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NATIONAL ADVISORY COITTEE FOR AERONAUTICS. 

TECHNICAL MEMORANDUM NO. 502. 

ANALYSIS OF FLIGHT AND WIND-TUNNEL TESTS ON UDET AIRLANES 

WITH FERENCE TO SPINNING CHARACTERISTIC.*

(Low-wing TJdet U 6, Udet U 7 ' t Kolibri," Udet U 12 "Flamingo.") 

By H Rerrmann. 

Introduction 

During 1923-1925 many different types of light airplanes 

were made in Germany. For the analysis of' the results at-

tained, many comprehensive wind-tunnel tests were made in 

Gttingen at the suggestion of the writer with three differ-

ent models constructed by him. The results were reported to 

the D. V. L. (German Institute for Aeronautic Research) of 

Berlin-Adlershof, which, in turn, commissioned the writer 

with their analysis. 

The values were determined for the effectiveness of all 

the controls at variou,s angles of attack. The autorotation 

was studied by subjecting the rotating model to an air blast. 

With the low-wing mon,p1ane Ti 6 the aerodynamic longitudinal 

moment decreases suddenly at large angles 'of attack. The 

inertia forces then exceed the air forces and prevent escape 

from the spin. This actually occurred with this type. Re-

cently a similar accident happened to another monoplane. 

The causes of the disastrous drop in the longitudinal moment 

* ?'Auswertung von Flugversuchen und Windkanalmessungen an den 
Udet-Flugzeugen." From Zeitschrift für Flugtechnik urid Motor-
luftschiffaflrt, January 14, 1929, pp. 3-15.
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have not yet been explained. 

Symbols Used 

F m2 Wing area inoluding fuselage section arid ailerons. 

g kgm/s2 Acceleration due to gravity. 

kg/m3 Air density. 

V rn/s Speed or velocity. 

q kg/m2 Dynamic pressure	 v2/2g. 

t rn Reference chord. 

b rn Span. 

x rn Abscissa of center of gravity. 

y rn Ordinate of center of gravity. 

u rn/s Peripheral velocity. 

G kg Total weight. 

W kg Drag. 

3 kg Lateral force. 

C a Coefficient of lift, ca =	 q. 

drag, cw =	 q. 

C5
H	 lateral force,	 c 5 = F q. 

c It	 It	 normal force,	 c	 = Ca COS-C	 Sifla 

c- tangential force, ct=cw COSaCa 

NH mkg Pitching moment due to air forces, positive when 
nose—heavy. 

.MQ, rnkg Rolling moment due to air forces, positive when 
causing rotation to the right.
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mkg Lateral moment due to air forces, positive when 
causing a turn tp the right. 

MK mkg Pitching moment due to the inertia forces, positive 
when nose-heavy. 

Pitchirg moment due to the gyroscopic moment of the 
propeller, positive when nose-heavy. 

cmh Coefficient of pitching moment 	 F t q. 

It cmq I'	
U	 rolling	 t q. 

Cms '	 lateral	 t q.

Axes through center of gravity and fixed in space: 

x-axis in the direction of flight; 

y-axis perpendicular to the direction of flight; 

z-axis parallel to the direction of flight. 

Axes through center of gravity and moving with the airplane: 

x', longitudinal axis; 

vertical axis; 

z', lateral axis. 

J, J, J	 mkg/s, inertia moments about the 3 axes. 

W, W,	 us,	 angular velocities about the 3 axes. 

a.	 Angle of attack. 

cp	 Angle of flight path. 

p.	 gle of roil. 

I Lateral angle, positive when airplane turns to left, 

Elevator angle, positive when causing nose-heaviness. 

I 
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Elevator angle, positive when causing right roll. 

s Rudder angle, positive toward the right. 

1. Historical Sketch 

The U S was built in January-February, 1923, and was flown 

in May. It surpassed the other airplanes of that time. It was 

purposely made slightly nose-heavy and was balanced by 5 kg 

(11 lb.) of ballast in the tail. 

