DCN 1248

UIC: N00421

CAPACITY ANALYSIS: DATA CALL #4 WORK SHEET FOR TECHNICAL CENTER or LABORATORY: PATUXENT RIVER, MD

Table of Contents

Sect	tion	<u>Page</u>
1.	Historical and Projected Workload	2
2.	Current Class 2 Assets	42
3.	Class 2 Space Available for Expansion	68
4.	Class 1 Space Available for Expansion	72
5.	Base Infrastructure Capacity	78
6.	Ship Berthing Capacity	86
7.	Operational Airfield Capacity	86
8.	Depot Level Maintenance Capacity	86
9.	Ordnance Storage Capacity	86

TAB A: Ship Berthing Capacity **TAB B:** Operational Airfield Capacity

TAB C: Depot Level Maintenance Capacity

TAB D: Ordnance Storage Capacity

*********If any responses are classified, attach a separate classified annex. *********

7 April 1994

1. Historical and Projected Workload. Use Tables 1.1, 1.2, 1.3 & 1.4 below to provide historical and currently projected workload data for your activity in terms of funding and workyears. Assume previous BRAC closures and realignments are implemented on schedule. Dollar amounts should be in then-year dollars. Workyears should be separated for in-house government efforts and on-site contractor work.

a. Use Table 1.1 to provide data on your site.

b. Use Table 1.2 to provide data on your Detachments that did not receive this Data Call directly. <u>Compile the information from all of these Detachments into one table</u>. Attach a list of the titles & UIC's of the Detachments included in the table.

c. For FY's 1993 thru 1997 provide a breakout of the "Total Funds Budgeted" line showing the appropriation and amounts of funding budgeted from your major customers. Major resource Sponsors are defined as, but not limited to, all systems commands, ONR, SSPO, CNO, FLT CINCs, Other DON, Other DOD by Department, Other Federal Government, All other. Use Table 1.3 to report this breakout for your site. Use Table 1.4 to report this breakout for your compiled Detachments that did not receive this Data Call directly. Provide separate tables for FY's 1993 thru 1997.

Use the following definitions when providing data for the tables below:

Workyears: Consistent with those used in the preparation of inputs to the President's budget.

In-House government efforts or In-House workyears: Includes both military and civil servant employees

<u>On-Site Contractor workyears</u>: Actual or estimated workyears performed by support contractors with workyears defined consistent with the definition used in the President's budget.

<u>On-site Contractors</u>: Those contractors that occupy space directly on the site on nearly a full time basis.

Total Funds Budgeted: The funds used as inputs to the President's Budget.

Civilian Personnel On-Board: Full Time Permanent employees (FTP).

Table 1.1Historical and Projected Workload for NAWCAD, Patuxent River
(UIC N00421)

Fiscal	Total	Total	Direct	Budgeted	Actual	Actual
Year	Funds	Funds	Cite	Wkyrs	In-House	Onsite
1	Budgeted	Received	Funds		Wkyrs	Contract
	(\$K)	w/o	Received		-	Wkyrs
		Direct	(\$K)			
		Cite (\$K)				
86	274,800	265,500	117,200	3,892	3,922	1,090
87	287,100	280,500	65,000	3,863	3,887	1,351
88	293,700	320,700	58,300	3,994	4,015	1,439
89	329,800	353,800	38,200	4,039	4,078	1,743
90	344,000	409,100	27,300	4,207	4,251	1,579
91	447,500	426,900	33,500	4,242	4,283	1,656
92	420,200	440,000	31,700	4,308	4,338	1,621
93	430,800	522,500	65,300	3,861	4,372	1,848
94	432,500			3,928		
95	400,100			3,806		
96	410,000			3,830		
97	415,000			3,726		R

CHART 1 - PATUXENT RIVER AS IT EXISTS TODAY

*Budgeted workyears and Actual In-House workyears include civilian and military.

.

NAUCHQ Change amis NAUC-21 9/19/94

3 R (9-15-94)

Table 1.1 Historical and Projected Workload for NAWCAD, Patuxent River(UIC N00421)

Fiscal	Total	Total	Direct	Budgeted	Actual	Actual
Year	Funds	Funds	Cite	Wkyrs	In-House	Onsite
	Budgeted	Received	Funds		Wkyrs	Contract
	(\$K)	w/o	Received		-	Wkyrs
		Direct	(\$K)			·
		Cite (\$K)				
86	274,800	265,500	117,200	3,892	3,922	1,090
87	287,100	280,500	65,000	3,863	3,887	1,351
88	293,700	320,700	58,300	3,994	4,015	1,439
89	329,800	353,800	38,200	4,039	4,078	1,743
90	344,000	409,100	27,300	4,207	4,251	1,579
91	447,500	426,900	33,500	4,242	4,283	1,656
92	420,200	440,000	31,700	4,308	4,338	1,621
93	430,800	522,500	65,300	3,861	4,372	1,848
94	432,500			3,928		
95	400,100			3,806		
96	410,000			3,830		
97	415,000			3,644		

CHART 1 - PATUXENT RIVER AS IT EXISTS TODAY

*Budgeted workyears and Actual In-House workyears include civilian and military.

FOR OFFICIAL USE ONLY PREDECISIONAL WORMATION

Table 1.1 Historical and Projected Workload for Patuxent River Complex
(UIC Multiple)

Fiscal	Total	Total	Direct	Budgeted	Actual	Actual
Year	Funds	Funds	Cite	Wkyrs	In-House	Onsite
	Budgeted	Received	Funds	-	Wkyrs	Contract
	(\$K)	w/o	Received		-	Wkyrs
		Direct	(\$K)			
		Cite (\$K)				
86	274,800	265,500	117,200	3,892	3,922	1,090
87	287,100	280,500	65,000	3,863	3,887	1,351
88	293,700	320,700	58,300	3,994	4,015	1,439
89	329,800	353,800	38,200	4,039	4,078	1,743
90	344,000	409,100	27,300	4,207	4,251	1,579
91	447,500	426,900	33,500	4,242	4,283	1,656
92	420,200	440,000	31,700	4,308	4,338	1,621
93	430,800	522,500	65,300	3,861	4,372	1,848
94	793,112			4,804		
95	762,411			4,618		
96	1,004,800			6,183		
97	981,500			5,939		

CHART 2 - PATUXENT RIVER AFTER BRAC 91/93 REALIGNMENTS

Includes data for Patuxent River Complex (NAWCADPAX, NAVAIR, NAWCADWAR, NAWCADTRN, Webster Field)

NAWCHQ Clionge anso NAWE 21 9/19/94

4 R (9-15-94)

R

Table 1.1 Historical and Projected Workload for Patuxent River Complex (UIC Multiple)

CHART 2 - PATUXENT RIVER AFTER BRAC 91/93 REALIGNMENTS

Fiscal	Total	Total	Direct	Budgeted	Actual In-	Actual
Year	Funds	Funds	Cite	Wkyrs	House	Onsite
	Budgeted	Received	Funds		Wkyrs	Contract
	(\$K)	w/o Direct	Received			Wkyrs
		Cite (\$K)	(\$K)			
86	274,800	265,500	117,200	3,892	3,922	1,090
87	287,100	280,500	65,000	3,863	3,887	1,351
88	293,700	320,700	58,300	3,994	4,015	1,439
89	329,800	353,800	38,200	4,039	4,078	1,743
90	344,000	409,100	27,300	4,207	4,251	1,579
91	447,500	426,900	33,500	4,242	4,283	1,656
92	420,200	440,000	31,700	4,308	4,338	1,621
93	430,800	522,500	65,300	3,861	4,372	1,848
94	793,112			4,804		
95	762,411			4,618		
96	1,004,800			6,183		
97	981,500			5,873		

Includes data for Patuxent River Complex (NAWCADPAX, NAWCADWAR, NAWCADTRN, Webster Field)

ONLY FOR OFFLILLUS PREDECISIONAL INFORMATION

Table 1.1 Historical and Projected Workload for Patuxent River Complex
(UIC Multiple)

Fiscal	Total	Total	Direct	Budgeted	Actual	Actual
Year	Funds	Funds	Cite	Wkyrs	In-House	Onsite
	Budgeted	Received	Funds		Wkyrs	Contract
	(\$K)	w/o	Received			Wkyrs
		Direct	(\$K)			-
		Cite (\$K)				
86	274,800	265,500	117,200	3,892	3,922	1,090
87	287,100	280,500	65,000	3,863	3,887	1,351
88	293,700	320,700	58,300	3,994	4,015	1,439
89	329,800	353,800	38,200	4,039	4,078	1,743
90	344,000	409,100	27,300	4,207	4,251	1,579
91	447,500	426,900	33,500	4,242	4,283	1,656
92	420,200	440,000	31,700	4,308	4,338	1,621
93	430,800	522,500	65,300	3,861	4,372	1,848
94	793,112			4,804		
95	762,411			4,618		
96	1,004,800			6,183		
97	981,500			5,873		

CHART 2 - PATUXENT RIVER AFTER BRAC 91/93 REALIGNMENTS

Includes data for Patuxent River Complex (NAWCADPAX, NAVAIR, NAWCADWAR, NAWCADTRN, Webster Field)

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

Table 1.1Historical and Projected Workload for Patuxent River Complex
(UIC N65980)

Fiscal Year	Total Funds Budgeted (\$K)	Total Funds Received w/o Direct Cite (\$K)	Direct Cite Funds Received (\$K)	Budgeted Wkyrs	Actual In-House Wkyrs	Actual Onsite Contract Wkyrs
86						
87						
88						
89						
90						
91						
92						
93						
94	289,200			242		
95	289,500			. 240		
96	280,000			230		
97	275,000			225		

CHART 3 - WEBSTER FIELD INFLUX

Table 1.1	Historical and	Projected	Workload	for	Patuxent	River	Complex
		UIC)	N62376)				-

CHART 3		TRENT	ON	INFL	UX
---------	--	-------	----	------	-----------

Fiscal Year	Total Funds Budgeted (\$K)	Total Funds Received w/o Direct Cite (\$K)	Direct Cite Funds Received (\$K)	Budgeted Wkyrs	Actual In-House Wkyrs	Actual Onsite Contract Wkyrs
86						
87						
88						
89						
90						
91						
92						
93						
94	71,412			634		
95	72,811			572		
96	72,000			511		
97	71,000			414		

- -

Table 1.1 Historical and Projected Workload for Patuxent River Complex(UIC Multiple)

Historical and Projected Workload for Patuxent River Complex (UIC N62269)

Fiscal Year	Total Funds Budgeted (\$K)	Total Funds Received w/o Direct Cite (\$K)	Direct Cite Funds Received (\$K)	Budgeted Wkyrs	Actual In- House Wkyrs	Actual Onsite Contract Wkyrs
86						
87						
88						
89						
90						
91						
92						
93						
94						
95						
96	242,800			1,596		
97	220,500			1,574		

CHART 3 - WARMINSTER INFLUX

Table 1.1 Historical and Projected Workload for Patuxent River Complex (UIC N00019)

CHART 3 - NAVAIRHQ INFLUX

Fiscal Year	Total Funds Budgeted (\$K)	Total Funds Received w/o Direct Cite (\$K)	Direct Cite Funds Received (\$K)	Budgeted Wkyrs	Actual In- House Wkyrs	Actual Onsite Contract Wkyrs
86						
87						
88						
89						·
90						
91						
92						
93						
94						
95						
96						
97						

FOR NAVAIRHQ, CHECK DATA CALL 30 QUESTION 1

59 · · · FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

Fiscal Year	Total Funds Budgeted (\$K)	Total Funds Received w/o Direct Cite (\$K)	Direct Cite Funds Received (\$K)	Budgeted Wkyrs	Actual In-House Wkyrs	Actual Onsite Contract Wkyrs
86	N/A	N/A	N/A	N/A	N/A	N/A
87						
88						
89						
90						
91						
92						
93						
94						
95						
96						
97						

Table 1.2Historical and Projected Workload for Detachments of Patuxent RiverComplex(UIC N00421)

Detachments from Patuxent River have not been budgeted separately but as part of the N00421 UIC. Therefore; no data is available.

.

-

TABLE 1.3 FY 1993 BREAKOUT OF FUNDS BUDGETED for NAWCAD, Patuxent River (UIC N00421)

CHART 1 - PATUXENT RIVER AS IT EXISTS TODAY

			iation	Appropr	Офег						DT&E(N)	ы			SPONSOR
	_			(\$K)				1		-	(2K)		-	-	1
Other All	Other Vavy	SCN	MDM	NdO	N¶A	NWO	RDT&E Other	9.9	5.9	7.9	95.3	в£.Ә	2.9	[.9	
655'28		526	527,5	050'8	158'28	104'439	588'2	180'5E	100,404	159'17	016'11	5,110	565		ΑΙΑΥΑΙΚ
				05		560	53	0£9'I		3,445		540			SPAWAR
		1,235	SL7	484		L86	07			(6)	75				NAVSEA
						OT									NAVFAC
						τ						724			U NAVSUP
				1			1	8	SL.			1			OCNB
			<u> </u>			1								1	OdSS
						1		1							CNO
38,845			54	125	680'7	108'21	1	582	521	LT	5,416			1	OTHER NAVY
966'6		1		1					1						ARMY
572,5															VIK FORCE
23				Ι											OTHER DOD
129'5															OTHER GOVNT
£\$9															PRIVATE PARTY

This table reflects FY93 actual funds received which matches the Total Funds Received w/o Direct Cite column on Table 1.1.

SPONSOR			F	RDT&E(N) (\$K)						Ot	her Appro (\$K)	priation			
	6.1	6.2	6.3a	6.3b	6.4	6.5	6.6	Other RDT&E	OMN	APN	OPN	WPN	SCN	Other Navy	All Other
NAVAIR				105.0	8,201.5				12,468		31,295		20,833		8,400
SPAWAR				168.5	3,204.0	324.0	4,202.5		25,964		40,448		48,489	110	46,000
NAVSEA				2,204.0	420.0				5,971		10,370		30,134		21,710
NAVFAC															
NAVSUP															
OCNR															
SSPO															
CNO															
OTHER NAVY		3,000		508.5	89.5		2,552.9		10,325		6,175		22	5,300	
ARMY								11,556.1							6,000
AIR FORCE								42.2							2,660
OTHER DOD															20,000
OTHER GOVT								-							
PRIVATE PARTY															

TABLE 1.3 FY 1993 BREAKOUT OF FUNDS BUDGETED for Webster Field(UIC N65980)

R

NAWCHQ Change Ums NAWC-21 9/19/94

9 R (9-15-94)

TABLE 1.3 FY 1993 BREAKOUT OF FUNDS BUDGETED for Webster Field(UIC N65980)

SPONSOR			F	DT&E(N) (\$K)						Oth	ner Appro (\$K)	priation			
	6.1	6.2	6.3a	6.3b	6.	6.5	6.6	Other RDT&E	OMN	APN	OPN	WPN	SCN	Other Navy	All Other
NAVAIR				105.0	8,201.5				12,468		31,295		20,833		8,400
SPAWAR				168.5	3,204.0	384.0	4,202.5		25,964		40,448		48,489	110	46,000
NAVSEA				2,204.0	420.0				5,971		10,370		30,134		21,710
NAVFAC															
NAVSUP															
OCNR															
SSPO															
CNO															
OTHER NAVY		3,000		508.5	89.5		2,2552.9		18,325		6,175		22	5,300	
ARMY								11,556.1							6,000
AIR FORCE								42.2		\searrow					2,660
OTHER DOD															20,000
OTHER GOVT															
PRIVATE PARTY											$\left \right\rangle$				

.

.

THIS PAGE INTENTIONALLY LEFT BLANK

.

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

10

.

UIC: N

SPONSOR			R	DT&E(N)						Oth	er Appro	priation			
	61	62	639	6 3h	64	6.5	6.6	Other RDT&E	OMN	APN	OPN	WPN	SCN	Other Navy	All Other
	0.1	0.2	0.54	20.647	50 177	8 125	11 496		19.574	36.574	2,816	2,616		2,589	14,154
NAVAIR		240	7,994		39,177	6,125	11,490		1 704	642	394		98		
NAVSEA				2,300	5,865				1,704	042	574	L			
CNO														1.105	
OCNR	1,82	51,386		143	1,115		5,180		555					1,195	···
	2														2 505
OSD															2,303
SPAWAR		3	5,252	408	2,015		708		159		381		32	2,039	163
OTHER NAVY	104	1,116	163	7,290	170		552		7,139		3,348			19,440	130
ARMY														├ ───	1,879
AIR FORCE															1,867
NON-DOD												_	 		
OTHER DOD	1														546
OTHER GOVNT	1														2,894
OTHEROOVINI		<u> </u>													
	+		<u> </u>												
						L	L	L	L			L			

TABLE 1.3 FY 1993 BREAKOUT OF FUNDS BUDGETED for WARMINSTER
(UIC N62269)

Revined pg

TABLE 1.3 FY 1993BREAKOUT OF FUNDSBUDGETED for TRENTON
(UIC N62376)

SPONSOR			R	DT&E(N)						Oth	er Appro	priation			
	6.1	6.2	6.3a	6.3b	6.4	6.5	6.6	Other RDT&E	OMN	APN	OPN	WPN	SCN	Other Navy	All Other
OCNR			805			30			136						
NAVAIR		2,116	1,461	2,599	14,591	26,784			612	855	1,108				
NELO			127												
NAVINTCOM									45						
NAVFAC									45						
NAVSUP															
OTHER									9					2,114	2,576
ARMY			_												845
AIR FORCE															582
PRIVATE PARTY															3,595
							······								

NAWCHQ Change anus NAWC-211 9/19/94

12 R (9-15-94)

.

TABLE 1.3 FY 1993BREAKOUT OF FUNDS BUDGETED for TRENTON
(UIC N62376)

SPONSOR			F	EDT&E(N)		<u> </u>				Otl	ner Appro	priation			
	6.1	6.2	6.3a	6.3b	6.4	6.5	6.6	Other RDT&E	OMN	APN	OPN	WPN	SCN	Other Navy	All Other
OCNR			805			30			136						
NAVAIR		2,116	1,461	2,599	14,591	26,784			612	855	1,108				
NELO				127											
NAVINTCOM									45						
NAVFAC									45						
NAVSUP															
OTHER									9					2,114	2,576
ARMY															845
AIR FORCE															582
PRIVATE PARTY								-							3,595

12

TABLE 1.3 FY 1994BREAKOUT OF FUNDS BUDGETED for NAWCAD, Patuxent River
(UIC N00421)

SPONSOR			R	DT&E(N)						Othe	r Approp	riation			
	6.1	6.2	6.3a	6.3b	6.4	6.5	6.6	Other RDT&E	OMN	APN	OPN	WPN	SCN	Other Navy	All Other
NAVAIR		100	1,053	4,036	35,737	115,221	16,328	877	84,529	64,997	14,071	936	980		45,309
SPAWAR					1,834		1,140		255		50				
NAVSEA				374	2,104		145		42		139	50	883		
NAVFAC									10						
NAVSUP									2						
OCNR						21									
SSPO															
CNO															
OTHER NAVY				635		26	31		7,801	3,525	656	14			18,968
ARMY															2,458
AIR FORCE															843
OTHER DOD															
OTHER GOVNT															5,667
PRIVATE PARTY															653

CHART 1 - PATUXENT RIVER AS IT EXISTS TODAY

TABLE 1.3 FY 1994 BREAKOUT OF FUNDS BUDGETED for Patuxent River Complex (UIC Multiple)

CHART 2 - PATUXENT RIVER WITH BRAC 91/93 REALIGNMENTS

SPONSOR			R	DT&E(N)						Oth	er Approp	riation			
	6.1	6 <u>.2</u>	6.3a	6.3b	6.4	6.5	6.6	Other RDT&E	OMN	APN	OPN	WPN	SCN	Other Navy	All Other
NAVAIR		2,026	4,327	42,400	106,901	141,542	25,880	944	125,933	113,729	48,809	4,602	7,877	3,252	61,659
SPAWAR		90	2,458	1,060	3,077		6,144		29,013		54,406		45,955	2,551	1,585
NAVSEA				2,110	6,504		_145		7,976	343	10,766	50	15,204		4,441
NAVFAC							·		13						
NAVSUP									2						
OCNR	1,98 6	34,500	785		845	56	2,573		736					1,107	1,619
SSPO															
CNO															
OTHER NAVY	65	758	184	18,766	125	126	398		16,032	3,525	8,475	14	76	20,469	22,055
ARMY															8,185
AIR FORCE															9,880
OTHER DOD															23,991
OTHER GOVNT															14,863
PRIVATE PARTY															3,214
NAVINTCOM									90						
OSD															1,197
NON-DOD															305

Includes data for Patuxent River Complex (NAWCADPAX, NAWCADWAR, NAWCADTRN, Webster Field)

Г

T

T

TABLE 1.3 FY 1994 BREAKOUT OF FUNDS BUDGETED for WEBSTER FIELD (UIC N65980)

1				1 '	1		1					T	Т	T	
[1		+	+	t		+	<u> </u>	<u> </u>	<u> </u>		
┢────	+		'	<u> </u>			4								
					1						T		1		
1				1		1	1	t	+		+	 	╆────	 '	
	t		· +'	<u>├</u> ────	<u> </u>		'	<u> </u>	+						
LSO'L	<u> </u>	 	├ ───′	<u>├</u> ────┤		+	+	 	<u> </u>						
23,880	<u> </u>		├ ────′	├ ────┦	<u>├───</u>	 	 '	┣───	<u> </u>	┥────					OTHER GOVT
\$\$2,285			<i>'</i>	┝───┦		<u> </u>	} '			+					OTHER DOD
071	<u> </u>		<u>├</u> ──-'	├ ───┤	l	<u> </u>	 '	┣────		<u> </u>	<u> </u>	ļ			VIK FORCE
	1,514	91	├ ───	† 81'9		/ 90'9	+ '	+	+	<u> </u>					ARMY
[<u>├</u> ───	·'	<i>├───┘</i>		<u> </u>	c	{ '	<u> </u>	05	\$9	512				OTHER NAVY
177'7	<u> </u> '	568'51	├ ───┘	115'01	/'	+66'0	<u> </u>								ΝΑΥΓΑC
677'5	├ ────′	160'0	└── ┘		'	PES 9	<u> </u>			001					AHEVAN
500 0	└ ───′	108 9	└── ′	35.629	L	841,91	,			\$,408	051	h		┢╼╼╾┥	
562.1	561.1	\$\$6'57	1 1	24,324		28,672	· · · · · · · · · · · · · · · · · · ·	091'7	+	{	╉━━━━━		'	┢───┥	ΔΙΫΛΫΝ
Other	VABN	NOS	NJM	NdO	NAV	NIMO	1721 (71	0:0		<u> </u>					AAWAR
ΙIV	Other	L'					Other	99	5.9	4.9	9E.3b	6.3a	2.9	1.9	
			noitain	er Approp	410					1	DT&E(N)	чя			ROONSOR

.

SI

.

THIS PAGE INTENTIONALLY LEFT BLANK

.

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

SPONSOR			R	DT&E(N)						Oth	er Approp	riation			
	6.1	6.2	6.3a	6.3b	6.4	6.5	6.6	Other RDT&E	OMN	APN	OPN	WPN	SCN	Other Navy	All Other
NAVAIR		282	2,604	. 27,879	51,952	185	9,552	67	21,378	46,457	2,109	2,399		3,252	13,125
NAVSEA				1,736	4,300				1,400	343	250		426		
CNO															
OCNR	1,98 6	34,385			845		2,573		652					1,107	1,619
OSD															1,197
SPAWAR		90	2,458	1,060	1,243		844		86		32			1,416	50
OTHER NAVY	65	758	184	17,856	60	50	352		2,153		1,635			13,473	
ARMY															4,760
AIR FORCE															2,446
NON-DOD															305
OTHER DOD													_		111
OTHER GOVT															2,139

TABLE 1.3 FY 1994BREAKOUT OF FUNDS BUDGETED for WARMINSTER
(UIC N62269)

,

UIC: N0042.

SPONSOR			R	DT&E(N)						Oth	er Approp	riation			
	6.1	6.2	6.3a	6.3b	6.4	6.5	6.6	Other RDT&E	OMN	APN	OPN	WPN	SCN	Other Navy	All Other
OCNR		115	785			35			84						
NAVAIR		1,644	670	10,335	13,804	26,136			878	2,275		1,267			
NELO															
NAVINTCOM									90						
NAVFAC															
NAVSUP															
OTHER									11					5,482	3,087
ARMY															847
AIR FORCE															1,306
PRIVATE PARTY															2,561
													1		

.

TABLE 1.3 FY 1994BREAKOUT OF FUNDS BUDGETED for TRENTON
(UIC N62376)

UIC: N0042.

TABLE 1.3 FY 1995BREAKOUT OF FUNDS BUDGETED for NAWCAD, Patuxent River
(UIC N00421)

SPONSOR			R	DT&E(N)						Other	r Appropr	riation			
	6.1	6.2	6.3a	6.3b	6.4	6.5	6.6	Other RDT&E	OMN	APN	OPN	WPN	SCN	Other Navy	All Other
NAVAIR			1,623	6,493	28,225	96,553	35,413		76,834	54,895	5,888	319	255	4,027	27,598
SPAWAR					3,231		423		194		33				
NAVSEA				341	300		166		492		355	57	339		
NAVFAC									8						
NAVSUP															
OCNR				3,360		141									
SSPO															
CNO															
OTHER NAVY				500	30				8,660	1,698	415	5			29,343
ARMY															776
AIR FORCE															1,368
OTHER DOD							-								9,395
OTHER GOVNT															349
PRIVATE PARTY		L		_											28

CHART 1 - PATUXENT RIVER AS IT EXISTS TODAY

TABLE 1.3 FY 1995 BREAKOUT OF FUNDS BUDGETED for Patuxent River Complex (UIC Multiple)

SPONSOR			R	DT&E(N)	,					Oth	er Approp	priation			
	6.1	6.2	6.3a	6.3b	6.4	6.5	6.6	Other RDT&E	OMN	APN	OPN	WPN	SCN	Other Navy	All Other
NAVAIR		1,922	6,673	43,060	86,776	124,265	42,704		118,691	88,572	36,808	2,632	7,482	5,806	42,603
SPAWAR		7,550	1,872	894	10,821		4,214		24,678		55,439		41,806	1,697	1,535
NAVSEA				1,741	2,398		166		9,706		8,013	57	16,671		5,315
NAVFAC									12						
NAVSUP									12						
OCNR	1,59	37,828	795	3,360	598	189			762					606	27
	7														
SSPO															
CNO															
OTHER NAVY		880	200	19,158	30		452		17,049	1,698	7,251	5		22,221	29,943
ARMY															6,758
AIR FORCE															8,423
OTHER DOD															36,203
OTHER GOVNT							_								7,015
PRIVATE PARTY															2,528
NAVINTCOM									107						
OSD															270
NON DOD															205
OTHER														8,653	2,372

CHART 2 - PATUXENT RIVER AFTER BRAC 91/93 REALIGNMENTS

Includes data for Patuxent River Complex (NAWCADPAX, NAWCADWAR, NAWCADTRN, Webster Field)

TABLE 1.3 FY 1995BREAKOUT OF FUNDS BUDGETED for WEBSTER FIELD
(UIC N65980)

SPONSOR	_		F	DT&E(N)					<u> </u>	Oth	ner Approp	oriation			
	6.1	6.2	6.3a	6.3b	6.4	6.5	6.6	Other RDT&E	OMN	APN	OPN	WPN	SCN	Other Navy	All Other
SPAWAR		7,500			6,806		3,408		23,496		55,406		41,806	750	1,535
NAVAIR				150	5,242				21,337		28,997		7,227		3,148
NAVSEA					198				6,924		7,408		16,332		5,315
OTHER NAVY							100		6,731		6,000		_	2,209	600
NAVFAC									4						
ARMY															80
AIR FORCE															4,814
OTHER DOD															26,508
OTHER GOVT															6,241
					· · · · · · · · · · · · · · · · · · ·										
						·····									

.

THIS PAGE INTENTIONALLY LEFT BLANK

•

TABLE 1.3FY 1995BREAKOUT OF FUNDS BUDGETED for WARMINSTER
(UIC N62269)

SPONSOR			R	DT&E(N)						Oth	er Approp	priation			
	6.1	6.2	6.3a	6.3b	6.4	6.5	6.6	Other RDT&E	OMN	APN	OPN	WPN	SCN	Other Navy	All Other
NAVAIR			4,370	29,718	39,395	200	7,291		20,520	32,583	1,923	747		1,779	11,857
NAVSEA				1,400	1,900				2,290		250				
CNO															
OCNR	1,59 7	37,828			598		128		672					606	27
OSD															270
SPAWAR		50	1,872	894	784		383		86					947	
OTHER NAVY		880	200	18,658			352		1,658		836			20,012	
ARMY															3,638
AIR FORCE															915
NON-DOD															205
OTHER DOD															300
OTHER GOVT															425

23

.

TABLE 1.3 FY 1995 BREAKOUT OF FUNDS BUDGETED for TRENTON (UIC N62376)

┢		 	 		'		'	↓ /	 			<u> </u>	'	L	┟───┤	
┢			<u> </u>		'	<u> </u>	'	L/	L	L			'			
L					 '											
													,			
	5,500															PRIVATE PARTY
I	1'356															VIK FORCE
	5,264															ARMY
Я	7,372	£\$9'8					15									OTHER
					'											ϤͶϨϒΑΝ
Я																NAVFAC
							L01									NAVINTCOM
																NEFO
				995' I		1'00t	206			71 <i>5'L</i> 7	13,914	669'9	0 <i>LL</i>	1,922		ΝΑΥΑΙΚ
					l		06			48			\$6L	597		OCNB
	Other All	Other Other	SCN	MPN	NdO	N₽A	NWO	Other Other	9.9	\$.8	4.8	9 [.] 9	ь£.д	2.9	1.9	
		Other Appropriation										DT&E(N)	เช			SPONSOR

Revind Pg

Г

Т

24 또 (9-12-94)

Т

Т

Т

Т

NAWELLO Change SMAN 15.21 Junes 19/19/19

TABLE 1.3 FY 1995 BREAKOUT OF FUNDS BUDGETED for TRENTON (UIC N62376)

SPONSOR			F	DT&E(N)						Oth	er Appro	priation		<u> </u>	
	6.1	6.2	6.3a	6.3b	6.4	6.5	6.6	Other RDT&E	OMN	APN	OPN	WPN	SCN	Other Navy	All Other
OCNR		265	795			48			90						
NAVAIR		1,922	770	6,699	13,914	27,512			902	1,094		1,566			
NELO															
NAVINTCOM									107						
NAPAC															
NAVSUP									12						
OTHER														8,653	2,372
ARMY															2,264
AIR FORCE															1,326
PRIVATE PARTY											_		_		2,500
													· · · · · · · · · · · · · · · · · · ·		
											$\overline{}$				

24

TABLE 1.3 FY 1996BREAKOUT OF FUNDS BUDGETED for NAWCAD, Patuxent River
(UIC N00421)

SPONSOR			F	DT&E(N)						Othe	Other Appropriation APN OPN WPN SCN Navy Other 74,548 3,978 974 435 35,099 201								
	6.1	6.2	6.3a	6.3b	6.4	6.5	6.6	Other RDT&E	OMN	APN	OPN	WPN	SCN	Other Navy	All Other				
NAVAIR		191	1,404	6,243	37,263	97,573	35,582	261	75,386	74,548	3,978	974	435		35,099				
SPAWAR						2,789			432		201								
NAVSEA									40		75	295	1,398						
NAVFAC																			
NAVSUP																			
OCNR																			
SSPO																			
CNO																			
OTHER NAVY								1	3,481	7,720	643	96			17,976				
ARMY															3,490				
AIR FORCE															1,249				
OTHER DOD															384				
OTHER GOVNT															793				
PRIVATE PARTY																			

CHART 1 - PATUXENT RIVER AS IT EXISTS TODAY

TABLE 1.3 FY 1996 BREAKOUT OF FUNDS BUDGETED for Patuxent River Complex (UIC Multiple)

SPONSOR			R	DT&E(N)						Oth	er Approp	riation	on			
	6.1	6.2	6.3a	6.3b	6.4	6.5	6.6	Other RDT&E	OMN	APN	OPN	WPN	SCN	Other Navy	All Other	
NAVAIR		1,891	6,071	47,352	93,878	124,223	42,279	261	115,246	107,380	34,859	3,048	7,435	1,519	43,487	
SPAWAR			1,640	327	7,409	2,789	3,674		22,218		50,201		42,000	1,070	1,535	
NAVSEA				800	2,000				8,125		7,550	295	17,398		5,315	
NAVFAC									44							
NAVSUP																
OCNR	471	39,091	800		422	50	28		752					458	15	
SSPO																
CNO																
OTHER NAVY		767	200	18,658			100	- 1	11,022	7,728	6,643	96		31,021	18,576	
ARMY															7,710	
AIR FORCE															7,926	
OTHER DOD															27,884	
OTHER GOVNT															8,178	
PRIVATE PARTY																
OSD															1,030	
NON-DOD															240	
OTHER									15					5,450	3,040	
DOD															2,500	

CHART 2 - PATUXENT RIVER WITH BRAC 91/93 REALIGNMENTS

Includes data for Patuxent River Complex (NAWCADPAX, NAWCADWAR, NAWCADTRN, Webster Field)

RDT&E(N) Other Appropriation SPONSOR Other All Other 6.2 6.3a 6.3b RDT&E Navy 6.1 6.4 6.5 6.6 OMN APN OPN WPN SCN Other SPAWAR 6,800 42,000 1,535 3,400 21,700 750 50,000 NAVAIR 5,242 19,000 29,000 7,000 150 3,100 NAVSEA 5,315 200 6,900 7,400 16,000 OTHER NAVY 2,200 6,800 6,000 600 100 NAVFAC 4 ARMY 80 AIR FORCE 4,800 OTHER DOD 27,000 OTHER GOVT 7,000

.

TABLE 1.3 FY 1996BREAKOUT OF FUNDS BUDGETED for WEBSTER FIELD
(UIC N65980)

THIS PAGE INTENTIONALLY LEFT BLANK

FOR GAT THE UCE ONLY PREDECISIONAL LAPORMATION

SPONSOR			R	DT&E(N)	,					Oth	ner Approp	riation			
	6.1	6.2	6.3a	6.3b	6.4	6.5	6.6	Other RDT&E	OMN	APN	OPN	WPN	SCN	Other Navy	All Other
NAVAIR			3,967	30,459	37,473	200	6,697		19,975	30,507	1,881	769		1,519	5,288
NAVSEA				800	1,800				1,185		75				
CNO															
OCNR	471	38,971			422		28		672					458	15
OSD															1,030
SPAWAR			1,640	327	609		274		86					320	
OTHER NAVY		767	200	18,658					741	8				29,421	
ARMY															3,300
AIR FORCE															627
NON-DOD															240
OTHER DOD															500
OTHER GOVT															385

TABLE 1.3 FY 1996BREAKOUT OF FUNDS BUDGETED for WARMINSTER
(UIC N62269)
TABLE 1.3 FY 1996 BREAKOUT OF FUNDS BUDGETED for TRENTON (UIC N62376)

В	5,500															PRIVATE PARTY
	1,300															VIK FORCE
	840															ARMY
	3'040	2,450					51									OTHER
																ϤϢϨϒΑΝ
							40						NAVFAC			
																NETO
				S0E'I		575,2	S88			56,450	13'600	10,500	00L	00 <i>L</i> 'I		ΑΙΑΥΑΙΚ
							08			05			008	120		OCNB
	Other All	Other Vavy	SCN	NdM	NdO	N₽A	NWO	KDT&E Other	9.9	S .9	† .9	96.3	ь£.д	2.9	1.9	
				noitein	er Approp	410						DT&E(N)	R			SPONSOR

Revised Fg

15-2WAN SUM

UIC: NOO421

TABLE 1.3 FY 1996 BREAKOUT OF FUNDS BUDGETED for TRENTON (UIC N62376)

		\sum													
													T	T	
												1	<u> </u>		
												1		╏──┼	
				\square									<u> </u>	┠╌╼╌┠	
5,500													<u> </u>	┼──┼	DOD
005.1				L											VIK FORCE
078	0045		ļ												ARMY
3 040	0575				<u> </u>	N.									OTHER
															U SVAN
						07									NAVFAC
			COC'T		C7C'7	<u> </u>			0.0110-						NETO
			5021		5686	588		<u> </u>	56.450	006.61	10.500	002	002'1		ΑΙΑΥΑΙΚ
101100	(in T	1100				08			05			008	150		OCNR
Alber	Other	SCN	NdM	NdO	Nd∀	NWO	RDT&E Other	9.9 \	5.9	4.9	9E.3b	£.3	6.2	1.9	
			noitsin	er Approp	чю						(N)3&F(N)	IN			AOSNOAS

30

YING BEU LUDITOR OR NEITAMAUNI JANOICIDIARA

TABLE 1.3 FY 1997BREAKOUT OF FUNDS BUDGETED for NAWCAD, Patuxent River
(UIC N00421)

SPONSOR			R	DT&E(N)						Othe	r Approp	riation			
	6.1	6.2	6.3a	6.3b	6.4	6.5	6.6	Other RDT&E	OMN	APN	OPN	WPN	SCN	Other Navy	All Other
NAVAIR		201	1,647	5,111	75,043	97,689	36,028	269	60,836	98,331	4,023	890			2,112
SPAWAR					1,550				316		205				
NAVSEA									89		50	309	1,752		
NAVFAC															
NAVSUP															
OCNR															
SSPO															
CNO															
OTHER NAVY								2	3,570	5,516	673	103			12,922
ARMY															3,233
AIR FORCE															1,268
OTHER DOD															
OTHER GOVNT															1,224
PRIVATE PARTY															38

CHART 1 - PATUXENT RIVER AS IT EXISTS TODAY

31

TABLE 1.3 FY 1997 BREAKOUT OF FUNDS BUDGETED for Patuxent River Complex (UIC Multiple)

SPONSOR			R	DT&E(N)						Oth	er Appror	riation			
	6.1	6.2	6.3a	6.3b	6.4	6.5	6.6	Other RDT&E	OMN	APN	OPN	WPN	SCN	Other Navy	All Other
NAVAIR		1,701	4,985	40,076	145,573	124,189	41,844	269	100,102	132,497	34,304	2,878	7,000	940	8,722
SPAWAR			20		8,258		3,000		21,316		50,205		42,000	750	1,535
NAVSEA				600	2,000				7,089		7,050	309	17,752		5,520
NAVFAC									28			\Box		\Box	
NAVSUP												\Box			
OCNR		33,718	750		400	50	28		347			\Box			15
SSPO											!	\Box			
CNO															
OTHER NAVY				1,850			100	2	10,730	5,516	6,673	103		38,256	13,522
ARMY											!				4,438
AIR FORCE							!					[]		<u> </u>	6,774
OTHER DOD											!			5,425	30,025
OTHER GOVNT															8,394
PRIVATE PARTY															2,488
NELO															
OSD											1				405

CHART 2 - PATUXENT RIVER WITH BRAC 91/93 REALIGNMENTS

Includes data for Patuxent River Complex (NAWCADPAX, NAWCADWAR, NAWCADTRN, Webster Field)

TABLE 1.3 FY 1997 BREAKOUT OF FUNDS BUDGETED for WEBSTER FIELD (UIC N65980)

11				1	1		1				T		-		
		<u>+</u>	+	╂────		+	+	<u> </u>	<u> </u>						
l	<u> </u>	 		┢────			<u> </u>	<u> </u>							
l	ł	╂────	┥───		 						T				
	<u> </u>		_	L								<u> </u>	t	t	
L									T	<u>† </u>	+	 	 	}	
000.7							1	t	t	+		 '		 '	
21,000			†			t	 	+	╂────			 '		'	OTHER GOVT
006'£		<u> </u>	<u>}</u>	<u>├</u> ────′	 '	<u> </u>	 	┣───	───		+	<u> </u>			OTHER DOD
08			├ ───′	├'	t'	 '	┣	┣━━━━	┢────	+		'			VIK FORCE
		<u> </u>	├ ───┤	├'	 '	ε	┢────	┢────	┢────			<u> </u>			ARMY
009	5,200		<u>}</u> /	000'9	├ ────'	008'9	<u> </u>	001				<u> </u>			NAVFAC
\$15'5	h	10'000	<u>├</u> /	000'/	├ ′	000'0		001	<u> </u>	L		!			OTHER NAVY
001'E		000'/	┝───┦	000'67	← ───′	008 9	 '	· · · · · · · · · · · · · · · · · · ·		500					NAVSEA
CCC'I		000 2	↓ /	000 60	└─── ′	000.81	<u> </u>			000'\$	120	—	'	—	NIWAWN
525 1	052	45 000	/	000.02	1 /	21,000		000'E		005'9	+	<u>├</u> ───┥	┢────┘	┣───┦	
Other	Vavy	NDS	NdM	NdO	Nd∀	NWO	RDIGE	0.0	<u> </u>	+			L'		g∆W∆q2
lιγ	Other						Other	77	59	79	48.8	6.3a	5.9	1.9	
			noitation	ioiqqA 19	ФO					4		<u>└</u>		L	AONSOR
											(LOG-STOL	1)	I Contraction of the second

33

ĸ

PREDECISIONAL INCORPORTION

THIS PAGE INTENTIONALLY LEFT BLANK

•

.

.

SPONSOR			R	DT&E(N)						Oth	er Approp	oriation			
	6.1	6.2	6.3a	6.3b	6.4	6.5	6.6	Other RDT&E	OMN	APN	OPN	WPN	SCN	Other Navy	All Other
NAVAIR			2,738	.24,480	51,805	200	5,816		20,391	31,856	1,281	683		940	3,510
NAVSEA				600	1,800				200						205
CNO															
OCNR		33,603			400		28		272						15
OSD															405
SPAWAR			20		208										
OTHER NAVY				1,850					360					36,056	
ARMY															300
AIR FORCE			_			_									306
NON-DOD															
OTHER-DOD															
OTHER GOVT															170

.

TABLE 1.3 FY 1997 BREAKOUT OF FUNDS BUDGETED for WARMINSTER
(UIC N62269)

35

TABLE 1.3 FY 1997 BREAKOUT OF FUNDS BUDGETED for TRENTON
(UIC N62376)

SPONSOR	RDT&E(N)									Oth	er Approj	priation			
	6.1	6.2	6.3a	6.3b	6.4	6.5	6.6	Other RDT&E	OMN	APN	OPN	WPN	SCN	Other Navy	All Other
OCNR		115	750			50			75						
NAVAIR		1,500	600	10,335	13,725	26,300			875	2,310		1,305			
NAVFAC									25						
NAVSUP															
OTHER DOD									10					5,425	3,025
ARMY															825
AIR FORCE															1,300
PRIVATE PARTY											_				2,450
							<u> </u>								

Revined PS

NAUCHO Change Unis NAWC 21 911-9194

36 R (9-15-94)

98 5,450 PRIVATE PARTY 1,300 **VIK FORCE** 825 ARMY 3,025 2,425 OTHER DOD **ΠΟΣΛΑΝ** 52 NAVFAC 1,305 5,310 <u>\$</u>28 56,300 13,725 255,01 009 1'200 **MAVAIR** ۶L QS 0SL SII OCNK Other Vary NDS NdM NdO NdV NWO RDT&E 9.9 82 **b.**9 9E.9 £.3 2.9 1.9 Other lΙ¥ Other Other Appropriation SPONSOR RDT&E(N)

TABLE 1.3 FY 1997 BREAKOUT OF FUNDS BUDGETED for TRENTON

UIC: N00457

SPONSOR			R	DT&E(N	1)			Other RDT&E			Other	Appropr	iation		
	6.1	6.2	6.3a	6.3b	6.4	6.5	6.6		OMN	APN	OPN	WPN	SCN	Other Navy	All Other
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
			}												
	<u> </u>	l	<u> </u>				<u> </u>								

TABLE 1.4 FY 1993 BREAKOUT OF FUNDS BUDGETED for DETACHMENTS of Patuxent River (UIC N00421)

37

•

UIC: N0042.

SPONSOR			P	DT&E(N	I)			Other RDT&E			Other	Appropr	riation		
	6.1	6.2	6.3a	6.3b	6.4	6.5	6.6		OMN	APN	OPN	WPN	SCN	Other Navy	All Other
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		<u> </u>													
							l	l							
													_		

.

TABLE 1.4 FY 1994 BREAKOUT OF FUNDS BUDGETED for DETACHMENTS of Patuxent River (UIC N00421)

38

UIC: NOO42.

Г

																_
					l											
V/N	V/N	V/N	¥/N	V/N	V/N	V/N	¥/N	V/N	¥/N	¥/N	¥/N	V/N	V/N	¥/N		V/N
Other	YVEN	NDS	NdM	NdO	NdV	NWO		9.9	5.8	4.8	95.36	BE. 0	2.9	1.9		
ll∀	Other															
							RDT&E								90 B	SNOds
		iation	Appropr	Other			Other			(DT&E(N	<u>8</u>				
							(17	700N	$\overline{\mathbf{DIU}}$							
		I KIAGL	เมองกาย	2 IO 6	T NITTA	INCHI	IOL DE	TTTD	DUDG	SUNU	J JU	TOON	DUEV	5661	13 -	TOPTE

TABLE 1.4 FY 1995 BREAKOUT OF FUNDS RUDGETED for DETACHMENTS of Patrixent River

36

PREDECISIONAL INCORMETION FOR OFFICIAL USE ONLY

SPONSOR			F	RDT&E(1	N)			Other RDT&E			Other	· Approp	riation		
	6.1	6.2	6.3a	6.3b	6.4	6.5	6.6		OMN	APN	OPN	WPN	SCN	Other Navy	All Other
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
							<u> </u>								
											[<u> </u>	
			<u> </u>		<u> </u>						<u> </u>				

.

TABLE 1.4 FY 1996 BREAKOUT OF FUNDS BUDGETED for DETACHMENTS of Patuxent River (UIC N00421)

FOR COST 11 USE ONLY PREJECTIONAL INFORMATION

UIC: N0042_

SPONSOR			R	DT&E(N	J)			Other RDT&E			Other	Approp	riation		
	6.1	6.2	6.3a	6.3b	6.4	6.5	6.6		OMN	APN	OPN	WPN	SCN	Other Navy	All Other
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
					ļ										
										····					
	[

TABLE 1.4 FY 1997 BREAKOUT OF FUNDS BUDGETED for DETACHMENTS of Patuxent River (UIC N00421)

2. Current Class 2 Assets. Complete Tables 2.1 thru 2.6 below as directed. Tables 2.1, 2.2 & 2.3 will define the Class 2 property owned or leased by your activity (less Detachments). Tables 2.4, 2.5 & 2.6 will define the <u>combined</u> Class 2 assets owned or occupied at your Detachment sites which did not receive this Data Call directly. Report space holdings and assignments as of 31 March 1994. Provide numbered notes to explain imminent changes, additions & deletions such as previous BRAC realignments, MILCON (including BRAC related MILCON) & Special Projects that are currently programmed in the FYDP. Give the project number & title, cost, short description, quantity of additional square footage, award date, estimated/actual construction start date and estimated BOD. Square footage of space is to be reported in "Gross Floor/Building Area" (GF/BA) as defined in NAVFAC P-80. Many of the P-80 Category Code Numbers (CCN's) have assets that are reported in units of measure other than square feet (SF). The only unit of measure desired for this Data Call is SF. Only report the assets in each CCN that are normally reported in SF.

For your Site:

For this portion of the data call (Class 1 and Class 2), Patuxent River Complex is defined as NAS Patuxent River, Solomons Annex, and Webster Field. As of 1 October 1994, NAS Patuxent River will assume Class 1 and 2 Assets responsibility for Webster Field.

a. Use Table 2.1 below to indicate the total amount of Class 2 space at your site for which you are the plant account holder as of 31 March 1994.

b. Use Table 2.2 below to indicate the total amount of your Class 2 space reported in Table 2.1 that is assigned to your tenant commands and/or independent activities at your site as of 31 March 1994.

c. Use Table 2.3 below to indicate the <u>total</u> amount of Class 2 space, for which you are not the plant account holder, but which is utilized/leased by you (less Detachments). Provide numbered notes to identify the title and UIC of the plant account holder/lessor, quantity of leased space and the associated lease cost.

> FOR OFFICIAL USE ONLY PREDECISIONAL LACORMATION

1

FOR OFFICIAL USE ONLY

PREDECISIONAL INFORMATION

Project Number: P-721 AEGIS Electronic Equipment Staging Facility \$6,700,000 57,560 SQFT Award Date: October 1998 Estimated Completion: April 2000 Description: Provides logistics support and staging facilities for electronic and

communication systems and equipment undergoing integrationk, test and evaluation in support of the AEGIS CG-47 and DDG-51 radio communication systems integration and the related in-service engineering program.

Project Number: P-723 FACSFAC Electronic Systems Integration Facility \$2,632,000 27,000 SQFT Award Date: March 94 Estimated Completion: October 1994 Description: Project will provide space for all hardware and software functions, logistics support, and administrative personnel.

Project Number: P-720 AN/SPN-46(V) Life Cycle Support Facility \$3,437,000 27,900 SQFT Award Date: May 1994 Estimated Completion: April 1995 Description: Provides software and hardware maintenance, repair, configuration, management, problem analysis, and logistics support for AN/SPN-46 ACLS installations.

Project Number: P-920-S Aircraft Technologies Laboratory \$12,000,000 65,000 SQFT Award Date: 1993 Estimated Completion: December 1994 Description: Provides an integrated laboratory to study aircraft materials and structures in a naval operating environment. Meets current EPA and OSHA requirements.

Project Number: P-930-1-S Frank Knox School Improvements \$3,562,000 33,927 SQFT Award Date: 1993 Estimated Completion: November 1994 Description: Provides a centralized base training facility to handle expanding training requirements. Renovates a Navy owned, former elementary school for training and meeting space.

Project Number: P-930-3-S Aircraft Mods Shop \$2,300,000

11,624 SQFT Award Date: 1993 Estimated Completion: June 1995 Description: Provides an aircraft modifications shop building to support R&D functions being relocated. Shop performs prototype modifications to aircraft to prove concept validity. Meets current EPA and OSHA standards for this type of work.

Project Number: P-930-3A-S Ejection Tower Support Structure \$785,000 1,728 SQFT Award Date: 1993 Estimated Completion: February 1995 Description: Provides utility and support building for the relocation of the only man-rated ejection tower in the DoD inventory. Supports crew survivability R&D.

Project Number: P-930-4B-S Addition to Building 1490 \$2,450,000 13,576 SQFT Award Date: 1993 Estimated Completion: August 1995 Description: Provides additional space and interior alterations to support expanded R&D mainframe computer processing requirements at the computer center.

Project Number: P-930-4-S Building 1406 Addition \$1,972,000 11,400 SQFT Award Date: 1993 Estimated Completion: September 1995 Description: Provides additional space to move non-computer center personnel from computer center to allow for additional R&D mainframe computer processing at the computer center.

Project Number: P-930-4A-S Addition/Renovation to Building 1652 \$450,000 8,600 SQFT Award Date: 1993 Estimated Completion: August 1995 Description: Provides additional space and interior alterations to support consolidated RDT&E for the TACAMO Strategic Communications Program.

Project Number: P-930-S North and South Centers \$78,500,000 705,000 SQFT Award Date: 1994 Estimated Completion: March 1996 Description: Provides two integrated engineering R&D laboratory centers to support BRAC 91 decisions to consolidate Naval Aviation RDT&E. Laboratories support crew systems, air vehicle research, embedded computer systems and airborne antisubmarine warfare.

Project Number: P-383 Jet Engine Test Cell \$4,400,000 6,720 SQFT Award Date: 1994 Estimated Completion: November 1995 Description: This project will construct a T-10 jet engine test cell relocated from Subic Bay. Neither of the two existing cells can be adapted to perform post maintenance engine runup of the engines in our existing inventory or those programmed to be here by FY96.

Project Number: P-426 Hazardous Flammable Material Storehouse \$3,400,000 12,860 SQFT Award Date: 1994 Estimated Completion: June 1996 Description: This project will construct a b

Description: This project will construct a building to meet safety requirements for the storage of hazardous materials. Currently, hazardous materials are stored in an environmentally unsuitable structure that is in violation of the Navy Occupational Safety and Health and environmental standards.

Project Number: P-930-1A-S Library Renovations \$1,000,000 0 SQFT Award Date: 1994 Estimated Completion: January 1996 Description: Provides interior alterations to support scientific, technical and classified libraries in support of the BRAC 91 decision to consolidate Naval Aviation RDT&E. Existing library is too small to handle combined function.

Project Number: P-497 Recreational Cottages (Solomons) \$440,000 5,280 SQFT Award Date: 1994 Estimated Completion: January 1996 Description: This project will construct five duplex cabins for ten recreational lodging units for military personnel. Some of the Naval Recreational Center's lodging units have been condemned, due to facility age.

Project Number: P-505 Sewage Flow Equalization Basin \$1,000,000 0 SQFT Award Date: 1995 Estimated Completion: Unknown Description: This MILCON will pay the one time cost of the Navy's share of a county planned upgrade to the treatment plant. This MILCON solves a waste water quantity surge problem.

Project Number: P-951-T Administration Facilities (NAVAIR) \$94,500,000 495,012 SQFT Award Date: 1995 Estimated Completion: June 1997 Description: (Integrated Project Team Building) Provides space for integrated project teams (IPT) that support aircraft acquisition and need to be collocated with RDT&E. The IPT's will move from Arlington, VA (Crystal City) due to BRAC 93 decision to move Headquarters out of the National Capital Region.

Project Number: P-953-T Propulsion System Evaluation Facility \$25,575,000 77,000 SQFT Award Date: 1996 Estimated Completion: Unknown Description: Provides a facility to support the BRAC 93 decision to consolidate small engine RDT&E. Building houses test chambers, component test rigs and supporting laboratories.

Project Number: P-516 Future Upgrade Pine Hill Wastewater Plant \$2,500,000 0 SQFT Award Date: 1996 Estimated Completion: August 1996 Description: This MILCON will pay a one time cost to the Navy for a planned county upgrade to the sewage treatment plant. This MILCON will bring the facility into compliance with the latest water quality standards imposed by the Maryland Department of the Environment.

Project Number: P-493 Airwarfare Systems Integration Lab \$7,600,000 42,400 SQFT Award Date: 1999 Estimated Completion: January 2000 Description: This project will construct a two story integrated laboratory to test and evaluate, in a night combat environment, integrated weapons systems being developed. Facility will also be used for foreign weapon technology and international cooperative programs.

Special Projects:

C8-91 Addition to B140, 2769 SQFT, CCN (317-25) C14-91 Addition to B131, 1632 SQFT, CCN (313-25) C5-89 Addition to B142, 2000 SQFT, CCN (217-77) C18-91 Addition to B8, 704 SQFT, CCN (321-10) C(X)-94 Addition to B123/Anechoic Chamber, 2800 SQFT, CCN (317-25)

PATUXENT RIVER COMPLEX DETACHMENT AT WARMINSTER, PA

Under BRAC-91, the Naval Air Warfare Center Aircraft Division, Warminster is being realigned to become part of the Naval Air Warfare Center at Patuxent River, MD and is scheduled to be relocated in the 1995/96 timeframe. The base at Warminster is being subdivided with a portion, 36 acres, being retained to house the NCCOSC R&D organization as the host and the balance, 733 acres, being excessed. Within the reduced NCCOSC host, the Naval Air Warfare Center Aircraft Division at Patuxent River will retain a small detachment of 30 personnel.

The detachment at Warminster is to maintain and operate the Dynamic Flight Simulator that will be operated as a tenant of NCCOSC at Warminster. All support services will be contained within the Centrifuge building itself and no separately identifiable infrastructure will be maintained. The detachment will consist of 24 civilians, 6 military and be supported by approximately 5 contractor workyears. The technical operations will vary over time dependent upon the particular efforts funded in any given year.

The following three tables, 2.1a thru c, define the class 2 assets associated with the buildings being assigned to the NCCOSC host, the buildings being excessed, and the NAWC detachment, respectively.

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

Building type	NAVFAC (P-80) category code		Gross Floor/Build	ling Area (KSI	F)
		Adequate	Sub-standard	Inadequate	Total
Operational & Training	100				
Maintenance & Production	200				
Science labs	310				
Aircraft labs	311	21.2			21.2
Missile and Space labs	312				
Ship and Marine labs	313	39.1			39.1
Ground Transportation labs	314				
Weapon and Weapon Systems labs	315				
Ammunition, Explosives, & Toxics labs	316				
Electrical Equip. labs	317	16.1			16.1
Propulsion labs	318				
Miscellaneous labs	319				
Underwater Equip. labs	320	18.0			18.0
Technical Services labs	321				
Supply Facilities	400				
Hospital & other Medical	500				
Administrative Facilities	600				
Housing & Community	700				
Utilities & Grounds	800				
Other					
	Totals	94.4			94.4

.

