, if a user desires a new

100

tmmmm

mamm

ML WmMMmMrnm
IvS-Sv/XvW^^

a. character extraction

b. word segmentation

c. word classification

Figure 6.1. A Graphical View of Chapter VI Phases
The processes involved with character extraction, word segmentation,

and word classification

exemplar letter construct, an FI ruling can be prepared at that time and added to the FI

ruling data base. This process is known as adaptation.

Each FI ruling is created by FI factoring the feature graph representing an

exemplar character construct after the feature extraction phase. The feature graph, as

described in Chapter V, includes both regular singularities and features as nodes. From

this point, however, this paper will refer to both as features when there is no ambiguity.

101

The FI ruling, therefore, involves features, as well as directional indicators representing

edges.

Consider the example of the singularity graph for a lower case letter q in Figure

6.2.a. Assuming that the singularity graph is visually drawn in Figure 6.2.c, then the

feature graph would consist of Nodes = {sl..s9, fl..f5} where:

sl-s2-s3-s4 = fl (c-type) = f2 (back-c)
= D (cup) = f4 (hump)
= f5 (round loop)

with edges ={(sl, s2) - EM, (si, s3) - GM, (s3, s4) - DS, (s2, s4) - BM, (s2, s5) - GL,

(s5,s6) - EM, (s6, s7) - BS, (s7, s8) - LM, (s8, s9) - CM} unioned with {(s5, fl...f5) - all

KJ

a. (si

c.

Figure 6.2. Vectorized Singularity Graph for
a lower case 'q'.

102

LL's} unioned with the feature to feature edges {(fl, £2...£5), ,(f2, D...f5), (£3, f4...f5),

(f4, f5)}. Edge directions are taken from the following diagram:

with lengths specified as S(hort), M(edium), L(ong), and Z(ero Length). In this case, each

feature to feature edge has a zero length and therefore the directions do not matter. This

is not true in general. The feature to feature nodes are set up so that every edge with the

loop feature f5 as the destination is a subsumed edge and each edge with the loop feature

f5 as the source is a subsume edge. All other feature to feature edges are subsumed

edges. Note that the edge between the singularities si and s2 is an undirected edge. The

directional pointer and length is given as EM, direction E length M. If the other side of

this edge is considered (s2, si) then the reverse directional pointer would be KM. A

similar situation exists for all other edges with non-zero length.

6.2.1 Creating the FI ruling base

If the above 'q' was to be used as an exemplar, then the factorization would start

at s5, because it is the feature in the feature graph with the largest degree (or the one

connected to the largest number of non-zero length edges). The input to the FI

103

factorization would be the string: *, i, AL, i, KM, f, GM, f, DS, f, BM, *, i, LL, rl, *, i,

LL, cup, *, i, LL, c, *, f, LL, back-c, *, i, LL, cup, *, i, LL, hump, *, i, EM, f, BS, f, LM,

f, CM, f, *. Note, s5 in the singularity graph was a flow-through singularity as it is only

connected to two other singularities. But in the feature graph, s5 is an intersection

feature because it is connected to all the non-intersection features which means that it has

a degree greater than 2.

The is the end-of-path marker. Each time it is encountered, it signals return to

the intersection feature immediately after the previous and resume traversing. In this

case, the 'i' after each '*' represents s5 which is the initial intersection feature.

A standard FI factorization is performed with one exception. It is assumed that

there can be many rules *i -» X, if i is the start feature. For example, rule *i -» AL is one

rule, *i -» LL is another rule, *i —» EM makes the third rule with antecedent *i. This is

illegal in FI in general, but is very convenient here and is facilitated by allowing one

symbol look ahead if the symbol to the right of the * is the start feature (s5 in the above

case).

Each exemplar is FI factored as described above. An FI ruling is created for each

exemplar. These FI rulings are stored in an efficiently accessible data structure with

various key indices. The main key index includes

• the type of the starting feature,
• the degree of the starting feature, and
• the directional indicators and length for each edge out of the start feature.

104

Other indices have key fields including: the character construct that the ruling represents,

the ruling start feature, and the identification of the author of the script. Having an index

key containing the author of the exemplars allows an individualized ruling base. These

indices, along with combinations, are used to cut down the search space during the

extraction process.

Fields in the record containing the FI ruling contain the FI ruling itself, the author

of the script, the character that the FI ruling recognizes, a copy of the input specifying the

graph walk, and a vector of rule fire counts—one for each rule in the ruling. The rule fire

counts specify how many times each rule in the FI ruling fired during the FI factorization

of the exemplar. These counts will be used later in a calculation to determine the

"closeness to a match" indicator for the FI ruling.

The fact that there are many different rulings that represent each character

construct is a change from the flavor of other research projects that use structure and

topological information to represent the internal form of a pattern to extract. In those

projects, a single ""grammar" was prepared and the input was parsed according to the

grammar. In this research, there are several possible FI rulings for each character

construct to be extracted and rulings can be added at any time via adaptation. There are

two reasons that this is possible. The first reason is that during the character extraction

process, the search space of FI rulings is severely restricted, as described in the Section

6.5. The second reason is that rulings are quite small and the FI followings are localized in

scope. This means that even if there are many FI rulings in the search space, the

processing time is still small.

105

6.2.2 Performing Character Extraction

To extract characters and character constructs from an input feature graph, a walk

is performed over the feature graph and an attempt is made to extract a character at each

feature in the feature graph. A key is prepared containing the feature type, the degree of

the feature, and the directional indicators for each edge incident with the start feature.

The directional indicators are placed in ascending order within the key. A lookup is done

in the FI ruling base for each FI ruling with that key. Generally a very small number of

rulings are obtained. A localized FI following is performed using the copy of the exemplar

input graph walk to direct the FI following in the input feature graph.

During FI following, the mechanism which provides input examines the input

graph walk provided with the exemplar, and if possible, chooses a similar path in the input

feature graph. If a path in the feature graph cannot be found, then input items from the

feature graph are skipped until the indicator is found. The traversal backtracks to an

intersection feature and continues. Each time a rule fires, the count for that rule is

incremented.

The rule fire counts are calculated during FI following of the local area in the

feature graph. These rule fire counts are compared against the exemplar rule fire counts

provided with the exemplar FI ruling that was used by the FI following. A distance is

calculated between the input feature graph and the character represented by the ruling.

The distance .Dj in the following:

106

represents a weighted Euclidean distance between the rule fire count vector of the

exemplar and the rule fire count vector of the localized FI following. The index j

represents which ruling in the FI ruling base was used to perform FI following. The index

i represents the number of the rule within the ruling. So, represents the rule fire count

for rule / in ruling for exemplar j of the FI ruling base. Rf represents the rule fire count

for rule i in the FI following of the input feature graph. The value w, is the weight applied

to rule i as some rules may be more reliable than others; i. e., where the consequent of the

FI rule is a loop. N is the number of rules in the ruling. The exemplar character or

character construct will be recognized if the distance is lower than a threshold for the FI

ruling (which is stored along with the FI ruling in the FI ruling base).

6.3 Word Segmentation

In the general problem of cursive script recognition where both connected and

disconnected script is allowable, word segmentation is a difficult problem. In these cases,

the breaks between line drawings do not necessarily indicate a break between words. The

problem is analogous to connected speech recognition where, in general, there may be no

breaks between words and a break may represent a pause while saying a word. Also, if

words may be disconnected, in many instances, characters may be disconnected. Another

problem exists where there are no guidelines provided to the author of the script and the

words are not written in a straight line. In this case and in other cases, it is difficult to

107

segment the input into words on different lines as lines and even words may bend and turn

unexpectedly. Another problem is apparent when the case where a descending loop on

one line may intersect an ascending loop on the line below is considered. The solution of

the general word segmentation problem is not within the scope of this research.

As specified in Chapter I, the word segmentation problem is limited to allowing for

dots over letters, disconnected capital letters, and reasonable punctuation. The general

rule is that a disconnected capital letter begins the word represented by the line drawing to

its right. Even with these constraints, there are problems. A capital 'A' can begin a

sentence as the word A, or the beginning of the word Another, or even some capitalized

word not at the beginning of a sentence. In this case, contextual heuristics can be used to

help in the word segmentation.

Even with the constraints placed on the input, the word segmentation phase must

wait until after the first pass at character extraction. If a dot is discovered, it can be added

to the singularity graph representing the line drawing physically placed directly below it on

the page, if it is "close enough". If not, and there is possible punctuation near and above

it on the page, it could be placed inside that singularity graph. There is always the

possibility that the dot represents a period and belongs only to itself.

An extracted capital letter is assumed to begin the word to its right, for the time

being, unless the extracted capital letter is an A or an I. In this case, heuristics must be

used to help with word segmentation and these heuristics must wait until the character

extraction process is almost over and word classification is taking place. Even in cases

where all characters are recognizable, ambiguity may require even further contextual

108

heuristics which is beyond the current scope of this research. As an example, consider the

script for the name 'Ivan" where the 'I' part is disconnected from the drawing

representing the 'Van" part. This is possibly two words, T ' and 'Van". It might also be

the single name "Ivan".

6.4 Word Classification

Word classification involves a context constrained search of the word space during

character extraction. A lexicon exists in an efficiently accessible data structure with

various key indices to assist in the lookup. For the purposes of this research, only the first

five characters in the words of the lexicon are used in the indices.

There are several indices maintained with the lexicon. Each index corresponds to a

possible situation that might exist after the initial pass at character extraction. Consider

the following sequence of keys to indices into the lexicon where Z,, represents a letter in

position i.

Lj L2 L3 L4 Ls - 5 letters known with confidence
* L2 L3 L4 L5 - 4 letters known with confidence where the wild card
LI * L3 L4 LS represents an unknown sequence of characters
Li L2 * L4 Ls

L, L2 L3 * Ls

Li L2 L3 L4 *

The sequence continues where only three characters are known and there is one or

possibly two corresponding wildcards in what is approximated to be the first five

characters of the word.

109

These indices represent limited n-gram type information. In fact, the indices are

referred to as split n-gram indices in that they represent not only characters that can go

together sequentially, but they represent characters that can go together with wild card

characters or character sequences separating them. A split n-gram index setup like this is

very convenient and useful but the indices require a large amount of memory, especially if

the indices were not limited to the first 5 characters of the words.

The extraction, segmentation, and word classification process work together in an

iterative fashion. As mentioned before, after an initial extraction pass is made, then all

characters extracted are placed in a letter graph and a lexicon lookup is performed. This

lookup will determine a target set of words that are possible with the current characters.

