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This research focused on the off-line cursive script recognition application. The 

problem is very large and difficult and there is much room for improvement in every 

aspect of the problem. Many different aspects of this problem were explored in pursuit of 

solutions to create a more practical and usable off-line cursive script recognizer than is 

currently available. 

The scope of the project involved a complete solution to most aspects of the 

problem. Preprocessing was refined via a new thinning algorithm and a new Finite 

Induction (FI) based vectorization algorithm. Feature extraction was performed by 

extracting features from the singularity graph of the line drawing instead of the line 

drawing itself. The feature graph was designed to provide a very expressive, flexible, and 

efficient data structure so all existing features of a singularity graph can be easily scanned 

and associated locally. A new and powerful FI based character extraction mechanism was 

created and studied. Character extraction, word segmentation, and word classification 

were performed iteratively in light of the context of the lexicon using split n-gram indices 

to assist in word classification and search space reduction. The use of heuristics was 

employed and studied in the recognition of punctuation. Also, an adaptable system was 

designed so that the system could adapt to individual handwriting styles of experiment 

participants. 



Another focus of this dissertation involved exploring how the pattern recognition 

technology known as Finite Induction could be employed in pursuit of applications of this 

nature. FI was a major contributor in two of the phases. FI technology was adapted for 

use and successfully employed in the line segmentation process and in the character 

extraction process. 

An experiment was conducted which demonstrated that with reasonable training of 

the system and reasonable restrictions placed upon the writer of the cursive script, 

successful hand written cursive script recognition is feasible and usable systems are within 

reach. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

1.1.1 Pattern Recognition 

In the broad field of Computer Science, the sub-field of pattern recognition has 

always been of great importance. In recent years, this importance has grown. If an 

application requires pattern recognition, then the application needs to examine a set of 

input data and determine if a certain pattern is present within the data; or, there may be a 

set of patterns and the application must search the input data to determine the presence of 

one or more of the patterns while retaining the knowledge of which pattern was 

recognized. 

In the field of Artificial Intelligence, this process is known as classification and the 

part of the application that performs the classification is known as the classifier [Rich, 

1983], Actually an entire sub-field in AI known as expert systems is concerned primarily 

with pattern matching of various types. Rules are placed in expert system's rule bases 

along with certainty values and when an expert system notices that the input matches a 

pattern recognized by some of the rules and certainty values, it can produce a diagnosis of 

the situation described by the input and prescribe whatever actions are associated with the 

given rules [Forsyth and Rada, 1986], 



Many applications exist that use pattern recognition to accomplish some or all of 

their goals. Applications exist that successfully perform object recognition in an image 

[Karbacher, 1990] [Jagadish and Ikeuchi, 1991], speech recognition [Lowerre and Reddy, 

1980] [White, 1990], optical character recognition [Crawford 1991], target detection 

[Clark and Velten, 1991] [Sadjadi and Bazakos, 1991], illness diagnosis from a recognized 

pattern of symptoms (Mycin/Neomycim project) [Barr and Feigenbaum, 1981], and 

countless others. 

The field of pattern recognition continues to grow almost exponentially in 

importance as the state of the art in computer hardware and software moves toward 

computers that have the capacity for: 

• vision, where recognition of an object in the field of view is 
important, 

• hearing sound and speech, where recognition of sounds and even 
spoken language is possible, 

• reading, where information in documents, created on-line, can be 
extracted, 

• reading, where information in documents created off-line and 
entered into the computer with a camera or scanner can be 
extracted; and, 

• many others. 

Much research is continuing in the area of pattern matching as the requirements 

become more and more demanding and the amount of data involved grows rapidly. Even 

though many issues in the general field of pattern matching are currently being addressed 

[Cantoni, et al., 1989] [Kyung, 1991] and innovative methodologies to perform general 



pattern matching are under development [Fisher and Case, 1984] [Tavakoli, 1986], much 

of the research currently centers around discovering ways to create new applications and 

enhance existing applications. However, the solutions to problems in the general field of 

pattern matching and the new methodologies can assist in the development of the new 

applications as is the case with this research. 

1.1.2 Recognition of Human Readable Text 

Over the past several years, an extensive amount of research has involved 

attempting to create a program that performs computer reading. The term reading is 

used in the loosest possible sense. For the purposes of this paper, computer reading refers 

to the process of examining the binary image representing an input document and 

determining which words are on the document. The other processes involved when a 

human performs reading such as the extraction of meaning from the words read are not 

examined. The task of performing reading, while seeming simple, is much more difficult 

than it appears. 

As research has progressed, this general reading task has been separated into 

several categories according to constraints that are placed upon the task by the available 

hardware as well as the constraints that are imposed by the types of human readable text 

or script to be read by the computer program. Current hardware constraints and industry 

needs have effectively divided the possible solutions into two distinct categories: 



• On-Line recognition; and 

• Off-Line recognition. 

The hardware requirements for each of these categories differ greatly. 

In on-line recognition, the computer recognizes text or script as it is entered via an 

electronic pen and pad. The writing surface, commonly known as a digitizing tablet, 

typically has a resolution of 200 points per inch and is sampled at a rate of 100 times per 

second [Impevodo et. al., 1991], This provides an environment from which pen velocity, 

stroke definition, and stroke ordering can be easily determined. This information, along 

with the actual pixel information, provides a rich alphabet of symbols, known as ink, to 

the on-line hand-written text or script recognizer. 

Off-line recognition involves the use of a digital scanner or camera. After the 

writing or printing of a document is completed (usually on paper), the text or script is 

digitized by the scanner and this produces an image represented by a two-dimensional 

array of pixels. This array of pixels represents a white background (paper) with one or 

more line drawings made in the foreground in black. Each of the line drawings represents 

a word, letter, punctuation mark, or other symbol that may be present in text and possibly 

require recognition. Characters, text, script, or other patterns that may be present are 

recognized by the computer application using only the information provided in the pixels 

of the black and white image. 



1.1.2.1 On-Line Recognition 

With on-line recognition, symbols are recognized as they are drawn on a digitizing 

tablet which is also known as electronic paper. When used in conjunction with a pen 

based operating system or some pen user interface, an on-line recognizer can be extremely 

useful in many applications. At the present time, small computers called 'Personal Digital 

Assistants", or PDAs, which use a pen based operating system and pen based user 

interface have now become widely available [Reinhardt, 1994] [Andrews, 1994], Users 

keep appointment calendars, order information for salesman, signature verifications, lists 

of phone numbers, and a wide variety of other information on these PDAs. 

Interaction with the on-line pen driven machine involves pointing the pen at an 

object (possibly being viewed under the digitizing tablet), drawing some picture or 

character on the tablet, or writing on the tablet. The PDA then recognizes whatever 

message that the user is trying to convey and performs appropriate actions—data entry, 

etc. In the opinion of many, a windows type interface driven by a pen is much more 

convenient on some portable computers and at least as user friendly as one driven by a 

mouse and keyboard. A fairly recent survey of on-line handwriting recognition is given in 

[Tappert et. al., 1988] 

Recent announcements and accompanying reviews of commercial pen-based 

notebook computer systems indicate that, although the leading edge of this technology 

lacks refinement, the potential for revenue is great [Baran, 1992] [Andrews, 1994], 



1.1.2.2 Off-Line Recognition 

As previously mentioned, off-line recognition involves the use of a digital scanner 

or camera. After the writing or printing of a document is completed (usually on paper), 

the text is digitized by a scanner or camera and an image of the document represented by 

pixels is produced, generally in a bit-mapped black and white or gray-scale format. 

Characters, text, or script are represented by black drawings in the foreground of a 

document that has a white background. The characters, text, or script is subsequently 

recognized by the computer using only the information contained in the image. 

The task of reading documents prepared off-line has been separated into several 

categories of research according to the constraints that are imposed by the types of text or 

script to be read. These categories are listed below according to the perceived level of 

difficulty in their solutions ranging from relatively easy to very difficult. These are: 

machine generated (or typewritten) text [Impedovo et. al., 1991]; 
hand-printed text and numerals [Cohen et. al. 1991]; 

• hand-written connected cursive script; [Srihari and Bozinovic, 1987] 
• some combination of hand-written cursive script and hand-printed 

text and numerals [Parisse et. al, 1990], 

Computer recognition of each of these has been studied, and at least partial solutions have 

been proposed for each. 

Currently, the most important application for off-line recognition involves 

recognizing machine generated text. Recognition of this type of printed text involves the 

software technology known as Optical Character Recognition (OCR). The OCR 

technologies are well developed and many high quality commercial systems are now in 

existence. 



In a typical OCR system, a two dimensional set of pixels comprises the input. The 

image is broken down into lines and then each line is broken down into characters. The 

internal form of each character is then fed into a preprocessor that performs smoothing, 

noise reduction, and size and orientation normalization. Each character is then classified 

or recognized using distinctive features extracted from the character's preprocessed 

internal form. 

There are many problems that must be overcome by any high quality OCR 

software. It must be able to distinguish from a myriad of type faces or fonts. It must be 

able to handle noise and other categories of deformed images. It must be able to handle 

different sizes of characters. The list is much longer but these three problems alone should 

convince the reader that there are serious problems to be solved. The reader can refer to 

an excellent survey paper on the subject of OCR by Impedovo [Impedovo et al., 1991], 

Intensive research in this area is on going [Kyung, 1991], 

Other important applications of off-line recognition involve the recognition of hand 

printed text and handwritten cursive script. Software that performs off-line recognition of 

hand printed text is a generalization of the software that performs OCR. The same 

methodologies that solve the OCR problem must be present to solve this problem. 

However, recognition of hand printed text involves recognizing a possibly infinite number 

of different ways that the same character may be formed. These differences may be 

caused by the fact that more than one writer is involved, a single writer may change styles 

for some reason, the hard surface used to write on might be uneven, or any number of 

other possibilities. 



The original goal of this research was to pursue reading of cursive script produced 

off-line. Algorithms that read off-line cursive script are a generalization of algorithms that 

read off-line hand printed text. Even though there has been a significant amount of 

research toward the solution of this problem, there are still many major problems to solve. 

In the sections that follow, a detailed description of the research area is provided. 

As a convention, in the areas in which this research made significant contributions, the 

review of the specific literature in that area was postponed until Chapter II. Otherwise, a 

brief discussion of the relevant literature is included. 

1.2 Off-line Recognition of Cursive Script 

1.2.1 Difficulties In Performing Off-line Recognition 

Extracting words from an image known to contain text involves two processes: 

recognition and contextual analysis. For images known to contain machine printed text or 

possibly even highly constrained handwriting or hand printing, the contextual analysis 

becomes less important. The contextual analysis is used to help make choices when the 

image processing encounters uncertainty or ambiguity. 

1.2.2 Discussion of Application Constraints 

In many instances, constraints are placed upon the writers involved with the 

creation of the image. These constraints can greatly simplify the problem of text 

recognition because they decrease the amount that different handwritings can vary. These 

constraints can take various forms including '^re-printed boxes to limit the size and 



location of characters, guidelines to specify location of words, suggestions for forming 

letters, suggestions for joining letters and ligatures in cursively written words, rigidly fixed 

syntax, and no spelling errors" [Cohen et. al., 1990] plus a host of other possibilities. The 

fewer constraints placed upon the writer, the more dependent the recognizer will be on the 

contextual analysis. 

If text is totally unconstrained, the writing style and writing implements are not 

restricted.' Text appearance can vary according to the individual writing style, size and 

orientation of the text, writing implements used, and writing surface. A system that can 

recognize handwriting in the above unconstrained environment should also be prepared to 

work in an arena where digitization methodology and image thresholding could vary as 

well. 

In the current state of the art, only when considerable constraints are placed on the 

images containing text does the process become tractable. [Cohen et. al. 1990] describe a 

project for the United States Postal Service (USPS) which attempts to recognize zip codes 

from envelopes. There are spatial layout conventions (not necessarily constraints) 

specified by the USPS to assist in the addressing of envelopes. Using the spatial layout 

contextual knowledge of how addresses are supposed to look and contextual knowledge 

about which states have what zip code, the goal was to examine the otherwise 

unconstrained image representing the envelope and to: 

• segment out the zip code (discover which set of line drawings on the digitized 
image representing the envelope make up the zip code); and 

• then classify the zip code (determine what the zip code was). 
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Even considering the seemingly simple specifications, at the time of the writing, 

their system had only managed to recognize about 80% of the 508 zip codes in the test 

data provided by USPS. Although this recognition process did have many obstacles such 

as widely varying interpretations of the spatial layout conventions and the fact that other 

sequences of numbers, such as box numbers and street addresses, can be part of an 

address, the project did not encounter some of the problems that are involved when 

attempting to recognize connected cursive script. Zip codes usually consist of five or nine 

disconnected numeric digits. Even though there is no hard and fast rule saying that digits 

in a zip code cannot accidentally touch each other, recognition of the digits generally does 

not require that digits are somehow extracted from a connected line drawing containing 

other characters or digits. 

When the objective is recognizing unconstrained and possibly connected or 

disconnected handwritten text or script, the problem becomes much more difficult. 

Research in the area of recognition of handwritten cursive script generally concentrates in 

one or two emphasis areas with a considerable number of constraints placed on the input. 

Most of the systems do not even consider the spatial layout of the image and just 

concentrate on the recognition process. Possible constraints might include word 

connectivity constraints, size and normalization constraints, constraints on the formation 

of characters, constraints on how characters must be connected, constraints on the size of 

the recognizable lexicon, and various other constraints. 

Figure 1.1 shows four possible word connectivity constraints for images assumed 

to contain text to be recognized. Figure 1.1a contains machine generated disconnected 
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text. There are many OCR systems that can recognize disconnected machine generated 

text with a success rate of over 98%. 

[Tappert, 1982] identified five separate cases that must be dealt with when 

concerned with the recognition of hand printed text or hand written cursive text. The 

categories he specified were: boxed discrete printed characters, spaced discrete printed 

characters, run-on discretely written/printed characters, pure cursive script writing, and 

mixed cursive and discrete characters. Figure 1.1b, 1.1c, and 1. Id show three of the 

cases. 

Figure 1.1b contains disconnected hand printed text. The level of difficulty in the 

off-line recognition of hand printed text compared to machine generated text increases at 

least one order of magnitude. A large number of researchers are looking into this 

application. This disconnected constraint greatly simplifies the character extraction 

Machine Printed Text 

a. 

f> ft fifed disconnected, 

b. 

c. d. 

Figure 1.1. Connectivity Constraints. 
Four Types of Connectivity Constraints. 
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requirement as each line drawing is considered a character, but complicates word 

segmentation as the beginnings and endings of words might not be obvious in the absence 

of other constraints like '& large distance between characters is required to assist in word 

segmentation" or "put words or characters in provided boxes". 

Requiring that all words are totally connected cursive script completely removes 

the word segmentation problem but greatly increases the difficulty extracting characters. 

The line drawing representing a script word must be examined and the recognition of 

characters or character constructs must extracted from the script word. 

Allowing words to contain both connected and disconnected script greatly 

complicates things. Words must be segmented in light of the fact that each drawing 

representing text might be one or possibly more characters. This problem is difficult for 

various reasons that are not obvious. The problems of ambiguity abound. For example, 

consider the word 'kmen". If the leading character is disconnected from the rest of 

the word, then the word could reasonably be segmented as two words: and 'hien". A 

further contextual analysis might require a syntax check to determine whether the 

correctly extracted characters represent the word 'kmen" or the two words and 

"men". 

Most research into cursive script recognition does not attempt to recognize capital 

letters since capital letters involve many more strokes and features than lower case letters. 

Further constraints might specify that all writing requires no normalization and the size of 

the letters may be restricted. 
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1.2.3 Contextual Analysis 

The fact that human readers sometimes use vast amounts of contextual information 

in order to determine the correct stream of words is uncontested. Examples of such 

contextual information include the following: 

• idiosyncrasies of a known individual's writing style; 

• using phonetic pronunciation for mis-spelled words; 
• spelling rules (generally i comes before e except after c); 
• knowledge of syntax (if a verb is expected, then the search space of words 

is reduced); 
• knowledge of the current semantics (knowing what a writer is trying to say 

cuts down the search space); and 
• pre-knowledge of a constrained lexicon (if someone is to place the color of 

his/her eyes into a box, then the lexicon should only contain colors); 

The use of contextual heuristics to assist in reading unconstrained text is an 

enormous amount of help to human readers, yet the process is not easily formalized and 

for the most part is not well understood. Researchers, including the author of this paper, 

have not pursued totally unconstrained text as of yet. [Cohen et. al., 1990], as described 

earlier, have pursued unconstrained text recognition in an extremely restricted domain. 

In general, some types of context are widely used in the research. Use of a lexicon 

that must contain all the words that may be recognized is contextual information which is 

used in virtually all research dealing with text and cursive script recognition. Also, as real 

world applications employ some type of off-line character recognition, then heavy use of 

contextual knowledge of some type will generally be required. 
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1.2.4 General Methodology Used in Script Recognition 

A block diagram representing the components of a system that reads off-line 

cursive script is given in Figure 1.2. The different phases of the system involve inputting a 

document via an optical scanner and the concomitant creation of an image file. Next, 

software applies a thresholding algorithm that maps the gray-scale or color image into 

black and white. Noise removal, smoothing, and other preprocessing is then applied to the 

image. Then the various lines drawings on the page are located and segmented into 

possible words, punctuation, and other items. 

Once the segmentation and preprocessing are complete, features are extracted 

from each line drawing. The features discovered in the line drawing are used by the 

character construct extraction mechanism to discover which characters or character 

Document Scanner *• Image 
File 

Preprocessing * Internal representation 
of image 

* 

• Feature » Character » Word » Word 
Extraction Extraction 

A 1 
Segmentation Classification 

^.Recognized 
Words 

Context Info Lexicon 

Figure 1.2. The Cursive Script Recognition Process 
A Block Diagram of the Cursive Script Recognition Process 
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constructs make up the line drawing by comparing the statistics of the features obtained 

with the sets of sample features that were trained into the system at an earlier time. 

At some point in this process, line drawings must be grouped in a manner so the 

characters contained in the drawings selected, represent a word. This is called the word 

segmentation process. Next, linguistic, contextual, or statistical information can be used 

to resolve ambiguities in the similarly shaped characters predicted. Finally, when the 

characters have been grouped either positively or tentatively into words, the characters in 

the word groupings must be classified into words. 

1.2.5 Preprocessing the Input Image 

Preprocessing is an important phase of any pattern recognition process. Similar 

types of preprocessing are performed on any input image for all applications of off-line 

text or script recognition including OCR applications, hand printed text applications, and 

hand written script applications. The main preprocessing techniques that are used include: 

thresholding, smoothing, thinning, normalization, and line segment approximation of the 

line drawings in an input image, along with segmentation of the document. 

There are many different segmentation processes that are involved in the reading 

of text and script. An initial segmentation is performed to separate the drawings on the 

original document into text, script, graphics, etc. This is done so that subsequent 

processing which performs reading only need look at the text and script parts. Several 

researchers have addressed this type of segmentation including [Rosenfield and Thurston, 

1971], [O'Gorman and Clowes, 1976], [Sun and Wee, 1982], [Haralick, 1978] and 
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[Horowitz and Pavlidis, 1974], Of more direct interest to this paper is the work by 

[Fletcher and Kasturi, 1988] which is directly concerned with the separation of text from 

graphics in mixed text/graphics environments. 

There are many other segmentation phases in a text or script reading system. With 

respect to disconnected text, segmentation is the isolation of characters. With respect to 

connected cursive script, segmentation is the isolation of words. With respect to partially 

connected cursive script, segmentation is still the isolation of words but it has become a 

much greater problem [Netvia, 1986], 

Thresholding [Chanda et. al., 1986] [Bernsen, 1986] [Kahan et. al., 1987] is the 

action of modifying a gray scale image into a binary image. A thresholding function is 

determined according to the current gray scale values of the pixels in the image. This 

function is then applied to each pixel in the image. 

Smoothing [Seun, 1982] removes noise and corrects minor flaws that are apparent 

in an input image. These algorithms are mainly responsible for the filling action which 

eliminates breaks, gaps, and holes in a line. 

Thinning is the process of reducing a line in an image from several pixels wide 

down to a single pixel with the reduced image called a skeleton. Figure 1.3 shows the 

result of applying a thinning algorithm to an input character. Various thinning algorithms 

have been developed including sequential, parallel, and hybrid algorithms. The most 

common variety of thinning algorithms are based on iterative edge erosion techniques 

where a window is moved over the image and rules are applied to the contents of the 

window which may allow the deletion of some of the pixels in the window. 
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Z 

Figure 1.3. Example of Image After Thinning 
An Original Image Representing a Lower Case d with its Skeleton (greatly enlarged) 

It was discovered in the analysis phase for this research that most of the thinning 

algorithms in the literature produce skeletons that do not lend themselves well to thinning 

line drawings which encompass possibly much more than a single character. Even though 

there are many thinning algorithms in the literature, none of the simple ones produce a 

skeleton that is clean enough to be of much use. For this reason, a new thinning algorithm 

was created that produces smooth skeletons which retain virtually all the original line 
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drawing's shape, connectivity, and end-points. A review of the literature dealing with 

thinning algorithms is provided in Chapter II. 

Normalization algorithms perform corrections on the line drawing in an attempt to 

cause all characters, words, or other textual images to conform to some norm for the input 

[Nagy and Tuong, 1970] [Srihari and Bozinovic, 1987]. This includes algorithms which 

correct the slant of individual characters or words and algorithms which adjust the 

character sizes. 

Vectorization, or line segment approximation, is the conversion of the pixels in a 

skeleton into a set of coordinates, which, when joined with straight line segments, form an 

approximation of the original skeleton. In this research, the result of the approximation is 

known as a singularity graph. This approximation is performed mainly to reduce the 

volume of data that must be processed. Figure 1.4 shows a thinned image and along with 

the drawing of the singularity graph which approximates the skeleton. A review of the 

literature dealing with vectorization algorithms is provided in Chapter II. 