Table 2.1a Class 2 Assets of NCCOSC HOST (UIC N49281)

Building type	NAVFAC (P-80) category code		Gross Floor/Build	ling Area (KSI	3)
		Adequate	Sub-standard	Inadequate	Total
Operational & Training	100	62.5			62.5
Maintenance & Production	200	83.8			83.8
Science labs	310	227.7			227.7
Aircraft labs	311	118.7			118.7
Missile and Space labs	312				
Ship and Marine labs	313	9.5			9.5
Ground Transportation labs	314		·		
Weapon and Weapon Systems labs	315				
Ammunition, Explosives, & Toxics labs	316				
Electrical Equip. labs	317	205.1			205.1
Propulsion labs	318				
Miscellaneous labs	319	67.6			67.6
Underwater Equip. labs	320	6.9			6.9
Technical Services labs	321	90.5			90.5
Supply Facilities	400	103.1			103.1
Hospital & other Medical	500	5.1			5.1
Administrative Facilities	600	103.8			103.8
Housing & Community	700	71.1			71.1
Utilities & Grounds	800				
Other					
	Totals	1,155.4			1,155.4

 Table 2.1b
 Class 2 Assets of property being excessed
 (UIC 62269)

Building type	NAVFAC (P-80) category code		Gross Floor/Build	ding Area (KSI	F)
		Adequate	Sub-standard	Inadequate	Total
Operational & Training	100			· ·	
Maintenance & Production	200	_			
Science labs	310	48.1			48.1
Aircraft labs	311				
Missile and Space labs	312				
Ship and Marine labs	313				
Ground Transportation labs	314				
Weapon and Weapon Systems labs	315				
Ammunition, Explosives, & Toxics labs	316				
Electrical Equip. labs	317				
Propulsion labs	318				
Miscellaneous labs	319	16.0			16.0
Underwater Equip. labs	320				
Technical Services labs	321	6.0			6.0
Supply Facilities	400				
Hospital & other Medical	500				
Administrative Facilities	600				
Housing & Community	700				
Utilities & Grounds	800				
Other					
	Totals	70.1			70.1

 Table 2.1c
 Class 2 Assets of NAWCAD detachment
 (UIC 00421)

.

FOR OFFICIAL UST ONLY PREDECICIONAL FOR CANATION d. In accordance with NAVFACINST 11010.44E, an Inadequate facility cannot be made Adequate for its present use through "economically justifiable means". For all the categories above where Inadequate facilities are identified provide the following information:

- (1) FACILITY TYPE/CODE:
- (2) WHAT MAKES IT INADEQUATE?
- (3) WHAT USE IS BEING MADE OF THE FACILITY?
- (4) WHAT IS THE COST TO UPGRADE THE FACILITY TO SUBSTANDARD?
- (5) WHAT OTHER USE COULD BE MADE OF THE FACILITY AND AT WHAT COST?
- (6) CURRENT IMPROVEMENT PLANS AND PROGRAMMED FUNDING:
- (7) HAS THIS FACILITY CONDITION RESULTED IN C3 OR C4 DESIGNATION ON YOUR BASEREP?

Building 107

- (1) FACILITY TYPE/CODE:
 - Building, Small Craft Boathouse; Cat. Code 155-21
- (2) WHAT MAKES IT INADEQUATE? This building is a 9,108 SF boat house built in 1943 and is inadequate due to NAVOSH and Fire Safety Code violations.
- (3) WHAT USE IS BEING MADE OF THE FACILITY? Air Operations uses small portion of building for Search and Rescue storage, remainder of building abandoned.
- (4) WHAT IS THE COST TO UPGRADE THE FACILITY TO SUBSTANDARD? Cost to upgrade the facility would be approximately \$365K.
- (5) WHAT OTHER USE COULD BE MADE OF THE FACILITY AND AT WHAT COST? Due to the many fire and safety discrepancies demolition is recommended.
- (6) CURRENT IMPROVEMENT PLANS AND PROGRAMMED FUNDING: Demolition is programmed due to high maintenance costs and safety problems.
- (7) HAS THIS FACILITY CONDITION RESULTED IN C3 OR C4 DESIGNATION ON YOUR BASEREP?

No.

Building type	NAVFAC (P-80) category code		Gross Floor/Buil	ding Area (KSF)
		Adequate	Sub-standard	Inadequate	Total
Operational & Training	100	214	161	9	384
Maintenance & Production	200	274	376	3	653
Science labs	310	39	6	0	44
Aircraft labs	311	600	705	0	1305
Missile and Space labs	312	1	0	0	1
Ship and Marine labs	313	59	0	0	59
Ground Transportation labs	314	0	0	0	0
Weapon and Weapon Systems labs	315	0	0	0	0
Ammunition, Explosives, & Toxics labs	316	0	0	0	0
Electrical Equip. labs	317	346	138	0	484
Propulsion labs	318	82	28	0	110
Miscellaneous labs	319	204	47	0	251
Underwater Equip. labs	320	0	0	0	0
Technical Services labs	321	40	25	0	65
Supply Facilities	400	162	91	0	253
Hospital & other Medical	500	0	72	0	72
Administrative Facilities	600	284	295	0	579
Housing & Community	700	2406	346	10	2762
Utilities & Grounds	800	44	48	0	92
Other					
	Totals	4755	2338	22	7114

Table 2.1 Main Site Class 2 Assets of Patuxent River Complex (UIC Multiple)

Project Number: P-712 ACLS Integration Test Facility \$1,053,000 7,200 SQFT Award Date: March 94 Estimated Completion: September 1994 Description: Building will include integration lab, test lab, staging and test area, repair and instrumentation area, parts storage, fire protection system, security alarms, handicapped access, parking and utilities.

Building 185

- (1) FACILITY TYPE/CODE:
- Building, Engine Test Cell (Non Depot); Cat Code 211-81:
 (2) WHAT MAKES IT INADEQUATE? Building 185 was built in 1960 and has required yearly exhaust stack repairs. Aging, deteriorating, and spalling concrete cause serious FOD
- hazards.
 (3) WHAT USE IS BEING MADE OF THE FACILITY?
 Building 185 is used as an Engine Test Cell but maintenance is high due to age/deterioration of facility and unwarranted downtime often occurs.
- (4) WHAT IS THE COST TO UPGRADE THE FACILITY TO SUBSTANDARD? Cost to upgrade this facility would be approximately \$768K.
- (5) WHAT OTHER USE COULD BE MADE OF THE FACILITY AND AT WHAT COST? Building 185 is scheduled for demolition as a part of MILCON P-383 "Jet Engine Test Cell" and it is not economical to maintain due to deterioration.
- (6) CURRENT IMPROVEMENT PLANS AND PROGRAMMED FUNDING: MILCON P-383 is an FY94 project estimated to cost \$4,400K. This jet engine test cell came from Subic Bay and is being rebuilt at Patuxent River. The existing test cell is obsolete and unable to withstand the heat and vibration of the new engines.
- (7) HAS THIS FACILITY CONDITION RESULTED IN C3 OR C4 DESIGNATION ON YOUR BASEREP?
 Building 185 is identified on our BASEREP as condition "C3" and will be replaced by MILCON P-383.

Building 841

- (1) FACILITY TYPE/CODE: Building, Public Works Shop; Category Code 219-10:
- (2) WHAT MAKES IT INADEQUATE? This building is an 800 SF abandoned pest control facility built in 1943. The building site has been identified under the Environmental Installation Restoration Program for cleanup of existing contamination in both the building and the grounds.
- (3) WHAT USE IS BEING MADE OF THE FACILITY? None.
- (4) WHAT IS THE COST TO UPGRADE THE FACILITY TO SUBSTANDARD? None planned. Demolition costs could vary depending on final resolution by State and Federal Environmental Agencies concerning precise procedures to be followed for demolition.
- (5) WHAT OTHER USE COULD BE MADE OF THE FACILITY AND AT WHAT COST? None due to the contaminated state of building.
- (6) CURRENT IMPROVEMENT PLANS AND PROGRAMMED FUNDING: None planned. Funding for cleanup/demolition will be programmed under DERA in concert with a Federal Facility Agreement.
- (7) HAS THIS FACILITY CONDITION RESULTED IN C3 OR C4 DESIGNATION ON YOUR BASEREP?
 No.

Building 972

- (1) FACILITY TYPE/CODE: Building, Unaccompanied Officer, Commanders, and Above; Cat. Code 724-12:
- (2) WHAT MAKES IT INADEQUATE? This building is an 825 SF Bachelor Officers Quarters built in 1944 that due to age and deterioration (walls, floors, and water leaks) is inadequate.
- (3) WHAT USE IS BEING MADE OF THE FACILITY? Building used for temporary assignment to officers for short periods of time.
- (4) WHAT IS THE COST TO UPGRADE THE FACILITY TO SUBSTANDARD? Cost to upgrade this facility to substandard is approximately \$25K.
- (5) WHAT OTHER USE COULD BE MADE OF THE FACILITY AND AT WHAT COST? Cost to upgrade is approximately \$10K to use as storage facility.
- (6) CURRENT IMPROVEMENT PLANS AND PROGRAMMED FUNDING: None.
- (7) HAS THIS FACILITY CONDITION RESULTED IN C3 OR C4 DESIGNATION ON YOUR BASEREP? No.

Building 6078

- (1) FACILITY TYPE/CODE:
- Building, Community Storage; Cat Code 740-77.
- (2) WHAT MAKES IT INADEQUATE? Building 6078 is located at the Solomons Annex and was built in 1943 as an Officers Club for the Navy Recreation Center. Due to its age and deteriorated condition it is no longer utilized for its intended purpose.
- (3) WHAT USE IS BEING MADE OF THE FACILITY? Building is being used for general storage purposes only.
- (4) WHAT IS THE COST TO UPGRADE THE FACILITY TO SUBSTANDARD? Cost to upgrade this facility to a dining room would cost approximately \$350K.
- (5) WHAT OTHER USE COULD BE MADE OF THE FACILITY AND AT WHAT COST? Continue to use as general storage.
- (6) CURRENT IMPROVEMENT PLANS AND PROGRAMMED FUNDING: Due to age and deteriorated condition, future plan is to demolish.
- (7) HAS THIS FACILITY CONDITION RESULTED IN C3 OR C4 DESIGNATION ON YOUR BASEREP? No.

TENANT		NAVFAC	GF/BA
		(P-80)	Assigned
		Category	(KŠF)
		Code	
Name	UIC		
Naval Air Station, Patuxent River, MD	N0428A	123-15	0
		125-20	1
		131-35	2
		131-40	5
		131-50	3
		133-35	2
	•	133-72	6
		133-75	2
		137-20	6
		141-25	10
		141-30	1
		141-40	9
		141-70	3
		141-87	2
		143-11	13
		143-20	10
		143-75	0
		143-77	8
		143-78	3
		155-21	9
		156-10	0
		171-10	2
•		171-25	5
		211-05	23
		211-06	1
		211-08	24
		211-12	1
		211-21	41
		211-45	31
		211-54	2
		211-75	9
		211-81	9
		211-96	48
		213-58	9
		214-20	22
		214-30	2
		214-40	13
		216-55	2
		216-60	0
		217-10	14
		217-77	1

Table 2.2 Main Site Class 2 Space of NAWCAD Patuxent River (UIC N00421) Assigned to Tenants

Naval Air Station, Patuxent River, MD - Cont'd	N0428A	218-50	2
		218-60	36
		218-61	5
		218-65	0
		218-77	1
		218-80	
		219-10	49
		219-20	2
		219-25	24
		219-77	38
		311-25	7
		319-15	6
		421-12	
		421-22	7
		421-32	11
		421-35	3
		421-48	12
		421-52	
		431-10	
		441-10	113
		441-20	12
		441-30	12
		441-72	12
		610-10	121
		610-77	1
		711-40	18
		711-41	2
		711-42	5
		714-10	0
		714-77	0
		722-10	25
		724-11	0
		724-30	6
		730-10	16
		730-20	19
		730-25	1
		730-45	7
		730-66	3
		730-75	0
		730-76	1
		730-77	0
		730-81	4
		730-82	5
		730-83	5
		730-84	13
		730-85	7
		740-25	10
		740-34	3

UIC: N00421

Naval Air Station, Patuxent River, MD - Cont'd	N0428A	740-36	20
		740-37	2
		740-38	8
		740-40	11
		740-43	57
		740-53	24
		740-55	4
		740-56	11
		740-60	19
		740-63	2
		740-64	25
		740-74	19
		740-75	4
		740-76	12
		740-77	2
		740-78	12
		740-79	8
		740-80	10
		740-84	2
		740-87	4
		740-88	5
		740-89	5
		811-59	5
		812-09	6
		813-10	2
		821-09	51
		822-09	0
		826-10	0
		831-09	1
		831-41	4
		832-29	1
		833-09	0
		841-09	2
		842-09	10
		843-50	1
		844-10	1
		845-10	0
		890-09	0
		Total:	1,347K

- - - - -- --

_ - -

---- ----

		NAVEAC	CE/DA
		$(\mathbf{P}_{\mathbf{A}}\mathbf{O})$	Assigned
		Category	(KSF)
		Code	
Name	UIC		
Defense Commissary Agency	DCNE18	740-23	53
Marine Security Force	M52560	143-46	24
Marine Aviation Detachment	MZZ939	610-10	4
		610-77	1
Fleet Air Reconnaissance Squadron Four	N09962	143-47	13
		211-96	5
		441-10	12
		812-09	0
Aviation Board of Inspection and Survey	N30904	610-10	4
NRL Flight Support Detachment	N31686	141-30	1
		311-25	59
	· · · · ·	319-15	2
Naval Audit Service	N31863	610-10	1
Special Trials Unit	N32172	143-78	1
		313-10	32
		319-15	10
Branch Dental Clinic	N35751	540-10	7
Navy Exchange	N39229	740-01	47
		740-03	4
		740-05	3
		740-09	7
		740-20	31
		740-30	6
		740-71	1
		740-86	4
		833-40	0
Naval Oceanographic Office	N41499	311-15	1
		319-15	1
Personnel Support Activity Detachment	N42325	610-10	8
Defense Printing Service Detachment Branch Office	N43629	229-50	7
		229-77	2
National Weather Service	N46766	133-72	1
		141-40	1
Naval Reserve Recruitment Com Det V	N47767	610-10	1
Naval Telecommunications Center (Vacant)	N48912	131-15	3
Fleet Composite Squadron Six	N55243	311-10	7
		319-15	2
Air Test & Evaluation Squadron One	N55600	141-30	1
		141-87	1
		141-78	1
		211-03	1

 Table 2.2
 Main Site Class 2 Space of NAWCAD Patuxent River (UIC N00421)

 _______Assigned to Tenants______

.

Air Test & Evaluation Squadron One	N55600	211-05	70
		211-06	24
		211-07	19
		211-96	4
		311-25	6
Naval School Explosive Ordnance Disposal	N62640	171-20	2
		171-77	4
Naval Inservice Engineering East St. Inigoes	N65980	311-15	11
Naval Hospital	N66098	143-10	1
		171-20	16
		510-10	56
		510-77	9
Naval Oceanography Command Detachment	N66124	141-40	2
		143-77	0
Bupers Detachment Morale, Welfare & Recreation Training Unit	N66133	171-10	13
		171-20	5
		610-10	13
		610-20	2
		610-77	3
Navy Recreation Center Solomons	N66843	143-78	0
	•	219-10	7
		219-77	3
		610-10	2
		730-75	6
		740-09	1
		740-13	0
		740-28	2
		740-31	0
		740-77	12
		740-78	3
		740-81	74
		740-87	1
Naval Aviation Depot Operations Center	N68520	171-10	1
		610-10	74
		610-20	11
		610-40	2
		610-77	1
Naval Air Maintenance Office	N68626	610-10	58
		610-20	2
		610-77	2
Naval Aviation Depot Operations Center Solomons	N68778	143-77	1
		143-78	1
		218-19	1
		218-90	22
Naval Surface Weapons Center Solomons	NX1427	317-20	4
Defense Investigative Service	NX1430	610-10	0
Cedar Point Federal Credit Union	NX1433	740-19	4

- ------

--

Defense Finance Accounting Service	NX1450	610-10	4
Defense Reutilization and Marketing Office	NX1537	441-10	11
		831-42	2
Naval Investigative Service Regional Office	NZZ212	610-10	3
Naval Air Warfare Center Aircraft Division,	N68335	211-64	5
Lakehurst (Solomons)			
		218-60	15
		610-10	2
Webster Field	N65980	217-77	11.670
		310-27	2.507
		313-25	3.584
		317-10	12.532
		317-20	12.262
	·	317-25	55.403
		319-15	7.146
		319-35	.116
		321-10	.602
		610-10	18.778
		Total:	1091.60

.

;

Building type	NAVFAC (P-80) category code		GF/BA	(KSF)	
		Adequate	Sub-standard	Inadequate	Total
Operational & Training	100	N/A	N/A	N/A	N/A
Maintenance & Production ¹	200	62.2	N/A	N/A	62.2
Science labs	310	N/A	N/A	N/A	N/A
Aircraft labs	311	N/A	N/A	N/A	N/A
Missile and Space labs	312	N/A	N/A	N/A	N/A
Ship and Marine labs	313	N/A	N/A	N/A	N/A
Ground Transportation labs	314	N/A	N/A	N/A	N/A
Weapon and Weapon Systems labs	315	N/A	N/A	N/A	N/A
Ammunition, Explosives, and Toxics labs	316	N/A	N/A	N/A	N/A
Electrical Equip. labs	317	N/A	N/A	N/A	N/A
Propulsion labs	318	N/A	N/A	N/A	N/A
Miscellaneous labs	319	N/A	N/A	N/A	N/A
Underwater Equip. labs	320	N/A	N/A	N/A	N/A
Technical Services labs	321	N/A	N/A	N/A	N/A
Supply Facilities	400	N/A	N/A	N/A	N/A
Hospital & other Medical	500	N/A	N/A	N/A	N/A
Administrative Facilities	600	N/A	N/A	N/A	N/A
Housing & Community ²	700	5.4	N/A	N/A	5.4
Utilities & Grounds	800	N/A	N/A	N/A	N/A
Other					
	Totals	67.6	N/A	N/A	67.6

Table 2.3 Class 2 Space Utilized/Leased by Patuxent River Complex (UIC Multiple)

Notes:

1. Webster Field

62,200 SF; UIC N65980; Lease \$495K/yr rent

2. Patuxent River leased apartments:

The Hampton Apts. Arlington, VA	2,580 SF; UIC N00421; Lease \$26,424/yr rent
Bella Vista Apt. Arlington, VA	780 SF; UIC N00421; Lease \$17,820/yr rent
Crystal Quarters Arlington, VA	780 SF; UIC N00421; Lease \$17,940/yr rent
Spyglass Apt. Lexington Park, MD	<u>1,290</u> SF; UIC N00421; Lease \$15,480/yr rent 5,430 SF

For your Detachment sites not receiving this Data Call directly:

e. Use Table 2.4 below to indicate the <u>combined total</u> amount of Class 2 space that is occupied by your Detachments for which you are the plant account holder as of 31 March 1994. Attach a list with the titles and UIC's of these Detachments.

f. Use Table 2.5 below to indicate the total amount of your Class 2 space reported in Table 2.4 that is assigned to tenant commands and/or independent activities as of 31 March 1994. Include numbered notes to indicate the Detachment site that hosts the tenant.

g. Use Table 2.6 below to indicate the combined <u>total</u> amount of Class 2 space utilized/leased by your Detachments for which you are not the plant account holder. Provide numbered notes to indicate the quantity of leased space and their associated rental cost.

Building type	NAVFAC	GE/BA (KSE)					
8	(P-80)	OLIDA (KSF)					
1	category						
1	code						
J		Adequate	Sub-standard	Inadequate	Total		
Operational & Training	100	N/A	N/A	N/A	N/A		
Maintenance & Production	200	N/A	N/A	N/A	N/A		
Science labs	310	N/A	N/A	N/A			
Aircraft labs	311	N/A	N/A	N/A			
Missile and Space labs	312	N/A	N/A	N/A			
Ship and Marine labs	313	N/A	N/A	N/A			
Ground Transportation labs	314	N/A	N/A	N/A	N/A		
Weapon and Weapon	315	N/A	N/A	N/A			
Systems labs					N/A		
Ammunition, Explosives,	316	N/A	N/A	N/A			
and Toxics labs			1		N/A		
Electrical Equip. labs	317	N/A	N/A	N/A	N/A		
Propulsion labs	318	N/A	N/A	N/A	NA		
Miscellaneous labs	319	N/A	N/A	N/A	N/A N/A		
Underwater Equip. labs	320	N/A	N/A	N/A	N/A		
Technical Services labs	321	N/A	N/A	N/A	N/A		
Supply Facilities	400	N/A	N/A	N/A	N/A		
Hospital & other Medical	500	N/A	N/A		N/A		
Administrative Facilities	600	N/A	N/A	N/A	N/A		
Housing & Community	700	N/A		N/A	N/A		
Utilities & Grounds	800	N/A	N/A	N/A	N/A		
Other		N/A	N/A	N/A	N/A		
	Totals	N/A		N/A	N/A		
	101413	11/ 11	IVA	N/A	N/A		

Table 2.4 Class 2 Assets of NAWCAD, Patuxent River Occupied by Detachments

h. In accordance with NAVFACINST 11010.44E, an Inadequate facility cannot be made Adequate for its present use through "economically justifiable means". For all the categories above where Inadequate facilities are identified provide the following information:

- FACILITY TYPE/CODE: (1)
- WHAT MAKES IT INADEQUATE? (2)
- WHAT USE IS BEING MADE OF THE FACILITY? (3)
- (4)
- WHAT IS THE COST TO UPGRADE THE FACILITY TO SUBSTANDARD? WHAT OTHER USE COULD BE MADE OF THE FACILITY AND AT WHAT COST? CURRENT IMPROVEMENT PLANS AND PROGRAMMED FUNDING: (5)
- (6)
- HAS THIS FACILITY CONDITION RESULTED IN C3 OR C4 DESIGNATION ON (7)YOUR BASEREP?

7.7 FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

State of a state of a state of the state of						
TENANT	NAVFAC (P-80) Category Code	GF/BA (KSF) Assigned				
Name	UIC					
None	N/A	N/A	N/A			
	<u> _</u> :					
			2			
			<u> </u>			
		11				
		Total:	N/A			

,

Table 2.5 Class 2 Space at Detachment Sites of
(UIC N00421)
Assigned to TenantsNAWCAD Patuxent River

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

Building type	NAVFAC (P-80) category code	GF/BA (KSF)			
		Adequate	Sub-standard	Inadequate	Total
Operational & Training	100				
Maintenance & Production	200				
Science labs	310	48.1			48.1
Aircraft labs	311				
Missile and Space labs	312				
Ship and Marine labs	313				
Ground Transportation labs	314				
Weapon and Weapon Systems labs	315				
Ammunition, Explosives, and Toxics labs	316				
Electrical Equip. labs	317				
Propulsion labs	318				
Miscellaneous labs	319	16.0			16.0
Underwater Equip. labs	320				
Technical Services labs	321	6.0			6.0
Supply Facilities	400				
Hospital & other Medical	500				
Administrative Facilities	600				
Housing & Community	700				
Utilities & Grounds	800				
Other					
	Totals	70.1			70.1

Table 2.6 Class 2 Space Utilized/Leased by Detachments of Patuxent River Complex (UIC N00421)

NAVAIRWARCENACDIV Warminster, PA

REVISEO PAGE UIC: N00421

R

3. **Class 2 Space Available for Expansion.** An activity's expansion capability is a function of its ability to reconfigure and/or expand existing facilities to accept new or increased roles. Such a reconfiguration may require rehabilitation or buildout of a space to support the new or expanded role. A space expansion could include converting an underutilized storage space into laboratory spaces, or buildout of a high bay area into a multifloor office/laboratory space. All questions refer to Class 2 property for which you are the plant account holder as of 31 March 1994. Do not report any currently programmed changes or additions previously reported in question #2 above. Expansion opportunities must follow the guidance of NAVFAC P-80 for the appropriate facility category code, as well as applicable fire and safety codes. Personnel loading density should not exceed those specified in the P-80. Space is only available if it is currently unoccupied or the current occupants are officially designated for relocation. Report space as Net Floor Area (NFA) as defined in the P-80. Do not include opportunities that are being reported by your Detachments who received this Data Call directly. Reported expansion opportunities must be able to accommodate the necessary ancillary facilities and equipment, such as adequate parking space, required to support the amount of people projected.

a. What is the maximum quantity of space that could be made available for expansion to accommodate other functions and/or increased efforts? Report in terms of the "Current NFA" as shown in Tables 3.1 & 3.2.

0 SQFT.

When the NISE EAST Detachment at Webster Field moves (estimated to begin in FY97/FY98) to Charleston they will vacate approximately 122.713K SQFT. Of this vacated space, 24.269K SQFT is recommended to be demolished. Another 27.413K SQFT are located within existing facilities which may not be available for relocation or expansion. To renovate this existing space upon NISE EAST departure, it will cost approximately \$2.3M. The remaining space which could be used for expansion is 46.762K SQFT within Building 185. Some renovations to this facility would be necessary and would cost approximately \$701K.

b. How much of the space reported in question 3.a. above is currently available with minimal or no reconfiguration costs? Report in terms of the "Current NFA" as shown in Tables 3.1 & 3.2.

0 SQFT.

c. Use Table 3.1 below to indicate the <u>constrained</u> growth opportunities for accepting expanded or new roles. Constrained growth is defined as growth limited to buildings and structures currently on your Class 2 plant account. Add numbered notes to highlight and explain opportunities that require remediation or waiver of a restriction or encumbrance as part of the expansion. Provide lettered notes to clearly identify each opportunity with the title & UIC of the site it refers to. The "Current NFA (KSF)" column total should match the quantity provided in question #3.a. above. Annotate those opportunities that were used to obtain the answer to question #3.b. above. Report space once, do not use the same space for different expansion opportunities. Include in this table space that will become available once planned downsizing (separate from BRAC realignments) has been completed, provide the estimated completion date of the downsizing effort.

d. Use Table 3.2 below to indicate additional <u>unconstrained</u> growth opportunities for accepting expanded or new roles. Unconstrained growth allows for construction of new facilities on existing buildable Class 1 property. The only constraint being that the land must currently be on your plant account holdings as of 31 March 1994 and free of existing land use constraints.

Change I NAWCAD/PR

24 May 94

PAGE 68 R

Enclosure (1)

Class 2 Space Available for Expansion. An activity's expansion capability is a 3. function of its ability to reconfigure and/or expand existing facilities to accept new or increased roles. Such a reconfiguration may require rehabilitation or buildout of a space to support the new or expanded role. A space expansion could include converting an underutilized storage space into laboratory spaces, or buildout of a high bay area into a multifloor office/laboratory space. All questions refer to Class 2 property for which you are the plant account holder as of 31 March 1994. Do not report any currently programmed changes or additions previously reported in question #2 above. Expansion opportunities must follow the guidance of NAVFAC P-80 for the appropriate facility category code, as well as applicable fire and safety codes. Personnel loading density should not exceed those specified in the P-80. Space is only available if it is currently unoccupied or the current occupants are officially designated for relocation. Report space as Net Floor Area (NFA) as defined in the P-80. Do not include opportunities that are being reported by your Detachments who received this Data Call directly. Reported expansion opportunities must be able to accommodate the necessary ancillary facilities and equipment, such as adequate parking space, required to support the amount of people projected.

a. What is the maximum quantity of space that could be made available for expansion to accommodate other functions and/or increased efforts? Report in terms of the "Current NFA" as shown in Tables 3.1 & 3.2.

0 SQFT.

When the NISE EAST Detachment at Webster Field moves (estimated to begin in FY97/FY98) to Charleston they will vacate approximately 22.713 SQFT. Of this vacated space, 24.269 SQFT is recommended to be demolished. Another 27.413 SQFT are located within existing facilities which may not be available for relocation or expansion. To renovate this existing space upon NISE EAST departure, it will cost approximately \$2.3M. The remaining space which could be used for expansion is 46.762 SQFT within Building 185. Some renovations to this facility would be necessary and would cost approximately \$701K.

b. How much of the space reported in question 3.a. above is currently available with minimal or no reconfiguration costs? Report in terms of the "Current NFA" as shown in Tables 3.1 & 3.2.

0 SQFT.

c. Use Table 3.1 below to indicate the <u>constrained</u> growth opportunities for accepting expanded or new roles. Constrained growth is defined as growth limited to buildings and structures currently on your Class 2 plant account. Add numbered notes to highlight and explain opportunities that require remediation or waiver of a restriction or encumbrance as part of the expansion. Provide lettered notes to clearly identify each opportunity with the title & UIC of the site it refers to. The "Current NFA (KSF)" column total should match the quantity provided in question #3.a. above. Annotate those opportunities that were used to obtain the answer to question #3.b. above. Report space once, do not use the same space for different expansion opportunities. Include in this table space that will become available once planned downsizing (separate from BRAC realignments) has been completed, provide the estimated completion date of the downsizing effort.

d. Use Table 3.2 below to indicate additional <u>unconstrained</u> growth opportunities for accepting expanded or new roles. Unconstrained growth allows for construction of new facilities on existing buildable Class 1 property. The only constraint being that the land must currently be on your plant account holdings as of 31 March 1994 and free of existing land use constraints.

÷.,

Limit new buildings to three stories. Add numbered notes to highlight and explain additional opportunities that would require remediation or waiver of a land use constraint as part of the expansion. Provide lettered notes to clearly identify each opportunity with the title & UIC of the site it refers to. Do not include space that has been reported in Table 3.1.

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

REVISE CAGE

R

R

UIC: N00421

Building # / Category Code (3 digit)	Current NFA (KSF)	Additional Capacity Provided By Expansion		Height of High Bay (FT)	Estimated Cost of Rehab (\$K's)
		NFA (KSF)	# of Personnel		
10/610	3.776	3.776	15	N/A	89
20/317	1.764	1.764	5	N/A	Demo
71/310	1.060	1.060	. 2	N/A	53
77/310	2.104	2.104	3	N/A	Demo
81/317	3.371	3.371	3	10	Demo
84/317	2.112	2.112	3	N/A	Demo
92/317	2.391	2.391	22	N/A	Demo
102/317	3.096	3.096	10	N/A	Demo
107/317	2.501	2.501	17	N/A	Demo
110/610	2.678	2.678	10	N/A	Demo
124/317	5.911	5.911	15	16	296
125/317	9.543	9.543	25	N/A	286
137/217	4.764	4.764	2	16	238
138/317	4.680	4.680	5	N/A	187
139/317	4.609	4.609	12	16	184
142/317	7.646	7.646	38	12	382
144/317	2.982	2.982	16	N/A	149
185/317	46.762	46.762	144	12	701
221/217	4.252	4.252	2	N/A	Demo
223/610	6.711	6.711	20	N/A	336
Totals	122.713	122.713	369		2,901

Table 3.1 Constrained Class 2 Space Available for Expansion at Patuxent River Complex (UIC Multiple)

Applies to Webster Field

When the NISE EAST Detachment at Webster Field moves (estimated to begin in FY97/FY98) to Charleston they will vacate approximately 122.713K SQFT. Of this vacated space, 24.269K SQFT is recommended to be demolished. Another 27.413K SQFT are located within existing facilities which may not be available for relocation or expansion. To renovate this existing space upon NISE EAST departure, it will cost approximately \$2.3M. The remaining space which could be used for expansion is 46.762K SQFT within Building 185. Some renovations to this facility would be necessary and would cost approximately \$701K.

Change I NAWCAD/PR

24 May 94 Page 70R

Enclosure (1)

Building # / Category Code (3 digit)	Current NFA (KSF)	Additional Capacity Provided By Expansion		Height of High Bay (FT)	Estimated Cost of Rehab (\$K's)
		NFA (KSF)	# of Personnel		
10/610	3.776	3.776	15	N/A	0
20/317	1.764	1.764	5	N/A	0
71/310	1.060	1.060	2	N/A	0
77/310	2.104	2.104	3	N/A	0
81/317	3.371	3.371	3	10	0
84/317	2.112	2.112	3	N/A	0
92/317	2.391	2.391	22	N/A	0
102/317	3.096	3.096	10	N/A	12
107/317	2.501	2.501	17	N/A	12
110/610	2,678	2.678	10	N/A	. 0
124/317	5.911	5.911	15	16	0
125/317	9.543	9.543	25	N/A	0
137/217	4.764	4.764	2	16	0
138/317	4.680	4.680	5	N/A	0
139/317	4.609	4.609	12	16	0
142/317	7.646	7.646	38	12	0
144/317	2.982	2.982	16	N/A	0
185/317	46.762	46.762	144	12	0
221/217	4.252	4.252	2	N/A	0
223/610	6.711	6.711	20	N/A	0
Totals	122.713	122.713	369		24

Table 3.1 Constrained Class 2 Space Available for Expansion at Patuxent River
Complex (UIC Multiple)

Applies to Webster Field

٢

FOR OFFICIAL USE BUILY PREDECISIONAL LADORMATION

Building # / Category Code (3 digit)	Current NFA (KSF)	Additional Capacity Provided By Expansion		Height of High Bay (FT)	Estimated Cost of Rehab (\$K's)
		NFA (KSF)	# of Personnel		
P-724/317*	0	16.800	40	15	0
P-727/317*	0	14.074	102	15	0
P-727/610	0	9.600	N/A	N/A	0
P-727/217	0	3.704	N/A	N/A	0
P-727/218	0	1.481	N/A	N/A	0
Totals	0	45.659	142	N/A	0

Table 3.2 Unconstrained Class 2 Space Available for Expansion at Patuxent
River Complex
(UIC Multiple)

*Primary category code.

Applies to Webster Field

Note:

P-724 - AEGIS Backfit Test Center P-727 - Special Operation Forces Communications-Electronics Operations Laboratory

Revised Pg

4. Class 1 Space Available for Expansion.

a. Identify in Table 4.1 below the real estate resources which have the potential to facilitate future development, and for which you are the plant account holder as of 31 March 1994, or into which, though a tenant, your activity could reasonably expect to expand. Complete a separate table for each individual site (i.e., main base, outlying airfields, special off-site areas, etc.) and Detachment that did not receive this Data Call directly. The unit of measure is acres. Developed area is defined as land currently with buildings, roads, and utilities where further development is not possible without demolition of existing improvements. Include in "Restricted" acreage that is restricted for future development due to environmental constraints (e.g. wetlands, landfills, archaeological sites), operational restrictions (e.g. ESQD arcs, HERO, HERP, HERF, AICUZ, ranges) or cultural resources restrictions. Identify the reason for the restriction when providing the acreage in the table. Specify any entry in "Other" (e.g. submerged lands).

b. Are there any constraints such as parking, utilities, legal restrictions that limit the potential for using Undeveloped land for expansion?

The only legal restrictions that exist are those required by the State of Maryland concerning development near the Chesapeake Bay, tidal and non-tidal wetlands. In most cases, mitigation on a two for one basis can occur if the mission need clearly documents a required location at the base. No other legal restrictions exist. Parking, utilities and roads were considered in the developed area, therefore, no additional constraints for these items exist. There are four utilities easement agreements with the R station and the local utility supplier. These easements are for electrical service, gas service, limited water service and sewer service. Relocation of the utility lines under these easements has occurred in the recent past.

c. Explain the radio frequency constraints/opportunities within your Class 1 holdings.

Radio frequencies are coordinated for Patuxent River Complex to promote effective electromagnetic spectrum use and minimize harmful interference for the area commands and activities. This service is provided by the Mid-Atlantic Area Frequency Management Office (MID-LANT AFC), an officially authorized, formal frequency management office based at Patuxent River. The MID-LANT AFC is authorized by the National Telecommunications & Information Administration to permit use of almost any frequency for RDT&E. This office is also responsible for coordinating all USN electronic warfare activity, and is designated the National Telemetry Coordinator in the frequency band 1435-1535 MHz for the area. In addition, the MID-LANT AFC has amassed a "pool" of critical frequencies (HF/VHF/UHF comm, telemetry, etc.) for short term usage, quick reaction requirements or easy future expansion in crowded bands. Also, the Patuxent River Complex is serviced by a secure land-mobile trunking system, which provides the capability for near-unlimited short or long term expansion for the popular land-mobile communications functions. Given enough time for coordination, no constraints are expected.

NAWCHR Change ams NAUC-21 9/19/94

72 R (9-15-94)

4. Class 1 Space Available for Expansion.

a. Identify in Table 4.1 below the real estate resources which have the potential to facilitate future development, and for which you are the plant account holder as of 31 March 1994, or into which, though a tenant, your activity could reasonably expect to expand. Complete a separate table for each individual site (i.e., main base, outlying airfields, special off-site areas, etc.) and Detachment that did not receive this Data Call directly. The unit of measure is acres. Developed area is defined as land currently with buildings, roads, and utilities where further development is not possible without demolition of existing improvements. Include in "Restricted" acreage that is restricted for future development due to environmental constraints (e.g. wetlands, landfills, archaeological sites), operational restrictions (e.g. ESQD arcs, HERO, HERP, HERF, AICUZ, ranges) or cultural resources restrictions. Identify the reason for the restriction when providing the acreage in the table. Specify any entry in "Other" (e.g. submerged lands).

b. Are there any constraints such as parking, utilities, legal restrictions that limit the potential for using Undeveloped land for expansion?

The only legal restrictions that exist are those required by the State of Maryland concerning development near the Chesapeake Bay, tidal and non-tidal wetlands. In most cases, mitigation on a two for one basis can occur if the mission need clearly documents a required location at the base. No other legal restrictions exist. Parking, utilities and roads were considered in the developed area, therefore, no additional constraints for these items exist. There are three utilities easement agreements with the station and the local utility supplier. These easements are for electrical service, gas service and sewer service. Relocation of the utility lines under these easements has occurred in the recent past.

c. Explain the radio frequency constraints/opportunities within your Class 1 holdings.

Radio frequencies are coordinated for Pauxent River Complex to promote effective electromagnetic spectrum use and minimize harmful interference for the area commands and activities. This service is provided by the Mid-Atlantic Area Frequency Management Office (MID-LANT AFC), an officially authorized, formal frequency management office based at Patuxent River. The MID-LANT AFC is authorized by the National Telecommunications & Information Administration to permit use of almost any frequency for RDT&E. This office is also responsible for coordinating all USN electronic warfare activity, and is designated the National Telemetry Coordinator in the frequency band 1435-1535 MHz for the area. In addition, the MID-LANT AFC has amassed a "pool" of critical frequencies (HF/VHF/UHF comm, telemetry, etc.) for short term usage, quick reaction requirements or easy future expansion in crowded bands. Also, the Patuxent River Complex is serviced by a secure land-mobile trunking system, which provides the capability for near-unlimited short or long term expansion for the popular land-mobile communications functions. Given enough time for coordination, no constraints are expected.

FOR OFFICIAL USE ONLY PREDECISIONAL I CORMATION

NAWCAD PAX RIVER MAIN SITE ACREAGE 6,379

Developed Acreage - There are approximately 6,379 acres of Class 1 assets at the Main Complex. This includes approximately 1,791 acres of Runways, Taxiways, Aircraft Parking Aprons and Clear Zones. The other 2,324 acres are occupied by buildings, structures, utilities, and improved grounds such as landscaped areas.

Available for Development - There are approximately 2,054 Restricted acres of undeveloped land at the Main Complex. This undeveloped land area is the total of the Maintenance, Operational, R&D, Supply & Storage, Administration, Housing, Recreational, and Navy Agricultural Outlease Program. There are approximately 100 acres of Golf Course area that is exclusive from any constraints except for the limitation of Utilities and Infrastructure. The totals above exclude the 135 Acres use for development as a result of the BRAC 91 and BRAC 93 decisions.

Land Use	Total Acres	Developed Acreage	Available for	Development
			Restricted	Unrestricted
Maintenance	59	48	11	0
Operational	1,841	1,791	50	0
Training	0 2	0 2	0 2	0
R&D	583	165	418	0
Supply & Storage	245	38	208	
Admin	134	36	98	0
Housing	701	218	483	0
Recreational	421	0 3	421	0
Navy Forestry Program	2,847 ⁴	0	2,847 ⁴	0
Navy Agricultural Outlease Program	500	0	500	0
Hunting/Fishing Programs	3,108	0	3,108	0
Other (Open/Wooded)	2,194	28	2,167	100
Total:	01	01	01	01

Class 1 Resources of NAWCAD (UIC: N00421) Site Location: Patuxent River, Maryland

¹The areas above are non additive as the totals would exceed the acreage of the Main Complex since the areas as reflected overlap because of the different criteria outlined to establish each one.

²Training Area is included in R&D (Test Pilot School). Unable to separate the acreage.

³Buildings and Structures associated with Morale, Welfare and Recreation are included in the Housing Area. This total includes areas such as beaches, campgrounds, picnic areas, ball fields, etc.

⁴Forestry Areas and Hunting/Fishing Areas are included in the totals shown for the other areas.

Constraint Information

824 Acres are encumbered by Explosive Safe Quantity Distances (ESQD). Some of the undeveloped areas are located at the Main Magazine Complex and the two Arming/Dearming Pads along with 11 other areas that have various small distances next to ready service magazines.

27 Acres are encumbered by Hazards of Electromagnetic Radiation to Fuel (HERF). There are approximately 15 sites located throughout the Main Complex with the largest being 3 acres.

371 Acres are encumbered by Hazards of Electromagnetic Radiation to Personnel (HERP). There are approximately 12 sites located throughout the complex with the largest covering approximatley 311 acres at the Chesapeake Test Range. The remaining 11 sites are located throughout the base both on developed areas and areas available for development.

Hazards of Electromagnetic Radiation to Ordnance (HERO)

Hero Arcs and Constraints are defined to provide guidance for Ordnance circulation routes, defining safe handling areas, and for site locations of Ordnance Storage Facilities.

603 Acres of Patuxent River are identified as (HERO Susceptible). There are 9 different transmitter sites that transmit at High Frequencies that are above the maximum safe level for HERO unsafe ordnance. There are current safety procedures in place which silence the particular transmitters during movements of ordnance.

Unsafe Ordnance is defined as unsafe when its internal wiring is exposed or an additional electrical connection to the ordnance will be made or when the item is being assembled or disassembled.

Air Installation Compatible Use Zones (AICUZ)

196 Acres of Taxiway and Aircraft Parking Aprons Lateral clearance zones areas exist and these areas require management based on the mission being supported but are not excluded from development.

Accident Potential Zones exist due to the Flying Mission and the number of aircraft operations being performed. These zones are used to ensure that minimal risk are accepted during the siting of new mission supported facilities or operations.

d. Of the total Unrestricted Acres reported above, how much of it has existing roads and/or utilities that could support expansion efforts? **O Acres.** Explain.

F

FOR OFFICIAL USE ONLY

PREDECISIONAL

74

There is a very limited capacity of existing utilities that pass through the unrestricted area that could support additional development. A two lane perimeter road passes around Patuxent River which could be used to support expansion efforts.

Land Use		Developed	Available for	Development
	Total Acres	Acreage		
			Restricted	Unrestricted
Maintenance	0	0	0	0
Operational	59	14	0	46
Training	0	0	0	0
R&D	20	2	0	18
Supply & Storage	24	1	0	23
Admin	3	1	0	2
Housing	41	40	0	1
Recreational	148	01	0	148
Navy Forestry	0	0	0	0
Program				
Navy Agricultural Outlease Program	0	0	0.	0
Hunting/Fishing	0	0	0	0
Programs				
Other	0	0	0	0
(Open/Wooded)				
Total:	295	58	0	238

Class 1 Resources of Naval Recreational Center (UIC: N0428A) Site Location: Solomons Annex

¹ Buildings and Structures associated with Morale, Welfare and Recreation are included in the Housing Area. This total includes areas such as beaches, campgrounds, picnic areas, ball fields, etc.

NAWCAD SOLOMONS MAIN SITE ACREAGE 295

Developed Acreage - There are approximately 295 acres of Class 1 assets at the Solomons Complex. The 56 acres that are developed are occupied by building, structures, utilities, and improved ground such as landscaped areas and golf driving ranges.

Available for Development - There are approximately 238 unrestricted acres of undeveloped land at the Solomons Complex. This undeveloped land area is the total of the Operational, R&D, Supply & Storage, Administration, Housing and Recreational.

d. Of the total Unrestricted Acres reported above, how much of it has existing roads and/or utilities that could support expansion efforts? 238_Acres. Explain.

Existing two lane roads and limited utilities exist throughout the unrestricted areas; therefore, additional expansion is possible depending upon the requirement.

Land Use	Total Acres	Developed Acreage	Available for	Development
			Restricted	Unrestricted
Maintenance	0	0	0	0
Operational	350.01	100.0	174.42	75.6
Training	0	0	0	0
R&D	0	0	0	0
Supply & Storage	0	0	0	0
Admin	90.01	90.0	0	0
Housing	0	0	0	0
Recreational (Tennis Courts, Football Area, Softball Field, Driving Range)	6.1	0	0	6.1
Navy Forestry Program	182.61	0	34.63	148.0
Navy Agricultural Outlease Program	110.0	0	83.1 ³	26.9
Hunting/Fishing Programs	113.81	0	33.43	80.4
Other (Open/Wooded)	0	0	0	0
Total:	852.5	190.0	325.6	337.0

Class 1 Resources of Patuxent River Complex (UIC: N65980) Site Location: Webster Field

¹This site has 121.96 acres of jurisdictional wetlands, and approximately 36 acres which fall within the 100 ft. shoreline buffer mandated by the Chesapeake Bay Critical Land area Initiative. These restricted areas are interspersed across several land use categories, and some of the land use areas overlap.

²Operationally constrained because of runway clear zone requirements.

³Restricted due to wetland classification.

d. Of the total Unrestricted Acres reported above, how much of it has existing roads and/or utilities that could support expansion efforts? <u>120 Acres.</u> Explain.

Existing roads and utilities generally follow the perimeter of this site along the shoreline. New development would require that roads and utilities be extended inland.

Atristu CAGE UIC: N00421

R

5. Base Infrastructure Capacity. Provide base infrastructure data as of 31 March 1994. Provide numbered notes to explain imminent changes, additions & deletions driven by previous BRAC realignments, MILCON (including BRAC related MILCON) & Special Projects that are currently programmed in the FYDP. Give the project number & title, cost, short description, quantity of additional square footage, award date, estimated/actual construction start date and estimated BOD.

a. Utilize Table 5.1 below to provide information on your activity's base infrastructure capacity and load. Do not report this information if you are a tenant activity.

	On Base Capacity	Off base long term contract	Normal Steady State Load	Peak Demand
Electrical Supply (KWH)	52,575	N/A	18,592	26,644
Natural Gas (CFH)	400,000	N/A	80,000	175,000
Sewage (GPD)	45,000	1,200,000	677,033	856,600
Potable Water (GPD)	6,212,000	N/A	954,878	1,218,000
Steam (PSI & lbm/Hr)	N/A	N/A	N/A	N/A
Long Term Parking	318,060	0	263,989	263,989
Short Term Parking	13,207	0	10,962	10,962
HTHW (400 PSI & MBH)	195,000	N/A	65,000	125,000

Table 5.1 Base Infrastructure Capacity & Load for Patuxent River Complex

According to Southern Maryland Electrical Co-op (SMECO) Patuxent River has the capacity to grow 230 percent from its current peak load demand identified in the table above. This additional capability is for the base only and is not affected by growth into other portions of the region.

NOTES:

The following projects will affect utility capacity and loads.

- 1. BRAC 91 projects are awarded and will add:
 - a. 20,000 Kilovolt Amperes (KVA) of electrical capacity and 12,000 KVA of electrical peak load.
 - b. 2 new water wells with a capacity of 864,000 Gallons Per Day (GPD) and additional potable water usage of 170,000 GPD.
 - c. 31,000 Cubic Feet per Hour (CFH) of natural gas peak load.
 - d. 123,000 gallons of sewage peak load.
 - e. Add 61,470 Sq. Yds. of long term and 6,000 Sq. Yds. of short term parking
- 2. BRAC 93 projects will be awarded in FY95 and will add:
 - a. 40,000 KVA of electrical capacity and 16,000 KVA of electrical peak load.
 - b. Additional potable water peak usage of 127,000 GPD.
 - c. 9,071 CFH of natural gas peak load.

Change I NAWCAD/PR

24 May 94

Page 78R

Enclosure (1)

5. Base Infrastructure Capacity. Provide base infrastructure data as of 31 March 1994. Provide numbered notes to explain imminent changes, additions & deletions driven by previous BRAC realignments, MILCON (including BRAC related MILCON) & Special Projects that are currently programmed in the FYDP. Give the project number & title, cost, short description, quantity of additional square footage, award date, estimated/actual construction start date and estimated BOD.

a. Utilize Table 5.1 below to provide information on your activity's base infrastructure capacity and load. Do not report this information if you are a tenant activity.

	Qn Base Capacity	Off base long term contract	Normal Steady State Load	Peak Demand
Electrical Supply (KWH)	52,575	N/A	18,592	26,644
Natural Gas (CFH)	400,000	N/A	80,000	175,000
Sewage (GPD)	45,000	1,200,000	677,033	856,600
Potable Water (GPD)	6,212,000	N/A	954,878	1,218,000
Steam (PSI & lbm/Hr)	N/A	N/A	N/A	N/A
Long Term Parking	318,060	0	317,895	323,929
Short Term Parking	13,207	0	13,207	14,423
HTHW (400 PSI & MBH)	195,000	N/A	65,000	125,000

Table	5.1	Base In	frastructur	e Capacity	& Load
	、 、	for Patu	xent River	Complex	

According to Southern Maryland Electrical Co-op (SMECO) Patuxent River has the capacity to grow 230 percent from its current peak load demand identified in the table above. This additional capability is for the base only and is not affected by growth into other portions of the region.

NOTES:

The following projects will affect utility capacity and loads.

- 1. BRAC 91 projects are awarded and will add:
 - a. 20,000 Kilovolt Amperes (KVA) of electrical capacity and 12,000 KVA of electrical peak load.
 - b. 2 new water wells with a capacity of 864,000 Gallons Rer Day (GPD) and additional potable water usage of 170,000 GPD.
 - c. 31,000 Cubic Feet per Hour (CFH) of natural gas peak load.
 - d. 123,000 gallons of sewage peak load.
 - e. Add 61,470 Sq. Yds. of long term and 6,000 Sq. Yds. of short term parking
- 2. BRAC 93 projects will be awarded in FY95 and will add:
 - a. 40,000 KVA of electrical capacity and 16,000 KVA of electrical peak load.
 - b. Additional potable water peak usage of 127,000 GPD.
 - c. 9,071 CFH of natural gas peak load.

FOR OFFICIAL USE ONLY PREDECICIOLIAL MORMATION

d. 92,000 gallons of sewage peak load.

e. Add 69,389 Sq. Yds. long term and 8,090 Sq. Yds. of short term parking.

3. Project R29-93, Repair Water Well 5-B and various minor repair projects will provide increases in water well capacity and reliability will improve by repairing/replacing 1943 vintage water wells.

4. Project P-505, Sewage Flow Equalization Basin will provide METCOMM (our sewage municipality) with a means to equalize Patuxent River flowrates and reduce the affects of peak flows.

5. The State of Maryland will allow increased sewage capacity to 60,000 GPD when the NPDS permit is re-issued for Webster Field.

b. <u>Maintenance. Repair & Equipment Expenditure Data</u>: Use Table 5.2 below to provide data on facilities and equipment expenditures at your activity. Project expenditures to FY 1997. Do not include data on Detachments who have received this Data Call directly. Do not report this information if you are a tenant activity. The following definitions apply:

Maintenance of Real Property (MRP) Dollars: MRP is a budgetary term used to gather the expenses or budget requirements for facility work including recurring maintenance, major repairs & minor construction (non-MILCON) inclusive of all Major Claimant funded Special Projects. It is the amount of funds spent on or budgeted for maintenance and repair of real property assets to maintain the facility in satisfactory operating condition. For purposes of this Data Call MRP includes all M1/R1 and M2/R2 expenditures.

fuired pg

<u>Current Plant Value (CPV) of Class 2 Real Property</u>: The hypothetical dollar amount to replace a Class 2 facility <u>in kind</u> with today's dollars. Example: the cost today to replace a wood frame barracks with a wood frame barracks.

<u>Acquisition Cost of Equipment (ACE)</u>: The total cumulative acquisition cost of all "personal property" equipment maintained at your activity which includes the cost of installed equipment directly related to mission execution, such as lab test equipment. Class 2 installed capital equipment that is an integral part of the facility will not be reported as ACE.

Fiscal Year	MRP (\$M)	CPV (\$M)	ACE (\$M)
1985	10.822	1491.592	84.10
1986	10.184	1470.917	119.50
1987	10.231	1509.636	126.60
1988	13.771	1518.698	142.10
1989	15.369	1538.078	140.80
1990	22.422	1562.189	144.80
1991	17.612	1578.253	154.60
1992	48.824	1582.141	161.60
1993	47.809	1604.880	161.30
1994	46.350	1609.683	157.40
1995	46.195	1622.052	147.70
1996	49.963	1702.285	199.20
1997	52.603	1776.785	202.80

Table 5.2 Maintenance, Repair & Equipment Expenditure Datafor Patuxent River Complex(UIC: Multiple)

Projected CPV Increases due to BRAC related construction. FY95 \$18.719M FY96 \$75.983M FY97 \$70M

It should be noted these figures are understated due to not being able to include such items as computer operating software and many specialized project support software. Additionally, specialized flight instrumentation pool test equipment and aircraft ground support equipment note in the Intermediate Maintenance Requirements Listing (IMRL) are not identified in the above figures. These items are estimated to be worth over \$400M.

NOTE: The 1992 increase was the result of a Congressional appropriation on Real Property Maintenance Defense Account which allowed Patuxent River to execute approximately a \$20M program on barracks repairs and other infrastructure that was on the Chief of Naval Operations high priority list for shore installations. The 1993 numbers are the result of follow on repairs to other facilities through centrally managed Environmental and Major Range Test Facility Base funds. The 1994 through 1997 figures are projected expenditures based on the consolidations due to BRAC 91 decisions.

NAUCHQ Change ang NAWC-21 80 R (9-15-94) 9/19/94

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

<u>Current Plant Value (CPV) of Class 2 Real Property</u>: The hypothetical dollar amount to replace a Class 2 facility <u>in kind</u> with today's dollars. Example: the cost today to replace a wood frame barracks with a wood frame barracks.

Acquisition Cost of Equipment (ACE): The total cumulative acquisition cost of all "personal property" equipment maintained at your activity which includes the cost of installed equipment directly related to mission execution, such as lab test equipment. Class 2 installed capital equipment that is an integral part of the facility will not be reported as ACE.

Fiscal Year	MRP (\$M)	CPV (\$M)	ACE (\$M)
1985	10.822	1491.592	84.10
1986	10.184	1470.917	119.50
1987	10.231	1509.636	126.60
1988	13.771	1518.698	142.10
1989	15.369	1538.078	140.80
1990	22.422	1562.189	144.80
1991	17.612	1578.253	154.60
1 992	48.824	1582.141	161.60
1993	47.809	1604.880	161.30
1994	46.350	1609.683	157.40
1995	46.195	1617.052	147.70
1996	49.963	1702.285	199.20
1997	52.603	1776.785	202.80

Table 5.2 Maintenance, Repair & Equipment Expenditure Datafor Patuxent River Complex(UIC: Multiple)

Projected CPV Increases due to BRAC related construction.

FY95 \$18.719M FY96 \$75.983M

FY97 \$70M

It should be noted these figures are understated due to not being able to include such items as computer operating software and many specialized project support software. Additionally, specialized flight instrumentation pool test equipment and aircraft ground support equipment note in the Intermediate Maintenance Requirements Listing (IMRL) are not identified in the above figures. These items are estimated to be worth over \$400M.

NOTE: The 1992 increase was the result of a Congressional appropriation on Real Property Maintenance Defense Account which allowed Patuxent River to execute approximately a \$20M program on barracks repairs and other infrastructure that was on the Chief of Naval Operations high priority list for shore installations. The 1993 numbers are the result of follow on repairs to other facilities through centrally managed Environmental and Major Range Test Facility Base funds. The 1994 through 1997 figures are projected expenditures based on the consolidations due to BRAC 91 decisions.

80

c. Training Facilities:

(1) By facility Category Code Number (CCN), provide the usage requirements for each course of instruction required for all formal schools on your installation. A formal school is a programmed course of instruction for military and/or civilian personnel that has been formally approved by an authorized authority (ie: Service Schools Command, Weapons Training Battalion, Human Resources Office). Do not include requirements for maintaining unit readiness, GMT, sexual harassment, etc. Include all applicable 171-xx, 179-xx CCN's.

			FY 1993		FY 2001			
Type of Training	l	Type of		Requirements		Requirements		<u>.s</u>
Facility/CCN	School	Training	<u> </u>	В	<u> </u>	<u> </u>	В	L C
Academic Instruction Classroom 171-10	U.S. Naval Test Pilot School	Flight Test Engineering	72	1,200	86,400	68	1,200	81,600
Academic Instruction Classroom 171-10	Employee Development Center	General	17,817	8	142,536	37,000	8	296,000
Family Service Center	Family Service Center	General	4,450	313.5	17,340	6,365	35.5	31,671
Classroom - Lab 171-20	ATC	Radio Operator	102	128	13,056	120	128	15,360
Classroom - Lab 171-20	AN/UPX-29 US	AN/UPX-29 Maintenance	19	160	3,040	36	160	5,760
Classroom - Lab 171-20	AN/UPX-29 FMS	AN/UPX-29 Maintenance	4	400	1,600	4	400	1,600
A cademic Instruction Classroom 171-10	LST	Leadership Skills	520	40	20,800	520	40	20,800
A cademic Instruction Classroom 171-10	PO/CPO Indoctrination	Indoctrination	68	44	1,496	68	44	1,496
General Purpose 171-25	Crow's Nest	Various	1,456	40	58,240	2,184	40	87,360
Counseling Center	Counseling Center	General	910	182	30,449	1,138	182	38,081
Academic Instruction Classroom 171-10	MWRTU	General	43,875	8	351,000	48,750	8	390,000
Naval Hospital 171-20	Aviation Physiology Training Unit	Physiology Training	1,444	7	10,108	1,500	7	10,500

.