Type US. U7 TJ12 ________ 

Year built 1923 1924 1925 

Span	 in 9.8 10 10 

Distance of elevator from 
center of	 ,ravity	 in 3.7 3.5 4.3 

Reference chord	 in 1.50 1.50 1.32 

Wing area including ailerons 	 m2 12 12.5 24 

Aileron area	 in2 1.2 1.2 1.4 

Stabilizer area	 in2 1.8 1.8 1.5 

Elevator	 in2 0.8 0.8 0.8 
(l.os)* 

Fin	 I'	 m2 0.25 0.25 0.45 
(o.7o)* 

Rudder	 in2 0.30 0.30 0.54 
(l.00)* 

Dead load (weight empty) 	 kg 330 165 500 

Useful load 220 85 300 

T ot al _____-________________	
It 55Q__-- 250 800

*The parentheses refer to spinning tests ! The other numbers 
refer to wind-tunnel tests. 



ca.l.0 

200 

125 

90 

60

0.6	 1.2 

100-200 130 

80	 150 

77	 234 

53	 1184 

Engine power HP. 

Maximum speed km/h 

Climbing speed (air density 
1 kg/&) rn/s 

Maximum lift coefficient 
attained 

Take-off run m 

Lad.ing run m 

Inertia moment about vertical 
axis, mkg/s2 

Inertia moment about longitu-
dinal axis rnkg/s2 

Inertia moment about lateral
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• 55	 18	 80 

145	 95	 140 

axis	 rnkg/52	 50	 38.5	 150 

Inertia moment of propeller	 mkg/s2	 0.2111	 0.079	 0.174 

Abscissa of center of gravity 	 m	 I	 0,74	 0.84	 0.75 

Ordinate of center of gravity 	 m	 +0.30	 -0.45	 -0.93 

Flight characteristics- Longitudinal stability with and 

without gas. Lateral stability of curves up to 30°. Like high 

effectiveness of t1l three controls. Uniform almost zero pres-

sure on all controls. Very sensitive in flight. Looping and 

rolling showed that the elevator was very small for such stunts. 

Once pilot D. forced the airplse into a spin. It spun 

very slowly at a large angle of attack. The engine remained 

still,	 d the pilot could not get out of the spin. He was 

very familiar with spinning, had good nerves and presence 
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of mind, and escaped uninjured. on crashing in the woods. He had 

done all that was humanly possible to et out of the spin and 

reported that all the control were pressureless and. ineffective. 

The TJ 7 ( tt Kolibri tf ) was built in November, 1923; remained 

idle three months for lack of an engine; was first flown in June, 

1924, and won three first prizes the same year in the Rh gn con-

tests, The rudder had to be enlarged.. It could not be consid-

ered. perfect. It was intended. for training purposes, but failed. 

as regards the engine question. Two accidents, due to stalled 

flight at altitudes of 20-30 m (35-100 ft.) by incompetent pi-

lots, could. not be attributed. to the characteristics of the 

airplane. 

The U 12 ("Flamingo s ) was built in December, 1924 - Febru-

ary, 1925, and was first flown in March. It was found to be 

5 cm (2 in.) tail-heavy as compared with the design. Since it 

was first used. chiefly for stunt flying, no complaint was made, 

because a slight tail-heaviness facilitated looping and. rolling. 

The first sample did. not exhibit the perfection whichsub-

sequently led to its general adoption. Its easy transition into 

and out of turns, combined with good lateral stability ed. con-

trollability at large angles of attack, distinguished. this type 

from the others of that time. 

The elevator was first enlarged. The inner contour was 

then cut away, in order to produce a pressure equal to that on 

the ailerons. This proved, successful. For the same reason
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the rudder was likewise enlarged toward the rear. Thus it Was 

brought about that all the controls produced the same angular 

acceleration for the same pressure and motion of the hand or 

foot. The sensitivity to gusts was also the same about all 

three axes. 

The following incident then occurred, which affected the 

whole development. Von K a new pupil who had never been in a 

spin before, came out of a flat spin into a close spiral, ap-

parently without recognizing it socn enough and high enough, 

and struck the side of a house. The airplane had an enlarged 

elevatorand rudder. 

Up to that time no spinning had been tried with that type. 

Systematic spinning tests were made with it in November, 1925. 

Two rudders were used, one of them being enlarged backward and 

the other upward. Von Schnebeck was the pilot. The report 

r e ads: 

"The tests yielded perfectly normal spinning curves up to 

five rotations and 350 m (1150 ft.) loss in altitude. With the 

aid of a triple recording device, there were measured the loss 

in altitude, the rotation time and. the number of rotations dur .