A new line segment approximation algorithm was also created for this system. It 

involves the use of the pattern recognition technology called Finite Induction (FI) [Fisher 

and Case, 1984], FI is exploited to recognize patterns of pixels that should represent 

vectors, or line segments, and when it discovers a candidate, it marks the ends of the 

pattern within the thinned skeleton as critical points or singularities. A follow up pass 

performs a recursive descent traversal through the skeleton recording singularity and 

connectivity information. The singularity graphs of the skeletons produced in this fashion 

very closely approximate the actual shape of the skeleton. It is these singularity graphs 
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Figure 1.4. Example of Drawn Singularity Graph 
A Skeleton for the Lower Case d and a Drawn Singularity Graph (greatly enlarged). 

that are used as input to the feature extraction phase. The singularity graph drawn in 

Figure 1.4 was produced by the vectorization algorithm developed for use in this research. 

1.2.6 Feature Extraction 

Feature extraction algorithms involve examining the line drawings representing 

characters, words, or partial words and noticing the presence and location of features. 

Many different feature types have been proposed and many different algorithms have been 

examined that perform feature extraction. Some of the main feature extraction techniques 

are discussed in detail in Chapter II. A completely new feature extraction technique is 
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proposed for this research. While most of the feature extracting algorithms were designed 

with either the disconnected printed text or connected cursive script in mind, the new 

feature extraction methodology can be easily modified for use in either domain. 

1.2.7 Character Extraction 

Character extraction involves recognizing multiple characters within a single line 

drawing. This is the only required algorithm for this project that is not also required in an 

OCR system or a hand printed text reading system. This is true because in the other 

applications, each drawing is assumed to represent only one letter, while in cursive script, 

each drawing may contain one or many letters. 

In this system, after the preprocessing is complete, a singularity graph of the 

skeleton of an input drawing is available. This singularity graph is processed one 

singularity at a time, checking to see if a character begins at that singularity. In this phase, 

FI [Fisher and Case, 1984] is used to perform the extraction. The FI following algorithm 

is modified so that the algorithm itself predicts the required input during a recursive 

descent traversal over a localized area of the singularity graph starting at the selected 

singularity. The prediction is made in cases where multiple paths are available and the 

input predictor knows which path is expected by the FI ruling and chooses that path if it is 

available. 

1.2.8 Character Extraction. Word Segmentation, and Word Classification 

The initial character extraction pass should discover the presence of some 

characters. This set of characters consists of the highest confidence characters. They are 
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maintained in a list of characters in what is referred to as a letter graph in this research. 

Note that in many cases, characters may partially overlap in the letter graph and in some 

cases, characters may overlap totally in the graph. As an example, consider a hurriedly 

written lower case T' where what would be the short upward stroke is really a short 

upward narrow loop. The T' will be extracted and so will an 'fe". The ambiguity will 

have to be solved later when more information is known. Many other similar cases exist. 

When considering disconnected script, the word template is managed by the word 

segmentation sub-system. It selects which drawings go together to make a word. If the 

constraints are lenient, this job involves dealing with lots of ambiguity and is quite a 

difficult process. Most research on cursive script recognition requires that words be 

connected and ignore this problem. 

1.3 In Pursuit of a Practical Cursive Script Recognizer 

The major goal of this research was to analyze the difficulties of performing 

cursive script recognition and to solve enough of the problems involved to demonstrate 

that cursive script recognition is feasible, at least in certain constrained domains. 

The word classification phase involves searching the word template and comparing 

the extracted characters against words in a lexicon. As extracted characters are placed in 

the word template, the search space for subsequent queries to the lexicon can be reduced. 

The final result of this phase is the list of classified words and rejected words. This is the 

end to which the entire reading process is pointed. 
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Another important primary goal was the experimentation with a pattern 

recognition technology known as Finite Induction to perform much of the actual 

recognition of the patterns involved. This involves mapping the information in the image 

into an appropriate input alphabet for an FI recognizer. 

In the analysis phase it was determined that there were indeed major problems to 

solve. To prove that it is feasible, a working cursive script recognizer was constructed, 

including all of the phases mentioned in Figure 1.2. In experimental usage of the 

recognizer, a reasonable correct classification rate was observed. After each experiment 

phase, the classification rate improved because the system adapted to individual writers. 

The specifications for the recognizer follow: 

• Constraints placed upon the input image: 
a. cursive script to be recognized must all be roughly the same size 

script; 
b. the script must be written in a straight line across the page; 
c. cursive script words must be connected with the exception that capital 

letters can be disconnected to the left of the word to which it belongs 
and dots may be disconnected over letters; 

d. punctuation must be carefully written; 

• Constraints placed upon the spatial layout of the script are that script must 
consist of lines written in a straight line across the page and well positioned 
on the page so that one line does not interfere with another; 

• All phases of the cursive script recognition process should be examined in 
light of the diagram of Figure 1.2 so that the system should input an image 
file representing a document to be examined (following the above 
mentioned constraints) and a text document containing the classified text 
and punctuation should be produced; 

• New methods of performing the steps of the cursive script reading process 
should be created when the previous state of the art is found lacking; 
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The feature recognition system should be flexible and allow easy encoding 
and entry of new features for experimental purposes; 

The recognizer is to classify words from a limited lexicon; however, the 
lexicon management should be flexible as words might need to be added or 
deleted as requirements change; 

• The system should be easily modifiable to operate in the realm of parallel 
computing with the new low cost SMP (Symmetric Multiprocessor) 
machines soon to become available; 

• The recognizer should allow for an adaptation phase so that the recognizer 
might learn the idiosyncrasies of the personal writing style of a writer; and 

A reasonable level of noise and fuzziness is allowed in the original 
document images, but all images should be scanned on a similar scanner so 
all images suffer from the same deficiencies and enjoy the same advantages. 

Also the scanning resolution is 300 dots per inch. 

The actual design involves all aspects of the cursive script reading process 

described in the previous sections. Major contributions were not made in every area but 

were made in many areas. Smoothing was not employed as the scanner used for the 

purposes of the experiment produced very clean line drawings; and the thresholding 

algorithms have already been well studied in the literature. 

The system initially examines the mostly connected script across the page, 

segmenting each script item into a separate line drawing. Images are all assumed to 

contain line drawings representing cursive script as no graphics or other non-script 

information is allowed on the page. Segmenting mixed text and graphics was studied by 

[Fletcher and Kasturi, 1988], 
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There were contributions made in the area of preprocessing. This includes a new 

algorithm to perform thinning and a new FI based method to perform vectorization of an 

image. 

A new method to perform feature extraction is another contribution. Other 

contributions include a new FI based method to perform character extraction and a 

methodology of classifying words with split n-gram tree indices into the lexicon. 

[Kondo, 1990] has shown that even when writers write very carefully, there is no 

way to successfully contrast many characters from one writer to the next. This means that 

even if writers take extreme care, one writer's lower case ' f ' could look exactly like 

another writer's lower case 'b". Various other similar situations exist. It is his contention 

that to be successful, an off-line cursive script recognizer must adapt itself to the 

idiosyncrasies of each individual writer. This approach was taken in this research even 

though there may be methods to use context to assist in the resolution of the ambiguity. 

Even though this context utilization is generally used by human readers, these approaches 

are not very well defined. The application of only a minimal amount of context was 

studied in this research. 

Also, it was part of the original design specifications that the system be written 

with flexibility in mind with respect to the feature recognizer. Little research in this area 

was applicable to this project with respect to the choice of a set of features to extract in 

the feature extraction phase. It was decided to select a few simple features to start with, 

but leave room to easily expand the feature set, if the original set is found lacking. 
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An important goal of the project was to explore the capabilities of the theory of 

Finite Inductive Sequences [Fisher and Case, 1984] as a pattern matching mechanism in 

the arena of off-line processing of written documents. Finite Induction (FI) was used as 

the recognition mechanism in two of the sub-systems, the vectorization sub-system and the 

character extraction sub-system. A short description of the FI pattern recognition 

technology is provided in the Appendix and an expanded discussion can be found in 

[Fisher and Case, 1984] and [Tavakoli, 1986] 

1.4 Organization of the Remainder of the Document 

This dissertation contains seven more chapters: 

• Chapter II discusses previous work in a literature survey. In this 
chapter a detailed review of the literature is provided for each area in 
which a significant contribution was made by this research. 

Chapter III discusses the Border Reduction Thinning Algorithm 
developed during this research. The algorithm itself is discussed with 
advantages and disadvantages analyzed. 

Chapter IV discusses the FI based vectorization algorithm developed 
during this research. 

Chapter V discusses the feature extraction algorithm developed during 
this research. Also discussed is the mechanism used to store the data 
base of recognizable features. 

Chapter VI discusses the FI based character extraction mechanism, 
word and punctuation segmentation, and Also discussed is the data 
structure used to store the lexicon for efficient searching. 

Chapter VII discusses the design and implementation of an experiment 
that demonstrates the effectiveness of the overall system. Performance 
measures are shown. The mechanism that provides adaptation of the 
system to the individual writer is also discussed. 
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Chapter VIII is the conclusion. It offers concluding discussions, 
reviews the list of contributions made by this research, and mentions 
future directions that the research will take. 



CHAPTER II 

REVIEW OF THE LITERATURE 

2.1 Overview 

Most of the initial research on the topic of automatic cursive script recognition was 

in the area of on-line approaches and was closely tied into the study of how humans 

perform the task [Frishkopf and Harmon, 1961] [Eden, 1961] [Mermelstein and Eden, 

1964]. Since then, the study of handwriting has moved into several directions, including: 

• automatic signature verification [Plamondon and Lorette, 1989] [Liu, Herbst, 
and Anthony, 1979] [Sato and Kogure, 1982], 

• modeling the motor control activities involved in handwriting [Dooijes, 1983] 
[Denier Van Der Gon and Thuring, 1965] [Plamondon and Lamarche, 1986], 

• handwriting simulation [Denier Van Der Gon, Thuring and Strackee, 1962] 
[Vredenbregt and Koster, 1971], 

• mathematical modeling of handwriting and the handwriting process [Morasso 
and Mussa Ivaldi, 1982] [Plamondon, 1989] [Schomaker, Thomassen and 
Teulings, 1989], 

• cognitive modeling of handwriting [Teulings, Thomassen, and Van Galen, 
1986] [Van Galen and Teulings, 1983] [Van Galen, Smyth, Meulenbroek, and 
Hylkema, 1989] [Van Galen, Meulenbroek, and Hylkema, 1986], 

• parsing and recognition of multi-dimensional languages (for text recognition, 
parsing and recognition of 2 dimensional languages) [Rosenfield, 1979] [Inoue 
and Takanami, 1991] [Inoue and Takanami, 1994] [Aizawa and Nakamura, 
1994] 

27 
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• modeling and recognition of Chinese characters [Casey and Nagy, 1966] [Chen, 
Hsu, and Cheng, 1986] [Cheng and Hsu, 1991] [Huang and Huang, 1991], and 

• applications of neural networks to script recognition [Le Cun et. al., 1989] 
[Guyon et. al, 1989] [Guyon et. al., 1991], 

Research in the area of the direct reading of script has continued as the industrial 

need for high quality on-line and off-line readers has grown. [Earnest, 1962] presented an 

interesting off-line mechanism for the reading of handwritten cursive script involving 

global word characterizations, such as counting ascenders and descenders, to bypass the 

character segmentation phase. There were other similar important works for on-line 

recognition including [Farag, 1979] and [Bridle, Brown and Chamberlain, 1983], The 

research of [Simon and Baret, 1991] considers an off-line mechanism which recognizes 

words without character segmentation. This research considers the pertinent information 

in a written word to consist of Singularities" which include forks, crossings, changes of 

directions, and extremities. If these singularities are removed from the line drawing, only 

an 'bscillating wiggle", which can be discarded, remains. The word is recognized only 

from the restored arrangement of singularities within the word. 

During the 1970's, some research was initiated in pursuit of off-line cursive word 

recognition. [Ehrich and Koehler, 1975] and [Sayer, 1973] studied aspects of character 

segmentation and the use of context to assist in resolving ambiguities. 

Beginning in the early 1980's, interest began to pick up once again in on-line 

methodologies. [Burr, 1982], [Tappert, 1982], and many others studied the use of 

dynamic programming methodologies, also called elastic matching and/or time warping, as 

the recognition mechanism. Using this algorithm, a distance is calculated between a 
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current template representing a character and each template in a character lexicon. The 

lexicon entry with the shortest distance is declared the correct classification. The distance 

between two templates is calculated by modifying one template in a series of simple 

transformations until it becomes the same as the other template. The distance is a function 

of the number and types of transformations made. 

An on-line system, which allows users to train the system, was given in [Berthod 

and Ahyan, 1980], The system used knowledge of letter formation from strokes using a 

syntactic-style approach. A brief sketch of an off-line system to recognize Roman cursive 

script was given in [Badie and Shimura, 1982], An on-line system which ignored contour 

segmentation and character level feature extraction was given in [Brown, 1981], Other 

early works on character recognition include [Frishkopf and Harmon, 1961], [Dutta, 

1974], and [Stillman, 1974], 

The interest in recognition of on-line handwritten print and cursive script is now 

intensifying, brought on by the availability of high quality digitizing tablets, industry 

requirements, and large markets for pen driven PDA's and other similar devices. More 

information about on-line recognition methodologies is available in the survey of recent 

research provided by [Tappert, Suen, and Wakahara, 1990], [Higgins and Duckworth, 

1990] describes an early electronic paper project providing an overview of the hardware 

and software mechanisms involved in on-line recognition, [Kadirkamanathan and Rayner, 

1990] focuses on a methodology to segment on-line cursive script into strokes, and 

[Oulhadj et. al., 1990] describes a practical implementation of an on-line recognition 

system. 
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2.2 Off-Line Script Recognition 

There are several recent efforts in the area of off-line cursive script recognition. A 

practical solution or even partial solution to the problem of computer reading of 

unconstrained text and script would be of great value to several industries. For example, a 

very important benefit would be the ability to automate aspects of the postal services 

around the world. 

One of the more influential projects is described in [Bozinovic and Srihari, 1985], 

[Srihari and Bozinovic, 1987], and [Bozinovic and Srihari, 1989], This project is 

characterized by the authors' view that script recognition is a perception problem in 

which there exists a natural hierarchy of representation levels, each level identifiable with a 

conceptual entity: points, contours, shapes, letters, words, sentences, paragraphs, etc." 

[Srihari and Bozinovic, 1987], 

Constraints are placed upon the input which require that words are carefully 

written in that each word is assumed to be a single well-framed binary-valued word image 

that is written in such a way that an upper, middle, and lower zone can be identified during 

the processing. After slant normalization on the input, character segmentation points are 

predicted by passing a vertical line over the input. Areas where there is only a single 

intersection point between the vertical line and the input are possible segmentation points. 

After character segmentation, words were predicted using a stack-decoding search 

algorithm with a trie-structured dictionary with a small lexicon of 1027 words. 

[Bozinovic and Srihari, 1989] added a depth of search heuristic to limit the computation. 
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The results of this project were quite good in that, with the small lexicon, a 70%+ 

accuracy level was obtained for correct selection in the top two choices. 

Another project is detailed in [Aoki and Yamaya, 1986] and [Aoki and Yoshino, 

1989], This project views script recognition as a syntactic pattern recognition problem 

[Shaw, 1972] [Fu, 1976] [Bunke, 1992], In this project, special grammars for each 

character to be recognized are hand encoded using a list of features as terminal symbols. 

After thinning, the original image is translated into a tree-type chain code representation of 

the image [Fu, 1976], Then the chain code internal representation is compressed to 

remove some of the complexity. Using special heuristics, the tree representation of the 

line drawing is 'feasily" segmented into characters. A bottom up parse is performed and 

the results of this parse, along with some simple post-processing and a lexicon lookup, are 

used to perform the word classification. 

The results of the project are hard to analyze. The experiment involved choosing 

130 words from the lexicon and 3 experiment participants. Each participant wrote all 130 

words and these words were supplied to the recognizer. A very good correct recognition 

ratio of 85.4% was obtained with an average recognition time of 180 seconds per word. 

[Cohen, Hull, and Srihari, 1991] is a description of an approach for reading a block 

of hand-written text when there are only certain loose constraints placed upon the spatial 

layout and syntax of the text. A system which reads handwritten postal addresses, in 

particular the zip code, is described as an implemented instance of this approach. As 

described in Chapter 1 of this paper, this research emphasizes the use of the context of 

spatial layout and limited domain of words to assist in word recognition. 
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Another project which attempts to recognize the semi-unconstrained text of postal 

addresses is given in [Downton, Tregidgo and Kabir, 1991], They present an algorithmic 

architecture for a 'high-performance optical character recognition (OCR) system for hand 

printed and hand written addresses". The architecture integrates syntactic and contextual 

post-processing with character recognition to optimize British postcode recognition 

performance. The strategy used involves extracting the postcode and then verifying its 

correctness by using information drawn from the rest of the address. 

The rest of this chapter provides a review of the literature for specific areas where 

a significant contribution was made by this research. 

2.3 Literature Regarding Present Contributions 

The areas in which this research made a significant contribution include thinning, 

vectorization, feature extraction, character and word segmentation, and word recognition. 

This section is divided into five sub-sections in which the literature within each of the five 

areas is reviewed. 

2.3.1 Thinning and Skeletonization 

Thinning and skeletonization is an area of research in pattern recognition that has 

received an enormous amount of interest during the past several years. There have been 

literally hundreds of papers discussing thinning and aspects of thinning. Some of the 

important early efforts are discussed here along with some of the thinning methodologies 

that represent the state-of-the-art. Some good surveys of thinning methodologies can be 

found in [Smith, 1987], [Lam, Lee, and Suen, 1992], and in [Chen, 1993]. 
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Some of the famous thinning algorithms in the literature are [Pavlidis, 1982], 

[Naccache and Shinghal, 1984], [Deutsch, 1981], [Arcelli, 1981], [Arcelli and Sanniti di 

Baja, 1985], [Zhang and Suen, 1984], [Hilditch, 1969] [Xu and Wang, 1987], and 

[Rosenfeld and Davis, 1984], The preceding list represents only a few of the more famous 

algorithms. 

There is also much research into the comparison of thinning algorithms [Lee, Lam, 

and Suen, 1994] [Zhang and Wang, 1994] [Plamondon, et. al., 1994], Two of the better 

known and higher ranking algorithms, according to the above comparisons, were [Wang 

and Zhang, 1989] and [Kwok, 1988]. 

The Border Reduction Thinning algorithm, which is introduced in this research, is 

a very simple algorithm which produces a very high quality skeleton. It has not been 

compared and ranked with the more famous algorithms; however, it is anticipated that it 

will compete well in at least the quality of skeleton area. 

2.3.2 Vectorization or Line Segment Approximation 

Vectorization or line segment approximation involves the conversion of a list of 

pixel coordinates or chain-coded pixels into a vectorization graph. A vectorization graph 

is a small set of vertices and edges where the vertices represent critical points on the 

skeleton and the edges represent connection information so that when the critical points 

are plotted and the edges are drawn on the plot, the picture represented by the drawn 

vectorization graph is a close approximation of the picture represented by the original 
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skeleton [Hung and Kasvand, 1983] [Jimenez and Navalon, 1982] [Ramer, 1972] [Slansky 

and Gonzalez, 1981], 

This approximation is then used as input to the feature recognition engine which 

must extract features from the geometry or topology of the drawing [Nishida and Mori, 

1992], [Pavlidis, 1984] and [Pavlidis, 1986] proposed a line vectorization method in 

which a skeleton is constructed from a Line-Adjacency Graph (LAG) where only 

horizontal runs are used in the LAG. 

In some instances, the vectorization process of a line drawing is only concerned 

with tracing a skeleton from an end/junction point to another end/junction point [Lam and 

Suen, 1988] [Ramer, 1972], Each curve can be approximated by a polygon as in [Ramer, 

1972], In this fashion, mathematical methods for polygon matching can be used for 

feature extraction. 

The methodology proposed by this research uses FI to determine the singularities 

(critical points) in a skeleton and a connection analysis to prepare a vectorization graph to 

make it convenient to use topological and structural information during the feature 

extraction process. 

2.3.3 Feature Extraction and Character Segmentation 

'It is generally accepted that feature extraction is one of the most difficult and 

important problems of pattern recognition" [Impedovo et. al., 1991], In the area of off-

line text and script recognition, most of the research has been directed toward recognizing 

features in the OCR arena. Many of these techniques are presented in this subsection. 
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2.3 .3 .1 Extracting Features From Template Matching and Correlations 

Using this technique, an input character matrix, such as the one in Figure 2.1, is 

matched against a set of templates and the distance between the pattern and each template 

is calculated [Shimura, 1973] [Tubbs, 1989], The pattern is then classified as the 

character represented by the template more closely matching the input pattern. 

0000000000 
0000000000 
0011111000 
0111111100 
0110001110 
0000000110 
0000000110 
0000001100 
0000011000 
0000110000 
0011100000 
0111111110 
0111111110 
0000000000 

Figure 2.1. Simple Template Matching 

This mechanism is easy to implement for OCR applications and it is used in many 

commercial products. The templates used varies from product to product from very 

simple templates and matching criteria to sophisticated templates with built-in truth tables 

or logical rules. 

2.3.3.2 Extracting Features Using Statistical Distribution of Points 

There are several techniques that fall into this category. The most widely used 

techniques involve moments and crossings [Tucker and Evans, 1974] [Cash and Hatamian, 

1987], 
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In the moments technique, the features used are the moments of black pixels about 

a chosen center. The more natural moments include raw, central, and normalized 

moments. For a binary image, the raw moments are a function of the coordinates of each 

pixel in the image. They are calculated: 

M-\N-\ 

mPi= 

x—0 y-0 

where p, q = 0, 1, 2, ..., ao, M and N are the horizontal and vertical dimensions of the 

image and is the pixel value at the point (x,y) in the image. The central moments 

depend upon the distances of points from the center of gravity of the character and are 

given by: 

M - U V - l 

x-0 y-0 

where are the coordinates of the center of gravity. The normalized central 

moments can be calculated by dividing the central moments by the moment of order zero. 