Then an attempt is made to construct each word in the target list by using letters in the

letter graph and by doing further character extractions from the feature graph. Contextual

knowledge says that, if any word is selected, one of the words from the lexicon search list

must be the choice. As new characters are extracted, the target list of words is narrowed.

This process continues in an iterative fashion until the feature graph is classified as a word

from the lexicon, or is rejected.

6.5 Overall Methodology

When a new subject image—assumed to contain words to classify—is

encountered, all relevant preprocessing is performed and the end result of all the pre-

processing is a feature graph. This feature graph contains features, including regular

singularities, and features. Regular singularities include intersection singularities, end

110

singularities, and flow-through singularities. Features include loops, c , back-c, cup, and a

hump feature.

Then in an iterative fashion, the character extraction, word segmentation, and

word classification phases are performed. As characters are extracted, new word

segmentation and classification is attempted. If a word is not predicted with a strong

enough confidence, the information discovered in the attempted classification is used to

further constrain the search space for the next pass at character extraction.

6.5.1 Character Extraction

The algorithm of the initial pass of the character extraction process is given in

Figure 6.3. As the process continues, each feature in the feature graph is checked to see if

a character begins at that feature. During the process, for any particular feature S and

edge (directional indicator) directed away from S, a query is performed returning all FI

rulings in the FI ruling base that begin with a feature that has the same feature type as S,

has the same degree, and is followed by the same directional indicator list.

The record containing each of the FI rulings found in the query also contains the

graph walk which was made during the factoring of the exemplar. This graph walk is used

to control an FI following in the input feature graph where the next input symbol to the

following is suggested by the ruling graph walk.

As an example, assume there is a rule: AM f BL i -> DM and the current state of

the FI following has AM f BL i in the FI shift register. Also assume that the current

feature is an intersection feature and there are two possible directional indicators that

Il l

for each feature, S, in the feature graph
for each edge directed away from feature S

query the FI ruling data base for each ruling that begins
with a feature of the same type as the current
feature, the same degree and
and one which has the same following directional

indicator list (one index contains this ordering)
for each FI ruling obtained in the above query

using a localized directed walk of the feature graph as input,
perform an FI following trying to match with high
confidence the "area" around this feature as the
character construct represented by this FI ruling

if a match is discovered, insert the character, with its
confidence number into the letter graph for this
feature graph in its approximate position.

after all the character candidates have been extracted, decrease the
confidence number of those candidates which may be subsumed
by others (for example a lower case script L might be subsumed
by a lower case D, or a lower case B, or a lower case K.)

Figure 6.3. Character Extraction Algorithm

might come next during the traversal. One of the indicators is an AL and the other is a

DM. The graph walk would specify the selection of DM and the FI following process

continues. The process continues until this exemplar is recognized at this feature—or not

recognized.

Each ruling returned from the query is used to perform a similar directed

following. The rule fire count distance returned from each represents a confidence

measure concerning how close the localized area around the starting feature in the input

feature graph came to matching the pattern trained into the ruling, or how close it came to

matching the character represented by the ruling.

112

When it is decided that a character construct has actually been recognized, then a

marker is inserted into a letter graph at a position approximating its actual position in the

line drawing. At any place in the letter graph, there may be a wild card, one, or several

characters. These characters are used as likely candidates during word classification.

6.5.2 The Letter Graph

Much of the past work performed in the character extraction area in the literature

involved unambiguous character segmentation of a connected word [Srihari and

Bozinovic, 1987], If characters in connected words can be unambiguously segmented,

then the problem of character extraction from connected script can be handled much like

disconnected handprinted text where the types of characters recognized are script

characters instead of print characters. However, in unconstrained script, unambiguous

segmentation is not very realistic. It requires various forms of normalization to map the

input into a form that makes character segmentation feasible. At best, it is error prone and

if writers do not take care, it is infeasible.

Since unambiguous segmentation is not a real possibility, then some type of

scheme allowing ambiguous segmentation is required. What was selected here is a letter

graph concept [Peleg, 1979], [Hayes, 1980], [Higgins and Whitrow, 1985], and [Ford and

Higgins, 1990], For example, consider the word dip. The cursive form of dip might be

considered the word clip as the 'd' could be interpreted 'cl'. A simple letter graph

representing the situation is given in Figure 6.4.

113

Figure 6.4. Example Letter Graph.
Letter graph for the word dip as it may have been written cursively

It is obvious from looking at the example graph for so simple a word, that there is

an abundance of ambiguity. Section 6.5.4 discusses reducing the letter graph to get rid of

impossible combinations of letters using an n-gram and split n-gram lookup technique.

6.5.3 Word Segmentation

The word segmentation phase involves a simple heuristic driven scheme where

dots, comma shapes, straight vertical strokes, and the upper part of a question mark are

combined, or not combined, to create predicted punctuation and where dots, capital

letters, and a large feature graph are combined to create predicted words.

The creation of punctuation involves only the placement of the punctuation type

features on the subject image page. A dot thins down to a very short skeleton which

vectorizes to a very small singularity graph with two singularities and one edge. A comma

114

preprocesses down to a feature graph almost as small as a dot, or with two edges each

about the length of a dot edge.

It is the word segmentation phase that attempts to classify the punctuation. The

punctuation includes periods, commas, semi-colons, colons, exclamation marks, question

marks, apostrophes, and double quotes. The heuristics used involve mainly the spatial

layout of the simple singularity graphs across the page.

The dot symbol involves more heuristics in this phase than any other symbol. It is

part of a colon, semi-colon, question mark, exclamation mark, and sometimes part of an

apostrophe and double quote as writers get in a hurry. A dot by itself can be a period or a

dot over some character in a word depending upon its placement.

Segmenting words in this research also involves only very simple heuristics. After

a capital letter is extracted with a high confidence, it is added to the letter graph of the

feature graph to its right on the subject image page (if any, as it may be at the end of the

line). If a high confidence level word recognition happens, then the capital letter is

assumed to be segmented properly. If a rejection or low confidence level recognition

happens and if the capital letter is an I or an A, then the I or A is classified and the

classification process for the feature graph to the right is restarted. If the capital letter is

something other than an I or an A, then the rejection or low confidence level recognition

stands.

115

6.5.4 Word Classification

This phase involves searching the letter graph which is prepared by the character

extraction phase and the word segmentation phase. In the first pass of character

extraction, all of the high confidence characters should be extracted and placed in this

letter graph. Using this high confidence set of characters and approximate positions, an

index is chosen into the lexicon and a lookup is performed. A target set of words is

selected. It is from this target set of words that the most likely candidates for a successful

classification should come.

If the target set of words is empty, then a problem exists. If it is not possible to

perform a new lookup or this lookup returns no target words, then a rejection is a

possibility. At this point the system relaxes the FI following constraints somewhat and

tries all the original FI rulings again. If the list of target words is empty still, then a

rejection occurs.

When the first character extraction pass is complete, the letter graph may have a

list of high confidence characters as well as other letters with lower confidence values.

The original list of target words is created by using only the highest confidence characters

in the letter graph and performing a lookup with those characters in their respective

positions. For example, if the letter graph's highest confidence characters are a 'j' in

character 1 of the word, an 'a' in character 2, a wild card, and a 'g' in the next character ,

then the key 'jag" would be used in the Li L2 * L3 * lookup index. This would return all

116

words in the lexicon with those three letters in character positions 1, 2, and 4 or 5 of the

word.

In general, at least three characters are desired to perform the lookup. However,

in many cases, only one or two characters have a confidence value above the threshold

required. If this occurs, then a larger number of words might be selected as target words.

If no characters have a confidence value above the threshold, then the threshold is

lowered.

When the set of target words contains more than one word, then the problem

becomes selecting the correct target word. Each target word contains the high confidence

characters in the specified letter graph positions. For any target word, the remaining

characters might possibly be already in the letter graph as lower confidence characters.

Each target word is checked by attempting to construct the word from the characters in

the letter graph. If a target word contains a letter not in the letter graph, then a short

character extraction pass is performed on the feature graph with the FI rulings selected as

described earlier with the exception that only FI rulings representing the missing letter may

be selected. These same FI rulings had been tried in earlier passes, and the recognition

had failed. So, in this pass, the FI following "match" criteria is relaxed to allow for

extraction of characters that do not match with a confidence value as high as originally

desired. If the missing letter is found at one or more places in the feature graph by this

latest character extraction, then this character and its confidence value is placed into the

letter graph for later use.

117

This latest character extraction short pass was made during the process of

attempting to construct a target word from the list of characters in the letter graph. If the

new pass added the required character in the proper place of the letter graph, then

successful construction can continue. If not, then an attempt is made to extract the other

missing characters from this target word anyway. This is done because in the final

analysis, it is possible that none of the target words can be completely constructed from

the letter graph and extra extraction attempts. However, if one of the target words only

has one wild card space or two wild card spaces for a long word, it might still be the best

guess.

After a construction is attempted for each of the target words, hopefully only one

target word is fully constructed. Many times, however, this is not the case. Generally, at

least two target words are almost completely constructed. They are ordered as first

choice, second choice, etc. by the sum of the confidence values of each of the characters

extracted.

The confidence values for characters in the letter graph are calculated during the

character extraction. The character extraction phase involved performing FI following on

localized areas of the feature graph. The FI rule fire count length from the FI following is

the "closeness to a match" indicator. Some characters extracted and placed into the letter

graph will be a closer match than others. The lower the rule fire count distance, the higher

the confidence value. Using the confidence values calculated in this fashion, there is no

problem picking a first choice and second choice.

118

6.5.5 FI Constraint Relaxation

If the feature graph has an area in which no characters can be extracted with a high

enough confidence value, there are two ways to manage the problem. First, the choice

can be made to lower the confidence threshold. This choice is a viable choice when there

are several alternate choices in the letter graph some having confidence values near the

threshold.

However, if there are no reasonable choices and there is an area of the feature

graph that should contain characters, then relaxation of the FI following constraints is

used. Three mechanisms were experimented with to relax constraints in situations when

an FI following comes up with no high confidence character extractions. They include:

1. accepting directional indicators that are up to 30° off,

2. using only the directional indicator in FI rulings that normally require a
directional indicator/vector length combination, and

3. allowing the combination of two edges in a feature graph to match what
corresponds to one edge in an exemplar FI ruling.

In a feature graph, features are connected with labeled edges that specify a length

and a directional indicator. For example, two features might be connected by an CM

edge. The C is a directional indicator according to the diagram given in Section 6.2. The

first relaxation specified above involves allowing an expected CM to be matched with an

BM or a DM. The second relaxation scheme specified above involves allowing an

expected CM to be matched with a CS or a CL, where the length of the vector is not used

(S = short, M = medium, and L = long). The third relaxation scheme tried involves

allowing two vectors separated by a flow-through singularity in the input feature graph to

match up with one vector in the exemplar FI ruling. For example, a DM vector connected

119

to a flow-through singularity connected to an AS vector is allowed to match a CM vector

as in

jsragg;

The third relaxation mechanism provides the cleanest type of relaxation. This is

because the vectorization process provides small extra edges around intersection

singularities. Matches determined after using this type of relaxation have a higher

confidence value than do matches provided with other relaxation techniques.