Naval School for Explosive Ordnance Disposal (Solomons) 171-77	Training Material Storage	Explosive/ Diving	150	3	450	150	3	450
Naval School for Explosive Ordnance Disposal (Solomons) 171-20	Applied Instruction Building	Explosive/ Diving	150	11	1,650	150	11	1,650

A = STUDENTS PER YEAR

B = NUMBER OF HOURS EACH STUDENT SPENDS IN THIS TRAINING FACILITY FOR THE TYPE OF TRAINING RECEIVED

 $C = A \times B$

(2) By Category Code Number (CCN), complete the following table for all training facilities aboard the installation. Include all 171-xx and 179-xx CCN's.

For example: in the category 171-10, a type of training facility is academic instruction classroom. If you have 10 classrooms with a capacity of 25 students per room, the design capacity would be 250. If these classrooms are available 8 hours a day for 300 days a year, the capacity in student hours per year would be 600,000.

Type Training Facility/CCN	Total Number	Design Capacity (PN) ¹	Capacity (Student HRS/YR)	
Academic Instruction Classroom/171-10 - TPS	5	150	300,000	
Academic Instruction Classroom/171-10 • EDC	17	323	1,292,000	1
Family Service Center	2	50	100,000	1
ATC Classroom - Lab/171-20 - Webster Field	1	24	23,040	
AN/UPX-29 US Classroom - Lab/171-20 - Webster Field	1	6	5,760	R
AN/UPX-29 FMS Classroom - Lab/171-20 - Webster Field	2	6	4,800	
AN/UPM-155 Tri Service Classroom - Lab/171-20 - Webster Field	3	7	840	
AN/UPM-155 Navy - Air Force Classroom - Lab/171-20 - Webster Field	1	7	280	
Leadership Skills Training School	1	21	42,000	
General Purpose - Crow's Nest 171-25	1	100	200,000	
General Purpose - Counseling Center	1	40	80,000	
Academic Instruction Classroom 171-10 - MWRTU	5	215	860,000	R
Naval Hospital/171-20	2	36	72,000	
NAVSCOLEOD/171-77 - Solomons	1	25	21,000	
NAVSCOLEOD/171-20 - Solomons	5	125	105,000	

¹ Design Capacity (PN) is the total number of seats available for students in spaces used for academic instruction; applied instruction; and seats or positions for operational trainer spaces and training facilities other than buildings, i.e., ranges. Design Capacity (PN) must reflect current use of the facilities.

NAWCHQ Change ans NAWC 21 9/19/24

83 R (9-15-94)

(2) By Category Code Number (CCN), complete the following table for all training facilities aboard the installation. Include all 171-xx and 179-xx CCN's.

For example: in the category 171-10, a type of training facility is academic instruction classroom. If you have 10 classrooms with a capacity of 25 students per room, the design capacity would be 250. If these classrooms are available 8 hours a day for 300 days a year, the capacity in student hours per year would be 600,000.

The Training Training (CCN)	Total	Design Capacity	Capacity
Type Training Facility/CCN	Number	(PN) ¹	(Student HRS/YR)
Academic Instruction	5	150	300,000
Classroom/171-10 - TPS			
Academic Instruction	17	323	1,292,000
Classroom/171-10 CL		L	
Family Service Center	2	50	100,000
ATC Classroom - Lab(171-20 -	1	24	23,040
Webster Field			
AN/UPX-29 US Classroom -	6	6.	5,760
Lab/171-20 - Webster Field			
AN/UPX-29 FMS Classroom -	2	6	4,800
Lab/171-20 - Webster Field			
AN/UPM-155 Tri Service	3	7	840
Classroom - Lab/171-20 -		1	
Webster Field			
AN/UPM-155 Navy - Air Force	N.	7	280
Classroom - Lab/171-20 -	\backslash		
Webster Field			
Leadership Skills Training	1	21	42,000
School	\backslash		
General Purpose - Crow's Nest	1	100	200.000
171-25			,
General Purpose - Counseling	1	40	80.000
Center	-		
Academic Instruction Classroom	5	195	780,000
171-10 - MWRTU	-		,
Naval Hospital/171-20	2	36	72,000
NAVSCOLEOD/171-77 -	1	25	21.000
Solomons	-		,
NAVSCOLEOD/171-20	5	125	105.000
Solomons	-		

¹ Design Capacity (PN) is the total number of seats available for students in spaces used for academic instruction; applied instruction; and seats or positions for operational trainer spaces and training facilities other than buildings, i.e., ranges. Design Capacity (PN) must reflect current use of the facilities.

(3) Describe how the Student HRS/YR value in the preceding table was derived.

Test Pilot School - capacity derived by summing the individual classroom capacities (40, 40, 25, 25, and 20) and multiplying by the number of weekday hrs (minus holidays) that there are in a year (2,000).

Employee Development Center - 17 rooms X 19 students = 323 323 Students X 16 hrs per day = 5,168 hrs per day 5,168 hrs per day X 250 days used a year = 1,292,000

Family Service Center - 2 rooms X 25 students = 50 50 students X 8 hrs per day = 400 hrs per day 400 hrs per day X 250 days used a year = 100,000

ATC example - 8 classes per year X 15 days per class = 120 days per year

120 days per year X 8 hrs per day X 24 students = 23,040

AN/UPX-29 US - 6 classes per year X 20 days per class = 120 days per year 120 days per year X 8 hrs per day X 6 students = 5,760

AN/UPX-29 FMS - 2 classes per year X 50 days per class = 100 days per year

100 days per year X 8 hrs per day X 6 students = 4,800

AN/UPM-155 Tri Service - 3 classes per year X 5 days per class = 15 days per year 15 days per year X 8 hrs per day X 7 students = 840

AN/UPM-155 Navy/Air Force - 1 class per year X 5 days per class = 5 days per year 5 days per year X 8 hrs per day X 7 students = 280

Leadership Skills Training - 1 room X 21 students = 21 21 students X 8 hrs per day = 168 hrs per day 168 hrs per day X 250 days used a year = 42,000

Crow's Nest - 1 room X 100 students = 100 100 students X 8 hrs per day = 800 hrs per day 800 hrs per day X 250 days used a year = 200,000

Counseling Center - 2 rooms X 20 students = 40 40 students X 8 hrs per day = 320 hrs per day 320 hrs per day X 250 days used a year = 80,000

MWRTU - 5 rooms X 39 students = 195 195 students X 16 hrs per day = 3,120 hrs per day 3,120 hrs per day X 250 days used a year = 780,000

Naval Hospital - 2 rooms X 18 students = 36 36 students X 8 hrs per day = 288 hrs per day

> FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

288 hrs per day x 250 days used a year = 72,000

NAVSCOLEOD (171-77) - 6 classes X 10 days = 60 class days Class operates 14 hours per day. 14 hrs per day X 60 days per year X 25 students = 21,000Class availability can be increased.

NAVSCOLEOD (171-20) - 6 classes X 10 days = 60 class days Class operates 14 hours per day. 14 hrs per day X 60 days per year X 125 students - 105,000 Class availability can be increased. 6. Ship Berthing Capacity. If your activity has the capacity to berth ships fill out the data sheets provided at TAB A.

7. Operational Airfield Capacity. If your activity owns and operates an operational airfield fill out the data sheets provided at TAB B.

.

8. Depot Level Maintenance Capacity. Fill out the data sheets provided at TAB C if you or your subordinate activities perform depot level maintenance on a piece of equipment or system.

9. Ordnance Storage Capacity. If your activity has the capability to store or maintain weapons and ordnance fill out the data sheets provided at TAB D.

TAB A

SHIP BERTHING CAPACITY

Note: Question numbers in []'s are for internal BSAT purposes.

SOLOMONS ANNEX

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

SHIP BERTHING CAPACITY

1.[11.] For each Pier/Wharf at your facility list the following structural characteristics. Indicate the additional controls required if the pier is inside a Controlled Industrial Area or High Security Area. Provide the average number of days per year over the last eight years that the pier was out of service (OOS) because of maintenance, including dredging of the associated slip:

				<u> </u>					
Pier/ Wharf & Age ¹	CCN ²	Moor Length (ft)	Design Dredge Depth ³ (ft) (MLLW)	Slip Width ⁴ (ft)	Pier Width (ft) ⁵	CIA/ Secur- ity Area? (Y/N) ⁶	ESQD Limit ⁷	<pre># Days OOS for maint.</pre>	
Pier 360/ 1943	151- 20	722'	22'	N / A	32'	Y	0	10	R
Pier 389/ 1945	151- 20	74'	9'	16'	8'6"	¥.	0	5	R
Pier 390/ 1945	151- 20	74'	9'	16'	8'	Y	0	5	R
Pier 391/ 1945	151- 20	76'	9'	16'	8'	Y	0	5	R

Table 11.1

¹Original age and footnote a list of MILCON improvements in the past 10 years. ²Use NAVFAC P-80 for category code number. ³Comment if unable to maintain design dredge depth ⁴Water distance between adjacent finger piers. ⁵Indicate if RO/RO and/or Aircraft access.

The piers were not designed for roll on/roll off (RO/RO) or operations involving aircraft access. However, piers are available on the Naval Air Station to support loading operations of tactical size aircraft.

Describe the additional controls for the pier.

The piers are located in a controlled area that has a twenty-four hour security force with a gate guard and a roving patrol. The industrial area also has an inner security fence that requires key access after normal

NAUCHQ (Leaver 2 R (9-15-94) UNS NAUC-21 Tab A - Solomons Annex 9/17/94 Revined pg

Revised py UIC: NO0421

SHIP BERTHING CAPACITY

1.[11.] For each Pier/Wharf at your facility list the following structural characteristics. Indicate the additional controls required if the pier is inside a Controlled Industrial Area or High Security Area. Provide the average number of days per year over the last eight years that the pier was out of service (OOS) because of maintenance, including dredging of the associated slip:

Table 11.1										
Pier/ Wharf & Age ¹	CCN ²	Moor Length (ft)	Design Dredge Depth ³ (ft) (MLLW)	Slip Width ⁴ (ft)	Pier Width (ft) ⁵	CIA/ Secur- ity Area? (Y/N) ⁶	ESQD Limit ⁷	<pre># Days OOS for maint.</pre>		
33/48	151- 20	75'	7' 6"	57'	34'	Y	0	14		
34/48	151- 20	75'	7' 6"	12'	34'	Y	0	14		
35/15	151- 20	50'	7' 6"	20'	4 '	Y	0	14	R	
36/15	151- 20	50'	7' 6"	20'	4 '	Y	0	14	R	
37/15	151- 20	50'	7' 6"	20'	4 '	Y	0	14	R	
Boat- house 107/51	151- 20	60'	7' 6"	20'	5'	Y	0	14	R	
Boat- house 107/51	151- 20	60'	7' 6"	20'	5'	Y	0	14	R	
Boat- house 107/51	151- 20	60'	7' 6"	30'	5 '	Y	0	14	R	
Davits/	151- 20	36'	7' 6"	12'	6'	Y	0	14	R	
32/48	151- 20	75'	7' 6"	57'	4 '	Y	0	14	R	
Seawall 76/51	151- 20	500'	7'6"	100'	25'	N	0	14	R	
Stbd Synchro Pier 72/22	151- 20	104' 9"	7'6"	20'	91'	¥	0	14	R	
Port Synchro 72/22	151- 20	104' 9"	7' 6"	20'	91′	Y	0	14	R	

¹Original age and footnote a list of MILCON improvements in the past 10 years.

²Use NAVFAC P-80 for category code number.

³Comment if unable to maintain design dredge depth ⁴Water distance between adjacent finger piers.

NAUCHQ Change Ums NAWC.21 210/24

2 R (9-15-94) Tab A - West Basin

SHIP BERTHING CAPACITY

1.[11.] For each Pier/Wharf at your facility list the following structural characteristics. Indicate the additional controls required if the pier is inside a Controlled Industrial Area or High Security Area. Provide the average number of days per year over the last eight years that the pier was out of service (OOS) because of maintenance, including dredging of the associated slip:

			Ta	<u>able 11.</u>	.1				_
Pier/ Wharf & Age ¹	CCN ²	Moor Length (ft)	Design Dredge Depth ³ (ft) (MLLW)	Slip Width ⁴ (ft)	Pier Width (ft) ⁵	CIA/ Secur- ity Area? (Y/N) ⁶	ESQD Limit ⁷	<pre># Days OOS for maint.</pre>	
Pier 1817	151- 20	75'	10'	30'	6'	Y	0	2	R
Pier 1818	151- 20	76'	10'	30'	6'	Y	0	2	R
Pier 1819	151- 20	75'	10'	30'	10.5'	Y	0	2	R

¹Original age and footnote a list of MILCON improvements in the past 10 years.
²Use NAVFAC P-80 for category code number.
³Comment if unable to maintain design dredge depth
⁴Water distance between adjacent finger piers.
⁵Indicate if RO/RO and/or Aircraft access.
⁶Describe the additional controls for the pier.
⁷Net explosive weight. List all ESQD waivers that are in effect with expiration date.

Note 1: The piers are located in a controlled area that has a twenty-four hour security roving patrol. For projects requiring a higher level of security, past arrangements have included the establishment of security checkpoints and special personnel badging. Patuxent River Auxillary Security Force can also be deployed to provide perimeter control.

NAWCHQ Change 2 R (9-15-94) Tab A - Chesapeake Basin 7/19/24

Recined pg

SHIP BERTHING CAPACITY

1.[11.] For each Pier/Wharf at your facility list the following structural characteristics. Indicate the additional controls required if the pier is inside a Controlled Industrial Area or High Security Area. Provide the average number of days per year over the last eight years that the pier was out of service (OOS) because of maintenance, including dredging of the associated slip:

			<u>'l'a</u>	<u>idie 11.</u>	1			
Pier/ Wharf & Age ¹	cch ²	Moor Length (ft)	Design Dredge Depth ³ (ft) (MLLW)	Slip Width ⁴ (ft)	Pier Width (ft) ⁵	CIA/ Secur- ity Area? (Y/N) ⁶	ESQD Limit ⁷	<pre># Days OOS for maint.</pre>
Pier 360/ 1951	151- 20	706.	22'	N/A	32'	¥	0	10
Pier 389/ 1949	151- 20	74'	، و	16'	8' 6"	Y	0	5
Pier 390/ 1949	151- 20	74'	à	16'	8' 6"	Y	0	5
Pier 391/ 1949	151- 20	74'	9'	16'	8' 6"	Y	0	5
				\backslash				

¹Original age and footnote a list of MILCON improvements in the past 10 years.

²Use NAVFAC P-80 for category code number. ³Comment if unable to maintain design dredge depth ⁴Water distance between adjacent finger piers. ⁵Indicate if RO/RO and/or Aircraft access.

The piers were not designed for roll on/roll off (RO/RO) or operations involving aircraft access. However, piers are available on the Naval Air Station to support loading operations of tactical size aircraft.

Describe the additional controls for the pler.

The piers are located in a controlled area that has a twenty-four hour security force with a gate guard and a roving patrol. The industrial area also has an inner security fence that requires key access after normal

> FOR OFFICIAL USE ONLY PREDECISIONAL DEFORMATION

duty hours. For projects requiring a higher level of security, past arrangements have included the establishment of a security checkpoint at the head of the pier and project personnel badging in the administrative office spaces.

'Net explosive weight. List all ESQD waivers that are in effect with expiration date.

At the present time, the piers are not approved for explosive handling operations. However, depending on project requirements waivers to conduct operations can be obtained on a case by case basis.

Pier/ Wharf	OPNAV 3000. 8 (Y/N)	Shore Pwr (KVA) & 4160V (KVA)	Comp. Air Press. & Capacity 1	Potable Water (GPD)	CHT (GPD)	Oily Waste ¹ (gpd)	Steam (1bm/hr & PSI) ²	Fendering limits ³
360	¥	225 KVA(480) 150 KVA(208)	None	6" Fire 4" Potable Water	None	None	None	4 '
389	Y	54 KVA(208)	None	Frost Free Hydrant	None	None	None	8 "
390	Y	6 KVA(240)	None	Frost Free Hydrant	None	None	None	8 "
391	Y	26 KVA(240)	None	Frost Free Hydrant	None	None	None	8 *

2.[12.] For each Pier/Wharf at your facility list the following ship support characteristics:

- -

Table 12.1

¹List only permanently installed facilities. ²indicate if the steam is certified steam. ³Describe any permanent fendering arrangement limits on ship berthing.

Pier 360 is capable of accommodating CHT operations by utilization of CHT barge with support from waste disposal trucks.
3.[13.] For each pier/wharf listed above state today's normal loading, the maximum capacity for berthing, maximum capacity for weapons handling evolutions, and maximum capacity to conduct intermediate maintenance.

			/ •	
Pier/ Wharf	Typical Steady State Loading ¹	Ship Berthing Capacity	Ordnance Handling Pier Capacity ²	IMA Maintenance Pier Capacity ³
Pier 360	See Note 1	500'	See Note 2	See Note 3
Pier 389	See Note 1	40'	See Note 2	See Note 3
Pier 390	See Note 1	40'	See Note 2	See Note 3
Pier 391	See Note 1	40'	See Note 2	See Note 3
			·	
	·			

Table 13.1

¹ Typical pier loading by ship class with current facility ship loading.

2 WMEC medium endurance cutters, 1 ATF class fleet ocean tug, 1 Tarantul Class R&D support ship.

Pier 360 is capable of accommodating six WMEC/ATF class ships or two DD class and two WMEC class ships simultaneously. The pier has also supported the berthing of a decommissioned submarine for a test and evaluation project.

² List the maximum number of ships that can be moored to conduct ordnance handling evolutions at each pier/berth without berth shifts. Consider safety, ESQD and access limitations.

Pier 360 is capable of supporting any project that requires the loading of explosive ordnance with waiver approval from NAVSEA.

³ List the maximum number of ships that can be serviced in maintenance availability's at each pier without berth shifts because of crane, laydown or access limitations.

Pier 360 is capable of accommodating four ATF/WMEC

class ships requiring modification for target operations.

4.[14.] For each pier/wharf listed above, based on Presidential Budget 1995 budgeted infrastructure improvements in the Presidential Budget 1995 through FY 1997 and the BRAC-91 and BRAC-93 realignments, state the expected normal loading, the maximum capacity for berthing, maximum capacity for weapons handling evolutions, and maximum capacity to conduct intermediate maintenance.

		T	able 14.1	
Pier/ Wharf	Typical Steady State Loading ¹	Ship Berthing Capacity	Ordnance Handling Pier Capacity ²	IMA Maintenance Pier Capacity ³
360	Note 1	500'	Note 2	Note 3
389	Note 1	40'	Note 2	Note 3
390	Note 1	40'	Note 2	Note 3
391	Note 1	40'	Note 2	Note 3
		•		

¹ Typical pier loading by ship class with current facility ship loading.

Pier 360 typical loading includes 2 WMEC medium endurance cutters, 1 ATF class fleet tug and 1 Tarantul Class R&D support ship. This is the current loading that the pier is supporting at the present time.

² List the maximum number of ships that can be moored to conduct ordnance handling evolutions at each pier/berth without berth shifts. Consider safety, ESQD and access limitations.

Pier 360 is capable of supporting four ships requiring ordnance loading support with waiver approval from NAVSEA.

³ List the maximum number of ships that can be serviced in maintenance availability's at each pier without berth shifts because of crane, laydown, or access limitations.

Pier 360 is capable of accommodating four ATF/WMEC class ships requiring maintenance support.

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION **5.[15.a.]** How much pier space is required to berth and support ancillary craft (tugs, barges, floating cranes, etc.) currently at your facility? Indicate if certain piers are uniquely suited to support these craft.

None. Currently there are no ancillary craft assigned or berthed at Patuxent River. Pier number 360 at the Solomons Annex is a 700 ft. structure capable of supporting deep draft tug, barge and floating cranes. An actual total of approximately 1,000 ft. of usable pier space is available to support these operations if both sides of the pier were utilized.

6.[15.b.] What is the average pier loading in ships per day due to visiting ships at your base. Indicate if it varies significantly by season.

Pier 360 supports three target ship platforms supporting test and evaluation and fleet training projects. These target support ships are berthed 365 days per year. Additionally, one Soviet Tarantul class vessel used for research and development support of Naval Surface Warfare Center and Naval Research Laboratory projects is also berthed 365 days per year at the pier. The approximate length of each of these four ships is 200 feet.

Additionally, the pier supports approximately ten ships each year for a total of 30 days per year. These ships include Navy, Army, Coast Guard and National Oceanic and Atmospheric Administration research vessel platforms.

Continual year-round use is unaffected by seasonal weather variations.

7.[15.c.] Given no funding or manning limits, what modifications or improvements would you make to the waterfront infrastructure to increase the cold iron ship berthing capacity of your installation? Provide a description, cost estimates, and additional capacity gained.

Minor improvements to Pier 360 would cost approximately \$82,000 to make the current wooden structure fully functional. Additionally, if the pier was covered with a concrete surface decking, it would have the additional capacity to add compressed air, chemical holding tanks/sewage removal and bilge water hookups. With this upgrade the pier would be able to handle larger industrial

8

equipment such as heavy lift cranes and provide better logistical support to the Patuxent River ship berthing capabilities. Approximate cost to upgrade this facility is estimated at \$2.5M.

- - -

8.[15.d.] Describe any unique limits or enhancements on the berthing of ships at specific piers at your base.

The controlling draft at the entrance to the Patuxent River is capable of accommodating a Perry Class size frigate transiting to the pier at the Patuxent River Solomons Annex.

Located at the Patuxent River's Solomons Annex is the Naval Surface Warfare Center's (NSWC), Electromagnetic Pulse Radiation Environment Simulator for ships (EMPRESS I) facility. This facility is a highly specialized radio transmitter which broadcasts a high amplitude electromagnetic pulse (EMP) for the purpose of assessing its effect on Navy electronic equipment, including that aboard ships.

. _ _ _ _ _ _

The operation of EMPRESS I is required to perform tests on Navy ships and systems to ensure that they can survive EMP. According to NSWC, EMPRESS I is essential to the national security in order to ensure that ships and their electronic systems will not be damaged by enemy forces.

The EMPRESS I facility was specially designed and built to test Navy electronic circuits, configured within Navy ships, to determine their tolerances to upset (operational malfunction) and damage (permanent failure) by EMP. Those circuits that cannot withstand EMP without serious upset or damage are modified by appropriate techniques. These techniques, usually referred to as hardening techniques, include enclosing the circuits in metallic cages, called shields; the use of electrical current surge suppressers (similar to lightening arrestors); and in some cases, complete redesign of specific circuits.

EMPRESS I is currently the only EMP facility in the United States with the capability to perform ship EMP tests. It is therefore an asset of great importance to national security.

DESCRIPTION OF THE EMPRESS FACILITY

The EMPRESS I facility consists of a pulse generator, an antenna system, and several small buildings which contain the control and data collection (computer) equipment. Figure 1 shows the placement of the pulse generator (pulser), antenna, data collection building, pulser control trailer, and two small storage buildings. The pulse generator is normally stored in a nearby building when not in use; it is only connected to the antenna during EMPRESS I facility operations.

The EMPRESS I antenna system is a system of wires connected along a number of tall (100-foot-high) wooden poles. The antenna consists of six of the poles, arranged to form a circle with a diameter of 120 feet. The wires connected to these six poles form a cone-shaped antenna. A number of wires at the top of the main antenna connect it to another set of wires that run horizontally along the tops of eleven 100-foot-high poles. These eleven poles

> FOR OFFICIAL USE CALLY PREDECISIONAL INFORMATION

form a line that extends about 1300 feet down Pt. Patience. The horizontal wires, together with an underground grid of wires that runs along the poles form an electronic circuit known as the horizontal transmission line. The horizontal transmission line carriers the current that the pulse generator pumps into the main antenna. This current is then carried downward through some other wires, through a large antenna termination resistor, and into the ground.

This system of wires and poles that make up the EMPRESS I antenna system is so constructed because several years ago the horizontal transmission line was used as a separate antenna. This transmission line is no longer used as an antenna, but it is part of the system needed to the main antenna will radiate properly.

The EMPRESS I wave is an electromagnetic radio frequency wave. (A technical description of the radio wave is given in Appendix A.) In that sense, it is similar to other forms of electromagnetic wave, such as radio and television waves. The EMPRESS I wave differs from these other waves in that it is a single pulse of energy, not a continuous stream of energy. The EMPRESS I pulse lasts for only about one hundred billionths of a second. It can be produced as frequently as one pulse every 80 seconds.

> FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

.

TAB A

SHIP BERTHING CAPACITY

Note: Question numbers in []'s are for internal BSAT purposes.

WEST BASIN

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

SHIP BERTHING CAPACITY

1.[11.] For each Pier/Wharf at your facility list the following structural characteristics. Indicate the additional controls required if the pier is inside a Controlled Industrial Area or High Security Area. Provide the average number of days per year over the last eight years that the pier was out of service (OOS) because of maintenance, including dredging of the associated slip:

				Τa	ble 11.	1			
Pier/ Wharf & Age ¹	CCN ²	Moor Length (ft)	Desi Dred Dept (ft)	gn ge h ³	Slip Width ⁴ (ft)	Pier Width (ft) ⁵	CIA/ Secur- ity Area?	ESQD Limit ⁷	<pre># Days OOS for maint.</pre>
33/48	151-20	75'	(MLL 7'	₩) 6 "	57'	34'	(Y/N) ⁶ Y	0	14
34/48	151 - 20 151 - 20	50'	7'	6 "	20'	34' 2" 4'	Y Y	0	14
36/48	151- 20	50'	7'	6 "	20'	4 '	Y	0	14
37/48	151- 20	50'	7'	6 "	20'	4 '	¥	0	14
Boat- house 107/48	151- 20	70'	7' (6"	20'	5'	Y	0	14
Boat- house 107/48	151- 20	70'	7' (6"	20'	5'	Y	0	14
Boat- house 107/48	151- 20	70'	7' (6 "	30'	5'	Y	0	14
Davits	151- 20	36'	7' (6 "	12'	6 '	¥	0	14
32	151- 20	75'	7' (5 "	57'	4 '	Y	0	14
Seawall 76	151- 20	500'	7' (5 "	100'	25'	N	0	14
Stbd Synchro Pier 72	151- 20	104'	7' (5 "	20'	96'	¥	0	14
Port Synchro 72	151- 20	104'	7' (5 "	20'	96'	Y	0	14

¹Original age and footnote a list of MILCON improvements in the past 10 years.

²Use NAVFAC P-80 for category code number. ³Comment if unable to maintain design dredge depth ⁴Water distance between adjacent finger piers. ⁵Indicate if RO/RO and/or Aircraft access. Describe the additional controls for the pier.

The piers are located in a controlled area that has a twenty-four hour security roving patrol. For projects requiring a higher level of security, past arrangements have included the establishment of security checkpoints and special personnel badging. Patuxent River Auxillary Security Force can also be deployed to provide perimeter control.

'Net explosive weight. List all ESQD waivers that are in effect with expiration date.

2.[12.] For each Pier/Wharf at your facility list the following ship support characteristics:

Pier/ Wharf	OPNAV 3000. 8 (Y/N)	Shore Pwr (KVA) & 4160V (KVA)	Comp. Air Press. & Capacity	Potable Water (GPD)	CHT (GPD)	Oily Waste ¹ (gpd)	Steam (1bm/hr & PSI) ²	Fendering limits ³
			1		L			
33	Y	120V	None	None	None	None	None	3'
34	Y	120V	None	None	None	None	None	0
35	Y	120V	None	None	None	None	None	0
36	Y	120V	None	None	None	None	None	0
37	Y	120V	None	None	None	None	None	0
Boat-	Y	120V	None	None	None	None	None	0
house								
Davit	Y	1207	None	None	None	None	None	0
32	Y	120V	None	None	None	None	None	0
Sea- wall	Y	440V	None	None	None	None	None	3'
Stbd Syn-	Y	None	Y	Y	None	None	None	0
chro Pier								
Port Syn- chro Pier	Y	None	Y	¥	None	None	None	0

Table 12.1

'List only permanently installed facilities.

²indicate if the steam is certified steam.

³Describe any permanent fendering arrangement limits on ship berthing.

3.[13.] For each pier/wharf listed above state today's normal loading, the maximum capacity for berthing, maximum capacity for weapons handling evolutions, and maximum capacity to conduct intermediate maintenance.

Dier/	Tunical	Chin	0	
Wharf	Stordy			IMA
Mail	Steady	Berthing	Handling Pier	Maintenance
1		Capacity	Capacity ²	Pier
l	Loading			Capacity ³
33	Small	75'	1	1
	Boats/			
	Service			1
	Rafts			
34	Small Boats	50'	1	1
35	Small Boats	50'	1	1
36	Small Boats	50'	1	1
37	Small Boats	50'	1	1
B107	Small Boats	50'	3	0 Covered
				Piers
Davits		19' UB's	2 .	2
32	Small Boats	75'	1	1
Sea-	SES	300'	1	1
wall				
Stbd	Service	104'	1	1
Syn-	Craft/Small			
chro	Boats			
Pier				
Port	Service	104'	1	1
Syn-	Craft/Small		1	
chro	Boats			
Pier				

Table 13.1

UB = Utility Boat

SES = Surface Effect Ships

¹ Typical pier loading by ship class with current facility ship loading.

² List the maximum number of ships that can be moored to conduct ordnance handling evolutions at each pier/berth without berth shifts. Consider safety, ESQD and access limitations.

³ List the maximum number of ships that can be serviced in maintenance availability's at each pier without berth shifts because of crane, laydown or access limitations.

4.[14.] For each pier/wharf listed above, based on Presidential Budget 1995 budgeted infrastructure improvements in the Presidential Budget 1995 through FY 1997 and the BRAC-91 and BRAC-93 realignments, state the expected normal loading, the maximum capacity for berthing, maximum capacity for weapons handling evolutions, and maximum capacity to conduct intermediate maintenance.

Pier/ Wharf	Typical Steady State Loading ¹	Ship Berthing Capacity	Ordnance Handling Pier Capacity ²	IMA Maintenance Pier Capacity ³
33	Small Boats/ Service Rafts	75'	1	1
34	Small Boats	50'	1	1
35	Small Boats	50'	1	1
36	Small Boats	50'	1	1
37	Small Boats	50'	1	1
B107	Small Boats	50'	3	0 Covered Piers
Davits		19' UB's	2	2
32	Small Boats	75'	1	1
Sea- wall	SES	300'	1	1
Stbd Syn- chro Pier	Service Craft/Small Boats	104'	1	1
Port Syn- chro Pier	Service Craft/Small Boats	104'	1	1

Table 14.1

UB = Utility Boat SES = Surface Effect Ship

¹ Typical pier loading by ship class with current facility ship loading.

² List the maximum number of ships that can be moored to conduct ordnance handling evolutions at each pier/berth without berth shifts. Consider safety, ESQD and access limitations.

³ List the maximum number of ships that can be serviced in maintenance availability's at each pier without berth shifts because of crane, laydown or access limitations. **5.[15.a.]** How much pier space is required to berth and support ancillary craft (tugs, barges, floating cranes, etc.) currently at your facility? Indicate if certain piers are uniquely suited to support these craft.

- 1) Pier 34 is the only pier that can support 65' Aircraft Salvage and Rescue (AVR).
- 2) Pier 34 is restricted to 40' craft due to
- installation of Davit. 3) Port Pier 35 is restricted to 33' craft due to installation of Davit.
- 4) Starboard Pier 35 is berth for 42' AVR.
- 5) Pier 36 is berth for 25' security boat.
- 6) Pier 37 berth 19' Utility Boat (UB).
- 7) Building 107 house berthing for (2) 40' Personnel Escorts (PE) and (1) 33' boom handling boat.
- 8) Davits berth (2) 19' UB's.
- 9) Pier 33 is VIP Pier

6.[15.b.] What is the average pier loading in ships per day due to visiting ships at your base. Indicate if it varies significantly by season.

1 boat or small craft per month; maximum stay is 3 days.

7.[15.c.] Given no funding or manning limits, what modifications or improvements would you make to the waterfront infrastructure to increase the cold iron ship berthing capacity of your installation? Provide a description, cost estimates, and additional capacity gained.

60 long ton capacity boat lift needs a gear box located at Estimated cost is \$80,000. This would the boathouse. enable Patuxent River's West Basin to life boats for maintenance and serve as an emergency lift for Naval Operating craft in this area.

8.[15.d.] Describe any unique limits or enhancements on the berthing of ships at specific piers at your base.

The seawall pier is the only berthing for Surface Effect Starboard synchro piers have a design Ship (SES) 200. lift of 360 tons.

TAB A

SHIP BERTHING CAPACITY

Note: Question numbers in []'s are for internal BSAT purposes.

CHESAPEAKE BASIN

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

SHIP BERTHING CAPACITY

1.[11.] For each Pier/Wharf at your facility list the following structural characteristics. Indicate the additional controls required if the pier is inside a Controlled Industrial Area or High Security Area. Provide the average number of days per year over the last eight years that the pier was out of service (OOS) because of maintenance, including dredging of the associated slip:

			51 <u> </u>	<u>ible II.</u>	<u> </u>			
Pier/ Wharf & Age ¹	CCN ²	Moor Length (ft)	Design Dredge Depth ³ (ft) (MLLW)	Slip Width ⁴ (ft)	Pier Width (ft) ⁵	CIA/ Secur- ity Area? (Y/N) ⁶	ESQD Limit ⁷	<pre># Days OOS for maint.</pre>
Pier 1817	151- 20	75'	10'	30'	5'	Y	0	2
Pier 1818	151- 20	75'	10'	30'	5 '	Y	0	2
Pier 1819	151- 20	75'	10'	30'	5'	Y	0	2

'Original age and footnote a list of MILCON improvements in the past 10 years.

²Use NAVFAC P-80 for category code number. ³Comment if unable to maintain design dredge depth ⁴Water distance between adjacent finger piers. ⁵Indicate if RO/RO and/or Aircraft access. ⁶Describe the additional controls for the pier. ⁷Net explosive weight. List all ESQD waivers that are in effect with expiration date.

Note 1: The piers are located in a controlled area that has a twenty-four hour security roving patrol. For projects requiring a higher level of security, past arrangements have included the establishment of security checkpoints and special personnel badging. Patuxent River Auxillary Security Force can also be deployed to provide perimeter control.

> FOR OFFICIAL USE ONLY PREDECISIONAL LUCEMATION

Note 2: The pier facilities are not permanently approved for ordnance loading operations, however a waiver event request for temporary operations approval is available on a case by case basis.

-- - -- ---

2.[12.] For each Pier/Wharf at your facility list the following ship support characteristics:

Pier/ Wharf	OPNAV 3000. 8 (Y/N)	Shore Pwr (KVA) & 4160V (KVA)	Comp. Air Press. & Capacity 1	Potable Water (GPD)	CHT (GPD)	Oily Waste ¹ (gpd)	Steam (lbm/hr & PSI) ²	Fendering limits ³
1817	Y	220V 3ph	None	15,000	None	Note 1	None	None
1818	Y	220V 3ph	None	15,000	None	Note 1	None	None
1819	Y	220V 3ph	None	15,000	None	Note 1	None	None
					ļ		, 	
				<u> </u>				

Table 12.1

¹List only permanently installed facilities. ²indicate if the steam is certified steam. ³Describe any permanent fendering arrangement limits on ship berthing.

Note 1: Although permanently installed facilities for removal of CHT and oily waste are not available on the piers, the capability does exist to remove these products by truck.

> FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

3.[13.] For each pier/wharf listed above state today's normal loading, the maximum capacity for berthing, maximum capacity for weapons handling evolutions, and maximum capacity to conduct intermediate maintenance.

Pier/	Typical	Ship	Ordnance	IMA
Wharf	Steady	Berthing	Handling Pier	Maintenance
	State	Capacity	Capacity ²	Pier
l	Loading	<u> </u>	ļ	Capacity ³
1817	QST-35	QST-35	None	1
	Remote	Remote		
	Control	Control		
	Target	Target		
	Craft/MK3	Craft/MK3	· · · · · · · · · · · · · · · · · · ·	
	Patrol	Patrol Craft		
	Craft			
1818	QST-35	QST-35	1	1
	Remote	Remote		
i i	Control	Control		
	Target	Target		
	Craft/MK3	Craft/MK3		
	Patrol	Patrol Craft		
	Craft			
1819	QST-35	QST-35	1	1
	Remote	Remote		
	Control	Control		
	Target	Target		
	Craft/MK3	Craft/MK3		
	Patrol	Patrol Craft		
	Craft			
				······································
l				

Table 13.1

¹ Typical pier loading by ship class with current facility ship loading.

² List the maximum number of ships that can be moored to conduct ordnance handling evolutions at each pier/berth without berth shifts. Consider safety, ESQD and access limitations.

³ List the maximum number of ships that can be serviced in maintenance availability's at each pier without berth shifts because of crane, laydown or access limitations.

> FOR OFFICIAL USE OMLY PREDECISIONAL INFORMATION

4.[14.] For each pier/wharf listed above, based on Presidential Budget 1995 budgeted infrastructure improvements in the Presidential Budget 1995 through FY 1997 and the BRAC-91 and BRAC-93 realignments, state the expected normal loading, the maximum capacity for berthing, maximum capacity for weapons handling evolutions, and maximum capacity to conduct intermediate maintenance.

[***	
Pier/	Typical	Ship	Ordnance	IMA
Wharf	Steady	Berthing	Handling Pier	Maintenance
	State	Capacity	Capacity ²	Pier
	Loading			Capacity ³
1817	QST-35	QST-35	None	1
	Remote	Remote		
	Control	Control		
	Target	Target		
	Craft/MK3	Craft/MK3		
1	Patrol	Patrol Craft		
	Craft			
1818	QST-35	QST-35	1	1
	Remote	Remote		
	Control	Control		
	Target	Target		
	Craft/MK3	Craft/MK3		
	Patrol	Patrol Craft		
	Craft			
1819	QST-35	QST-35	1	1
	Remote	Remote		
	Control	Control		
	Target	Target		
	Craft/MK3	Craft/MK3		
	Patrol	Patrol Craft		
	Craft			

Table 14.1

¹ Typical pier loading by ship class with current facility ship loading.

² List the maximum number of ships that can be moored to conduct ordnance handling evolutions at each pier/berth without berth shifts. Consider safety, ESQD and access limitations. ³ List the maximum number of ships that can be serviced in

³ List the maximum number of ships that can be serviced in maintenance availability's at each pier without berth shifts because of crane, laydown or access limitations.

5.[15.a.] How much pier space is required to berth and support ancillary craft (tugs, barges, floating cranes, etc.) currently at your facility? Indicate if certain piers are uniquely suited to support these craft.

The seawall structure that forms the protective breakwater for the Chesapeake Basin and piers 1817, 1818, and 1819 has in the past accommodated the berthing of tugs, barges and floating cranes conducting construction operations at Patuxent River. Approximately 800 feet of seawall would be available for this purpose.

6.[15.b.] What is the average pier loading in ships per day due to visiting ships at your base. Indicate if it varies significantly by season.

Ship visits to the pier facilities at the Chesapeake Basin take place approximately six times per year. Support provided to other agencies includes the Naval Research Laboratory, Naval Surface Warfare Center and Navy Special Operations support craft.

7.[15.c.] Given no funding or manning limits, what modifications or improvements would you make to the waterfront infrastructure to increase the cold iron ship berthing capacity of your installation? Provide a description, cost estimates, and additional capacity gained.

Desired improvements to the facility would include the installation of a mobile travel lift crane and concrete pile structure to facilitate out of water maintenance on deployed surface craft. Estimated cost would be approximately \$300K to accomplish this installation. Additional capability would reduce need to transit the vessels to commercial repair facilities semi-annual and emergency repair requirements.

8.[15.d.] Describe any unique limits or enhancements on the berthing of ships at specific piers at your base.

The berthing of vessels in the Chesapeake Basin allows for close proximity to the Navy's Hooper Target Complex and the support of naval aircraft test and evaluation missions in the Chesapeake Basin.

> FOR OFFICIAL USE ONLY PREDECISIONAL LAOP AATION

TAB B

OPERATIONAL AIRFIELD CAPACITY

Note: Question numbers in []'s are for internal BSAT purposes.

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

1.[1a.] For the main airfield and each auxiliary airfield, answer the following questions:

Airfield Name: Trapnell Field, NAS Patuxent River, MD. 20670

For each runway, give its designation, length, width, load capacity, lighting configurations, and arresting gear types. For each runway list any approach obstructions or any restrictions on flight patterns.

Runway	Length (ft)	Width (ft)	Max load	Lig	Lighting			Arresting Gear Type(s)
				F	P	C	N	
6/24	11,800	200	340,000	X				E-28
14/32	9,700	200	398,000		X			E-28
2/20	5,000	150	316,000				X	NONE

The airfield also has two helicopter landing pads, one AV-8 Harrier landing pad, one C-13 Mod 0 catapult, and a MARK-7 arresting gear. Two seaplane landing lanes are available with 24 hours Prior Permission Required (PPR).

F -- Full lighting (runway edge, center, and threshold)

P -- Partial lighting (less than full)

C -- Carrier deck lighting simulated

N -- No lighting

OLF WEBSTER FIELD

Runway	Length (ft)	Width (ft)	Max load	Lig	Lighting			Arresting Gear Type(s)
				F	P		N	
7/25	5,000	150	50,000				X	NONE
14/32	5,000	150	50,000				X	NONE

For NAS Patuxent River:

Both main runways (6/24 and 14/32) are designed to accommodate all types of aircraft. Runway 02/20 is designed for small prop aircraft and helos. (Class ALFA Runway)

For OLF Webster Field:

Webster Field is designed to accommodate Category 1 aircraft (weighing less than 10,000 lbs.) and Category 2 aircraft that weigh less than 50,000 lbs. It is ideally suited for Unmanned Air Vehicles (UAV's), helicopters, and small aircraft.

RUNWAYS, TAXIWAYS, RAMPS/PARKING

Number, size, weight capacity

The Patuxent River airfield, with three runways, is capable of handling any size aircraft and provides a quick reaction capability. The site is capable of

supporting in excess of 300 aircraft with approximately 1769 acres of runways, taxiways, aircraft parking aprons and clear zones. The airport nding area consists of two primary runways and one utility runway imbered to the nearest ten degrees of magnetic direction with dimensions as

follows:

Runway	Magnetic Heading	Threshold Elevation	Length/Width
2/20	0180 1980	38'/20'	5000'/150'
6/24	0590 2390	38'/20'	11800'/200'
14/32	1360 3160	27'/16'	9700'/150'

All taxiways are 100' wide except ALPHA, east of runway 6/24 which is 150' wide.

The runway and taxiway pavement weight limitations listed below may be exceeded by 50% on an infrequent basis without seriously damaging the pavement. C-5A/B aircraft have twin delta landing gear (28 wheels) and can be allowed to taxi on the field wherever a dual tandem aircraft at maximum weight can taxi (subject to wing span limitations).

Area	Single Wheel	Gear	Dual Gear	Dual Tandem
	(150 PSI)	(400 PSI)		
6/24	126,000	105,000	188,000	340,000
14/32	147,000	121,000	222,000	398,000
2/20	102,000	84,000	159,000	316,000
Taxiway A				
West of				
Runway 6	147,000	113,000	226,000	339,000
East of				
Runway 6	105,000	82,000	198,000	332,000
Taxiway B	100,000	78,000	170,000	351,000
Taxiway C	104,000	88,000	170,000	351,000
Taxiway D	143,000	119,000	210,000	370,000
Taxiway E	78,000	65,000	122,000	255,000
H110 and			1	
111 Apron	70,000	55,000	120,000	271,000
H101 and				
109 Apron	68,000	52,000	110,000	267,000
H305 and]			
306 Apron	74,000	60,000	126,000	287,000
H301 Apron	84,000	65,000	138,000	290,000
H144 Apron				
& Taxiway	147,000	147,000	225,000	445,000
H115 Apron	90,000	76,000	140,000	286,000
Aero Club				
Apron	60,000	47,000	96,000	251,000
H201 Apron	105,000	80,000	160,000	309,000

The Patuxent River complex also possesses four primary helicopter landing areas.

In addition, Webster Field is an Outlying Landing Field (OLF) of Naval Air Station Patuxent River. Operation of the airspace at Webster Field is the responsibility of the Commanding Officer, Naval Air Station Patuxent River, and is exercised through the Naval Air Station Air Operations Officer. Due to Crash, Fire, Rescue (CFR) service availability, operations at OLF Webster are normally limited to Category I aircraft (maximum gross weight under 10,000 lbs.). For operation of Category II aircraft (maximum gross weight 10,000 - 50,000 lbs.), 24 hours advance notice to the Air Operations Duty Office is required to coordinate additional CFR services. Specifics on the Webster Field runways are as follows:

Runway	Magnetic Heading	Threshold Elevation	Length/Width
7/25	0660 2460	12'/21'	5000'/150'
14/32	1410 3210	13'/19'	5000'/150'

All taxiways are asphalt and are 75' wide. All taxiways northeast of runway 14/32 are closed.

The weight limitations for the Webster Field area are as follows:

Area	Single Wheel Gear	Dual Gear	Dual Tandem
	(150 psi) (400 psi)	-	
R 14/32	16,800 8,400	21,840	32,760
R 7/25	18,900 9,450	24,750	36,855
T 14/32	15,700 7,850	20,410	30,615
T 7/25	10,500 5,250	13,650	20,475
T 18/36	30,500 15,250	39,650	59,475

 $\mathbf{R} = \mathbf{Runway}$

T = Taxiway

The Helo Pad at Webster Field is located on the northeast corner of the ramp in front of the Tower and is stressed to 50,000 pounds.

Specialties (barriers, cables, etc.)

Emergency arresting/abort gear is installed on runways 6/24 and 14/32. Duty runway arresting gear is rigged at all times unless NOTAMED otherwise. Optical Landing Systems (OLS) are also installed on runways 6/24 and 14/32. Glide slopes are set at 3.25 degrees on all runways. The intensity of the source and datum lights may be varied at the installations. Due to different touchdown points and glide slope settings, the Precision Approach Radar and the OLS glide slopes do not coincide.

> FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

2.[1b.] Provide the composition (concrete, asphalt) and load bearing capacity of your aprons, ramps and taxiway.

SF	Comp.	Load	Comments
	*	Bearing	*
[**	Canacity	**
		(lbo)	
1		Dual	
		Tandem	
NA	PCC/APC ¹	332,000	150 ft wide
NA	PCC/APC	339,000	
NA	PCC/APC	351,000	
NA	APC	351,000	
NA	APC	370,000	
NA	APC	255,000	
946.870	PCC/APC	271.000	
1.218.420	PCC/APC	267.000	
,,		201,000	
	2001120		
794,350	PCC/APC	287,000	
NA	PCC	290.000	No longer rated
	100		for parking
	200420		TOT parking
306,075	PCC/APC	445,000	
645,450	PCC	286,000	
163,200	PCC	342,000	
260,625	PCC	251,000	
388,565	PCC/APC	309,000	
	SF NA NA NA NA NA 946,870 1,218,420 794,350 NA 306,075 645,450 163,200 260,625 388,565	SF Comp. ** ** NA PCC/APC1 NA PCC/APC NA PCC/APC NA APC NA APC NA APC 946,870 PCC/APC 1,218,420 PCC/APC 794,350 PCC/APC NA PCC 306,075 PCC/APC 645,450 PCC 163,200 PCC 260,625 PCC 388,565 PCC/APC	SF Comp. * Load Bearing Capacity (lbs) NA PCC/APC1 332,000 NA PCC/APC 339,000 NA PCC/APC 339,000 NA PCC/APC 339,000 NA PCC/APC 339,000 NA PCC/APC 351,000 NA APC 351,000 NA APC 370,000 NA APC 255,000 946,870 PCC/APC 267,000 1,218,420 PCC/APC 267,000 794,350 PCC/APC 287,000 306,075 PCC/APC 286,000 645,450 PCC 286,000 163,200 PCC 342,000 260,625 PCC 251,000 388,565 PCC/APC 309,000

NAS PATUXENT RIVER

PCC = Portland cement concrete APC = Asphaltic concrete

NOTE:

The two main runways have been totally reconstructed as of 1993. Based on these repairs and routine maintenance the runways will not require major repair work for the next 15 years. The remaining class A runway is programmed for reconstruction in FY94. Two apron reconstruction contracts were awarded in FY93 with a scheduled completion in the summer of 1994. All other airfield pavements are rated from fair to excellent condition based on the latest Pavement Condition Report from the Atlantic Division of the Naval Facilities Engineering Command. Runway lighting repairs to match current criteria were accomplished with the runway reconstruction contracts. Taxiway lighting is scheduled to be repaired to match current criteria in two phases in FY94 and FY95.

Apron/ramp/taxiway	SF	Comp.	Load Bearing Capacity	Comments
Location - ID	1	*	(lbs)	*
		**	Dual Tandem	**
Taxiway 14/32	NA	Asphalt	30,615	
Taxiway 7/25	NA	Asphalt	20,475	
Taxiway 18/36	NA	Asphalt	59,475	

OLF WEBSTER FIELD

3.[1c.] Do you have **high speed taxiways**? Discuss number and impact on airfield operations.

There are no high speed taxiways at Trapnell Field or OLF Webster Field. At Trapnell Field this has slightly increased the separation time between aircraft landings.

4.[1d.] Are all runways with approved instrument approaches served by hi-speed taxiways?

No runways have hi-speed taxiways at either field.

5.[1e.] List any restrictions to runways with approach obstructions or any restrictions on flight patterns. Explain

For NAS Patuxent River:

The only restrictions to flight patterns are for noise abatement and these are only in effect during Visual Meteorological Conditions.

Runway 24 departure: Right turn to heading 210 so as not to fly over Navy housing.

Runway 32 departure: Right turn when airborne so as not to fly over Solomons below 1000 feet.

Runway 14 landing: Avoid flying over Solomons below 1000 feet.

For OLF Webster:

There are no obstructions to the VFR flight patterns. No IFR approaches are allowed. Helicopters weighing up to 50,000 lbs. are authorized to operate at the field with Category 1 fire protection.

6.[1f.] For the main airfield and each auxiliary and outlying field, discuss any **runway** design features that are specific to particular types of aircraft (i.e., are the airfield facilities designated primarily fixed wing jet, prop, or helo aircraft?)

For NAS Patuxent River:

Both main runways (6/24 and 14/32) are designed to accommodate all types of aircraft. Runway 02/20 is designed for small prop aircraft and helos. (Class ALFA Runway)

For OLF Webster Field:

Webster Field is designed to accommodate Category 1 aircraft (weighing less than 10,000 lbs.) and Category 2 aircraft that weigh less than 50,000 lbs. It is ideally suited for Unmanned Air Vehicles (UAV's), helicopters, and small aircraft.

RUNWAYS, TAXIWAYS, RAMPS/PARKING

Number, size, weight capacity

The Patuxent River airfield, with three runways, is capable of handling any size aircraft and provides a quick reaction capability. The site is capable of supporting in excess of 300 aircraft with approximately 1769 acres of runways, taxiways, aircraft parking aprons and clear zones. The airport landing area consists of two primary runways and one utility runway numbered to the nearest ten degrees of magnetic direction with dimensions as follows:

Runway	Magnetic Heading	Threshold Elevation	Length/Width
2/20	0180 1980	38'/20'	5000'/150'
6/24	0590 2390	38'/20'	11800'/200'
14/32	1360 3160	27'/16'	9700'/150'

All taxiways are 100' wide except ALPHA, east of runway 6/24 which is 150' wide.

FOR OFFI I LUG CYLY PREDECISIONAL INFORMATION

The runway and taxiway pavement weight limitations listed below may be exceeded by 50% on an infrequent basis without seriously damaging the pavement. C-5A/B aircraft have twin delta landing gear (28 wheels) and can be allowed to taxi on the field wherever a dual tandem aircraft at maximum weight can taxi (subject to wing span limitations).

Area	Single Wheel	Gear	Dual Gear	Dual Tandem
	(150 PSI)	(400 PSI)		
6/24	126,000	105,000	188,000	340,000
14/32	147,000	121,000	222,000	398,000
2/20	102,000	84,000	159,000	316,000
Taxiway A				
West of			1	
Runway 6	147,000	113,000	226,000	339,000
East of				
Runway 6	105,000	82,000	198,000	332,000
Taxiway B	100,000	78,000	170,000	351,000
Taxiway C	104,000	88,000	170,000	351,000
Taxiway D	143,000	119,000	210,000	370,000
Taxiway E	78,000	65,000	122,000	255,000
H110 and				
111 Apron	70,000	55,000	120,000	271,000
H101 and				
109 Apron	68,000	52,000	110,000	267,000
H305 and				
306 Apron	74,000	60,000	126,000	287,000
H301 Apron	84,000	65,000	138,000	290,000
H144 Apron				
& Taxiway	147,000	147,000	225,000	445,000
H115 Apron	90,000	76,000	140,000	286,000
Aero Club				
Apron	60,000	47,000	96,000	251,000
H201 Apron	105,000	80,000	160,000	309,000

The Patuxent River complex also possesses four primary helicopter landing areas.

In addition, Webster Field is an Outlying Landing Field (OLF) of Naval Air Station Patuxent River. Operation of the airspace at Webster Field is the responsibility of the Commanding Officer, Naval Air Station Patuxent River, and is exercised through the Naval Air Station Air Operations Officer. Due to Crash, Fire, Rescue (CFR) service availability, operations at OLF Webster are normally limited to Category I aircraft (maximum gross weight under 10,000 lbs.). For operation of Category II aircraft (maximum gross weight 10,000 - 50,000 lbs.), 24 hours advance notice to the Air Operations Duty Office is required to coordinate additional CFR services. Specifics on the Webster Field runways are as follows:

Runway	Magnetic Heading	Threshold Elevation	Length/Width
7/25	0660 2460	12'/21'	5000'/150'
14/32	1410 3210	13'/19'	5000'/150'

All taxiways are asphalt and are 75' wide. All taxiways northeast of runway 14/32 are closed.

The weight limitations for the Webster Field area are as follows:

Area	Single Wheel Gear	Dual Gear	Dual Tandem
	(150 psi) (400 psi)	-	
R 14/32	16,800 8,400	21,840	32,760
R 7/25	18,900 9,450	24,750	36,855
T 14/32	15,700 7,850	20,410	30,615
T 7/25	10,500 5,250	13,650	20,475
T 18/36	30,500 15,250	39,650	59,475

 $\mathbf{R} = \mathbf{Runway}$

T = Taxiway

The Helo Pad at Webster Field is located on the northeast corner of the ramp in front of the Tower and is stressed to 50,000 pounds.

Specialties (barriers, cables, etc.)

Emergency arresting/abort gear is installed on runways 6/24 and 14/32. Duty runway arresting gear is rigged at all times unless NOTAMED otherwise. Optical Landing Systems (OLS) are also installed on runways 6/24 and 14/32. Glide slopes are set at 3.25 degrees on all runways. The intensity of the source and datum lights may be varied at the installations. Due to different touchdown points and glide slope settings, the Precision Approach Radar and the OLS glide slopes do not coincide.

7.[2a.] List the number of flight operations (take-off, landing, or approach without landing) that the main airfield and all auxiliary fields can support on an hourly basis in both VMC and IMC. Comment on the factors at each field that limit this capacity (e.g., taxiway/runway limitations, airspace, ATC restrictions, environmental restrictions).

Airfield	# Flight Ops/Hr		Comments on Limiting Factors	
	IMC	VMC		
Main	30	60	Lack of parallel runways and high speed taxiways.	
Auxiliary Webster	0	40	No instrument approaches published. No ramp areas.	

8.[2b.] Provide the average number of (historical) flight operations per month conducted at this station and the total number of days during which these operations were conducted. If data is not normally recorded, include estimates (and how derived). A flight operation is defined as a take-off, landing, or approach without a landing.

FY	Main Airfield		Auxiliary Field Webster	
	# Ops	# Days	# Ops	# Days
1991	12,500	30	2,200	30
1992	10,850	30	2,475	30
1993	7,750	30	2,646	30

The reduction of FY93 flight operations at Patuxent River's main airfield occurred because of single runway operations due to extensive runway repairs.

9.[2c.] What percent of your flight operations are Fleet Carrier Landing Practices (FCLPs)?

Historically, FCLP landings have averaged out to be approximately 600 landings per year. This average fluctuates considerably higher during new airframe introduction such as the FA-18E/F. Software modifications also drive the requirement for FCLP's. As a percentage of the total airfield landing (5%) the numbers are low; however, the capability to perform FCLP landing and then perform catapult take-offs and arrested landings is critical to our carrier aircraft air-based mission.

10.[2d.] Are you designated as an **authorized divert field** for any non-DoD aircraft? Explain.

Yes, we accept any commercial or military aircraft in emergency situations.

11.[2d.] Is your airfield designated as a **joint use airfield** (i.e. civilian/military)? Explain.

No.

12.[2e.] What percentage of total operations are civilian?

0%.