Raw moments generally produce poor recognition rates. Central moments, however, are 

much better and have an added bonus of being invariant to the translation of the image. 

Normalized moments are also invariant to the scale of the image. 

Another popular technique in this category is the crossing technique [Calvert, 

1970] [Holt, 1974] [Kwon and Lai, 1976], In this technique, features are represented as 

count templates. Once an input character is framed, line segments are drawn in regular 

intervals over the character along certain directions. The directions generally being 0°, 
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45°, 90°, and 135° with respect to the horizontal axis. Features are represented by the 

number of times the black portion of the image is crossed by the line segments. 

The crossing technique is widely used because it can be performed at high speeds 

as the algorithm is of low complexity. It is also tolerant to distortions and small stylistic 

variations as the crossing counts also encode topological and structural information. 

There are several other proposed techniques that derive features from the 

statistical distribution of points in an image [Suen, Berthod, and Mori, 1980], One such 

technique is known as zoning. In this technique, the frame containing the input character 

is divided into zones or regions and represents features as a template containing the 

densities of black pixels in each region. The features used by the characteristic-loci 

method are counts of the number of times that vertical or horizontal line segments 

intersect the black part of the line drawing for every white pixel in the background of the 

input character [Knoll, 1969] [Spanjersberg, 1974] [Downton, Tregidgo and Kabir, 1991], 

2.3.3.3 Extracting Features Using Transforms and Series Expansion 

These methodologies involve using Fourier descriptors [Person and Fu, 1977] and 

Fourier boundary descriptors S and T as introduced by [Granlund, 1972] and continued in 

[Krzyzak, Leung, and Suen, 1989], These descriptors are interesting because of their 

invariance to scaling, rotation, translation of the character, and to shifts in the starting 

point [Impedovo, et. al., 1991], The negative side of using these descriptors is that they 

have a smoothing effect and are insensitive to spurs along the boundary. 



38 

2.3.3.4 Extracting Features Via a Structural Analysis 

There are many examples in the literature concerning extracting structural features, 

including [Iwata, Yoshido, and Tokunaga, 1978] [Parks et. al., 1974] [Baptista and 

Kulkarni, 1988] [Sue and Chen, 1976] [Aoki and Yoshino, 1989] [Cohen, Hull, and 

Srihari, 1991], 

Structural features generally describe structural, topological, or geometrical 

properties of the input image. Such features include loops, strokes, curves, bays, end-

points, line segment intersections, cups, hats, and commas. Topological information is 

used many times to assist in structural feature information. [Impedovo, et. al., 1991] 

provides an example similar to the example given in Figure 2.2. The mechanism can 

discern between lines and curves. The thinned image is divided into nine regions, A 

through I. The character is considered as a set of strokes where a stroke is a line (L) or a 

curve (C) which joins two vertices in the character. It is a curve if the following 

expression is true: 

+ byt + c/-J a2 + b2 

i=i 
n 

>0.69 

otherwise it is a line. The equation of the line passing through the extremities of the 

stroke is ax + by + c = 0, (*, ,>', ) are the points of the stroke, and 0.69 was decided by 

experimentation. The features of Figure 2.2 are GLI and GCA which means that there is a 

line from G to I and a curve from G to A. 
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Figure 2.2. Example of Structural Feature Extraction 

According to [Impedovo et. al, 1991], the main advantages of using structural 

features is their high tolerance to distortion and style variations, and moderate tolerance to 

rotation and translation. He goes on to say that features of this type are very difficult to 

extract and it is still a topic of research. 

The work performed during this project continues the research into the extraction 

of structural features. The methodology used is quite successful. It is believed that the 

extraction of structural features is much more usable in the arena of connected cursive 

script recognition than the other methodologies. The other methodologies were designed 

to quickly recognize features in a low resolution image representing a single already 

segmented character. Structural features and topological information can be used to 

express information of a larger scale. 
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Note that, since a connected cursive script word might contain large numbers of 

features, an expressive mechanism to represent the features of a word is required to enable 

the character recognition engine to conveniently examine the word to perform character 

extraction and recognition. In this research, the vehicle chosen is known as the feature 

graph. 

2.3.4 Character and Word Segmentation 

Character segmentation is the process of determining what regions of a connected 

script word or partial word make up separate characters. This phase has not received a lot 

of research interest as most of the research was directed at OCR. In OCR applications, 

this phase does not exist since each line drawing represents exactly one character. 

However, this is a very important phase for any type of text recognition where two 

characters may touch and become one connected line drawing. [Tappert, 1982] discusses 

a simple taxonomy which describes the various levels of difficulty of performing character 

segmentation while attempting to read handwritten text and/or script. Level 1 is boxed 

discrete characters, level 2 is spaced discrete characters, level 3 is run-on discretely 

written characters, level 4 is pure cursive script, and level 5 is mixed cursive and discrete 

text. The last level is not necessarily totally unconstrained as requirements on word 

spacing and alignment may be present. 

Much of the research about character segmentation involves trying to avoid it. As 

discussed above, each of [Earnest, 1962], [Farag, 1979], [Bridle, Brown, and 

Chamberlain, 1983] attempt to avoid character segmentation. [Simon and Baret, 1991] do 
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something similar as an attempt is made to classify words by recognizing irregularities 

instead of characters. 

[Srihari and Bozinovic, 1987] present an interesting mechanism to perform 

character segmentation. After normalizing a line drawing, which corrects any non-vertical 

slants in ascenders or descenders, a vertical line is passed over the image and any place in 

the line drawing in which the vertical line and the line drawing only have one intersecting 

point is assumed to be a probable segmentation point. 

[Aoki and Yoshino, 1989] use special heuristics to assist in segmenting characters. 

Using these heuristics, not presented in the paper, the tree chain code representation of the 

line drawing is "easily" segmented into characters. 

Many of the early text or script readers, such as those of [Srihari and Bozinovic, 

1987] and [Aoki and Yoshino, 1989], assumed that it is possible to unambiguously 

segment a line drawing into characters. The other alternative is to assume that this is not 

possible and allow ambiguous segmentation [Bozinovic and Srihari, 1989], [Hayes, 1980], 

[Higgins and Whitrow, 1985], [Peleg, 1979], [Ford and Higgins, 1990], 

In an ambiguous character segmentation system, a list of possible candidates is 

produced for each segment position, usually together with a value representing a 

'bertainty weight". For example, if the connected cursive script word 'hian" was 

presented to the system, two or three options are possible for the second character. The 

second character may be an 'a' with a high certainty, 'o' with a lower certainty, and 

possibly even a 'u' with a still lower certainty. 
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Word segmentation is the process of determining which line drawings on the input 

image represent characters, partial words, or words. Under some constraints, such as 

'there should be extra space between words" and 'tursive script words should be totally 

connected", word segmentation is simplified. However, with totally unconstrained text as 

mentioned in Tappert's taxonomy, this becomes a much more difficult problem abounding 

in ambiguity. [Cohen et. al., 1991] points out that image layout is important for the word 

segmentation phase of the project. They demonstrate that it is not always easy to divide 

the input image into horizontal lines each containing script. If the text is unconstrained, 

then it may appear that some text should be segmented with the line above or below as 

writers preparing postal addresses do not always write in a straight line. 

This research has constrained away much of the word segmentation problem by 

requiring words be completely connected script with the exception of the case of a word 

beginning with a disconnected capital letter. Even this small exception adds many difficult 

problems with ambiguity. 

2.3.5 Word Recognition 

The process of word recognition involves examining the output of previous phases 

that have preprocessed a line drawing and discovering exactly which word is represented. 

Post-processing is applied to the predicted characters (or whatever the output from 

previous phases) to make the choice and to insure the choice is a legal word in the system 

lexicon. One possible choice that must be available is that of a rejection, meaning that the 

characters do not represent a word known to the system. 
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2.3.5.1 Word Recognition with Unambiguous Segmentation 

Word recognition is usually performed by using contextual information during a 

post-processing phase. If it can be assumed that characters can be unambiguously 

segmented, various techniques can be applied. Some of the more widely used techniques 

are discussed below. 

2.3.5.1.1 N-Gram Techniques 
i 

This mechanism calculates the probability of all n-letter sequences occurring in 

text. These probabilities can then be used to predict the most likely candidate from the 

lexicon [Riseman and Ehrich, 1971], 

2.3.5.1.2 Viterbi Algorithm 

The algorithm described in [Viterbi, 1967] takes the predicted word and, using 

statistical information, calculates the most likely input word. The statistical information 

used includes statistical information of the sequence of letters in English, and likely errors 

from the recognition system. [Forney, 1973] provides a clear discussion of the theory 

involved, and [NeuhofF, 1975], [Riseman and Hanson, 1974] and [Hull and Srihari, 1982] 

have discussed applying the algorithm to text recognition. 

This algorithm uses a 'fconfusion" matrix of a priori probabilities that is observed 

from the activities of the recognition system, together with the transition probabilities 

between characters. The confusion matrix represents the probability that one letter may be 

mis-recognized as another. This value is stored in the node part of a graph data structure 
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called a trellis along with the probability that the letter can be preceded or followed by any 

other character as edge labels on the graph. 

A 26 x / trellis graph is constructed, where / is the length of the word, linking 

every letter with every other letter. By tracing a path through this trellis while combining 

the probabilities on the nodes and edges of the path, the probability that the traced word 

might have been the input word is calculated. This word is also the most likely path 

through the trellis graph and therefore is the most likely prediction of the input word. 

2.3.5.1.3 Modified Viterbi Algorithm 

The Viterbi algorithm always produces the most likely prediction for the input 

word. However, there is no guarantee that the word is in the system lexicon. [Srihari, 

Hull, and Choudary, 1983] and [Shinghal and Toussaint, 1979b] suppliment the straight 

Viterbi algorithm with a dictionary lookup to guarantee the presence of the word in the 

dictionary while [Shinghal and Toussaint, 1979a] describes another variant of the Viterbi 

algorithm that uses heuristics to limit search depth in the trellis as the graph is very large. 

2.3.5.2 Word Recognition with Ambiguous Segmentation 

An almost overriding problem with systems based upon the Viterbi Algorithm is 

that incorrect letter segmentation cannot be handled properly. For example, the word 

duck written in script might easily be mis-recognized as cluck. The Viterbi Algorithm fails 

as it requires the correct letter segmentation. A system allowing ambiguous letter 

segmentation retains all possible segmentation points within a line drawing. 
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The mechanism used by this research to represent the ambiguously segmented 

letters is that of a letter graph, as mentioned earlier and documented in [Ford and Higgins, 

1990], Two important practical techniques that are used to perform word recognition on 

such a letter graph are binary n-gram graph reduction and a dictionary tree mechanism. 

2.3.5.2.1 Binary N-Gram Graph Reduction 

Using this mechanism, a list of valid ^-letter sequences for members of the 

dictionary of valid words is created. This list can be used to assist in the removal of 

invalid w-letter sequences from the current letter graph. 

[Higgins, 1985] discussed in detail the use of binary n-grams and decided that the 

optimum length gram was four. This is because only 5% of the 4-grams are valid in 

English. Also the number of 4-grams is 264 = 456,976 is not too large to reasonably store 

in memory as a binary array. The choice of using the 4-gram is quite reasonable as a large 

percentage of 3-grams are valid and 5-grams would provide only a small amount of extra 

information. 

Reducing the graph to a word using the 4-gram data structure involves tracing 

through the letter graph and marking valid and invalid sequences of letters. Various 

implementation methodologies are provided in [Whitrow and Higgins, 1987] and an 

analysis of this mechanism compared with other mechanisms is given in [Ford and Higgins, 

1990], 
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2.3.5.2.2 Dictionarv-Tree Mechanism 

Using this mechanism, a dictionary (simply a list of words) is encoded as a tree. 

This tree is an implementation of the trie structure given in [Knuth, 1973], Consider the 

example in Figure 2.3 taken from [Ford and Higgins, 1990], 

The words can be determined by searching left to right starting at the @ symbol 

and ending at a # symbol. [Bozinovic and Srihari, 1982] used a stack-decoding algorithm 

and a dictionary tree and [Bozinovic and Srihari, 1989] added a search depth heuristic to 

cut down on required computation. The use of this mechanism was compared to the use 

of binary «-grams in [Ford and Higgins, 1990], 

Figure 2.3. Example Dictionary Tree. 
Tree for a very limited list of words that might be recognized. 
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The work done in this project uses something very similar to a dictionary tree 

when it is performing feature extraction. Once characters are extracted using FI and 

placed into the letter graph, a split w-gram technique is used where n-grams with wild 

cards are placed into search indices. These indices are used to help predict words where 

the letter graph does not specify a word from the lexicon with high enough confidence or 

where the letter graph is incomplete. 



CHAPTER III 

THINNING THE INPUT IMAGE 

3.1 Review of Thinning 

Thinning is the process of reducing the width of lines within a line drawing so that 

each line in the resulting line drawing will be one pixel wide and pixels at line intersections 

are kept at a minimum. The lines on the original line drawing will be of varying widths 

from three pixels wide to ten or so pixels wide depending upon ink flow and the resolution 

of the image. After an image is thinned, all lines should be exactly one pixel wide. 

As with other types of pre-processing, information is lost when an image is 

thinned. The width of a line contains information about the ink flow and pen velocity as a 

slow pen can release more ink onto an document. Thinning can also introduce 

deformities, distortion, and other flaws into the shape of a skeleton. 

In general, the process of thinning involves examining the pixels in an image 

containing a line drawing of connected black pixels on a white background and deleting 

black pixels until a skeleton remains. Generally, multiple passes are made over the image 

and in each pass, some pixels are deleted (set to white) in each pass and other pixels may 

be marked for later processing. The process of deleting pixels in an iterative fashion is 

known as iterative erosion. 

48 
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The most famous of the algorithms [Pavlidis, 1982] moves a 3x3 two-dimensional 

window across the rows or down the columns and any neighborhood that meets certain 

criteria has a pixel removed from inside the window. Most of the other algorithms are 

similar. 

Many different thinning algorithms have been proposed. Different thinning 

algorithms produce different kinds of skeletons and characteristic distortion. They can be 

classified into two general types: sequential and parallel algorithms. A parallel algorithm 

uses only the result from the previous pass or iteration to make decisions on whether 

pixels are removed. A sequential algorithm makes use of information obtained in the 

previous iteration and the current iteration to make pixel removal decisions. 

Each of the various algorithms have their strong and weak points. Most were 

designed to meet the needs of a specific application and perform well in that application 

but perform poorly when applied to other applications. Survey studies [Chen, 1993] 

[Naccache and Shinghal, 1984] have indirectly analyzed the appropriateness of several of 

the more famous algorithms for use in recognizing hand-printed text or hand-written 

script. 

For the skeleton to be useful to the application of concern, the thinning algorithm 

should: 

• make sure that connectivity is maintained; 
• make sure that end-points are maintained; and 
• ensure that black pixels are stripped off symmetrically, so that the 

algorithm is isotropic. 
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During the early stages of this research, it was planned to use one of the thinning 

algorithms already existing in the literature. After searching the literature and 

experimenting with many of the thinning algorithms, it was determined that none of the 

famous algorithms produced skeletons that satisfy the three requirements mentioned 

above. 

Some algorithms generate a good shaped thinned image, but with poor 

connectivity compared to the original image. This may be a critical fault when performing 

character recognition. Other algorithms do not maintain end-points very well and yet 

others leave the skeleton slightly deformed as pixels are not stripped off symmetrically. 

These problems can have quite negative effects upon the recognition process. 

Most of the algorithms were invented for use in OCR applications where the 

resolution is much lower and line drawings are less complicated. Therefore a decision was 

made to create a new thinning algorithm tailored to the goals of connectivity maintenance, 

end-point maintenance, and guaranteed symmetric removal of pixels. The requirements 

for this algorithm were: 

1. the algorithm must be simple; 

2. the algorithm must guarantee connectivity in places where there is 
connectivity in the original image; 

3. the algorithm must guarantee maintenance of end-points meaning 
that a line with an end-point should not be shortened by the 
stripping process; and 

4. the algorithm must strip pixels from lines in a symmetric fashion so 
that no unexpected distortions are introduced. 

The BRT Algorithm described in the next section fulfills the requirements. 
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3 .2 Notation and the BRT Algorithm 

Since the images that are of interest in this application are black and white images, 

it is assumed that each element of the drawing to be thinned is a black or white pixel. For 

the following discussion, it is assumed that a document exists in a binary image file. This 

document may be viewed as a drawing F0 of connected black pixels residing on a 

background of white pixels. 

The eight pixels neighboring any pixel p (points no to n7 in the following diagram) 

are defined to be the eight pixels surrounding pixel p. 

»3 n2 n, 
n4p n0 

n5 n6 n7 

Pixels n0, n2, n4, and n6 are known as the 4-neighbors of pixel p. Some 

researchers call these pixels the orthogonal neighbors [Beun, 1973], All pixels n0...n7 are 

known as the 8-neighbors of/?. It is assumed that for any F0that contains a recognizable 

line drawing, a skeleton, S(Fo), exists where each pixel p e S(Fo) resides on the medial 

axis of the drawing [Arcelli, 1985], Informally, the medial axis is the set of all p e F0 

where p is exactly in the 'hiiddle" of a line both distance wise and in orientation. The 

requirement for any thinning algorithm is that any pixel p e S(F0) should be very near the 

medial axis. 

A skeleton S(F0) of drawing F is said to be 4-connected, if between any two black 

pixelsp0 top„ in the skeleton, there exists a pathp0, p,t p2, ... p„ where/>,./ is a 4-neighbor 

of pi for all I <i <n. A skeleton S(F0) of drawing F is said to be 8-connected, if between 
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any two black pixelspotop„ in the skeleton, there exists a pathp0, pi, P2, ••• pn wherep,.i 

is a 8-neighbor of pt for all 1 < z < n. An end-point is defined to be a black point with at 

most one 8-neighbor. 

Assume F0 is the original connected set or multiple connected sets of black pixels 

in the original line drawing. Also define F0to be the set of border pixels of F0, where 

a border pixel is a black pixel that has one or more white 4-neighbors. Let D0 c B0 be the 

set of pixels that will be deleted in the 1st pass of the BRT algorithm. Further define Bi c 

Fi to be the set of border pixels in Fi =F0- D0. Similarly, F, c Ft.i c F0 is the connected 

set of black pixels remaining after z deletion passes have been made and Bt c= F, is the set 

of border pixels of F„ Likewise, A.y £ Bt.i is the set of black pixels deleted during 

deletion pass i where F, = F,.i - DhI. 

A pixel p e Bt may be deleted during the i+Ist pass of the BRT algorithm if: 

a. p is not an end-point 

b. assuming p is deleted, then for all black 8-neighbors nj and nk of p 
where nj e Bt uBi+i and nk e Bt uBH!, n} and nk must be 
8-connected. 

and Bi+i is the partially completed border currently being marked. Using the above 

definition, A = /all pixels p e B, \ p may be deleted in the i+1st pass/. Without loss of 

generality, assume that Fo is a single set of connected black pixels in the original image. A 

high level specification of the BRT algorithm to thin F0 may be simply stated: 

z = 0 

repeat 
z = z + 1 
Ft = Fj.j - D,-i 

until B, = Bi.i 
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When the algorithm terminates B, = F, = S(F0). The technical details of the 

algorithm are given in Figures 3.3 and 3.4. In particular, the ordering of pixel selections 

for step b above is provided. 

The BRT algorithm resembles the contour thinning of [Arcelli, 1980] where each 

Bi represents a figure contour. It is also related to the algorithm in [Arcelli and De Baja, 

1985], Those algorithms are parallel algorithms and are more complicated than the BRT 

algorithm. However, the parallel nature of the algorithms provide computational 

advantages. These algorithms are intended for thinning more than just line drawings 

representing handwriting and as such sometimes provide unexpected results. 

The BRT algorithm, which is very simple and easy to code, produces an 8-

connected skeleton because a skeleton of this type is more useful for the types of 

processing required later in this research. Another reason that 8-connected skeletons were 

produced is that 8-connected skeletons have fewer noisy branches or dendrites [Rosenfeld 

and Davis, 1976], If it is desired to create a 4-connected skeleton, deletion criteria for the 

algorithm must be modified as follows. A pixel p e Bt may be deleted during the /+1st 

pass of the BRT algorithm if: 

a. p is not an end-point 

b. assuming p is deleted, then for all black 4-neighbors rij and nk o f p 
where e B, uBi+! and nk e B, uBi+/, rij and nk must be 
4-connected. 

3.2.1 BRT Implementation 

The thinning strategy used by the BRT Algorithm is quite simple. In brief, the 

strategy used is: 
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Loop through the following 2 steps until only a skeleton is left: 
1. mark every pixel in the border of the line drawing; 
2. delete every marked border pixel that can be deleted without 

deleting part of the skeleton. 

A border pixel is a black pixel that is neighbor to a white pixel in some direction. The very 

simplicity of the strategy guarantees the symmetric removal of black pixels from the line 

drawing. The only real difficulty involves determining when you are about to delete a 

pixel in the skeleton. 

Initially, the black and white image is read into a two dimensional array where each 

item in the array is stored in at least two bits. Therefore each item in the array can contain 

4 different values, 0 through 3. If 0 is assigned to white and 1 is assigned to black, the 

values 2 and 3 can be used to mark border pixels. Figure 3.1 contains an image and its 

numeric representation. The name q is given to the two dimensional array where the 

image is stored. 

Step 1 of the BRT algorithm involves marking every pixel in the border of the line 

drawing. A black pixel is considered to be in the border of the line drawing if it has at 

least one white 4-neighbor. Figure 3.2 shows the array q where the border pixels have 

been marked with a 2. 