In the implementation, the first two relaxation techniques mentioned above were

employed together. This means that if a CM vector is expected by the exemplar ruling,

then any B vector or any D vector would be accepted. This has a possible down side in

that in many instances very deformed characters are accepted as matches for exemplars.

Other times, incorrect matches are made.

The process of relaxing constraints on FI following attempting to extract

characters is an area in which much research is still needed. For the purposes of the

experiment, described in Chapter VII, this process resulted in many incorrect matches

where a rejection would have been more appropriate. However, it is true that many

correct matches were made that would have been rejections had it not been for an extra

pass over the feature graph using a relaxed FI following.

120

6 .6 Analysis of the Classification Scheme

The classification scheme described above entailed 3 phases that work together to

provide a classification. The phases were character extraction, word segmentation, and

word classification. The start of this process depends upon a previous phase that provides

a singularity graph of the original subject line drawing.

Even though the process works pretty well, compared to similar projects, there is

still much room for improvement. The feature graphs of the various line drawings across

the page are segmented into punctuation and words. The punctuation is classified with

heuristics built in to the code. This methodology of classifying punctuation is very error

prone. It would be much better to generalize the word classification phase to classify

punctuation "words" also. However, this would mean building the heuristics into that

code.

It is apparent that when humans read disconnected script they employ large

numbers of heuristics to perform their word classification as well as secondary context. If

we are to build classifiers that classify script as well as humans can, the system will have to

learn and manage heuristics. This means that heuristics can not be built into the code but

will somehow have to be encoded into data for use by the classifier.

Even though much of the information is not currently used, much information is

built into the current feature graphs that can be used as heuristics. For example, dots in

the vicinity of an 'i' like or 'j' like character increase the likelihood that that character is

indeed an 'i' or 'j' character. Even though dots are segmented to join the singularity

121

graphs of words in the close vicinity below the dot, dots are not used in the current

implementation for heuristic purposes

It is not clear at the present time how to encode these heuristics into a heuristics

base that might allow the use of heuristics without having to encode the heuristics into the

program code. If each of these human type heuristics were to be included inside the

program code, a code nightmare would exist. For example, the heuristic "One way to

distinguish between a script 'q' and a script 'g' is that in the descending loop, the direction

of the vector from the middle of the loop to the loop intersection feature is generally

71 7t
greater than — for a 'q' and less than — for a 'g'." There are many, many of these

heuristics used by humans when they interpret script. It would be fairly easy to insert code

into the program which will use the above heuristic to help in determining the difference

between a g and a q. What is needed is a methodology to allow the heuristics to be

encoded as data and have the system learn, or at least be trained, to use the heuristics.

As will be shown in the next chapter, even without the wide use of heuristics for

classification, the results are encouraging.

CHAPTER VII

TRAINING AND EXPERIMENTATION

7.1 System Setup and Training

The initial steps to setting up the system involved training the character extractor

and setting up the lexicon. The original line drawings for the original data base of FI

rulings for characters and character constructs are from an old children's spelling book

called My Word Book [Breed and Rogers, 1954], The set of characters in Figure 7.1 had

A a /TAjTJt is J

.KTV/.IWZIlf.

Figure 7.1. Original Training Alphabet. It was taken from
My Word Book [Breed and Rogers, 1954],

122

123

the underline removed and was carefully touched up to connect the disconnected

components of the capital 'F' and 'T'. An image file was created. It was preprocessed

with thinning, vectorization, and feature extraction. This produced a list of 54 feature

graphs. That is two more than the number of letters as there were two dots over the

lower case 'i' and 'j'. The dots were ignored and 52 FI rulings were created by FI

factoring the feature graphs; one FI ruling for each letter.

Several other sets of letters were drawn by this author and three other subjects.

Each of these alphabets had FI rulings created after careful preprocessing. These letters

were carefully and smoothly drawn to ensure that the FI rulings for the generic letters

were high quality. The other subjects in this group, known as the model makers, did not

participate in the experiment. Their function was simply to participate in the careful

construction of the FI ruling base.

After each of the model makers had written the alphabet three times, they were

instructed to write several words. The words were dissected into letters and the FI rulings

for these character constructs were carefully constructed and placed into the FI ruling

base. The motivation behind using letters extracted from words was our conjecture that

people tend to construct their letters differently in words than when they write out the

alphabet. This seems to be true for certain letters and it is assumed without proof that

letters extracted directly from words more accurately reflect the letters used in the

construction of words than do letters written in disconnected alphabets.

The FI rulings for these letters were placed in a generic FI ruling base. In this

case, generic means that these rulings are part of the FI ruling space for any and all of the

124

experiment participants. Each of the three experiment participants were required to also

write a disjointed alphabet out three times and write out the same words that the model

makers wrote three times. For each participant, an individual FI ruling data base was

created that consisted of the character constructs (usually letters) from the letters of the

disjointed alphabets that were produced and the letters extracted from the words written.

In this way, each participant had his/her own individual FI ruling base reflecting his own

personal handwriting style.

The lexicon was extracted from a 6,000 plus word data base. In this experiment,

1026 words were chosen and stored as described in Chapter VI into the efficiently

accessible data structure. Two distinct groups of words were chosen. In one group,

words were dissimilar to all other words. In the other group, similar words were chosen

to test how well the similar words could be distinguished.

It is important to realize that the first real world uses of technology such as this

will involve use in limited lexicon domains. For example, one example that is currently

being heavily investigated by [Cohen, Hull, and Srihari, 1991] involves recognizing United

States postal addresses. That particular paper mainly reports on an experiment involving

off-line recognition of zip codes. Their results, even though seemingly somewhat

unimpressive, make a very good contribution in the area of unconstrained word

segmentation. They study much more general word segmentation requirements than is

covered in this research. In their attempt to segment out the last line of an address and the

zip code, they manage to correctly recognize or reject about 75% of the zip codes on the

sets of envelopes in their experiment. Even in this heavily constrained arena, it is difficult

125

to manage the zip code segmentation. They propose to use a lexicon of city and state

names to assist in recognition of these zip codes. If a city name can be recognized, then

the context of that city can assist in the recognition of the zip code.

If context can be used as heuristics, then recognition of words within special

contexts can be greatly facilitated. For example, if, on some forms, a salesman must write

a description of an item, knowing the small lexicon that might be involved in such a

description will greatly assist in the recognition of the word in the description.

In this study, the context involved is totally contained in the lexicon. The small

vocabulary of 1026 words in many cases might accurately reflect the total needs of certain

applications. Ultimately, however, before a product such as this would be viable in many

real world applications, a much larger lexicon of around 10,000 plus words would

probably be required.

7.1.1 Experiment Design

After the training process was completed and each of the three experiment

participants had completed their portion of the setup training, there was a generic set of FI

rulings for each letter and an individual set of FI rulings for each letter and character

construct for each of experiment participants. The fact that there are FI rulings for letters

and character constructs for individuals involves the fact that, in some cases, a reasonable

segmentation of words into specific characters was impossible and that certain constructs

in words can generally be tied to a combination of letters. FI rulings were constructed for

126

these character constructs and it was noticed later that sometimes these constructs greatly

facilitate the recognition process.

For each of four phases of the experiment, four pages of script were selected

according to the rules described in Chapter I. There were nine paragraphs, plenty of

punctuation, where exactly 300 words of the lexicon were used, some more than once.

The nine paragraphs were written twice by each experiment participant. In the first

writing pass, all words contained only lower case characters and were totally connected.

In the second writing pass, a large percentage of the words were required to begin with an

upper case character and many of these, but not all, were disconnected.

Each of the script pages were originally totally blank and they were clipped on the

top of other pages which provided visible guidelines which assisted the participants in

writing the words the correct size and helped them write straight across the page.

After each phase of the experiment was completed, there were many words

classified or rejected successfully; and, there were many words that were not classified

correctly or correctly rejected. For each of the failed words, the letters and character

constructs were manually extracted very carefully and new FI rulings for these new

models were inserted into the individual FI ruling base for each participant. This was done

because of the conjecture that the next time the same individuals wrote the words again,

there would be a greater probability of successful classification. The fact that this training

is very time consuming and quite pains-taking is a weakness of the system as it currently

stands.

Ul

Each participant was required in each of four days to write the two sets of nine

paragraphs. The classification results are given in Table 7.1 and Table 7.2. Table 7.1

gives the performance results for the test input involving only punctuation and lower case

letters. Table 7.2 shows the corresponding results where the test involved both upper and

lower case letters.

Participant 1 Trial 1 Trial 2 Trial 3 Trial 4
Code Count % Count % Count % Count %.
1 162 44.5 190 52.2 204 56.0 211 58.0
2 49 13.5 69 19.0 73 20.1 81 22.3
3 129 35.4 101 27.7 79 21.7 65 17.9
4 24 6.6 4 1.1 8 2.2 7 1.9
5 25 35.2 31 43.7 36 50.7 41 57.7
6 46 64.8 40 56.3 35 49.3 30 42,3

Participant 2 Trial 1 Trial 2 Trial 3 Trial 4
Code Count % Count % Count % Count %.
1 184 50.5 197 54.1 216 59.3 224 61.5
2 61 16.8 78 21.4 74 20.3 82 22.5
3 101 27.7 79 21.7 66 18.1 53 14.6
4 18 4.9 10 2.7 8 2.2 5 1.4
5 23 32.4 29 40.8 34 47.9 41 57.7
6 48 67.6 42 59.2 37 52.1 30 42,3

Participant 3 Trial 1 Trial 2 Trial 3 Trial 4
Code Count % Count % Count % Count %.
1 180 49.5 201 55.2 215 59.1 222 61.0
2 58 15.9 75 20.6 78 21.4 85 23.4
3 115 31.6 82 22.5 63 17.3 50 13.7
4 11 3.0 6 1.6 8 2.2 7 1.9
5 30 42.3 38 53.5 44 62.0 46 64.8
S 41 57.7 33 46,5 27

O

OO 25 35,2
where code 1 —> correctly classified first choice, code
code 3 —> incorrectly classified from lexicon, code 4 -)
code 5 -> correctly rejected from rejection list, code 6 -

2 -» correctly classified second choice
incorrectly rejected from lexicon

»incorrectly classified from rejected list

Table 7.1. Results from Experiment / No Capital Letters

128

In the nine paragraphs that each participant was required to write, there were 364

words from the lexicon with some words used more than once. Three hundred words

from the lexicon were used at least once. There were 71 words used that were not in the

lexicon. Also there were 45 punctuation marks.