-ing the whole spin. The radius was estimated, prt1y from the 

ground and partly from another airplane. 'The results were as 

follows.
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Spin of the J 12 

Approxi-
Nuxiiber of Number of Altitude Time per Number of mate 
the flight the spin loss in m rotatitn rotations speed of 

descent 
___________ __________ ___________ km/h 

1 185
__________ 

-

___________ 

I	 - - 

1 2 160 3.5 2 82 
3 160 4.0 2 72 
4 204 2.5 l (195) 

1 182 3.0 2-3/4 80 
2 2 

1
285 2.5 

-
4-1/2 143 

-

"The altitude loss Was calculated with the aid of the 

Jordan altitude formula: 

h = 16000 B -
	

(1 - 0.004 tm), 
B + B1' 

in which B denotes the baxometric height at the end of the 

spin; B1 , the barometricheight at the beginning f the spin; 

tm, the mesn temperature of the air stratum, which was put at 

-10°C (14°F). The values plainly show that (in comparison with 

English measurements) the spinning curves were perfectly normal. 

The radius of the flight path was estimated at 8-10 m (26-30 ft.). 

"The spin was entered from a steep 'corkscrew' with full 

aileron and rudder deflection in the same direction and •with 

the elevator up. The transition from the spiral into the spin 

was effected by a sudden jerk. The spin was uniform until the 

steering controls were released, when there was a gradual tran-

sition to normal flight. This usually required about 1.5 rota-

tions. 

"The enlarged rudder required 2 to 3 rotatiwns before the 	 - 
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requisite angular velocity for spinning was attained. The re-

covery from the spin was accomplished in about the same manner 

for both rudder sizes. 

"Stalling in straight flight caused pancaking while stall-

ing in a turn, without a very high angular speed, caused side-

slipping. 

"It seems advisable . to use the enlarged fin and. rudder be-

cause they tend strongly to prevent the transition into a spin.." 

It was therefore decided to use only the large fin and rud-. 

cler. Subsequent tests made it seem advisable to enlarge the 

fin still further. These measures increased the tail-heaviness. 

The writer, made flights with ballast in front of the center of 

gravity. These flights showed the best location for the center 

of gravity to be 5 cm (2 in.) in front of the location calcu-

lated from monoplane tests. The next series 'Was then made with 

a correspondingly longer fuselage and advanced landing gear. 

Two other tests led to no further structural changes. 

Once the wing contour was made rectangular in order to cheapen 

its production. The result was a lessened aileron efficiency 

and an increased pressure on the ailerons. There was no possi-

bility of rolling. The dihedral was then e'iminated with a 

much poorer control while going into and out of turns. Experi-

ence also showed that the elimination of the one degree of 

washout had an unfavorable effect on curvilinear flight. Last-

ly, the gear ratio.of 'the control stick to the ailerons.-was
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raised, thus equalizing again the pressure and effectiveness 

of all the controls. 

Characteristics of Pi'oduction Airplanes 

Characteristic	 Means and cause 

Equalization of pressure and	 Flight tests, changes in the 
effectiveness. Good transi- 	 controls. 30 dihedral, ellip-
tion into and out of turns. 	 tical lift distribution cross-

wise to the flight direction 
obtained by 1° washout and wing 
plan form. 

Ability to land easily. 

No loss of control in stalled. 
flight, lateral stability at 
large angles of attack.

No separation of flow at large 
angles and good effectiveness 
of all controls. Correct loca-
tion of landing gear. 

Elevator sufficiently effective 
to overcome the wing moment at 
large angles. Apparently no 
diminution of the lift coeffi-
cient at large angles. Wing-
plan form. 

Ability to do all kinds of	 Control effectiveness.. 
stunt flying. 

Surfaces 0±' the four types: varnished plywood fuselages 

and fins; fabric-covered wings, stabilizers, elevators and rud-. 

ders. The wings of the U 6 and U 7 had leading edges of ply-

wood. The wings of the U 12 had auxfliary ribs. 

2. Wind-Tunnel Tests 

Models with landing gears were made corresponding to Fig-

ures 1-3. The wings of the biplane were connected by thin 

streamlined struts, whose drags were not determined separately. 

The -test results were not suitable for. •efficiency calculations.
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Reference Quantities 

The reference quantity for all forces and moments is the 

wing, including the central section. 

The reference chord for all moments is the maximum chord 

near the fuselage. 

The reference axis for the longitudinal or pitching moment 

is the lateral axis, fixed both with respect to the flight 

path and with respect to the airplane itself, passing through 

the foremost point of the chard in the middle of the wing (the 

upper wing of a biplane). 