Step 2 involves deleting all border pixels that are not part of the skeleton. To 

determine whether a border pixel can be deleted or is part of the skeleton, each of the 8-

neighbors must be examined. Therefore at each border pixel, a 3 by 3 window is centered 

on the pixel in question. 
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0000000000000000000000000000000 
0000000000000111111000000000000 
0000000000011111111110000000000 
0000000000111100111111000000000 
0000000001110000000011100000000 
0000000011110000000001110000000 
0000000011100000000001110000000 
0000000011100000000001110000000 
0000000011100000000001110000000 
0000000011110000000011100000000 
0000000001111000000111000000000 
0000000000111000001110000000000 
0000000000011110011110000000000 
0000000000001111111100000000000 
0000000000000111111100000000000 
0000000000001111001110000000000 
0000000000011110000111100000000 
0000000000111100000011110000000 
0001110001110000000001111111000 
0001111111100000000000011111100 
0000111110000000000000000111000 
0000000000000000000000000000000 

Figure 3.1. An Example Image and Its Numeric Representation 

In contrast to most other thinning algorithms, the window is not moved across the 

rows of the image or down the columns. Once a pixel p e Bt is discovered and becomes 

the center of a window, it is guaranteed that at least one of the neighboring pixels pu e B{ 

in the window is also a border pixel unless p is the last pixel from the current connected 

component of 5, to be considered. Using this information and the deletion criteria listed in 

Section 3.3, it is decided if the center border pixel p should be deleted or not. The 

window is then moved to be centered at one of the border pixels pk which was a black 8-

neighbor of the previous window center. 
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0000000000000000000000000000000 
0000000000000222222000000000000 
0000000000022122111220000000000 
0000000000212200222212000000000 
0000000002120000000021200000000 
0000000021120000000002120000000 
0000000021200000000002120000000 
0000000021200000000002120000000 
0000000021200000000002120000000 
0000000021120000000021200000000 
0000000002112000000212000000000 
0000000000212000002120000000000 
0000000000021220021120000000000 
0000000000002112211200000000000 
0000000000000211221200000000000 
0000000000002112002120000000000 
0000000000021120000212200000000 
0000000000212000000021120000000 
0002220002120000000002212222000 
0002112222200000000000022111200 
0000222220000000000000000222000 
0000000000000000000000000000000 

Figure 3.2. Example Image with its Border Marked. 

In this fashion, once Bt is marked and the window is placed at some p e Bh the 

window is moved along the border from one pixel in Bt to the next, removing border 

pixels. Note, as the window is moved along the border, if a border pixel in the center of 

the window is deleted, some of the neighboring pixels in the window can be marked as 

new border pixels for the next iteration. Also, if the border pixel is not removed, that 

pixel must be marked as a border pixel for the next iteration. Border pixels that are 

marked in anticipation for the next iteration of the algorithm are marked with a different 

mark than the current border pixels. 
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At some point in time, the window will encounter a border pixel with no 

neighboring border pixels. This does not mean that the current iteration of the algorithm 

is complete. For example, in the image in Figure 3.2, the window would move all the way 

around the outside border removing border pixels first and then run out of neighboring 

border pixels (that could be discovered via window movement). The algorithm would 

then have to search further to discover the border pixels inside the middle of the loop. 

After the window has finished traversing the border pixels in the middle of the loop, then it 

will be time to move to the next iteration. 

Figure 3.3 and Figure 3.4 give a pseudo-code version of the Border Reduction 

Thinning Algorithm where the legal_to_remove condition is defined in Section 3.3. The 

algorithm will make one or more iterations over the original image stored in array q. It 

will terminate when it makes an entire iteration and no black border pixels are deleted. 

When the algorithm falls out of the loop, the image stored in array q, containing only 

white and the latest border pixel value, has been thinned. 

3.3 Analysis 

The fact that this algorithm should produce skeletons where most pixels in the 

skeleton are very near the medial axis should be intuitively obvious. The boundary of the 

black pixels in the original line drawing is removed, then the boundary of the black pixels 

in the resulting line drawing is removed, in succession until only the skeleton remains. 
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mark all the border pixels in p to 2 
initialize border_value = 2 
initialize new_border_value = 3 
initialize pixels_have_been_removed = true 

loop while pixels_have_been_removed 

initialize current_border_pixeI_found = true 
loop while current_border_pixel_found 

search array q for the upper/leftmost pixel containing: border_value 
if there was a q(i, j) = border_value 

set (x, y) to the coordinates (i, j) 
call routine: window_around_border with x, y as parameters 

else 
current_border_pixel_found = false 

end if 
end loop 

if border_value = 2 then 
set border_value = 3 

else 
set border_value = 2 

end if 

end loop 

Figure 3.3. The BRT algorithm / Driver Portion 

As the window proceeds moving from one pixel in to the next deleting pixels, 

it is an easy task to mark the pixels in Bt. If a pixel p is deleted, then for any black pixels n 

<£ Bj.i which are 4-neighbors of/?, n e B,. 

The only question remaining to discuss about the BRT Algorithm Implementation 

is: When is it legal to remove a pixel? A pixel may be removed, if after removal, it is 
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Window_around_border(x, y) [parameters - (x, y) of a border pixel] 

initialize ran_out_of_border = false 
loop while not ranoutofborder 

establish 3x3 box around q(x, y) 
if q(x, y) has no non border black pixel 8-neighbors then 

if it is legal to remove q(x, y) then 
set q(x, y) = white 
set pixels_have_been_removed = true 

else 
set q(x, y) = newbordervalue 

end if 
elseif it is legal to remove q(x, y) then 

set q(x, y) = white 
set pixels_have_been_removed = true 
mark all black 4-neighbors of q(x, y) to new_border_value 

end if 
search current box for neighbors of q(x, y) that contain value = border value 
if a border pixel is found in a neighboring pixel 

set (x, y) to the coordinates of that pixel 
else 

set ran out of border = true 
end if 

end loop 

Figure 3.4. Routine: Window_around_border 
(legal_to_remove is defined in section 3.3) 

guaranteed that the skeleton maintains connectivity and the end-points of lines are not 

whittled away. 

Connectivity can be guaranteed in the skeleton if connectivity among neighboring 

pixels is maintained during deletion of a pixel. Assume the window is placed with its 

center over a border pixel candidate for deletion. Also assume that the window has other 

border pixels in it—generic border pixels including current border pixels (in B,) and those 
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marked for the next iteration (in Bi+I). Then, currently, there is connectivity between or 

among each generic border pixel in the window because a connection can go through the 

center pixel of the window. All that is required to guarantee connectivity in the skeleton is 

to allow removal of that center pixel only if after the deletion and subsequent marking of 

new border pixels, that connectivity still exists. 

For example, consider the following 5 cases and assume the decision must be made 

concerning deletion of the current border pixel p (in the center): 

. . b . b * . . . t . b . b 

. p * • P * • P • • P * • P 
t * * . t t * b b * * t t 
Case 1 Case 2 Case 3 Case 4 Case 5 

Assume . (a dot) represents white pixels, * represents black non_border pixels, b 

represents current border pixels with p representing the current window center border 

pixel (p, b e B,), and t is a border pixel marked for next iteration (t e 5,w). Also assume 

the pixel neighbor order: 

n3 n2 nj 
n4p n0 

n5 n6 n7 

In Case 1, if the center border pixel, p, is deleted, pixels in position n0 and would 
become border pixels. This would leave generic border pixels in spots no, rti, n5, 
and Wtf. There is a path from each border pixel to all others still, so the deletion of 
the center is allowed. (Pixel «<; is connected to pixel n0 by a diagonal.) 

In Case 2, if the center border pixel is deleted, the pixel no would be marked as a new 
border pixel. This would leave generic border pixels in spots no, n2, and n7. There 
is connectivity so the deletion is allowed. 
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In Case 3, if the center border pixel is deleted, the pixel n6 would be marked as a new 
border pixel. This would leave generic border pixels in spots n5, n6, and n7. There 
is connectivity so the deletion is allowed. 

In Case 4, if the center border pixel is deleted, the pixels in positions n0 and n6 would be 
marked as new border pixels. This would leave generic border pixels in spots n0, 
ni, n3, n5, and n6. The border pixel n3 is not adjacent or connected to any of the 
other border pixels. If this deletion was allowed, there would be disconnectivity in 
the window and ultimately, this would cause disconnectivity in the skeleton as 
well. 

Case 5 is a situation where most of the black pixels have been deleted and the window is 
searching the current border looking for any areas that may be left containing black 
pixels. This window contains only white and border pixels. It should be clear that 
if pixel p is deleted, then no new border pixels can be added and there will be a 
break in the skeleton. Note that connectivity among the remaining border pixels 
does not exist; therefore, the deletion would not be allowed. 

In summary, all that is required to guarantee connectivity in the skeleton is to 

allow deletion of a pixel only if the remaining border pixels in the window are connected 

after the deletion. In other words, no pixel may be deleted that causes disconnectivity in 

the border whether the border is B, or Bi+!. 

To ensure that line end-points are not whittled away by the thinning process 

requires one additional check. For instance, assume that a line 5 pixels wide comes to an 

end-point. After the first thinning iteration is made and the outside border of the line is 

removed, the remaining line is three pixels wide. Note that the line has become shorter by 

one pixel. After the second thinning iteration is made and the outside border of the 3 pixel 

width line is removed, the remaining line is one pixel wide and it consists totally of border 

pixels. The next iteration, the window will move along this line and not delete any pixels 

until it reaches the end pixel. The window situation might be: 
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t b 

If the center pixel is deleted, then connectivity would still exist; but, if this is allowed, for 

this and each subsequent iteration, the thinning algorithm would excessively erode the line 

away each pass and it would continue because the loop terminates only when no pixels are 

deleted. In order to prevent this, simply require that: if a border pixel is to be removed, 

then there must be at least two remaining generic border pixels left in the window. With 

this additional requirement, removal in the above case would not be allowed. 

Applying the pixel deletion criteria to the Figure 3.4 routine 

Window_around_border implies that the check: 

it is legal to delete p(x, y) 

is true when: 

if the deletion of p(x, y) is allowed, there will be at least two remaining 
generic border pixels left and there will be connectivity among the 
remaining generic border pixels in the window 

3.3.1 Skeleton Quality and Problems 

The skeletons produced by the BRT thinning algorithm very closely approximate 

the original shape, retain the same connectivity, and maintain almost the same end-points 

as the original. These skeletons are much more appropriate for the application of hand-

printed text and handwritten cursive script recognition than the existing algorithms 

studied. Note that the BRT algorithm is a sequential, multi-pass algorithm. The ever 

present trade-off between quality and execution speed is present. 
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The application of cursive script recognition as it is implemented in this research 

requires a very good skeleton or the recognition process will not perform well. For this 

reason, the small amount of extra computation that is required by the BRT algorithm is 

worth the trade-off. Figure 3.5 shows some originals and skeletons that are produced by 

the BRT algorithm. 

The problem of dendrites, a problem with thinning in general, was not solved in the 

BRT algorithm. A dendrite or noisy branch is a short line existing in the thinned image 

but one that should not be present. After some experimentation with thinning algorithms, 

it was found that most of the thinning algorithms encounter dendrite problems. 

The removal of dendrites from the skeleton is a particular sticky problem. It is not 

clear that it even should be done. How is it really known that the extra line is a dendrite 

and not an intended extra short line by the author of the original image? A good 

compromise might be that short lines of length less than some threshold are removed 

where the threshold is carefully chosen. This solution was chosen for the current research, 

but only applied in a postprocessing fashion in the line segment approximation phase. 

Large dendrites caused by large deformities in the original line drawing would cause 

problems with even human recognition. 

Dendrites are caused by minor flaws in the original image. A usual cause is an ink 

smear on the original or a place were pixels that should be present have been noisily 

removed. The two cases are analyzed below. Consider a line in a drawing that has a tiny 

outgrowth of pixels such as the following, where periods represent white pixels and lower 

case *'s represent non-border black pixels in the line and b's represent border pixels. 
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Figure 3 .5. Example BRT Skeletons 
Several original images and the corresponding skeletons 

b b b : : : : 
b b b b b b b * * * b b b b 

During the next iteration of the BRT algorithm, the algorithm would thin to the following: 

b 
b b b . . . . 

p * * * b b b b 
t ' t t t t t * * * * * * * * 

where the t's represent border pixels for the next iteration and p represents the current 

center of the window. The algorithm would delete p, mark its 6-neighbor and 0-neighbor 
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as new border pixels. The window will then move to be centered at the pixel represented 

by the bold b in the above diagram. This window center was chosen because it is the only 

current border pixel still surviving. This border pixel would then be deleted as it fulfills all 

the requirements of deletion producing the following: 

b b . . . . 
t * * b b b b 

t t t t t t t * * * * * * * 

The algorithm would then choose the now bold b above. It could not remove that border 

pixel because it is an end-point. Ultimately after a couple of iterations, these pixels would 

create a short line, a dendrite, in the skeleton. 

The other type of dendrite is caused by missing pixels usually near a turn in a loop. 

Consider the following circumstance representing the turn in a loop: 

. . . x x x x x . . . 

. . x x x x . x x . . 

. x x x x x x x x x . 
x x x x . . . x x x x 

Notice the missing black pixel in the line. The pixels around that missing pixel become 

border pixels by default. As the thinning algorithm reduces the outer border and the inner 

loop border, it also thins around that border. One iteration produces the following: 
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. . . . x x . . . 

. . x x . . x . . 

. X X . X X X X . 
X X X X 

After another pass, the final extra pixels will be removed: 

x x 

. x . x x x . 
x x 

So the ultimate result would be the correct loop with a tiny extra loop at a turn. 

These dendrite problems plague thinning algorithms and, in many instances, they 

can create problems in the recognition process. This is especially true if the recognition 

methodology is based on structural analysis of the skeleton (as this research is based) and 

the structure has an extra line or loop in it. 

One possible solution to this problem involves a post-processing pass to the 

thinning algorithm to remove dendrites. However, this extra work was not needed in this 

research since the next phase of image pre-processing, the line segmentation 

approximation phase discussed in the next chapter, eliminates the problems. 



CHAPTER IV 

LINE SEGMENT APPROXIMATION 

4.1 Overview 

Line segment approximation, or vectorization, involves the conversion of an input 

skeletal line drawing, such as might be output from the BRT algorithm, into a set of points 

and edges. These points and edges, when drawn on a two-dimensional graph, 

approximate, in a piece-wise fashion, the shapes of the line drawing represented by the 

skeleton. Figure 4.1 shows a thinned line drawing, its line segment approximation that 

was created with the algorithm described in this chapter, along with a drawn version of the 

line segment approximation. 

The thinning process greatly reduces the amount of data in an original line drawing 

while maintaining information about the shape and connectivity. The main purpose of line 

segment approximation is the further reduction of data that must be processed in later 

stages of application processing. If high quality line segment approximations, or 

singularity graphs, such as that in Figure 4.1, can be accomplished, the amount of data 

can be greatly reduced with only a small loss in shape information. For example, the 

singularity graph shown in Figure 4.1 has only 10 singularity points and 11 edges which 

join the points. In this case, a singularity point can be thought of as an end-point for one 

or more of the graph edges. 

67 
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Image:00 (005, 005) to (080, 139) 

sing_start=G0 n_sings=10 
path_start=00 n_path_items=ll 
loop_start=01 n_loops=02 

Singularities 
NDX (j, i) stype nloop # 
00 (040, 063) i 01 001 
01 (039, 058) f 01 001 
02 (075, 005) f 01 001 
03 (080, 008) f 01 001 
04 (025, 084) i 01 002 
05 (029, 093) i 01 002 
06 (053, 086) e 00 
07 (008, 139) f 01 002 
08 (005, 135) f 01 002 
09 (010, 086) e 00 

Singularity Path 
edge fr-to theta 
00. 00-01 01 .768 
01. 01-02 00 . 974 
02. 02-03 05 .743 
03. 03-00 04 .084 
04. 00-04 04 .092 
05. 04-05 05 .131 
06. 05-06 00 .284 
07. 05-07 04 .284 
08. 07-08 02 .214 
09. 08-04 01 .197 
10. 04-09 03 .274 

Loops 
loop nbr center singularities 
01 (033, 059) 0 0 0 — 0 0 3 — 0 0 2 — 001 
02 (113, 016) 004 — 008 — 007 — 005 

Figure 4.1. An Example Singularity Graph 
The skeleton of character ' f , its singularity graph, and its drawn singularity graph. 

In this research, the singularity graph is used to extract features. Many other 

methods have been proposed. For example, some methods 

• analyze the entire line drawing without thinning [Srihari and Bozinovic, 1987] 
• analyze the thinned figure [Aoki and Yamaya, 1986] [Aoki and Yoshino, 1989] or 
• analyze the outer and inner contours of the line drawing [Cohen et. al., 1991], 
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These methods must examine possibly hundreds or thousands of pixels to recognize 

individual features. However, examining only the edges and nodes in a singularity graph 

can be quite a dramatic improvement over these methods. 

The disadvantage to using singularity graphs is that during the vectorization 

process some information is lost and deformities may be introduced. It is extremely 

important to obtain a singularity graph that very closely approximates the original skeleton 

and simultaneously reduces the data to allow efficiency in the recognition process. 

4.2 Notations and Definitions 

A singularity in a curve of a skeleton corresponds to a pixel p which is the 

optimum point to subdivide the curve into two line segments such that when the segments 

are drawn, the segments more closely approximate the given curve than any other possible 

choice of singularity. Any intersection point in a line drawing, as well as an end point, are 

also considered singularities. 

A singularity graph for a skeleton S, SG(S), is a graph where 

• the nodes represent the set N of all singularities of S and each node is labeled with 
an (x, y) coordinate indicating the location of the singularity in the image; 

• the edges represent a set E of connecting line segments that connect nodes. 

such that when a two-dimensional drawing is made using the (x, y) coordinates that label 

each of the nodes in N, the set of drawn edges E resembles the original skeleton. 

The greater the number of singularities, the more closely the drawn singularity 

graph can approximate the skeleton. In the extreme case where the set of singularities N 

represents the entire set of pixels in the skeleton and there are edges between any two 8-
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connected pixels, the singularity graph would be a duplicate of the original skeleton. The 

problem with using this singularity graph is that there is, in essence, no data compression. 

If one out of every two pixels are selected to be nodes in the singularity graph, then data 

compression is 50% with very little loss of information. 

The desired algorithm produces a singularity graph that chooses singularities at 

irregular intervals in an effort to model the length of the pen strokes that created the 

drawing with the exception of intersection singularities and end-point singularities. 

Therefore, edges will have differing lengths but the lengths will more closely model the 

pen strokes. This problem has been addressed in the literature and was discussed in 

Chapter II. 

4.3 Methodology 

The process used to create a singularity graph in this research involves two phases: 

1. Marking the points in the skeleton where the singularities exist; and 
2. Examining the skeleton and creating the singularity graph 

• with nodes for each singularity marked in step 1 and labeled 
with singularity pixel coordinates; and 

• with edges connecting nodes determined by connectivity 
information present in the skeleton. 

Marking the points in the skeleton where singularities exist is the most difficult 

phase. Singularities must be selected such that the number of singularities chosen is 

minimized, yet the shape of the drawn singularity graph created must closely resemble the 

skeleton. The trade-off is that the more singularities chosen, then the more closely the 

resulting drawn singularity graph can resemble the skeleton; conversely, the fewer chosen, 
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the less the drawn singularity graph will resemble the skeleton. The trick is to choose just 

the right number. 

Once the singularities are marked, the skeleton must be processed to determine the 

nodes and edges of the graph. The mechanism used is a recursive traversal of the skeleton 

starting at a known singularity such as an intersection or end-point. A node for the 

beginning singularity is inserted into the graph and the traversal process begins. The 

traversal recursively follows along the skeleton, in a specified order of travel, keeping 

track of which node represents the last singularity it encountered, called the current 

singularity. When another singularity is discovered, a new node is inserted into the 

singularity graph along with an edge from the current singularity to the new singularity. 

Then the new singularity is marked as the current singularity and the traversal continues. 

When a situation is encountered that involves a recursive backup, such as reaching 

an end-point in the skeleton or reaching an intersection where all exiting lines have already 

been traversed, then the traversal algorithm returns to a place on the skeleton where it can 

continue. The singularity, that is returned to, is then marked as the current singularity and 

the traversal continues. 

4.4 Marking Singularities with FI 

The method used to mark singularities is a variation of a pattern recognition 

technique called Finite Induction (FI) [Fisher and Case, 1984], A short introduction to FI 

is presented in the Appendix. It is a generalized pattern matching technique that is a 

mathematical pre-algebra and can be very effective as is demonstrated in this research. 
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Using FI, patterns that the system has learned (has been trained with) are stored in 

FI rulings in a process called FI factorization. A ruling is similar to a context free 

grammar and can automatically be generated by FI factorization. Once a database of one 

or more FI rulings has been acquired, the FI rulings can then be used to recognize patterns 

from input data. The recognition process is called FI following. The activity of 

performing FI following on input data according to an FI ruling produces a 'bloseness to a 

match" measurement called an FI residual. The FI residual, or the length of the residual, 

may be used to measure the closeness of the pattern in the input data and the pattern that 

is represented by the FI ruling. A short residual length generally implies a very close 

match between the input pattern and the pattern represented by the FI ruling. 

For this application, a short target pattern must be recognized as present in a long 

stream of data. For this reason the actual residual length can not be used as a closeness 

measurement. What is used is the local residual density. In this research, the local 

residual density is defined as the length of the residual in a contained local area where the 

size of the local area to be checked is maintained in the exemplar and is a relative 

measurement dependent upon the height of the text. Actually, the residual density is 

calculated and maintained for three contained local areas of the skeleton, where each local 

area is of a different length. If the density of the residual in any of the local contained 

areas ever gets low enough, then a match is signaled. 
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4 4.1 Input to the FI Following 

In previous work, a chain-graph mechanism was used to represent the shape of a 

skeletal figure by specifying directions of movement when following along the skeleton 

[Aoki and Yoshino, 1989], For example, if a skeleton contains the following set of pixels 

(where . represents white and x represents black): 

x . 
x . . 

. . . . X X . . . 
X X X X 

and directional indicators are specified by the following diagram: 

3 2 1 
4 p 0 
5 6 7 

Directional Indicators 

where each number in the perimeter of the diagram represents a direction from pixel p, 

then from the given leftmost starting point, the chain graph 0-0-0-1-0-1-1 represents the 

skeleton information above. 