Participant 1 Trial 1 Trial 2 Trial 3 Trial 4
Code Count % Count % Count % Count %.
1 146 40.1 155 42.3 159 43.7 173 47.5
2 53 14.6 55 15.1 54 14.8 66 18.1
3 153 42.0 140 38.5 130 35.7 110 30.2
4 12 3.3 14 3.8 21 5.8 15 4.1
5 20 28.2 22 31.0 22 31.0 31 43.7
6 51 71.8 49 69.0 49 69.0 40 56,3

Participant 2 Trial 1 Trial 2 Trial 3 Trial 4
Code Count % Count % Count % Count %.
1 158 43.4 167 49.5 180 49.5 189 51.9
2 59 16.2 69 19.0 71 19.5 76 20.9
3 145 39.8 115 31.2 101 38.3 95 26.1
4 2 0.5 13 3.6 12 3.3 4 1.1
5 22 31.0 25 35.2 28 39.4 33 46.5
6 49 69.9 46 64.8 43 60.6 38 53.5

Participant 3 Trial 1 Trial 2 Trial 3 Trial 4
Code Count % Count % Count % Count %.
1 140 38.5 153 42.0 158 43.4 171 47.0
2 55 15.1 50 13.7 55 15.1 70 19.2
3 159 43.7 145 39.8 133 36.5 110 30.2
4 10 2.7 16 4.4 18 4.9 13 3.6
5 26 36.6 26 36.6 30 42.3 35 49.3
$ 45 63.4 45 63.4 41 57.7 36 50,7

where code 1 -» correctly classified first choice, code 2 -> correctly classified second choice
code 3 -> incorrectly classified from lexicon, code 4 -> incorrectly rejected from lexicon
code 5 -» correctly rejected from rejection list, code 6 incorrectly classified from rejected list

Table 7.2. Results from Experiment / Capital Letters Included

129

7.2 Performance Evaluation

The results shown in Tables 7.1 and 7.2 describe the system performance during

the summer of 1994. The performance results are not impressive by today's OCR

standards. However, the performance is very near expectations. The initial intentions

were to demonstrate that the system could be trained to perform better and better. This is

ultimately what was shown in the experiment.

Compared to other projects of a similar nature, the requirements for this project

involved a high level of difficulty as the system attempted to recognize punctuation,

perform word segmentation for certain types of disconnected words, recognize capital

letters, and adapt to the individual handwriting style of each experiment participant. The

system was successful in each arena.

In the experiment where no capital letters and special word segmentation were

involved, the correct classification rate started between 55% and 65% for correct

classifications on the first or second choice. By the fourth attempt, the classification rate

improved to over 80% for all participants. Each participant had a correct recognition rate

of around 60% for the first choice in the fourth attempt. This is compared to between

44.5% and 50.5% in the first attempt.

In the part of the experiment where capital letters and special word segmentation

was involved, the correct classification rates were not as good. However, in each case the

classification rates improved in the later trials. The poor recognition rates for words in

this experiment were caused by the fact that capital letters are much more difficult to

130

recognize correctly as they involve much more detailed drawings. Also, the feature set

chosen including loops and the c, back-c, u, and hump shaped features were more

prevalent in lower case letters than in upper case letters. Using the methodology chosen

for this research, successful classification at high percentages recognizing upper case

cursive script will have to involve a richer set of features and a greater use of heuristics.

The system used only static heuristics in its attempt to recognize punctuation. It

did not attempt to learn to recognize punctuation. The success rate for recognition of

punctuation is given in Table 7.3. Recall that in the nine paragraphs that were written for

each experiment, there were 45 punctuation marks. However, each time the participants

had to write the same nine paragraphs twice, making 90 punctuation marks in all. In each

Participant 1 Trial 1 Trial 2 Trial 3 Trial 4.
Code % % % %.
1 73 78 71 72
2 23 18 24 22
3 4 4 5 6

Participant 2 Trial 1 Trial 2 Trial 3 Trial 4.
Code % % % %.

1 77 76 75 77
2 20 18 19 21
3 3 6 6 2

Participant 3 Trial 1 Trial 2 Trial 3 Trial 4.
Code % % % %.

1 80 80 83 84
2 18 16 14 12
3 2 4 3 4

where code 1 —» correctly classified punctuation, code 2 -»incorrectly classified punctuation
code 3 -> incorrectly rejected punctuation

Table 7.3. Punctuation Recognition Results

131

trial in Table 7.3, the percentages demonstrate correctness or incorrectness of the

recognition process for all 90 punctuation marks.

The success rates are fairly high especially for the one experiment participant who

took extra care when writing the punctuation. There was little or no improvement from

one trial to the next and the recognition rate was determined by how much care the

participant took when he/she wrote the punctuation.

CHAPTER VIII

CONCLUDING REMARKS

8.1 Overview

Major advances take place almost daily in the field of pattern recognition. These

advances will have far reaching effects on the world and society as the technology

improves. Pattern recognition of some form or another will be the foundation of

applications such as voice recognition, computer vision and object recognition, target

detection for military applications, optical character recognition, on-line handprinted text

recognition, and off-line cursive script recognition, among many others.

This research focused on the off-line cursive script recognition application. The

problem is very large and difficult and there is much room for improvement in every

aspect of the problem. Many different aspects of this problem were explored in pursuit of

solutions to create a more practical and usable off-line cursive script recognizer than is

currently available.

The scope of the project involved a complete solution to most aspects of the

problem. Preprocessing was refined via a new thinning algorithm and a new FI based

vectorization algorithm. Feature extraction was performed extracting features from the

singularity graph of the line drawing instead of the line drawing itself The feature graph

was set up to provide a very expressive, flexible, and efficient data structure so all existing

132

133

features of a singularity graph can be easily scanned and associated locally. A new

andpowerful FI based character extraction mechanism was created and studied. Character

extraction, word segmentation, and word classification were performed iteratively in light

of the context of the lexicon using split n-gram indices to assist in word classification and

search space reduction. The use of heuristics was formally employed and studied in the

recognition of punctuation. Also, an adaptable system was designed so that the system

could adapt to individual handwriting styles of experiment participants.

Another focus of this dissertation involved exploring how the pattern recognition

technology known as Finite Induction could be employed in pursuit of applications of this

nature. FI was a major contributor in two of the phases. FI technology was adapted for

use and successfully employed in the line segmentation process and in the character

extraction process. The major strong point of FI is that during FI following, the FI

residual, the local residual density, and rule fire count distance provide a usable measure of

closeness between the input source pattern and the pattern trained into the FI ruling with

which the FI following was performed.

8.2 Achievements

This research has demonstrated that some off-line cursive script recognition

applications are feasible within constraints. It employed a combination bottom-up and

top-down approach to the word segmentation and word classification problem as

character extraction was performed to assist in word segmentation and word classification;

and, then the context provided by the word segmentation and word classification process

134

assisted in an attempt to further extract characters. The experiment that was conducted

demonstrated that with reasonable training of the system and reasonable restrictions

placed upon the writer of the cursive script, successful hand written cursive script

recognition is feasible and usable systems are within reach.

The specific contributions made by this research include:

• The Border Reduction Thinning Algorithm; The skeletons produced by
the BRT thinning algorithm are very smooth and have very near the
same shape as the original. They retain the same connectivity and very
near the same end-points as the original. These skeletons are much
more appropriate for the application of hand-printed text and hand
written cursive script recognition than the other algorithms studied.

• The FI directed line segment approximation algorithm also referred to
as the vectorization algorithm. Via utilization of the FI technology, this
phase produces very high quality vectorized approximations of input
skeletons. The quality of the singularity graph is such that the
singularity graph may be used as the basis of the feature recognition
process instead of the skeleton itself.

• The modification of the standard FI mechanism to allow for its usage in
the vectorization algorithm. The input to the FI following was a
recursive descent traversal over the skeleton and the recognition
mechanism in the FI following is the local FI residual density instead of
the residual length or the residual itself.

• A feature trie structure was used to contain a dictionary of feature
descriptions. Use of this mechanism allowed easy and exhaustive
extraction of features contained in a singularity graph as long as the
feature was defined in the feature trie.

• The feature graph was created. The feature graph is an extremely
flexible and expressive data structure that allows all features present in
the singularity graph to be stored in such a manner that they can be
easily scanned and associated locally to assist in character extraction.

135

• The FI directed character extraction mechanism. The algorithm
examines the feature graph and at each feature, checks the entire FI
ruling base for possible candidate characters that might start at that
singularity.

• The modification of the standard FI mechanism to allow for its usage in
the character extraction algorithm. The input to the FI following is a
localized recursive descent traversal where the ruling itself predicts the
next input symbol in the situation where the current input is an
intersection singularity and there are two or more possibilities for the
next input symbol.

• The lexicon or context directed word segmentation and word
classification algorithm. The character extraction phase works together
with the word segmentation and word classification phase in an
iterative fashion where each phase provides information to the other
phases generally in the form of reduced search spaces. Anytime new
information is discovered, the search space in the lexicon is reduced
and only possibilities from this reduced search space are pursued.

• Split n-gram indices were used to assist in word classification. These
indices were used to assist in classifying words and reducing the search
space when making secondary attempts at character extraction.

• An adaptation mechanism which allows the recognizer to adapt to a
personal handwriting style. This feature was proven by experiment to
increase the correct classification and rejection of words as the training
progresses.

Each of the above mentioned contributions are important in their own right, but

just as important is the fact that each was implemented and a system now exists that

performs cursive script recognition. Experiments using the cursive script recognition

system showed that the cursive script application is feasible even though a very difficult

application. The system is undergoing revisions and testing and therefore improving on an

almost daily basis.

136

8 3 Future Work

The immediate future research efforts will involve the creation of an automated

learning facility for the character extraction phase. As it existed in the experiment, much

pains-taking manual intervention was required to enable the newly discovered singularity

graphs for the characters to be inserted into the FI ruling base as new FI rulings. An

implementation of an automated learning facility is nearing completion.

An interactive Microsoft Windows™ based user interface for the system is also

near completion. It will work together with the automated learning facility which also

employs a similar windows based user interface.