13.[2f.] Describe the major civilian air traffic structures (routes, terminal control areas, approaches, etc.) discuss the present and likely future impact of each on air station operations.

Patuxent River is located adjacent to the East Coast Air Traffic Corridor. Jet and low altitude routes border the Patuxent Restricted Area Complex. However, all air traffic control for airfield operations is provided by an approach control facility manned by active duty military controllers. No foreseen changes to the civilian air traffic structure should impact air station operations. NAWCAD Patuxent River Departure and Arrival Control has been delegated by the FAA to control 28 airfields in a 4,600 square-mile Mid-Atlantic region. Eight of these airports have published instrument approaches, and 23 are civilian-operated. All restricted areas are controlled by Patuxent River. FACSFAC VACAPES controls shared airspace. Availability of airspace is not an issue.

14.[2g.] Are there any **air traffic control constraints**/procedures that currently, or may in the future, limit air station operations? If yes, fully explain impact.

There are no constraints now, nor are there any known changes being planned.

15.[4.] List all **NAVAIDS** with published approaches that support the main airfield and/or your auxiliary airfields. Note any additions/upgrades to be added between now and FY1997.

NAVAID	DESCRIPTION/LOCATION
Patuxent VORTAC	FA9996/At the Field
Patuxent NDB	FA9781/At the Field
Patuxent Precision Approach Radar	AN/FPN-63/At the Field
Instrument Landing System	
(Proposed)	

16.[5a.] List all active duty Navy/USMC squadrons/detachments and the number of aircraft by type, model, and series (T/M/S), that will be permanently stationed/are scheduled to be stationed at this air station at the end of the indicated fiscal years.

Squadron/Det	# of Aircraft (PAA)	Aircraft (T/M/S)	FY 1994	FY 1995	FY 1997	FY 1999	FY 2001
VX1	5	P-3C	3	3	3	3	3
	6	SH-60B/F	5	5	5	5	5
	4	E/S-3A/B	3.	3	3	3	3
VQ4	2	E-6A	2	3	3	2	2
	0	E-6B	0	0	0	1	1
NRL	6	E/RP-3A/B	5	5	5	5	5
VC6	12	Pioneer Option 2	10	10	10	10	10

NOTE: VC6 operates Remote Powered Vehicles (RPV) at Webster Field.

17.[5b.] Summarize average visiting squadron/det loading on air station operations (i.e. airwing/wing weapons deployment).

Squadron/Det Size (#A/C)	Apron Space Used	Hangar Space Assigned	Maintenance Support	Ave length of stay
VQ3 3 A/C per yr	VQ4 Alert Site	Hgr 109 when required	VQ4 Det	1 Day per yr
VP Squadron 2 A/C per yr	Hgr 109 Apron	Hgr 109	NRL and Hosted Squadron	2 Days per yr

18.[5c.] If a major percent of flight operations at your air station is from other than permanently stationed squadron/detachments, provide explanation.

N/A

19.[6a.] List all reserve Navy/USMC squadrons/detachments and the number of aircraft by type, model, and series (T/M/S), which will be stationed/are scheduled to be stationed at this air station at the end of the indicated fiscal years.

Squadron/Det	# of Aircraft (PAA)	Aircraft (T/M/S)	FY 1994	FY 1995	FY 1997	FY 1999	FY 2001
N/A							
				<u> </u>	ļ		
				Ļ	ļ		
	ļ						

20.[7.]	List all Station aircraft by number	er, type, model, and	l series (T/M/S),	which will be
parked or s	stationed/are scheduled to be stationed	at this air station at	the end of the in	dicated fiscal
years.				

Squadron/	# of	Aircraft	FY	FY	FY	FY	FY
Custodian	Aircraft	(T/M/S)	1994	1995	1997	1999	2001
	(PAA)						
Strike	12	N/F/A-	6	6	6	4	4
		18A				1	
	2	F/A-	4	4	4	4	4
		18B		L			
	3	F/A-18 C	4	4	4	4	4
	2	N/F/A- 18D	4	4	4	4	4
	0	F/A- 18E/F	0	0	6	5	5
	6	N/F- 14A/B/ D	6	6	6	6	6
	1		0	0	2	0	0
	3	N/T/A V-8B	4	4	4	4	4
	3	EA-6B	4	3	3	3	3
	6	N/A- 6E	4	3	3	3	3
Force	1	E-6A	1	0	0	0	0
	3	E-2C	3	2	2	2	2
	3	E/S- 3A/B	4	3	3	3	3
	1	C-2A	1	0	0	0	0
	3	P-3B/C	6	6	5	5	5
	1	RP-3D	1	1	1	1	1
	0	TIP-3A	3	2	2	2	2
	3	N/T- 34C	2	2	2	2	2
Rotary Wing	2	TH- 57C	2	2	2	2	2
	8	A/UH- 1W/J/ N	5	5	5	5	5
	7	H/N/Y/ SH- 60B/F/ H	6	6	5	5	5
	5	NV/S/ UH- 3A/H	5	5	4	4	4

· · - - -

	1	SH- 2F/G	2	2	1	0	0
	3	M/CH- 53	3	3	2	2	2
	2	CH- 46E	2	1	1	1	1
	3	T-2C	2	0	0	0	0
USNTPS	6	T-2C	6	6	6	6	6
	4	TA-4J	3	0	0	0	0
	4	OH- 58A	4	4	4	4	4
	6	OH-6B	6	6	6	6	6
	3	UH- 60A	3	3	3	3	3
	6	T- 38A/B	8	8	6	6	6
	4	F/A- 18B	4	4	4	4	4
	2	X-26A	2	2	2	2	2
	1	NU-1B	1	1	1	1	1
	2	U-6A	2	2	2	2	2
	3	U-21A	3	3	3	3	3
	1	NSH- 60B	1	1	1	1	1
NAS ¹	2	C-28A	2	2	2	2	2
	1	UC- 12B	1	1	1	1	1
	3	S/UH- 3D/H	4	0	0	0	0
STRIKE UAV ²	17	BQM- 147A (var)	25	30	33	36	39

NAS Station aircraft redistribution throughout Strike, Force and Rotary Wing during FY95.
 Unmanned Air Vehicle (UAV).

21.[8.] List all **DoD and non-DoD aircraft** not previously listed, by custodian, including number, type, model, and series (T/M/S) of aircraft, which will be parked or stationed/are scheduled to be stationed at this air station at the end of the indicated fiscal years.

Service/	# of	Aircraft	FY	FY	FY	FY	FY
Agency/	Aircraft	(1/M/S)	1994	1995	1997	1999	2001
Custodian	(PAA)						
McDonnell	2	T-45A	2	2	2	0	0
Douglas/				1	1		1 1
Strike ¹							
	0	F/A-18E/F	0	0	6	5	5
ITT(V22)/ Rotary	2	V-22	2	2	4	5	5
Flying Club ²	1	Cessna 150	1	1	1	1	1
	1	Cessna 172	1	1	1	1	1
	1	T-34	1	1	2	3	3
	0	Piper	0	1	1	1	1
Civil Air Patrol	1	Cessna 172	1	1	1	1	1
Kuwait/ Strike	1	KAF/A-18	1	0	0	0	0

- (1) McDonnell Douglas has T-45 and F/A-18E/F collocated in FY97. Only F/A-18E/F will be stationed aboard after FY97.
- (2) Inventory increases are tied to BRAC 91/93 relocation of Warminster and Naval Air Systems Command Flying Club assets to Patuxent River.

NOTE:

Presently Patuxent River has 6 aircraft (2 UC-880's and 4 KC-135's) on board to conduct FAA Baggage Compartment Explosive Testing. These aircraft are not listed due to the temporary nature of the project and they are not parked on any major hangar apron. Occasionally it will be necessary to instrument aircraft near a hangar but impact will be minimal. **22.[9a.]** List other **operational command or support units** (i.e. air wing staffs, MWSG, MWSS, MACG, MASS, etc.) stationed at this installation. For each Unit, give the unit identification number/UIC, mission, and facilities required (currently being used) to support the unit (i.e. equipment parking - 2500 SF; maintenance shop-200 SF; etc.).

Support Unit Identification/ UIC	Mission	Facilities Required	Equipment Laydown Requirement (covered/ uncovered in SF)
N/A			
			·

23.[9b.] Due to BRAC or other realignments, what increases/decreases in operational command or support units will occur at your installation. Provide expected gains/losses by year through 2001.

BRAC 91 relocation of 5 aircraft consisting of 3 Type, Model, Series from NAWCAD Warminster to NAWCAD Patuxent River (FY94 1/1, FY 95 4/2). These gains/losses have been included in paragraph 20(7.) data.

24.[10a.] List all other USN/USNR, USMC/USMCR, and other DoD or non-DoD active and SELRES units not listed previously, that are scheduled to be stationed at this air station at the end of the indicated fiscal years.

Unit	Active or Reserve	FY 1994	FY 1995	FY 1997	FY 1999	FY 2001
N/A						
25.[12b.] For each **Special Use Airspace** (SUA) or airspace-for-special-use routinely used by squadrons/units assigned to your installation (regardless of location¹), indicate how many hours per year are **required for** each user to maintain required **readiness**. Special Use Airspace includes alert areas, military operating areas (MOA), restricted areas, and warning areas which are used for air-to-air, air-to-ground, electronic (EW, ECM), low level training routes (MTRs), and other training.

SUA Squadron/Unit Location/ Types/Uses Scheduling Training Requirement Yearly Usage Distance Authority (types of training) Rate (Hrs) (UIC) R4005 NAWC-FTEG Chesa-Test/Eval 10,196 NA - See remarks R4006 A D Directorates/ peake R4008 00421 Bay Tenants Off-W386 Test/Eval NAWC-FTEG NA - See remarks 1,250 W108 AD Directorates/ shore/70 W72 -100nm 00421 Tenants

include RON/domestic deployment training

Remarks: Flight Test and Engineering Group (FTEG) Directorates use the Patuxent Restricted Areas and the Offshore Warning Areas for test and evaluation missions. There are no readiness requirements. Yearly usage rate listed is for test missions. Offshore Warning Area usage rate estimated from limited data available. Yearly records of scheduled/usage rates are not kept by scheduling or controlling authorities.

1

include RON/domestic deployment training

SUA	Location/ Distance	Types/Uses	Scheduling Authority (UIC)	Fiscal Year	Scheduled	Utilized ¹	Operating Limitations
					# Events/ # Hours (est)	# Events/ # Hours	
R4005 R4006 R4008	Ches- apeake Bay	Training/Air- craft Testing	NAWCAD 00421	1991	10,885 21,700	6,600 13,200	See Note 2
R4005 R4006 R4008	Ches- apeake Bay	Training/Air- craft Testing	NAWCAD 00421	1992	10,667 21,300	5,849 11,698	See Note 2
R4005 R4006 R4008	Ches- apeake Bay	Training/Air- craft Testing	NAWCAD 00421	1993	10,450 20,900	5,098 10,196	See Note 2
W386 W108 W72	Ches- apeake Bay	Training/Air- craft Testing	NAWCAD 00421	1991	1,014 2,537	531 1,043.4	None
W386 W108 W72	Ches- apeake Bay	Training/Air- craft Testing	NAWCAD 00421	1992	966 2,781	483 953	None
W386 W108 W72	Ches- apeake Bay	Training/Air- craft Testing	NAWCAD 00421	1993	719 1,853 Note	327 658	None

26.[12c.] For each **Special Use Airspace** (SUA) or airspace-for-special-use complete the following table:

¹ For the "Utilized" values, provide reasons for hours scheduled, but not utilized (e.g. 40% canceled due to weather; 10% canceled for unscheduled range maintenance, etc.).

² Provide any comments on operating limitations.

Less than 1% of cancellations were due to unscheduled maintenance of the range facilities. No data was kept on the number of cancellations due to non-range factors.

Patuxent River Complex has a self-imposed limit of 10 total aircraft maximum (11 if V-22 aircraft are operating) on test missions in the restricted area. Aircraft on IFR transits of the complex are not counted against this maximum.

NOTE:

Offshore Warning Areas W-386/108/72 scheduling/usage hours are based on limited historical data. Numbers extrapolated from 1 months schedule. Yearly records not kept by controlling agency.

27.[12d.] Assuming that the flight training facility is **not constrained by operational** funding (personnel support, increased overhead costs, etc.), with the present equipment, physical plant, etc., what additional use of airspace assets could be realized? Provide details and assumptions for all calculations.

Patuxent River Complex has a self-imposed limit of 10 total aircraft maximum (11 if V-22 aircraft are operating) on test missions in the restricted area. Assuming

this self-imposed restriction 41,600 aircraft flight hours are available for use. In the last Fiscal Year, 10,196 hours were used for test and evaluation operations which leaves 31,404 hours available for use.

28.[12h.] In the event that it became necessary to increase base loading at your installation, does the **airspace** overlying and adjacent to your installation have the **capacity** to assume an additional workload? Estimate the percentage of the possible increase. Provide the basis/calculations for these estimates.

If scheduling is unconstrained by mission, a 75% increase in restricted airspace usage could be realized.

The Offshore Warning Areas (W-386/W108/W72) could be easily used 300-400 percent more for some types of aircraft test and evaluation operations if funding was unconstrained.

29.[17a.] Using the types (and mix) of aircraft currently stationed at your installation, project the additional number of these aircraft (maintain approximate current mix/ratio of A/C) that <u>could be</u> <u>based</u> and parked on your **current parking aprons.** Provide two estimates:

1. Using NAVFAC P-80 standard measures

2. Using real world planning factors to accommodate a surge demand for space (maintaining safe operating procedures).

Aircraft Type	Current # of Aircraft Parked/Stationed	Maximum Additional Capacity (# of Aircraft)		Total	
		NAVFAC	Surge	NAVFA	C Surge
Summary Fixed Wing Carrier Aircraft	(88) ¹ 68	0	27	68	95
F/A-18	(24) 18	0	7	18	25
A-6	(9) 7	0	3	7	10
Т-2	<u>(9)</u> 7 .	0	3	7	10
S-3	(7) 5	0	2	5	7
F-14	(6) 5	0	2	5	7
<u>T-38</u>	(6) 5	0	2	5	7
A-4	(4) 2	0	1	2	3
AV-8	(3) 2	0	11	<u> </u>	3
E-2	(3) 2	0	1	2	3
<u>T-45</u>	(3) 2	0	1	2	3
Т-34	(3) 2	0	1	2	3
U-21	(3) 3	0	1	3	4
C-28	(2) 2	0	1	2	3
U-6	(2) 2	0	1	2	3
X-26	(2) 2	0	0	2	2
C-12	(1) 1	0	0	1	1
C-2	(1) 1	0	0	1	1

Summary Multiengine Patrol Transport	(15) 12	0	3	12	15
P-3	(15) 13	0	3	13	16
Summary Rotary Wing Aircraft	(54) 39	0	12	39	51
H-60	(17) 12	0	4	12	16
AH-1	(8) 7	0	2	7	9
SH-3	(8) 6	0	2	6	8
ОН-6	(6) 4	0	1	4	5
ОН-58	(4) 3	0	1	3	4
СН-53	(3) 2	0	1	2	3
H-57	(2) 1	0	1	1	2
СН-46	(2) 1	0	0	1	1
V-22	(2) 1	0	0	1	1
SH-2	(1) 1	0	0	1	1
U-1	(1) 1	0	0	1	1
Summary E-6A Aircraft	(3) 3	02	0	2	3
E-6A	(3) 3	02	0	2	3

Provide the **details of your calculations**, including your assumptions on the minimum separation between aircraft, parking angle, folding of aircraft wings and any obstructions that may limit the placement of aircraft on the parking apron spaces. Indicate if taxiway aprons are used in the projection.

- ¹ Numbers shown in () are total aircraft by Type. Numbers shown out of () are those aircraft parked on the apron so as to be consistent with Question 34.
- ² Apron for Alert Facility was built in FY92 for two aircraft. FY94 mission change added an additional aircraft on the apron.

GENERAL NOTES AND ASSUMPTIONS:

This data call appears to be constructed to fit an activity with a more traditional mix of squadrons/station aircraft, typically not more than 4 type/model/series (T/M/S). This air station has a unique aircraft composition of 52 T/M/S because of its RDT&E mission.

1. Aircraft numbers shown do not include transient aircraft that require testing at Patuxent River. In FY 93 there were 41 transient aircraft not assigned that underwent RDT&E evaluations.

2. Hangar 144 and its apron were included in the calculations. This hangar, however, is a Shielded Hangar used for RDT&E Projects. This apron has a specialized grounding plane built in and it is utilized for all National/DOD/Private aircraft Test and Evaluation Programs. Aircraft are not parked on the apron except during test and evaluation.

3. Hangar 101 and its apron are used exclusively for instrumentation of aircraft being tested. Only unscheduled maintenance for aircraft under test is performed at the hangar or on the ramp. No aircraft are parked on the apron except during instrumentation or while waiting to be instrumented.

4. NAVFAC P-80 criteria does not address provisions for hangar and ramp for RDT&E aircraft. No considerations for RDT&E provisions were included in the calculations for ramp and hangar.

5. Flying Club aircraft (a Cessna 150, a Cessna 172 and a T-34) are parked on an area of reduced load capacity (66,375 SF). Neither the parking area nor the aircraft are included in the aircraft loading analysis.

6. An explanation of the calculations of Assets minus Aircraft Loading for both Hangars and Ramps is shown below since the two are not mutually exclusive. That is, you would not count a ramp and hangar spot for each aircraft, since the aircraft can only be on the ramp or in the hangar at one time.

DETAILS OF CALCULATIONS TO SUPPORT ADDITIONAL CAPACITY ABOVE NAVFAC P-80 CRITERIA:

AIRCRAFT LOADING EVALUATION:

<u>TYPE.</u> The aircraft loading shown above were broken down into 4 basic aircraft types: F-14, P-3, H-60 and E-6A. The aircraft listed were converted to one of the four types so total numbers of aircraft by type could be determined. This analysis means that an apron spot striped for an F-14 could be used for any aircraft smaller than an F-14, i.e., a T-2, AV-8, T-45, C-12 or X-26, etc. For this analysis propeller and jet aircraft were intermixed. Fixed wing and rotary wing aircraft were not mixed due to the downwash environment concerns.

<u>AREA.</u> The area for each aircraft type was computed using NAVFAC P-80 Table 113-20A for 90 degree parking. The width was determined by adding the aircraft wingspan (B) to one half of the separation distances (C-B) between the aircraft. $W = B + 1/2(C-B) \times 2$. The length was determined by adding the aircraft length (A) to one half of the separation distance to another aircraft (D) on both ends. L = A + $1/2(D) \times 2$. The resulting area (L x W) is equal to the ramp space required for that aircraft type including the interior taxilanes, but excluding the peripheral taxilanes.

The ramp space required for each type of aircraft was calculated by using the dimensions identified in the figure below, (NAVFAC P-80 figure 113-20A).

A = Aircraft Length B = Wingspan C-B = Separation Wingtip to Wingtip

D = Separation Distance Tail to Nose between Aircraft

	Α	B	С	D
F-14	62	65	111	125
P-3	117	100	120	150
H-60	65	54	81	108
E-6A	150	148	200	20

<u>NUMBER OF AIRCRAFT IN THE HANGARS.</u> The total number of aircraft in a hangar for maintenance at one time was determined by using updated NAVFAC P-80 planning formulas. Maintenance hangar spaces for carrier aircraft, helicopters and training aircraft is the total number of aircraft divided by 3; for patrol aircraft it is the total number of aircraft divided by 6; and for transport aircraft it is the total number of aircraft divided by 9.

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION <u>NUMBER OF AIRCRAFT ON THE RAMP.</u> The total number of aircraft on the ramp was determined by subtracting the number of aircraft that could be placed in the existing hangars modules from the current number of aircraft assigned to the station.

ASSET EVALUATION:

<u>HANGAR ASSETS.</u> Total number of hangar modules by type was determined for the station. The hangars at Patuxent River do not conform to the Modular Hangar Dimensional Statistics shown in NAVFAC P-80, Table 211-05 except for Hangar 2133. Calculations to determine the number of hangar modules were based on taking the gross square footage of the hangars and dividing by the gross area shown in the table for each modular hangar type (I or II).

<u>RAMP ASSETS.</u> Total ramp assets were determined by adding all of the parking areas of all hangars of a particular modular type (I or II). Peripheral taxilanes were excluded from this ramp area. Areas came from the latest Naval Facilities Engineering Command, Atlantic Division Pavement Condition Index Report, dated June 1992.

DETERMINATION OF ADDITIONAL CAPACITY:

CAPACITY: Total additional capacity was determined for the four basic aircraft types (F-14, P-3, H-60, and E-6A). This was done by subtracting the calculated area by type from the assets.

<u>TYPE.</u> After the total capacity was determined, that capacity was adjusted back to the original mix ratio using percentages of assigned aircraft for each of the four types.

Details of Calculations to Support Surge Capacity.

Surge capacity was based on changing from NAVFAC P-80 criteria to those listed below.

Four aircraft types (F-14, P-3, H-60, and E-6A) used above were also used for this analysis. All of the aircraft maintenance officers at Patuxent River were polled to determine the number of aircraft that could be safely parked on an apron based on the type of model aircraft. Aircraft wingtip separation distances used are: F-14 = 34'; P-3 = 12'; H-60 = 20'; and E-6A = 20' and length separation distances used are: F-14 = 90'; P-3 = 120'; H-60 = 80'; and E-6A N/A based on ramp configuration.

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

.angar ID/#	Type I, II or (O)ther	Year Built	Hangar Deck Dimensions	Limiting Height	Current Usage	In SF			
						Adequate	Substandard	Inadequate	Total
101	01	1943	2 Bays @ 251' x 160'	30'	A/C Flight Equipment Lab	101,439	5,500		106,939
109	02	1943	2 Bays @ 251' x 160'	42'	A/C Maintenance	127,260			127,260
110	01	1944	2 Bays @ 251' x 160'	42'	RDT&E	127,489			127,489
111	01	1944	2 Bays @ 251' x 160'	42'	RDT&E	127,512			127512
115	01	1944	2 Bays @ 251' x 160'	42'	RDT&E	136,896			136,896
144	02	1949	300' x 150'	35'	RDT&E		69,621		69,621
201	01	1943	2 Bays @ 251' x 160'	42'	RDT&E	146,594			146,594
305	02	1943	2 Bays @ 251' x 160'	42'	A/C Maintenance	127,260			127,260
306	02	1943	2 Bays @ 251' x 160'	42'	RDT&E	127,260			127,260
133	I	1990	104' x 557'	28'	RDT&E	130,683			130,683

30.[18a.] List the hangars at the air station. Identify by (P-80) type, year built, dimensions.

Type I Equivalent

² Type II Equivalent

In accordance with NAVFACINST 11010.44E, an inadequate facility cannot be made adequate for its present use through "economically justifiable means". For all the categories above where inadequate facilities are identified describe why the facility is inadequate; indicate how it is being used and list other possible uses; and specify the costs to remove the deficiencies that make it inadequate. Indicate current plans to remove these deficiencies and the amount of any programmed funds. Discuss any material conditions of substandard facilities which have resulted in a C3 or C4 designation on your BASEREP.

Hangar #/ID/Type	SQD/Mod# Assignment	Ops + Admin Spaces SF/ Module	Maint Shops SF/ Module (O	Hangar Deck SF/Module	A/C Lir	e parking space	CS 2.3
					#/	SF	Elec.
	1	1	'	1	Modul e	'	Pwr.
101/ALL/I	Range	12,370	181	19,855	3.9	558,256	No
109A/II	NRL/A	5,569	5,569	28,742	2.2	148,100	Yes
109/B/I	V-22/B	17,695	3,898	20,120	1	64,000	No
110/ALL/I	TPS	7,566	3,906	20,400	4.5	389,200	Yes
111/ALL/I	Rotary Wing	5,619	5,859	20,400	1.8	240,300	No
115/ALL/I	Strike	2,902	6,151	21,415	4.8	271,200	Yes
144/ALL/ II	Systems	15,388	0	28,125	1.9	215,720	No
201/ALL/I	Strike	9,286	6,892	20,400	5	319,725	No
305/A/II	VX-1/A	7,994	10,198	29,000	4	125,850	Yes
305/B/II	A/C Mods/B	5,000	0	30,000	0	0	N/A
`06/ALL/ 1I	Force	10,497	5,248	28,138	3	125,850	No
2133/ALL I	Strike	19,358	0	20,185	2.3	260,625	No
TOTAL	· · · · · · · · · · · · · · · · · · ·	119.244	47,902	286,780	34.4	2,718,826	

31.[18b.] For each hangar provide space allocation information listed in table below. Indicate if PS/ADMIN space is in a non-contiguous building. Provide subtotal for each hangar.

Provide which SQD/Det was assigned to the specific module at receipt of this Data Call. (i.e., VFA-15, Hgr 1, Mod C)

² Dedicated aircraft parking spaces per Module and total square feet (SF) of A/C line parking spaces

3 Are there A/C line parking spaces supported by permanently installed electric power? (Y/N)

32.[18f.] List all squadrons/detachments normally homeported at this air station that were deployed and not assigned hangar/maintenance spaces at receipt of this data call.

Squadron/Detachment	#/Type Aircraft	Deployed Location
N/A		
L		

33.[18g.] List all squadrons/detachments normally homeported at this air station that were deployed and were assigned hangar/maintenance spaces at receipt of this data call.

Squadron/Detachment	#/Type Aircraft	Hanger Module Assignment
N/A		
	·	

ОН-58	(4) 1	0	6	1	7	
СН-53	(3) 1	0	5	1	6	
H-57	(2) 1	0	3	1	4	
CH-46	(2) 1	0	3	1	4	
V-22	(2) 1	0	2	1	3	
SH-2	(1) 1	0	2	1	3	
U-1	(1) 0	0	2	0	2	
Summary E-6A Aircraft	(3) 02	0	1	0	4	
E-6A	(3) 0 ²	0	1	0	4	

- 1 Numbers shown in () are total aircraft by Type. Numbers shown out of () are those aircraft parked on the apron.
- ² Hangar modules are not required for the E-6A's stationed at Patuxent River. Hangar maintenance is performed at Tinker AFB. A decision has been made to augment the current VQ-4 detachment with additional personnel to perform maintenance at Patuxent River.

Provide the **details of your calculations**, including your assumptions on the minimum separation between aircraft, folding of aircraft wings and any obstructions that may limit the placement of aircraft in the hangars.

GENERAL NOTES AND ASSUMPTIONS:

This data call appears to be constructed to fit an activity with a more traditional mix of squadrons/station aircraft, typically not more than 4 type/model/series (T/M/S). This air station has a unique aircraft composition of 52 T/M/S because of it's RDT&E mission.

1. Aircraft numbers shown do not include transient aircraft loading that require testing at Patuxent River and are not stationed permanently. In FY 93 there were 41 transient aircraft not assigned that underwent RDT&E.

2. Hangar 144 was included in the calculations. This hangar, however, is a shielded Hangar primarily used for RDT&E Projects.

3. Hangar 101 was included in the calculations. This hangar, however, is used primarily for instrumentation of aircraft being tested. Only unscheduled maintenance for aircraft under testing is performed at the hangar.

4. NAVFAC P-80 criteria does not address hangar provisions for RDT&E aircraft. No considerations for RDT&E provisions were included in the calculations for the hangar loadings.

5. The hangars at Patuxent River do not conform to the Modular Hangar Dimensional Statistics shown in NAVFAC P-80, Table 211-05 except for hangar 2133. Calculations to determine the number of hangar modules were based on taking the gross square footage of the hangars and dividing by the gross area shown in the table for each hangar modular type (I or II).

6. Flying Club aircraft (a Cessna 150, a Cessna 172 and a T-34) are not included in the aircraft loading analysis.

DETAILS OF CALCULATIONS TO SUPPORT ADDITIONAL CAPACITY ABOVE NAVFAC P-80 CRITERIA:

AIRCRAFT LOADING EVALUATION:

<u>TYPE.</u> The aircraft shown above were broken down into 4 basic aircraft types: F-14, P-3, H-53 and E-6A. The aircraft listed above were converted to one of the four types so total numbers of aircraft by type could be determined. This analysis means that a hangar module sized for an F-14 could be used for any aircraft smaller than an F-14, i.e., a T-2, AV-8, T-45, C-12 or X-26, etc. For this analysis propeller and jet aircraft were intermixed. Fixed wing and rotary wing aircraft were not mixed due to the downwash environment.

NUMBER OF AIRCRAFT IN THE HANGARS. The total number of aircraft in a hangar for maintenance at one time was determined by using updated NAVFAC P-80 planning formulas. Maintenance hangar space for carrier aircraft, helicopters and training aircraft is the total number of aircraft divided by 3; for patrol aircraft it is the total number of aircraft divided by 6; and for transport aircraft it is the total number of aircraft divided by 9.

ASSET EVALUATION:

HANGAR ASSETS. Total number of hangar modules by type was determined for the station. The hangars at Patuxent River do not conform to the Modular Hangar Dimensional Statistics shown in NAVFAC P-80, Table 211-05 except for hangar 2133. Calculations to determine the Number of Hangar Modules were based on taking the gross square footage of the hangars and dividing by the Gross Area shown in the table for each hangar modular type (I or II).

DETERMINATION OF ADDITIONAL CAPACITY:

CAPACITY: Total additional capacity was determined for the four (F-14, P-3, H-60, and E-6A) aircraft types. This was done by subtracting the maintenance modules needed by aircraft type from the existing hangar modules.

<u>TYPE.</u> After the total capacity was determined, that capacity was adjusted back to the original mix ratio using percentages of assigned aircraft for each of the four types.

Details of Calculations to Support Surge Capacity.

The four aircraft types (F-14, P-3, H-60, and E-6A) were also used for this analysis. All of the aircraft maintenance officers at Patuxent River were polled to determine the number of aircraft that could be safely parked in each hangar based on one of the four aircraft types.

Surge capacity was based on changing aircraft placement from that described for NAVFAC P-80 hangar modules to placing: 8 F-14s in 40,000 SF; 3 P-3s in 40,000 SF;

and 15 H-60s in 40,000 SF. This placement requires 90% of the aircraft wings/blades be folded and 10% spread. In no cases were firelanes of egress compromised.

-- -

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

-- --

-- --

<u>ZN</u>	Type of Facility	In SF					Year Built
		Adequate	Substandard	Inadequate	Total		
011.01	Aimroft Acoustical Enclosure	N/A	Dubstanuaru	Inadoquate			
$\frac{211-01}{01102}$	Mass Honger			<u> </u>			┨────
$\frac{211-02}{011-02}$	Nose Hallgar	K75	_	+	675	1	1057
211-03	Corrosion Control Hangar	0/5			<u>073</u>	<u> </u>	1060
211-75	Parachute/Survival Equipment Shop	8,934			0,934		1909
211-81	Engine Test Cell		6,188	1	6,188	1	1975
211-81 *	Engine Test Cell			2.686	2.686	1	1960
211-88	Power Check Pad with Sound	N/A					
211-89	Power Check Pad without Sound	1 Each				1	1981
	Suppression						
211-96	Maintenance Aircraft Spares		176		176	1	1953
211-96	Maintenance Aircraft Spares		22.958	1	22.958	1	1943
211-90	Storage						
211-96	Maintenance Aircraft Spares	21,424	3,650		25,074	4	1944
211-96	Maintenance Aircraft Spares		544	1	544	1	1946
	Storage				620		1051
<u>^11-96</u>	Maintenance Aircraft Spares Storage		532		532	μ	1951
- 1-96	Maintenance Aircraft Spares	960			960	1	1973
211-96	Maintenance Aircraft Spares	<u> </u>	3.815		3.815	-11	1945
	Storage	[,				
211-96	Maintenance Aircraft Spares		544		544	1	1959
	Storage			<u> </u>	100		1001
211-96	Maintenance Aircraft Spares	480			400	1	1701
011 06	Maintenance Aircraft Spares	817			817	-1	1990
211-90	Storage					ſ	
211-96	Maintenance Aircraft Spares	680			680	1	1992
	Storage						
116-10	Airfield Washrack Pavement	43,655			43,655	3	<u>1978</u>
116-15	Aircraft Rinse Facility	11,400			11,400	1	1965
214-30	Refueling Vehicle Shop	2,252			2,252	1	<u>1943</u>
218-60	Aircraft Ground Support Equipment		39,228		39,228	2	1943
218-60	Aircraft Ground Support	3,448			3,448	2	1953
	Equipment	1. (()			1 640	-	1055
218-60	Aircraft Ground Support Equipment	1,640			1,040		1933
218-60	Aircraft Ground Support	1,920			1,920	1	1966

35.[19.] Do you have any of the following special use facilities at the Air Station?

--

218-60	Aircraft Ground Support Equipment	644		644	1	1980
	Other					

* 211-81; Engine Test Cell - Inadequate due to the age and the high cost to maintain. The Test Cell has an aged electrical system and numerous water leaks. The concrete has spalled with metal deterioration. MILCON P-383 will construct a new facility and it is programmed for FY94.

In accordance with NAVFACINST 11010.44E, an inadequate facility cannot be made adequate for its present use through "economically justifiable means". For all the categories above where inadequate facilities are identified describe why the facility is inadequate; indicate how it is being used and list other possible uses; and specify the costs to remove the deficiencies that make it inadequate. Indicate current plans to remove these deficiencies and the amount of any programmed funds. Discuss any material conditions of substandard facilities which have resulted in a C3 or C4 designation on your BASEREP.

CCN	Facility Type	Unit of Measure	Adequate	Substandard	Inadequate	Total	Number of Units
111-20	Landing Pads	SF	13,030			13,030	2
121-10	Direct Fueling	OL/GM	20,600			20,600	2
124-30	Fuel Storage	GA	3,201,000	175,000	100,000	3,476,000	16
421-xx	Ammunition Storage	CF/TONS	16,691	63,900		80,541	21
425-xx	Open Ammunition Storage	SF	N/A				
113-20	Parking Aprons	SF	8,561,700			8,561,700	1
113-40	Access Aprons	SF	518,400			518,400	1
116-56	Combat Aircraft Ordnance Loading Area	SF	N/A				
	Other						

36.[21a.] For the following **aircraft support facility** category codes, provide the amount of adequate, substandard, and inadequate facilities.

In accordance with NAVFACINST 11010.44E, an inadequate facility cannot be made adequate for its present use through "economically justifiable means". For all the categories above where inadequate facilities are identified describe why the facility is inadequate; indicate how it is being used and list other possible uses; and specify the costs to remove the deficiencies that make it inadequate. Indicate current plans to remove these deficiencies and the amount of any programmed funds. Discuss any material conditions of substandard facilities which have resulted in a C3 or C4 designation on your BASEREP.

TAB C

DEPOT LEVEL MAINTENANCE CAPACITY

THERE IS NO DEPOT LEVEL MAINTENANCE PERFORMED AT PATUXENT RIVER OR ITS SOLOMONS AND WEBSTER FIELD ANNEXES.

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

TAB D

-

.

ORDNANCE STORAGE CAPACITY

FOR CREATE STORY

ORDNANCE STORAGE CAPACITY

Please answer the following questions if your activity performs any stowage or maintenance on any of the following ordnance commodity types:

- -----

ORDNANCE COMMODITY TYPES

Mines Torpedoes Air Launched Threat Surface Launched Threat Other Threat Expendables INÊRT CADS/PADS Strategic Nuclear Tactical Nuclear LOE: Rockets LOE: Bombs LOE: Gun Ammo LOE: Small Arms LOE: Pyro/Demo Grenades/Mortars/Projectiles

(20mm-16") (up to 50 cal.)

FOR OFFICIAL USE ONLY PREDECISICMAL INFORMATION

1. Ordnance Stowage and Support

1.1 Provide present and predicted inventories (coordinate with inventory control manager) and maximum rated capability of all stowage facilities at each weapons storage location controlled by this activity. In predicting the out year facility utilization, distribute overall ordnance compliment to the most likely configuration. The maximum rated capability is also an out year projection taking into account any known or programmed upgrades that may increase current stowage capacity. When listing stowage facilities, group by location (e.g. main base, outlying field, special area).

	PRESENT INVENTORY		PREDICTED INVENTORY		MAXIMUM RATED	
			FY 2001		CAPABILITY	
Facility						
Number	L					
	TONS	SQ FT	TONS	SQ FT	TONS	SQ FT
209A	2.0	880	2.0	880	4.8	2000
209B	14.0	1300	14.0	1300	23.8	2000
209C	10.0	1000	10.0	1000	20.0	2000
210A	4.0	1100	4.0	1100	7.6	2000
210B	2.0	900	2.0	900	4.2	2000
210C	6.0	1000	6.0	1000	12.0	2000
212	0.0	0	0.0	0	1.0	140
1412A	3.0	236	3.0	236	6.9	675
1412B	6.0	405	6.0	405	10.8	675
1412C	3.0	338	3.0	338	6.0	675
1412D	2.0	135	2.0	135	10.0	675
1412E	3.0	68	3.0	68	30.0	675
1412F	2.0	101	2.0	101	5.4	675
1412G	4.0	203	4.0	203	9.6	675
1371	1.0	61	1.0	61	4.8	135
1372	1.0	250	1.0	250	2.0	500
1373	10.0	563	10.0	563	21.0	1250
1374	6.0	500	6.0	500	13.2	1250
1375	30.0	813	30.0	813	40.5	1250
208	2.0	375	2.0	375	4.8	1250
245	2.0	63	2.0	63	5.4	420
248	6.0	525	6.0	525	13.8	1500
211	600.0	8000	600.0	8000	720.0	10000
213	1.0	188	1.0	188	1.85	1250
221A	0.0	0	0.0	0	1.0	64
221B	0.0	0	0.0	0	1.0	64
577A	1.0	45	1.0	45	1.3	64
577B	0.0	0	0.0	0	1.0	64
138	1.0	101	1.0	101	1.1	112
219A	0.0	0	0.0	0	1.0	64
219B	0.0	0	0.0	0	1.0	64
225A	1.0	61	1.0	61	1.1	64
225B	1.0	58	1.0	58	1.1	64
218A	1.0	26	1.0	26	2.2	64
218B	1.0	54	1.0	54	1.2	64

Table 1.1: Total Facility Ordnance Stowage Summary for Patuxent River Complex

231A	0.0	0	0.0	0	1.0	64
231B	0.0	0	0.0	0	1.0	64
222A	0.0	0	0.0	0	1.0	112
222B	0.0	0	0.0	0	1.0	112
142	0.0	0	0.0	0	.5	35
220A	1.0	61	1.0	61	1.1	64
220B	1.0	64	1.0	64	1.0	64
1388A	1.0	366	1.0	366	1.1	407
1388B	1.0	346	1.0	346	1.1	407
240A	0.0	0	0.0	0	1.0	64
240B	0.0	0	0.0	0	1.0	64
3181	1.0	49	1.0	49	1.0	49
Port.RSL	1.0	49	1.0	49	1.0	49
TOTAL	732.0	20,284	732.0	20,284	1005.3	37,977

* Predicted inventory is based on current historical usage for mission support.

1.2 For each Stowage facility identified in question 1.1 above, identify the type of facility (specify if "igloo", "box", etc.). Identify the types of ordnance commodity (from the list above) which are currently stowed in that facility and all other ordnance types which, given existing restrictions, could be physically accommodated in that stowage facility. Specify below if such additional accommodation would require a modification of the facility (e.g. enhanced environmental controls, ESQD waiver).

Identify the reason(s) for which this ordnance is stored at your facility from the following list: own activity use (training); own activity use (operational stock); Receipt/Segregation/ Stowage/Issue (RSSI); transshipment/awaiting issue; deep stow (war reserve); deep stow (awaiting Demil); other. Explain each "other" entry in the space provided, including ordnance stowed which is not a DON asset.

	Currently	Reason for Stowage	Commodity Type(s)
Facility Number/Type	Commodity Type(s)	at your Activity	Stowed
209A/Tripple Arch	CADS	Operational Stock	SEE NOTE
209B/Tripple Arch	CADS	Operational Stock	SEE NOTE
209C/Tripple Arch	ROCKETS	Operational Stock	SEE NOTE
210A/Tripple Arch	CADS	Operational Stock	SEE NOTE
210B/Tripple Arch	PYRO	Operational Stock	SEE NOTE
210C/Tripple Arch	PYRO	Operational Stock	SEE NOTE
212/Earth Cov. Box	EMPTY	Operational Stock	SEE NOTE
1412A/Arch	AIR LAUNCHED	Operational Stock	SEE NOTE
1412B/Arch	SURFACE	Operational Stock	SEE NOTE
	LAUNCHED		
1412C/Arch	AIR LAUNCHED	Operational Stock	SEE NOTE
1412D/Arch	AIR LAUNCHED	Operational Stock	SEE NOTE
1412E/Arch	AIR LAUNCHED	Operational Stock	SEE NOTE
1412F/Arch	AIR LAUNCHED	Operational Stock	SEE NOTE
1412G/Arch	AIR LAUNCHED	Operational Stock	SEE NOTE

Table 1.2: Total Facility Ordnance Stowage Summary

1371/Earth Cox Arch	EXPENDABLES	Operational Stock	SEE NOTE
1272/Forth Cov	POMPS	Operational Steels	SEE NOTE
Arch	BOWDS	Operational Stock	SEE NOTE
1373/Earth Cov.	SMALL ARMS	Operational Stock	SEE NOTE
Arch			
1374/Earth Cov. Arch	OTHER THREAT	Operational Stock	SEE NOTE
1375/Farth Cov	GUN	Operational Stock	SEE NOTE
Arch	AMMO/BOMBS		SEE NOTE
208/Earth Cov.	GRENADES	Operational Stock	SEE NOTE
Arch			
245/Earth Cov.	CADS	Operational Stock	SEE NOTE
Arch			
248/Earth Cov.	SMALL ARMS	Operational Stock	SEE NOTE
Arch		_	
211/Box,	INERT	Operational Stock	SEE NOTE
Warehouse			
213/Box,	INERT	Operational Stock	SEE NOTE
Warehouse			
221A/ RSL	ЕМРТҮ	Operational Stock	SEE NOTE
221B/ RSL	EMPTY	Operational Stock	SEE NOTE
577A/ RSL	CADS	Operational Stock	SEE NOTE
577B/ RSL	EMPTY	Operational Stock	SEE NOTE
138/ RSL	CADS	Operational Stock	SEE NOTE
219A/ RSL	EMPTY	Operational Stock	SEE NOTE
219B/ RSL	ЕМРТҮ	Operational Stock	SEE NOTE
218A/ RSL	CADS	Operational Stock	SEE NOTE
218B/ RSL	CADS	Operational Stock	SEE NOTE
225A/ RSL	CADS	Operational Stock	SEE NOTE
225B/ RSL	CADS	Operational Stock	SEE NOTE
231A/ RSL	ЕМРТҮ	Operational Stock	SEE NOTE
231B/ RSL	EMPTY	Operational Stock	SEE NOTE
222A/ RSL	EMPTY	Operational Stock	SEE NOTE
222B/ RSL	ЕМРТҮ	Operational Stock	SEE NOTE
142/ RSL	ЕМРТҮ	Operational Stock	SEE NOTE
220A/ RSL	CADS	Operational Stock	SEE NOTE
220B/ RSL	CADS	Operational Stock	SEE NOTE
240A/ RSL	EMPTY	Operational Stock	SEE NOTE
240B/ RSL	ЕМРТҮ	Operational Stock	SEE NOTE
1388A/ RSL	CADS	Operational Stock	SEE NOTE
1388B/ RSL	CADS	Operational Stock	SEE NOTE
3181/ RSL	CADS	Operational Stock	SEE NOTE
Portable Ready	CADS	Operational Stock	SEE NOTE
Service Locker			

.

NOTE:

No modifications of the current facilities are required in order to store naval conventional ordnance.

Additional comments:

1.3 Identify the rated category, rated NEW and status of ESQD arc for each stowage facility listed above.

Facility Number /	Hazard Rating	Rated		ESQD Arc	
Iype	(1.1-1.4)	NEW	Established	NV-	XX7.1
			$(\mathbf{V} / \mathbf{N})$	Waiver (V (N)	Walver Exministion Data
200 A	1 2	222K	V (1/N)		Expiration Date
209 A 200 R	1.3 1 3	333K		N N	
209 C	1.3	333K	V	N	
210 A	1.3	166K	Ŷ	N	
210 B	1.3	166K	Ŷ	N	
210 C	1.3	166K	Y	N	
212	1.3	P.C.	Y	N	
1412 A	1.3	10K	Y	Ν	
1412 B	1.3	20K	Y	Ν	
<u>1412 C</u>	1.3	60K	Y	N	
1412 D	1.3	100K	Y	N	
1412 E	1.3	100K	Y	Ν	
1412 F	1.3	100K	Y	Ν	
1412 G	1.3	100K	Y	Ν	
1371	1.1	15K	Y	Ν	
1372	1.1	60K	Y	Ν	
1373	1.1	95k	Y	Ν	
1374	1.1	100K	Y	Ν	
1375	1.1	100k	Y	N	
208	(08)1.2	PC-1.2 300K- 1.3	Y	N	
245	(08)1.2	PC-1.2 300K- 1.3	Y	N	
248	1.1	60K	Y	N	
211	N/A	N/A	N/A	N/A	
213	N/A	N/A	N/A	N/A	
221 A	1.3	500LB	Y	Ν	
221 B	1.3	500LB	Y	Ν	
577 A	1.3	500LB	Y	N	
577 B	1.3	500LB	Y	Ν	
138	1.3	500LB	Y	N	
219 A	1.3	500LB	Y	Ν	
219 B	1.3	500LB	Y	N	
255 A	1.3	500LB	Y	N	
225 B	1.3	500LB	Y	Ν	

Table 1.3: Facility Rated Status

- - - -

218 A	1.3	500LB	Y	N	
218 B	1.3	500LB	Y	Ν	
231 A	1.3	500LB	Y	Ν	
231 B	1.3	500LB	Y	Ν	
222 A	1.3	500LB	Y	N	
222 B	1.3	500LB	Y	N	
142	1.3	500LB	Y	Ν	
220 A	1.3	500LB	Y	Ν	
220 B	1.3	500LB	Y	Ν	
1388 A	1.3	500LB	Y	Ν	
1388 B	1.3	500LB	Y	Ν	
240 A	1.3	500LB	Y	Ν	
240 B	1.3	500LB	Y	N	
3181	1.3	500LB	Y	N	
Portable Ready Service Locker	1.3	500LB	Y	N	

.

.

.

1.4 Identify any restrictions which prevent maximum utilization of your facilities. If restrictions are based on facility conditions, specify reason, the cost to correct the deficiency, and identify any programmed projects that will correct the deficiency and/or increase your capability.

Magazines 209A, 209B, 209C - Limited to storing 1.3 and 1.4 material by building design and boundary distances. Limited to 1M (333k per cell), 1.3 material by building design.

Magazines 210A, 210B, 210C - Limited to storing 1.3 and 1.4 material by building design and boundary distances. Limited to 500K (166K per cell), 1.3 material by inhabited building distance.

Magazine 212 - Limited to storing 1.3 and 1.4 material by building design and boundary distances.

*No costs were identified since we have adequate capacity to store necessary ordnance for aircraft system test and evaluation.

1.5 Identify if your activity performs any of the following functions on any of the ordnance commodities previously listed. Technical support includes planning, financial, administrative, process engineering and SOP support. Within each related function identify each ordnance commodity type for which you provide these services and the total Direct Labor Man Hours (DLMHs) expended (FY 1994); identify only those DLMHs expended by personnel under your command.

	Performed?	Type of Commodity	DLMHs
Related Functions	(Y / N)		
Maintenance	Y	Missiles	40 per week
(specify level)	"O" Level		
Testing	Ν		
Manufacturing	Ν		
Outload	N		
Technical Support	Y		80 per week
Aviation Weapons Support Equipment	Y		280 per week
Receipt/Segregation Stowage/Issue	Y		820 per week

Table 1.5: Related Ordnance Support

9

DATA CALL 4 BRAC-95 CERTIFICATION

Reference: SECNAVNOTE 11000 of 8 December 1993

In accordance with policy set forth by the Secretary of the Navy, personnel of the Department of the Navy, uniformed and civilian, who provide information for use in the BRAC-95 process are required to provide a signed certification that states "I certify that the information contained herein is accurate and complete to the best of my knowledge and belief."

The signing of this certification constitutes a representation that the certifying official has reviewed the information and either (1) personally vouches for its accuracy and completeness or (2) has possession of, and is relying upon, a certification executed by a competent subordinate.

Each individual in your activity generating information for the BRAC-95 process must certify that information. Enclosure (1) is provided for individual certifications and may be duplicated as necessary. You are directed to maintain those certifications at your activity for audit purposes. For purposes of this certification sheet, the commander of the activity will begin the certification process and each reporting senior in the Chain of Command reviewing the information will also sign this certification sheet. This sheet must remain attached to this package and be forwarded up the Chain of Command. Copies must be retained by each level in the Chain of Command for audit purposes.

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

ACTIVITY COMMANDER

BARTON D. STRONG NAME (Please type or print)

Signature MAY | 2 1994

COMMANDER Title

Date

NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION PATUXENT RIVER, MD Activity

*NAVAIR did not provide data for inclusion in this package.

BRAC 95 DATA CALL 4

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

<u>G. H. Strohsahl, RADM, USN</u> NAME (Please type or print)

1 Nisbrah Signature

Date

Commander Title

Naval Air Warfare Center Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

NAME (Please type or print)

Title

Date

Signature

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

MAJOR CLAIMANT LEVEL

W. C. Bowes, VADM, USN NAME (please type or print)

Naval Air Systems Command Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

DEPUTY CHIEF OF NAVAL OPERATIONS (LOGISTICS) DEPUTY CHIEF OF STAFF (INSTALLATIONS & LOGISTICS)

reene NAME (Please type or print)

gnature Date

Signature

DATA CALL 4 CHANGE 1 NAWCAD PAX RIVER

163

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

• • • •

NEXT	ECHEL	ON L	.EVEL	(if ar	plicable

W. E. NEWMAN, RADM, USN NAME (Please type or print)

COMMANDER

Title

elga Signature

NAVAL AIR WARFARE CENTER Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

Signature

Date

NAME (Please type or print)

Title

. .

-

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

MAJOI	R CLAIMANT LEVEL
DONALD V. BOECKER RADM USN	() $()$ $()$ $()$ $()$ $()$
WXXEXXBOWEEXXEADAXNEN	Honald V. Boecher
NAME (Please type or print)	Signature
COMMANDER (ACTING)	2 Aug 94
Title	Date
NAVAL AIR SYSTEMS COMMAND	

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

DEPUTY CHIEF OF NAVAL OPERATIONS (LOGISTICS) DEPUTY CHIEF OF STAFF (INSTALLATIONS & LOGISTICS) W. A. EARNER

NAME (Please type or print)

Signature

Date

Title

BRAC-95 CERTIFICATION

Reference: SECNAVNOTE 11000 of 08 December 1993

In accordance with policy set forth by the Secretary of the Navy, personnel of the Department of the Navy, uniformed and civilian, who provide information for use in the BRAC-95 process are required to provide a signed certification that states "I certify that the information contained herein is accurate and complete to the best of my knowledge and belief."

The signing of this certification constitutes a representation that the certifying official has reviewed the information and either (1) personally vouches for its accuracy and completeness or (2) has possession of, and is relying upon, a certification executed by a competent subordinate.

Each individual in your activity generating information for the BRAC-95 process must certify that information. Enclosure (1) is provided for individual certifications and may be duplicated as necessary. You are directed to maintain those certifications at your activity for audit purposes. For purposes of this certification sheet, the commander of the activity will begin the certification process and each reporting senior in the Chain of Command reviewing the information will also sign this certification sheet. This sheet must remain attached to this package and be forwarded up the Chain of Command. Copies must be retained by each level in the Chain of Command for audit purposes.

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

CHANGE I NAWCAD/PR 24 May 94 - DATA CALL NUMBER FOUR

ACTIVITY COMMANDER

Signature

MAY 2 7 1994

BARTON D. STRONG NAME (Please type or print)

COMMANDER Title

NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION <u>PATUXENT RIVER</u> Activity

Enclosure (3)

Data Call #4 Audit Changes Pax River

Pg 3,4,9,12,24,30,36,72,80,83, Tab A 2. 163 N0042

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

<u>NEXT E</u>	CHELON LEVEL (if applicable)
L. L. LUNDBERG	L'Edu Shing
NAME (Please type or print)	Signature
ACTING COMMANDER	9/19/94
Title	Date
NAVAL AIR WARFARE CENTER	·

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

NAME (Please type or print)

Signature

Title

10

Date

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief. . - -

W. C. BOWES, VADM, USN	In Sura
NAME (Please type or print)	Signature
COMMANDER	Z. Jeg 94
Title	Date
NAVAL AIR SYSTEMS COMMAND	

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

> DEPUTY CHIEF OF NAVAL OPERATIONS (LOGISTICS) DEPUTY CHIEF OF STAFF (INSTALLATIONS & LOGISTICS)

W.A. EARNER

NAME (Please type or print)

Signature

Title

DEPARTMENT OF THE NAVY NAVAL AIR WARFARE CENTER NAVAL AIR WARFARE CENTER HEADQUARTERS 1421 JEFFERSON DAVIS HWY ARLINGTON VA 22243

IN REPLY REFER TO

1000 Ser NAWC-21C/

SEP | 6 1991

From: Commander, Naval Air Warfare Center To: Distribution

Subj: RELEASE OF BASE REALIGNMENT AND CLOSURE DATA CALL IN THE ABSENCE OF THE COMMANDER

1. During the period 19-21 September I will be on travel.

2. Mr. Lewis L. Lundberg, Technical Director, Naval Air Warfare Center, is designated as acting as Acting Commander during this period. As such, he is authorized to release completed Base Realignment and Closure Data Calls and to provide certification for the data calls.

WEr burnar W. E. NEWMAN

Distribution: COMNAVAIRWARCENWPNDIV COMNAVAIRWARCENACDIV NAVAIRWARTRASYSDIV

NMAZ

DATA CALL #4 - AUDIT BRAC-95 CERTIFICATION

Reference: SECNAVNOTE 11000 of 8 December 1993

In accordance with policy set forth by the Secretary of the Navy, personnel of the Department of the Navy, uniformed and civilian, who provide information for use in the BRAC-95 process are required to provide a signed certification that states "I certify that the information contained herein is accurate and complete to the best of my knowledge and belief."

The signing of this certification constitutes a representation that the certifying official has reviewed the information and either (1) personally vouches for its accuracy and completeness or (2) has possession of, and is relying upon, a certification executed by a competent subordinate.

Each individual in your activity generating information for the BRAC-95 process must certify that information. Enclosure (1) is provided for individual certifications and may be duplicated as necessary. You are directed to maintain those certifications at your activity for audit purposes. For purposes of this certification sheet, the commander of the activity will begin the certification process and each reporting senior in the Chain of Command reviewing the information will also sign this certification sheet. This sheet must remain attached to this package and be forwarded up the Chain of Command. Copies must be retained by each level in the Chain of Command for audit purposes.

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

ACTIVITY COMMANDER CAPTAIN JOHN B. PATTERSON Signature NAME (Please type or print) SEP | 6 1994 ACTING COMMANDER

Title

Date

NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION PATUXENT RIVER, MD

Document Separator

160

DATA CALL 66 INSTALLATION RESOURCES

Activity Information:

Activity Name:	DBO Patuxent River NDW
UIC:	43629
Host Activity Name (if response is for a tenant activity):	Naval Air Warfare Center
Host Activity UIC:	49860

DATA CALL 66 INSTALLATION RESOURCES

-

Table 1A - Base Operating Support Costs (Other Than DBOF Overhead)			
Activity Name: Defense Printing Service		UIC: A# 43629	
Category	FY 1996 BOS Costs (\$000)		
	Non-Labor	Labor	Total
1. Real Property Maintenance Costs:			
1a. Maintenance and Repair			
1b. Minor Construction			
1c. Sub-total 1a. and 1b.			
2. Other Base Operating Support Costs:			
2a. Utilities			
2b. Transportation			
2c. Environmental			
2d. Facility Leases			
2e. Morale, Welfare & Recreation			
2f. Bachelor Quarters			
2g. Child Care Centers			
2h. Family Service Centers			
2i. Administration			
2j. Other (Specify)			
2k. Sub-total 2a. through 2j:			
3. Grand Total (sum of 1c. and 2k.):			

N/A (DPS is DBOF)

a and a second

2
UIC: 43629

b. Funding Source. If data shown on Table 1A reflects more than one appropriation, then please provide a break out of the total shown for the "3. Grand-Total" line, by appropriation:

Appropriation Amount (\$000)

N/A

c. <u>Table 1B</u> - Base Operating Support Cests (DBOF Overhead). This Table should be submitted for all current DBOF activities. Costs reported should reflect BOS costs supporting the DBOF activity itself (usually included in the G&A cost of the activity). For DBOF activities which are tenants on another installation, total cost of BOS incurred by the tenant activity for itself should be shown on this table. It is recognized that differences exist among DBOF activity groups regarding the costing of base operating support: some groups reflect all such costs only in general and administrative (G&A), while others spread them between G&A and production overhead. Regardless of the costing process, all such costs should be included on Table 1B. The Minor Construction portion of the FY 1996 capital budget should be included on the appropriate line. Military personnel costs (at civilian equivalency rates) should also be included on the appropriate lines of the table. Please ensure that individual lines of the table do not include duplicate costs. Also ensure that there is no duplication between data provided on Table 1A. and 1B. These two tables must be mutually exclusive, since in those cases where both tables are submitted for an activity, the two tables will be added together to estimate total BOS costs at the activity. Add additional lines to the table (following line 21., as necessary, to identify any additional cost elements not currently shown). Leave shaded areas of table blank.