To begin the singularity search, a recursive traversal of the skeleton is begun from 

a known singularity pixel (at an end-point in the skeleton or at a line intersection). The 

traversal then recursively moves over the skeleton providing chain-graph type directional 

indicators to the FI following process as it continues. The traversal continues until there is 

no more skeleton to process. 
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4.4.2 Using FI Following to Mark Singularities 

A set of twelve FI rulings was created to represent straight lines in various 

directions. Twelve directions were chosen to match the directions in the following 

diagram: 

L t 

"A 
^ B 

w 
H ( 

V 
j F 

where each angle, Z AB, Z BC, Z CD, etc. are each 30°. Assume that O is the mid-point 

in the above diagram, sets of pixels in the equivalent of each segment OA, OB, OC, OD, 

... OL were used in FI factoring for 12 FI rulings. Each of the twelve FI rulings will be 

used to recognize any curve in a line drawing that travels approximately in the direction Oi 

for 'A' < i < 'L\ These rulings were created only once during the development of the 

algorithm to mark singularities 

Given that the FI rulings for each vector type are known, the algorithm to mark the 

singularities is quite simple. Begin a traversal at an already known singularity. This will 

be at an intersection or an end point as singularities automatically exist in these places. 

The chain code directional indicators from the skeleton traversal will be provided by the 

traversal as input to the FI following process. Then the FI following process is initiated. 



75 

As the traversal continues, whenever the FI following process determines a 'tnatch" using 

the local residual density indicator, a singularity is marked in the skeleton. The FI 

following process continues until the skeleton has been completely traversed. The FI 

following process over a skeleton must be repeated for each FI ruling in the above ruling 

set to determine all singularities. 

As the FI following proceeds, the residual density of three local areas is 

maintained, a long, a medium, and a short area. If the density gets below the threshold for 

any of the three areas, then a singularity is marked by placing a marker into the image. 

The density thresholds were carefully selected by hand and work exceptionally well. The 

marker can be any color pixel other than black or white in the already mentioned array that 

contains the line drawing. 

4 .4.3 Creation of the Singularity Graph 

Once the singularities are marked within the skeleton, one more pass is needed to 

create the singularity graph. As described earlier, a recursive traversal is started at an 

important singularity, usually an intersection singularity or an end-point singularity. A 

node is created in the singularity graph labeled with the (x, y) coordinates of the initial 

singularity. The traversal recursively follows along the skeleton, in a specified order of 

travel, keeping track of the last singularity that it passed. It is referred to as the current 

singularity. 

When another singularity is discovered, a new node is inserted into the graph along 

with an edge that connects the current singularity with the new singularity. This new 
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singularity is a point in the skeleton that one of the following passes had marked as a 

singularity or it is an intersection or end-point in the skeleton. The new singularity is then 

established as the current singularity and the process continues. When a situation is 

encountered where the traversal can not continue, such as reaching an end-point in the 

skeleton or reaching an intersection where all exiting lines have already been traversed, 

then the traversal returns to a recursion point in the skeleton, and takes a remaining 

untraversed path. 

A recursion point is a place in the skeleton that is at the intersection of two lines. 

Previously during this pass, the traversal had encountered this point in the skeleton. There 

were two or more paths that could be selected to continue. The traversal had selected one 

of the paths and had continued in that direction. When the traversal encounters a spot in 

the skeleton where it cannot continue, such as an end-point or an intersection point where 

all other paths have previously been processed, it will return to this recursion point. If 

there still exists an untraversed path from this point, the traversal will continue in that 

direction; otherwise, it will return to the next previous recursion point. When it returns to 

the initial recursion point and there are no other paths to take, the FI following is complete 

along with the singularity graph. See Figure 4.1 for an example containing a thinned letter 

' f , the drawn singularity graph for the thinned letter ' f , and a listing of the singularity 

graph in tabular form. 
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4.4.4 Final Analysis and Comments 

Once the vectorization process is completed, a singularity graph is available. The 

nodes of the graph are labeled with the (x, y) coordinates for the singularities with respect 

to the skeleton. Along with the (x, y) coordinates for each singularity, the type of 

singularity is also recorded. Singularity types are: end-point singularities, intersection 

singularities where lines cross, and flow-through singularities which represent the 

singularities selected in a curved line used to approximate the curve with line segments. 

The edges of the singularity graph consist of a list of (si, s2) pairs where Si and s2 

represent the singularities that are the end-points of the edges. Also for each edge (si, s2) 

in the set of edges, an (r, 9) field is maintained such that if (x, y) is the vector representing 

the si component of the (si, s2) singularity pair, and (x', y') is the rectangular coordinates 

of the vector represented by (r, 0), then (x + x', y + y') equals the (x, y) coordinate of s2. 

The above process produces very high quality vectorized approximations of input 

skeletons. Figure 4.2 shows several thinned images with their drawn vectorized 

approximations. The quality of the singularity graph is good enough for the singularity 

graph to be used as the basis of the feature extraction process instead of the skeleton itself. 

Note that the drawn images in Figure 4.2 only approximate the singularity graph and that 

imperfections are caused by the enlargement process and the quality of the line drawing 

routine. 

Using this method to perform vectorization has a trade-off. The high quality 

singularity graphs produced by this method require 13 passes over the input skeleton, one 
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Figure 4.2. More Examples of Drawn Singularity Graphs 
Original line drawings (greatly enlarged)and the (similarly enlarged) drawn 

for each ruling to mark the singularities and one to create the set of singularity graph 

nodes and edges. Other algorithms discussed in Chapter II only required one pass. 

However, the other algorithms performed much more work per pass than this algorithm, 

and, even if more passes were involved, it was decided that a high quality singularity graph 

was worth the extra effort. 

4.5 Post-processing the Singularity graph 

The dendrites produced by the thinning process have to be addressed at this point. 

An easy method to recognize and remove dendrites is to look through the singularity 

graph and find edges where the r coordinate of the (r, 0) component is less than an 

established dendrite length threshold. If one singularity in the (si, s2) pair is an end 

singularity and the other is an intersection singularity, then the edge can be removed from 

the set of edges and the node representing the end singularity of the pair can be deleted. 
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Other simplifications are also possible. As an example, consider the following situation in 

a skeleton where s represents a singularity and an x represents a black pixel in the 

skeleton: 

s i 
X 
X 
X 
X S3 
S 2 x 
X 
X 
s 

There are three edges in the set of edges for this singularity graph, (s,, s2), (s2, s3), 

(s2, S4). Obviously the (s2, s3) edge is a dendrite. Also the (x, y) coordinates for each 

singularity is known, so it is easy to remove the dendrite from the skeleton. However, 

since later processing only involves the singularity graph, there is no longer a need for the 

skeleton. So simply remove the (s2, s3) edge from the singularity graph, combine the 

vectors (s,, s2) and (s2, s4) into a single vector (s,, s4), and delete the two singularity nodes 

s2ands3. 

As one final note, the mechanism to build a singularity graph builds the graph as a 

di-graph. It is an easy matter to add extra edges in the graph to create an undirected 

graph at a later time. In this case, for each edge (si, sj) in the singularity graph, (sj, s.) 

must be added as a new edge. 



CHAPTER V 

FEATURE EXTRACTION 

5.1 Background 

This phase of the application involves examining the input, consisting now of a 

singularity graph containing a vectorized approximation of a skeleton, and attempting to 

discover the presence of features. These features will be used later as input to the 

recognition engine which finds higher level features—characters and character constructs. 

The feature extraction phase is considered by many to be one of the most difficult 

phases in the entire area of pattern recognition [Impedovo et. al., 1991], It has been 

widely studied with respect to OCR and handprinted text recognition (see Chapter II) but 

much of that work is not directly applicable to recognition of cursive script. In OCR and 

handprinted text recognition, sets of features at this level are extracted for use in 

classifying entire small line drawings representing characters. In this research into 

connected cursive script recognition, sets of features at this level are extracted for use in 

extracting larger features called character constructs in large line drawings representing 

words or partial words. The character construct features are used, in turn, in classifying 

the large line drawings representing words and word constructs. 

If features are to be recognized within a large line drawing representing several 

characters, then a method of managing large numbers of features is required so that the 

80 
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features and their topological organization are conveniently available during the character 

extraction phase. In this fashion, a subset of features in the total set of features must be 

used to recognize a character construct within the large line drawing. 

For example in OCR, once features are extracted, character recognition is 

straightforward. Feature extraction many times involves discovering the feature vector for 

an input line drawing (character). If the character contains one hump, two loops, a slash 

and a zero count for other features, the feature vector might be (1,0,0,2,0,1). To classify 

the character, these feature vectors are compared against known exemplar feature vectors 

for each character that may be recognized possibly using a Euclidean or weighted 

Euclidean distance as the measurement: 

where Df represents the Euclidean distance between the input character and feature j in 

the library L of known feature vectors. is the zth feature in theyth vector in library L. 

F' is the /th feature of the input vector, wi is the weight applied to feature i as some 

features may be more reliable than others. N is the number of features. The character 

would be classified as the one with the smallest distance. 

Feature extraction in OCR and handprinted text recognition reflects the 

requirements of the classification process used. Feature extraction in cursive script 

recognition must do the same. In cursive script recognition, a feature count vector is of 

little use. The relative position of the features in the line drawing, or singularity graph for 
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the line drawing, is important—not just the feature counts. If unambiguous character 

segmentation were possible, it would be less important. However, assuming fairly 

unconstrained script, assessing where characters begin and end in the line drawing involves 

large amounts of ambiguity. An efficient mechanism for organizing features, which may 

overlap, so that they can be easily scanned and associated locally with other features is 

important. In this research, the feature graph, which is output from this phase, was the 

mechanism chosen. The mechanism used to perform character extraction is discussed in 

Chapter VI. 

The vectorization phase, that was discussed in Chapter IV, can also be considered 

part of the feature extraction phase. Each edge and singularity of the singularity graph can 

be considered a feature. In this case, the features recognized in this phase are joined 

together with the singularity graph of the skeleton to create an expanded singularity graph, 

known as the feature graph. The feature graph is then used as input to the higher level 

feature recognition engine which recognizes the characters and character constructs. 

Many different kinds of features are present in cursive script and handprinted text. 

It is important to consider very carefully the kinds of features that will be extracted. It is 

obvious that the types of features useful for cursive script recognition differ from those 

used in OCR and handprinted text recognition. The problem is to extract features which 

will enable the system to discriminate efficiently between and among characters and 

character constructs in later phases. 
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The main requirements for a feature extracting mechanism in this research are: 

• the mechanism has to be computationally efficient; 
• the recognition mechanism must be very thorough in that it recognizes 

every feature for which it has been trained; 
• the mechanism must be flexible in that it may easily be trained with new 

features and new shape possibilities for existing features; and 
• the data structure created to contain the features that are discovered must 

be an efficient mechanism for organizing features so that they can be easily 
scanned and associated locally with other features. 

5.2 Features Extracted 

After a close examination of the alphabet, especially the lower case alphabet, a 

small set of features was selected for extraction. This set consists of several kinds of 

loops, a feature that looks like a c, a feature that looks like a backwards c, a feature called 

a hump which is part of an m, and a feature that looks like a u. These features along with 

FI rulings of the feature graph for each character construct will be used to extract 

characters. These features were purposefully chosen to keep the number of features small. 

See Figure 5 .1 for a hand drawn visual image of the features chosen. 

The features were selected to enable a high correct classification rate for lower 

case letters. The same features were used in the description of upper case characters with 

less success. It was for this reason that the design of the feature extraction mechanism 

includes the flexibility for the implementor to add features as new and desirable features 

are discovered. Use of these new features must be coordinated with the character 

extraction mechanism that will use the features to build new abstractions for recognizable 

characters. 
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a 

C D A U 
Figure 5.1. Features Extracted (hand drawn). 

Features include a long narrow up loop, long narrow down loop, round loop, 
small round loop, c-type, backwards c type, hump, and cup. 

The data structure used to store exemplar features is described in Section 5.3.2.2. 

The structure can store and efficiently access large numbers of features, with many 

different variations on each feature. 

5.3 Feature Extraction Mechanism 

The features discovered by the feature extraction mechanism are divided into two 

categories reflecting the method used to extract the features. There are loop type and 

non-loop type features. A loop is any set of vectors in the singularity graph where there is 

a path from a singularity back to the same singularity. The other four features fall into the 

non-loop category. 
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5.3.1 Loop Extraction Methodology 

The types of loops extracted were subdivided into categories. The two main 

categories were: single intersection loop and multiple intersection loop. Single 

intersection loops involve loops that have exactly one intersection point. Consider Figure 

5.2.a containing a cursive '1' (lower case L) and a cursive 'y\ Both are single intersection 

loops. The '1' contains a single intersection loop with direction 80° from the intersection 

point. The y contains a single intersection loop with direction 260° from the intersection 

point. The loop directions may be used for heuristic purposes during the later recognition 

process. The length, width, and center of a loop is also recorded so that the loops can be 

further subdivided into long loops and round loops. A multiple intersection loop is shown 

A 
c. 

Figure 5.2. Examples of Loops 
Single intersection and multiple intersection loops. 
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in Figure 5.2.b in the letter's'. A drawn singularity graph for the character containing the 

loop of Figure 5.2.b is displayed in Figure 5.2.c. Notice how in the singularity graph for 

' s \ there are two intersection singularities in the loop. An intersection singularity is any 

node incident with more than two edges. 

For the purposes of this research, a loop is any set of vectors in the singularity 

graph where there is a path from a singularity in the loop back to the same singularity. For 

example, the letter d shown in Figure 5.3 has six loops, 3 loops that do not contain any 

other loops, 1 loop that subsumes the top two loops, 1 loop that subsumes the bottom two 

loops, and 1 loop that subsumes all other loops. As will be discussed later, each loop is 

considered a feature and is placed in the feature graph. 

The process for the recognition of loops involves traversing the singularity graph 

looking for situations where there is a path from a singularity back to that singularity. 

Given a singularity graph, a two dimensional connection matrix form of the graph is 

Figure 5.3. An Example of Subsumed Features 
The original version, thinned version, and drawn singularity graph 

of a 'd' containing 6 loops. 
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created containing singularity connection information. A traversal of the graph is done 

stacking singularities as they are found. If a singularity is found that is already on the 

stack, a loop has been discovered. The loop is recorded, the stack is popped back to the 

last intersection singularity placed on the stack, another direction is chosen (if possible) 

from that singularity and the process continues. If no other edges from that intersection 

singularity can be found, then the stack is popped again to the next intersection singularity 

in the stack and so on. 

The different types of loops are distinguished heuristically by checking the known 

height of the script with the length and width of the loop. If the length of the edges are 

"long" relative to the known height of the script and the width is much smaller than the 

height, a long narrow loop exists. If the length and width of the loop is near the same, 

then a round loop exists which can be either large, regular, or small depending upon the 

length of the edges relative to the known height of the script. The loop direction is the 

angle of the vector that points from the loop intersection point to the singularity in the 

loop that is the furthest Euclidean distance from the intersection singularity. 

5.3.2 Extracting Non-Loop Features 

After the pass is made over the singularity graph to extract loops, another pass is 

made to extract non-loop features. As mentioned above, the non-loop features extracted 

include the "c" shape, the "backwards c" shape, the "hump" shape, the "u" shape or 

cup shape. 
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5.3.2.1 Design of Non-Loop Feature Extractor 

As this phase is the most difficult and time consuming phase of similar projects in 

the literature, steps were taken to make this phase a time efficient phase. Figure 5.4 

contains three different edge groupings that represent a "c" shape. It should be apparent 

that there are many other sets of edges that might be placed together to obtain a "c" 

shape. The method chosen to extract features involves manual training of the feature 

recognizer and storing the various possible edge direction/length combinations in an 

efficiently accessible data structure. 

a. 

Figure 5.4 Example Feature Exemplars 
Three different singularity graph edge patterns for representing the feature "c" 

During early experimentation, many different edge combinations for each feature 

were discovered. These approximate edge combinations were translated into an alphabet 

suitable for storing into the data structure. The alphabet involves the approximate 

direction of the edge as a vector beginning at the source singularity and an approximate 
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length of the vector, either short, medium, or long. The directions are illustrated in the 

following diagram: 

L t 
K \ 

^ B 

/ C 

J 

I / 

H ( 

D 

\ E 

j F 

The lengths were S for short, M for medium, and L for long. Therefore, the "c" feature 

in Figure 5.4.a is represented as JS, HM, FM, DS. Figure 5.4.b is represented by the 

sequence LS, HL, FS, DS, BS, and Figure 5.4.c is JS, HL, EM, BS. The definitions for 

the 3 variations on the "c" type shape depend upon the starting singularity being the 

upper right end-point. Each time a new possible representation for a c shape was 

discovered, it was included in the list. The same process was followed for each of the 

features. The resulting set of feature patterns are stored in an efficiently accessible data 

structure which is placed in memory during the extraction process. As the number of 

features to be recognized here is only four, then the entire feature extraction data structure 

has less than 160 entries which averages a little less than 40 entries per feature. 
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5.3 .2.2 Feature Base Data Structure 

The list of features is stored in a variant of the trie structure suggested in [Knuth, 

1973], It is similar to the dictionary tree suggested in [Ford and Higgins, 1990] except 

that it is used as an efficient mechanism to store patterns for features extracted from 

singularity graphs instead of patterns of letters for words in a dictionary. As possible edge 

combinations for features are discovered, they are inserted into this trie called the 

exemplar feature tree. An example subset of the exemplar feature tree is shown in 

Figure 5.5. 

Figure 5.5 shows three different possibilities for subsets of singularity graphs for 

the feature 'fc" taken from Figure 5.4. Notice at the right side that there are dotted 

HL BS 

LS ABS, 

Figure 5.5. A Subset of an Exemplar Feature Tree. This represents 
three different edge combinations representing the letter "c". 
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branches that point to a box containing the c. Each dotted line represents a recognition 

point for the feature "c". Each dotted line is implemented as a confidence value 

containing the experience of the feature recognition system. Compared to the total 

number of c features that have been recognized, the dotted line specifies the number of 

times this recognition point was used. 

5.3.2.3 The Process of Extracting Features 

The process of extracting features from an input singularity graph is fairly simple 

given the exemplar feature tree. As a global traversal over the singularity graph 

progresses, each singularity is assumed to be the beginning of a feature. A localized 

traversal is begun starting at the currently selected singularity directed by the exemplar 

feature tree. The direction and length of each edge of the singularity graph connected to 

this singularity becomes the first edge in a predicted feature. If there is a feature in the 

exemplar feature tree beginning with this edge, then the local traversal continues, 

otherwise a failure is signaled and traversals, starting at the other edges, are begun. As a 

traversal progresses, each possible edge in the path is compared with a corresponding 

edge in the exemplar feature tree and the traversal continues as long as there are matches. 

A success is reported when correct feature marker is discovered at a node in the exemplar 

feature tree. This situation is equivalent to discovering a dotted line in Figure 5.5. A 

failure is reported when the next edge in the input singularity graph does not match any 

edge in the exemplar feature tree. 
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For example, consider Figure 5.6 which represents a sub-graph of a singularity 

Figure 5.6 Example Labeled Singularity Graph 
Subset of a singularity graph labeled showing the feature 'c'. 

graph where the circles represent singularities and the gray boxes represent annotations. 

Several features are present in the graph. These include: 

• s3 - s2 - si - s5 hump 
• s2 - s3 - s5 - si cup 
• s2 - s3 - s6 - s7 - s8 cup 
• s2 - si - s5 - s3 backwards c 

• si - s2 - s3 - s5 small round loop 

among others. Assume the traversal has reached singularity si and the (si, s2) edge is 

next to be tested and assume the exemplar feature tree given in Figure 5.5. (si, s2) 

represents a JS. There is at least one feature that begins with a JS so the local traversal 

can continue. (s2, s3) represents a HM. There is a path in the exemplar feature tree for 
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an HM so the local traversal continues. (s3, s4) is a failure because no path exists in the 

exemplar feature tree for an EM next. However, (s3, s6) represents an FM which is 

present and followed by (s6, s7) representing a DS. If the traversal reaches this node in 

the exemplar feature tree, then a "c" feature has been discovered. 

5.4 The Feature Graph 

The feature graph is an extension of the singularity graph. To review, the 

singularity graph contains a set of nodes, which represent singularities, and edges, which 

represent connections between singularities. The singularity nodes are labeled with: 

• the (x, y) coordinates representing the actual location of the pixel to which 
this singularity is associated, within the skeleton; and 

• the type of the singularity—intersection singularity, end singularity, and 
flow-through singularity. 

Each edge is labeled with an (r, 6) which represents a vector length and direction from the 

source singularity to the destination singularity. Note that a singularity graph is an 

undirected graph and any edge (s„ sj) in the graph represents an edge from s, to Sj and 

from Sj to Sj. 

In the feature graph, every feature discovered is simply added to the singularity 

graph as a new singularity. This "feature" singularity node is labeled with the (x, y) 

coordinates of the relative center of the feature with respect to the singularities of which it 

consists. It is also labeled with a feature type—long narrow down loop, long narrow up 

loop, round loop, small round loop, c-type, backwards c-type, hump, or cup. As part of 

adding a feature node, edges are added so that any singularity (or feature) adjacent to any 
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component of the new feature is connected to the new feature as well, with the exception 

of any singularities that are contained in the new feature. These new edges are labeled in 

the same fashion as before, with an (r, 9) which represents a vector from the source 

singularity/feature of the edge to the destination singularity/feature. However, there is one 

additional edge label, an edge-type label. There are four types of edge labels in a feature 

graph: 

• a "regular" edge—this represents an edge where at least one end-point is a 
simple singularity (not one of the features); 

• an "adjacent" edge—this represents an invisible edge between two 
features such that the two features are adjacent (each feature contains some 
singularities in the other feature but one feature does not totally contain the 
other feature); 

• a "subsume" edge—this represents an invisible edge between two features 
such that the source feature contains all the singularities and edges in the 
destination feature; and 

• a "subsumed" edge—this represents an invisible edge between two 
features such that all singularities of the source feature are also part of the 
destination feature. 