Other improvements will involve:

• re-implementing the system on a more powerful computer to increase
system performance;

• creating a variant of this system designed to recognize hand printed
connected or disconnected text;

• refining the feature set to be of greater use during recognition of capital
letters;

• increasing the size of the lexicon to a size that would be of interest to
commercial applications;

• setting up a heuristics base or heuristics implementation methodology
which will allow heuristics to play a greater role in the recognition process;

• using greater amounts of context to assist in word classification including
grammatical context, positional context, and understanding the fact that
different boxes on a form containing script might each require different
lexicons for context;

• experiment with more general word segmentation to allow more generally
disconnected script;

137

The impact that a high-quality off-line cursive script recognizer would have in

various industries and applications might be very large. Research is ongoing and system

performance and capabilities are improving almost daily. The goal is to soon have a

product which is usable in real world applications.

APPENDIX

AN INTRODUCTION TO FINITE INDUCTIVE SEQUENCES (FI)

138

APPENDIX

AN INTRODUCTION TO FINITE INDUCTIVE SEQUENCES (FI)

A. 1. Detailed Introduction

This section introduces the concepts associated with Finite Inductive Sequence

Processing (FI) and explains the associated terminology and the capabilities. The FI

process is a mathematical technique for dealing with large amounts of data which represent

objects of interest. In comparison to the present techniques of processing data, statistical

techniques tend to utilize too little of the data, while typical mathematical techniques tend to

deal with too much of the data. FI is a technique which is a compromise between these two

approaches. The FI premise is that the occurrence of a symbol in some data stream such as

a pixel in an image is dependent upon some number of previous symbols (similar to a

Markov Process), potentially, a very large number of such symbols. Because this number

can be very large, FI provides a mechanism for reducing this number of antecedent

symbols to an a priori number of symbols which can be very small, say four or five

symbols. The advantage of this technique will be shown later in this section, but the

impact is a considerable reduction in data storage requirements for the database of specific

patterns of interest. Using this capability, FI also provides a very powerful technique for

recognition of patterns of particular interest.

Not all representations or sequences of symbols are reducible in the FI sense.

Random sequences of symbols or sequences of symbols that have very little differentiation

between symbols are examples of nonreducible sequences or sequences whose reducibility

is not of interest. For the most part, representations of all real objects are reducible in the

FI sense. This reducibility is highly desirable because it allows automatic discarding of

139

140

data that is superfluous, or data that makes no contribution in the understanding

(representation) of a pattern of interest. FI provides an automatic technique to organize data

in a format which is immediately useful for recognition.

The first concept important in the area of image recognition is to reduce the image or

pattern to some representation which encapsulates the features of interest, preserves the

geometry of the image, and provides a format which is suitable for easy manipulation. To

illustrate this, consider a square as the image of interest. The following three alphabets

encapsulate certain features of the square.

ALPHABET 1: Topological alphabet consisting of the number of intersections between the
object and ten horizontal and ten vertical lines. The values for the object would then be:

1 2 2 2 2 2 2 2 2 2 1; 1 2 2 2 2 2 2 2 2 2 1
Note: if the box is larger than 9 pixels on a side, and if the first and last line fell on

a box boundary, then the representation of the box is as given.

ALPHABET 2: Geometric representation would consist of the number of angles, the size
of the angle, their arrangement, and the order and type of the sides. The values for this
type of alphabet would be:

1 1 0 2 1 0 3 1 0 4 1 0
Note: for this alphabet, the 1, 2, 3, 4 indicate a right angle in the first quadrant, in

the second quadrant, etc. The 1 0's indicate the length of the ray beginning
from that angle and going to the next angle.

ALPHABET 3: Edge following representation would provide output from the follower as
it moves around the edge. Such an alphabet would be:

1 1 1 1 1 1 1 1 1 1 7 7 7 7 7 7 7 7 7 7 5 5 5 5 5 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3
Note: here the symbols represent the direction of travel for the edge follower.

There are eight directions that a 3x3 edge follower can move. The
directions are 0° = 1, 45° = 2, 90° = 3, 135° = 4, 180° = 5, 225° = 6, 270°
= 7, and 315° = 8.

The most difficult aspect of recognition using FI is the selection of the alphabet. As

the above alphabets have shown, the two-dimensional image was represented as a one-

dimensional string of symbols, and in the first alphabet, the representation could fit several

distinct shapes. FI does not address the alphabetic representation, but the representation

selected can be two-dimensional components such as small arrays, multiple strings; that is,

141

input streams coming simultaneously from more than one source or any other selected

arrangement. The process of pattern recognition after representation can then be

summarized as shown by Figure A.l. In this figure, the unknown image (a rectangle of a

certain size) is to be matched with the correct object in the space of known objects.

OBJECT

UNKNOWN

OBJECT
SPACE

KNOWN

OBJECT
TO BE
FOUND

Figure A.l.
Process of Recognition: Mapping from Unknown to Known

The FI system provides the following capabilities:

• a method for representing the known objects in a concise form;
• a method for identifying the rank order of best matches from the space of

possibilities;
• a recognition speed 0(n) where n is the number of symbols representing the

input object and not the size of the known object space;
• a concise pair of algorithms making up FI where the implementation in C

requires 500 lines of code for both algorithms;
• a technique that is easily executed on a PC, even for complex patterns.

The FI process together with the creation of an alphabetic representation is shown in Figure

A.2.

142

FOR
KNOWN
OBJECTS

FOR
UNKNOWN
OBJECTS

CREATE
FACTORING

h - BUILD
ALPHABET \ RULING

1 r

UTILIZE PROCESS REMAINING
ALPHABET W* UNKNOWN * *RESIDUAL

FOLLOWING

Figure A.2.
FI Process Representation

The important features shown in Figure A.2 are the two algorithms, FACTORING

and FOLLOWING and their relationship. Associated with these two algorithms are two

data structures: RULING and RESIDUAL. The RULING results from the application of

FACTORING to the input strings representing the known patterns. The RESIDUAL

results when the algorithm FOLLOWING is applied to the string representing the unknown

patterns using the RULING. Figure A.3 portrays this second process of FOLLOWING

applied to an unknown pattern, then creating a RESIDUAL.

143

RULING

• • • • • •
INPUT SYMBOLS

•

•
•

•
•

REMAJNING SYMBOLS
or RESIDUAL

•

Figure A.3.
FOLLOWING Applied to Input String

to Produce a RESIDUAL Using a RULING

Figure A.3 portrays the relationship between the input string and the output or

RESIDUAL. If the RESIDUAL and the input string are identical, then the RULING

contains no knowledge of the patterns represented by the input string. If the RESIDUAL is

empty, then the RULING contains a representation of the pattern represented by the input

string. In Figure A.3, there is a relation between the input string and the RESIDUAL, as

the RESIDUAL is a subset of the input string. A measure of closeness between the input

string and the information contained in the RULING is the number of symbols contained in

the RESIDUAL under two conditions: first, the RULING only contains data from one

object; or second, if the RULING contains data from more than one object, the data which

makes that object unique from all of the other objects is identifiable in the RULING.

144

A.2 The FI Definition

With the introduction given in Section A.l, we now provide a somewhat more

formal definition of FI. Only one of the requisite theorems is stated, and the proof is not

included.

Def—Let A be a finite set of symbols called the alphabet and let S be a sequence (called a
string) of these symbols which may be finite or infinite. The sequence S is Finitely
Inductive (FI) if the choice of a letter at any particular position depends (immediately) only
upon the choices of letters at the previous n positions. The least such n is called the
inductive base of the sequence S.

Def—Let S be an FI sequence, and let the pair (w,p) consist of a word w over the alphabet
A and the letter p be in the alphabet such that (i) w occurs at least once as a substring
(subsequence of contiguous entries) of the sequence; and (ii) wherever w occurs as a
substring there is a succeeding entry and it is p.

Note: The pair (w,p) is normally written w —> p and is called an implicant; w is called
the antecedent, and p is called the consequent.

Def—An implicant is in reduced form if its antecedent contains no proper terminal segment
that is an antecedent of another implicant of the sequence.

These definitions are immediately generalizable to families of sequences. The pair

(w,p) is an implicant of the family if its antecedent occurs at least once as a substring of one

of the sequences. Whenever w occurs as a substring of one of the sequences, the

following symbol will be p.

The following observations can be easily noted:

• Any finite sequence is FI;
• For any finitely inductive sequence, the inductive base is the maximal length of the

antecedents in its reduced form implicants;
• Any periodic FI sequence has a period less than or equal to kn, where k is the

number of letters in the alphabet and n is the inductive base;
• If an FI sequence has inductive base n and an alphabet of k letters, then kn is an

upper bound for the number of its reduced form implicants.

Def—A table of implicants is a finite table of pairs of the form w —> p where w is a word
over a given alphabet and p is a letter in the same alphabet.

145

A table of implicants satisfies the following conditions: (i) no antecedent of one

entry in the table is a terminal segment of the antecedent of any other entry in the table; (ii)

without losing generality we can suppose that every sequence has a special symbol called

the start symbol, then the only way the start symbol may occur in the table is as the first

symbol in an antecedent. The inductive base for such a table is the maximal length of the

antecedents.

Def—Given an FT sequence S, there is a finite sequence of tables of implicants Tj called a
RULING; such that for each i from 1 to L, Tj is called the table of implicants for level i.

In order to motivate understanding, an example of an FI sequence and the

associated RULING is shown. The example will show how the sequence of tables

(RULING) is constructed. The process of obtaining this RULING is called

FACTORING, and this is the first of the two FI algorithms. The inductive base for the

string shown in the example is four (as known from processing this example), and it will

be reduced to two without the loss of data.

EXAMPLE: The alphabet will be the symbols A, B, C, D, and the string will be
infinitely periodic to the right, each period being separated from the next by a colon
(:)•

AABABCABCD:AABABCABCD:...

Step 1 — Form table Ti of the RULING from all Implicants whose Antecedents
are two or less symbols (this can be any value, but since the inductive base of the
string is four, a value less than four will produce a series of tables). Place all
Consequents of nonselected Implicants in a new string called the RESIDUAL for
the level 1 table Ti, preserving their relative order.
Level 1: D -> A; DA -> A; AA -> B; BA -> B; CA -> B
Residual: A CA CD:A CA CD:...

Step 2 — Apply the factoring strategy to the Residual of the previous level. Form a
new table T2 of Implicants and select from those all that meet the Antecedent length
criteria (two or less). Form a RESIDUAL. If the RESIDUAL is empty or the
factoring process terminates due to the inability to formulate new Implicants, end
the process.

From the RESIDUAL string above we get:
D -> A; DAC -> A; A -> C; CAC -> D

146

Selecting those which meet the length criteria we have:

Level 2: D -> A; A -> C
Residual: A D : A D:...