<u>Other Notes</u>: All costs of operating the five Major Range Test Facility Bases at DBOF activities (even if direct RDT&E funded) should be included on Table 1B. Weapon Stations should include underutilized plant capacity costs as a DBOF overhead "BOS expense" on Table 1B..

Activity Name: DBO Patuxent River		UIC: 436	29
	FY 1996 Net Cost From UC/FUND-4 (\$000)		
Category	Non-Labor	Labor	Total
1. Real Property Maintenance Costs:			
1a. Real Property Maintenance (>\$15K)			
1b. Real Property Maintenance (<\$15K)			
1c. Minor Construction (Expensed)			
1d. Minor Construction (Capital Budget)			
1c. Sub-total 1a. through 1d.			
2. Other Base Operating Support Costs:			
2a. Command Office			
2b. ADP Support	•		
2c. Equipment Maintenance			
2d. Civilian Personnel Services			
2e. Accounting/Finance			
2f. Utilities	\$20		\$20
2g. Environmental Compliance			
2h. Police and Fire			
2i. Safety			
2j. Supply and Storage Operations			
2k. Major Range Test Facility Base Costs			
21. Other (Specify)			
2m. Sub-total 2a. through 21:	\$20		\$20
3. Depreciation			
4. Grand Total (sum of 1c., 2m., and 3.) :	\$20		\$20

•

, . .

.

...

4JC: 43629

<u>Table 2</u> - Services/Supplies Cost Data			
Activity Name: DBO Patuxent River	UIC:	43629	
Cost Category		FY 1996 Projected Costs (\$000)	
Travel:		\$1	
Material and Supplies (including equipment):		\$122	
Industrial Fund Purchases (other DBOF purchases):		\$0	
Transportation:		\$2	
Other Purchases (Contract support, etc.):		\$607	
Total:		\$732	

Table 3 - Contract Workyears		
Activity Name: Defense Printing Service	UIC: AT 43629	
Contract Type	FY 1996 Estimated Number of Workyears On-Base	
Construction:		
Facilities Support:		
Mission Support:		
Procurement:		
Other:*	•	
Total Workyears:		

N/A (DPS has tenants only; do not support installations)

UTC: 43629

b. Potential Disposition of On-Base Contract Workyears. If the mission/functions of your activity were relocated to another site, what would be the anticipated disposition of the <u>on-base contract workyears</u> identified in Table 3.?

1) Estimated number of contract workyears which would be transferred to the receiving site (This number should reflect the number of jobs which would in the future be contracted for at the receiving site, not an estimate of the number of people who would move or an indication that work would necessarily be done by the same contractor(s)):

N/A

2) Estimated number of workyears which would be eliminated:

N/A

3) Estimated number of contract workyears which would remain in place (i.e., contract would remain in place in current location even if activity were relocated outside of the local area):

N/A

DATA CALL 66 INSTALLATION RESOURCES

c. "Off-Base" Contract Workyear Data. Are there any contract workyears located in the <u>local</u> community, but not on-base, which would either be eliminated or relocated if your activity were to be closed or relocated? If so, then provide the following information (ensure that numbers reported below do not double count numbers included in 3.a. and 3.b., above):

No. of Additional Contract Workyears Which Would Be Eliminated	General Type of Work Performed on Contract (e.g., engineering support, technical services, etc.)	
N/A	N/A	

No. of Additional Contract Workyears Which Would Be Relocated	General Type of Work Performed on Contract (e.g., engineering support, technical services, etc.)	
N/A	N/A	

DATA CALL #66

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

NAME (Please type or print)

Title

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

<u>NEXT ECHELON LEVEL</u> (if applicable)

NAME (Please type or print)

Title

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

MAJOR CLAIMANT LEVEL

R. M. MOORE, RADM, SC, USN NAME (Please type or print)

COMMANDER

Title

NAVAL SUPPLY SYSTEMS COMMAND Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

> **DEPUTY CHIEF OF NAVAL OPERATIONS (LOGISTICS)** DEPUTY CHIEF OF STAFF (INSTALLATIONS & LOGISTICS)

W.A. EARNER

NAME (Please type or print)

Signature

AUG 2 4 1994

Date

Title

Signature

. Date

Signature

Date

Date

Signature

BRAC-95 CERTIFICATION

EFFECTED LOCATION(S):

DPS-Wide DATA CALL BEING CERTIFIED: BRAC-95 Data Call #66

Per SECNAV NOTE 11000 dtd 8 Dec 93

"I certify that the information contained herein for the following location(s) is accurate and complete to the best of my knowledge and belief."

WILLIAM J. PORTER NAME (Please type or print)

Marter Signature

Acting Director Title

DPS Headquarters Activity

Document Separator

UIC: <u>42325</u>

Activity Information:

Activity Name:	PERSUPPDET Patuxent River	
UIC:	42325	
Host Activity Name (if response is for a tenant activity):	NAWCAD Patuxent River	
Host Activity UIC:	00019	

General Instructions/Background. A separate response to this data call must be completed for each Department of the Navy (DON) host, independent and tenant activity which separately budgets BOS costs (regardless of appropriation), and, is located in the United States, its territories or possessions.

1. <u>Base Operating Support (BOS) Cost Data</u>. Data is required which captures the total annual cost of operating and maintaining Department of the Navy (DON) shore installations. Information must reflect FY 1996 budget data supporting the FY 1996 NAVCOMPT Budget Submit. Two tables are provided. Table 1A identifies "Other than DBOF Overhead" BOS costs and Table 1B identifies "DBOF Overhead" BOS costs. These tables must be completed, as appropriate, for all DON host, independent or tenant activities which separately budget BOS costs (regardless of appropriation), and, are located in the United States, its territories or possessions. Responses for DBOF activities may need to include both Table 1A and 1B to ensure that all BOS costs, including those incurred by the activity in support of tenants, are identified. If both table 1A and 1B are submitted for a single DON activity, please ensure that no data is double counted (that is, included on <u>both</u> Table 1A and 1B). The following tables are designed to collect all BOS costs currently budgeted, regardless of appropriation, e.g., Operations and Maintenance, Research and Development, Military Personnel, etc. Data must reflect FY 1996 and should be reported in thousands of dollars.

a. <u>Table 1A</u> - Base Operating Support Costs (Other Than DBOF Overhead). This Table should be completed to identify "Other Than DBOF Overhead" Costs. Display, in the format shown on the table, the O&M, R&D and MPN resources currently budgeted for BOS services. O&M cost data must be consistent with data provided on the BS-1 exhibit. Report only direct funding for the activity. Host activities should not include reimbursable support provided to tenants, since tenants will be separately reporting these costs. Military personnel costs should be included on the appropriate lines of the table. Please ensure that individual lines of the table do not include duplicate costs. Add additional

UIC: <u>42325</u> DATA CALL 66 **INSTALLATION RESOURCES**

lines to the table (following line 2j., as necessary, to identify any additional cost elements not currently shown). Leave shaded areas of table blank.

<u>Table 1A</u> - Base Operating Support Costs (Other Than DBOF Overhead)			
Activity Name: PERSUPPDET Patuxent River		UIC: 42325	
	FY 1996 BOS Costs (\$000)		
Category	Non-Labor	Labor	Total
1. Real Property Maintenance Costs:			
1a. Maintenance and Repair			
1b. Minor Construction			
1c. Sub-total 1a. and 1b.	t.		
2. Other Base Operating Support Costs:			
2a. Utilities			
2b. Transportation			
2c. Environmental			(
2d. Facility Leases			
2e. Morale, Welfare & Recreation			
2f. Bachelor Quarters			
2g. Child Care Centers			
2h. Family Service Centers			
2i. Administration	114	1260	1374
2j. Other (Specify)			
2k. Sub-total 2a. through 2j:	114	1260	1374
3. Grand Total (sum of 1c. and 2k.):	114	1260	1374

UIC: <u>42325</u>

b. Funding Source. If data shown on Table 1A reflects more than one appropriation, then please provide a break out of the total shown for the "3. Grand-Total" line, by appropriation:

Appropriation	<u>Amount (\$000)</u>		
O&MN	505		
MPN	869		

c. <u>Table 1B</u> - Base Operating Support Costs (DBOF Overhead). This Table should be submitted for all current DBOF activities. Costs reported should reflect BOS costs supporting the DBOF activity itself (usually included in the G&A cost of the activity). For DBOF activities which are tenants on another installation, total cost of BOS incurred by the tenant activity for itself should be shown on this table. It is recognized that differences exist among DBOF activity groups regarding the costing of base operating support: some groups reflect all such costs only in general and administrative (G&A), while others spread them between G&A and production overhead. Regardless of the costing process, all such costs should be included on Table 1B. The Minor Construction portion of the FY 1996 capital budget should be included on the appropriate line. Military personnel costs (at civilian equivalency rates) should also be included on the appropriate lines of the table. Please ensure that individual lines of the table do not include duplicate costs. Also ensure that there is no duplication between data provided on Table 1A. and 1B. These two tables must be mutually exclusive, since in those cases where both tables are submitted for an activity, the two tables will be added together to estimate total BOS costs at the activity. Add additional lines to the table (following line 21., as necessary, to identify any additional cost elements not currently shown). Leave shaded areas of table blank.

<u>Other Notes</u>: All costs of operating the five Major Range Test Facility Bases at DBOF activities (even if direct RDT&E funded) should be included on Table 1B. Weapon Stations should include underutilized plant capacity costs as a DBOF overhead "BOS expense" on Table 1B..

Table 1B - Base Operating Support Costs (DBOF Overhead) Activity Name: N/A; not a DBOF Activity **UIC: 42325** FY 1996 Net Cost From UC/FUND-4 (\$000) Category Non-Labor Labor Total 1. Real Property Maintenance Costs: 1a. Real Property Maintenance (>\$15K) 1b. Real Property Maintenance (<\$15K) 1c. Minor Construction (Expensed) 1d. Minor Construction (Capital Budget) 1c. Sub-total 1a. through 1d. 2. Other Base Operating Support Costs: 2a. Command Office 2b. ADP Support 2c. Equipment Maintenance 2d. Civilian Personnel Services 2e. Accounting/Finance 2f. Utilities 2g. Environmental Compliance 2h. Police and Fire 2i. Safety 2j. Supply and Storage Operations 2k. Major Range Test Facility Base Costs 21. Other (Specify) 2m. Sub-total 2a. through 2l: 3. Depreciation 4. Grand Total (sum of 1c., 2m., and 3.) :

UIC: <u>42325</u>

UIC: <u>42325</u>

2. <u>Services/Supplies Cost Data</u>. The purpose of Table 2 is to provide information about projected FY 1996 costs for the purchase of services and supplies by the activity. (Note: Unlike Question 1 and Tables 1A and 1B, above, this question is not limited to overhead costs.) The source for this information, where possible, should be either the NAVCOMPT OP-32 Budget Exhibit for O&M activities or the NAVCOMPT UC/FUND-1/IF-4 exhibit for DBOF activities. Information must reflect FY 1996 budget data supporting the FY 1996 NAVCOMPT Budget Submit. Break out cost data by the major sub-headings identified on the OP-32 or UC/FUND-1/IF-4 exhibit, disregarding the sub-headings on the exhibit which apply to civilian and military salary costs and depreciation. Please note that while the OP-32 exhibit aggregates information by budget activity, this data call requests OP-32 data for the activity responding to the data call. Refer to NAVCOMPTINST 7102.2B of 23 April 1990, Subj: Guidance for the Preparation, Submission and Review of the Department of the Navy (DON) Budget Estimates (DON Budget Guidance Manual) with Changes 1 and 2 for more information on categories of costs identified. Any rows that do not apply to your activity may be left blank. However, totals reported should reflect all costs, exclusive of salary and depreciation.

Table 2 - Services/Supplies Cost Data **UIC: 42325** Activity Name: PERSUPPDET Patuxent River FY 1996 **Projected Costs** Cost Category (\$000) 1 Travel: 90 Material and Supplies (including equipment): Industrial Fund Purchases (other DBOF purchases): **Transportation:** 23 Other Purchases (Contract support, etc.): 114 Total:

DATA CALL 66 UIC: <u>42325</u> INSTALLATION RESOURCES

3. Contractor Workyears.

a. On-Base Contract Workyear Table. Provide a projected estimate of the number of contract workyears expected to be <u>performed "on base"</u> in support of the installation during FY 1996. Information should represent an annual estimate on a full-time equivalency basis. Several categories of contract support have been identified in the table below. While some of the categories are self-explanatory, please note that the category "mission support" entails management support, labor service and other mission support contracting efforts, e.g., aircraft maintenance, RDT&E support, technical services in support of aircraft and ships, etc.

<u>Table 3</u> - Contract Workyea	rs
Activity Name: PERSUPPDET Patuxent River	UIC: 42325
Contract Type	FY 1996 Estimated Number of Workyears On-Base
Construction:	
Facilities Support:	
Mission Support:	
Procurement:	
Other:*	
Total Workyears:	0

* Note: Provide a brief narrative description of the type(s) of contracts, if any, included under the "Other" category.

DATA CALL 66 UIC: <u>42325</u> INSTALLATION RESOURCES

b. Potential Disposition of On-Base Contract Workyears. If the mission/functions of your activity were relocated to another site, what would be the anticipated disposition of the <u>on-base contract workyears</u> identified in Table 3.?

1) <u>Estimated number of contract workyears which would be transferred to the</u> receiving site (This number should reflect the number of jobs which would in the future be contracted for at the receiving site, not an estimate of the number of people who would move or an indication that work would necessarily be done by the same contractor(s)):

N/A; no contract workyears

2) Estimated number of workyears which would be eliminated:

N/A; no contract workyears

3) <u>Estimated number of contract workyears which would remain in place</u> (i.e., contract would remain in place in current location even if activity were relocated outside of the local area):

.

N/A; no contract workyears

DATA CALL 66 UIC: <u>42325</u> INSTALLATION RESOURCES

c. "Off-Base" Contract Workyear Data. Are there any contract workyears located in the <u>local</u> community, but not on-base, which would either be eliminated or relocated if your activity were to be closed or relocated? If so, then provide the following information (ensure that numbers reported below do not double count numbers included in 3.a. and 3.b., above): No.

No. of Additional Contract Workyears Which Would Be Eliminated	General Type of Work Performed on Contract (e.g., engineering support, technical services, etc.)
None	

No. of Additional Contract Workyears Which Would Be Relocated	General Type of Work Performed on Contract (e.g., engineering support, technical services, etc.)
None	

PSA WASHINGTON UIC N42553 DATA CALL SIXTY-SIX

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

<u>NEXT ECHELON LEVEL</u> (if applicable)

NAME (Please type or print)

Title

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

NAME (Please type or print)

Title

Date

Signature

Signature

Date

?**1 5** Aug 1994

Signature

Date

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

MAJOR CLAIMANT LEVEL

RADM H. W. GEHMAN, JR. NAME (Please type or print)

Acting

Title Commander in Chief U.S. Atlantic Fleet

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

DEPUTY CHIEF OF NAVAL OPERATIONS (LOGISTICS) DEPUTY CHIEF OF STAFF (INSTALLATIONS & LOGISTICS)

W. A. EARNER

NAME (Please type or print)

Signature

Title

Date

BRAC-95 CERTIFICATION

Reference: SECNAV NOTE 11000 dtd 8 Dec 93

In accordance with policy set forth by the Secretary of the Navy, personnel of the Department of the Navy, uniformed and civilian, ... who provide information for use in the BRAC-95 process are required to provide a signed certification that states "I certify that the information contained herein is accurate and complete to the best of my knowledge and belief."

The signing of this certification constitutes a representation that the certifying official has reviewed the information and either (1) personally vouches for its accuracy and completeness or (2) has possession of, and is relying upon, a certification executed by a competent subordinate.

Each individual in your activity generating information for the BRAC-95 process must certify that information. Enclosure (1) is provided for individual certifications and may be duplicated as necessary. You are directed to maintain those certifications at your activity for audit purposes. For purposes of this certification sheat, the commander of the activity will begin the certification process and each reporting senior in the Chain of Command reviewing the information will also sign this certification sheet. This sheet must remain attached to this package and be forwarded up the Chain of Command. Copies must be retained by each level in the Chain of Command for audit purposes.

I certify the information contained herein is accurate and complete to the best of my knowledge and belief.

ACTIVITY COMMANDER

<u>N/A: DATA GENERATED AT THE</u> CLAIMANT LEVEL NAME (Please type of print) Sign

Signature

Title

.

Date

Activity

Document Separator

٠

.

DATA CALL 64 CONSTRUCTION COST AVOIDANCES

Table 2: Family Housing Construction Projects

.

Installation Name: PATUXENT RIVER MD AWCACDV		v			
Unit Iden	tification Co	ode (UIC): N00421			
Major Cl	Major Claimant:		NAVAIR		
Project FY	Project No.	Description		Appn	Project Cost Avoid (\$000)
1996	H332	HOUSING W. OFFICE	AREHOUSE/HOUSING	FHSG	890
		Sub-Total	- 1996		890
1997	H337	COMMUNITY	CENTER	FHSG	1,285
		Sub-Total	- 1997		1,285
		Grand Tota	al		2,175
				<u>+</u>	
	·	<u></u>		-	
			<u> </u>		
				1	
				<u> </u>	

(Revised 9 Dec 94)

(Page 25)

163

R

BRAC-95 CERTIFICATION

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

MICHAEL D. THORNTON NAME (Please type or print)

CDR, CEC, USN Title

Mighourton Signature <u>Dec</u> 94 Date

.

MILCON PROGRAMMING DIVISION Division

NAVAL FACILITIES ENGINEERING COMMAND Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

MAJOR CLAIMANT LEVEL

J. E. BUFFINGTON, RADM, CEC, USN NAME (Please type or print)

Signa 12/9/9

COMMANDER Title

Date

NAVAL FACILITIES ENGINEERING COMMAND Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

> DEPUTY CHIEF OF NAVAL OPERATIONS (LOGISTICS) DEPUTY CHIEF OF STAFF (INSTALLATIONS & LOGISTICS)

W. A. EARNER

NAME (Please type or print)

Signature

Date

Title

Document Separator

R

DATA CALL 64

CONSTRUCTION COST AVOIDANCES

Table 1: Military Construction (MILCON) Projects (Excluding Family Housing Construction Projects)

Installation Name:			PATUXENT RIVER MD AWCACDV			
Unit Ide	ntification Co	de (UIC):	N00421			
Major Claimant:			NAVAIR			
Project FY	Project No.	Description		Appn	Project Cost Avoid (\$000)	
1993	389	ADVANCED FAC - PH(SYSTEM INTEGRATION	MCON	10,000	
		Sub-Total	- 1993		10,000	
			· · · · · · · · · · · · · · · · · · ·			
1994	389A	ADVANCED FACILITY	SYSTEM INTEGRATION	MCON	10,000	
1994	426	HAZARDOUS MATERIALS	& FLAMMABLE ST	MCON	3,400	
1994	505	SEWAGE TREATMENT PLANT UPGRADES		MCON	1,000	
		Sub-Total - 1994			14,400	
1995	389B	ADVANCED SYSTEM INTEGRATION FAC (PH III)		MCON	10,000	
1995	481	AIR ASW INTEROPERABILITY CENTER		MCON	4,200	
1995	950S	SCI/ENG FACS PH III		BRAC	12,844	
1995	951T	ADMIN HQ'S FACS PHASE I *		BRAC	14,105	
		Sub-Total - 1995			41,149	
1996	953T	PROPULSION SYS EVAL FAC		BRAC	25,750	
1996	960T	ADMIN HQ'S FACS PHASE II		BRAC	29,400	
		Sub-Total - 1996			55,150	
1997	516	WASTEWTR TRMT PLNT UPGRD		MCON	2,500	
		Sub-Total - 1997			2,500	

(Revised 9 Dec 94)

jalit:

(* - Cost Avoidance is less than project programmed amount)

(Page 188)

DATA CALL 64

CONSTRUCTION COST AVOIDANCES

<u>Table 1:</u> Military Construction (MILCON) Projects (Excluding Family Housing Construction Projects)

Installation Name:			PATUXENT RIVER MD AWCACDV			
Unit Identification Code (UIC):			N00421			
Major Claimant:			NAVAIR			
Project FY	Project No.	Description		Appn	Project Cost Avoid (\$000)	
		Grand Total			123,199	
				<u> </u>		
		·				
		u				
			· · · · · · · · · · · · · · · · · · ·			

(Revised 9 Dec 94)

(* - Cost Avoidance is less than project programmed amount)

(Page 189)

R

~

BRAC-95 CERTIFICATION

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

MICHAEL D. THORNTON NAME (Please type or print)

CDR, CEC, USN Title

M. Showton Signature <u>9 Ouc</u> 94 Date

MILCON PROGRAMMING DIVISION Division

NAVAL FACILITIES ENGINEERING COMMAND Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

MAJOR CLAIMANT LEVEL

J. E. BUFFINGTON, RADM, CEC, USN NAME (Please type or print)

Sign

COMMANDER Title

Date

NAVAL FACILITIES ENGINEERING COMMAND Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

DEPUTY CHIEF OF NAVAL OPERATIONS (LOGISTICS) DEPUTY CHIEF OF STAFF (INSTALLATIONS & LOGISTICS)

W. A. EARNER

2 Faire

NAME (Please type or print)

Signature

Date

Title

Document Separator

MILITARY VALUE DATA CALL

TECHNICAL CENTERS

Category	Weapon System and Material Support
Technical center site	NAWCAD PAX RIVER
Location/address	Patuxent River, MD

Mission Page

3 6
10
10 16
107 107
116
120 127 131
132 144 146 148 149 150 153 153 153 154 FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

Quality of Life

21.	Spousal Employment Opportunities	164
22.	Medical/Dental	164
23.	Crime Rate	167

- TAB A Technical Operations: Functional Support Area Life Cycle Work Area Form
- TAB B Special Facilities and Equipment: Facilities/Equipment Capability Form
- TAB C Range Resources: Range Capability Form
- Appendix A Functional Support Areas Life Cycle Work Areas List

Appendix B Definitions for Functional Support Areas - Life Cycle Work Areas

MILITARY VALUE MEASURES

MISSION

1. **Mission Statement.** State the officially assigned mission of this activity and cite the reference document(s) that assigns the mission.

OPNAVNOTE 5450

Naval Air Warfare Center Aircraft Division, Patuxent River, MD. To be the Navy's principal research, development, test, evaluation, engineering, and fleet support activity for Naval aircraft, engines, avionics, aircraft support systems, and ship/shore/air operation. This mission includes: research and development of manned and unmanned air vehicles, air vehicles propulsion systems, core and mission-unique avionics including air ASW systems, airborne surveillance systems, aircraft launch and recovery systems, aviation support equipment, and related functions such as aircraft modeling and analysis and aircraft active and passive signatures; systems integration of all air platform subsystems; conduct of test and evaluation for these same aircraft electronics warfare throughout the spectrum of the life cycle to ensure successful operational performance; maintain life cycle to ensure successful operational performance; maintain aircraft test and evaluation ranges: assure an effective transition to production, including manufacturing production support and pilot/emergency production, to maintain a responsive industrial base; and perform in-service engineering of aircraft, avionics, and launch/recovery systems; direct the operations of the Naval Air Warfare Center Aircraft Division and its subordinate activities.

Naval Air Station, Patuxent River, MD. To maintain and operate facilities and provide services and material support operations of the Naval Air Warfare Center Aircraft Division Patuxent River, MD, and other activities and units as designated by appropriate authority.

AS A RESULT OF BRAC 91 AND BRAC 93, THE INTEGRATED MISSION FOR THE PATUXENT RIVER COMPLEX IS AS FOLLOWS:

Responsible for full spectrum Acquisition and Life Cycle support of Naval Aviation systems including:

Integrated Acquisition Capability for Naval Aircraft Research & Development (R&D) of Maritime Aircraft Systems Flight & Ground Test & Evaluation (T&E) of Maritime Aircraft Systems Maritime Logistic & Aircraft Maintenance Management Shore Station Operations and Maintenance

FOR OFFICIAL USE ONLY **PREDECISIONAL INFORMATION**

Narrative:

INTEGRATED ACQUISITION CAPABILITY FOR NAVAL AIRCRAFT

The collocation of a large portion of the Naval Air Systems Command at Patuxent River will significantly enhance the integration of management, technical, and support efforts; better utilize our workforce, facility, and laboratory resources and shorten the time for acquiring and updating Naval aircraft/systems. This collocation provides Naval aviation Program Executive Officers (PEO)/Program Managers (PM) with an integrated Headquarters, Research, and Development, Systems Engineering, Test and Evaluation, Maintenance Engineering, and Integrated Logistics Support for all fixed and rotary wing airplane types including, fighter, attack, electronic warfare, reconnaissance, airborne early warning, antisubmarine, command, control and communications, observation, utility, cargo, trainer, and special warfare aircraft. The close proximity to the Washington DC arena and the large operational communications and integrating acquisition and operational processes. This acquisition integration will be unique within DoD.

RESEARCH AND DEVELOPMENT OF MARITIME AIRCRAFT SYSTEMS

Research and development activities in air warfare systems are integral to resolving the needs of maritime air warfare systems and to guiding acquisition managers and system engineers throughout the acquisition cycle. Patuxent River will perform research and development in those areas unique to Navy needs. Included areas are:

- New and updated avionics/mission systems for maritime tactical aircraft (Unique within Navy)
- New and updated air vehicle systems, materials, and processes (Unique within DoD)
- New and updated maritime aircrew life support, escape, and survival systems (Unique within Navy)
- Airborne undersea warfare anti-surface warfare sensors and systems including reconnaissance, surveillance and ASW (Unique within DoD)
- Maritime air breathing propulsion systems (small aircraft engines) (Unique within Navy)
- Propulsion system components and accessories (Unique within DoD)
- Engineering support for Fleet aviation fuels, lubricants, fuel storage and delivery systems (Unique within Navy)
- Engineering and fleet support for assigned command, control, and communications systems and ocean surveillance (unique to the Navy).

Integration and collocation of maritime research and development capabilities with integrated acquisition management, flight and ground test engineering, logistic and maintenance management at Patuxent River will improve the air warfare system acquisition process by reducing acquisition time and costs.

FLIGHT AND GROUND T&E OF MARITIME AIRCRAFT SYSTEMS

Patuxent River's capabilities and facilities provide development test and support operational test activities essential to acquisition and fleet support functions for all Naval aircraft throughout the aircraft's life cycle. The flight and ground test functions include air vehicle system testing, aircraft propulsion system testing, avionics/mission system testing and those test disciplines such as flying qualities and performance, carrier suitability for tactical aircraft and dynamic interface between rotary wing aircraft and the various ships on which they operate, store/weapon compatibility with the aircraft. Patuxent River also serves as the lead DoD facility for aircraft electromagnetic environmental effects test and evaluation. Extensive simulation and aircraft stimulation capabilities are utilized to facilitate early-on testing during concept exploration and demonstration and validation phases of acquisition. When the Naval Air Systems Team is consolidated at Patuxent River, the total maritime acquisition cycle (from determination of mission need to fleet operations) will be supported at a single site. Principal site operations for fixed wing and rotary wing flight and ground test activities covering the complete fighter, attack, electronic warfare, reconnaissance, airborne early warning, antisubmarine, command/control/communications, observation, utility, cargo, trainer and special operations aircraft and its avionics systems is Unique within Navy, although certain mission critical test environments associated with aircraft carrier and other aviation capable ship operations and extremely high-density EMI testing are Unique within DoD.

MARITIME LOGISTIC AND AIRCRAFT MAINTENANCE MANAGEMENT

Aircraft and aircraft system logistic management and aircraft maintenance management are integrated with all other acquisition management elements to fully describe and plan for support and operations of the aircraft/system. This includes consideration of all elements of integrated logistic support (ILS) and all elements of the Navy maintenance plan. The scope of this activity includes ILS element plans and acquisitions, management of shore and ship aircraft maintenance facilities, and the maintenance plan formulation and execution for all in-service and new aircraft/systems. The former Naval Aviation Depot Operations Center (NADOC) and the Naval Aviation Maintenance Office (NAMO) are consolidated with other NAVAIR fleet/product support functions which significantly enhance the acquisition management of aircraft systems. Integration of this area with "Research and Development of Maritime Aircraft Systems" and "Flight and Ground Test and Evaluation of Maritime Systems" at Patuxent River will significantly contribute to improved acquisition processes for Naval air warfare aircraft/systems. This area is Unique within Navy, but the special requirements of sustainability aboard aircraft carriers and other aviation capable ships is Unique within DoD.

FOR OFFICIAL USE ONLY DECISIONAL INFORMATION

SHORE STATION OPERATIONS & MANAGEMENT

The Naval Air Station (NAS) Patuxent River provides base infrastructure support. The Naval Air Systems Team, Naval Research Laboratory Detachment, VQ-4 and the Air Development Squadron 1 are several major organizations comprising a total of 58 tenants onboard. NAS Patuxent River manages and provides supply support including full authority financial services, procurement services, centralized computer support for both T&E and administrative activities, public works, airfield operations, intermediate maintenance, fire safety, and security The NAS also provides all administrative services for military and support. civilian personnel attached to Patuxent River. Patuxent River is a sea level air station dedicated to the maritime support of RDT&E of Naval aircraft. It is key to the principal site test and evaluation operations carried out at Patuxent River. Its facilities originally designed to support Navy aircraft T&E have been continually improved and modernized to handle the Tri-Service/full spectrum RDT&E Test sites such as catapult, arresting gear, and landing system test mission. facilities as well as hangar, engine repair and aircraft maintenance facilities are all integral to the total Patuxent River infrastructure. With collocation of the Naval Air Systems Team all shore station management functions will be performed by the NAS.

2. Joint Service Missions. State any officially assigned joint/lead service assignments missions and cite the document(s) that assigned them.

NAWCAD PAX:

F18C/D JOINT DIRECT ATTACK MUNITIONS (JDAM)	Commander Naval Air Systems Command Order for Work and Service N0001993WXBA7AR Dated 6 Jan 94
F18C/D JOINT STAND-OFF WEAPON	Commander Naval Air Systems Command Order for Work and Service N0001993WXCM5MR Dated 6 Jan 94
JOINT ADVANCED STRIKE TECHNOLOGY PROGRAM (JAST)	Commander Naval Air Systems Command Order for Work and Service N0001994WXZM05R Dated 24 Mar 94
JOINT PRIMARY AIRCRAFT TRAINING SYSTEM (JPATS)	Commander Naval Air Systems Command Airtask A5115117B/053D/4H11500000 Dated 3 Feb 1994

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

JO	INT	TAC	CTICA	L AI	RCRE	W COI	MBAT	
TR	AIN	ING	SYST	TEM	(TAC	ΓS)/AI	R	
CC)MB	AT 1	MANE	UVE	RING	INST	RUMEN	T-
AI	ION	I (AC	CMI)/N	MEAS	UREN	1ENT	AND	
DE	BRI	EFIN	NG SY	STE	M (MI	DS)		
CC)NFI	IGUR	ATIO	N M	ANAG	EMEN	T (CM)
PL	ANN	NING	AND	SUI	POR	Γ	•	

UNMANNED AERIAL VEHICLES

Commander Naval Air Systems Command Airtask A2482482/0538/3248000035 Dated 21 Dec 1992

Commander Naval Air Systems Command Order for Work and Service N0001993WX8P36D Dated 23 Sep 1993

LEAD, TECNET

JOINT PROJECT

Defense Technical Information Center S3318194MPI9419 Dated 7 Apr 1994

LEAD, COMMON AIRBORNE **INSTRUMENTATION SYSTEM (CAIS)** Commander Naval Air Warfare Center Order for work and Service Dated 6 Jan 1994

PATUXENT RIVER COMPLEX

Assigned total responsibility for performing acceptance/verification testing of magnetic tape for DOD - Reference (1) CNM Ltr 4120 Ser 0521/326 of 19 Sep 1984 / USDR&E memo of 19 Jul 84.

LEAD, MICROWAVE EFFECTS ON DIGITAL N0001494WX35032 FLIGHT CONTROL SYSTEMS (MEDFCS) -EARLY MODEL FLIGHT CONTROL SYSTEM SURVIVABILITY TO ELECTROMAGNETIC **RADIATION (FSTER) - LATE MODEL FLIGHT CONTROL SYSTEM**

LEAD, NEURAL NETWORK A	ND FUZZY	N0001494WX3502
LOGIC APPLICATIONS		

LEAD, AGILITY CRITERIA DEVELOPMENT

LEAD, LASER EYE PROTECTION **SPECTACLES**

LEAD, FREQUENCY AGILE LASER

LEAD, AILSS - LOW ENERGY LASER VISOR

LEAD, AIR WARRIOR (AW) - ROTARY WING SURVEY

N0001494WX35032

A02025311/001D/4W06060000

N0007594WR00064

A05C531TA/001C/4W0584-000

A05C531TA/001C/4W0584-000

******** FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION
LEAD, AILSS - AAODS - CERAMIC OXYGEN GENERATING SYSTEM (COGS)

LEAD, ESCAPE SYSTEM TECHNOLOGY 4TH GENERATION ESCAPE SYSTEM TECHNOLOGIES DEMONSTRATION

LEAD, AIR WARRIOR (AW) - SYSTEM DESIGN

LEAD, ASAP (AIRBORNE SHARED APERTURE PROGRAM) PROGRAM: JOINT WIDEBAND SHARED APERTURE

LEAD, 2-D ISAR (INVERSE SYNTHETIC APERTURE RADAR) AIR TARGET ID PROGRAM: JOINT 2-D (RADAR) IMAGING PROGRAM

LEAD, F-14D AIR TARGET ID DATA COLLECTION PROGRAM: JOINT UHRR/DATA COLLECTION PROGRAM

LEAD, ALL-SOURCE CLASSIFIER/ FUSION EVALUATION PROGRAM: JOINT UHRR/DATA COLLECTION PROGRAM

LEAD, SPACE-TIME ADAPTIVE PROCESSING WITH MODIFIED E-2 ANTENNA PROGRAM: ARPA/ADI/NAVY MOUNTAINTOP PROGRAM

LEAD, MULTIBAND SAR ON P-3 - UHF UPGRADE PROGRAM: ARPA/WARBREAKER

LEAD, AUTOMATIC ISAR SHIP CLASSIFICATION PROGRAM: JOINT JSTARS ATR DEMO

LEAD, DISTRIBUTED APERTURE IR SENSOR; DISCRIMINATION PROCESSING; SHARED APERTURE EO/IR; RADIANT OUTLAW; MULTI-FUNCTION SURVEILLANCE TECHNOLOGY PROGRAM: JOINT AIR INTERCEPT EO A05C531TA/001C/4W0584-000

A05C531TA/001C/4W0584-000

A05C531TA/001C/4W0584-000

FY95 Joint Service Program Plan, Technology Panel for Sensors (JDL-TPSE) of 31 Jan 1994

FY95 Joint Service Program Plan, Technology Panel for Sensors (JDL-TPSE) of 31 Jan 1994

FY95 Joint Service Program Plan, Technology Panel for Sensors (JDL-TPSE) of 31 Jan 1994

FY95 Joint Service Program Plan, Technology Panel for Sensors (JDL-TPSE) of 31 Jan 1994

FY95 Joint Service Program Plan, Technology Panel for Sensors (JDL-TPSE) of 31 Jan 1994

TBD

FY95 Joint Service Program Plan, Technology Panel for Sensors (JDL-TPSE) of 31 Jan 1994

FY95 Joint Service Program Plan, Technology Panel for Sensors (JDL-TPSE) of 31 Jan 1991

LEAD, RF EXPENDABLE JAMMERS PROGRAM: RF COUNTERMEASURES

- -

LEAD, STRUCTURALLY EMBEDDED RECONFIGURABLE ANTENNAS PROGRAM: CNI ANTENNA SYSTEMS

LEAD, RADOME SURVIVABILITY TESTING PROGRAM: GPS

LEAD, HIGH PERFORMANCE OPTICAL NETWORKS (PHOTONIC EXCHANGE NETWORK) - (JOINT LEAD WITH AIR FORCE) PROGRAM: JAST SUPPORT PENDING

LEAD, JAST ARCHITECTURE DEFINITION PROGRAM: JAST

LEAD, RESEARCH, DEVELOPMENT & EVALUATION OF MAGNETIC TAPES PROGRAM: MAGNETIC MEDIA PROGRAM JDL Technical Plan for Electronic Warfare, Joint Service Program Plan

JDL Panel on Generic Antennas

MOU between NAVSTAR GPS JPO and NCCOSC-NRAD 14 Feb 1994

Joint Service Program Plan (JSPP) of the JDL Integrated Avionics Subpanel Feb 1994

JAST PROGRAM PLAN

CNM ltr of 19 Sep 1984 Ser: 0521/326

TECHNICAL FUNCTIONS

3. Technical Functions Resource Allocations. Appendix A provides a list of numbered functional support areas that cover the spectrum of naval warfare and support operations. Additionally, Appendix A provides a list of numbered life-cycle work areas that cover the "cradle to grave" spectrum of Navy systems acquisition. Utilizing the two lists at Appendix A, each activity will break out its entire FY1993 technical program within any applicable intersections of these two defining schemes (for example, functional support area #5.2 - life cycle work area #3 will identify the activity's level of resources allocated to sensors and surveillance systems, radar systems in advanced development). Definitions for each functional support and life cycle work area are provided in Appendix B for reference.

a. Use the form at Tab A of this data call to provide data on work years and expenditures for FY1993 to support each applicable intersection of functional support areas and life cycle work areas. When necessary, estimate data to the best of your ability.

b. Similarly, use the Tab A forms to report separately on your detachments or sites that have not received this data call directly. This data may be consolidated when the detachments or sites perform work in the same area. When necessary, estimate data to the best of your ability.

MANPOWER

4. Work Breakdown Structure.

a. Use Table 4.1 (below) to provide data on the general support functions at your activity. Report data as of 31 March 1994. If you are collocated with one of your subordinate base keeper commands (i.e., a NAWS or NAS collocated with a NAWC Division), describe the differences in the functions of each and provide a separate Table 4.1 for the subordinate command. Include this command in the Table 4.1 submission for your Activity.

b. Similarly, use Table 4.2 (below) to provide general support function data for all your detachments or sites that did not receive this data call directly. Consolidate data from all of these detachments into one table (4.2). Provide a list of the detachments whose data is included in Table 4.2. For each identified detachment in this list, include its name, location, UIC, and number of civilian and military personnel onboard.

In addition, if any of your detachments or separate sites not receiving an individual data call have over 50 civilian personnel or own technical facilities, provide separately a description of the site, the functions performed there, photographs showing the facilities and state the reason for that site's existence and the necessity for it to be at that location.

c. Use Table 4.3 (below) to provide estimated data, for your activity only, to reflect the anticipated impact of previous BRAC decisions that have not yet been implemented. This data should provide the deltas from Table 4.1.

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

۴.•

NOTES:

[1] Use the following definitions when providing data for the tables below:

Workyears: Consistent with those used in the preparation of inputs to the President's budget.

<u>Contract Workyears</u>: Actual or estimated workyears performed by support contractors with workyears defined consistent with the definition used in the President's budget.

Civilian Personnel Onboard: Full Time Permanent (FTP) employees.

[2] Any categories of personnel that are employed to support other Activities should be noted with the name of the additional Activity supported.

Revised pg 163

Table 4.1,	General Support Resources for	
(Activity:	**NAWCAD PAX/NAS PAX) (UIC:	N00421)

Function	Space allocated (Gross SQFT)	Work Years (R)	Civilian Persnel onboard	Contract Work Years	*Military Personnel Onboard	
					Off	Enl
		ADMINIS	FRATION			
Command (CO/XO/TD/etc.)	31,328	112.5	116	14	18	24
Comptroller	28,837	91.2	94	0	0	0
Admin	22,216	6.8	7	1	1	16
Human Resources	84,028	181.4	187	0	0	0
	ОР	ERATION	S SUPPOR	RT		1
Supply Management	524,989	138.7	143	0	3	81
Consolidated Computational Computer Support	0	0	0	0	0	0
Information Systems and Communications	91,122	127.1	131	125	1	0
Safety/OSH/Environmental	3,259	25.2	26	0	0	0
	1	NFRAST	UCTURE			
Physical Security	20,162	52.4	54	0	0	20
Public Works/Staff Civil Engr	314,113	132.9	137	477	4	3
Fire Protection	27,999	66.9	69	0	0	0
Medical/Dental	0	0	0	30	0	1
Military Support	2,188,590	87.3	90	0	0	0
Air/Waterfront Operations	137,251	22.3	23	4	13	220
Other	3,165	19.4	20	2	0	0
	 T	ECHNICA	L STAFF	I		
Technical Operations			1,624	2,011	169	817
Totals	3,477,059	1,064.1	2,721	2,664	209	1182

NAWCHO Change NBC NAWC-21D 9/20/14

.

12 R(9-15-94)

Table 4.1, General Support Resources for (Activity: **NAWCAD PAX/NAS PAX) (UIC: N00421)

Function	Space allocated (Gross SQFT)	Work Years	Civilian Persnei onboard	Contract Work Years	*Military On	y Personnel board					
					Off	Enl					
	ADMINISTRATION										
Command (CO/XO(TD/etc.)	31,328	113	116	14	18	24					
Comptroller	28,837	91.2	94	0	0	0					
Admin	22,216	6.8	7	1	1	16					
Human Resources	84,028	182	187	0	0	0					
	0	PERATION	S SUPPOR	Γ							
Supply Management	524,989	138.7	143	0	3	81					
Consolidated Computational Computer Support	0	0	0	0	0	0					
Information Systems and Communications	91,122	128	131	125	1	0					
Safety/OSH/Environmental	3,259	25.2	26	0	0	0					
		INFRAST	RUCTURE	4 ,		.					
Physical Security	20,162	52.4	54	0	0	20					
Public Works/Staff Civil Engr	314,113	132.9	137	477	4	3					
Fire Protection	27,999	67	69	0	0	0					
Medical/Dental	0	0	0	30	0	1					
Military Support	2,188,590	88	90	0	0	0					
Air/Waterfront Operations	137,251	22.3	23	X	13	220					
Other	3,165	19.4	20	2	0	0					
		TECHNIC	AL STAFF		\						
Technical Operations			1,624	2,011	169	817					
Totals	3,477,059	1,067	2,721	2,664	209	1,182					

* Military personnel onboard includes the following UIC's (which are under the NAWCAD Pax UIC): 44689, 47608, 35679, 48711, 68122, 42846 and 47650. V-22 Ft. Worth, TX and V-22 Wilmington, DE detachments have been moved under NAWCAD's UIC N00421.

****** NAS is collocated with NAWCAD Pax but is included in above table 4.1. The differences in the functions of each are as follows:

NAVAIRWARCENACDIV Patuxent River, Headquarters:

Supports the Naval Air Systems Command (NAVAIRSYSCOM) and the Naval Air Warfare Center (NAWC) in the development, acquisition, and support of aeronautical and related technology systems for the operating forces. Commands units in various locations that comprise the Aircraft Division.

NAVAIRWARCENACDIV Patuxent River, Flight Test and Engineering Group Functions:

- Test and evaluate aircraft weapons systems
- Develop and operate major instrumented ranges and test facilities
- Serve as principal site aircraft development programs
- Provide mission support, quality of life support, and facilities to tenants and regional activities
- Provide engineering and range support to fleet activities
- Operate the U.S. Naval Test Pilot School for Navy, Marine, and Army aviators and engineers

Naval Air Station, Patuxent River, MD. To maintain and operate facilities and provide services and material support operations of the Naval Air Warfare Center Aircraft Division Patuxent River, MD, and other activities and units as designated by appropriate authority.

FOR OFFICIAL USE ONLY REDECISIONAL INFORMATION

Reviud pg

Table 4.2,	General Support Resources for all Detachn	nents
(Activity:	NAWCAD PAX RIVER) (UIC: N00421)	N/A

Function	Space allocated (Gross SQFT)	Work Years	Civilian Persnel onboard	Contract Work Years	Military Personnel Onboard						
					Off	Enl					
ADMINISTRATION											
Command (CO/ XO/ TD/etc.)	.3	0	1	0	0	0					
Comptroller	. 2	0	1	0	0	0					
Admin	2.8	0	2	2	0	0					
Human Resources	0	0	0	0	0	0					
	OPE	RATIONS	SUPPOR	Γ	.	L.,					
Supply Management	.3	0	2	2	0	0					
Consolidated Computational Computer Support	0	0	0	0	0	0					
Information Systems and Communications	0	0	0	0	0	0					
Safety/OSH/Environmental	0	0	0	0	0	0					
	11	NFRASTR	UCTURE			<u></u>					
Physical Security	0	0	0	1	0	0					
Public Works/Staff Civil Engr	0	0	0	0	0	0					
Fire Protection	0	0	0	0	0	0					
Medical/Dental	0	0	0	0	0	0					
Military Support	0	0	0	0	0	0					
Air/Waterfront Operations	.4	0	0	0	0	0					
Other	400	0	0	9	0	0					
	TI	ECHNICAI	L STAFF	- <u></u>							
Technical Operations			37	47	11	51					
Totals	404.0	0	43	61	11	51					

R

NOTE: V-22 Ft. Worth, TX and V-22 Wilmington, DE detachments have been moved under NAWCAD's UIC N00421. The following detachments were established based on the movement of BRAC-91&93 functions to Patuxent River Complex. Included are: NAWCAD Willow Grove; NAWCAD DET AEDC Tullahoma; NAWCAD DET Key West and *NAWCAD DET Warminster, PA. (None have over 50 civ personnel or own technical facilities).

* This detachment consists of 24 civ, 6 mil & 5 contractors to maintain and operate the Dynamic Flight Simulator (DFS). A separate data call was submitted by NAWCAD for the DFS. It is included here to reflect BRAC 91&93 functions moving to PAX.

Page 14R (7-22-94) Change 3 UIC: N00421 FOR OFFICIAL USE ONLY

Revised pg

FOR OFFICIAL USE ONLY

_

Function	Space.	Work	Civilian	Contract					
Function	allocated	VOIK	Porspel	Work	Military	Personnel			
	(Gross	1 cais	onboard	Vork	Un	DOAFO			
	SOFT)		onbourd	i cui s					
					Øff	Enl			
	A	DMINIST	RATION		/				
Command (CO/ XO/ TD/etc.)	.3	0	1	0	0	0			
Comptroller	.2	0	1	8	0	0			
Admin	2.8	0	2	2	0	0			
Human Resources	0	0	0	0	0	0			
	OPE	RATIONS	SUPPOR	Г		·			
Supply Management	.3	0	/2	2	0	0			
Consolidated Computational Computer Support	0	0	0	0	0	0			
Information Systems and Communications	0	0	0	0	0	0			
Safety/OSH/Environmental	0	10	0	0	0	0			
	1I	PRASTRI	UCTURE						
Physical Security	0	0	0	1	0	0			
Public Works/Staff Civil Engr	0	0	0	0	0	0			
Fire Protection	9	0	0	0	0	0			
Medical/Dental	0	0	0	0	0	0			
Military Support	0	0	0	0	0	0			
Air/Waterfront Operations	.4	0	0	0	0	0			
Other	400	0	0	9	0	0			
	TECHNICAL STAFF								
Technical Operations			37	47	11	51			
Totals	404.0	0	43	61	11	51			

Table 4.2, General Support Resources for all Detachments (Activity: NAWCAD PAX RIVER) (UIC: N00421)

R

NOTE: V-22 Ft. Worth, TX and V-22 Wilmington, DE detachments have been moved under NAWCAD's UIC N00421. The detachments listed above are based on the movement of BRAC-91 and BRAC-93 functions to Patuxent River Complex. Included are: NAVAIRWARCENACDIV Willow Grove; NAVAIRWARCENACDIV DET AEDC Tullahoma; NAVAIRWARCENACDIV DET Key West, and NAVAIRWARCENACDIV DET Warminster, Pa. None of these detachments have over 50 Civilian personnel or own technical facilities.

> Page 14R (6-21-94) 12 May 1994 UIC N00421 FOR OFFICIAL USE ONLY

Enclosure (4)

Function	Space allocated (Gross SQFT)	Work Years	Civilian Persn el onboard	Contract Work Years	Military On	Military Personnel Onboard				
					Off	Eni				
ADMINISTRATION										
Command (CO/ XO/ TD/etc.)	.3	0	1	0	0	0				
Comptroller	ż	0	1	0	0	0				
Admin	2.8	0	2	2	0	0				
Human Resources	0	0	0	0	0	0				
	OP	ERATIONS	SUPPORT		L					
Supply Management	.3	0	2	2	0	0				
Consolidated Computational Computer Support	0	0	0	0	0	0				
Information Systems and Communications	0	0	0	0	0	0				
Safety/OSH/Environmental	0	0	Q	0	0	0				
	I	NFRASTRU	UCTURE							
Physical Security	0	0	0	1	0	0				
Public Works/Staff Civil Engr	0	0	0	0	0	0				
Fire Protection	0	0	0	e	0	0				
Medical/Dental	0	0	0	0	0	0				
Military Support	0	0	0	0	0	0				
Air/Waterfront Operations	.4	0	0	0	0	0				
Other	400	0	0	9	8	35				
	1	ECHNICAL	LSTAFF	<u></u>						
Technical Operations			37	47	3	16				
Totals	404.0	0	43	61	11	51				

Table 4.2, General Support Resources for all Detachments (Activity: NAWCAD PAX RIVER) (UIC: N00421) N/A

NOTE: V-22 Ft. Worth, TX and V-22 Wilmington, DE detachments have been moved under NAWCAD's UIC N00421. The detachments listed above are based on the movement of BRAC-91 and BRAC-93 functions to Patuxent River Complex. Included are: NAVAIRWARCENACDIV Willow Grove; NAVAIRWARCENACDIV DET AEDC Tullahoma; NAVAIRWARCENACDIV DET Key West; NAVAIRWARCENACDIV (DBOF) Patuxent River, Md and Deep Water Test Facility, Oreland, Pa. None of these detachments have over 50 Civilian personnel or own technical facilities.

Revived pg

R

Table 4.3, Previous BRAC Impact to General Support Resources for(Activity: **NAWCAD PAX/NAS PAX)(UIC: N00421)

Function	Space allocated (Gross SQFT)	Work Years (R)	Civilian Persnel onboard	Contract Work Years	*Military Personnel Onboard						
					Off	Enl					
ADMINISTRATION											
Command (CO/XO/TD/etc.)	60,893	59.0	54.0	19.0	4.0	2.0					
Comptroller	21,200	62.0	60.0	0	0	0					
Admin	996.0	6.0	5.0	1.0	0	0					
Human Resources	11,176	34.8	28.0	0	0	0					
	OP	ERATION	S SUPPOR	RT							
Supply Management	41,400	66.0	65.0	27.0	1.0	3.0					
Consolidated Computational Computer Support	0	0	0	0	0	0					
Information Systems and Communications	70,924	53.0	51.0	73.0	1	0					
Safety/OSH/Environmental	2,810	20.0	20.0	0	0	0					
	I	NFRASTI	RUCTURE	•							
Physical Security	4,178	8.0	8.0	22.0	0	1					
Public Works/Staff Civil Engr	18,900	48.0	48.0	0	0	0					
Fire Protection	0	2.0	0	0	0	0					
Medical/Dental	0	0	0	0	0	0					
Military Support	400	6.9	3.0	0	1.0	2.0					
Air/Waterfront Operations	1,768	7.0	7.0	0	22.0	68.0					
Other	0	0	0	0	0	0					
	Ţ	ECHNICA	L STAFF								
Technical Operations			1,837.0	1,380.0	21.0	37.0					
Totals	234,645	372.7	2,186.0	1,522.0	50.0	113.0					

REVISED PAGE

Table 4.3, Previous BRAC Impact to General Support Resources for (Activity: Patuxent River Complex) (UIC: N00421) INCLUDES PAX RIVER WITH BRAC-91 TRENTON/WARMINSTER IMPACTS AND BRAC-93 WEBSTER FIELD AND TRENTON. DATA NOT PROVIDED BY NAWAIR.

Function	Space allocated (Gross SQFT)	Work Years	Civilian Persnel onboard	Contract Work Years	*Military Personnel Onboard						
					Off	Enl					
	ADMINISTRATION										
Command (CO/XO/TD/etc.)	92,221	171.5	170	33	22	26					
Comptroller	50,037	153.2	154	0	0	0					
Admin	23,212	12.8	12	2	1	16					
Human Resources	95,204	216.2	215	0	0	0					
	(PP	ERATION	S SUPPOR	RT		· · · · · · · · · · · · · · · · · · ·					
Supply Management	566,389	204.7	208	27	4	84					
Consolidated Computational Computer Support	0	0	0	0	0	0					
Information Systems and Communications	162,046	180.1	182	198	2	0					
Safety/OSH/Environmental	6,069	45.2	46	0	0	0					
		INFRAST	RUCTURE	<u>.</u>							
Physical Security	24,340	60.4	95	22	0	21					
Public Works/Staff Civil Engr	333,013	180.9	185	477	4	3					
Fire Protection	27,999	68.9	69	0	0	0					
Medical/Dental	0	0	0	30	0	1					
Military Support	2,188,990	94.2	93	R	1	2					
Air/Waterfront Operations	139,019	29.3	30	4	35	288					
Other	3,165	19.4	20	2	0	0					
· · · · · · · · · · · · · · · · · · ·	7	FECHNICA	L STAFF		$\overline{)}$						
Technical Operations			3,461	3,391	190	854					
Totals	3,711,704	1,436.8	4,907	4,186	259	1295					

NAWCAD/PR

Change 1

24 May 94

(2) Enclosure

R

Table 4.3, Previous BRAC Impact to General Support Resources for
(Activity: Patuxent River Complex) (UIC: N00421)INCLUDES PAX RIVER WITH BRAC-91 TRENTON/WARMINSTER IMPACTS AND
BRAC-93 WEBSTER FIELD AND TRENTON. DATA FOR NAVAIR WILL BE
PROVIDED IN DATA CALL NUMBER THIRTY-ONE, QUESTION #3.

Function	Space allocated (Gross SQFT)	Work Years	Civilian Persnel onboard	Contract Work Years	*Military On	y Personnel board					
					Off	Enl					
ADMINISTRATION											
Command (CO/XO/TD/etc.)	92,221	171.5	170	33	22	26					
Comptroller	50,037	153.2	154	0	0	0					
Admin	23,212	12/8	12	2	1	16					
Human Resources	95,204	216.2	215	0	0	0					
	0	PERATION	S SUPPORT	Γ		•					
Supply Management	566,389	204.7	208	27	4	84					
Consolidated Computational Computer Support	0	0	0	0	0	0					
Information Systems and Communications	162,046	180.1	182	198	2	0					
Safety/OSH/Environmental	6,069	45.2	46	0	0	0					
	7	INFRASTR	UCTURE		· · · · · ·	·					
Physical Security	24,340	60.4	62	22	0	21					
Public Works/Staff Civil Engr	333,013	180.9	185	477	4	3					
Fire Protection	27,999	68.9	69	0	0	0					
Medical/Dental	0	0	0	30	0	1					
Military Support	2,188,990	94.2	93	0	1	2					
Air/Waterfront Operations	139,019	29.3	30	4	35	288					
Other	3,165	19.4	20	2	0	0					
		TECHNIC	AL STAFF								
Technical Operations			3,461	3,391	202	905					
Totals	3,711,704	1,436.8	4,907	4,186	271	1,346					

NOTE: The data included in table 4.3 for the Warminster influx represents the billets scheduled for transfer to Patuxent River and are identified to previous BRAC submissions. As of this date the actual on-board personnel identical with those billets have not been defined. In addition, the technical count is currently less than the scheduled billet transfer. Therefore, the tables that follow represent the on-board counts that are in fact less than the expected billet transfer scheduled in FY96.

5. Technical Staff Qualifications.

a. Use Table 5.1 (below) to provide data on the civilian personnel allocated to Technical Operations having the educational and experience levels indicated in the table for your activity. Report data as of 31 March 1994. Similarly, use Table 5.2 (below) to provide data for all your separate detachments or sites that did not receive this data call directly. Consolidate data from all of these detachments into one table (5.2). Provide a list of the detachments whose data is included in Table 5.2.

Highest Degree Attained		Years of Government and/or Military Service							
	Less than 3 Years	3-10 Years	11-15 Years	16-20 Years	More than 20 Years	Total			
Grade School	0	3	1	4	11	19			
High School	5	187	118	119	224	653			
B.A./B.S	7	472	156	48	99	782			
M.A./M.S	0.	53	33	18	61	165			
Ph.D./ M.D.	0	1	0	1	3	5			
Total	12	716	308	190	398	1,624			

Table 5.1, Technical Staff Education Level for(Activity: NAWCAD PAX) (UIC: N00421)

Revised pg

-

- - - -

Table 5.1, Technical Staff Education Level for

(Activity: NAWCAD PAX) (UIC: N00421) with BRAC-91 and BRAC 93 Technical Staff Influx from Webster Field, Warminster and Trenton. NAVAIR DID NOT PROVIDE DATA.