For example, consider an example cursive letter "o" in Figure 5.7.a. The 

singularity graph might be drawn as in Figure 5.10.b where the circles represent 

B j 

a. b. 

Figure 5.7 Feature Graph Example 
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singularities. The singularity graph would have nodes N= {si, s2, s3, s4, s5, s6, s7}. The 

undirected edges would be {(si, s2), (s2, s3), (s3, s4), (s4, s5), (s5, s6), (si, s6), (s2, s5), 

(s5, s8)}. Features discovered include: 

sl-s2-s5-s6, cup (fl), hump(f2), c(f3), back-c(f4), loop(f5) 
s2-s3-s4-s5, cup(f6), hump(f7), c(f8), back-c(f9), loop(flO) 
sl-s2-s3-s4-s5-s6, cup(fll), hump(fl2), loop(fl3) 
sl-s6-s5-s4-s3. back-c(fl4) 
s6-sl-s2-s3-s4 c(fl5) 

So nodes in the feature graph would be N = {sl...s7, fl...fl5} where si...sj or 

signifies all singularities or features numbered between i and j. Edges added would be: 

regular—<s3, fl...f5), (s4, fl...f5), (si, f6...fl0), (s6, f6...fl0), (s7, fl...fl5) 
adjacent—(fl...f5, f6...fl0) 
subsume—(fl 1, fl.flO), (fl l , fl2...fl5), (fl2, fl...fll), (fl2, fl3...fl5), 
(fl3, fl...fl2), (fl3, fl4...fl5) 
subsumed—(fl...flO, fl l) , (fl2...fl5, f l l ) , (fl...fll, fl2), (fl3...fl5, fl2), 
(fl. . .fl2,n3), (fl4...fl5, fl3) 

When loops are involved, lots of new features are added. This is especially true when one 

loop subsumes another as in the above example. In practice, when features are discovered 

in a singularity graph and a feature graph is created, if a large sized original line drawing 

containing a word with many cursive characters is encountered, the feature graph can have 

as many as 300 to 500 feature/singularities. This means that the feature graph connection 

matrix contains 500x500 entries. This is quite a large array considering the labeling 

involved. In general, however, the matrix involved is very sparse. Even though the 

current implementation did not do so, this matrix could have been implemented using a 
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sparse matrix data structure [Horowitz and Sahni, 1983] to minimize storage 

requirements. 

5.5 Analysis and Comments 

In the original proposal for this research, it was planned to use a variety of FI to 

perform this feature extraction. However, after the creation of the singularity graph, the 

design of the feature recognizer utilizes patterns that make up features which are very 

short and absolute. FI technology is badly under-utilized when the patterns are short and 

absolute. Also, one of the key advantages of FI is that FI can provide more "fuzzy" type 

recognition in that the residual provides a measurement of how close the new pattern is to 

the pattern trained into the ruling. This simple pattern matching requires absolute 

matching and does not require the fuzzy matching strong point of FI. For this reason, the 

exemplar feature tree directed search mechanism was used for the advantage it provides 

which is the speed of execution. 

Nonetheless, the feature recognition phase quickly and easily finds all features 

present in the singularity graph that match features stored in the exemplar feature tree. 

The feature graph that is created by the feature extraction phase provides a flexible 

environment for the recognition of characters in the next phase. 



CHAPTER VI 

CHARACTER EXTRACTION, WORD SEGMENTATION, 

AND WORD CLASSIFICATION 

6.1 Background Discussion 

The next phase after thinning, vectorization, and feature extraction deals with three 

important topics: character extraction, word segmentation, and word classification, each 

of which is considered a worthy research area in the literature as discussed in Chapter II. 

This research treats them together as they are closely related and they work together to 

produce the desired word classifications. 

The output from the feature extraction phase is a list of feature graphs where the 

contents of each graph is as discussed in Section 5.5. There is one feature graph for each 

line drawing assumed to contain a word or partial word to recognize. The construction of 

the feature graph involved 

• thinning the line drawing into a skeleton, 
• vectorizing the skeleton into a singularity graph, and 

• extracting features from the singularity graph and producing the feature graph. 

Character extraction involves examining a feature graph and discovering characters 

and character constructs in the graph. A character or character construct is a special 

feature that may, in general, be much more complicated than one of the simple features 

that currently exists in the feature graph. 

97 
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Because of the extra complexity, the same methodology used to extract features 

from the singularity graph can not be used to extract characters from the feature graph. 

The process of extracting features from a singularity graph involved examining a feature 

tree containing exemplars for all possible features. An exact match of singularity patterns 

in the feature tree with singularity patterns in the input singularity graph was required. 

This can be done because the number of singularities and edges in any feature is small. 

On the other hand, the number of singularities and edges in a character can be very 

large and the chances of an exact match are almost nil. For this reason, feature graphs are 

constructed and a pattern matching methodology that can produce an approximate match 

is used. An FI ruling base was constructed, with one ruling for each exemplar character 

construct trained into the system. The FI rulings are used via FI following to examine the 

feature graph for approximate matches with the exemplars represented by FI rulings in the 

FI ruling base. 

The phase of word segmentation involves examining the list of feature graphs for 

likely combinations that might be segmented together to make a word. This is necessary 

because words are not always totally connected line drawings, as defined in the research 

specifications presented in Chapter I. Although it is planned to relax this constraint in the 

near future, in the current form of this research, cursive script words must be connected 

with only a couple of exceptions. The exceptions involve dots over letters, punctuation, 

and capital letters which begin words. If a capital letter is extracted and is disconnected, it 

is assumed to begin the word to its right or be a word in its own right. 
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The knowledge of which feature graphs represent capital letters and which 

represent short words is not available at the time the character extraction process begins. 

This requires that the word segmentation, even with the constraints, must at least wait 

until after an initial pass at character extraction takes place and generally must wait longer. 

The word classification phase involves examining the list of extracted characters 

and determining which word in the vocabulary is the most likely match. When a character 

extraction is made, the extracted character and a confidence measurement (representing 

the expected correctness of the extraction) is placed in a data structure known as a letter 

graph, described in Section 6.5.2. The word classifier examines the most likely of the 

characters in the letter graph with respect to the confidence measurements and the 

characters in the words of a lexicon query. 

The character extraction, word segmentation, and word classification phases are 

performed in an iterative fashion until at some point in time the most likely match is 

discovered. Figure 6.1 shows a graphical view of each phase in the process. 

6.2 Character Extraction 

The character extraction phase, like the vectorization phase, involves the use of FI 

to assist in the extraction. For each character construct that can be recognized, an FI 

ruling is prepared. During the training process, several exemplars for each character 

construct are FI factored to create several FI rulings. Each FI ruling recognizes one of 

those many exemplars. Also, any time during the use of the system, if a user desires a new 
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a. character extraction 

b. word segmentation 

c. word classification 

Figure 6.1. A Graphical View of Chapter VI Phases 
The processes involved with character extraction, word segmentation, 

and word classification 

exemplar letter construct, an FI ruling can be prepared at that time and added to the FI 

ruling data base. This process is known as adaptation. 

Each FI ruling is created by FI factoring the feature graph representing an 

exemplar character construct after the feature extraction phase. The feature graph, as 

described in Chapter V, includes both regular singularities and features as nodes. From 

this point, however, this paper will refer to both as features when there is no ambiguity. 
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The FI ruling, therefore, involves features, as well as directional indicators representing 

edges. 

Consider the example of the singularity graph for a lower case letter q in Figure 

6.2.a. Assuming that the singularity graph is visually drawn in Figure 6.2.c, then the 

feature graph would consist of Nodes = {sl..s9, fl..f5} where: 

sl-s2-s3-s4 = fl (c-type) = f2 (back-c) 
= D (cup) = f4 (hump) 
= f5 (round loop) 

with edges ={(sl, s2) - EM, (si, s3) - GM, (s3, s4) - DS, (s2, s4) - BM, (s2, s5) - GL, 

(s5,s6) - EM, (s6, s7) - BS, (s7, s8) - LM, (s8, s9) - CM} unioned with {(s5, fl...f5) - all 

KJ 

a. (si 

c. 

Figure 6.2. Vectorized Singularity Graph for 
a lower case 'q'. 
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LL's} unioned with the feature to feature edges {(fl, £2...£5), ,(f2, D...f5), (£3, f4...f5), 

(f4, f5)}. Edge directions are taken from the following diagram: 

with lengths specified as S(hort), M(edium), L(ong), and Z(ero Length). In this case, each 

feature to feature edge has a zero length and therefore the directions do not matter. This 

is not true in general. The feature to feature nodes are set up so that every edge with the 

loop feature f5 as the destination is a subsumed edge and each edge with the loop feature 

f5 as the source is a subsume edge. All other feature to feature edges are subsumed 

edges. Note that the edge between the singularities si and s2 is an undirected edge. The 

directional pointer and length is given as EM, direction E length M. If the other side of 

this edge is considered (s2, si) then the reverse directional pointer would be KM. A 

similar situation exists for all other edges with non-zero length. 

6.2.1 Creating the FI ruling base 

If the above 'q' was to be used as an exemplar, then the factorization would start 

at s5, because it is the feature in the feature graph with the largest degree (or the one 

connected to the largest number of non-zero length edges). The input to the FI 
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factorization would be the string: *, i, AL, i, KM, f, GM, f, DS, f, BM, *, i, LL, rl, *, i, 

LL, cup, *, i, LL, c, *, f, LL, back-c, *, i, LL, cup, *, i, LL, hump, *, i, EM, f, BS, f, LM, 

f, CM, f, *. Note, s5 in the singularity graph was a flow-through singularity as it is only 

connected to two other singularities. But in the feature graph, s5 is an intersection 

feature because it is connected to all the non-intersection features which means that it has 

a degree greater than 2. 

The is the end-of-path marker. Each time it is encountered, it signals return to 

the intersection feature immediately after the previous and resume traversing. In this 

case, the 'i' after each '*' represents s5 which is the initial intersection feature. 

A standard FI factorization is performed with one exception. It is assumed that 

there can be many rules *i -» X, if i is the start feature. For example, rule *i -» AL is one 

rule, *i -» LL is another rule, *i —» EM makes the third rule with antecedent *i. This is 

illegal in FI in general, but is very convenient here and is facilitated by allowing one 

symbol look ahead if the symbol to the right of the * is the start feature (s5 in the above 

case). 

Each exemplar is FI factored as described above. An FI ruling is created for each 

exemplar. These FI rulings are stored in an efficiently accessible data structure with 

various key indices. The main key index includes 

• the type of the starting feature, 
• the degree of the starting feature, and 
• the directional indicators and length for each edge out of the start feature. 
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Other indices have key fields including: the character construct that the ruling represents, 

the ruling start feature, and the identification of the author of the script. Having an index 

key containing the author of the exemplars allows an individualized ruling base. These 

indices, along with combinations, are used to cut down the search space during the 

extraction process. 

Fields in the record containing the FI ruling contain the FI ruling itself, the author 

of the script, the character that the FI ruling recognizes, a copy of the input specifying the 

graph walk, and a vector of rule fire counts—one for each rule in the ruling. The rule fire 

counts specify how many times each rule in the FI ruling fired during the FI factorization 

of the exemplar. These counts will be used later in a calculation to determine the 

"closeness to a match" indicator for the FI ruling. 

The fact that there are many different rulings that represent each character 

construct is a change from the flavor of other research projects that use structure and 

topological information to represent the internal form of a pattern to extract. In those 

projects, a single ""grammar" was prepared and the input was parsed according to the 

grammar. In this research, there are several possible FI rulings for each character 

construct to be extracted and rulings can be added at any time via adaptation. There are 

two reasons that this is possible. The first reason is that during the character extraction 

process, the search space of FI rulings is severely restricted, as described in the Section 

6.5. The second reason is that rulings are quite small and the FI followings are localized in 

scope. This means that even if there are many FI rulings in the search space, the 

processing time is still small. 
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6.2.2 Performing Character Extraction 

To extract characters and character constructs from an input feature graph, a walk 

is performed over the feature graph and an attempt is made to extract a character at each 

feature in the feature graph. A key is prepared containing the feature type, the degree of 

the feature, and the directional indicators for each edge incident with the start feature. 

The directional indicators are placed in ascending order within the key. A lookup is done 

in the FI ruling base for each FI ruling with that key. Generally a very small number of 

rulings are obtained. A localized FI following is performed using the copy of the exemplar 

input graph walk to direct the FI following in the input feature graph. 

During FI following, the mechanism which provides input examines the input 

graph walk provided with the exemplar, and if possible, chooses a similar path in the input 

feature graph. If a path in the feature graph cannot be found, then input items from the 

feature graph are skipped until the indicator is found. The traversal backtracks to an 

intersection feature and continues. Each time a rule fires, the count for that rule is 

incremented. 

The rule fire counts are calculated during FI following of the local area in the 

feature graph. These rule fire counts are compared against the exemplar rule fire counts 

provided with the exemplar FI ruling that was used by the FI following. A distance is 

calculated between the input feature graph and the character represented by the ruling. 

The distance .Dj in the following: 
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represents a weighted Euclidean distance between the rule fire count vector of the 

exemplar and the rule fire count vector of the localized FI following. The index j 

represents which ruling in the FI ruling base was used to perform FI following. The index 

i represents the number of the rule within the ruling. So, represents the rule fire count 

for rule / in ruling for exemplar j of the FI ruling base. Rf represents the rule fire count 

for rule i in the FI following of the input feature graph. The value w, is the weight applied 

to rule i as some rules may be more reliable than others; i. e., where the consequent of the 

FI rule is a loop. N is the number of rules in the ruling. The exemplar character or 

character construct will be recognized if the distance is lower than a threshold for the FI 

ruling (which is stored along with the FI ruling in the FI ruling base). 

6.3 Word Segmentation 

In the general problem of cursive script recognition where both connected and 

disconnected script is allowable, word segmentation is a difficult problem. In these cases, 

the breaks between line drawings do not necessarily indicate a break between words. The 

problem is analogous to connected speech recognition where, in general, there may be no 

breaks between words and a break may represent a pause while saying a word. Also, if 

words may be disconnected, in many instances, characters may be disconnected. Another 

problem exists where there are no guidelines provided to the author of the script and the 

words are not written in a straight line. In this case and in other cases, it is difficult to 
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segment the input into words on different lines as lines and even words may bend and turn 

unexpectedly. Another problem is apparent when the case where a descending loop on 

one line may intersect an ascending loop on the line below is considered. The solution of 

the general word segmentation problem is not within the scope of this research. 

As specified in Chapter I, the word segmentation problem is limited to allowing for 

dots over letters, disconnected capital letters, and reasonable punctuation. The general 

rule is that a disconnected capital letter begins the word represented by the line drawing to 

its right. Even with these constraints, there are problems. A capital 'A' can begin a 

sentence as the word A, or the beginning of the word Another, or even some capitalized 

word not at the beginning of a sentence. In this case, contextual heuristics can be used to 

help in the word segmentation. 

Even with the constraints placed on the input, the word segmentation phase must 

wait until after the first pass at character extraction. If a dot is discovered, it can be added 

to the singularity graph representing the line drawing physically placed directly below it on 

the page, if it is "close enough". If not, and there is possible punctuation near and above 

it on the page, it could be placed inside that singularity graph. There is always the 

possibility that the dot represents a period and belongs only to itself. 

An extracted capital letter is assumed to begin the word to its right, for the time 

being, unless the extracted capital letter is an A or an I. In this case, heuristics must be 

used to help with word segmentation and these heuristics must wait until the character 

extraction process is almost over and word classification is taking place. Even in cases 

where all characters are recognizable, ambiguity may require even further contextual 
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heuristics which is beyond the current scope of this research. As an example, consider the 

script for the name 'Ivan" where the 'I' part is disconnected from the drawing 

representing the 'Van" part. This is possibly two words, T ' and 'Van". It might also be 

the single name "Ivan". 

6.4 Word Classification 

Word classification involves a context constrained search of the word space during 

character extraction. A lexicon exists in an efficiently accessible data structure with 

various key indices to assist in the lookup. For the purposes of this research, only the first 

five characters in the words of the lexicon are used in the indices. 

There are several indices maintained with the lexicon. Each index corresponds to a 

possible situation that might exist after the initial pass at character extraction. Consider 

the following sequence of keys to indices into the lexicon where Z,, represents a letter in 

position i. 

Lj L2 L3 L4 Ls - 5 letters known with confidence 
* L2 L3 L4 L5 - 4 letters known with confidence where the wild card 
LI * L3 L4 LS represents an unknown sequence of characters 
Li L2 * L4 Ls 

L, L2 L3 * Ls 

Li L2 L3 L4 * 

The sequence continues where only three characters are known and there is one or 

possibly two corresponding wildcards in what is approximated to be the first five 

characters of the word. 
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These indices represent limited n-gram type information. In fact, the indices are 

referred to as split n-gram indices in that they represent not only characters that can go 

together sequentially, but they represent characters that can go together with wild card 

characters or character sequences separating them. A split n-gram index setup like this is 

very convenient and useful but the indices require a large amount of memory, especially if 

the indices were not limited to the first 5 characters of the words. 

The extraction, segmentation, and word classification process work together in an 

iterative fashion. As mentioned before, after an initial extraction pass is made, then all 

characters extracted are placed in a letter graph and a lexicon lookup is performed. This 

lookup will determine a target set of words that are possible with the current characters. 

Then an attempt is made to construct each word in the target list by using letters in the 

letter graph and by doing further character extractions from the feature graph. Contextual 

knowledge says that, if any word is selected, one of the words from the lexicon search list 

must be the choice. As new characters are extracted, the target list of words is narrowed. 

This process continues in an iterative fashion until the feature graph is classified as a word 

from the lexicon, or is rejected. 

6.5 Overall Methodology 

When a new subject image—assumed to contain words to classify—is 

encountered, all relevant preprocessing is performed and the end result of all the pre-

processing is a feature graph. This feature graph contains features, including regular 

singularities, and features. Regular singularities include intersection singularities, end 
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singularities, and flow-through singularities. Features include loops, c , back-c, cup, and a 

hump feature. 

Then in an iterative fashion, the character extraction, word segmentation, and 

word classification phases are performed. As characters are extracted, new word 

segmentation and classification is attempted. If a word is not predicted with a strong 

enough confidence, the information discovered in the attempted classification is used to 

further constrain the search space for the next pass at character extraction. 

6.5.1 Character Extraction 

The algorithm of the initial pass of the character extraction process is given in 

Figure 6.3. As the process continues, each feature in the feature graph is checked to see if 

a character begins at that feature. During the process, for any particular feature S and 

edge (directional indicator) directed away from S, a query is performed returning all FI 

rulings in the FI ruling base that begin with a feature that has the same feature type as S, 

has the same degree, and is followed by the same directional indicator list. 

The record containing each of the FI rulings found in the query also contains the 

graph walk which was made during the factoring of the exemplar. This graph walk is used 

to control an FI following in the input feature graph where the next input symbol to the 

following is suggested by the ruling graph walk. 

As an example, assume there is a rule: AM f BL i -> DM and the current state of 

the FI following has AM f BL i in the FI shift register. Also assume that the current 

feature is an intersection feature and there are two possible directional indicators that 
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for each feature, S, in the feature graph 
for each edge directed away from feature S 

query the FI ruling data base for each ruling that begins 
with a feature of the same type as the current 
feature, the same degree and 
and one which has the same following directional 

indicator list (one index contains this ordering) 
for each FI ruling obtained in the above query 

using a localized directed walk of the feature graph as input, 
perform an FI following trying to match with high 
confidence the "area" around this feature as the 
character construct represented by this FI ruling 

if a match is discovered, insert the character, with its 
confidence number into the letter graph for this 
feature graph in its approximate position. 

after all the character candidates have been extracted, decrease the 
confidence number of those candidates which may be subsumed 
by others (for example a lower case script L might be subsumed 
by a lower case D, or a lower case B, or a lower case K.) 

Figure 6.3. Character Extraction Algorithm 

might come next during the traversal. One of the indicators is an AL and the other is a 

DM. The graph walk would specify the selection of DM and the FI following process 

continues. The process continues until this exemplar is recognized at this feature—or not 

recognized. 

Each ruling returned from the query is used to perform a similar directed 

following. The rule fire count distance returned from each represents a confidence 

measure concerning how close the localized area around the starting feature in the input 

feature graph came to matching the pattern trained into the ruling, or how close it came to 

matching the character represented by the ruling. 
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When it is decided that a character construct has actually been recognized, then a 

marker is inserted into a letter graph at a position approximating its actual position in the 

line drawing. At any place in the letter graph, there may be a wild card, one, or several 

characters. These characters are used as likely candidates during word classification. 

6.5.2 The Letter Graph 

Much of the past work performed in the character extraction area in the literature 

involved unambiguous character segmentation of a connected word [Srihari and 

Bozinovic, 1987], If characters in connected words can be unambiguously segmented, 

then the problem of character extraction from connected script can be handled much like 

disconnected handprinted text where the types of characters recognized are script 

characters instead of print characters. However, in unconstrained script, unambiguous 

segmentation is not very realistic. It requires various forms of normalization to map the 

input into a form that makes character segmentation feasible. At best, it is error prone and 

if writers do not take care, it is infeasible. 

Since unambiguous segmentation is not a real possibility, then some type of 

scheme allowing ambiguous segmentation is required. What was selected here is a letter 

graph concept [Peleg, 1979], [Hayes, 1980], [Higgins and Whitrow, 1985], and [Ford and 

Higgins, 1990], For example, consider the word dip. The cursive form of dip might be 

considered the word clip as the 'd' could be interpreted 'cl'. A simple letter graph 

representing the situation is given in Figure 6.4. 
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Figure 6.4. Example Letter Graph. 
Letter graph for the word dip as it may have been written cursively 

It is obvious from looking at the example graph for so simple a word, that there is 

an abundance of ambiguity. Section 6.5.4 discusses reducing the letter graph to get rid of 

impossible combinations of letters using an n-gram and split n-gram lookup technique. 