Step 3 — Repeat step 2 except form the table T3:

Implicants: D -> A; A -> D
Level 3: D -> A; A -> D
Residual: None

Example Ruling Tables

LEVEL 1 LEVEL 2 LEVEL 3
D -> AD -> A D -> A
DA -> A A -> C A -> D
AA -> B
BA -> B
CA -> B

From the example there are several considerations that should be noted:

• The individual tables are combined into the RULING, and are indicated as levels in
the RULING;

• The results of FACTORING any finite string will yield one of many RULINGs
depending upon the inductive base chosen, and the method that is selected for
forming the RESIDUAL (that is for 'pushing out' the symbols that will be removed
in the next level);

• The RESIDUAL is empty after FACTORING every FI string, but when
FACTORING a family of FI strings the process will terminate with a non-empty
RESIDUAL associated with each string in the family;

• The inductive base for the example is 2-1-1, or simply 2.

We now present a theorem and one observation dealing with FI sequences. We

have noted that every finite sequence is FI; that is, it is reducible to a collection of

implicants. Not every finite sequence has a RULING consisting of a sequence of tables.

For example, sequences which are pseudo-random have implicants whose antecedent

lengths are all equal. This brings us to the observation:
Observation. If S is a sequence, finite or infinite, and the implicants of S do not have
uniform antecedent length, then using the FACTORING technique, there is an associated
RULING representing the sequence S, such that the inductive base of the RULING is
uniformly less than a fixed a priori value for each table in the RULING.

147

Def—An autonomous RULING is a RULING which generates a sequence using a
particular starting symbol of length 1.

Theorem. The inductive base of the sequence generated by an autonomous RULING is
exponentially longer than the inductive base of each level of the RULING in the following
sense: if the alphabet has k letters, the inductive base of all levels is bounded by b and the
number of levels is L, then the inductive base of the generated sequence is potentially as
long as

The implication of the observation and theorem is in representing sequences derived

from such things as images, there is a significant possibility for reduction in storage

associated with the objects that are represented by the RULING resulting from the

FACTORING process. If the number of implicants for a finite string are 0(m) where the

length of the string is m, then using implicants of four or five symbols is far more concise

than using implicants of arbitrary order. This can be seen from the example. The original

sequence consisted of ten symbols and the resulting RULING consists of nine implicants

whose antecedent length is one or two. The original implicant length included several with

lengths of four symbols.

The process of FOLLOWING utilizes the RULING(s) developed by the

FACTORING algorithm. Essentially, the FOLLOWING process is one of applying the

implicants in each level of the RULING to the incoming, unknown string and when a

match is found between the antecedent in the RULING and a substring in the input string,

then the consequent in the input string can be deleted. If each level proceeds in a sequential

manner (this can be pipelined for speed), then the remaining symbols form the

RESIDUAL. This RESIDUAL can then be used in the pattern recognition task. For

example, suppose that there are several RULINGs and the unknown string is processed by

each RULING. The RULING producing the smallest (in length) RESIDUAL will be the

best representation of the unknown entity.

148

There are several types of FOLLOWING, and these are called BLIND, EXACT,

and REPLACEMENT FOLLOWING. In BLIND FOLLOWING, the antecedents need

only match and the consequent is deleted whether it matches or not. In EXACT

FOLLOWING, the antecedents and the consequent must match before deletion can occur.

In REPLACEMENT FOLLOWING, if the consequents do not match, then the input string

consequent is converted to the consequent of the RULING consequent. This prevents the

perturbation of a symbol propagating through the deletion process.

If a RULING is to contain more than a single object, then Figure A.4 depicts a

technique that can be used for recognition. Figure A.4 shows a RULING containing three

objects. The number four is for illustration purposes only, and in general the number

would be far larger.

LEVEL 1

LEVEL K

LEVEL K+1

LEVEL N

AREA 2 AREA

AREA 1

AC->C

A A >£>

KEY

AREA 1

AREA 2

AREA 3

AREA 1 & 2

AREA 2 & 3

AREA 1

& 3

& 2

Figure A.4.
RULING Containing Implicants from Three Objects

149

If the KEY shown in Figure A.4 was a collection of counters instead of area

indicators, and the utilization of any implicant matched during the FOLLOWING process

would cause the appropriate counter to be incremented, then at the end of the

FOLLOWING, the highest counters would indicate the appropriate match between the

unknown and known objects. In reality, the use of the overlapped areas of the implicants

could be discarded; however, it is possible that these counters could indicate a measure of

strength between objects recognized. The implicants found in each area would have

commonalties; that is, an implicant may belong to more than one known object. By adding

an indicator to the implicant to denote the appropriate counter to increment, the counts can

be obtained directly during the FOLLOWING process.

In considering the FOLLOWING process, we note that the performance time for

FOLLOWING only depends upon the length of the incoming, unknown string and not

upon the complexity of the RULING or the number of implicants contained in the

RULING.

REFERENCES

Aizawa, K. and Nakamura, K., "Path Controlled Graph Grammars for Syntactic Pattern
Recognition," in Parallel Image Analysis and Processing, Eds. K. Inoue, A.
Nakamura, M. Nivat, A. Saoudi, and P. S. P. Wang, World Scientific, 1994. pp.
71-86.

Andrews, D. "PDA Companies: We've Only Just Begun," Byte Magazine, 19, 5, May
1994, pg. 34.

Aoki, K. and Yamaya, Y., "Recognizer With Learning Mechanism for Hand-written
Script English Words," Proceedings of the 8th Int. Conf. Patt. Rec., Paris, 1986,
pp. 690-692.

Aoki, K. and Yoshino, K., "Recognizer for Handwritten Script Words Using Syntactic
Method," in Computer Recognition and Human Production of Handwriting , R.
Plamondon, Suen, C. Y., and Simner, M. L. (eds.), World Scientific, 1989, pp. 5-
18.

Arcelli, C. "Pattern thinning by Contour Tracing," Computer Graphics and Image
Processing, 17, 1981, pp. 130-144.

Arcelli, C. and Sanniti di Baja, G., "A Width Independent Fast Thinning Algorithm,"
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-7, 4,
July, 1985, pp. 463-474.

Badie, K. and Siimura, M., "Machine Recognition of Roman Cursive Script," in
Proceedings of the Sixth International Conference on Pattern Recognition,
Munich, F. R. G., 1982, pp. 28-30

Baptista, G. and Kulkarni, K., "A High Accuracy Algorithm for Recognition of
Handwritten Numerals," Pattern Recognition, 21, 4, 1988, pp. 287-291.

Baran, N., "Rough Gems: First Pen Systems Show Promise, Lack Refinement," Byte
Magazine, 17, 4, 1992, pp. 212-222.

Barr, A. and Feigenbaum, E. (Eds.), The Handbook of Artificial Intelligence, Vol 1,
Kaufmann, Los Altos, CA., 1981.

150

151

Cash, G. and Hatamian, M., "Optical Character Recognition by the Method of
Moments," Computer Vision Graphics Image Processing, 39, 1987, pp. 291-310

Chanda, B., Chaudhuri, B. B., and Dutta Mayumder, D., "Some Modified Algorithms for
Graylevel Threshholding," International Conference on Pattern Recognition,
1986, pp. 884-986.

Chen, C. "A Survey of Thinning Algorithms", Master's Project, Sam Houston State
University, Huntsville, TX, 1993.

Chen, M., Hsu, W., and Cheng, F., "An Application of the Hough Transform to the
Recognition of Handwritten Chinese Characters," Proc. Int'l Computer
Symposium, Taiwan, Dec., 1986, pp. 719-727.

Cheng, F., and Hsu, W., "Research on Chinese OCR in Taiwan," in Character and
Handwriting Recognition, Expanding Frontiers, Ed. P. S. P. Wang, World
Scientific, 1991, pp. 139-164.

Clark, L. and Velten, V., "Image Characterization for Automatic Target Recognition
Algorithm Evaluations," Optical Engineering, 30, 2, February 1991, pp. 147-153.

Cohen, E., Hull, J., Srihari, S., "Understanding Handwritten Text in a Structured
Environment: Determining Zip Codes From Addresses," in Character and
Handwriting Recognition, Expanding Frontiers, Ed. P. S. P. Wang, World
Scientific, 1991, pp. 221-261.

Crawford, Walt, "Catching Pictures, Catching Words: Low-Cost Scanning and Optical
Character Recognition," Library HI TECH, 9, 1, Jan. 1991, pp. 91-112.

Deutsch, W. S., "Thinning Algorithms on Rectangular, Hexagonal, and Triangular
Arrays," CACM, 15(9), 1972, pp. 827-837.

Denier Van Der Gon, J. and Thuring, J. "The Guiding of Human Writing Movements,"
Biological Cybernetics, 2, 1965, pp. 145-148.

Denier Van Der Gon, J., Thuring, J. and Strackee, J., "A Handwriting Simulator," Phys.
Med. Biol, 6, 1962, pp. 406-414.

Dooijes, E., "Analysis of Handwriting Movements," Acta Informatica, 54, 1983, pp. 99-
114.

152

Downton, A., Tregidgo, R. and Kabir, E., "Recognition and Verification of Handwritten
and Hand-Printed British Postal Addresses," in Character and Handwriting
Recognition, Expanding Frontiers, Ed. P. S. P. Wang, World Scientific, 1991, pp.
265-291.

Dutta, A., "An Experimental Procedure for Handwritten Character Recognition," IEEE
Transactions on Computing, 23, 1974, pp. 536-545.

Earnest, L., "Machine Recognition of Cursive Writing," Information Processing:
Proceedings of the IFIP Congress '62, 1962, pp. 462-465.

Eden, M., "On the formalization of Handwriting," in Proceedings Symposiom on Applied
Mathematics, 12, 1961, pp. 83-88.

Ehrich, R. and Koehler, K., "Experiments in the Contextual Recognition of Cursive
Script," IEEE Trans. Comput., 2 (2), 1975, pp. 182-194.

Farag, R., "Word Level Recognition of Cursive Script," IEEE Transactions on
Computers, 28 (2), 1979, pp. 172-175.

Favita, J. and Srihari, S. N., "Recognition of Cursive Words for Address
Reading,"Fourth Advanced Technology Conference, Washington, D. C., Nov
1990.

Fisher, P. S. and Case, J. H., "Long-Term Memory Modules," Bulletin of Mathematical
Biology, 46, 2, 1984, pp. 295-326.

Fletcher, L. A., and Kasturi, R., "A Robust Algorithm for Text String Separation from
Mixed Text/Graphics Images," IEEE Transactions on Pattern Anal, and Machine
Intelligence 10, 6, 1988, pp. 910-918.

Ford, D. and Higgins, C., "A Tree-Based Dictionary Search Technique and Comparison
with N-Gram Letter Graph Reduction," in Computer Processing of Handwriting,
Eds. R. Plamondon and C. G. Leedham, World Scientific, 1990, pp.291-312.