The referenceaxis for the rolling moment is the axis fixed 

with respect to the flight path and passing through the fore-

most point of the wing chord in the plane of symmetry parallel 

to the direction of the wind. 

The reference axis for the turning moment is the axis 

fixed with respect to the flight path and passing through the 

foremost point of the chord in the center of the wing perpen-

dicular to the direction of the wind. 

A n g 1 e 

The angle of attack is the angle between the line of thrust 

and the direction of the air flow. On the U 12 it is the angle 

between the chord of the upper wing and the direction of the 

air flow.
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The angle of yaw is the angle between the longitudinal 

axis of the airplane and the flight path. 

The lateral angle is determined from the angle of attack 

and the angle of yaw. 

There were measured: 

1. With the three-component balance, the lift, drag and 

pitching moment at angles of -30° to +40° for all three models 

with rudder neutral. 

2. With the six-component balance, the ecfect of a de-

flection of 200 of the elevator, rudder and ailerons for all 

three models throughout the whole range of angles of attack. 

For testing the ailerons and rudder at negative angles of at-

tack, the elevator deflection was plus 200. For positive an-

gles Of attack, the elevator deflection was negative, corre-. 

spending to conditions in practice. The elevator was set at 

zero for medium angles of attack. 

3. Only pn the U 12, the effect of angles of yaw of 15 
A 

and 30 degrees on all forces measured under heading 2. 

4. For all three models, rotation produced by the deflec-

tion of the aileron-s and autorotation about an axis passing 

through the center of gravity. 

Arrangement of Apparatus 

A shaft, passing through the point in the model which car-

responded to the center of gravity of the full-sized airplane,



N.A.C.A. Technical Memorandum No. 502
	

13 

Was rotatably mounted on the bearings A and B (Figs. 4 and 5). 

The model itself was, in turn, made rotatable longitudinally 

about the center of gravity, in order to obtain the different 

angles of attack. An adjustable counterweight G was added, 

in order to obtain a uniform angular velocity. 

The Experiment 

The revolution speed of the model Was determined at various 

angles of attack	 a, aileron deflections q (from 0 to 20°) 

and. wind velocities v,	 the maximum value of which was deter-

mined by the strength of the model. For angles of attack below 

16° the rudder had to be removed, because it hit the shaft. 

Control readings at large angles of attack, without the tail 

members, showed no measurable differences. 

The model was sometimes set in motion at 	 = 0, and the 

spinning direction determined. No special tendency to spin in 

either direction, or to begin to spin without starting, was 

noticed with any model, though it should be noted that there 

was some friction in the bearings. The starting was also attempt-

ed, though always unsuccessfully, at	 = 10° and 20° with 

large ang1of attack outside the spinning range. Spinning in 

the opposite direction to that produced by the ailerons was 

effected only twice (with the U 6 and U 12) in spite of repeated 

attempts. Two positions of spinning equilibrium were found at 

large angles of attack. On gradually increasing the wind veloc-
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ity fron zero, the lower position of equilibrium was obtained, 

which then quite suddenly went over into the upper position of 

equilibrium at high wind velt,cities. The latter position then 

persisted, even when the wind velocity was reduced. The revolu-

tion speed was determined as nearly as possible for both posi-

tions, but it could not always be found accurately, on account 

of the instability at high velocities and on account of the 

friction of the bearings at low velocities. 

Analysis 

The peripheral velocity u = w 	 was determined from the 

measured revolution speed.

M o d e 1 s 

a) U 6.- Both directions of turning were tried in order to 

compare the uniformity of the left and right turn. The slight 

differences were probably due to the lack of perfect symmetry 

: of the model. Smaller angles of attack than the ones measured 

could not be obtained. At 	 =°24.8° it.was found possible to 

make the model spin contrary to the turning direction determined 

by the deflection of the ailerons. 

b) U 7.-. The trailing edge of the middle portion of the 

wing had to be cut away. When a was smaller than l0, a poT-

tion of the fuselage nose also had to be removed. Here also 

the control points, at greater angles of attack without the
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fuselage nose, gave no measurable differences. 

c) U 12.- The trailing edge of the middle porticn of the 

upper wing had to be cut away. At a. = 23.8° and q = 10° 

it was found possible to make the model spin contrary to the 

turning direction determined by the'deflection of the ailerons. 

The experimental results are shown in Figures 15-17. 