6.5.3 Word Segmentation 

The word segmentation phase involves a simple heuristic driven scheme where 

dots, comma shapes, straight vertical strokes, and the upper part of a question mark are 

combined, or not combined, to create predicted punctuation and where dots, capital 

letters, and a large feature graph are combined to create predicted words. 

The creation of punctuation involves only the placement of the punctuation type 

features on the subject image page. A dot thins down to a very short skeleton which 

vectorizes to a very small singularity graph with two singularities and one edge. A comma 
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preprocesses down to a feature graph almost as small as a dot, or with two edges each 

about the length of a dot edge. 

It is the word segmentation phase that attempts to classify the punctuation. The 

punctuation includes periods, commas, semi-colons, colons, exclamation marks, question 

marks, apostrophes, and double quotes. The heuristics used involve mainly the spatial 

layout of the simple singularity graphs across the page. 

The dot symbol involves more heuristics in this phase than any other symbol. It is 

part of a colon, semi-colon, question mark, exclamation mark, and sometimes part of an 

apostrophe and double quote as writers get in a hurry. A dot by itself can be a period or a 

dot over some character in a word depending upon its placement. 

Segmenting words in this research also involves only very simple heuristics. After 

a capital letter is extracted with a high confidence, it is added to the letter graph of the 

feature graph to its right on the subject image page (if any, as it may be at the end of the 

line). If a high confidence level word recognition happens, then the capital letter is 

assumed to be segmented properly. If a rejection or low confidence level recognition 

happens and if the capital letter is an I or an A, then the I or A is classified and the 

classification process for the feature graph to the right is restarted. If the capital letter is 

something other than an I or an A, then the rejection or low confidence level recognition 

stands. 
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6.5.4 Word Classification 

This phase involves searching the letter graph which is prepared by the character 

extraction phase and the word segmentation phase. In the first pass of character 

extraction, all of the high confidence characters should be extracted and placed in this 

letter graph. Using this high confidence set of characters and approximate positions, an 

index is chosen into the lexicon and a lookup is performed. A target set of words is 

selected. It is from this target set of words that the most likely candidates for a successful 

classification should come. 

If the target set of words is empty, then a problem exists. If it is not possible to 

perform a new lookup or this lookup returns no target words, then a rejection is a 

possibility. At this point the system relaxes the FI following constraints somewhat and 

tries all the original FI rulings again. If the list of target words is empty still, then a 

rejection occurs. 

When the first character extraction pass is complete, the letter graph may have a 

list of high confidence characters as well as other letters with lower confidence values. 

The original list of target words is created by using only the highest confidence characters 

in the letter graph and performing a lookup with those characters in their respective 

positions. For example, if the letter graph's highest confidence characters are a 'j' in 

character 1 of the word, an 'a' in character 2, a wild card, and a 'g' in the next character , 

then the key 'jag" would be used in the Li L2 * L3 * lookup index. This would return all 
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words in the lexicon with those three letters in character positions 1, 2, and 4 or 5 of the 

word. 

In general, at least three characters are desired to perform the lookup. However, 

in many cases, only one or two characters have a confidence value above the threshold 

required. If this occurs, then a larger number of words might be selected as target words. 

If no characters have a confidence value above the threshold, then the threshold is 

lowered. 

When the set of target words contains more than one word, then the problem 

becomes selecting the correct target word. Each target word contains the high confidence 

characters in the specified letter graph positions. For any target word, the remaining 

characters might possibly be already in the letter graph as lower confidence characters. 

Each target word is checked by attempting to construct the word from the characters in 

the letter graph. If a target word contains a letter not in the letter graph, then a short 

character extraction pass is performed on the feature graph with the FI rulings selected as 

described earlier with the exception that only FI rulings representing the missing letter may 

be selected. These same FI rulings had been tried in earlier passes, and the recognition 

had failed. So, in this pass, the FI following "match" criteria is relaxed to allow for 

extraction of characters that do not match with a confidence value as high as originally 

desired. If the missing letter is found at one or more places in the feature graph by this 

latest character extraction, then this character and its confidence value is placed into the 

letter graph for later use. 
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This latest character extraction short pass was made during the process of 

attempting to construct a target word from the list of characters in the letter graph. If the 

new pass added the required character in the proper place of the letter graph, then 

successful construction can continue. If not, then an attempt is made to extract the other 

missing characters from this target word anyway. This is done because in the final 

analysis, it is possible that none of the target words can be completely constructed from 

the letter graph and extra extraction attempts. However, if one of the target words only 

has one wild card space or two wild card spaces for a long word, it might still be the best 

guess. 

After a construction is attempted for each of the target words, hopefully only one 

target word is fully constructed. Many times, however, this is not the case. Generally, at 

least two target words are almost completely constructed. They are ordered as first 

choice, second choice, etc. by the sum of the confidence values of each of the characters 

extracted. 

The confidence values for characters in the letter graph are calculated during the 

character extraction. The character extraction phase involved performing FI following on 

localized areas of the feature graph. The FI rule fire count length from the FI following is 

the "closeness to a match" indicator. Some characters extracted and placed into the letter 

graph will be a closer match than others. The lower the rule fire count distance, the higher 

the confidence value. Using the confidence values calculated in this fashion, there is no 

problem picking a first choice and second choice. 
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6.5.5 FI Constraint Relaxation 

If the feature graph has an area in which no characters can be extracted with a high 

enough confidence value, there are two ways to manage the problem. First, the choice 

can be made to lower the confidence threshold. This choice is a viable choice when there 

are several alternate choices in the letter graph some having confidence values near the 

threshold. 

However, if there are no reasonable choices and there is an area of the feature 

graph that should contain characters, then relaxation of the FI following constraints is 

used. Three mechanisms were experimented with to relax constraints in situations when 

an FI following comes up with no high confidence character extractions. They include: 

1. accepting directional indicators that are up to 30° off, 

2. using only the directional indicator in FI rulings that normally require a 
directional indicator/vector length combination, and 

3. allowing the combination of two edges in a feature graph to match what 
corresponds to one edge in an exemplar FI ruling. 

In a feature graph, features are connected with labeled edges that specify a length 

and a directional indicator. For example, two features might be connected by an CM 

edge. The C is a directional indicator according to the diagram given in Section 6.2. The 

first relaxation specified above involves allowing an expected CM to be matched with an 

BM or a DM. The second relaxation scheme specified above involves allowing an 

expected CM to be matched with a CS or a CL, where the length of the vector is not used 

(S = short, M = medium, and L = long). The third relaxation scheme tried involves 

allowing two vectors separated by a flow-through singularity in the input feature graph to 

match up with one vector in the exemplar FI ruling. For example, a DM vector connected 
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to a flow-through singularity connected to an AS vector is allowed to match a CM vector 

as in 

jsragg; 

The third relaxation mechanism provides the cleanest type of relaxation. This is 

because the vectorization process provides small extra edges around intersection 

singularities. Matches determined after using this type of relaxation have a higher 

confidence value than do matches provided with other relaxation techniques. 

In the implementation, the first two relaxation techniques mentioned above were 

employed together. This means that if a CM vector is expected by the exemplar ruling, 

then any B vector or any D vector would be accepted. This has a possible down side in 

that in many instances very deformed characters are accepted as matches for exemplars. 

Other times, incorrect matches are made. 

The process of relaxing constraints on FI following attempting to extract 

characters is an area in which much research is still needed. For the purposes of the 

experiment, described in Chapter VII, this process resulted in many incorrect matches 

where a rejection would have been more appropriate. However, it is true that many 

correct matches were made that would have been rejections had it not been for an extra 

pass over the feature graph using a relaxed FI following. 
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6 .6 Analysis of the Classification Scheme 

The classification scheme described above entailed 3 phases that work together to 

provide a classification. The phases were character extraction, word segmentation, and 

word classification. The start of this process depends upon a previous phase that provides 

a singularity graph of the original subject line drawing. 

Even though the process works pretty well, compared to similar projects, there is 

still much room for improvement. The feature graphs of the various line drawings across 

the page are segmented into punctuation and words. The punctuation is classified with 

heuristics built in to the code. This methodology of classifying punctuation is very error 

prone. It would be much better to generalize the word classification phase to classify 

punctuation "words" also. However, this would mean building the heuristics into that 

code. 

It is apparent that when humans read disconnected script they employ large 

numbers of heuristics to perform their word classification as well as secondary context. If 

we are to build classifiers that classify script as well as humans can, the system will have to 

learn and manage heuristics. This means that heuristics can not be built into the code but 

will somehow have to be encoded into data for use by the classifier. 

Even though much of the information is not currently used, much information is 

built into the current feature graphs that can be used as heuristics. For example, dots in 

the vicinity of an 'i' like or 'j' like character increase the likelihood that that character is 

indeed an 'i' or 'j' character. Even though dots are segmented to join the singularity 
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graphs of words in the close vicinity below the dot, dots are not used in the current 

implementation for heuristic purposes 

It is not clear at the present time how to encode these heuristics into a heuristics 

base that might allow the use of heuristics without having to encode the heuristics into the 

program code. If each of these human type heuristics were to be included inside the 

program code, a code nightmare would exist. For example, the heuristic "One way to 

distinguish between a script 'q' and a script 'g' is that in the descending loop, the direction 

of the vector from the middle of the loop to the loop intersection feature is generally 

71 7t 
greater than — for a 'q' and less than — for a 'g'." There are many, many of these 

heuristics used by humans when they interpret script. It would be fairly easy to insert code 

into the program which will use the above heuristic to help in determining the difference 

between a g and a q. What is needed is a methodology to allow the heuristics to be 

encoded as data and have the system learn, or at least be trained, to use the heuristics. 

As will be shown in the next chapter, even without the wide use of heuristics for 

classification, the results are encouraging. 



CHAPTER VII 

TRAINING AND EXPERIMENTATION 

7.1 System Setup and Training 

The initial steps to setting up the system involved training the character extractor 

and setting up the lexicon. The original line drawings for the original data base of FI 

rulings for characters and character constructs are from an old children's spelling book 

called My Word Book [Breed and Rogers, 1954], The set of characters in Figure 7.1 had 

A a /TAjTJt is J 

.KTV/.IWZIlf. 

Figure 7.1. Original Training Alphabet. It was taken from 
My Word Book [Breed and Rogers, 1954], 
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the underline removed and was carefully touched up to connect the disconnected 

components of the capital 'F' and 'T'. An image file was created. It was preprocessed 

with thinning, vectorization, and feature extraction. This produced a list of 54 feature 

graphs. That is two more than the number of letters as there were two dots over the 

lower case 'i' and 'j'. The dots were ignored and 52 FI rulings were created by FI 

factoring the feature graphs; one FI ruling for each letter. 

Several other sets of letters were drawn by this author and three other subjects. 

Each of these alphabets had FI rulings created after careful preprocessing. These letters 

were carefully and smoothly drawn to ensure that the FI rulings for the generic letters 

were high quality. The other subjects in this group, known as the model makers, did not 

participate in the experiment. Their function was simply to participate in the careful 

construction of the FI ruling base. 

After each of the model makers had written the alphabet three times, they were 

instructed to write several words. The words were dissected into letters and the FI rulings 

for these character constructs were carefully constructed and placed into the FI ruling 

base. The motivation behind using letters extracted from words was our conjecture that 

people tend to construct their letters differently in words than when they write out the 

alphabet. This seems to be true for certain letters and it is assumed without proof that 

letters extracted directly from words more accurately reflect the letters used in the 

construction of words than do letters written in disconnected alphabets. 

The FI rulings for these letters were placed in a generic FI ruling base. In this 

case, generic means that these rulings are part of the FI ruling space for any and all of the 
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experiment participants. Each of the three experiment participants were required to also 

write a disjointed alphabet out three times and write out the same words that the model 

makers wrote three times. For each participant, an individual FI ruling data base was 

created that consisted of the character constructs (usually letters) from the letters of the 

disjointed alphabets that were produced and the letters extracted from the words written. 

In this way, each participant had his/her own individual FI ruling base reflecting his own 

personal handwriting style. 

The lexicon was extracted from a 6,000 plus word data base. In this experiment, 

1026 words were chosen and stored as described in Chapter VI into the efficiently 

accessible data structure. Two distinct groups of words were chosen. In one group, 

words were dissimilar to all other words. In the other group, similar words were chosen 

to test how well the similar words could be distinguished. 

It is important to realize that the first real world uses of technology such as this 

will involve use in limited lexicon domains. For example, one example that is currently 

being heavily investigated by [Cohen, Hull, and Srihari, 1991] involves recognizing United 

States postal addresses. That particular paper mainly reports on an experiment involving 

off-line recognition of zip codes. Their results, even though seemingly somewhat 

unimpressive, make a very good contribution in the area of unconstrained word 

segmentation. They study much more general word segmentation requirements than is 

covered in this research. In their attempt to segment out the last line of an address and the 

zip code, they manage to correctly recognize or reject about 75% of the zip codes on the 

sets of envelopes in their experiment. Even in this heavily constrained arena, it is difficult 
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to manage the zip code segmentation. They propose to use a lexicon of city and state 

names to assist in recognition of these zip codes. If a city name can be recognized, then 

the context of that city can assist in the recognition of the zip code. 

If context can be used as heuristics, then recognition of words within special 

contexts can be greatly facilitated. For example, if, on some forms, a salesman must write 

a description of an item, knowing the small lexicon that might be involved in such a 

description will greatly assist in the recognition of the word in the description. 

In this study, the context involved is totally contained in the lexicon. The small 

vocabulary of 1026 words in many cases might accurately reflect the total needs of certain 

applications. Ultimately, however, before a product such as this would be viable in many 

real world applications, a much larger lexicon of around 10,000 plus words would 

probably be required. 

7.1.1 Experiment Design 

After the training process was completed and each of the three experiment 

participants had completed their portion of the setup training, there was a generic set of FI 

rulings for each letter and an individual set of FI rulings for each letter and character 

construct for each of experiment participants. The fact that there are FI rulings for letters 

and character constructs for individuals involves the fact that, in some cases, a reasonable 

segmentation of words into specific characters was impossible and that certain constructs 

in words can generally be tied to a combination of letters. FI rulings were constructed for 
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these character constructs and it was noticed later that sometimes these constructs greatly 

facilitate the recognition process. 

For each of four phases of the experiment, four pages of script were selected 

according to the rules described in Chapter I. There were nine paragraphs, plenty of 

punctuation, where exactly 300 words of the lexicon were used, some more than once. 

The nine paragraphs were written twice by each experiment participant. In the first 

writing pass, all words contained only lower case characters and were totally connected. 

In the second writing pass, a large percentage of the words were required to begin with an 

upper case character and many of these, but not all, were disconnected. 

Each of the script pages were originally totally blank and they were clipped on the 

top of other pages which provided visible guidelines which assisted the participants in 

writing the words the correct size and helped them write straight across the page. 

After each phase of the experiment was completed, there were many words 

classified or rejected successfully; and, there were many words that were not classified 

correctly or correctly rejected. For each of the failed words, the letters and character 

constructs were manually extracted very carefully and new FI rulings for these new 

models were inserted into the individual FI ruling base for each participant. This was done 

because of the conjecture that the next time the same individuals wrote the words again, 

there would be a greater probability of successful classification. The fact that this training 

is very time consuming and quite pains-taking is a weakness of the system as it currently 

stands. 
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Each participant was required in each of four days to write the two sets of nine 

paragraphs. The classification results are given in Table 7.1 and Table 7.2. Table 7.1 

gives the performance results for the test input involving only punctuation and lower case 

letters. Table 7.2 shows the corresponding results where the test involved both upper and 

lower case letters. 

Participant 1 Trial 1 Trial 2 Trial 3 Trial 4 
Code Count % Count % Count % Count %. 
1 162 44.5 190 52.2 204 56.0 211 58.0 
2 49 13.5 69 19.0 73 20.1 81 22.3 
3 129 35.4 101 27.7 79 21.7 65 17.9 
4 24 6.6 4 1.1 8 2.2 7 1.9 
5 25 35.2 31 43.7 36 50.7 41 57.7 
6 46 64.8 40 56.3 35 49.3 30 42,3 

Participant 2 Trial 1 Trial 2 Trial 3 Trial 4 
Code Count % Count % Count % Count %. 
1 184 50.5 197 54.1 216 59.3 224 61.5 
2 61 16.8 78 21.4 74 20.3 82 22.5 
3 101 27.7 79 21.7 66 18.1 53 14.6 
4 18 4.9 10 2.7 8 2.2 5 1.4 
5 23 32.4 29 40.8 34 47.9 41 57.7 
6 48 67.6 42 59.2 37 52.1 30 42,3 

Participant 3 Trial 1 Trial 2 Trial 3 Trial 4 
Code Count % Count % Count % Count %. 
1 180 49.5 201 55.2 215 59.1 222 61.0 
2 58 15.9 75 20.6 78 21.4 85 23.4 
3 115 31.6 82 22.5 63 17.3 50 13.7 
4 11 3.0 6 1.6 8 2.2 7 1.9 
5 30 42.3 38 53.5 44 62.0 46 64.8 
S 41 57.7 33 46,5 27 

O
 

OO 25 35,2 
where code 1 —> correctly classified first choice, code 
code 3 —> incorrectly classified from lexicon, code 4 -) 
code 5 -> correctly rejected from rejection list, code 6 -

2 -» correctly classified second choice 
incorrectly rejected from lexicon 

»incorrectly classified from rejected list 

Table 7.1. Results from Experiment / No Capital Letters 
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In the nine paragraphs that each participant was required to write, there were 364 

words from the lexicon with some words used more than once. Three hundred words 

from the lexicon were used at least once. There were 71 words used that were not in the 

lexicon. Also there were 45 punctuation marks. 

Participant 1 Trial 1 Trial 2 Trial 3 Trial 4 
Code Count % Count % Count % Count %. 
1 146 40.1 155 42.3 159 43.7 173 47.5 
2 53 14.6 55 15.1 54 14.8 66 18.1 
3 153 42.0 140 38.5 130 35.7 110 30.2 
4 12 3.3 14 3.8 21 5.8 15 4.1 
5 20 28.2 22 31.0 22 31.0 31 43.7 
6 51 71.8 49 69.0 49 69.0 40 56,3 

Participant 2 Trial 1 Trial 2 Trial 3 Trial 4 
Code Count % Count % Count % Count %. 
1 158 43.4 167 49.5 180 49.5 189 51.9 
2 59 16.2 69 19.0 71 19.5 76 20.9 
3 145 39.8 115 31.2 101 38.3 95 26.1 
4 2 0.5 13 3.6 12 3.3 4 1.1 
5 22 31.0 25 35.2 28 39.4 33 46.5 
6 49 69.9 46 64.8 43 60.6 38 53.5 

Participant 3 Trial 1 Trial 2 Trial 3 Trial 4 
Code Count % Count % Count % Count %. 
1 140 38.5 153 42.0 158 43.4 171 47.0 
2 55 15.1 50 13.7 55 15.1 70 19.2 
3 159 43.7 145 39.8 133 36.5 110 30.2 
4 10 2.7 16 4.4 18 4.9 13 3.6 
5 26 36.6 26 36.6 30 42.3 35 49.3 
$ 45 63.4 45 63.4 41 57.7 36 50,7 

where code 1 -» correctly classified first choice, code 2 -> correctly classified second choice 
code 3 -> incorrectly classified from lexicon, code 4 -> incorrectly rejected from lexicon 
code 5 -» correctly rejected from rejection list, code 6 incorrectly classified from rejected list 

Table 7.2. Results from Experiment / Capital Letters Included 
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7.2 Performance Evaluation 

The results shown in Tables 7.1 and 7.2 describe the system performance during 

the summer of 1994. The performance results are not impressive by today's OCR 

standards. However, the performance is very near expectations. The initial intentions 

were to demonstrate that the system could be trained to perform better and better. This is 

ultimately what was shown in the experiment. 

Compared to other projects of a similar nature, the requirements for this project 

involved a high level of difficulty as the system attempted to recognize punctuation, 

perform word segmentation for certain types of disconnected words, recognize capital 

letters, and adapt to the individual handwriting style of each experiment participant. The 

system was successful in each arena. 

In the experiment where no capital letters and special word segmentation were 

involved, the correct classification rate started between 55% and 65% for correct 

classifications on the first or second choice. By the fourth attempt, the classification rate 

improved to over 80% for all participants. Each participant had a correct recognition rate 

of around 60% for the first choice in the fourth attempt. This is compared to between 

44.5% and 50.5% in the first attempt. 

In the part of the experiment where capital letters and special word segmentation 

was involved, the correct classification rates were not as good. However, in each case the 

classification rates improved in the later trials. The poor recognition rates for words in 

this experiment were caused by the fact that capital letters are much more difficult to 
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recognize correctly as they involve much more detailed drawings. Also, the feature set 

chosen including loops and the c, back-c, u, and hump shaped features were more 

prevalent in lower case letters than in upper case letters. Using the methodology chosen 

for this research, successful classification at high percentages recognizing upper case 

cursive script will have to involve a richer set of features and a greater use of heuristics. 

The system used only static heuristics in its attempt to recognize punctuation. It 

did not attempt to learn to recognize punctuation. The success rate for recognition of 

punctuation is given in Table 7.3. Recall that in the nine paragraphs that were written for 

each experiment, there were 45 punctuation marks. However, each time the participants 

had to write the same nine paragraphs twice, making 90 punctuation marks in all. In each 

Participant 1 Trial 1 Trial 2 Trial 3 Trial 4. 
Code % % % %. 
1 73 78 71 72 
2 23 18 24 22 
3 4 4 5 6 

Participant 2 Trial 1 Trial 2 Trial 3 Trial 4. 
Code % % % %. 

1 77 76 75 77 
2 20 18 19 21 
3 3 6 6 2 

Participant 3 Trial 1 Trial 2 Trial 3 Trial 4. 
Code % % % %. 

1 80 80 83 84 
2 18 16 14 12 
3 2 4 3 4 

where code 1 —» correctly classified punctuation, code 2 -»incorrectly classified punctuation 
code 3 -> incorrectly rejected punctuation 

Table 7.3. Punctuation Recognition Results 



131 

trial in Table 7.3, the percentages demonstrate correctness or incorrectness of the 

recognition process for all 90 punctuation marks. 