Highest Degree Attained		Years of Government and/or Military Service (R)								
	Less than 3 Years	3-10 Years	11-15 Years	16-20 Years	More than 20 Years	Total				
Grade School	0	4	1	5	12	22				
High School	7	245	158	159	319	888				
B.A./B.S	14	961	302	109	301	1,687				
M.A./M.S	0	181	88	75	302	646				
Ph.D./ M.D.	0	37	14	10	20	81				
Total	21	1,428	563	358	954	3,324				

NAUCHO Change NAUC-21D

R

NBC 9/20/9:4

Table 5.1, Technical Staff Education Level for
(Activity: NAWCAD PAX) (UIC: N00421) with BRAC-91 and BRAC 93
Technical Staff Influx from Webster Field, Warminster and Trenton. NAVAIR
DID NOT PROVIDE DATA.

.

Highest	Years of Government and/or Military Service					
Attained						
	Less than	3-10 Vector	11-15 Vears	16-20 Vears	More than 20 Years	Total
	5 rears	Icars	10415	10415	20 10415	
Grade	Q	4	1	5	12	22
High	7	245	158	159	319	888
School						
B.A./B.S	14	961	302	109	301	1,687
M.A./M.S	0	181	88	75	302	646
Ph.D./	0	37	14	10	20	81
M.D.						
Total	21	1,428	563	358	954	3,329

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

Revisedpg

R

Highest Degree Attained	Years of Government and/or Military Service					
	Less than	3-10	11-15	16-20	More than	Total
	3 Years	Years	Years	Years	20 Years	
Grade School		-				0
High School					1	1
B.A./B.S		7	1	1	3	12
M.A./M.S		5	13	1	1	20
Ph.D./ M.D.		3	1			4
Total		15	15	2	5	37

Table 5.2, Technical Staff Education Level for all Detachments (Parent Activity: NAWCAD PAX) (UIC: N00421)

NOTE: V-22 Ft. Worth, TX and V-22 Wilmington, DE detachments have been moved under NAWCAD's UIC N00421. The following detachments were established based on the movement of BRAC-91&93 functions to Patuxent River Complex. Included are: NAWCAD Willow Grove; NAWCAD DET AEDC Tullahoma; NAWCAD DET Key West; *NAWCAD DET Warminster, PA. None of these detachments have over 50 civilian personnel or own technical facilities.

*This detachment consists of 24 civ, 6 mil & 5 contractors to maintain and operate the Dynamic Flight Simulator (DFS). A separate data call has been submitted by NAWCAD for the DFS. It is included here to reflect BRAC 91&93 functions moving to PAX.

Page 18R (7-22-94) Change 3 UIC: N00421 FOR OFFICIAL USE ONLY

Revised pg

FOR OFFICIAL USE ONLY

Highest	Years of Government and/or Military Service					
Attained						
	Less than 3 Years	3-10 Years	11-15 Years	16-20 Years	More than 20 Years	Total
Grade School						0
High School					1	1
B.A./B.S		7		1	3	12
M.A./M.S		5	13	1	1	20
Ph.D./ M.D.		3	1			4
Total		15	15	2	5	37
						R

Table 5.2, Technical Staff Education Level for all Detachments(Parent Activity: NAWCAD PAX) (UIC: N00421)

NOTE: V-22 Ft. Worth, TX and V-22 Wilmington, DE detachments have been moved under NAWCAD's VIC N00421. The detachments listed above are based on the movement of BRAC-91 and BRAC-93 functions to Patuxent River Complex. Included are: NAVAIRWARCENACDIV Willow Grove; NAVAIRWARCENACDIV DET AEDC Tullahoma; NAVAIRWARCENACDIV DET Key West, and NAVAIRWARCENACDIV DET Warminster, Pa.

c. Are there unique aspects of the activity's location that help or hinder in the hiring of qualified personnel?

Yes, the NAWCADPAX is ideally located approximately 70 miles southeast of Washington, D.C., Annapolis, MD, and Baltimore, MD and surrounded on three sides by the Patuxent River and Chesapeake Bay. The wide range of inviting technical opportunities for government employees and has established a strong base of contractor and industrial support. This area has abundant recreational opportunities including unsurpassed water related sports such as boating and fishing and is also within easy driving distance of a rich cultural life and superb shopping.

> Page 18R (6-21-94) 12 May 1994 UIC N00421 FOR OFFICIAL USE ONLY

(ratent Activity: NAWCAD TAA) (UIC. N00421) N/A								
Highest	Years of Government and/or Military Service							
Degree	}	Ť						
Attained								
	Less than	3-10	11-15	16-20	More than	Total		
	3 Years	Years	Years	Years	20 Years			
Grade						0		
School					1			
High					1	1		
School								
B.A./B.S		7	1	1	3	12		
M.A./M.S		5	13	1	1	20		
			1		╂╢	<u> </u>		
Pn.D./		3	I			4		
M.D.								
Total		15	15	2	5	37		
			╘━═┿╤═════		┶──────────────────────────────────────			

Table 5.2, Technical Staff Education Level for all Detachments (Parent Activity: NAWCAD PAX) (UIC: N00421) N/A

NOTE: V-22 Ft. Worth, TX and V-22 Wilmington, DE detachments have been moved under NAWCAD'S UIC N00421. The detachments listed above are based on the movement of BRAC-91 and BRAC-93 functions to Patuxent River Complex. Included are: NAVAIRWARCENACDIV Willow Grove; NAVAIRWARCENACDIV DET AEDC Tullahoma; NAVAIRWARCENACDIV DET Key West; NAVAIRWARCENACDIV DET Warminster, Pa and Deep Water Test Facility, Oreland, Pa.

> FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

b. Use Table 5.3 (below) to provide data on the number of civilian personnel allocated to Technical Operations with graduate degrees and at least three years of applicable experience that have their highest degree in the fields indicated. Report data as of 31 March 1994. Similarly, use Table 5.4 (below) to provide data for all your separate detachments or sites that did not receive this data call directly. Consolidate data from all of these detachments into one table (5.4). Provide a list of the detachments whose data is included in Table 5.4

Academic field	Number
Physics	1
Chemistry	0
Biology	2
Mathematics/Statistics/ Operations Research	7
Engineering	92
Medical	0
Dental	0
Computer Science	9
Social Science	6
Other Science	3
Non-Science	50
Tot	al 170

Table 5.3, Technical Staff Academic Fields for(Activity: NAWCAD PAX) (UIC: N00421)

7:11

Table 5.3, Technical Staff Academic Fields for

(Activity: NAWCAD PAX) (UIC: N00421) with BRAC-91 and BRAC-93 Technical Staff influx from Webster Field, Warminster and Trenton, NAVAIR DID NOT PROVIDE DATA.

Academic field	Number
Physics	43
Chemistry	4
Biology	2
Mathematics/Statistics/ Operations Research	23
Engineering	564
Medical	0
Dental	0
Computer Science	26
Social Science	. 6
Other Science	10
Non-Science	53
Total	731

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

Revised pg

Academic field	Number
Physics	2
Chemistry	
Biology	
Mathematics/Statistics/ Operations Research	1
Engineering	20
Medical	
Dental	
Computer Science	
Social Science	
Other Science	1
Non-Science	· · · · · · · · · · · · · · · · · · ·
Total	24

Table 5.4,	Technical	Staff A	cademic	: Fields	for all	Detachm	ents
(Parent Ac	tivity: NA	AWCAD	PAX H	RIVER)	(UIC:	N00421)	N/A

NOTE: V-22 Ft. Worth, TX and V-22 Wilmington, DE detachments have been moved under NAWCAD'S UIC N00421. The following detachments were established based on the movement of BRAC-91&93 functions to Patuxent River Complex. Included are: NAWCAD Willow Grove; NAWCAD DET AEDC Tullahoma; NAWCAD DET Key West; *NAWCAD DET Warminster, PA.

*This detachment consists of 24 civ, 6 mil & 5 contractors to maintain and operate the Dynamic Flight Simulator (DFS). A separate data call has been submitted by NAWCAD for the DFS. It is included here to reflect BRAC 91&93 functions moving to PAX.

c. Are there unique aspects of the activity's location that help or hinder in the hiring of qualified personnel?

Yes, the NAWCADPAX is ideally located approximately 70 miles southeast of Washington, D.C., Annapolis, MD, and Baltimore, MD and surrounded on three sides by the Patuxent River and Chesapeake Bay. The wide range of inviting technical opportunities for government employees and has established a strong base of contractor and industrial support. This area has abundant recreational opportunities including unsurpassed water related sports such as boating and fishing and is also within easy driving distance of a rich cultural life and superb shopping.

R

Revieed pg

	THE CHO THE RIVER (UIC:	1100421) 11/A
	Academic field	Number
	Physics	2
	Chemistry	
	Biology	
\backslash	Mathematics/Statistics/ Operations Research	1
	Engineering	20
	Medical	
	Dental	
	Computer Science	
	Social Science	
	Other Science	1
	Non-Science	
	Total	24
-		

Table 5.4, Technical Staff Academic Fields for all Detachments (Parent Activity: NAWCAD PAX_RIVER) (UIC: N00421) N/A

NOTE: V-22 Ft. Worth, TX and V-22 Wilmington, DE detachments have been moved under NAWCAD'S UIC N00421. The following detachments were established based on the movement of BRAC-91&93 functions to Patuxent River Complex. Included are: NAWCAD Willow Grove; NAWCAD DET AEDC Tullahoma; NAWCAD DET Key West; *NAWCAD DET Warminster, PA. None of these detachments have over 50 civilian personnel or own technical facilities.

*This detachment consists of 24 civ, 6 mil & 5 contractors to maintain and operate the Dynamic Flight Simulator (DFS). A separate data call has been submitted by NAWCAD for the DFS. It is included here to reflect BRAC 91&93 functions moving to PAX.

Page 21R (7-22-94) Change 3 UIC: N00421 FOR OFFICIAL USE ONLY R

Enclosure (4)

Keised Pg

FOR OFFICIAL USE ONLY

- - - -

Table 5.4, Technical Staff Academic Fields for all Detachments (Parent Activity: NAWCAD PAX RIVER) (UIC: N00421)

Academic field	Number
Physics	2
Chemistry	
Biology	
Mathematics/Statistics/ Operations Research	1
Engineering	20
Medical	
Dental	
Computer Science	
Social Science	
Other Science	1
Non-Science	
Total	24

Note: V-22 Ft. Worth, TX and V-22 Wilmington, DE detachments have been moved under NAWCAD's UIC N00421. The detachments listed above are based on the movement of BRAC-91 and BRAC-93 functions to Patuxent River Complex. Included are: NAVAIRWARCENACDIV Willow Grove; NAVAIRWARCENACDIV DET AEDC Tullahoma; NAVAIRWARCENACDIV DET Key West, and NAVAIRWARCENACDIV DET Warminster, Pa.

> Page 21R (6-21-94) 12 May 1994 UIC N00421 FOR OFFICIAL USE ONLY

R

LY:	NAWCAD PAA RIVER) (UIC:	<u>NUU421)</u> N/A
	Academic field	Number
	Physics	2
	Chemistry	
	Biology	
	Mathematics/Statistics/ Operations Research	1
	Engineering	20
	Medical	
	Dental	
	Computer Science	
	Social Science	
	Other Science	1
	Non-Science	
	Total	24

- - - -

Table 5.4, Technical Staff Academic Fields for all Detachments (Rarent Activity: NAWCAD PAX RIVER) (UIC: N00421) N/A

Note: V-22 Ft. Worth, TX and V-22 Wilmington, DE detachments have been moved under NAWCAD's UIC N00421. The detachments listed above are based on the movement of BRAC-91 and BRAC-93 functions to Patuxent River Complex. Included are: NAVAIRWARCENACDIV Willow Grove; NAVAIRWARCENACDIV DET AEDC Tullahoma; NAVAIRWARCENACDIV DET Key West; NAVAIRWARCENACDIV DET Warminster, Pa and Deep Water Test Facility, Oreland, Pa.

c. Are there unique aspects of the activity's location that help or hinder in the hiring of qualified personnel?

Yes, the NAWCADPAX is ideally located approximately 70 miles southeast of Washington, D.C., Annapolis, MD, and Baltimore, MD and surrounded on three sides by the Patuxent River and Chesapeake Bay. The wide range of inviting technical opportunities for government employees and has established a strong base of contractor and industrial support. This area has abundant recreational opportunities including unsurpassed water related sports such as boating and fishing and is also within easy driving distance of a rich cultural life and superb shopping.

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

d. List all articles written by the in-house technical staff that were published or accepted for publication in refereed journals since 1 January 1990.

Revised Pg

N00421

R.

PATUXENT RIVER COMPLEX

Analysis of Phenolic Antioxidants in JP-5 Aviation Fuels, Huang, M.A., and Turner, L.M., American Chemical Society, Division of Fuel Chemistry, Preprints Volume 35, No. 4, pp 1255, August 1990

An Accurate Hydrocarbon Type Analysis of All Fuel Types, Sink, W., Hardy, D.R., and Huang, M.A., Fuel Science & Technology International, May 1994

Fuel Nozzle Design for High Temperature Aircraft Engines, Stickles, R., Dodds, W., Koblish, T., Sager, J., and Clouser, S., ASME International Gas Turbine and Aeroengine Congress and Exposition, June 1992

Development of an Innovative High Temperature Gas Turbine Fuel Nozzle; 91-GT-36, Myers, G., Armstrong, J., White, C., Clouser, S., and Harvey, R., ASME International Gas Turbine and Aeroengine Congress and Exposition, June 1991

Thermacoustics of Unsteady Combustion; AIII-90-3928, Mehta, J., Mungur, P., Dodds, W., and Bahr, and D., Clouser, S., AIAA 13th Aeroacoustics Conference, October 1990.

Fuel Effects on Gas Turbine Combuster Dynamics; AIAA-90-1957, Mehta, J., Mungur, P., Dodds, W., Bahr, D., and Clouser, S., AIAA/SAE/ASME/ASEE 26th Joint Propulsion conference, July 1990

Hediger, T., A. Passamante, and Mary Eileen Farrell, "Characterizing attractors using local intrinsic dimensions calculated by singular value decomposition and information theoretic criteria, "Physical Review A 41, 5325 (1990).

Farrell, Mary Eileen, A. Passamante, and T. Hediger, "Comparing a nearest neighbor estimator of local attractor dimensions for noisy data to the correlation dimension," *Physical Review A* 41, 6591 (1990).

NAWCHO Change NAWC-21D NBC 9/20/94

PAGE 22 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY d. List all articles written by the in-house technical staff that were published or accepted for publication in refereed journals since 1 January 1990.

NÀWCAD PATUXENT RIVER

Proceeding July 1990 - "Blind Man's Bluff" by Ken Harmon. Combat Identification Systems Conference (CISC) 94 - "NTCR" (Non-Cooperative Target Recognition) by Thuy Le (to be published).

PATUXENT RIVER COMPLEX

Analysis of Rhenolic Antioxidants in JP-5 Aviation Fuels, Huang, M.A., and Turner, L.M., American Chemical Society, Division of Fuel Chemistry, Preprints Volume 35, No. 4, pp 1255, August 1990

An Accurate Hydrocarbon Type Analysis of All Fuel Types, Sink, W., Hardy, D.R., and Huang, M.A., Fuel Science & Technology International, May 1994

Combustion Technology Needs for Advanced High Pressure Cycle Engines, Clouser, S., and Kamin, R., NATO Advisory Group for Aerospace Research and Development, Propulsion and Energetics Panel 81st Symposium, Heat Transfer and Cooling Gas Turbines, May 1993

Determination of Turbine Black Heat Transfer and Film Cooling Effectiveness in Unsteady Wake Flow Conditions, Sautner, M., Clouser, and S., Han, Prof. J.C., NATO Advisory Group for Aerospace Research and Development, Propulsion and Energetics Panel 80th Symposium, Heat Transfer and Cooling in Gas Turbines, October 1992.

Fuel Nozzle Design for High Temperature Aircraft Engines, Stickles, R., Dodds, W., Koblish, T., Sager, J., and Clouser, S., ASME International Gas Turbine and Aeroengine Congress and Exposition, June 1992

Development of an Innovative High Temperature Gas Turbine Fuel Nozzle; 91-GT-36, Myers, G., Armstrong, J., White, C., Clouser, S., and Harvey, R., ASME International Gas Turbine and Aeroengine Congress and Exposition, June 1991

Thermacoustics of Unsteady Combustion; AIII-90-3928, Mehta, J., Mungur, P., Dodds, W., and Bahr, and D., Clouser, S., AIAA 13th Aeroacoustics Conference, October 1990.

Fuel Effects on Gas Turbine Combuster Dynamics; AIAA-90-1957, Mehta, J., Mungur, P., Dodds, W., Bahr, D., and Clouser, S., AIAAXSAE/ASME/ASEE 26th Joint Propulsion conference, July 1990

Hediger, T., A. Passamante, and Mary Eileen Farrell, "Characterizing attractors using local intrinsic dimensions calculated by singular value decomposition and information theoretic criteria, "Physical Review A 41, 5325 (1990).

Farrell, Mary Eileen, A. Passamante, and T. Hediger, "Comparing a nearest neighbor estimator of local attractor dimensions for noisy data to the correlation dimension," *Physical Review A* 41, 6591 (1990).

7.7

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

Draham, Michael, A. Passamante, Mary Eileen Farrell, and Nancy Harned, "Using General Nonlinear Models for Chaotic Signals," in *Proceedings of the Fourth IEEE Digital Signal Processing Workshop*, New Paltz, New York, 16-19 September 1990.

Rao, S. S., C. Vaidyanathan, Mary Eileen Farrell, and A. Passamante, "Identification of chaotic systems using higher order cumulants," in *Proceedings* of the Fourth IEEE Digital Signal Processing Workshop, New Paltz, New York, 16-19 September 1990.

Twardowski, A., K. Pakula, I. Perez, P. Wise, J.E. Crow, "Magneto Reflectance and Magnetization of ZnFeSe Semimagnetic Semiconductor", *Phys. Rev. B* 42, 7567 (1990)

Rud, R., Simms, R. W., Ferguson, G. D., "Advanced Tunable Solid-State EOCM Transceiver Development (U)," <u>Proceedings 28th IRIS IRCM Symposium</u>, Dec 1990. (SECRET)

Rud, R., Davis, J. P., Ferguson, G. D., Giranda, C., "Laser Augmented Expendables (U)," <u>Proceedings 28th IRIS IRCM Symposium</u>, Dec 1990. (SECRET)

Rud, R., Snavely, C. D., Ferguson, G. D., "Miniature-Flashlamp Pumped Solid-State Laser Development (U)," <u>Proceedings 28th IRIS IRCM Symposium</u>, Dec 1990. (SECRET)

Kaneko, R., L. Bakow, and E. W. Lee, Aluminum alloy 6013 sheet for new U.S. Navy aircraft, <u>J. of Metals</u>, May, 1990, P. 16.

Seibert, E. J., Taylor, M. E., Ferguson, G. D., Rud, R., "Metal Vaper Laser Development for IRCM (U)," <u>Proceedings 28th IRIS IRCM Symposium</u>, Dec 1990. (SECRET)

Taylor, L. H., Wutzke, S. A., Riedel, E. P., Ferguson, G. D., Rud, R., Seibert, E. J., "Multiwavelength co2 Laser Designs for Countermeasures," <u>Proceedings</u> 28th IRIS IRCM Symposium, Dec 1990.

Rud, R., Ferguson, G. D., Hall, N. J., Snavely, C. D., Hanssen, F. S., "Fiber-Optically Coupled Laser Warning Receiver (U)," <u>Proceedings 12th Annual Lasers</u> on the Modern Battlefield Conference, Nov. 1990. (CONFIDENTIAL)

Marrs, C. D., Mason, B. E., Rud, R., Ferguson, G. D., "Advanced Expendable Laser (U)," <u>Proceedings 12th Annual Lasers on the Modern Battlefield</u> <u>Conference</u>, Nov 1990. (SECRET)

Lee, E. W., C. Neu and J. Kozol, Al-Li alloys and ultrahigh-strength steels for U.S. Navy aircraft, <u>J. of Metals</u>, May, 1990, P. 11.

PAGE 23 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY Draham, Michael, A. Passamante, Mary Eileen Farrell, and Nancy Harned, "Using General Nonlinear Models for Chaotic Signals," in *Proceedings of the* Fourth IEEE Digital Signal Processing Workshop, New Paltz, New York, 16-19 September 1990.

Rao, S. S., C. Vaidyanathan, Mary Eileen Farrell, and A. Passamante, "Identification of chaotic systems using higher order cumulants," in *Proceedings* of the Fourth IEEE Digital Signal Processing Workshop, New Paltz, New York, 16-19 September 1990.

Twardowski, A., K. Pakula, I. Perez, P. Wise, J.E. Crow, "Magneto Reflectance and Magnetization of ZnFeSe Semimagnetic Semiconductor", *Phys. Rev. B* 42, 7567 (1990)

Gershman, V., Lin, J. Y., Daryoush, A. S., and Rosen, W. A., "Design of 1 Gb/S LED Based Optical Transmitter for Data Bus Network, "Proc., of the 8th Benjamin Franklin Symp. on Antenna and Microwave Technology in the 1990's, Philadelphia, PA.

Rud, R., Simms, R. W., Ferguson, G. D., "Advanced Tunable Solid-State EOCM Transceiver Development (U)," <u>Proceedings 28th IRIS IRCM Symposium</u>, Dec 1990. (SECRET)

Rud, R., Davis, J. P., Ferguson, G. D., Giranda, C., "Laser Augmented Expendables (U)," <u>Proceedings 28th IRIS IRCM Symposium</u>, Dec 1990. (SECRET)

Rud, R., Snavely, C. D., Ferguson, G. D., "Miniature-Flashlamp Pumped Solid-State Laser Development (U)," <u>Proceedings 28th IRIS IRCM Symposium</u>, Dec 1990. (SECRET)

Kaneko, R., L. Bakow, and E. W. Lee, Aluminum alloy 6013 sheet for new U.S. Navy aircraft, <u>J. of Metals</u>, May, 1990, P. 16.

Seibert, E. J., Taylor, M. E., Ferguson, G. D., Rud, R., "Metal Vaper Laser Development for IRCM (U)," <u>Proceedings 28th IRIS IRCM Symposium</u>, Dec 1990. (SECRET)

Taylor, L. H., Wutzke, S. A., Riedel, E. P., Ferguson, G. D., Rud, R., Seibert, E. J., "Multiwavelength co2 Laser Designs for Countermeasures," <u>Proceedings</u> <u>28th IRIS_IRCM Symposium</u>, Dec 1990.

Rud, R., Ferguson, G. D., Hall, N. J., Snavely, C. D., Hanssen, F. S., "Fiber-Optically Coupled Laser Warning Receiver (U)," <u>Proceedings 12th Annual Lasers</u> on the Modern Battlefield Conference, Nov. 1990. (CONFIDENTIAL)

Marrs, C. D., Mason, B. E., Rud, R., Ferguson, G. D., "Advanced Expendable Laser (U)," <u>Proceedings 12th Annual Lasers on the Modern Battlefield</u> <u>Conference</u>, Nov 1990. (SECRET)

Lee, E. W., C. Neu and J. Kozol, Al-Li alloys and ultrahigh-strength steels for U.S. Navy aircraft, <u>J. of Metals</u>, May, 1990, P. 11.

FOR OFFICIAL USE ONLY

23

McEachern, Dr. James and Teresa DeDominus, "Drag and Strum Characteristics of Non-Round Strum Suppressing Cable", Proceedings of Oceans '90, IEEE, Sept 1990.

Metersky M. L., J. Ryder, and M. A. Leonard, "A Change in System Design Emphasis: From Machine to Human," Advanced Technologies for C2 System Engineering, S. J. Andriole, Editor, AFCEA International Press, (1991).

Passamante, A. and Mary Eileen Farrell, "Characterizing attractors using local intrinsic dimension via higher order statistics," *Physical Review A* 43, 5268 (1991).

Albano, A. M., A Passamante, and Mary Eileen Farrell, "Using higher-order correlations to define an embedding window," *Physical D* 54, 85 (1991).

Waeber, B.E., "CCD Performance Model for Airborne Reconnaissance (U)," <u>Proceedings SPIE, Vol. 1538, Airborne Reconnaissance XV</u>, Dec 1991. (Unclassified)

Mohl, D., "Smart Polymeric Materials for Active Camouflage," <u>A D P A</u> <u>Symposium on Active Materials and Adaptive Structures</u>, 5 Nov 1991. (Unclassified)

Kebede, A., J.P. Rodriguez, I. Perez, T. Mihalisin, G. H. Myer, J. E. Crow, P. P. Wise, P. Schlottmann, "Magnetic Properties of Non-Supercondicting (Y,Pr) Ba2Cu3O6", *J Of Appl Phys.* 69, no 8, p5376, 1991.

Gershman, V., Daryoush, A. S., Lin, J. Y., and Rosen, W. A., "1.25 Gb/S Wide band LED driver Design Using Active Matching Techniques, "SPIE Proceedings 1474, pg. 75-82, 1-3 April, 1991, Orlando, FL.

Rud, R., Simms, R. W., Ferguson, G. D., Snavely, C. D., Boczar, B., Schaeflein, C., Korevaar, E., Quinn, T. G., "Tunable, Solid-State Laser Transceiver Development for EOCM (U)," <u>Proceedings 29th IRIS IRCM</u> <u>Symposium</u>, Dec 1991. (SECRET)

Rud, R., Ferguson, G. D., Szeto, O., Moore, R. D., Barone, F. R., Lai, H., "Laser activated Towed IR Decoy (U)," <u>Proceedings 29th IRIS IRCM</u> <u>Symposium</u>, Dec 1991. SECRET)

Kandra, J. T. and E. W. Lee, Deformation and microstructure of a high Nb, TiAl Alloy, Accepted to <u>Metallurgical Transaction</u>.

Ferguson, G. D., Rud, R., Taylor, M. E., Seibert, E. J., "Laser Options for Airborne and Shipboard IRCM Systems (U), "<u>Proceedings 29th IRIS IRCM Symposium</u>, Dec 1991. (SECRET)

PAGE 24 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY McEachern, Dr. James and Teresa DeDominus, "Drag and Strum Characteristics of Non-Round Strum Suppressing Cable", Proceedings of Oceans '90, IEEE, Sept 1990.

Metersky M. L., J. Ryder, and M. A. Leonard, "A Change in System Design Emphasis: From Machine to Human," Advanced Technologies for C2 System Engineering, S. J. Andriole, Editor, AFCEA International Press, (1991).

Passamante, A. and Mary Eileen Farrell, "Characterizing attractors using local intrinsic dimension via higher order statistics," *Physical Review A* 43, 5268 (1991).

Albano, A. M., A Passamante, and Mary Eileen Farrell, "Using higher-order correlations to define an embedding window," *Physical D* 54, 85 (1991).

Waeber, B.E., "CCD Rerformance Model for Airborne Reconnaissance (U)," <u>Proceedings SPIE, Vol. 1538, Airborne Reconnaissance XV</u>, Dec 1991. (Unclassified)

Mohl, D., "Smart Polymeric Materials for Active Camouflage," <u>A D P A</u> <u>Symposium on Active Materials and Adaptive Structures</u>, 5 Nov 1991. (Unclassified)

Kebede, A., J.P. Rodriguez, I. Perez, T. Mihalisin, G. H. Myer, J. E. Crow, P. P. Wise, P. Schlottmann, "Magnetic Properties of Non-Supercondicting (Y,Pr) Ba2Cu3O6", *J Of Appl Phys.* 69, no 8, p5376, 1991.

Gershman, V., Daryoush, A. S., Lin, J. Y., and Rosen, W. A., "1.25 Gb/S Wide band LED driver Design Using Active Matching Techniques, "SPIE Proceedings 1474, pg. 75-82, 1-3 April, 1991, Orlando, FL

Gershman, V., Lin, J. Y., Daryoush, A. S., and Rosen, W. A., "Design Techniques for LED Drivers with Modulation Rates Above 1 Gb/S," Proc. of the 9th Benjamin Franklin Symp. on Antenna and Microwave Technology in the 1900's, March 1991, Philadelphia, PA.

Rud, R., Simms, R. W., Ferguson, G. D., Snavely, C. D., Boczar, B., Schaeflein, C., Korevaar, E., Quinn, T. G., "Tunable, Solid-State Laser Transceiver Development for EOCM (U)," <u>Proceedings 29th IRIS IRCM</u> Symposium, Dec 1991. (SECRET)

Rud, R., Ferguson, G. D., Szeto, O., Moore, R. D., Barone, F. R., Lai, H., "Laser activated Towed IR Decoy (U)," <u>Proceedings 29th IRIS IRCM</u> <u>Symposium</u>, Dec 1991. SECRET)

Koper, H, "KD-144 RECCE Sensor," <u>NAWCADWAR</u>, 1991. (Unclassified)

Kandra, J. T. and E. W. Lee, Deformation and microstructure of a high Nb, TiAl Alloy, Accepted to <u>Metallurgical Transaction</u>.

Ferguson, G. D., Rud, R., Taylor, M. E., Seibert, E. J., "Laser Options for Airborne and Shipboard IRCM Systems (U), "<u>Proceedings 29th IRIS IRCM</u> <u>Symposium</u>, Dec 1991. (SECRET)

24

PREDECISIONAL INFORMATION

Rud, R., Taylor, M. E., Ferguson, G. D., Shapiro, A. R., "Active IRCM Techniques for Low Signature Detection (U), "<u>Proceedings 29th IRIS IRCM Symposium</u>, Dec 1991. (SECRET)

Hanssen, F. S., Rud, R.; Quinn, T. G., Shapiro, A. R., "Active IRCM Techniques for Low Signature Detection (U)," <u>Proceedings 29th IRIS IRCM Symposium</u>, Dec. 1991. (SECRET)

Lee, E. W., J. Cook, A. Khan, R. Mahapatra and J. Waldman, The oxidation resistance of MoSi2 based composites, <u>J. of Metals</u>, Mar., 1991, P. 54.

Frazier, William E. and John E. Benci, "Crystal Structure and Phase Relationships In As-Cast and Melt Spun A13Ti and A13Ti Plus Copper," <u>Scripta</u> <u>Metallurgica</u>, 25 (10) 1991.

Donnellan, Mary E. and William E. Frazier, "Interfacial Reactions in A13Ti Composites," SAMPE - The 8th International Conference on Composite Materials, Honolulu, July 1991.

Frazier, William E., Mary E. Donnellan, Paul Architetto, and Randal Sand, "The Status of HYMATs - A New Category of Hybrid Materials," <u>Journal of Metals</u>, May 1991.

McEachern, Dr. James and Mr. David Hammond, "A Dynamic Model for Deploying Cable Systems," Proceedings of Oceans '91, IEEE, Sept 1991.

Billmers, R. I. and A. L. Smith, "Ultraviolet-visible absorption spectra of equilibrium sulfar vapor: Molar absorptivity spectra of S3 and S4", <u>Journal of Physical Chemistry</u>, 95 (1991) p. 4242.

Billmers, R. I., J. Davis & M. Squicciarini, "A tunable hole-burning filter for lidar applications," <u>Optics Communications</u>, 85 (1991) p. 26.

Davis, J. P., A.Smith, C. Giranda and M. Squicciarini, "Laser induced Plasma Formation in Xe, Ar, N, and O at the first four Nd-YAG harmonics," Applied Optics <u>30</u>m 4358 (1991).

Billmers, R. J., Davis, J., and Squicciarini, M., "A Tunable Hole-Burning Filter for Lidar Applications," Opt. Comm. <u>85</u>, (1991) pp 26-30.

Albano, A. M., A. Passamante, T. Hediger, and Mary Eileen Farrell, "Using Neural Nets to Look for Chaos," *Physical D* 58, 1 (1992).

PAGE 25 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY Rud, R., Taylor, M. E., Ferguson, G. D., Shapiro, A. R., "Active IRCM Techniques for Low Signature Detection (U), "<u>Proceedings 29th IRIS IRCM</u> <u>Symposium</u>, Dec 1991. (SECRET)

Hanssen, F. S., Rud, R.; Quinn, T. G., Shapiro, A. R., "Active IRCM Techniques for Low Signature Detection (U)," <u>Proceedings 29th IRIS IRCM Symposium</u>, Dec. 1991. (SECRET)

Lee, E. W., J. Cook, A. Khan, R. Mahapatra and J. Waldman, The oxidation resistance of MoSi2 based composites, <u>J. of Metals</u>, Mar., 1991, P. 54.

Donaher P., Traynelis V., Roach R., Kojimoto H., and Goel V., "Stabilization after anterior decompression: Comparison of anterior plating and posterior wiring methods," Proceedings of the 11th Annual North American Cervical Spine Research Society, Philadelphia, PA, December 1991.

Frazier, William È and Mary E. Donnellan, "HIP Proceeding of Aluminum-Rich Intermetallics and Aluminum-Rich Intermetallic Composites," (Metals Park, OH: ASM, 1991).

Frazier, William E. and John E. Benci, "Crystal Structure and Phase Relationships In As-Cast and Melt Spun A13Ti and A13Ti Plus Copper," <u>Scripta</u> <u>Metallurgica</u>, 25 (10) 1991.

Donnellan, Mary E. and Williem E. Frazier, "Interfacial Reactions in A13Ti Composites," SAMPE - The 8th International Conference on Composite Materials, Honolulu, July 1991.

Frazier, William E., Mary E. Donnellan, Paul Architetto, and Randal Sand, "The Status of HYMATs - A New Category of Hybrid Materials," <u>Journal of Metals</u>, May 1991.

McEachern, Dr. James and Mr. David Hammond, "A Dynamic Model for Deploying Cable Systems," Proceedings of Oceans '91, IEEE, Sept 1991.

Billmers, R. I. and A. L. Smith, "Ultraviolet-visible absorption spectra of equilibrium sulfar vapor: Molar absorptivity spectra of S3 and S4", <u>Journal of Physical Chemistry</u>, 95 (1991) p. 4242.

Billmers, R. I., J. Davis & M. Squicciarini, "A tunable hole-burning filter for lidar applications," <u>Optics Communications</u>, 85 (1991) p. 26.

Davis, J. P., A.Smith, C. Giranda and M. Squicciarini, "Laser induced Plasma Formation in Xe, Ar, N, and O at the first four Nd-YAG harmonics," Applied Optics <u>30</u>m 4358 (1991).

Billmers, R. J., Davis, J., and Squicciarini, M., "A Tunable Hole-Burning Filter for Lidar Applications," Opt. Comm. <u>85</u>, (1991) pp 26-30.

Albano, A. M., A. Passamante, T. Hediger, and Mary Eileen Farrell, "Using Neural Nets to Look for Chaos," *Physical D* 58, 1 (1992).

PREDECISIONAL INFORMATION

Passamante, A., Mary Eileen Farrell, and Richard F. Wayland, Jr., "Application of Nonlinear Processing to Airborne ASW Broadband Acoustic Data," Journal of Underwater Acoustics 42, 951 (1992).

Mazel, David S. and Mary Eileen Farrell, "Classification of Time-Series Data with Iterated Function System Features," in *Proceedings of the Fifth IEEE Digital* Signal Processing Workshop, Starved Rock State Park, Illinois, 13-16 September 1992.

Koper, H., "Future of Tactical Imaging Reconnaissance," <u>SPIE San Diego, CA</u>, 1992. (Unclassified)

Kanofsky, A. S., Gershman, V., and Rosen, W., "Radiation Effects on the Components of Optical LAN Systems, "SPIE Proceedings 1791, pages 164-176, 8-9 Sept. 1992, Boston, MA.

Rud, R., Simms, R. W., Ferguson, G. D., "Common Aperture Design for Airborne EO/IRCM and Warning Integration (U)," <u>Proceedings 30th IRIS</u> <u>Specialty Group Meeting on IRCM</u>, Dec 1992. (SECRET)

Cook, J. E. W. Lee and R. Mahapatra, Oxidation of MoSi2 based composites, <u>Materials Science and Engineering</u>, A155, 1992, P. 183.

Grupta, M., J. Juarez-Islas, W. E. Frazier, F. A. Mohamed, and E. J. Lavernia, "Microstructure, Excess Solid Solubility, and Elevated Temperature Mechanical Behavior of Spray-Atomized and CoDeposited Al-Ti-SiCp," <u>Metallurgical</u> <u>Transactions B</u>, 23B (Dec 1992), 719-736.

Frazier, William E. and Jim S. J. Chen, "The Melt Spinning of Gamma Titanium Aluminides," JOM. 44 (11) (Nov. 1992), 52-54.

Bourell, David L. and William E. Frazier, "In the Aerospace Materials Processing Field, "Everything Old is New Again," JOM. 44 (11) (Nov. 1992), 44.

Chen, Jim S. J., T. J. Praisner, L. A. Fields, R. T. Norhold, and William E. Frazier, "Rapid Solidification Processing of Titanium Aluminides by Melt Spinning," Conf. Proceedings of the First International (New York, NY: ASME, Nov. 1992).

Chen, Jim S. J., W. E. Frazier, and A. A. Tseng, "Heat Transfer in Melt Spinning of Intermetallic Materials," Conf. Proceedings of the First International Conference: Transport Phenomena in Processing, (Honolulu, Hawaii, March 1992).

> PAGE 26 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY

Passamante, A., Mary Eileen Farrell, and Richard F. Wayland, Jr., "Application of Nonlinear Processing to Airborne ASW Broadband Acoustic Data," *Journal of Underwater Acoustics* 42, 951 (1992).

Mazel, David S. and Mary Eileen Farrell, "Classification of Time-Series Data with Iterated Function System Features," in *Proceedings of the Fifth IEEE Digital* Signal Processing Workshop, Starved Rock State Park, Illinois, 13-16 September 1992.

Koper, H. "Future of Tactical Imaging Reconnaissance," <u>SPIE San Diego, CA</u>, 1992. (Unclassified)

Kanofsky, A. S., Gershman, V., and Rosen, W., "Radiation Effects on the Components of Optical LAN Systems, "SPIE Proceedings 1791, pages 164-176, 8-9 Sept. 1992, Boston, MA.

Rosen, W. A., Kline, T. A., Gershman, V., Herman, W. J., Alfonsi, E. A., Daryoush, A. S., and Lin, J. Y., "A High Speed Fiber Optic Network for Sensor Data Distribution," GOMAC-92 Digest of Papers, pg., November 1992, Las Vegas, ND.

Rud, R., Simms, R. W., Rerguson, G. D., "Common Aperture Design for Airborne EO/IRCM and Warning Integration (U)," <u>Proceedings 30th IRIS</u> <u>Specialty Group Meeting on IRGM</u>, Dec 1992. (SECRET)

Cook, J. E. W. Lee and R. Mahapatra, Oxidation of MoSi2 based composites, <u>Materials Science and Engineering</u>, A155, 1992, P. 183.

Kojimoto, H., Goel V., Donaher P., Yasui N., and Weinstein J., "Design and development of an anterior spine instrumentation for metastatic vertabrae," 19th Meeting of the International Society for the Study of the Lumbar Spine, Chicago, IL, May 1992.

Grupta, M., J. Juarez-Islas, W. E. Frazier, F. A. Mohamed, and E. J. Lavernia, "Microstructure, Excess Solid Solubility, and Elevated Temperature Mechanical Behavior of Spray-Atomized and CoDeposited Al-Ti-SiCp," <u>Metallurgical</u> <u>Transactions B</u>, 23B (Dec 1992), 719-736.

Frazier, William E. and Jim S. J. Chen, "The Melt Spinning of Gamma Titanium Aluminides," JOM. 44 (11) (Nov. 1992), 52-54.

Bourell, David L. and William E. Frazier, "In the Aerospace Materials Processing Field, "Everything Old is New Again," JOM. 44 (11) (Nov. 1992), 44.

Chen, Jim S. J., T. J. Praisner, L. A. Fields, R. T. Norhold, and William E. Frazier, "Rapid Solidification Processing of Titanium Aluminides by Melt Spinning," Conf. Proceedings of the First International (New York, NY: ASME, Nov. 1992).

Chen, Jim S. J., W. E. Frazier, and A. A. Tseng, "Heat Transfer in Melt Spinning of Intermetallic Materials," Conf. Proceedings of the First International Conference: Transport Phenomena in Processing, (Honolulu, Hawaii, March 1992).

B++*

PROFICIAL USE ONLY PROFICIAL INFORMATION

McEachern, J. F. and G. C. Lauchie, "A Study of Flow Induced Noise on a Bluff Body," Proceedings of the International Symposium on Flow-Induced Noise and Vibration, Volume 13, ASME; November 1992.

Passamante, A., Mary Eileen Farrell, and R. Wayland, "Application of Nonlinear Processing to Airborne ASW Broadband Acoustic Data," U. S. Navy Journal of Underwater Acoustics <u>42</u>m 951 (1992).

Albano, A. M., A. Passamante, T. Hediger, and Mary Eileen Farrell, "Using Neural Nets to Look for Chaos," Physical D <u>58</u>, 1 (1992).

McEachern, James F. and Lauchle, Gerald C.; "A Study of Flow Induced Noise on a Bluff Body;" published in <u>Flow-Structure and Flow-Sound Interactions</u>, T. M. Farabee and M. P. Padoussis eds. ASME, 1992.

Gabrielson, Thomas B., U. S. Navy Journal of Underwater Acoustics (U), July 92, Volume 47, No. 3, "Very-Low-Frequency Bottom Interaction Studies with Sonobuoys," p. 839 (1992).

U.S. Navy Journal of Underwater Acoustics, July 92, Volume 47, No. 3 Special Feature: "Airborne ASW" (U) (whole issue authored by NAWC personnel)

DeChico, Robert A., U. S. Navy Journal of Underwater Acoustics (U), July 92, Volume 47, No. 3, "Hydrophones for Advanced Sonobuoys," p. 857 (1992).

Dormuth, MaryBeth, U. S. Navy Journal of Underwater Acoustics (U), July 92, Volume 47, No. 3, "Micromachined Hydrophones," p. 879 (1992).

Barclay, William and John C. Cochran, U. S. Navy Journal of Underwater Acoustics (U), July 92, Volume 47, No. 3, "Slotted Cylinder Projector Technology Development (U)," p. 889 (1992).

Passamante, Anthony P., Mary Eileen Farrell, and Richard F. Wayland, Jr., U. S. Navy Journal of Underwater Acoustics (U), July 92, Volume 47, No. 3, "Application of Nonlinear Processing to Airborne ASW Broadband Acoustic Data (U)," p. 951 (1992).

Hediger, Timothy B., Glenn J. Fala, and Eduardo D. Danganan, U. S. Navy Journal of Underwater Acoustics (U), July 92, Volume 47, No. 3, "An Expert System for Passive Acoustic Submarine Classification (U)," p. 967 (1992).

Garabed, Edward P., U. S. Navy Journal of Underwater Acoustics (U), July 92, Volume 47, No. 3, "Sensor Data Fusion for Airborne ASW (U)," p. 979 (1992).

Junod, Michael T., U. S. Navy Journal of Underwater Acoustics (U), July 92, Volume 47, No. 3, "In-Buoy Trigger Developments (U)," p. 995 (1992).

Macur, Eugene A., U. S. Navy Journal of Underwater Acoustics (U), July 92, Volume 47, No. 3, "In-Buoy Processing," p. 1011 (1992).

PAGE 27 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY
Talia, J. E., T. T. Guy, E. V. Barrera, and W. E. Frazier, "Interface Strengthened, Reactive Sintered Al-Ti Composites," (Warrendale, PA: TMS, March 1992).

McEachern, J. F. and G. C. Lauchie, "A Study of Flow Induced Noise on a Bluff Body," Proceedings of the International Symposium on Flow-Induced Noise and Vibration, Volume 13, ASME; November 1992.

Passamante, A., Mary Eileen Farrell, and R. Wayland, "Application of Nonlinear Processing to Airborne ASW Broadband Acoustic Data," U. S. Navy Journal of Underwater Acoustics <u>42</u>m 951 (1992).

Albano, A. M., A. Passamante, T. Hediger, and Mary Eileen Farrell, "Using Neural Nets to Lock for Chaos," Physical D <u>58</u>, 1 (1992).

McEachern, James F. and Lauchle, Gerald C.; "A Study of Flow Induced Noise on a Bluff Body;" published in <u>Flow-Structure and Flow-Sound Interactions</u>, T. M. Farabee and M. P. Padoussis eds. ASME, 1992.

Gabrielson, Thomas B., U. S. Navy Journal of Underwater Acoustics (U), July 92, Volume 47, No. 3, "Very-Low-Frequency Bottom Interaction Studies with Sonobuoys," p. 839 (1992).

U.S. Navy Journal of Underwater Acoustics, July 92, Volume 47, No. 3 Special Feature: "Airborne ASW" (U) (whole issue authored by NAWC personnel)

DeChico, Robert A., U. S. Navy Journal of Underwater Acoustics (U), July 92, Volume 47, No. 3, "Hydrophones for Advanced Sonobuoys," p. 857 (1992).

Dormuth, MaryBeth, U. S. Navy Journal of Underwater Acoustics (U), July 92, Volume 47, No. 3, "Micromachined Hydrophones," p. 879 (1992).

Barclay, William and John C. Cochran, U. S. Navy Journal of Underwater Acoustics (U), July 92, Volume 47, No. 3, "Slotted Cylinder Projector Technology Development (U)," p. 889 (1992).

Passamante, Anthony P., Mary Eileen Farrell, and Richard F. Wayland, Jr., U. S. Navy Journal of Underwater Acoustics (U), July 92, Volume 47, No. 3, "Application of Nonlinear Processing to Airborne ASW Broadband Acoustic Data (U)," p. 951 (1992).

Hediger, Timothy B., Glenn J. Fala, and Eduardo D. Danganan, U. S. Navy Journal of Underwater Acoustics (U), July 92, Volume 47, No. 3, "An Expert System for Passive Acoustic Submarine Classification (U)," p 967 (1992).

Garabed, Edward P., U. S. Navy Journal of Underwater Acoustics (U), July 92, Volume 47, No. 3, "Sensor Data Fusion for Airborne ASW (U)," p. 979 (1992).

Junod, Michael T., U. S. Navy Journal of Underwater Acoustics (U), July 92, Volume 47, No. 3, "In-Buoy Trigger Developments (U)," p. 995 (1992).

Macur, Eugene A., U. S. Navy Journal of Underwater Acoustics (U), July 92, Volume 47, No. 3, "In-Buoy Processing," p. 1011 (1992).

PREDECISIONAL INFORMATION

Recived pg N00421

Allen, Frank R., Attilio Gatto, and Kevin C. Stangl, U. S. Navy Journal of Underwater Acoustics (U), July 92, Volume 47, No. 3, "Air Active Concept Assessment Study (U)," p. 1023 (1992).

Metersky, M. L., "A Decision Oriented Approach to System Design and Development," IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 4 (1993)

Wayland, R., D. Bromley, D. Pickett, and A. Passamante, "Recognizing determinism in a time series," *Physical Review Letters* 70, 500 (1993).

Wayland, R., D. Pickett, D. Bromley, and A. Passamante, "Measuring the predictability of noisy recurrent time series," *International Journal of Bifurcations and Chaos* 3, 797 (1993).

Shen, C.N., "Demonstration of Adaptive Acoustic Cancellation for Removal of Own Platform Micro-doppler Interference (U)," <u>Proceedings IRIS Active</u> <u>Systems</u>, Nov 1993. (unclassified)

Mohl, D.B., Donn, M. (Navmar), "Automatic Aircraft Identification Using aCO2 Laser Radar Vibration Sensing System (U)," <u>Proceedings IRIS Active Systems</u>, Nov 1993. (Unclassified)

Scharpf, W. and B. Boczar, "Multimode 2.1 micron Optical Parametric Oscillator Based on Walk-off Compensated LiNbO3," presented at O-E Lase '93, Los Angeles, CA, January 1993, published in SPIE Proceedings Vol. 1869, #1869-23 p195.

DeSipio, R.A., "Feasibility of a Ship Board Active EO Sensor for the Detection of Shallow Water Targets (U)," <u>Proceedings IRIS Active Systems</u>, Nov 1993. (Unclassified).

Kent, D., Columbo, J. (VEDA), "Image Data Management and Navy Needs," <u>SPIE Conference Miramar</u>, Jul 1993. (Unclassified).

Mohl, D., "Low-Cost High Performance EO Stand-Off System," <u>SPIE</u> <u>Symposium on Optics. Imaging. and Instrumentation</u>, July 1993. (Unclassified).

Kim, N. J. and E. W. Lee, Effect of T1 precipitate on the anisotropy of Al-Li Alloy 2090, <u>Acta Metall. Mater</u>, Vol. 41, No. 3, 1993, P. 941.

Traynelis V., Donaher P., Roach R., Kojimoto H., and Goel V., "Biomechanical comparison of anterior Caspar plate and three level posterior fixation techniques in a human cadaveric model," Journal of Neurosurgy 79:96-103, 1993.

PAGE 28 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY Allen, Frank R., Attilio Gatto, and Kevin C. Stangl, U. S. Navy Journal of Underwater Acoustics (U), July 92, Volume 47, No. 3, "Air Active Concept Assessment Study (U)," p. 1023 (1992).

Bailey W., and R. Singh, "Fuzzy Logic Applications to Multisensor Tracking," Technical Proceedings, pages 937-970 (1993).

Metersky, M. L., "A Decision Oriented Approach to System Design and Development," IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 4 (1993)

Wayland, R., D. Bromley, D. Pickett, and A. Passamante, "Recognizing determinism in a time series," *Physical Review Letters* 70, 500 (1993).

Wayland, R., D. Pickett, D. Bromley, and A. Passamante, "Measuring the predictability of noisy recurrent time series," *International Journal of Bifurcations and Chaos* 3, 797 (1993).

Shen, C.N., "Demonstration of Adaptive Acoustic Cancellation for Removal of Own Platform Micro-doppler Interference (U)," <u>Proceedings IRIS Active</u> <u>Systems</u>, Nov 1993. (unclassified)

Mohl, D.B., Donn, M. (Navmar), "Automatic Aircraft Identification Using aCO2 Laser Radar Vibration Sensing System (U)," <u>Proceedings IRIS Active Systems</u>, Nov 1993. (Unclassified)

Scharpf, W. and B. Boczar, "Multimode 2.1 micron Optical Parametric Oscillator Based on Walk-off Compensated LiNb 3," presented at O-E Lase '93, Los Angeles, CA, January 1993, published in SPIE Proceedings Vol. 1869, #1869-23 p195.

DeSipio, R.A., "Feasibility of a Ship Board Active EO Sensor for the Detection of Shallow Water Targets (U)," <u>Proceedings NRIS Active Systems</u>, Nov 1993. (Unclassified).

Kent, D., Columbo, J. (VEDA), "Image Data Management and Navy Needs," <u>SPIE Conference Miramar</u>, Jul 1993. (Unclassified).

Mohl, D., "Low-Cost High Performance EO Stand-Off System," <u>SPIE</u> Symposium on Optics, Imaging, and Instrumentation, July 1993. (Unclassified).

Kim, N. J. and E. W. Lee, Effect of T1 precipitate on the anisotropy of Al-Li Alloy 2090, <u>Acta Metall, Mater</u>, Vol. 41, No. 3, 1993, P. 941

Lee, E. W., Development of Al-Li alloys for U.S. Navy aircraft, <u>Conference</u> <u>Proceedings</u>, LiMAT-93, June, 1993, ISBN 89-85510-00-2, P. 79

Traynelis V., Donaher P., Roach R., Kojimoto H., and Goel V., "Biomechanical comparison of anterior Caspar plate and three level posterior fixation techniques in a human cadaveric model," Journal of Neurosurgy 79:96-103, 1993.

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

Byrne J., Hartman B., Axten C., and Donaher P., "Mathematical Modeling of an Advanced Aircrew Breathing System," Proceedings of IEEE Northeast Bioengineering Conference, February 1993.

Chen, Jim S. J., W. E. Frazier, and A. A. Tseng, "Heat Transfer in Melt Spinning of Intermetallic Materials," <u>Journal of Materials Processing &</u> <u>Manufacturing Science</u>, 1 (4) (1993), 417-429.

Hammond D. S. and J. F. McEachern, "A Model for Deploying Horizontal Line Arrays," IEEE Oceans '93, Victoria, BC, October 1993.

Wayland, R., D. Bromley, D. Pickett, and A. Passamante, "Recognizing determinism in a time series," Physical Review Letters <u>70</u>, 500 (1993).

Wayland, R., D. Bromley, D. Pickett, Mary Eileen Farrell, and A. Passamante, "Measuring the Predicitability of Noisy Recurrent Time Series," International Journal of Bifurcation and Chaos, June 1993.

"Dimensionality, Prediction, and Determinism in the Analysis of Real Acoustic Data," in American Institute of Physics Conference Proceedings #296, The Chaos Paradigm: Developments and Applications in Engineering and Science, ed. R. Katz, 1994, p. 289.

Albano, A. M., P. E. Rapp, and A. Passamante, "Kolmogorov-Smirnov test distinguishes attractors with similar dimensions," submitted to *Physical Review* A, June 1993.

Mazel, David and A. Passamante, "Detection Based on an Iterated Function System Model," in *Proceedings of the 36th IEEE Midwest Symposium on Circuits* and Systems, Detroit, Michigan, 16-18 August 1993.

McEachern, Dr. James and David Hammond, "A Model for Horizontal Line Array Deployment," Proceedings of Oceans '93, IEEE, Oct 1993.

Scharpf, W., B. Boczar, and C. Dewey, "Analysis of a CdTe and CdMnTe Quasi-Phase Matched Optical Parametric oscillator and Amplifier," Optics Communications, 103 (1993), p. 429.1992 Bartberger, Charles L., U. S. Navy Journal of Underwater Acoustics (U), July 92, Volume 47, No. 3, "The NAWC Bistatic Acoustic Model (BAM)," p. 827 (1992).

> PAGE 29 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY

Byrne J., Hartman B., Axten C., and Donaher P., "Mathematical Modeling of an Advanced Aircrew Breathing System," Proceedings of IEEE Northeast Bioengineering Conference, February 1993.

Chen, Jim S. J., W. E. Frazier, and A. A. Tseng, "Heat Transfer in Melt Spinning of Intermetallic Materials," <u>Journal of Materials Processing &</u> <u>Manufacturing Science</u>, 1 (4) (1993), 417-429.

McEachern, J. F., "Shallow Water Array Measurements," to be presented at the 22nd Meeting of the Airborne Sensor Technology Panel, TTCP GTP-10, June 1993.

Ulrich, P. R., "Aeromechanical Technology for Deployable Systems," to be presented at the 22nd Meeting of the Airborne Sensor Technology Panel, TTCP GTP-10, June 1993.

Hammond D. S. and J. F. McEachern, "A Model for Deploying Horizontal Line Arrays," IEEE Oceans '93, Victoria, BC, October 1993.

Wayland, R., D. Bromley, D. Pickett, and A. Passamante, "Recognizing determinism in a time series," Physical Review Letters <u>70</u>, 500 (1993).

Wayland, R., D. Bromley, D. Pickett, Mary Eileen Farrell, and A. Passamante, "Measuring the Predicitability of Noisy Recurrent Time Series," International Journal of Bifurcation and Chaos, June 1993.

"Dimensionality, Prediction, and Determinism in the Analysis of Real Acoustic Data," in American Institute of Physics Conference Proceedings #296, The Chaos Paradigm: Developments and Applications in Engineering and Science, ed. R. Katz, 1994, p. 289.

Albano, A. M., P. E. Rapp, and A. Passamante, "Kolmogorov-Smirnov test distinguishes attractors with similar dimensions," submitted to *Physical Review* A, June 1993.

Mazel, David and A. Passamante, "Detection Based on an Iterated Function System Model," in *Proceedings of the 36th IEEE Midwest Symposium on Circuits* and Systems, Detroit, Michigan, 16-18 August 1993.

McEachern, Dr. James and David Hammond, "A Model for Horizontal Line Array Deployment," Proceedings of Oceans '93, IEEE, Oct 1993.

McEachern, James F., "The Effect of Body Geometry on the Flow Noise of Cylinders in cross Flow," PhD Thesis, The Pennsylvania State University, May 1993.

Scharpf, W., B. Boczar, and C. Dewey, "Analysis of a CdTe and CdMnTe Quasi-Phase Matched Optical Parametric oscillator and Amplifier," Optics Communications, 103 (1993), p. 429.1992 Bartberger, Charles L., U. S. Navy Journal of Underwater Acoustics (U), July 92, Volume 47, No. 3, "The NAWC Bistatic Acoustic Model (BAM)," p. 827 (1992).

> FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

Recised pg NO0421

Perez, I., D. Granata, W. R. Scott, "A New Technique to Produce Josephson Junctions Based on Controlled Crack Growth Techniques," "Fracture Mechanics 25th Vol., ASTM STP 1220, F. Erdogan and R. J. Hartranft, eds., 1994.

Perez, I., S. Tyagi, "Microwave Absorption: a Probe for Aging and Thermal Cycling Effects in Cuprate Superconductors," *Physical C*, 1994.

Kandra, Joseph T., C. Edwin Neu, Steven L. Optet and William E. Frazier, "The Effect of Thermo-mechanical Processing on the Hardness and Microstructure of Beta C. Titanium," (accepted for publication April 1994) <u>Scripta Metallurgica et Materialia</u>.

Bromley, D., R. Wayland, and A. Passamante, "Prediction and Chaos in the Analysis of Real ASW Data," Journal of Underwater Acoustics, April 1994.