3. Inertia Moments 

Before definiteJy determining the spinning conditions, we 

must determine the moments produced by the inertia forces. We 

do this first for the angular velocity w = 1. In determining 

the actual inertia moments we then have only to introduce the 

actual angular velocity. Contrary to the air forces, they must 

be referred to the axes moving with the airplane. F0r their 

calculation we use the inertia ellipsoid of the airplane. Its 

axes form angles of 1 to 3 degrees with the axes of the airplane. 

The centrifugal force thus produced is disregarded. 

Before we begin with the calculation, we will first deter-

mine to what variables we will restrict ourselves, since rela-

tions too troublesome for practical purposes would otherwise 

occur. Since the gyroscopic moments here depend on rotation 

in space and not about the flight path, we must take into ac-

count both the angle of attack and the slope of the flight path. 

If we imagine the steep spiral developed, we then have an in-

clined plane at an angle equal to that of the flight-path angle,
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on which the airplane descends at a large angle of attack. 

Thereby a small lateral angle 1, or a small angle of roll p 

greatly, affects the air forces and air-force moments, but only 

slightly affects the inertia moments. If the inclined plane is 

again coiled into a spiral, the inner wing tip acquires a great-

er angle of attack and consequently a greater drag. 

A moment is thus produced about the vertical axis. This 

is opposed by a second moment, in that the tail in the spiral 

no longer receives the wind symietrically but laterally from 

without. The magnitude of these moments is not known, but must 

be quite large. From experience, it is known, however, that 

the lateral and rolling angles occurring in practice are quite 

small. The gyroscopic moments about the vertical and longitudi-

nal axes are thus eliminated. Consideration of the lateral an-

gle slightly reduces the inertia moments. The gyroscopic mo-

ment about the.remaining axis of roll, during steady motion, is 

= ( Jx - Jy)
D 

The components of the angular velocity are 

Wx)sin( CPct) and wycos(CP_a). 

The introduction of these values yields the simple formula 

MK =	 -. J) W2 sin 2 (cp - a). 

With the aid of the values mentioned at the beginning, the cal-

culation is now a simple matter. We assume the flight-path an-
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gle to be 70°, which is a conservative mean value. Figure 18 

shows the result. At large angles the curve falls off. 

If we now compare the inertia forces for w = 1 of the 

low-wing monoplane with that of the high-wing, we find, a smaller 

gyroscopic moment for the former. The gyroscopic moment of the 

biplane is greater, corresponding to the greater weight, and 

(taking this fact into accáunt) not fundamentally different. 

The high-wing monoplane really has the greatest inertia forces 

in proportion to its small weight. For flight conditions the 

square of the angular velocity is more important than the in-

dividual structural type, when the latter does not fundamental1 

alter the air forces. WeE will see later, however, that the 

contrary case sometimes occurs. 

Gyroscopic Moments 

The gyroscopic moment of the propeller, however, is not 

proportional, as hitherto, to the second power f the angular 

velocity, but only to the first power. The moment about the 

lateral axis of the propeller, with the inertia moment 	 L and 

the angular velocity WL due to rotation about the vertical 

axis, is

Mg = L tL W SJfl (cp - a), 

Figure 18 shows the calculation. It cannot be compared, howev-

er, with the lower curves, since the gyroscopic forces increase 

with the first powez and the other inertia forces increase with
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the second power of the angular veloOity. They are responsi-

ble for the difference between right and left spins. They be-

come, important only on the installation of an engine with a 

very large propeller on a small airplane with very great wing 

loading. Their inertia moment increases with the fifth power 

of the diameter. A Reed metal propeller has twice the weight 

and twice the inertia moment of a metal-tipped wood propeller. 

An untipped wood propeller has a still smaller weight and in-

ertia moment. This difference may be decisive for single-seat 

pursuit and racing airplanes. 

assumes importance.

The direction of rotation then 

Propeller Airplane Morn e n t 

Right turn . Nose-heavy Harder 
Turning to Right spin 11 Easier 
the right

Left turn Tail-neavy Easier 
Left spin U Dangerous 

Left turn Nose-heavy Harder 
Turning to Left spin U	 1 Easier 
theleft

Right turn Tail-heavy
1

Easier 
Right spin 'I	 II Dangerous

4. Spinning 

We turn next to the interesting problem of comparing the 

inertia forces in spinning with the aerodynamic longitudinal or 

pitching moment. We take the pitching moment (Figs. 19-21) 

from the Gttingen measurements for the position of the center 

of gravity. We determine the angular velocities from the re-
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suits of the autorotation tests as shown in Figures 15-17. 