Forney, G., "The Viterbi Algorithm," Proceedings of the IEEE, 61, 3, 1973, pp. 268-
278.

Forsyth, R. and Rada, R., MACHINE LEARNING Applications in Expert Systems and
Information Retrieval, Ellis Horwood Limited Pub., 1986.

Frishkopf, L. and Harmon, L., "Machine Reading of Cursive Script," in Information
Theory, Ed. C. Cherry, Butterworth Pub., London, 1961.

153

Fu, K., "Tree Languages and Syntactic Pattern Recognition," in Pattern Recognition and
Artificial Intelligence, ed. C. Chen, Academic Press, 1976.

Guyon, I., Albrecht, P., Le Cun, Y., Denker, J. and Hubbard, W., "Design of a Neural
Network Character Recognizer for a Touch Terminal," Pattern Recog., 24, 2,
1991.

Guyon, I., Poujaud, I., Personnaz, L., Dreyfiil, G. Dender, J. and Le Cun, Y., "Comparing
Different Neural Network Architectures for Classifying Handwritten Digits,"
Proceedings Int'l Joint Conf. on Neural Networks, Volume 11, Washington DC,
1989, IEEE, pp. 127-132.

Frishkopf, L. and Harmon, L., "Machine Reading of Cursive Script," Information
Theory, C. Cherry (ed.) Butterworth, London, 1961.

Granlund, G., "Fourier Preprocessing for Hand Print Character Recognition," IEEE
Transactions on Computing, 21, 1972, pp. 195-201.

Haralick, R. M., "Statistical and Structural Approaches to Texture," Proc. of the 4th
International Joint Conference on Pattern Recognition, Kyoto, 1978, pp. 45-69.

Hayes, K., "Reading Handwritten Words Using Hierarchical Relaxation," Computer
Graphics and Image Processing, 14, 1980, pp. 344-364.

Higgins, C., "Automatic Recognition of Handwritten Script," Ph. D. Thesis, CNAA,
1985.

Higgins, C. and Duckworth, R., "The PAD (Pen and Display) - A Demonstrator for the
Electronic Paper Project," in Computer Processing of Handwriting, Eds. R.
Plamondon and C. G. Leedham, World Scientific, 1990, pp. 111-131

Higgins, C., and Whitrow, R., "On-line Cursive Script Recognition," First IFIP
Conference on Human-Computer Interaction, INTERACT 84, London, 1985,
pp. 139-143.

Hilditch, C., "Linear Skeletons from Square Cupboards," Machine Intelligence IV, Eds.
B. Meltzer and D. Mitchie, Elsevier, New York, 1969, pp. 403-420.

Holt, A., "Algorithm for a Low-Cost Hand Print Reader," Computer Design, Feb, 1974,
pp. 85-89.

154

Horowitz, E. and Sahni, S., "Fundamentals of Data Structures," Computer Science Press,
Rockville, MD, 1983, pp. 51-62.

Horowitz, S. L. and Pavlidis, T., "Picture Segmentation by a Directed Split-and-Merge
Procedure," Proc. of the 2nd International Joint Conference on Pattern
Recognition, Copenhagen, 1974, pp. 424-433.

Huang, J. and Huang, P., "Machine Printed Chinese Character Recognition based on
Linear Regression," in Character and Handwriting Recognition, Expanding
Frontiers, Ed. P. S. P. Wang, World Scientific, 1991, pp. 165-173.

Hull, J. and Srihari, S., "Experiments in Text Recognition with Binary n-Gram and Viterbi
Algorithms," IEEE Trans, on Pattern Analysis and Machine Intelligence, 4, 5,
1982, pp. 520-530.

Hung, S. and Kasvand, T., "Critical Points on a Perfectly 8- or Perfectly 6- Connected
Thin Binary Line," Pattern Recognition, 16, 1983, pp. 297-306.

Inoue, K. and Takanami, I., "A Survey of Two-Dimensional Automata Theory," Inform.
Sci.,55, 1991, pp. 99-121.

Inoue, K. and Takanami, I., "Characterization of Recognizable Picture Languages," in
Parallel Image Analysis and Processing, Eds. K. Inoue, A. Nakamura, M. Nivat,
A. Saoudi, and P. S. P. Wang, World Scientific, 1994. pp. 87-94.

Impedovo, S., Ottaviano, L., and Occhinegro, S, "Optical Character Recognition—A
Survey," in Character and Handwriting Recognition, Expanding Frontiers, Ed. P.
S. P. Wang, World Scientific, 1991, pp. 1-24.

Iwata, K., Yoshida, M., and Tokunaga, Y., "High-Speed OCR for Handprinted
Characters," Proc. 4th Int'l Conf. on Pattern Recognition, Nov., 1978, pp. 826-
828.

Jagadish, H. V. and O'Gorman, L., "An Object Model for Image Recognition,"
Computer, 22, 12, December 1989, pp. 33-41.

Jimenez, J., and Navalon, J., "Some Experiments in Image Vectorization," IBM Journal
of Research and Development, 26, 1982, pp. 724-734.

Kahan, S., Pavlidis, T., and Baird, H. S., "On the recogntion of hand printed characters of
any font and size," IEEE Trans. Pattern Anal. Machine Intelligence 9,2 1987 pp.
274-288.

155

Karbacher, S., "Associative Object Recognition by Hierarchic Template Matching,"
Optical Engineering, 29, 12, December 1990, pp. 1449-1457.

Kadirkamanathan M. and Rayner P., "A Scale-Space Filtering Approach to Stroke
Segmentation of Cursive Script," in Computer Processing of Handwriting, Eds.
R. Plamondon and C. G. Leedham, World Scientific, 1990, pp. 133-166

Knoll, A., "Experiments with Characteristic Loci for Recognition of Hand Printed
Characters," IEEE Trans, on Computing, 18, Apr, 1969, pp. 366-372.

Knuth, D. "Sorting and Searching, The Art of Computer Programming," 3 Addison-
Wesley, 1973, pp. 481-487.

Kondo, S., "On Determining Distinctive Features of Handprinted Characters using
Statistical Techniques," in Computer Processing of Handwriting, Eds. R.
Plamondon and C. G. Leedham, World Scientific, 1990, pp. 207-219.

Krzyzak, A., Leung, S. and Suen, C., "Reconstruction of Two-Dimensional Patterns by
Fourier Descriptors," Machine Vision and Applications, Springer-Verlag, New
York, Inc., 1989, pp. 123-140.

Kwok, P., "A Thinning Algorithm by Contour Generation," Communications of the
ACM, 31, 11, 1988, pp. 1314-1324.

Kwon, S. and Lai, D., "Recognition Experiments with Hand Printed Numerals," Proc.
Joint Workshop on Pattern Recognition and Artificial Intell., June, 1976, pp. 74-
83.

Kyung, H. A., "Concurrent Pattern Recognition and Optical Character Recognition," Ph.
D. Dissertation, University of North Texas, Denton, TX, 1991.

Lam, L. and Suen, C., "Structural Classification and Relaxation Matching of Totally
Unconstrained Handwritten Zip Code Numbers," Pattern Recognition, 21, 1988,
pp. 19-31.

Lam, L., Lee, S. and Suen C., "Thinning Methodologies—A Comprehensive Survey,"
IEEE Trans, on Pattern Anal. Mach. Intell., 14, 9, 1992, pp. 869-885.

Le Cun, Y., Jackel, L., Boser, B. Denker, S. Graf, H. Guyon, I. Handerson, D., Howard,
R. and Hubbard, W., "Handwritten digit recognition: Application of Neural
Network Chips and Automatic Learning," IEEE Communication Magazine, Nov.,
1989, pp. 41-46.

156

Lee, S., Lam, L. and Suen, C., "A Systematic Evaluation of Skeletonization Algorithms,"
in Thinning Methodologies for Pattern Recognition, Eds. C. Suen and P. Wang,
World Scientific, 1994, pp. 239-261.

Liu, C., Herbst, N. and Anthony, N., "Automatic Signature Verification: System
Description and Field Results," IEEE Trans, on Syst., Man, and Cybernetics 9, 1
1979, pp. 35-38.

Lowerre, B. and Reddy, R., "The HARPY Speech Understanding System," in Trends in
Speech Recognition, ed. W. Lea, 1980, pp. 340-360.

Mermelstein, P. and Eden, M., "Experiments on Computer Recognition of connected
handwritten words," Inf. Control, 7, 1964, pp. 255-270.

Morasso, P. and Mussa Ivaldi, F., "Trajectory Formation and Handwriting: A
Computational Model," Biol. Cybernetics, 45, 1982, pp. 131-149.

Naccache, N. and Shinghal, R., "SPTA: A Proposed Algorithm for Thiining Binary
Patterns," IEEE Transactions on Systems, Man, and Cybernetics, SMC-14, 3,
May 1984, pp. 409-418.

Nagy, G. and Tuong, N., "Normalization Techniques for Handprinted Numerals,"
CACM, 13, Aug., 1970, pp. 475-481.

Netvia, R., "Image Segmentation," in Handbook of Pattern Recognition and Image
Processing, Academic Press, Inc., 1986, pp. 215-231.

Neuhoff, D., "The Viterbi Algorithm as an Aid in Text Recogition," IEEE Trans, on
Information Theory, March 1975, pp. 222-226.

Nishida, H. and Mori, S., "Structural Analysis and Description of Curves by Quasi-
Topological Features and Singular Points," in Structural Document Image
Analysis, Eds. H. S. Baird, H. Bunke, andK. Yamamoto, Springer-Verlag, 1992.

O'Gorman, F. and Clowes, M. B., "Finding Picture Edge through Collinearity of Feature
Points," IEEE Transactions on Computers 25, 1976, pp. 449-456.

Oulhadj, H., Petit, E., Lemoine, J., and Gaudaire, M., "A Prediction-Verification Strategy
for Automatic Recognition of Cursive Handwriting," in Computer Processing of
Handwriting, Eds. R. Plamondon and C. G. Leedham, World Scientific, 1990, pp.
187-206.

157

Parisse, C., Rosenthal, V., Imagache, A., Andreewsky, E. and Cochu, F., "A Task
Oriented Approach to Reading and to Handwritten Text Recognition," in
Computer Processing of Handwriting, Eds. R. Plamondon and C. G. Leedham,
World Scientific, 1990, pp. 313-335.

Parks, J., Bell, D., Watson, R., Cowin, G., and Olding, S., "An Articulate Recognition
Procedure Applied to Handprinted Numerals," Proc. 2nd Int'l Joint Conference
Pattern Recognition, Aug., 1974, pp. 416-420.