The success rates are fairly high especially for the one experiment participant who 

took extra care when writing the punctuation. There was little or no improvement from 

one trial to the next and the recognition rate was determined by how much care the 

participant took when he/she wrote the punctuation. 



CHAPTER VIII 

CONCLUDING REMARKS 

8.1 Overview 

Major advances take place almost daily in the field of pattern recognition. These 

advances will have far reaching effects on the world and society as the technology 

improves. Pattern recognition of some form or another will be the foundation of 

applications such as voice recognition, computer vision and object recognition, target 

detection for military applications, optical character recognition, on-line handprinted text 

recognition, and off-line cursive script recognition, among many others. 

This research focused on the off-line cursive script recognition application. The 

problem is very large and difficult and there is much room for improvement in every 

aspect of the problem. Many different aspects of this problem were explored in pursuit of 

solutions to create a more practical and usable off-line cursive script recognizer than is 

currently available. 

The scope of the project involved a complete solution to most aspects of the 

problem. Preprocessing was refined via a new thinning algorithm and a new FI based 

vectorization algorithm. Feature extraction was performed extracting features from the 

singularity graph of the line drawing instead of the line drawing itself The feature graph 

was set up to provide a very expressive, flexible, and efficient data structure so all existing 
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features of a singularity graph can be easily scanned and associated locally. A new 

andpowerful FI based character extraction mechanism was created and studied. Character 

extraction, word segmentation, and word classification were performed iteratively in light 

of the context of the lexicon using split n-gram indices to assist in word classification and 

search space reduction. The use of heuristics was formally employed and studied in the 

recognition of punctuation. Also, an adaptable system was designed so that the system 

could adapt to individual handwriting styles of experiment participants. 

Another focus of this dissertation involved exploring how the pattern recognition 

technology known as Finite Induction could be employed in pursuit of applications of this 

nature. FI was a major contributor in two of the phases. FI technology was adapted for 

use and successfully employed in the line segmentation process and in the character 

extraction process. The major strong point of FI is that during FI following, the FI 

residual, the local residual density, and rule fire count distance provide a usable measure of 

closeness between the input source pattern and the pattern trained into the FI ruling with 

which the FI following was performed. 

8.2 Achievements 

This research has demonstrated that some off-line cursive script recognition 

applications are feasible within constraints. It employed a combination bottom-up and 

top-down approach to the word segmentation and word classification problem as 

character extraction was performed to assist in word segmentation and word classification; 

and, then the context provided by the word segmentation and word classification process 
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assisted in an attempt to further extract characters. The experiment that was conducted 

demonstrated that with reasonable training of the system and reasonable restrictions 

placed upon the writer of the cursive script, successful hand written cursive script 

recognition is feasible and usable systems are within reach. 

The specific contributions made by this research include: 

• The Border Reduction Thinning Algorithm; The skeletons produced by 
the BRT thinning algorithm are very smooth and have very near the 
same shape as the original. They retain the same connectivity and very 
near the same end-points as the original. These skeletons are much 
more appropriate for the application of hand-printed text and hand 
written cursive script recognition than the other algorithms studied. 

• The FI directed line segment approximation algorithm also referred to 
as the vectorization algorithm. Via utilization of the FI technology, this 
phase produces very high quality vectorized approximations of input 
skeletons. The quality of the singularity graph is such that the 
singularity graph may be used as the basis of the feature recognition 
process instead of the skeleton itself. 

• The modification of the standard FI mechanism to allow for its usage in 
the vectorization algorithm. The input to the FI following was a 
recursive descent traversal over the skeleton and the recognition 
mechanism in the FI following is the local FI residual density instead of 
the residual length or the residual itself. 

• A feature trie structure was used to contain a dictionary of feature 
descriptions. Use of this mechanism allowed easy and exhaustive 
extraction of features contained in a singularity graph as long as the 
feature was defined in the feature trie. 

• The feature graph was created. The feature graph is an extremely 
flexible and expressive data structure that allows all features present in 
the singularity graph to be stored in such a manner that they can be 
easily scanned and associated locally to assist in character extraction. 
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• The FI directed character extraction mechanism. The algorithm 
examines the feature graph and at each feature, checks the entire FI 
ruling base for possible candidate characters that might start at that 
singularity. 

• The modification of the standard FI mechanism to allow for its usage in 
the character extraction algorithm. The input to the FI following is a 
localized recursive descent traversal where the ruling itself predicts the 
next input symbol in the situation where the current input is an 
intersection singularity and there are two or more possibilities for the 
next input symbol. 

• The lexicon or context directed word segmentation and word 
classification algorithm. The character extraction phase works together 
with the word segmentation and word classification phase in an 
iterative fashion where each phase provides information to the other 
phases generally in the form of reduced search spaces. Anytime new 
information is discovered, the search space in the lexicon is reduced 
and only possibilities from this reduced search space are pursued. 

• Split n-gram indices were used to assist in word classification. These 
indices were used to assist in classifying words and reducing the search 
space when making secondary attempts at character extraction. 

• An adaptation mechanism which allows the recognizer to adapt to a 
personal handwriting style. This feature was proven by experiment to 
increase the correct classification and rejection of words as the training 
progresses. 

Each of the above mentioned contributions are important in their own right, but 

just as important is the fact that each was implemented and a system now exists that 

performs cursive script recognition. Experiments using the cursive script recognition 

system showed that the cursive script application is feasible even though a very difficult 

application. The system is undergoing revisions and testing and therefore improving on an 

almost daily basis. 
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8 3 Future Work 

The immediate future research efforts will involve the creation of an automated 

learning facility for the character extraction phase. As it existed in the experiment, much 

pains-taking manual intervention was required to enable the newly discovered singularity 

graphs for the characters to be inserted into the FI ruling base as new FI rulings. An 

implementation of an automated learning facility is nearing completion. 

An interactive Microsoft Windows™ based user interface for the system is also 

near completion. It will work together with the automated learning facility which also 

employs a similar windows based user interface. 

Other improvements will involve: 

• re-implementing the system on a more powerful computer to increase 
system performance; 

• creating a variant of this system designed to recognize hand printed 
connected or disconnected text; 

• refining the feature set to be of greater use during recognition of capital 
letters; 

• increasing the size of the lexicon to a size that would be of interest to 
commercial applications; 

• setting up a heuristics base or heuristics implementation methodology 
which will allow heuristics to play a greater role in the recognition process; 

• using greater amounts of context to assist in word classification including 
grammatical context, positional context, and understanding the fact that 
different boxes on a form containing script might each require different 
lexicons for context; 

• experiment with more general word segmentation to allow more generally 
disconnected script; 
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The impact that a high-quality off-line cursive script recognizer would have in 

various industries and applications might be very large. Research is ongoing and system 

performance and capabilities are improving almost daily. The goal is to soon have a 

product which is usable in real world applications. 
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APPENDIX 

AN INTRODUCTION TO FINITE INDUCTIVE SEQUENCES (FI) 

A. 1. Detailed Introduction 

This section introduces the concepts associated with Finite Inductive Sequence 

Processing (FI) and explains the associated terminology and the capabilities. The FI 

process is a mathematical technique for dealing with large amounts of data which represent 

objects of interest. In comparison to the present techniques of processing data, statistical 

techniques tend to utilize too little of the data, while typical mathematical techniques tend to 

deal with too much of the data. FI is a technique which is a compromise between these two 

approaches. The FI premise is that the occurrence of a symbol in some data stream such as 

a pixel in an image is dependent upon some number of previous symbols (similar to a 

Markov Process), potentially, a very large number of such symbols. Because this number 

can be very large, FI provides a mechanism for reducing this number of antecedent 

symbols to an a priori number of symbols which can be very small, say four or five 

symbols. The advantage of this technique will be shown later in this section, but the 

impact is a considerable reduction in data storage requirements for the database of specific 

patterns of interest. Using this capability, FI also provides a very powerful technique for 

recognition of patterns of particular interest. 

Not all representations or sequences of symbols are reducible in the FI sense. 

Random sequences of symbols or sequences of symbols that have very little differentiation 

between symbols are examples of nonreducible sequences or sequences whose reducibility 

is not of interest. For the most part, representations of all real objects are reducible in the 

FI sense. This reducibility is highly desirable because it allows automatic discarding of 
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data that is superfluous, or data that makes no contribution in the understanding 

(representation) of a pattern of interest. FI provides an automatic technique to organize data 

in a format which is immediately useful for recognition. 

The first concept important in the area of image recognition is to reduce the image or 

pattern to some representation which encapsulates the features of interest, preserves the 

geometry of the image, and provides a format which is suitable for easy manipulation. To 

illustrate this, consider a square as the image of interest. The following three alphabets 

encapsulate certain features of the square. 

ALPHABET 1: Topological alphabet consisting of the number of intersections between the 
object and ten horizontal and ten vertical lines. The values for the object would then be: 

1 2 2 2 2 2 2 2 2 2 1; 1 2 2 2 2 2 2 2 2 2 1 
Note: if the box is larger than 9 pixels on a side, and if the first and last line fell on 

a box boundary, then the representation of the box is as given. 

ALPHABET 2: Geometric representation would consist of the number of angles, the size 
of the angle, their arrangement, and the order and type of the sides. The values for this 
type of alphabet would be: 

1 1 0 2 1 0 3 1 0 4 1 0 
Note: for this alphabet, the 1, 2, 3, 4 indicate a right angle in the first quadrant, in 

the second quadrant, etc. The 1 0's indicate the length of the ray beginning 
from that angle and going to the next angle. 

ALPHABET 3: Edge following representation would provide output from the follower as 
it moves around the edge. Such an alphabet would be: 

1 1 1 1 1 1 1 1 1 1 7 7 7 7 7 7 7 7 7 7 5 5 5 5 5 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3 
Note: here the symbols represent the direction of travel for the edge follower. 

There are eight directions that a 3x3 edge follower can move. The 
directions are 0° = 1, 45° = 2, 90° = 3, 135° = 4, 180° = 5, 225° = 6, 270° 
= 7, and 315° = 8. 

The most difficult aspect of recognition using FI is the selection of the alphabet. As 

the above alphabets have shown, the two-dimensional image was represented as a one-

dimensional string of symbols, and in the first alphabet, the representation could fit several 

distinct shapes. FI does not address the alphabetic representation, but the representation 

selected can be two-dimensional components such as small arrays, multiple strings; that is, 
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input streams coming simultaneously from more than one source or any other selected 

arrangement. The process of pattern recognition after representation can then be 

summarized as shown by Figure A.l. In this figure, the unknown image (a rectangle of a 

certain size) is to be matched with the correct object in the space of known objects. 

OBJECT 

UNKNOWN 

OBJECT 
SPACE 

KNOWN 

OBJECT 
TO BE 
FOUND 

Figure A.l. 
Process of Recognition: Mapping from Unknown to Known 

The FI system provides the following capabilities: 

• a method for representing the known objects in a concise form; 
• a method for identifying the rank order of best matches from the space of 

possibilities; 
• a recognition speed 0(n) where n is the number of symbols representing the 

input object and not the size of the known object space; 
• a concise pair of algorithms making up FI where the implementation in C 

requires 500 lines of code for both algorithms; 
• a technique that is easily executed on a PC, even for complex patterns. 

The FI process together with the creation of an alphabetic representation is shown in Figure 

A.2. 
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FOR 
KNOWN 
OBJECTS 

FOR 
UNKNOWN 
OBJECTS 

CREATE 
FACTORING 

h - BUILD 
ALPHABET \ RULING 

1 r 

UTILIZE PROCESS REMAINING 
ALPHABET W* UNKNOWN * *RESIDUAL 

FOLLOWING 

Figure A.2. 
FI Process Representation 

The important features shown in Figure A.2 are the two algorithms, FACTORING 

and FOLLOWING and their relationship. Associated with these two algorithms are two 

data structures: RULING and RESIDUAL. The RULING results from the application of 

FACTORING to the input strings representing the known patterns. The RESIDUAL 

results when the algorithm FOLLOWING is applied to the string representing the unknown 

patterns using the RULING. Figure A.3 portrays this second process of FOLLOWING 

applied to an unknown pattern, then creating a RESIDUAL. 
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RULING 

• • • • • • 
INPUT SYMBOLS 

• 

• 
• 

• 
• 

REMAJNING SYMBOLS 
or RESIDUAL 

• 

Figure A.3. 
FOLLOWING Applied to Input String 

to Produce a RESIDUAL Using a RULING 

Figure A.3 portrays the relationship between the input string and the output or 

RESIDUAL. If the RESIDUAL and the input string are identical, then the RULING 

contains no knowledge of the patterns represented by the input string. If the RESIDUAL is 

empty, then the RULING contains a representation of the pattern represented by the input 

string. In Figure A.3, there is a relation between the input string and the RESIDUAL, as 

the RESIDUAL is a subset of the input string. A measure of closeness between the input 

string and the information contained in the RULING is the number of symbols contained in 

the RESIDUAL under two conditions: first, the RULING only contains data from one 

object; or second, if the RULING contains data from more than one object, the data which 

makes that object unique from all of the other objects is identifiable in the RULING. 
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A.2 The FI Definition 

With the introduction given in Section A.l, we now provide a somewhat more 

formal definition of FI. Only one of the requisite theorems is stated, and the proof is not 

included. 

Def—Let A be a finite set of symbols called the alphabet and let S be a sequence (called a 
string) of these symbols which may be finite or infinite. The sequence S is Finitely 
Inductive (FI) if the choice of a letter at any particular position depends (immediately) only 
upon the choices of letters at the previous n positions. The least such n is called the 
inductive base of the sequence S. 

Def—Let S be an FI sequence, and let the pair (w,p) consist of a word w over the alphabet 
A and the letter p be in the alphabet such that (i) w occurs at least once as a substring 
(subsequence of contiguous entries) of the sequence; and (ii) wherever w occurs as a 
substring there is a succeeding entry and it is p. 

Note: The pair (w,p) is normally written w —> p and is called an implicant; w is called 
the antecedent, and p is called the consequent. 

Def—An implicant is in reduced form if its antecedent contains no proper terminal segment 
that is an antecedent of another implicant of the sequence. 

These definitions are immediately generalizable to families of sequences. The pair 

(w,p) is an implicant of the family if its antecedent occurs at least once as a substring of one 

of the sequences. Whenever w occurs as a substring of one of the sequences, the 

following symbol will be p. 

The following observations can be easily noted: 

• Any finite sequence is FI; 
• For any finitely inductive sequence, the inductive base is the maximal length of the 

antecedents in its reduced form implicants; 
• Any periodic FI sequence has a period less than or equal to kn, where k is the 

number of letters in the alphabet and n is the inductive base; 
• If an FI sequence has inductive base n and an alphabet of k letters, then kn is an 

upper bound for the number of its reduced form implicants. 

Def—A table of implicants is a finite table of pairs of the form w —> p where w is a word 
over a given alphabet and p is a letter in the same alphabet. 
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A table of implicants satisfies the following conditions: (i) no antecedent of one 

entry in the table is a terminal segment of the antecedent of any other entry in the table; (ii) 

without losing generality we can suppose that every sequence has a special symbol called 

the start symbol, then the only way the start symbol may occur in the table is as the first 

symbol in an antecedent. The inductive base for such a table is the maximal length of the 

antecedents. 

Def—Given an FT sequence S, there is a finite sequence of tables of implicants Tj called a 
RULING; such that for each i from 1 to L, Tj is called the table of implicants for level i. 

In order to motivate understanding, an example of an FI sequence and the 

associated RULING is shown. The example will show how the sequence of tables 

(RULING) is constructed. The process of obtaining this RULING is called 

FACTORING, and this is the first of the two FI algorithms. The inductive base for the 

string shown in the example is four (as known from processing this example), and it will 

be reduced to two without the loss of data. 

EXAMPLE: The alphabet will be the symbols A, B, C, D, and the string will be 
infinitely periodic to the right, each period being separated from the next by a colon 
(:)• 

AABABCABCD:AABABCABCD:... 

Step 1 — Form table Ti of the RULING from all Implicants whose Antecedents 
are two or less symbols (this can be any value, but since the inductive base of the 
string is four, a value less than four will produce a series of tables). Place all 
Consequents of nonselected Implicants in a new string called the RESIDUAL for 
the level 1 table Ti, preserving their relative order. 
Level 1: D -> A; DA -> A; AA -> B; BA -> B; CA -> B 
Residual: A CA CD:A CA CD:... 

Step 2 — Apply the factoring strategy to the Residual of the previous level. Form a 
new table T2 of Implicants and select from those all that meet the Antecedent length 
criteria (two or less). Form a RESIDUAL. If the RESIDUAL is empty or the 
factoring process terminates due to the inability to formulate new Implicants, end 
the process. 

From the RESIDUAL string above we get: 
D -> A; DAC -> A; A -> C; CAC -> D 
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Selecting those which meet the length criteria we have: 

Level 2: D -> A; A -> C 
Residual: A D : A D:... 

Step 3 — Repeat step 2 except form the table T3: 

Implicants: D -> A; A -> D 
Level 3: D -> A; A -> D 
Residual: None 

Example Ruling Tables 

LEVEL 1 LEVEL 2 LEVEL 3 
D -> AD -> A D -> A 
DA -> A A -> C A -> D 
AA -> B 
BA -> B 
CA -> B 

From the example there are several considerations that should be noted: 

• The individual tables are combined into the RULING, and are indicated as levels in 
the RULING; 

• The results of FACTORING any finite string will yield one of many RULINGs 
depending upon the inductive base chosen, and the method that is selected for 
forming the RESIDUAL (that is for 'pushing out' the symbols that will be removed 
in the next level); 

• The RESIDUAL is empty after FACTORING every FI string, but when 
FACTORING a family of FI strings the process will terminate with a non-empty 
RESIDUAL associated with each string in the family; 

• The inductive base for the example is 2-1-1, or simply 2. 

We now present a theorem and one observation dealing with FI sequences. We 

have noted that every finite sequence is FI; that is, it is reducible to a collection of 

implicants. Not every finite sequence has a RULING consisting of a sequence of tables. 

For example, sequences which are pseudo-random have implicants whose antecedent 

lengths are all equal. This brings us to the observation: 
Observation. If S is a sequence, finite or infinite, and the implicants of S do not have 
uniform antecedent length, then using the FACTORING technique, there is an associated 
RULING representing the sequence S, such that the inductive base of the RULING is 
uniformly less than a fixed a priori value for each table in the RULING. 
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Def—An autonomous RULING is a RULING which generates a sequence using a 
particular starting symbol of length 1. 

Theorem. The inductive base of the sequence generated by an autonomous RULING is 
exponentially longer than the inductive base of each level of the RULING in the following 
sense: if the alphabet has k letters, the inductive base of all levels is bounded by b and the 
number of levels is L, then the inductive base of the generated sequence is potentially as 
long as 

The implication of the observation and theorem is in representing sequences derived 

from such things as images, there is a significant possibility for reduction in storage 

associated with the objects that are represented by the RULING resulting from the 

FACTORING process. If the number of implicants for a finite string are 0(m) where the 

length of the string is m, then using implicants of four or five symbols is far more concise 

than using implicants of arbitrary order. This can be seen from the example. The original 

sequence consisted of ten symbols and the resulting RULING consists of nine implicants 

whose antecedent length is one or two. The original implicant length included several with 

lengths of four symbols. 

The process of FOLLOWING utilizes the RULING(s) developed by the 

FACTORING algorithm. Essentially, the FOLLOWING process is one of applying the 

implicants in each level of the RULING to the incoming, unknown string and when a 

match is found between the antecedent in the RULING and a substring in the input string, 

then the consequent in the input string can be deleted. If each level proceeds in a sequential 

manner (this can be pipelined for speed), then the remaining symbols form the 

RESIDUAL. This RESIDUAL can then be used in the pattern recognition task. For 

example, suppose that there are several RULINGs and the unknown string is processed by 

each RULING. The RULING producing the smallest (in length) RESIDUAL will be the 

best representation of the unknown entity. 
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There are several types of FOLLOWING, and these are called BLIND, EXACT, 

and REPLACEMENT FOLLOWING. In BLIND FOLLOWING, the antecedents need 

only match and the consequent is deleted whether it matches or not. In EXACT 

FOLLOWING, the antecedents and the consequent must match before deletion can occur. 

In REPLACEMENT FOLLOWING, if the consequents do not match, then the input string 

consequent is converted to the consequent of the RULING consequent. This prevents the 

perturbation of a symbol propagating through the deletion process. 

If a RULING is to contain more than a single object, then Figure A.4 depicts a 

technique that can be used for recognition. Figure A.4 shows a RULING containing three 

objects. The number four is for illustration purposes only, and in general the number 

would be far larger. 

LEVEL 1 

LEVEL K 

LEVEL K+1 

LEVEL N 

AREA 2 AREA 

AREA 1 

AC->C 

A A >£> 

KEY 

AREA 1 

AREA 2 

AREA 3 

AREA 1 & 2 

AREA 2 & 3 

AREA 1 

& 3 

& 2 

Figure A.4. 
RULING Containing Implicants from Three Objects 
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If the KEY shown in Figure A.4 was a collection of counters instead of area 

indicators, and the utilization of any implicant matched during the FOLLOWING process 

would cause the appropriate counter to be incremented, then at the end of the 

FOLLOWING, the highest counters would indicate the appropriate match between the 

unknown and known objects. In reality, the use of the overlapped areas of the implicants 

could be discarded; however, it is possible that these counters could indicate a measure of 

strength between objects recognized. The implicants found in each area would have 

commonalties; that is, an implicant may belong to more than one known object. By adding 

an indicator to the implicant to denote the appropriate counter to increment, the counts can 

be obtained directly during the FOLLOWING process. 

In considering the FOLLOWING process, we note that the performance time for 

FOLLOWING only depends upon the length of the incoming, unknown string and not 

upon the complexity of the RULING or the number of implicants contained in the 

RULING. 
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