Thereby the following numbers represent -the weight and velocity 

1. U6)G=450kg, v=4[,1=23.3m/s 

This cQrresponds to the condition and tothe inertia forces in 

diving.

2. U 7) G = 300 kg, V = 4	 = 17.9 rn/s 
Fi.2 

This corresponds to the condition for noimal flight. 

3. U12)G=G7Okg, v=4 =20.1m/s; J F 1.1 
This corresponds to the spinning tets and inertia forces. 

From the resulting angular velocities we find the inertia 

forces. They are plotted in Figures 19-21 and represent the 

following phenomena. 

a) U 6.- The airplane got into a spin only once and failed 

to come out of it. At zero aileron deflection, the inertia mo-

ments equal the pitching moment without rotation. From English 

calculations and experiments we know that through rotation the 

pitching moment of the wing decreases at large angles of attack. 

If, in te present case, the wing thoment be regarded as excess-

ive, its smallness is the cause of the inability to conie out of 

the spirt. The inertia forces are rather great, due to the high 

peripheral velocity. The abnormality, however, is not the mag-

nitude of the inertia forces, but the smallness of the longitu-
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dinal or pitching moment. The already high angular velocity 

for the aileron deflection 3q = 0 is still further increased, 

in comparison with the other types, by the high-wing loading. 

b) U 7.- This airplane went into a spin only once. It did. 

this at an altitude of only 30 m (about 100 ft.,) and immediate-

ly struck the ground. At a higher altitude it should have been 

able to spin without accident. Here also it is noticeable that 

the longitudinal moment decreases at large angles of attack. 

c) U 12.- Many pupils have learned to spin with this type. 

The flight results are fully confirmed by calculation. At full 

rudder deflection, the inertia forces exceed the aerodynamic 

longitudinal moment and establish a position of equilibrium at 

34 to 40 degrees with the elevator deflected upward. With all 

the controls deflected halfway, both the angular velocity and. 

the inertia force decrease with a simultaneous increase in the 

nose-heavy longitudinal moment. The accident which occurred 

was due to the inexperience of the pupil. 

d) The effect of the propeller is shom by the two lighter 

curves. It is tail-heavy or nose-heavy according to the direc-

tion of rotation.
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5. Conclusion 

The fall in the longitudinal moment of the U 6 has not 

been explained. Guesses are useless without proof. In this con-

nection ftrther wind-tunnel tests must be made. It will also 

be well to test the U 6 and U 7 in a lateral wind, and also to 

exchange the wings of these two types. We can thus determiie 

the difference between the high-wing and low-wing monoplane. 

The transition into and out of a turn is almost always combined 

with a lateral motion, whose great rolling moment is evident 

in the case of the U 12. 

These considerations did not determine the real effective 

moment a'oout the vertical and lateral axes, for which the lat-

eral force, with its lever arm as the reference quantity, must 

be considered. From this we can determine the initial angular 

velocity produced by a 20° deflection of the ailerons or rud-

der. This is of value, howeve, only in tests with a lateral 

wind and exchanged wings. 

Translation by Dwight M. Miner, 
National Advisory Committee 
for Aeronautics.
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The change in position of center of gravity d 	 o 

the enlarging and the fitting of a different (Siemens). 
engine made necessary an entirely different type of con-
struction.The vertical fin and rudder used on the wind 
tunnel model are shown in dotted lines. 
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and rudders used. on the wind tunnel iiode1 are shown in 
dotted lines.
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Figs.4 & 12. 
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Fig.4 Installation for spinning test 
in wind, tunnel. 

Rudder	 Low wing U6—
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	 deflection	 Hi	 win U7 ----------

-10 -1 

-20 -2 

-3 
40 

30 3

20 2

10 1

0
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-20 -2

Fig.12 Effectivenesa of ailerons and rudders on U6 and U?. The 
rudder forces and moments are greater on the high wing 

monoplane. Between 100 and 22° angle of attack the ailerons of 
U? are superior bece.use they produce larger rolling r:ioments and 
smaller yawing momeits, The smaller yawing moments are associated 
with the. smaller increases in drag shown on the U7 polars and 
require smaller rudder movements to counter act them. The poor 
effectiveness of the rudder found in flight tests can be 
attributed to the lack of dihedral, 
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NOTE.- Subsequent to completion of report, legends of 

Figures 5, 6, 7, and 8 have been corrected to read as follows: 

Fig. 5. Wind tunnel arrangement for spinning tests. 