Wayland, R., D. Bromley, D. Pickett, and A. Passamante, "Measuring spatial spreading in recurrent time series," accepted for publication in *Physical D* (1994).

Boczar, B. and W. Scharpf, "Injection Seeded Optical Parametric Oscillator Operating in the Region of 486.1nm," Applied Optics, 33 (1994), p. 979.

Berceli, T., W. D. Jemison, P. R. Herczfield, A. S. Daryoush and A. Paolella, "A Double Stage Injection-Locked Oscillator for Optically Fed Phased Array Antennas," IEEE Trans. on Microwave Theory and Technology, Vol. 30, February 1991.

Billmers, R. I. and A. L. Smith, "Ultraviolet-Visible Absorption Spectra of Equilibrium Sulfur Vapor, Molar Absorbtivity Spectra of S and S," Journal of Physical Chemistry, 95, p. 4242, 1991.

Billmers, R. I., J. Davis and M. Squicciarini, "A Tunable Hold-Burning Filter for Lidar Applications," Optics Communications, 85, p. 26, 1991.

Cochran, R., "Degradation of Imide-Based Composites," Proceedings of ADVMAT/91 Conference, First International Symposium on Environmental Effects on Advanced Materials, June 1992, San Diego, CA, NACE Publication, Houston, TX, p. 29-1, 1992.

Frazier, William E. and Mary E. Donnellan, "HIP Processing of Aluminum-Rich Intermetallics and Aluminum-Rich Intermetallic Composites," ASM 1991.

PAGE 30 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY Perez, I., D. Granata, W. R. Scott, "A New Technique to Produce Josephson Junctions Based on Controlled Crack Growth Techniques," "Fracture Mechanics 25th Vol., ASTM STP 1220, F. Erdogan and R. J. Hartranft, eds., 1994.

Perez, I., S. Tyagi, "Microwave Absorption: a Probe for Aging and Thermal Cycling Effects in Cuprate Superconductors," *Physical C*, 1994.

Talia, J. E., T. T. Guy, E. V. Barrera, and W. E. Frazier, "Interface Strengthened, Reactive Sintered Al-Ti Composites," (Warrendale, PA: TMS, March 1992).

Kandra, Joseph T., C. Edwin Neu, Steven L. Optet and William E. Frazier, "The Effect of Thermo-mechanical Processing on the Hardness and Microstructure of Beta C. Titanium," (accepted for publication April 1994) <u>Scripta Metallurgica et Materialia</u>.

Frazier, William E., Thu-Ha T. Mickle, and Bruce Pregger, "Thermodynamic Assessment of Hydrogen Desulfurization of Nickel," submitted for publication in the EPD Congress 1994 (Warrendale, PA: TMS, 1994).

Bromley, D., R. Wayland, and A. Passamante, "Prediction and Chaos in the Analysis of Real ASW Data," Journal of Underwater Acoustics, April 1994.

Wayland, R., D. Bromley, D. Pickett, and A. Passamante, "Measuring spatial spreading in recurrent time series," accepted for publication in *Physical D* (1994).

Boczar, B. and W. Scharpf, "Injection Seeded Optical Parametric Oscillator Operating in the Region of 486.1nm," Applied Optics, 33 (1994), p. 979.

Drexler, P., Gershman, V., Rosen, W. A., "MMIC LED Driver with 1.25 Gb/S Modulation Rate," GOMAC-91 Digest of Papers, pg. 393-396, November, 1991, Orlando, FL.

Berceli, T., W. D. Jemison, P. R. Herczfield, A. S. Daryoush and A. Paolella, "A Double Stage Injection-Locked Oscillator for Optically Fed Phased Array Antennas," IEEE Trans. on Microwave Theory and Technology, Vol. 30, February 1991.

Billmers, R. I. and A. L. Smith, "Ultraviolet-Visible Absorption Spectra of Equilibrium Sulfur Vapor, Molar Absorbtivity Spectra of S and S," Journal of Physical Chemistry, 95, p. 4242, 1991.

Billmers, R. I., J. Davis and M. Squicciarini, "A Tunable Hold-Burning Filter for Lidar Applications," Optics Communications, 85, p. 26, 1991.

Cochran, R., "Degradation of Imide-Based Composites," Proceedings of ADVMAT/91 Conference, First International Symposium on Environmental Effects on Advanced Materials, June 1992, San Diego, CA, NACE Publication, Houston, TX, p. 29-1, 1992.

Frazier, William E. and Mary E. Donnellan, "HIP Processing of Aluminum-Rich Intermetallics and Aluminum-Rich Intermetallic Composites," ASM 1991.

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

Frazier, William E. and John E. Bend, "Crystal Structure and Phase Relationships in As-Cast and Melt Spun A13Ti Plus Copper," Scripta Metallurgica, Vol. 25, No. 10, 1991.

Gao, M., J. B. Boodey, R. P. Wei and W. Wei, "Hydrogen Solubility and Microstructure of Gamma-Based Titanium Aluminides," Scripta Met. et Mat., Vol. 27, pp. 1419-1424, November 1992.

Gao, M., J. B. Boodey, R. P. Wei and W. Wei, "Hydrogen Solubility and Microstructure of Hastelloy X," Scripta Met. et Mat., Vol. 26, pp. 63-68, January 1992.

Herman, W. N., W. A. Rosen, L. H. Sperling, C. J. Murphy and H. Jain, "A Novel High Glass Transition Temperature Acrylic Polymer with Nonlinear Optical Properties," submitted to Journal of Polymer Science Polymer Physics.

Jemison, W. D. and P. R. Herczfeld, "Acousto-Optically-Controlled True Time Delays," IEEE Microwave and Guided Wave Letters, Vol. 3, pp. 1-3, March 1993.

Jemison, W. D. and P. R. Herczfeld, "A Pulsed Microwave Oscillator Using Optically-Controlled Active Feedback," IEEE Microwave and Guided Wave Letters, Vol. 2, pp. 177-179, May 1992.

Kebede, A., J. P. Rodriguez, I. Perez, T. Mihalisin, G. H. Myer, J. E. Crow, P. P. Wise, and P. Schlottman, "Magnetic Properties of Non-Superconducting (Y,PR)BA,CU,O," J. of Appl. Phys., Vol. 69, No. 8, p. 5376, 1991.

Barrett, D. J., "A One-Dimensional Constitutive Model for Shape Memory Alloys," submitted for publication to the Journal of Intelligent Material Systems and Structures, February 1994.

Boczar, B. P. and W. J. Scharpf, "Injection Seeded Optical Parametric Oscillator Operating in the Region of 486.1 nm," Applied Optics, Vol. 33 (1994), pp. 979-981.

Chen, J. S. J., W. E. Frazier, and A. A. Tseng, "Heat Transfer in Melt Spinning of Intermetallic Materials," Journal of Mat. Processing and Manufacturing Sci., Vol. 44, No. 11, Nov. 1992, pp. 417-430.

PAGE 31 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY Frazier, William E. and John E. Bend, "Crystal Structure and Phase Relationships in As-Cast and Melt Spun A13Ti Plus Copper," Scripta Metallurgica, Vol. 25, No. 10, 1991.

Gao, M., J. B. Boodey, R. P. Wei and W. Wei, "Hydrogen Solubility and Microstructure of Gamma-Based Titanium Aluminides," Scripta Met. et Mat., Vol. 27, pp. 1419-1424, November 1992.

Gao, M., J. B. Boodey, R. P. Wei and W. Wei, "Hydrogen Solubility and Microstructure of Hastelloy X," Scripta Met. et Mat., Vol. 26, pp. 63-68, January 1992.

Herman, W. N., W. A. Rosen, L. H. Sperling, C. J. Murphy and H. Jain, "A Novel High Glass Transition Temperature Acrylic Polymer with Nonlinear Optical Properties," submitted to Journal of Polymer Science Polymer Physics.

Jemison, W. D. and P. R. Herczfeld, "Acousto-Optically-Controlled True Time Delays," IEEE Microwave and Guided Wave Letters, Vol. 3, pp. 1-3, March 1993.

Jemison, W. D. and P. R. Herczfeld, "A Pulsed Microwave Oscillator Using Optically-Controlled Active Feedback," IEEE Microwave and Guided Wave Letters, Vol. 2, pp. 177-179, May 1992.

Kebede, A., J. P. Rodriguez, I. Rerez, T. Mihalisin, G. H. Myer, J. E. Crow, P. P. Wise, and P. Schlottman, "Magnetic Properties of Non-Superconducting (Y,PR)BA,CU,O," J. of Appl. Phys. Vol. 69, No. 8, p. 5376, 1991.

Bailey, W. H. and R. P. Singh, "On the Use of Fuzzy Expected Values for Missing Data," (To be submitted to IEEE for publication).

Barrett, D. J., "A One-Dimensional Constitutive Model for Shape Memory Alloys," submitted for publication to the Journal of Intelligent Material Systems and Structures, February 1994.

Barrett, D. J., "A Micromechanical Model for Shape Memory Composites," to be submitted for publication to the Journal of Intelligent Material Systems and Structures (in preparation).

Barrett, D. J., "On the Use of Drucker's Stability Postulate in the Development of Constitutive Laws for Shape Memory Materials," submitted for publication in the Journal of Intelligent Material Systems and Structures (in preparation).

Boczar, B. P. and W. J. Scharpf, "Injection Seeded Optical Parametric Oscillator Operating in the Region of 486.1 nm," Applied Optics, Vol. 33 (1994), pp. 979-981.

Chen, J. S. J., W. E. Frazier, and A. A. Tseng, "Heat Transfer in Melt Spinning of Intermetallic Materials," Journal of Mat. Processing and Manufacturing Sci., Vol. 44, No. 11, Nov. 1992, pp. 417-430.

FOR OFFICIAL USE ONLY ICISIONAL INFORMATION

Gabrielson, T. B., D. L. Gardner, and S. L. Garrett, "A Simple Neutrally Fuoyant Sensor for Direct Measurement of Particle Velocity and Intensity in Water," accepted for publication in Journal of the Acoustic Society of America, 1994.

Gabrielson, T. B., "Fundamental Noise Limits for Miniature Acoustic and Vibration Sensors," accepted for publication in ASME Journal of Vibrations and Acoustics, 1993.

Gabrielson, T. B., "Mechanical-Therman Noise in Micromachined Acoustic and Vibration Sensors," IEEE Trans. Electron Devices, ED-40, 903-909, 1993.

Jones, G. F., Kandra, J., Frazier, W. and Barrett, D. J., "Melt Spin Processing of Nitinol," submitted for publication in the Journal of Material Science and Engineering (in preparation).

Kennedy, P. J., A. A. Conte, E. P. Whitenton, L. K. Ives, and M. B. Peterson, "Surface Damage and Mechanics of Fretting Wear in Ceramics," Friction and Wear of Ceramics, Ed S. Jahanmir, Marcel Dekker, Inc. New York, New York (in press).

Perez, I., D. Granata, and W. R. Scott, "A New Technique to Produce Josephson Junctions Based on Controller Crack Growth Techniques," Fraction Mechanics 25th Vol., ASTm stp 1220, F. Erdogan and R. J. Hartranft, eds. 1994.

Perez, I. and S. Tyagi, "Microwave Absorption: A Probe for Aging and Thermal Cycling Effects in Cuprate Superconductors," Physica C., to be published 1994.

Rockstad, H., T. Kenny, J. Reynolds, W. Kaiser, T. VanZandt, and T. Gabrielson, "A Miniature High-Resolution Accelerometer Utilizing Electron Tunneling," ASME DSC, Vol. 40, 41-52, 1992.

Scharpf, W. J., B. P. Boczar and C. F. Dewey, "Analysis of a CdTe and CdMnTe Quasi-Phase Matched Optical Parametric Oscillator and Amplifier," Optics Communications, 103 (1993) pp. 429-433.

PAGE 32 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY Gabrielson, T. B., D. L. Gardner, and S. L. Garrett, "A Simple Neutrally Fuoyant Sensor for Direct Measurement of Particle Velocity and Intensity in Water," accepted for publication in Journal of the Acoustic Society of America, 1994.

Gabrielson, T. B., "Fundamental Noise Limits for Miniature Acoustic and Vibration Sensors," accepted for publication in ASME Journal of Vibrations and Acoustics, 1993.

Gabrielson, T. B., "Mechanical-Therman Noise in Micromachined Acoustic and Vibration Sensors," IEEE Trans. Electron Devices, ED-40, 903-909, 1993.

Jones, G. F., Kandra, J., Frazier, W. and Barrett, D. J., "Melt Spin Processing of Nitinol," submitted for publication in the Journal of Material Science and Engineering (in preparation).

Kennedy, P. J., A. A. Conte, E. P. Whitenton, L. K. Ives, and M. B. Peterson, "Surface Damage and Mechanics of Fretting Wear in Ceramics," Friction and Wear of Ceramics, Ed S. Jahanmir, Marcel Dekker, Inc. New York, New York (in press).

Perez, I., D. Granata, and W. R. Scott, "A New Technique to Produce Josephson Junctions Based on Controller Crack Growth Techniques," Fraction Mechanics 25th Vol., ASTm stp 1220, F. Erdogan and R. J. Hartranft, eds. 1994.

Perez, I. and S. Tyagi, "Microwave Absorption: A Probe for Aging and Thermal Cycling Effects in Cuprate Superconductors," Physica C., to be published 1994.

Rockstad, H., T. Kenny, J. Reynolds, W. Kaiser, T. VanZandt, and T. Gabrielson, "A Miniature High-Resolution Accelerometer Utilizing Electron Tunneling," ASME DSC, Vol. 40, 41-52, 1992.

Scharpf, W. J., B. P. Boczar and C. F. Dewey, "Analysis of a CdTe and CdMnTe Quasi-Phase Matched Optical Parametric Oscillator and Amplifier," Optics Communications, 103 (1993) pp. 429-433.

Singh, R. P. and W. H. Bailey, "Fuzzy Logic Applications to Multi-Sensor Multi-Target Correlation," (To be submitted to IEEE for publication).

Taylor, M. and E. Seibert, "Operating Characteristics of a Samarium Vapor Laser," in preparation.

Herman, W. N., L. M. Hayden, S. Brower, G. A. Lindsay, J. D. Stenger-Smith and R. A. Henry, "Folded Mainchain Polymer: Optical Properties and Poling Stability," in Organic Thin Films for Photonic Applications, ACS/OSA Technical Digest Series 17, 18 (1993).

Rosen, W. A., T. A. Kline, V. Gershman, W. N. Herman, W. J. Bermingham, E. A. Alfonsi, A. S. Daryoush, and J. Y. Lin, "A High Speed Fiber Optic Network for Sensor Data Distribution," Government Microcircuit Applications Conference Digest of Papers, Vol. XVII, 159, November 1992.

FOR OFFICIAL USE QNLY

DECISIONAL INFORMATION

NO0421 Revised Pg

Bobb, L. C. and P. M. Shankar, "Tapered Optical Fiber Components and Sensors: Microwave Journal 35, #5 218(1992)

Conte, A. A., Jr. and V. S. Agarwala, "Self-Lubricating Composite Based on a Ceramic Hydraulic Cement Matrix," to be published in Wear.

Conte, A. A., Jr. and V. S. Agarwala, "The Synergistic Action of Metallic Silicides and Oxides on the Lubrication of Ceramics," (to be published in STLE Transactions).

Rajan, K. S., P. Sen, E. Vesely, S. Varma, A. Conte, Jr. and V. S. Agarwala, "Lamellar Structure Organics as Wear-Corrosion Inhibitors," Wear-Corrosion Interactions in Liquid Media, The Minerals Metals & Materials Society, pp. 189-198, 1991.

Subrahmanyam, M. B., "Computation of Suboptimal Hoo Control Over a Finite Horizon," International Journal of Control, Vol. 57, No. 2, pp. 365-376 February 1993.

Subrahmanyam, M. B., "Computation of Infimal Hoo Control Over a Finite Horizon," International Journal of Robust and Nonlinear Control, Vol. 2, No. 1, pp. 49-61, May 1992.

Subrahmanyam, M. B., "Synthesis of Suboptimal Hoo Controllers Over a Finite Horizon," International Journal of Control, Vol. 57, No. 2, pp. 351-364, February 1993.

Subrahmanyam, M. B., "Worst-Case Optimal Control Over a Finite Horizon," Journal of Mathematical Analysis and Applications, Vol. 171, No. 2, pp. 448-460, December 1992.

Wang, S-W, "A Novel Nanoindenter Technique for Measuring Fiber/Matrix Interfacial Strength in Composites," Journal of Materials Science Letters, 11(1992), 739-741.

Wang, S-W, "Experimental Characterization of the Tensile Behavior of Nicalon Fiber-Reinforced Calcium Alumino-silicate Composites," Journal of Materials, 27(1992), 5483-5496.

Kebede, A., J. Rodriguez, I. Perez, T. Mihalisin, G. Myer, J. E. Crow, P. Wise, and P. Schlottman, "Magnetic and Thermodynamic Properties of Non-Superconducting (TPR)BA2CU3O7," J. of Appl. Phys.

> PAGE 33 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY

Bobb, L. C. and P. M. Shankar, "Tapered Optical Fiber Components and Sensors: Microwave Journal 35, #5 218(1992)

Conte, A. A., Jr. "Deuterated Grease Thickener," Synthetic Lubrication, Vol. 5, No. 3, pp. 203-208, October 1989.

Conte, A. A., Jr. and V. S. Agarwala, "Self-Lubricating Composite Based on a Ceramic Hydraulic Cement Matrix," to be published in Wear.

Conte, A. A., Jr. and V. S. Agarwala, "The Synergistic Action of Metallic Silicides and Oxides on the Lubrication of Ceramics," (to be published in STLE Transactions).

Conte, A. A., Jr. and V. S. Agarwala, "An Investigation of Gold Alloy Slip Ring Capsule Failures," Wear, Vol. 133, No. 2, pp. 355-371, October 1989.

Rajan, K. S., P. Sen, E. Vesely, S. Varma, A. Conte, Jr. and V. S. Agarwala, "Lamellar Structure Organics as Wear-Corrosion Inhibitors," Wear-Corrosion Interactions in Liquid Media, The Minerals Metals & Materials Society, pp. 189-198, 1991.

Subrahmanyam, M. B., "Computation of Suboptimal Hoo Control Over a Finite Horizon," International Journal of Control, Vol. 57, No. 2, pp. 365-376 February 1993.

Subrahmanyam, M. B., "Computation of Infimal Hoo Control Over a Finite Horizon," International Journal of Robust and Nonlinear Control, Vol. 2, No. 1, pp. 49-61, May 1992.

Subrahmanyam, M. B., "Synthesis of Suboptimal Hoo Controllers Over a Finite Horizon," International Journal of Control, Vol. 57, No. 2, pp. 351-364, February 1993.

Subrahmanyam, M. B., "Worst-Case Optimal Control Over a Finite Horizon," Journal of Mathematical Analysis and Applications, Vol. 171, No. 2, pp. 448-460, December 1992.

Wang, S-W, "A Novel Nanoindenter Technique for Measuring Fiber/Matrix Interfacial Strength in Composites," Journal of Materials Science Letters, 11(1992), 739-741.

Wang, S-W, "Experimental Characterization of the Tensile Behavior of Nicalon Fiber-Reinforced Calcium Alumino-silicate Composites," Journal of Materials, 27(1992), 5483-5496.

Wang, S-W, "High Temperature Mechanical Behavior of Nicalon Fiber-Reinforced Glass Ceramic Matrix Composites," submitted to the Journal of American Ceramic Society.

Kebede, A., J. Rodriguez, I. Perez, T. Mihalisin, G. Myer, J. E. Crow, P. Wise, and P. Schlottman, "Magnetic and Thermodynamic Properties of Non-Superconducting (TPR)BA2CU3O7," J. of Appl. Phys.

POR OFFICIAL USE ONLY

Revised pg

.......

Lee, E. U., "Therman Stress and Strain in a Metal Matrix Composite with a Spherical Reinforcement Particle," Metallurgical Transactions A, Vol. 23A, pp. 2205-2210, 1992.

Passamante, A. and M. E. Farrell, "Characterizing Attractors Using Local Intrinsic Dimension via Higher Order Statistics," Physical Review, Vol. A 43, 5268, 1991.

Perez, I., "Control Crack Growth Technologies for Use in Fabrication of Superconducting Micro-Circuits," Fracture Mechanics: 25 Vol, ASTM Special Technical Publication 1220.

Sands, R. and A. Ludwick, "Interface Examination Using Sandwich Analogs of Matrix and Reinforcement," Ceramic Engineering Science Proceedings, Vol. 13, pp. 9-10, 1992.

Scharpf, W. J. and B. P. Boczar, "Performance of the LINbO3 Optical Parametric Oscillator," submitted to Optics Communications or Journal of the Optical Society of America.

Schmidt, W. A. and J. P. Davis, "Pattern Recognition Properties of Various Feature Spaces for Higher Order Neural Nets," Accepted for Publication in IEEE Pattern Recognition and Machine Analysis.

Berceli, T., W. D. Jemison, P. R. Herczfield, A. S. Daryoush, and A. Paolella, "A Double Stage Injection-Locked Oscillator for Optically Fed Phased Array Antennas," IEEE Trans. on Microwave Theory and Tech., Vol. 30, 30 Feb. 1991.

Billmers, R., and A. Smith, "Ultraviolet-Visible Absorption Spectra of Equilibrium Sulfur Vapor: Molar Absorbtivity Spectra of S3 and S4," J. of Physical Chemistry, 95 (1991) p. 4242.

Billmers, R., J. Davis and M. Squicciarini, "A Tunable Hold-Burning Filter for Lidar Applications," Optics Communications, 85 (1991) p. 26.

Herman, W. N., W. A. Rosen, L. H. Sperling, C. J. Murphy, and H. Jain, "A High Tg Nonlinear Optical Polymer: Poly (N-MNA Acrylamide)." Nonlinear Optical Properties of Organic Materials IV, ed., K. Singer, Proc. SPIE 1560, p. 206, 1991.

PAGE 34 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY Lee, E. U., "Therman Stress and Strain in a Metal Matrix Composite with a Spherical Reinforcement Particle," Metallurgical Transactions A, Vol. 23A, pp. 2205-2210, 1992.

Passamante, A. and M. E. Farrell, "Characterizing Attractors Using Local Intrinsic Dimension via Higher Order Statistics," Physical Review, Vol. A 43, 5268, 1991.

Perez, I., "Control Crack Growth Technologies for Use in Fabrication of Superconducting Micro-Circuits," Fracture Mechanics: 25 Vol, ASTM Special Technical Publication 1220.

Sands, R. and A. Ludwick, "Interface Examination Using Sandwich Analogs of Matrix and Reinforcement," Ceramic Engineering Science Proceedings, Vol. 13, pp. 9-10, 1992.

Scharpf, W. J. and B. P. Boczar, "Performance of the LINbO3 Optical Parametric Oscillator," submitted to Optics Communications or Journal of the Optical Society of America.

Scharpf, W. J. and B. P. Boczar, "Theoretical Study of the Rotational-Twinned Cadmium-Manganese-Telluride Optical Parametric Oscillator," submitted to Optics Communications or Journal of the Optical Society of America.

Schmidt, W. A. and J. P. Davis, "Pattern Recognition Properties of Various Feature Spaces for Higher Order Neural Nets," Accepted for Publication in IEEE Pattern Recognition and Machine Analysis.

Wayland, R. F., "Wavelet Representations of SUS Waveforms," to be submitted to the U.S. Navy Journal of Underwater Acoustics.

Berceli, T., W. D. Jemison, P. R. Herczfield, A. S. Daryoush, and A. Paolella, "A Double Stage Injection-Locked Oscillator for Optically Fed Phased Array Antennas," IEEE Trans. on Microwave Theory and Tech., Vol. 30, 30 Feb. 1991.

Billmers, R., and A. Smith, "Ultraviolet-Visible Absorption Spectra of Equilibrium Sulfur Vapor: Molar Absorbtivity Spectra of S3 and S4," J. of Physical Chemistry, 95 (1991) p. 4242.

Billmers, R., J. Davis and M. Squicciarini, "A Tunable Hold-Burning Filter for Lidar Applications," Optics Communications, 85 (1991) p. 26.

Herman, W. N., W. A. Rosen, L. H. Sperling, C. J. Murphy, and H. Jain, "A High Tg Nonlinear Optical Polymer: Poly (N-MNA Acrylamide)." Nonlinear Optical Properties of Organic Materials IV, ed., K. Singer, Proc. SPIE 1560, p. 206, 1991.

Herman, W. N., W. A. Rosen, L. H. Sperling, C. J. Murphy, and H. Jain, "A Novel High Glass Transition Temperature Acrylic Polmer with Nonlinear Optical Properties," in preparation for submission to Journal of Polymer Science Part C: Polymer Letters.

> FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

NO0421 Revised pc

- -

· --- •

- ----

Jemison, W. D., and P. R. Herczfeld, "A Pulsed Microwave Oscillator Using Optically-Controlled Active Feedback," IEEE Microwave and Guided Wave Letters, Vol. 2, No. 5, May 1992, p. 177-179.

Kebede, A. J., P. Rodriguez, I. Perez, T. Mihalisin, G. H. Myer, J. E. Crow, P. P. Wise, and P. Schlottmann, "Magnetic Properties of Non-Superconducting (Y,Pr)Ba2Cu3O6 J. of Appl. Phys., Vol. 69, No. 8, p. 5376, 1991.

Lee, E. U., "Thermal Stress and Strain in Metal Matrix Composite with Spherical Reinforcements," Metallurgical Transactions (to be published).

Mahapatra, R., and B. Pregger, "Oxidation Behavior of Single Crystal Nickel Aluminides," Materials Science and Engineering, April 1991 (to be published).

Shender, B. S., "The New Zealand White Rabbit as a Model to Simulate the Effects of Acceleration and Altitude Stress on the Vasodynamics of the Brain," Abstract in Aviat, Space and Environ. Med. 61-472, 1990.

Twardowski, A., K. Pakula, I. Perez, P. Wise, and J. E. Crow, "Magneto Reflectance and Magnetization of ZnFeSe Semimagnetic Semiconductor," Phys. Rev. B 42, 7567, 1990.

Bobb, L., "An Embedded Fiber Optic Sensor Utilizing the Modal Power Distribution Technique," Optics Lett 15, #21, 1242 (1990).

Bobb, L., "Pressure Sensor That Uses Bent Bioconically Tapered Single Mode Fibers," Optics Lett 16, #2, 112 (1991).

Bobb, L. "Tapered Optical Fibers and Sensors," Microwave Journal, Vol. 35, No. 5, pp. 218-228, May 1992.

Chubb, S. R., A. L. Cooper, G. R. Valenzuela, C. Shen, R. P. Mied, G. Marmorino, C. Trump, A. R. Ochadlick, Jr., J. Morrison and J. R. Bennett, "Preliminary Investigation of the Nature of Radar Signatures of the Gulf Stream with SAR," Abstract in IGARSS"91 Remote Sensing, Vol. I, IEEE Cat. No. 91CH2971-0, p. 122A, 1991.

PAGE 35 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY Jemison, W. D., and P. R. Herczfeld, "A Pulsed Microwave Oscillator Using Optically-Controlled Active Feedback," IEEE Microwave and Guided Wave Letters, Vol. 2, No. 5, May 1992, p. 177-179.

Kebede, A. J., P. Rodriguez, I. Perez, T. Mihalisin, G. H. Myer, J. E. Crow, P. P. Wise, and P. Schlottmann, "Magnetic Properties of Non-Superconducting (Y,Pr)Ba2Cu3O6 J. of Appl. Phys., Vol. 69, No. 8, p. 5376, 1991.

Lee, E. U., 'Thermal Stress and Strain in Metal Matrix Composite with Spherical Reinforcements,'' Metallurgical Transactions (to be published).

Mahapatra, R., and B. Pregger, "Oxidation Behavior of Single Crystal Nickel Aluminides," Materials Science and Engineering, April 1991 (to be published).

Shender, B. S., "The New Zealand White Rabbit as a Model to Simulate the Effects of Acceleration and Altitude Stress on the Vasodynamics of the Brain," Abstract in Aviat, Space and Environ. Med. 61-472, 1990.

Shender, B. S., "A Bioimpedance Technique to Monitor the Effectiveness of the Respiratory Portion of Anti-G Straining Maneuvers," Abstract in Aviat., Space, and Environ, Med., 60504, 1989.

Shender, B. S., "Effects of Rapid Onset Acceleration on Cephalic Pulsatile Blood Volume Impedance Waveforms in Humans," Proc. of the IEEE 15th Annual NE Bioengineering Conf, p. 129, 1989.

Twardowski, A., K. Pakula, I. Perez, P. Wise, and J. E. Crow, "Magneto Reflectance and Magnetization of ZnFeSe Semimagnetic Semiconductor," Phys. Rev. B 42, 7567, 1990.

Bobb, L., "An Embedded Fiber Optic Sensor Utilizing the Modal Power Distribution Technique," Optics Lett 15, #21, 1242 (1990).

Bobb, L., "Pressure Sensor That Uses Bent Bioconically Tapered Single Mode Fibers," Optics Lett 16, #2, 112 (1991).

Bobb, L., "Coupling of Modes in Bent Biconically Tapered Single Mode Fibers," Jl of Ltwo Tech 9, 832, July 1991.

Bobb, L. "Tapered Optical Fibers and Sensors," Microwave Journal, Vol. 35, No. 5, pp. 218-228, May 1992.

Chubb, S. R., A. L. Cooper, G. R. Valenzuela, C. Shen, R. P. Mied, G. Marmorino, C. Trump, A. R. Ochadlick, Jr., J. Morrison and J. R. Bennett, "Preliminary Investigation of the Nature of Radar Signatures of the Gulf Stream with SAR," Abstract in IGARSS"91 Remote Sensing, Vol. I, IEEE Cat. No. 91CH2971-0, p. 122A, 1991.

Conte A., Jr., and V. S. Agarwala, "An Investigation of Gold Alloy Ship Ring Capsule Failures," Wear, Vol. 133, No. 2, October 1989, pp. 355-371.

FOR OFFICIAL USE ONLY DECISIONAL INFORMATIGE

Revised py NO0421

Evans-Morgis, J., P. Cho, A. R. Ochadlick, Jr. and S. Krasznay, "Pocono Mountain SAR Data Analysis for Testing Slant Range to Ground Range Conversion," IGARSS'91 Remote Sensing, Vol. I, IEEE Cat. No. 91CH2971-0, p. 1413-1415, 1991.

Gabrielson, T. B., "Radiation from a Submerged Thermoacoustic Source," J. Acoustical Society of America, November 1991 (to be published).

Gabrielson, T. B., "A Thermoacoustically Driven Active Transducer: Performance and Potential," U.S. Navy Journal of Underwater Acoustics," October 1991 (to be published).

Gabrielson, T. B., "Infrasound," Handbook of Acoustics, Eds., M. J. Crocker, John Wiley and Sons, NY (to be published).

Garrett, S. L., and T. B. Gabrielson, "Magnetohydrodynamic and Thermoacoustic Mechanisms for Generation of Sound in Seawater," Power Transducers for Sonic and Ultrasonics, Eds., B. F. Hamonic, O. B. Wilson, and J. N. Decarpigny, Springer-Verlag, Berlin, 1991.

Morrison, J., A. Ochadlick, P. Cho, "Ground Truthing SAR Observations of Slicks off the Mouth of the Chesapeake," for submission to Journal of Geophysical Research, 1992.

Ochadlick, A. R., Jr., P. Cho, and Jeannette Evans-Morgis, "SAR Observations of Currents Co-located with Slicks," J. of Georphys, Res., Oceans, Vol. 97, No. C-4, pp. 5325-5330, 15 April 1992.

Ochadlick, A. R., Jr., K. Birney, P. Cho, J. C. Duke, S. K. Krasznay, J. Evans-Morgis and J. Verdi, "A Description of the NADC SAR Facility and Examples of Observations and Measurements," IGARSS'91 Remote Sensing, Vol. III, IEEE Cat. No. 91CH2971-0, p. 1785-1789, 1991.

Ochadlick, A. R., Jr. G. R. Valenzuela, K. Birney, P. Cho, J. Evans-Morgis, R. P. Mied, J. M. Morrison, and J. Yannone, "Evolution of Ocean Surface Features Observed with SAR during the July 90 Gulf Stream Experiment," IGARSS'91 Remote Sensing, Vol. I, IEEE Cat. No. 91CH2971-0, p. 123-127, 1991.

PAGE 36 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY Conte, A., Jr., "Deuterated Grease Thickener," Synthetic Lubrication, Vol. 5, No. 3, October 1989, pp. 203-208.

FOR OFFICIAL USE ONLY

Conte, A., Jr., and V. S. Agarwala, "Self-Lubricating Composite Based on a Ceramic Hydraulic Cement Matrix," to be published in Wear.

Conte, A., Jr. and V. S. Agarwala, "The Synergistic Action of Metallic Silcides and Oxides on the Lubrication of Ceramics," (to be published in STLE Transactions).

Evans-Morgis, J., P. Cho, A. R. Ochadlick, Jr. and S. Krasznay, "Pocono Mountain SAR Data Analysis for Testing Slant Range to Ground Range Conversion," IGARSS'91 Remote Sensing, Vol. I, IEEE Cat. No. 91CH2971-0, p. 1413-1415, 1991.

Gabrielson, T. B., 'Radiation from a Submerged Thermoacoustic Source," J. Acoustical Society of America, November 1991 (to be published).

Gabrielson, T. B., "A Thermoacoustically Driven Active Transducer: Performance and Potentral," U.S. Navy Journal of Underwater Acoustics," October 1991 (to be published).

Gabrielson, T. B., "Infrasound," Handbook of Acoustics, Eds., M. J. Crocker, John Wiley and Sons, NY (to be published).

Garrett, S. L., and T. B. Gabrielson, "Magnetohydrodynamic and Thermoacoustic Mechanisms for Generation of Sound in Seawater," Power Transducers for Sonic and Ultrasonics, Eds., B. F. Hamonic, O. B. Wilson, and J. N. Decarpigny, Springer-Verlag, Barlin, 1991.

Morrison, J., A. Ochadlick, P. Cho, "Ground Truthing SAR Observations of Slicks off the Mouth of the Chesapeake," for submission to Journal of Geophysical Research, 1992.

Ochadlick, A. R., Jr., P. Cho, and Jeannette Evans-Morgis, "SAR Observations of Currents Co-located with Slicks," J. of Georphys, Res., Oceans, Vol. 97, No. C-4, pp. 5325-5330, 15 April 1992.

Ochadlick, A. R., Jr., K. Birney, P. Cho, J. C. Duke, S. K. Krasznay, J. Evans-Morgis and J. Verdi, "A Description of the NADC SAR Facility and Examples of Observations and Measurements," IGARSS'91 Remote Sensing, Vol. III, IEEE Cat. No. 91CH2971-0, p. 1785-1789, 1991.

Ochadlick, A. R., Jr. G. R. Valenzuela, K. Birney, P. Cho, J. Evans-Morgis, R. P. Mied, J. M. Morrison, and J. Yannone, "Evolution of Ocean Surface Features Observed with SAR during the July 90 Gulf Stream Experiment," IGARSS'91 Remote Sensing, Vol. I, IEEE Cat. No. 91CH2971-0, p. 123-127, 1991.

Ochadlick, A. R., Jr. and N. Engheta, "Magnetic Fields Resulting from Ocean Current Structures Seen in SAR Imagery," Extended abstract in Progress in Electromagnetics Research Symposium (PIERS) Proceedings, Ocean Surface as a Turbulent Scattering Medium II, p. 124, July 1991.

36

Ochadlick, A. R., Jr. and O. Shemdin, "Synthetic Aperture Radar (SAR) Imagery Containing an Asymmetric Internal Wave Pattern," IEEE Ninth Annual Benjamin Franklin Symposium, p. 61-64, 9 Mar 1991.

Ochadlick, A. R., Jr., "Time Series and Correlation of Pulsations Observed Simultaneously by Two Aircraft," Geophysical Research Letters, Vol. 17, No. 11, p. 1889-1892, Oct 1990.

Ochadlick, A. R., Jr., "Additions to Synthetic Aperture Radar (SAR) Ocean Models: Speculations on a Weak Hydromagnetic Contribution," IEEE Symposium Digest, Eighth Annual Benjamin Franklin Symposium, p. 81-84, 24 Mar 1990.

Rajan, K. S., P. Sen, E. Vesely, S. Varma, A. Conte, Jr., and V. S. Agarwala, "Lamellar Structure Organics as Wear-Corrosion Inhibitors," Wear-Corrosion Interactions in Liquid Media, The Miners, Metals & Materials Society, 1991, pp. 189-198.

PAGE 37 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY Ochadlick, A. R., Jr. and O. Shemdin, "Synthetic Aperture Radar (SAR) Imagery Containing an Asymmetric Internal Wave Pattern," IEEE Ninth Annual Benjamin Franklin Symposium, p. 61-64, 9 Mar 1991.

..........

Ochadlick, A. R., Jr., "Time Series and Correlation of Pulsations Observed Simultaneously by Two Aircraft," Geophysical Research Letters, Vol. 17, No. 11, p. 1889-1892, Oct 1990.

Ochadlick, A. R., Jr., "Additions to Synthetic Aperture Radar (SAR) Ocean Models: Speculations on a Weak Hydromagnetic Contribution," IEEE Symposium Digest, Eighth Annual Benjamin Franklin Symposium, p. 81-84, 24 Mar 1990.

Ochadlick, A. R., Jr., "Measurements of Magnetic Fluctuations Associated with Ocean Swell Compared with Weaver's Theory," Journal of Geophysical Research, Vol. 94, No. 11, p. 16,237-16,242, 15 Nov 1989.

Ochadlick, A. R., Jr., K. Birney, P. Cho, A. Carreras, C. Haney, S. Krasznay, and S. Lyness, "SAR Measurements During SAXON by the NADC Aircraft," Proceedings of IGARSS'89 12th Canadian Symposium on Remote Sensing, Vancouver, Canada, Vol. 3, (IEEE No. 89CH2768-0), P. 1934-1934, 10-14, Jul 1989.

Ochadlick, A. R., Jr., H. N. Kritikos, J. G. Teti, Jr., K. Birney, P. Cho, S. Krasznay, S. Lyness and A. Carrenas, "SAR Imaging of Ocean Current Effects on Wakes," IEEE Symposium Digest, IEEE Seventh Annual Benjamin Franklin Symposium, Cherry Hill, NJ, p. 46-49, 11 Mar 1989.

Rajan, K. S., P. Sen, E. Vesely, S. Varma, A. Conte, Jr., and V. S. Agarwala, "Lamellar Structure Organics as Wear-Corrosion Inhibitors," Wear-Corrosion Interactions in Liquid Media, The Miners, Metals & Materials Society, 1991, pp. 189-198.

Subrahmanyam, M. B., "Computation of Infimal H Norm over a Finite Horizon," International Journal of Robust and Nonlinear Control (to be published).

Subrahmanyam, M. B., "Synthesis of Suboptimal H Controllers over a Finite Horizon," International Journal of Control (in review).

Subrahmanyam, M. B., "General Formulae for Suboptimal H Control over a Finite Horizon," International Journal of Control (in review).

Subrahmanyam, M. B., "H Optimal Control Theory over a Finite Horizon," IEEE Transactions on Automatic Control (in review).

Subrahmanyam, M. B., "Efficient Algorithms for the Computation of Infimal H Norm for Time-Varying Systems over a Finite Horizon," International Journal of Control (in review).

Subrahmanyam, M. B., "Worst-Case Optimal Control over a Finite Horizon," Journal of Mathematical Analysis and Applications (to be published).

Subrahmanyam, M. B., "Finite Horizon H Control," 1992 American Control Conference (submitted for review).

Rivised Pg NO0421

Valenzuela, G. R., R. P. Mied, A. R. Ochadlick, Jr., M. Kobrick, P. M. Smith, W. C. Keller, R. J. Lai, D. Sheres, J. M. Morrison, and R. C. Beal, "The July 1990 Gulf Stream Experiment," IGARSS'91 Remote Sensing, Vol. I, IEEE Cat. No. 91CH2971-0, p. 119-122, 1991.

Agarwala, V. S., "Corrosion Inhibition by Phenantholines," Corrosion, Vol. 46(5), 376-379, 1990.

Agarwala, V. S., "An In-Situ Experimental Study of the Mechanisms of Catastrophic Damage Phenomena," Hydrogen Effects on Materials Behavior, Eds. N. R. Mudy and A. W. Thompson, The Mineral, Metals & Materials Society, Warrendale, PA 1033-1045, 1990.

Agarwala, V. S., "In-Situ Experimental Study on the Environment Assisted Cracking in High Strength Alloys," Proceedings of 11th International Corrosion Congress, Published by Associazione Italiano di Metallurgia, Milano, Italy, Vol. 3, 1990, #3.367.

Agarwala, V. S., "Corrosion Inhibition by Macrocylics: Porphyrins and Phtalocyanines," Corrosion Inhibitor Science and Technology, National Association of Corrosion Engineers, under publication, 1990.

Berman, D. A. and V. S. Agarwala, "Organic Thin Films for Corrosion Protection," NACE Corrosion/90 Conference, Las Vegas, NV, Preprint No. 448, 1990.

Tsai, H. C. and A. Arocho, "Prediction of Fiber-Matrix Interface Properties and Their Influence on Interface Stress, Displacement and Fracture Toughness of Composite Material," Materials Science and Engineering A126, pp. 295-304, 1990.

Bobb, L., "An Embedded Fiber Optic Sensor Utilizing the Modal Power Distribution Technique," Optics Lett 15, #21, 1242 (1990).

Bobb, L., "Bending Effects in Ciconically Tapered Single Mode Fibers," J1 of LTWV Tech 8, 1084 (Jul 1990).

PAGE 38 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY Subrahmanyam, M. B., "Existence and Computation of Minimal Finite Horizon H Norm," 1992 American Control Conference (submitted for review).

Valenzuela, G. R., R. P. Mied, A. R. Ochadlick, Jr., M. Kobrick, P. M. Smith, W. C. Keller, R. J. Lai, D. Sheres, J. M. Morrison, and R. C. Beal, "The July 1990 Gulf Stream Experiment," IGARSS'91 Remote Sensing, Vol. I, IEEE Cat. No. 91CH29(1-0, p. 119-122, 1991.

Agarwala, V. S., "Corrosion Inhibition by Phenantholines," Corrosion, Vol. 46(5), 376-379, 1990.

Agarwala, V. S., 'An In-Situ Experimental Study of the Mechanisms of Catastrophic Damage Phenomena," Hydrogen Effects on Materials Behavior, Eds. N. R. Mudy and A. W. Thompson, The Mineral, Metals & Materials Society, Warrendale, PA 1033-1045, 1990.

Agarwala, V. S., "In-Situ Experimental Study on the Environment Assisted Cracking in High Strength Alloys," Proceedings of 11th International Corrosion Congress, Published by Associazione Italiano di Metallurgia, Milano, Italy, Vol. 3, 1990, #3.367.

Agarwala, V. S., "Corrosion Inhibition by Macrocylics: Porphyrins and Phtalocyanines," Corrosion Inhibitor Science and Technology, National Association of Corrosion Engineers, under publication, 1990.

Berman, D. A. and V. S. Agarwala, "Organic Thin Films for Corrosion Protection," NACE Corrosion/90 Conference, Las Vegas, NV, Preprint No. 448, 1990.

Alper, J. M. and S. J. Thoman, "Mechanical Characterization of Whisker-Reinforced Continuous-Fiber Composites," Proceedings of the American Society for Composites Fourth Technical Conference, Virginia Polytechnic Institute and State University, pp. 299-0307, October 1989.

Tsai, H. C. and A. Arocho, "Prediction of Fiber-Matrix Interface Properties and Their Influence on Interface Stress, Displacement and Fracture Toughness of Composite Material," Materials Science and Engineering A126, pp. 295-304, 1990.

Barrett, D. J., "An Anisotropic Laminated Damped Plate Theory," To be submitted for publication in the Journal of Sound and Vibration.

Barrett, D. J., "Damped Composite Structures," Submitted for publication in Composite Structures.

Barrett, D. J., "The Effect of Compliant Layering in Damped Plates," to be published in the Proceedings of Damping '91.

Bobb, L., "An Embedded Fiber Optic Sensor Utilizing the Model Power Distribution Technique," Optics Lett 15, #21, 1242 (1990).

Bobb, L., "Bending Effects in Ciconically Tapered Single Mode Fibers," J1 of LTWV Tech 8, 1084 (Jul 1990).

FOR OFFICIAL USE ONLY

REDECISIONAL INFORMATION

Bobb, L., "A Novel Pressure Sensor Using Bent Biconically Tapered Single Mode Fibers," accepted by Optics Letters.

_ _ _ _

Bobb, L., "An Optical Fiber Hot-Wire Anemometer," SPIE, Vol. 1169, Fiber Optic and Laser Sensors Vii, 1990.

Buckley L. J., "Stability Studies of Electrically Conducting Polyheterocycles," Accepted by Synthetic Metals, November 1990.

Davis, J. P., T. K. C k and M. J. Umehara, "Imaging Display Method for Airborne Oceanographic LIDAR," In Proceedings of SPIE Ocean Optics X, Orlando, April 1990.

Donnellan, M. E. and W. E. Frazier, "Evaluation of Fiber-Matrix Interactions in AL3TI Composites," International Conference on Composite Materials, July 1991. Invited paper to be published in the Proceedings.

Gao, M., J. B. Boodey, and R. P. Wei, "Hydrides in Thermally Charged Alpha-2 Titanium Aluminides," Scripta Metallurgica, Vol. 24, pp. 2135-2138, 1990.

Gabrielson, T. B., "Transition from Acoustic Oscillation to Irregular Pressure Fluctuation in a Thermoacoustic Engine," J. Acoust. Soc. Am. 87, S85, 1990.

Gabrielson, T. B., "Development of a Thermoacoustic Transducer for Generation of Underwater Sound," Acoustic Society of America, Special Session on Thermoacoustics, San Diego, CA, November 1990.

Donellan, T. M. and D. K. Roylance, "Structure-Property Relationships in Bismalelmide Resin Systems: Cure Mechanisms," In publication - submitted to Polymer Engineering and Science.

Armstrong-Carroll, E. and T. M. Donnellan, "A Materials Study of Interleaved Bismalelmide Composites," 1990 Materials Engineering Congress of The American Society of Civil Engineers, August 1990.

Draham, M., A. Passamante, M. E. Farrell, and N. Harned, "Using General Nonlinear Models for Chaotic Signals," in Proceedings of Fourth IEEE Digital Signal Processing Workshop, New Paltz, NY, 16-19 September 1990.

> PAGE 39 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY

Bobb, L., "A Novel Pressure Sensor Using Bent Biconically Tapered Single Mode Fibers," accepted by Optics Letters.

Bobb, L., "Coupling of Modes in Bent Biconically Tapered Single Mode Fibers," submitted to JLT.

Bobb, L., "An Optical Fiber Hot-Wire Anemometer," SPIE, Vol. 1169, Fiber Optic and Laser Sensors Vii, 1990.

Buckley L. J., "Small-angle X-ray Studies of Polyurethane/Diacetylene Block Copolymers," Submitted to Macromolecules, In review.

Buckley L. J., "Stability Studies of Electrically Conducting Polyheterocycles," Accepted by Synthetic Metals, November 1990.

Davis, J. P., T. K. C k and M. J. Umehara, "Imaging Display Method for Airborne Oceanographic LIDAR," In Proceedings of SPIE Ocean Optics X, Orlando, April 1990.

Donnellan, M. E. and W. E. Frazier, "Evaluation of Fiber-Matrix Interactions in AL3TI Composites," International Conference on Composite Materials, July 1991. Invited paper to be published in the Proceedings.

DiBerardino, M. F., P. A. Mehrkam, and T. M. Donnellan, "Repair Concepts for High Temperature Composites," 34th SAMPE Technical Symposium, April 1990.

Gao, M., J. B. Boodey, and R. P. Wei, "Hydrides in Thermally Charged Alpha-2 Titanium Aluminides," Scripta Metallurgica, Vol. 24, pp. 2135-2138, 1990.

Gabrielson, T. B., "Transition from Acoustic Oscillation to Irregular Pressure Fluctuation in a Thermoacoustic Engine," J. Acoust. Soc. Am. 87, S85, 1990.

Gabrielson, T. B., "Source Level Limits for Submerged Thermoacoustic Sound Sources," J. Acoust. Soc. Am., 85, S48, 1989.

Gabrielson, T. B., "Development of a Thermoacoustic Transducer for Generation of Underwater Sound," Acoustic Society of America, Special Session on Thermoacoustics, San Diego, CA, November 1990.

Donellan, T. M. and D. K. Roylance, "Structure-Property Relationships in Bismalelmide Resin Systems: Cure Mechanisms," In publication - submitted to Polymer Engineering and Science.

Armstrong-Carroll, E. and T. M. Donnellan, "A Materials Study of Interleaved Bismalelmide Composites," 1990 Materials Engineering Congress of The American Society of Civil Engineers, August 1990.

Draham, M., A. Passamante, M. E. Farrell, and N. Harned, "Using General Nonlinear Models for Chaotic Signals," in Proceedings of Fourth IEEE Digital Signal Processing Workshop, New Paltz, NY, 16-19 September 1990.

POR OFFICIAL USE ONLY

- ----

- -----

- -

Farrell, M. E., A. Passamante, and T. Hedlger, "Comparing a Nearest Neighbor Estimator of Local Attractor Dimensions for Noisy Data to the Correlation Dimension," Phys. Rev. A41, 6590, 1990.

Garrett, S. L. and T. B. Gabrielson, "Magnetohydrodynamic and Thermoacoustic Mechanisms for Generation of Sound in Seawater," Proceedings of the Second International Workshop on Power Transducers, Springer-Vertag, 162-177, 1991.

Gabrielson, T. B., "Radiation from a Submerged Thermoacoustic Source," submitted to J. Acoust. Soc. Am., December 1990.

Hynes, M. S., "Application of the LOG/LTR Design Technique to Aircraft Stabilization and Control Using Novel Feedback Parameters," In AIAA, September 1991.

Jemison, William D., "Optically Controlled Active Inductor Utilizing MESFETs," IEEE AP/MTT-S 1991 Benjamin Franklin Symposium, March 1991.

Jemison, William D., "A Double-Stage Injection-Locked Oscillator for Optically Fed Phased Array Antennas," IEEE Trans. on Microwave Theory and Tech., Vol. 30, Feb 1991.

Jemison, William D., "Iotucak /cibtrik if a Digital Phase Shifter," 1990 IEEE MTT-S International Microwave Symposium Digest, May 1990.

PAGE 40 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY Earrell, M. E., A. Passamante, and T. Hedlger, "Comparing a Nearest Neighbor Estimator of Local Attractor Dimensions for Noisy Data to the Correlation Dimension," Phys. Rev. A41, 6590, 1990.

Garrett, S. L. and T. B. Gabrielson, "Magnetohydrodynamic and Thermoacoustic Mechanisms for Generation of Sound in Seawater," Proceedings of the Second International Workshop on Power Transducers, Springer-Vertag, 162-177, 1991.

Gabrielson, T. B., "Radiation from a Submerged Thermoacoustic Source," submitted to J. Acoust. Soc. Am., December 1990.

Hynes, M. S., "Application of the LOG/LTR Design Technique to Aircraft Stabilization and Control Using Novel Feedback Parameters," In AIAA, September 1991.

Jemison, William D., "Optically Controlled Active Inductor Utilizing MESFETs," IEEE AP/MTT-S 1991 Benjamin Franklin Symposium, March 1991.

Jemison, William D., "A Double-Stage Injection-Locked Oscillator for Optically Fed Phased Array Antennas," IEEE Trans. on Microwave Theory and Tech., Vol. 30, Feb 1991.

Jemison, William D., "Iotucak /cibtrik if a Digital Phase Shifter," 1990 IEEE MTT-S International Microwave Symposium Digest, May 1990.

Ochadlick, A. R., Jr., P. Cho, J. Evans-Morgis and J. Verdi, "A Description of the NADC SAR Facility and Examples of Observations and Measurements," submitted to 1991 International Geoscience and Remote Sensing Symposium, Helsinki University of Technology, Finland.

Cho, P., J. Evans-Morgis, and A. R. Ochadlick, Jr., "SAR Imagery of the Ocean for Light and Strong Winds," submitted to 1991 International Geoscience and Remote Sensing Symposium, Helsinki University of Technology, Finland.

Evans-Morgis, J. P. Cho and A. R. Ochaduck, Jr., "SAR Data Analysis for Testing Slant Range to Ground Range Conversion and Monitoring the Environment," submitted to 1991 International Geoscience and Remote Sensing Symposium, Helsinki University of Technology, Finland.

Valenzuela, G. R., R. P. Mied, A. R. Ochadlick, Jr., M. Kobrick, P. M. Smith, W. C. Keller, R. J. Lai, D. Sheres, J. M. Morrison and R. C. Beal, "The July 1990 Gulf Stream Experiment," submitted to 1991 International Geoscience and Remote Sensing Symposium, Helsinki University of Technology, Finland.

Chubb, S. R., A. L. Cooper, G. R. Valenzuela, C. Shen, R. P. Mied, G. Marmorino, C. Trump, A. R. Ochadlick, Jr., J. Morrison, and J. R. Bennetee, "Preliminary Investigation of the Nature of the Gulf Stream with SAR," submitted to 1991 International Geoscience and Remote Sensing Symposium, Helsinki University of Technology, Finland.

Ochadlick, A. R., Jr., and N. Engheta, "Magnetic Fields Resulting From Ocean Current Structures Seen in SAR Imagery," submitted to Progress in Electromagnetics Research Symposium, Cambridge, MA, 1991.

FOR OFFICIAL USE ONLY

Ochadlick, A. R., Jr., W. A. Schmidt, and P. Cho, "Quantitative Stability of Slicks Observed With the NADC SAR During SAXON," EOS Transactions, American Geophysical Union (abstract), Vol. 71, No. 2, p. 83, 9 January 1990.

Ochadlick, A. R., Jr., "Additions to Synthetic Aperture Radar (SAR) Ocean Models: Speculations on a Weak Hydromagnetic Contribution," IEEE Symposium Digest, Eight Annual Benjamin Franklin Symposium, p. 81-84, 24 March 1990.

Ochadlick, A. R., Jr., "Correlation Coefficient for Pulsations (2.0 - 25s) Observed at Points Separated by 1.6 km to 4600 km," EOS Transactions, American Geophysical Union (abstract), Vol. 71, No. 17, p. 494-495, 24 April 1990.

Ochadlick, A. R., Jr., "Time Series and Correlation of Pulsations Observed Simultaneously by Two Aircraft," Geophysical Research Letters, Vol. 17, No. 11, p. 1889-1892, October 1990.

Kaufman, J. W. and P. W. Scherer, "Numerical and Experimental Study of Heat and Water Vapor Washout Curves," J. Appl. Physiol.

Kaufman, J. W., L. M. Hanna and G. K. Askew, "Empirical Determination of Heat Transfer Coefficients in the Human Nasal Airway," J. Appl. Physiol.

Kaufman, J. W., L. M. Hanna, G. K. Askew, and G. G. Weinmann, "Simultaneous Measurement of Nasal Airstream and Mucosal Temperatures in Humans," J. Appl. Physiol.

Kaufman, J. W. and P. W. Scherer, "Factors Influencing Human Airway Mucosal Thickness and Mucociliary Transport," J. Appl. Physiol.

Krafft, C. S., C. F. Beckner, and S. Tyagi, "Anomalous Modulation Field Dependent Microwave Absorption Phenomena in Powdered YBCO," to be published in IEEE Trans. Magnet., June 1991.

Krafft, C. S., and C. F. Beckner, "Microwave Absorption Measurements of High Temperature Superconductors Using a Coplanar Waveguide," to be published in J. Appl. Phys., April 1991.

Schmidt, W. A., "Modified Matched Filter for Clutter Suppression," IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 12, No. 6, June 1990.

> PAGE 41 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY

Ochadlick, A. R., Jr., W. A. Schmidt, and P. Cho, "Quantitative Stability of Sicks Observed With the NADC SAR During SAXON," EOS Transactions, American Geophysical Union (abstract), Vol. 71, No. 2, p. 83, 9 January 1990.

Ochadick, A. R., Jr., "Additions to Synthetic Aperture Radar (SAR) Ocean Models: Speculations on a Weak Hydromagnetic Contribution," IEEE Symposium Digest, Eight Annual Benjamin Franklin Symposium, p. 81-84, 24 March 1990.

Ochadlick, A. R., Jr., "Correlation Coefficient for Pulsations (2.0 - 25s) Observed at Roints Separated by 1.6 km to 4600 km," EOS Transactions, American Geophysical Union (abstract), Vol. 71, No. 17, p. 494-495, 24 April 1990.

Ochadlick, A. R., Jr., "Time Series and Correlation of Pulsations Observed Simultaneously by Two Aircraft," Geophysical Research Letters, Vol. 17, No. 11, p. 1889-1892, October 1990.

Kaufman, J. W. and P. W. Scherer, "Numerical and Experimental Study of Heat and Water Vapor Washout Curves," J. Appl. Physiol.

Kaufman, J. W., L. M. Hanna and G. K. Askew, "Empirical Determination of Heat Transfer Coefficients in the Human Nasal Airway," J. Appl. Physiol.