Pavlidis, T., Algorithms for Computer Graphics and Image Processing, Computer
Science Press, 1982, pp. 195-214.

Pavlidis, T., "A Hybrid Vectorization Algorithm," Proc. 7th Int'l Conference on Pattern
Recognition, Montreal, 1984, pp. 490-492.

Pavlidis, T., "A Vectorizer and Feature Recognizer for Document Recognition,"
Computer Vision Graphics Image Processing, 35, 1986, pp. 111-127.

Peleg, A., "Ambiguity Reduction in Handwriting with Ambiguous Segmentation and
Uncertain Interpretation," Computer Graphics and Image Processing, 10, 1979,
pp. 235-245.

Persoon, E. and Fu, K., "Shape Descrption using Fourier Descriptors," IEEE Trans. Syst.
Man Cybern., 7, 1977, pp. 170-179.

Plamondon, R. "Handwriting Model Based on Differential Geometry," in Computer
Recognition and Human Production of Handwriting, R. Plamondon, Suen, C. Y.,
and Simner, M. L. (eds.), World Scientific, 1989, pp. 179-192.

Plamondon, R. and Lamarche, F., "Modelization of Handwriting: A System Approach,"
in Graphonomics: Contemporary Research in Handwriting, eds. Kao, Van Galen,
Hoosain, Elsevier Science Publishers B. V., Amsterdam 1986, pp. 169-183.

Plamondon, R. and Lorette, G., "Automatic Signature Verification and Identification:
The State of the Art," Pattern Recognition, 22, 2, 1989, pp. 107-131.

Plamondon, R., Suen, C., Bourdeau, M. and Barriere, C., "Methodologies for Evaluating
Thinning Algorithms for Character Recognition," in Thinning Methodologies for
Pattern Recognition, Eds. C. Suen and P. Wang, World Scientific, 1994, pp. 283-
306.

Ramer, U., "An Iterative Procedure for the Approximation of Plane Curves," Computer
Graphics and Image Processing, 1, 1972, pp. 244-256.

158

Reinhardt, A., "Motorola's Envoy First to Run Magic Cap," Byte Magazine, 19, 5, May
1994, pg. 34.

Rich, E., Artificial Intelligence, McGraw-Hill, Inc., New York, NY 1983.

Rimmer, Steve, Bit Mapped Graphics, Windcrest/McGraw Hill Publishing, Blue Ridge
Summit, PA, 1990.

Riseman, E. and Ehrich, R., "Contextual Word Recognition Using Binary Digrams,"
IEEE Trans, on Computers, 20, 4, April 1971, pp. 397-403.

Riseman, E. and Hanson, A., "A Contextual Post-processing System for Error Correction
Using Binary N-grams", IEEE Transactions on Computers, 23, 5, 1974, pp. 480-
493.

Rosenfeld, A., "Picture Languages (Formal Methods for Picture Recognition),"
Academic Press, New York, 1979.

Rosenfeld, A. and Davis, L. "A Note on Thinning," IEEE Transactions on Systems, Man,
and Cybernetics, SMC-6, March 1976, pp. 226-228.

Rosenfeld, A. and Thurston, M. ""Edge and Curve Detection for Visual Scene Analysis,"
IEEE Transactions on Computers 20, 1971, pp. 562-569.

Sadjadi, F. and Bazakos, M. "A Perspective on Automatic Target Recognition Evaluation
Technology," Optical Engineering, 30, 2, Feb. 1991, pp. 141-146.

Sayer, K., "Machine Recognition of Handwritten Words," Pattern Recogn., 5 (3), 1973,
pp. 213-228.

Sato, Y. and Kogure, K., "On-line Signature Verification based on Shape, Motion, and
Writing Pressure," Proc. of the Sixth Int 7 Conference on Pattern Recognition,
Munich, Oct. 1982, pp. 823-826.

Schomaker, L., Thomassen, A., and Teulings, H., "Computation Model of Cursive
Handwriting," in Computer Recognition and Human Production of Handwriting,
R. Plamondon, Suen, C. Y., and Simner, M. L. (eds.), World Scientific, 1989, pp.
153-177.

Shaw, A., "Picture Graphs, Grammars, and Parsing," in Frontiers of Pattern
Recognition, ed. S. Watanabe, Academic Press, 1972.

159

Shimura, M., "Multicategory Learning Classifiers for Character Reading," IEEE Trans.
Syst. Man, Cybern., 3, Jan., 1973, pp. 74-85.

Simon, J. and Baret, 0., "Regularities and Singularities in Line Pictures", in Character
and Handwriting Recognition, Expanding Frontiers, Ed. P. S. P. Wang, World
Scientific, 1991, pp. 57-77.

Slansky, J. and Gonzales, V., "Fast Polygonal Approximation of Digitized Curves,"
Pattern Recognition, 12, 1981, pp. 327-331.

Smith, R., "Computer Processing of Line Images—A Survey," Pattern Recognition, 20,
1987, pp. 7-15.

Spanjersberg, A., "Combinations of Different Systems for he Recognition of Handwritten
Digits," Proc. 2nd Int'l Joint Conf. on Pattern Recog. and Artificial Intell., Aug,
1974, pp. 208-209.

Srihari, S. N. and Bozinovic, R. M., "A Multi-Level Perception Approach to Reading
Cursive Script," Artificial Intelligence, 33, 1987, pp. 217-255.

Srihari, S., Hull, J., and Choudary, R. "Integrating Diverse Knowledge Sources in Text
Recognition," ACM Transactions on Office Information Systems, 1, 1, 1983, pp.
68-87.

Shinghal, R. and Toussaint, G., "Experiments in Text Recognition with the Modified
Viterbi Algorithm," IEEE Trans, of Pattern Analysis and Machine Intelligence, 1,
2, 1979a, pp. 184-192.

Shinghal, R. and Toussaint, G., "A Bottom-up and Top-down Approach to Using
Context in Text Recognition," International Journal of Man-Machine Studies,
11, 1979b, pp. 201-212.

Stillman, R., "Character Recognition Based on Phenomological Attributes: Theory and
Methods," Ph. D. Dissertation, MIT, Cambridge, MA. 1974.

Sue, T. and Chen, Z., "Skeletal Chain Code Approach to Recognition of Handwritten
Numerals," Proc. National Computer Symposium, Dec., 1976, pp. 4.15-4.26.

Suen, C. Y., "Distinctive Features in Automatic Recognition of Hand Printed
Characters," Signal Process. 4, Apr. 1982, pp 193-207.

Suen, C., Berthod, M. and Mori, S., "Automatic Recognition of Hand Printed
Characters—The State of the Art," Proc. IEEE, 68, 4, 1980, pp. 469-487.

160

Sun, C. and Wee, W., "Neighboring Gray Level Matrix Textural Classification,"
Computer Vision and Graphics Image Processing 23, 1982, pp. 341-352.

Tappert, C., "Cursive Script Recognition by elastic matching," IBM Journal of Res. Dev.,
26, No. 6, 1982, pp 765-771.

Tappert, C., Suen, C., and Wakahara, T., "On-line handwriting recognition—A Survey,"
Proc. of the 9th Int'l Conf. on Pattern Recognition, 2, 1988, pp. 1123-1132.

Tappert, C., Suen, C., and Wakahara, T., "The State-of-the-Art in On-line Handwriting
Recognition," IEEE Trans. Pattern Anal. Mach. Intell, 12, 1990, pp. 787-808.

Tavakoli, N., "A New Approach to Pattern Recognition", Ph.D. Dissertation, Kansas
State University, Manhattan, Kansas, 1986.

Teulings, H., Thomassen, A., and Van Galen, G., "Invariants in Handwriting: The
Information Contained in a Motor Program," in Graphonomics: Contemporary
Research in Handwriting, eds. Kao, Van Galen, Hoosain, Elsevier Science
Publishers B. V., Amsterdam 1986, pp. 305-315.

Tubbs, J., "A Note on Binary Template Matching," Pattern Recognition, 22, 4, 1989, pp.
359-365.

Tucker, N. and Evans, F., "A Two-step Strategy for Character Recognition using
Geometrical Moments," Proc. 2nd Int 7 Joint Conf. on Pattern Recognition, Aug,
1974, pp. 223-225.

Van Galen, G., Meulenbroek, R., and Hylkema, H., " On the Simultaneous Processing of
Words, Letters, and Strokes in Handwriting: Evidence for a Mixed Linear and
Parallel Model," in Graphonomics: Contemporary Research in Handwriting, eds.
Kao, Van Galen, Hoosain, Elsevier Science Publishers B. V., Amsterdam 1986,
pp. 5-20.

Van Galen, G., Smyth, M., Meulenbroek, R., and Hylkema, H., "The Role of Short-Term
Memory and the Motor Buffer in Handwriting under Visual and Non-Visual
Guidance," in Computer Recognition and Human Production of Handwriting,
Eds. R. Plamondon, C. Suen, M. Simner, World Scientific, 1989, pp 253-271.

Van Galen, G. and Teulings, H., "The Independent Monitoring of Form and Scale Factors
in Handwriting," Acta Informatica, 54, 1983, pp. 9-22.

161

Viterbi, A., "Error Bounds for Convolutional Codes and an Asymptotically Optimum
Decoding Algorithm," IEEE Trans, of Information Theory, IT-13, 1967, pp. 260-
269.

Vredenbregt, J. and Koster, W., "Analysis and Synthesis of Handwriting," Phillips Tech.
Rev., 32, 1971, pp. 73-78.

Wang, P. and Zhang, Y., "A Fast and Flexible Thinning Algorithm," IEEE Transactions
on Computers, 38, 5, 1989, pp. 741-745.

White, G., "Natural Language Understanding and Speech Recognition," Communications
of the ACM, 33, 8, August 1990, pp 72-82.

Whitrow, R. and Higgins, D., "The Application of n-Grams for Script Recognition,"
Proc. of the Third Int 7 symposium on Handwri5ing and Computer Applications,
Montreal, Canada, July 1987, pp. 92-94.

Xu., W. and Wang, C., "CGT: A Fast Thinning Algorithm Implemented ona Sequential
Computer," IEEE Trans. onSyst. Man Cybernetics, 17, 5, 1987, pp. 847-851.

Zhang, T. and Suen, C. "A Fast Parallel Algorithm for Thinning Digital Patterns,"
Communications of the ACM, 27, 3, Mar 1984, pp. 236-239.

Zhang, Y. and Wang, P., "Analytical Comparison of Thinning Algorithms," in Thinning
Methodologies for Pattern Recognition, Eds. C. Suen and P. Wang, World
Scientific, 1994, pp. 263-282.