Fig. 6. U 6 polars. 
Note bhe great increase in drag for control 

movements of 200 and the course of the moment curve at 
large angles of attack. 

Fig. 7. U 7'polars. 
Note the great increase in drag for control 

movements of 200. The increase in drag due to movement 
of the ailerons is less with this plan form of wing than 
for the U 6. The ailerons are the same size. Note the 
course of pitching moment at large angles of attack. 

Fig. 8. U 12 polars. 
Note the great increase in drag for control 

movements of 200. The increase in drag due to the 
ailerons is similar to that on U 7. The pitching moment 
no longer decreases with increasing angle of attack. 
This is the principal and most important difference aa 
compared with the monoplanes.
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Fig.13 Effectivness of rudder and ailerons of the U12"F1amingo 
with T = 00,150 and 30 0 yaw. A yaw without movement of 

the ailerons gives a rolling moment which is twice as great as 
that produced by 20 0 movement of the ailerons at gero yaw. These 
values are affected only slightly by a 200 movement of the rudder, 
whose effectiveness increases with increasing angle of yaw. The 
effectiveness of the ailerons is increased by yaw. 

Experience shows that to execute a roll first obtain 
excess power then give full rudder with bank,as soun as a heavy 
stick force is felt,indicating a large angle of yaw,give full 
aileron. The rudder used in flight tests was larger. 

	

Fig.13 (continued on next two pages)	 a 
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Fig.l4	 Effect of yw on the pitchinc rorents of Ul2. This 
j all the i;oront diagraii 7Ihicn as determined. 

Unfortunately little uce can be ;eade of it because no 
moasureent eve an elevator r.iovcment of zero.

0	 10'	 20	 30	 40cc 

'ig.l5	 U6 spinning tests. A 20° aileron deflection gives 
considerably greater angular velocity than no 

deflection. With increasing wind velocity the rotational 
speed like;ise increases. Tue same is also true of the U7 
and Ul2.(see Figs.lS and 17.) 
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Figs.16 & 1? 

igh wins U7 

0.6 

0.5 

L 0.i 
V

0.3 

0.2 

0.1

__- 
Spinning tests.

•-

-__

I __ 

—25 rn/sec 

20 rn/sec 

10	 20	 30	 40 

Fig.l6 U7 Spinning tests. The aileron deflection and 
speed increase the angular velocity. 

10	 20	 30	 40	 50 

Fig.17 U12 Spinning tests.Here the angular velocity is 
a minimum for angular doflection, 0 = 0,and a 

maximum for	 = 200 .Their orders of magnitude agree 
fairly well wrth the flight-tests results.No accurate 
comparison is possible,'oecause the magnitudes of the 
aileron deflections in the flight-test are lacking. 
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Fig.18 Inertia forces for an angular velocicul.The 
centrifugal moment is least on the lovwing 

monoplane.The Gyroscopic moments correspond to 750 and 
1500 R.P.M.that is full throttle.One must never forget 
tha the gvroscopic moments increase with the first 
power of the angular velocity and' the centrifugal 
moments increase withthe second power. 
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Fig.l9 U6 Pitching moments and inertia forcos.Tho upper 
line corresponds to the pitching moment in steady 

flight.The lower curves represent the inertia forces.The 
gyroscopic moients are introduced as thin lines for right 
and left spins.The insufficient excess of the air forces 
over the inertia forces is shown. 
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M/ q	 Aerodynamic moment 

Fig.20 U7 Pitching moments and inertia forces. The aero-
dynamic pitching moment is almost twiea great as 

for the U6,which has almost hc same wing and. tail. On 
referring to Fig.18,it is seen that the square of the angular 
velocity is decisive. The effective inertia forces are there-
fore smaller than for the 1J6. The gyroscopic moments are 
again indicated as thin lines for right and left spins. 
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Fig.2l U12 Pitching moments and inertia forces. The magni-
tude of the aerodynamic pitching moment is conspic-

uous The airplane was equipped and spun with a larger ele-
vator than that used in the wind-tunnel tests. In practice 
therfore the pitching moment is still greater. The airplane 
should recover immediately with the controls neutral and 
with some pressure. 
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