Kaufman, J. W., L. M. Hanna, G. K. Askew, and G. G. Weinmann, "Simultaneous Measurement of Nasal Airstream and Mucosal Temperatures in Humans," J. Appl. Physiol.

Kaufman, J. W. and P. W. Scherer, "Factors Influencing Human Airway Mucosal Thickness and Mucoclliary Transport," J. Appl. Physiol.

Krafft, C. S., C. F. Beckner, and S. Tyagi, "Anomalous Modulation Field Dependent Microwave Absorption Phenomena in Powdered YBCO," to be published in IEEE Trans. Magnet., June 1991.

Krafft, C. S., and C. F. Beckner, "Microwave Absorption Measurements of High Temperature Superconductors Using a Coplanar Waveguide," to be published in J. Appl. Phys., April 1991.

Schmidt, W. A., "Modified Matched Filter for Clutter Suppression," IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 12, No. 6, June 1990.

Jin, G. X., J. M. Yuan, L. M. Narducci, Y. S. Uu, E. J. Seibert, "Theoretical and Experimental Studies of Conical Stokes Emission," Optics Comm., 68, 379 (1988).

Sheehy, J. B., "Impact of Atmospheric Turbulence on the Simulation and Assessment of Visual Performance," in Proceedings of the 12th Annual Lasers on the Modern Battlefield, October 1990.

Sheehy, J. B., "Fixed Wavelength and Frequency Agile Laser Eye Protection," in Proceedings of the 12th Annual Lasers on the Modern Battlefield, October 1990.

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

Oh, C. H., "Jittered Direct Sequence Spread Spectrum Waveform as an AJ/LPI Waveform," MILCOM '90 Conference Record, Classified, IEEE MILCOM '90, October 1990.

Raiti, P., "Fiber Optic Sensors for Smart Skins," in proceedings SPIE FO Sensor Conference, San Jose, CA, September 1990.

Sands, R., S. Wang and A. Khan, "Nonindentation Technique for Evaluating Fiber/Matrix Interface in CAS Composites," submitted to Journal of Mater. Sciences, January 1991.

Sands, R., and M. Barsoum, "Reactive Sintering and In-situ Formation of Metal/Ceramic Composites," submitted to Journal American Ceram. Soc., February, 1991.

Frazier, W., M. Donnellan, P. Architetto, and R. Sands, "Hybrid Composite Materials," Journal of Metals, Accepted for publication in May 1991.

PAGE 42 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY Sheehy, J. B., "Transient Glare Effects: MPE to ED50," in Proceedings of the 12th Annual Lasers on the Modern Battlefield, October 1990.

Sheehy, J. B., "Multiple Wavelength Laser Eye Protection," in Proceedings of the 12th Annual Lasers on the Modern Battlefield, February 1990.

Sheehy, J. B. "High Intensity Glare and Refractive Error," in Proceedings of the 12th Annual Lasers on the Modern Battlefield, February 1990.

Morway, P. M., Sheehy, J. B., "Haze vs. Visual Performance: What Constitutes an Acceptable Level of Haze?" in Proceedings of the 12th Annual Lasers on the Modern Battlefield, October 1990.

Shender, B. S., "The New Zealand White Rabbit as a Model to simulate the Effects of Acceleration and Altitude Stress on the Vasodynamics of the Brain," Abstract in Aviat. Space Environ. Med. 61:472, 1990

Oh, C. H., "Jittered Direct Sequence Spread Spectrum Waveform as an AJ/LPI Waveform," MILCOM '90 Conference Record, Classified, IEEE MILCOM '90, October 1990.

Payton, W. H. and Dr. P. M. Lavin, "Application of Directional Filtering to Separate Juan DeFuca Seamount Magnetic Anomalies from Seafloor Magnetic Lineations," Abstract in EOS Transactions, American Geophysical Union, Vol. 68, No. 16, p. 289, 21 April 1987.

Payton, W. H. and Dr. P. M. Lavin, "Spatial Coherence of Juan de Fuca Seamount Magnetic Anomalies and Modeled Anomalies Derived from Bathymetry and Gravity Data," Abstract in EOS Transactions, American Geophysical Union, Vol. 68, No. 16, p. 289, 21 April 1987.

Raiti, P., "Fiber Optic Sensors for Smart Skins," in proceedings SPIE FO Sensor Conference, San Jose, CA, September 1990.

Sands, R., S. Wang and A. Khan, "Nonindentation Technique for Evaluating Fiber/Matrix Interface in CAS Composites," submitted to Journal of Mater. Sciences, January 1991.

Sands, R., and M. Barsoum, "Reactive Sintering and In-situ Formation of Metal/Ceramic Composites," submitted to Journal American Ceram. Soc., February, 1991.

Frazier, W., M. Donnellan, P. Architetto, and R. Sands, "Hybrid Composite Materials," Journal of Metals, Accepted for publication in May 1991.

Sands, R., "Ceramic Composite Interface Modeling," in Proceedings of Navy's 2nd IR/IED Symposium, Vol. 1, 259, 1989.

Sands, R., "Oxidation of SIC Fibers and Ceramic Matrix Composites," Ph.D. Thesis, University of Delaware, April 1991.

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

Ung, H. Y., J. M. Yuan, L. M. Narducci, J. R. Tredicce, W. J. Scharpf, "Theoretical Analysis of the Steady State Behavior of a Raman Anti-Stokes Ring Laser," Optics Comm. 78, 393 (1990)

McCardie, A. H., and G. B. Thomas, "Effects of Simulated Hearing Loss on Speech Perception in Noise," 62nd Annual Scientific Meeting of the Aerospace Medical Association, May 1992.

Sheehy, J. B., "Frequency Agile Laser Eye Protection: Technologies vs. Performance," Aviation Space & Environmental Medicine (abstract), May 1992.

PAGE 43 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY Ung, H. Y., J. M. Yuan, L. M. Narducci, J. R. Tredicce, W. J. Scharpf, "Theoretical Analysis of the Steady State Behavior of a Raman Anti-Stokes Ring Laser," Optics Comm. 78, 393 (1990)

Forster E. M., J. P. Cammarota, "The Effects of GLOC on Psychomotor Performance and Behavior," (in press. ASEM).

Forster, E. M., J. P. Cammarota, J. E. Whinnery, "G-LOC Recovery with and without G-sut Inflation," (submitted to the Journal of Aviation Space and Environmental Medicine (ASEM)).

Forster, E. M., "Heart Rate Response of Aircrew to Gradual Onset Rate - G = Exposures," (submitted to ASEM).

Weiss, M. S., S. J. Guccione, Jr., and T. A. Watkins, "A Kinematic/Dynamic Model for Prediction of Neck Injury During Impace Acceleration," NATO AGARD Conference Proceedings No. 471, Neuilly-sur-Seine, France, pp. 11:1-6, 1990.

Harmon, J., J. E. Whinnery, B. M. Forster, "G-LOC in Fighter Aircrew During Training," Presented at the Annual Meeting of the Aerospace Medical Association (ASMA), Miami, FL 1992.

McCardie, A. H., and G. B. Thomas, "Effects of Simulated Hearing Loss on Speech Perception in Noise," 62nd Annual Scientific Meeting of the Aerospace Medical Association, May 1992.

Shender, B. S., "Pressure Breathing for G (PBG), Seat-back Angle (SBA), and Cognitive Task (CT) Loading Effects on Cerebral Perfusion," Abstract in Aviat. Space Environ. Med., 62:448, 1991.

Shender, B. S., "The New Zealand White Rabby as a Model to Simulate the Affects of Acceleration and Altitude Stress on the Vasodynamics of the Brain," Abstract in Aviat. Space Environ. Med., 61:472, 1990.

Sheehy, J. B., "Frequency Agile Laser Eye Protection: Technologies vs. Performance," Aviation Space & Environmental Medicine (abstract), May 1992.

Sheehy, J. B., "Constant Rates of Glare Induced Occlusions," Proceedings of the 14th Annual Lasers on the Modern Battlefield Conference, February 1993.

Sheehy, J. B., "Multiple Wavelength Visor Joint Navy and Army Program," Proceedings of the 14th Annual Lasers on the Modern Battlefield Conference, February 1993.

Sheehy, J. B. and P. E. Morway, "Scotopic Transmittance vs. Resolution," Proceedings of the 14th Annual Lasers on the Modern Battlefield Conference, February 1993.

Sheehy, J. B., "Hughes Liquid Crystal Light Valve Joint Service Agile Program," Proceedings of the 14th Annual Lasers on the Modern Battlefield Conference, February 1993.

PREDECISIONAL INFORMATION

Anderson, R., R. Hart, B. Wahl, R. Hawkins, and S. Guccione, "Three-Dimensional Medlling of the Head and Neck During Indirect Impact," presented to the 1993 Annual Scientific Meeting of the Aerospace Medical Association, Toronto, CANADA, 26 May 1993. Abstract published in Aviation, Space and Environmental Medicine 64(5):444.

Anderson, T., "Relationship Between Added Head Mass and Cervical Strain Following +Gz Impact Acceleration," presented to the 1993 Annual Scientific Meeting of the Aerospace Medical Association, Toronto, CANADA, 26 May, 1993. Abstract published in Aviation, Space and Environmental Medicine 64(5):444.

Guccione, S. J., T. A. Watkins, M. S. Weiss, and D. W. Call, "A Kinematic Model for Predicting the Effects of Helmet-mounted Systems," Aviat. Space Environ. Med. 62:477, 1991.

PAGE 44 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY McNair, J., M. Lamb, "Developmental Test and Evaluation Report for Advanced Tactical Life Support System (ATLSS) Program," Report No. NAWC-92050-60 Naval Air Warfare Center, Warminster, PA, 1992.

Whitley, P. E., "Evaluation of Advanced Life Support Suit Concepts for G Protection," (Abstract) ASEMCG 63 (5):400, May, 1992.

Whinnery, J. E., B. S. Shender, "The Opticogravic Nerve: Eye Level Anatomic Relationships Within the Central Nervous System," Aviat. Space Environ. Med., under review.

Williams, C. E., D. W. Maxwell, G. B. Thomas, and A. H. McCardie, "Sound Attenuation and Speech Intelligibility Evaluations of a Helmet-Integrated Active Noise Reduction (ANR) System," 62nd Annual Scientific Meeting of the Aerospace Medical Association, May 1992.

Alem, N., D. Shanahan, J. Barson, W. Muzzy, "The Effectiveness of Airbags in Reducing the Severity of Head Injury from Gunsight Strikes in Attack Helicopters," NATO-AGARD Conference Proceedings, 532(44):1-9, September, 1992.

Anderson, R., R. Hart, B. Wahl, R. Hawkins, and S. Guccione, "Three-Dimensional Medlling of the Head and Neck During Indirect Impact," presented to the 1993 Annual Scientific Meeting of the Aerospace Medical Association, Toronto, CANADA, 26 May 1993. Abstract published in Aviation, Space and Environmental Medicine 64(5):444.

Anderson, T., "Relationship Between Added Head Mass and Cervical Strain Following +Gz Impact Acceleration," presented to the 1993 Annual Scientific Meeting of the Aerospace Medical Association, Toronto, CANADA, 26 May, 1993. Abstract published in Aviation, Space and Environmental Medicine 64(5):444.

Guccione, S. J., T. A. Watkins, M. S. Weiss, and D. W. Call, "A Kinematic Model for Predicting the Effects of Helmer mounted Systems," Aviat. Space Environ. Med. 62:477, 1991.

Forster, E. M., "Heart Rate Response of Aircrew to Gradual Onset Rate +Gz Exposures," in press, proofs received, Aviation Space and Environmental Medicine(ASEM).

Forster, E. M., J. A. Barber, F. R. Parker, J. E. Whinnery, R. R. Burton, P. A. Boll, "Effects of Pyridostigmine Bromide on Acceleration Tolerance and Performance," in press, proofs received, ASEM.

Forster, E. M., J. P. Cammarota, "The Effects of G-LOC on psychomotor Performance and Behavior," ASEM 1993:64:132-138.

Forster, E. M., J. P. Cammarota, "G-LOC Recovery With and Without Anti-G Suit Inflation," in press, ASEM.

PREDECISIONAL INPORMATION

Gilbert, N. and T. Anderson, "Incidence of Cardiac Dysrhythmias in Human Research Volunteers Following Impact Acceleration," presented to the 1993 Annual Scientific Meeting of the Aerospace Medical Association, Toronto, CANADA, 26 May, 1993. Abstract published in Aviation, Space and Environmental Medicine 64(5):420.

Grunsten, R., A. Prell, and T. Anderson, "Response of the Human Cervical Zone to-Gx Impact Acceleration," presented to the 1993 Annual Scientific Meeting of the Aerospace Medical Association, Toronto, CANADA, 26 May, 1993. Abstract published in Aviation, Space and Environmental Medicine 64(5) 444.

Liberati, D., P. Brandazza, L. Casagrande, A. Cerini, and B. Kaufman, "Detection of Transient Single-Sweep Somatosensory Evoked Potential Changes Via Principal Components Analysis of the Autoregressive With-Exogenous-Input Parameters," Proceedings of the 14th Annual Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2454-2455, 1992.

Matson, D., and J. Urbas, "An Artificial Neural Network for Detecting Abnormal Evoked Potentials During Impact Acceleration," presented to the 1993 Annual Scientific Meeting of the Aerospace Medical Association, Toronto, CANADA, 26 May, 1993. Abstract published in Aviation, Space and Environmental Medicine 64(5):462.

Muzzy, W. and T. Anderson, "An Innovative Technique for Conducting a Site Survey of an Aircraft Accident," presented to the 1993 Annual Scientific Meeting of the Aerospace Medical Association, Toronto, CANADA, 26 May, 1993. Abstract published in Aviation, Space and Environmental Medicine 64(5):466.

Prell, A., and T. Anderson, "Photo Documentation of Impact Acceleration Experiments Involving Manikins and Human Research Volunteers," presented to the 1993 Annual Scientific Meeting of the Aerospace Medical Association, Toronto, CANADA, 26 May, 1993. Abstract published in Aviation, Space and Environmental Medicine 64(5):462.

Rog, A., M. Losh, T. Riemer, and R. Trahan, "Time Delay Estimation of Noisy Signals Using Apacial Amplitude Distribution Analysis," Journal of the Acoustical Society of America, 92(4) Part 2:2323, 1992.

> PAGE 45 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY
Gilbert, N. and T. Anderson, "Incidence of Cardiac Dysrhythmias in Human Research Volunteers Following Impact Acceleration," presented to the 1993 Annual Scientific Meeting of the Aerospace Medical Association, Toronto, CANADA, 26 May, 1993. Abstract published in Aviation, Space and Environmental Medicine 64(5):420.

Grunsten, R., A. Prell, and T. Anderson, "Response of the Human Cervical Zone to-Gx Impact Acceleration," presented to the 1993 Annual Scientific Meeting of the Aerospace Medical Association, Toronto, CANADA, 26 May, 1993. Abstract published in Aviation, Space and Environmental Medicine 64(5) 444.

Liberati, D., P. Brandazza, L. Casagrande, A. Cerini, and B. Kaufman, "Detection of Transient Single-Sweep Somatosensory Evoked Potential Changes Via Principal Components Analysis of the Autoregressive With-Exogenous-Input Parameters," Proceedings of the 14th Annual Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2454-2455, 1992.

Matson, D., and J. Urbas, "An Artificial Neural Network for Detecting Abnormal Evoked Potentials During Impact Acceleration," presented to the 1993 Annual Scientific Meeting of the Aerospace Medical Association, Toronto, CANADA, 26 May, 1993. Abstract published in Aviation, Space and Environmental Medicine 64(5):462.

Muzzy, W. and T. Anderson, "An Innovative Technique for Conducting a Site Survey of an Aircraft Accident," presented to the 1993 Annual Scientific Meeting of the Aerospace Medical Association, Toronto, CANADA, 26 May, 1993. Abstract published in Aviation, Space and Environmental Medicine 64(5):466.

Prell, A., and T. Anderson, "Photo Documentation of Impact Acceleration Experiments Involving Manikins and Human Research Volunteers," presented to the 1993 Annual Scientific Meeting of the Aerospace Medical Association, Toronto, CANADA, 26 May, 1993. Abstract published in Aviation, Space and Environmental Medicine 64(5):462.

Rog, A., M. Losh, T. Riemer, and R. Trahan, "The Delay Estimation of Noisy Signals Using Apacial Amplitude Distribution Analysis," Journal of the Acoustical Society of America, 92(4) Part 2:2323, 1992.

Shender, B. S., "Contribution of Cerebrospinal Fluid to Rheoencephalographic Waveforms During Stress," Aviat. Space Environ. Med., accepted for publication in 1994.

Shender, B. S., "CWI Simulations Using the Texas Human Thermal Model: Part 1: Program Modifications for Low Wet CLO," Aviat. Space Environ. Med., under review.

Shender, B. S., "Evaluation of the Texas Human Thermal Model During Simulated Cold Water Immersion," Abstract in Aviat. Space Environ. Med., 64:432, 1993.

Shender, B. S., J. W. Kaufman, "CWI Simulations Using the Texas Human Thermal Model: Part III: Sensitivity Analysis," Aviat, Space Environ. Med

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

Revised poy NO0421

Reddix, M. D., J. A. D'Andrea, P. D. Collyer, and J. C. Knepton. "Low Level Laser Glare and Aviator Target Detection Performance," Aerospace Medical Association 65th Annual Scientific Meeting, 1994, submitted.

._ _ _ - - - -

Sergelin, A. Z., W. K. Krebs, D. L. Still, "A Survey of the Optical Characteristics of Aviator Night Imaging System (ANVIS) Devices Used in the Fleet," Aerospace Medical Association 65th Annual Scientific Meeting, 1994, submitted.

Kaufman, J. W. and P. W. Scherer, "A Proposed Mechanism for Upper Respiratory Infections," FASEB J. 1993; 7:A504.

Kaufman, J. W., L. M. Hanna, G. K. Askew, G. G. Weinmann, "Human Nasal Cavity Air and Mucosal Temperatures," FASEB J. 1991; 5:A377.

Kaufman, J. W., G. K. Askew, J. P. Bagian, "Plasma Volume Changes Related to Space Shuttle Operations," Aviat. Space Environ. Med. 1991; 62:453.

PAGE 46 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY Shender, B. S., J. W. Kaufman, R. Ilmarinen, CWI Simulations Using the Texas Human Thermal Model: Part II: Model Validation," Aviat. Space Environ. Med., under review.

Whinnery, J. E., B. S. Shender, "The Opticgravic Nerve: Eye Level Anatomic Relationships Within the Central Nervous System," Aviat. Space Environ. Med., 1993;64, 952-54.

Reddix, M. D., J. A. D'Andrea, P. D. Collyer, and J. C. Knepton. "Low Level Laser Gare and Aviator Target Detection Performance," Aerospace Medical Association 65th Annual Scientific Meeting, 1994, submitted.

Sergelin, A. Z., W. K. Krebs, D. L. Still, "A Survey of the Optical Characteristics of Aviator Night Imaging System (ANVIS) Devices Used in the Fleet," Aerospace Medical Association 65th Annual Scientific Meeting, 1994, submitted.

Still, D. L., W. K. Krebs, L. A. Temme, "The Modulation Transfer Function of Aviator Night Vision Imaging System (ANVIS), in preparation.

Still, D. L., W. K. Krebs, L. A. Temme, M. H. Mittleman, "The Effect of Blur on Pilots' ANVIS Spatial Acuity," Aerospace Medical Association 65th Annual Scientific Meeting 1994, submitted.

Shender, B. S. and J. W. Kautman, "Evaluation of the Texas Human Thermal Model (TM) During Simulated Cold Water Immersion (WCI), Aviat. Space Environ. Med. 1993; 64:432.

Shender, B. S. "Cold Water Immersion Simulations Using the Texas Human Thermal Model: Part I: Program Modifications for Low Wet CLO," submitted to Aviat. Space Environ. Med.

Shender, B. S., J. W. Kaufman, R. Marinen, "Cold Water Immersion Simulations Using the Texas Human Thermal Model: Part II: Model Validation," submitted to Aviat. Space Environ. Med.

Shender, B. S., J. W. Kaufman, "Cold Water Immersion Simulations Using the Texas Human Thermal Model: Part III: Sensitivity Analysis," submitted to Aviat. Space Environ. Med.

Kaufman, J. W. and P. W. Scherer, "A Proposed Mechanism for Upper Respiratory Infections," FASEB J. 1993; 7:A504.

Kaufman, J. W., P. W. Scherer, G. Neufield, J. Baumgardner, K. Pyon, "Numerical and Experimental Study of Respiratory Heat and Water Vapor Washout Curves," submitted to J. Appl. Physiol.

Kaufman, J. W., L. M. Hanna, G. K. Askew, G. G. Weinmann, "Human Nasal Cavity Air and Mucosal Temperatures," FASEB J. 1991; 5:A377.

Kaufman, J. W., G. K. Askew, J. P. Bagian, "Plasma Volume Changes Related to Space Shuttle Operations," Aviat. Space Environ. Med. 1991; 62:453.

FOR OFFICIAL USE ONLY

PREDECISIONAL INFORMATION

Revised pg N00421

Kaufman, J. W., "Anticipation of Potential Heat Stress with Anti-Exposure Protection," Fourth International ASTM Symposium on the Performance of Protective Clothing, Montreal, Quebec, 1991.

Kaufman, J. W., K. Y. Dejneka, S. J. Morrissey, A. C. Bittner, Jr., "Impact of a Chemical Protective Ensemble on Cognitive and Psychomotor Performance," In: Das B., ed. Advances in Industrial Ergonomics and Safety II, London: Taylor & Francis, 1990; 905-912.

Kaufman, J. W., K. Y. Dejneka, G. K. Askew, J. Lloyd R. Olsen, "Efficacy of Radio Frequency Energy in Rewarming Hypothermic Individuals," Aviat. Space Environ. Med. 1990; 61:468.

Kaufman, J. W., P. W. Scherer, "Predicted Sensitivity of Temperatures and Water Vapor Washout to Changes in the Human Airway," FASEB J. 1992.

PAGE 47 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY Kaufman, J. W., "Modelling Respiratory Water Loss During Simulated Combat Missions," US Navy R&D Information Exchange Conference 1991, China Lake, CA, 1991.

Kaufman, J. W., "Anticipation of Potential Heat Stress with Anti-Exposure Protection," Fourth International ASTM Symposium on the Performance of Protective Clothing, Montreal, Quebec, 1991.

Kaufman, J. W., K. Y. Dejneka, S. J. Morrissey, A. C. Bittner, Jr., "Impact of a Chemical Rrotective Ensemble on Cognitive and Psychomotor Performance," In: Das B., ed. Advances in Industrial Ergonomics and Safety II, London: Taylor & Francis, 1990; 905-912.

Kaufman, J. W., R. Ilmarinen, K. Y. Dejneka, E. Kahkonen, T. Seppala, J. Bookspan, "Empirical Model of Temperature Response to Cold Water Immersion," Proceedings of the 4th International Conference on Environmental Ergonomics, Austin, TX, October 1-5, 1990, p. 112-3.

Kaufman, J. W., K. Y. Dejneka, G. K. Askew, J. Lloyd R. Olsen, "Efficacy of Radio Frequency Energy in Rewarming Hypothermic Individuals," Aviat. Space Environ. Med. 1990; 61:468.

Kaufman, J. W., A. D. Owens, G. K. Askew, "Maintenance of Core Temperature During Cold Water Immersion," Proceedings of the 4th Nordic Conference on Quality and Usage of Protective Clothing (NOKOBETEF IV), Kittila, Finland, February 5-7, 1992.

Kaufman, J. W., P. W. Scherer, "Predicted Sensitivity of Temperatures and Water Vapor Washout to Changes in the Human Airway," FASEB J. 1992.

Krebs, W. K., J. J. Elias, J. E. Parker, D. L. Still, "Using a Fast Fourier Transform (FFT) to Identify Differences Between Nigh Vision Goggle (NVG) Images Versus Unaided Images: How Does This Effect Night Attack?" Aerospace Medical Association 65th Annual Scientific Meeting, 1994. Submitted.

Forster, E. M., J. P. Cammarota, J. E. Whinnery, "G-LOC Recovery With and Without G-Suit Inflation," ASEM 1994; 65:249-253

Forster, E. M., J. A. Barber, F. R. Parker, J. E. Whinnery, R. R. Burton, P. A. Boll, "Effect of Pyridostigmine Bromide on Acceleration Tolerance and Performance," Aviation Space and Environmental Medicine (ASEM) 1994; 65:110-116.

Forster, E. M., "Heart Rate Response of Aircrew During Recovery from Gradual Onset Rate +G_z Exposures," ASEM 1994; 65:55-59.

Forster, E. M., J. P. Cammarota, "The Effect of G-LOC on Psychomotor Performance and Behavior," ASEM 1993; 64:132-138.

Forster, E. M., J. E. Whinnery, "Dynamic Cardiovascular Response to +Gz Stress in Aerobically Trained Individuals," ASEM 1990; 61:303-306.

Morrison, J. G., E. M. Forster, E. M. Hitchcock, C. A. Barba, T. P. Santarelli, M., M. W. Scerbo, "Cumulative Effects of +Gz on Cognitive Performance," Human Factors (in press).

Wiegman, J. E., I. P. Krock, R. R. Burton, E. M. Forster, "The Wingate Anacrobic Test as an Indicator of Capacity for Simulated Aerial Combat Maneuvers," Sports Medicine (submitted).

Wercham, P. M., E. M. Forster, "Transcranial Doppler (TCD) Quantitation of G Protection," AsMA, New Orleans, LA, May 1991, ASEM 1990; 61:470 (#131).

> PAGE 48 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY

Krutz, R. W., R. R. Burton, E. M. Forster, "Physiologic Correlates of Protection Afforded by Anti-G Suits," ASEM 1990; 61:106-11.

Whinnery, J. E., E. M. Forster, "The Rate of Change of Acceleration Stress: Logical Definitions," ASEM (in press).

Morrison, J. G., E. M. Forster, E. M. Hitchcock, C. A. Barba, T. P. Santarelli, M., M. W. Scerbo, "Cumulative Effects of +Gz on Cognitive Performance," Human Factors (in press).

Wiegman, J. E., I. P. Krock, R. R. Burton, E. M. Forster, "The Wingate Anacrobic Test as an Indicator of Capacity for Simulated Aerial Combat Maneuvers," Sports Medicine (submitted).

Forster, E. M., "Evaluation of the Psychologic Sequelae to G-LOC by Using a Structured Questionneire," ASEM (submitted).

Forster, E. M., J. E. Whinnery, "Heart Rate Response of Aircrew to Gradual Onset Rate +Gz Exposures," Presented at AsMA, Cincinnati, OH, May 1991, ASEM 1991; 62:486 (#506).

Forster, E. M., J. P. Cammarota, "G-LOC With and Without Anti-G Suit Inflation," Presented at AsMA, Miami, FL, May 1992, ASEM 1992; 63:405 (#121).

Harmon, M., J. E. Whinnery, E. M. Forster, "G-LOC in Fighter Aircrew During Training," AsMA, Miami, FL, May 1992, ASEM 1992; 63:405 (#122).

Forster, E. M., J. P. Cammarota, "The Effects of G-LOC on Psychomotor Performance and Behavior," Presented at AsMA, Cincinnati, OH, May 1991, ASEM 1991; 62:485 (#503).

Wercham, P. M., E. M. Forster, "Transcranial Doppler (TCD) Quantitation of G Protection," AsMA, New Orleans, LA, May 1991, ASEM 1990; 61:470 (#131).

Forster, E. M., B. Eshaghian, C. J. Oakley, "Neart Rate Response to +Gz," Presented at AsMA, New Orleans, LA, May 1990, ASEM 1990; 61:465 (#103).

Whinnery, A. M., J. E. Whinnery, J. R. Hickman, "High +Gz Centrifuge Training: The Electrocardiographic Response to +Gz-Induced Loss of Consciousness," Aviat. Space Environ. Med. 61:609-614 (1990).

Whinnery, J. E., A. M. Whinnery, "Acceleration Induced Loss of Consciousness," Archives of Neurology 47:765-776 (1990).

Forster, E. M., J. E. Whinnery, "Dynamic Cardiovascular Response to +Gz Stress in Aerobically Trained Individuals," Aviat. Space Environ. Med. 61:303-306 (1990).

Whinnery, J. E., "The Electrocardiographic Response to High +6z Centrifuge Training," Aviat. Space Environ. Med. 61:716-721 (1990).

48

FOR OFFICIAL USE ONLY

DECISIONAL INFORMATION

THIS PAGE INTENTIONALLY LEFT BLANK DUE TO EXTRACTION OF DATA.

-

.....

PAGE 49 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY Whinnery, A. M., J. E. Whinnery, "The Electrocardiographic Response of Females to Centrifuge Stress," Aviat. Space Environ. Med. 61:1046-1051, 1991.

- ----

- - - -

_ _

Whinnery, J. E., "Reflections on the Beginning of an Advanced Closed Loop Aerial Combat Tracking Task G-LOC Research Program," Aviat. Space Environ. Med. (submitted).

Cammarota, J. P., J. E. Whinnery, "Enhancing Aircrew Centrifuge High-G Training Using On-Line Videotape Documentation," Aviat. Space Environ. Med. 61:1153-1155, 1990.

Whinnery, A. M., J. E. Whinnery, "The effect of +Gz Offset Rate on Recovery from Acceleration Induced Loss of Consciousness," Aviat. Space Environ. Med. 61:929-934, 1990.

Whinnery, J. E., "Evolving Concepts for Centrifuge Training of Aircrew," Aeromedical and Training Digest 4:9-13, 1990.

Whinnery, J. E., "Recognizing +Gz-Induced Loss of Consciousness and Subject Recovery from Unconsciousness on a Human Centrifuge," Aviat. Space Environ. Med. 61:406-411, 1990.

Whinnery, J. E., "Loss of Consciousness as a Protective Mechanism," Aviat. Space Environ. Med. (submitted).

Whinnery, J. E., E. M. Forster, "The Rate of Change of Acceleration Stress: Logical Definitions," Aviat. Space Environ. Med. (accepted).

Whinnery, J. E., "Medical Considerations for Human Exposure to Acceleration Induced Loss of Consciousness," Aviat Space Environ. Med. 62:618-623, 1991.

Whinnery, J. E., "Comments on Asymmetric Visual Loss During Acceleration Stress," Aviat. Space Environ. Med. (in press).

Whinnery, J. E., "The Cardiovascular and Neurophysiologic Limits of Fighter Aircrew to Acceleration Stress," Medicine Aeronautique et Spatiale 30:26-28, 1991.

Whinnery, J. E., R. J. Hamilton, J. P. Cammarota, "Techniques to Enhance Safety in Acceleration Research and Fighter Aircrew Training," Aviat. Space Environ. Med. (in press).

Whinnery, J. E., "Theoretical Analysis of Acceleration Induced Central Nervous System Ischemia," Engineering in Medicine and Biology 10:41-45, 1991.

Whinnery, J. E., "The Cardiovascular and Neurophysiologic Limits of Fighter Aircrew to Acceleration Stress," Medicine Aeronautique et Spatiale Vol. 30: 26-28, 1991.

Whinnery, J. E., "Describing an Aircrewman's Ability to Withstand Acceleration Stress," 39th International Congress on Aviation and Space Medicine," Stockholm, Sweden, 25-30 Aug 91.

FOR OFFICIAL USE ONLY

49

THIS PAGE INTENTIONALLY LEFT BLANK DUE TO EXTRACTION OF DATA.

.

PAGE 50 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY Cammarota, J. P., "Enhancements for Aircrew High-G Centrifuge Training Programs," 61st Annual Scientific Meeting of the Aerospace Medical Association, May 1991.

Shender, B. S., "Pressure Breathing for G (PBG), Seat-Back Angle (SBA), and Cognitive Task (CT) Loading Effects on Cerebral Perfusion," Abstract in Aviat. Space Environ. Med., 62:448, 1991.

Whinnery, J. E., B. S. Shender, "The Opticogravic Nerve: Eye Level Anatomic Relationships Within the Central Nervous System," submitted to Aviat. Space Environ. Med.

Whinnery, J. E., E. M. Forester, "The Rate of Change of Acceleration Stress: Logical Definitions," Aviat. Space Environ. Med. in press.

Whitley, P. E., "& Tolerance with Pressure Breathing for G (PBG) in Open and Closed Loop Centryfuge Operation," 1991 Annual Aerospace Medical Association Scientific Meeting, 5 May 1991.

Whitley, P. E., "Integrated Protective Systems for Operational Acceleration (G_z) Induced Loss of Consciousness," IEEE Engineering in Medicine and Biology Magazine, Vol. 10, No. 1, 1991.

Whitley, P. E., "Human Capabilities in High Angle of Attack Aircraft," Proceedings of the NASA-Langley Conference on High Angle of Attack Aircraft, 31 October 1990.

Whinnery, J. E., J. P. Cammarota, E. M. Forster, "The G-LOC Syndrome: Regional Ischemic Differential Within the Central Nervous System," Aviat. Space Environ. Med. 62:486, 1991.

Whinnery, J. E., E. M. Forster, "Loss of Consciousness Induced by Strangulation of $+G_z$: A Comparison," Aviat. Space Environ. Med. 63:405, 1992.

Forster, E. M., J. P. Cammarota, J. E. Whinnery, "G-LOC Recovery With and Without G-Suit Inflation," Aviat. Space Environ. Med. 63:404, 1992.

Harmon, M. H., J. E. Whinnery, E. M. Forster, "G-LOC in Fighter Aircrew During Training," Aviat. Space Environ. Med. 63:405, 1992.

McGowan, D., J. Whinnery, K. K. Gillingham, F. J. Maggio, G. W. Gray, J. Green, R. D. Vanderbeck, "A Review of Acceleration Injuries on Humkan Centrifuges in the United States and Canada Since 1985," Aviat. Space Environ. Med. 63:415, 1992.

Shender, B. J., J. E. Whinnery, "Opticogravic Nerve: Anatomic Considerations for a Central Nervous System (CNS)/+Gz Stress Sensor," Aviat Space Environ. Med. 63:397, 1992.

Neblett, N., J. P. Cammarota, J. E. Whinnery, "Cardiovascular Compensation in a Complex +Gz-Environment," Aviat. Space Environ. Med. 63:400, 1992.

FOR OFFICIAL USE ONLY

REDECISIONAL INFORMATION

NO0421 Rev Ned Py

..... -- -

- -

- - - - -

- - --

Kaufman, J. W., J. P. Bagian, "Insidious Hypothermia During Raft Use," Aviat. Space Environ. Med. 61:569-575, 1990.

Bagian, J. P., J. W. Kaufman, "Effectiveness of the Space Shuttle Anti-Exposure System in a Cold Water Environment," Aviat. Space Environ. Med. 61:753-757, 1990.

PAGE 51 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY Cammarota, J. P., N. Neblett, J. E. Whinnery, "Indications of Differences in Neurologic Tolerance in a Complex +Gz Environment," Aviat. Space Environ. Med. 63:400, 1992.

Whinnery, J. E., "Restoring Consciousness to the Ischemic Brain: Thermodynamic Considerations," (submitted).

Hamilton, R., J. Whinnery, S. Pripstein, J. Cammarota, "Evaluation of the Effects of +12Gz on the Spinal Column by Magnetic Resonance Imaging (MRI)," Aviat. Space Environ Med. 62:460, 1991.

Whinnery, J. E., F. J. Hamilton, "Physiologic Methods to Enhance Central Nervous System Perfusion in Fighter Aircrew with Excess Post +Gz Vagal Tone," Aviat. Space Environ. Med. 62:471, 1991.

Davis, C., J. Cammarota, R. Hamilton, J. Whinnery, "Case Report: Bening Paroxysmal Positional Vertigo Associated with Centrifuge Acceleration Exposure," Aviat. Space Environ. Med. Aviat. Space Environ. Med. 62:474, 1991.

Forster, E. M., J. E. Whinnery, "Heart Rate Response of Aircrew to Graduate Onset +Gz Exposures," Aviat, Space Environ. Med. 62:476, 1991.

Falk, R. L., J. E. Whinnery, An Evaluation of the Beginnings of a Specific Course in Fighter Aviation Medicine," Aviat. Space Environ. Med. 62:482, 1991.

Bagshaw, R., R. Hamilton, J. Whinnery, S. Pripstein, J. Cammarota, "Cerebral Magnetic Resonance Imaging Evaluation of Transient Ischemic Insult to the Brain in Normal Humans," Aviat. Space Environ. Med. 62:485, 1991.

Shender, B. S., J. E. Whinnery, "The Opticogravic Nerve: Anatomic Considerations for a Central Nervous System (CNW)/+Gz-Stress Sensor," Aviat. Space Environ. Med. 63:397, 1992.

Whinnery, J. E., B. S. Shender, "The Opticogravic Nerve: Eye Level Anatomic Relationships Within the Central Nervous System," Aviat. Space Environ. Med. 64:952-54, 1993.

Kaufman, J. W., J. P. Bagian, "Insidious Hypothermia During Raft Use," Aviat. Space Environ. Med. 61:569-575, 1990.

Bagian, J. P., J. W. Kaufman, "Effectiveness of the Space Shuttle Anti-Exposure System in a Cold Water Environment," Aviat. Space Environ. Med. 61:753-757, 1990.

Shender, B. S., J. W. Kaufman, "Evaluation of the Texas Human Thermal Model (TM) During Simulated Cold Water Immersion (CWI)," Abstract in Aviat. Space Environ. Med. 64:432, 1993.

Kaufman, J. W., P. W. Scherer, G. Neufield, J. Baumgardner, K. Pyon, "Numerical and Experimental Study of Respiratory Heat and Water Vapor Washout Curves," J. Biomech. Eng. (submitted for publication).

FOR OFFICIAL USE ONLY

Revised pg

N00421

Kaufman, J. W., "Analysis of Variables Influencing Respiratory Thermal Washout Curves," FASEB J. 8:A688, 1994.

Kaufman, J. W., P. W. Scherer, "A Proposed Mechanism for Upper Respiratory Infections," FASEB J. 7:A504, 1993.

Kaufman, J. W., P. W. Scherer, "Predicted Sensitivity of Temperature and Water Vapor Washout to Changes in the Human Airway," FASEB J. 6:A1478, 1992.

Kaufman, J. W., G. K. Askew, J. P. Bagian, "Plasma Volume Changes Related to Space Shuttle Operations," Aviat. Space Environ. Med. 62:453, 1991.

Kaufman, J. W., L. M. Hanna, G. K. Askew, J. Lloyd, R. Olsen, "Efficacy of Radio-Frequency Energy in Rewarming Hypothermic Individuals," Aviat. Space Environ. Med. 61:468, 1990.

e. List all technical books and/or chapters written by the in-house technical staff that were published or accepted for publication since 1 January 1990.

Title/Author/Date Approved

PATUXENT RIVER COMPLEX:

Granata, D. M., Kulowich, P., and Scott, W. R., "In-Flight Acoustic Emission Monitoring of Crack Growth," to be published in Review of Progress in Quantitative Nondestructive Evaluation, Vol. 13.

Granata, D. M., Scott, W. R., and Ryan, M. J., "Fourier Transform Techniques for Mode Separation in Piezocomposites," in Mathematics in Smart Structures, Vol. 1919, pp. 55-64, Ed. V. K. Varadan, SPIE.

Lee, E. U., Granata, D. M., and Scott, W. R., "Acoustic Emission Monitoring of Fatigue in Titanium Aluminide XD Composite," in Evaluation of Advanced Materials STP 1157, pp. 293-331 ASTM.

PAGE 52 R (9-16-94) UIC: N00421 FOR OFFICIAL USE ONLY Kaufman, J. W., L. M. Hanna, G. K. Askew, G. G. Weinmann, "Simultaneous Measurement of Airstream and Mucosal Wall Temperatures in the Human Nasal Cavity," Acta Oto-Laryng (submitted for publication).

Kaufman, J. W., "Role of the Upper Airway in Respiratory Thermal Washout Curves," (to be submitted to Acta Oto-Laryng.).

Kaufman, J. W., R. Hamilton, K. Y. Dejneka, G. K. Askew, "Hypothermia Rewarming Using Radio-Frequency Energy," J. Appl. Physiol. (in review).

Kaufman, J. W., P. W. Scherer, "Factors Influencing Human Airway Mucosal Thickness and Mucocilliary Transport," (to be submitted to J. Appl. Physiol.).

Kaufman, J. W., L. M. Hanna, S-R Lou, G. K. Askew, "Empirical Determination of Heat Transfer Coefficients in the Human Nasal Airway," (to be submitted to J. Biomech. Eng.).

Kaufman, J. W., "Analysis of Variables Influencing Respiratory Thermal Washout Curves," FASEB J. 8:A688, 1994.

Kaufman, J. W., P. W. Scherer, "A Proposed Mechanism for Upper Respiratory Infections," FASEB J. 7:A504, 1993.

Kaufman, J. W., A. D. Owens, G. K. Askew, "Maintenance of Core Temperature During Cold Water Immersion," Proceedings of the 4th Nordic Conference on Quality and Usage of Protective Clothing (NOKOBETEF IV), Kittila, Finland, February 5-7, 1992.

Kaufman, J. W., P. W. Scherer, "Predicted Sensitivity of Temperature and Water Vapor Washout to Changes in the Human Arway," FASEB J. 6:A1478, 1992.

Kaufman, J. W., G. K. Askew, J. P. Bagian, 'Plasma Volume Changes Related to Space Shuttle Operations," Aviat. Space Environ. Med. 62:453, 1991.

Kaufman, J. W., L. M. Hanna, G. K. Askew, J. Lloyd, R. Olsen, "Efficacy of Radio-Frequency Energy in Rewarming Hypothermic Individuals," Aviat. Space Environ. Med. 61:468, 1990.

Kaufman, J. W., R. Ilmarinen, K. Y. Dejneka, E. Kahkonen, T. Seppala, I. Bookspan, "Empirical Model of Temperature Response to Cold Water Immersion," Proceedings of the 4th International Conference on Environmental Ergonomics, Austin, TX, October 1-5, p. 112-3, 1990.

e. List all technical books and/or chapters written by the in-house technical staff that were published or accepted for publication since 1 January 1990.

Title/Author/Date Approved

NAWCAD PATUXENT RIVER

"TC-7 Catapult and Arresting Gear Facility," Draft Brochure, LCDR Misch, 23 Jan 1990

"SATCOM Siting Study," abstract/manuscript, R.J. Marhefha, D. Bensman, DeCarlo, 8 Mar 1990

"V-22 Govt. Test Pilot Trainer," McCrillis, 2 Mar 1990

"AV-8B Shipboard Ski Jump Evaluation," Lea/Nalls, 1 Mar 1990

"Tacts," held ACM future, Wunder, 26 Mar 1990

"Pulse Distortion in Multipath," DeCarlo, 12 Mar 1990

"T-45 Grid Slope Management," abstract, Lt. Brent Jett, Bruce Feldman, 2 Apr 1990

"P-3C/AIM 9 Sidewinder Program," abstract, LCDR Bill Warlick, Lt. Dave Wagner, 30 Mar 1990

"V-22 Full Scale Development," abstract, LtCol. Castler, 19 Apr 1990

"Structural Analysis/Computation Fluid Dynamics," abstract, TPS symposium, 7 May 1990

"JTIDS," article, Lt. R. M. McQueen, 24 May 1990

"Air Combat Environment Test and Evaluation Facility," J. R. Smullen, LCDR S. D. Harris, 3 May 1990

"V-22 Government Test Pilot Trainer," John McCrillis, 19 Apr 1990

"Status Report of V-22 Full Scale Development," LtCol. Jim Caster, 19 Apr 1990

"Aerodynamic Loss of Tail Rotor Effectiveness," abstract/manuscript, 25 Apr 1990

"NATC Manned Flight Simulator VTOL Ship Motion Simulation and Application," abstract/manuscript, 31 Apr 1990

"U.S. Navy Testing of the Skyship 600s," abstract/manuscript, Mike McDaniel, 2 Jul 1990

"Crew Systems Integration and the V-22 Osprey," LCDR Moynihan and Karen Garner, 10 May 1990

"NATC F-14 Yaw Vane Technology Demonstration Program," Jeff Sappington, 19 Sept 1990

"The Test and Evaluation Community Network," abstract/paper, Hurlburt, 23 Jul 1990

"Development and Evaluation of a Digital Critical Task," Austin, Gatewood and Dunn, 15 Aug 1990

"Real-Time Electronic Warfare Testing at NATC," Jim Tuttle, 23 Jul 1990

"Range Control at the Naval Air Test Center," Mike Payne, 24 Aug 1990

"F-14/F-110 Engine Integration Script for Presentation," Jennings Bryant, 24 Sept 1990

"Use of High-Fidelity Simulation in the development of an F/A-18 Active Ground Collision Avoidance System," Tim Fitzgerald, 22 Feb 1991

"Shipboard Mission Training Effectiveness of the NATC V-22 Government Test Pilot Trainer," Chad Miller, 22 Feb 1991

"Development Maintenance and Use of Simulation through a standardized Architecture," Steve Bachner, 22 Feb 1991

"Utilization of Rotary Balance Data to Enhance Post Stall Flight Dynamics in a Real-Time Flight Simulation," Jim Denham, J. R. Agard, 22 Feb 1991

"Technology Demonstration Aircraft Program," Daniel Dickey, 12 Feb 1991

"Evaluating Fixed Wing Aircraft in the Aircraft Carrier Environment," C. P. Senn, 4 Apr 1991

"United States Navy Ski Jump Experience and Future Applications," T. C. Lea, III, 4 Apr 1991

"Enhanced Displays, Flight Controls, and Guidance Systems for Approach and Landing," Gary Kessler, 3 Apr 1991

"V-22 FSD Testing paper and videotape," Maj. Bob Price and LCDR Pete LeVoci, 23 Apr 1991

"A-6E Rewing Weapon Certification," Walt Williams, 25 Apr 1991

"Nose Down Control Margin Guidelines for Aircraft Employing Relaxed Static Stability," Capt. Robert Trombadore and Chris Clarke, 15 Mar 1991

"T-45A Development Testing," Lt. W. Knudson and Steve Cricchi, 20 Mar 1991

"Common Airborne Instrumentation System," Raymond Faulstich, 12 Mar 1991

"Putting the E in T & E: A Model," John Marshall, 6 May 1991

"UC-880 Telemetry Relay Airborne Command System," Jerome Gehrig and Willy Hansen, 17 May 1991

"AGARD Flight Mechanics Panel USN Flight Test Results of Ski Jump Assisted Takeoff Using Conventional Fixed Wing Aircraft," Page Senn, 21 Aug 1991

"Single Engine Testing of the F-14A (PLUS) Airplane in the Power Approach Configuration," Ron Hainey, 19 Aug 1991

"The Use of High Voltage DC in Aircraft Electrical Systems," Bill Molock, 1 Aug 1991

"Analysis Tools Derived from Investigating Aerodynamic Loss of Tail Rotor Effectiveness," Herm Kolwey, 25 Apr 1991

"F/A-18 Radar Liquid Coolant Polyalphaolefin Test Results," Sharam Bavani, 15 Jul 1991

"Ship Airwake Measurement and Modeling Options of Rotorcraft Applications," Dean Carico, 25 Apr 1991

"F-14 Dual Hydraulic Failure Flying Qualities," Steve Minnich and Bob Niewochner, 26 Sept 1991

"Time-Domain Antenna Characterization," Oliver Allen, 17 Oct 1991

"Shipboard Evaluation of the V-22 Osprey," Gery Vanderbiet, 22 Apr 1991

"Shipboard Mission Training Effectiveness of NATC's V-22 GTPT," Gery Vanderbiet, 22 Feb 1991

"Buckling Behavior of a Gusset Stiffened Joint," Dwayne Drake, 3 Mar 1992

"Pioneer Effectiveness Suitability and Performance in Desert Storm," John Marshall, 2 Jan 1992

"Air ASW Interoperability," abstract, Claude Martin and Peter Butt, 25 Nov 1991

"TECNET Research and Development Initiatives," abstract, George Hurlbert, 8 Jun 1992

"Software Safety Analysis in Heterogeneous Control System Software," Janet Gill, 8 May 1991

"Pitch Control Margin at High AOA - Quantitative Requirements," J. Lackey and Capt. Hadfield, 27 May 1992

"Improvements to the NAWCAD F/A-18 Subsonic Aerodynamic Model," Tim Fitzgerald, 22 Jul 1992

"A New Ground Test for Determining the Resolution of Pushbroom Sensors," 26 Aug 1992

"Structural Evaluation of Big Look Antenna Radome on EP-3E ARIES II Aircraft," Jennifer O'Connor and Robert David, 24 Aug 1992

"ES-3A Lightning Qualification Test Results Summary," Kurt Sebacher and Mike Whitaker, 6 Oct 1992

"Standardization of Precipitation Static Test Methods and Equipment for the Navy," Matthew Maier, 21 Sept 1992

"The Test, Evaluation, Development and Use of a Manned Flight Simulator to Support Navy Developmental Testing of the V-22 Osprey," Gery Vanderbliet, 8 Oct 1992

_ _ _ _ _ _ _ _ _ _ _ _ _

"F/A-18 Controls Released Departure Recovery Flight Test Evaluation," Lt. David Prater, Marc Stevens, and James Lackey, 24 Sept 1992

"Improvements to the NAWCAD's F/A-18 Subsonic Aerodynamic Model," Tim Fitzgerald, 23 Sept 1992

"Multichip Module Conformal Electronics," Karin Lovett, 27 Jan 1993

"Integration Assessment of "Glass Cockpit" Control Display Interface Using Man-in-the-Loop Simulation," Rebecca Morgan, 22 Feb 1993

"Identification of a Full Subsonic Envelope Nonlinear Aerodynamic Model of the F-14 Aircraft," Stephen Bachner, 3 May 1993

"Engineering Applications to Enhance Flight Testing," Dean Carico, 28 June 1993

"Test and Evaluation and Training Range Integration," George Ryan Jr., 1 Feb 1993

"Investigation of Tactical Aircrew Electronic Warfare Crew System Integration," Karen Garner, 11 Feb 1993

"Limited Navy Evaluation of the NASA F/18 High Angle of Attack Research Vehicle (HARV)," James Lackey, 28 Jan 1993

"Abridged Procedural Guide to Aircrew Anthropometric Accommodation Assessment," Scott Price, 30 Mar 1993

"Preparation of a Flight Test Plan," Robert Russell, 7 Apr 1993

"Flight Testing - Conquering the Future," Marilyn Wooten, 11 Mar 1993

"Carrier Suitability Tests of the Rafale Airplane in the U.S.," John Loftus, 31 Mar 1993

"EW Flight Testing at NAWCAD," Jim Tuttle, 1 Apr 1993

"Elastic Analysis of Planer Cracks of Arbitrary Shape," Quanfin Guo and Jian Juei Wang, 1 Jul 1993

"Real-Time Data Handling Processing," Lloyd Myers and Ted Takacs, 4 May 1993

"Swedish BOL Chaff Dispenser," Francis Guffy, 21 Apr 1993

"F-14 Air-To-Ground Weapons Separation Testing," Lt. Robert, Lt. Curbeam Jr. and Matthew Neel, 12 May 1993

"V-22 Engineering and Manufacturing Development Program: A New Beginning," Lt Col Paul Martin and Sam Porter, 30 June 1993

"Inter-Service and International Operability in Aerial Refueling," David Ludwig, 17 May 1993

"Shipboard Night Vision Device Flight Testing," LCDR Webster Giddings and Kurt Long, 30 June 1993

"A-6E Wing Modification and Longitudinal Stability," David Hyde, 1 Jun 1993

"Hands On Training for the Flight Test Engineers," Marilyn Wooten, 3 June 1993

"Using the Telemetry Attributes Transfer Standard," Ted Takacs, 30 Jul 1993

"Conformal Micro Electronic Solutions to Test and Evaluation," Karin Lovett and Randall Urban, 21 June 1993

"F/A-18 Departure Recovery Improvement Evaluations," James Lackey, 23 June 1993

"Airship Applications of Modern Flight Test Techniques," Michael McDaniel, 4 June 1993

"The Common Airborne Instrumentation System Program Overview," Sid Jones, 19 Aug 1993

"Identification of a Full Subsonic Envelope Nonlinear Aerodynamic Mode of F-14 Aircraft," Stephen Bachner and Thomas Trankle, 23 Aug 1993

"Post Flight Data Distribution System," Joseph Lloyd, 6 Aug 1993

"Digital Voice Recorder," Robert Myers, 6 Aug 1993

"Dynamic Modeling of a Training Wire Towed by an Aircraft," LCDR James Clifton, 1 Jul 1993

"F-14 Flight Control Design Verification and Validation Using Computer Aided Engineering Tools," abstract, James Denham, Joseph Renfraw and Steve Liebler, 1 Jul 1993

"Carrier Suitability Tests of the Rafale Airplane in the United States," John Loftus, 21 Jul 1993

"Engineering Applications to Enhance Flight Testing Paper," Dean Carico, 15 Jul 1993

"The Role of Simulation in Support of Flight Test Paper," William Clark, 15 Jul 1993

"Establishing the Test Team," Bob Russell, 26 Jul 1993

"Development of a Deployable AH-1W Trainer W/COTS and DIS," Chad Miller, 28 Jul 1993

"Software T & E: A View From the United States," Luke Campbell, 8 Aug 1993

"MIL-STD-461/MIL-STD-704 Investigation," Kenneth Brezinski and Ed Taylor, 21 Sept 1993

"NAWCAD integrate EMP & E cubed RDT&E," Sam Frazier, 10 Aug 1993

"Dynamic Radar Cross Section Measurements," James Tuttle, 17 Aug 1993

"Requirements Management/Requirements Engineering," Luke Campbell, 8 Sept 1993

"F-14A/B Air-To-Ground Weapons Separation Program," Lt. Curbeam and Matthew Neel, 24 Nov 1993

"TM 93-59 SY In Flight Measurement of Aircrew Breathing in Navy Aircraft," Dennis Gordge, 9 Dec 1993

"Development of a Deployable AH-1W Trainer," Chad Miller, 6 Dec 1993

"Resources Automated Management Systems," Jill Galloway, 15 Oct 1993

"Construction of Offshore Breakwater and Beachfill at the NAS Patuxent River," 5 Nov 1993

"T&E and Training Integration: Enhancing Future Combat Readiness," abstract, Mike Payne, 2 Feb 1994

"Construction of Offshore Breakwater and Beach fill at NAS," Philip Vitale, 1 Feb 1994

"KC-130 ANVIS/HUD Assessment and Symbology Rationale," Maj. Lakaszow, 25 Feb 1994

"Virtual Reality on Air Combat T & E Perspective," R. Nowak and J. R. Smullen, 4 Mar 1994

"The Use of Genetic Algorithms for Flight Test and Evaluation of Artificial Intelligence and Complex Software Systems," abstract, Elizabeth Davis, John McMaster and Mary Stark, 8 Mar 1994

"V-22 Simulation Evaluation for Shipboard Operations," William Reddy, 14 Mar 1994

"Airship Application of Modern Flight Test Techniques," Michael McDaniel and Lt. Sean Brennan, 7 Apr 1994

"Flight Testing High Lateral Asymmetric on Highly Argumented Fighter Attack Aircraft," Greg Dungan and Chris Clark, 8 Apr 1994

"Tilt Rotor Unmanned Air Vehicle System (TRUS) Demonstrator Flight Test Program," Mike Meyers, 15 Apr 1994

"T-45A High Angle of Attack Testing," Lt. Max Rogers and Patrick Perusse, 18 Apr 1994

"Add a Dimension to your Analysis of the Helicopter Low Airspeed Environment," Herm Kolwey, 18 Apr 1994

"The Development of an Aviation Fuel Thermal Stability Test Unit," Dagget, D.L., Veniger, A., Lewis, C. Bullock, S., and Kamin, R.A., June 1994

- --- - -

- -

"Proposed Universal Rate Constant For Quantifying Jet Fuel Thermal Deposition," Nowack, C.J., March 1994

"Combustion Technology Needs For Advanced High Pressure Cycle Engines," Clouser, S.D., and Kamin, R.A., June 1993

"Development of a Methodology for Measuring and Controlling The Lubricity of Aviation Fuels," Colbert, J.E., May 1992

"Inhibition of Peroxoide Formation by Hindered Phenols in Jet Fuels," Fodor, G.E., Naegeli, D.W. and Turner, L.C., April 1992.

"An Investigation of the Degradation of Aviation Fuel Thermal Oxidation Stability During Transit," Kamin, R.A., and Nowack C.J., November 1991

"Differential Scanning Calorimetry - A New Technique For Fuel Thermal Oxidative Stability Studies," Ripley, D.L., Chirico, R.D., Steele, W.V., and Kamin, R.A., November 1991

"Comparison of Accelerated Predictive Techniques to Measure the Oxidative Tendencies of Aviation Fuels," Turner, L.C. and Nowack, C.J., November 1991

"The Development of a Computational Model to Predict Low Temperature Fuel Flow Phenomena," Kamin, R.A., Nowack, C.J., and Olmstead, B.A., October 1990

"Analysis of Phenolic Antioxidants in JP-5 Aviation Fuels," Huang, A., and Turner L.C., August 1990

"An Advanced High Temperature Turbine for Subsonic Engine Applications," Wilson, M., and Sautner, M., June 1994

"Development of Improved Thermal Barrier Coating Using Interface Grooves," Mannana, S., and Migliacci, D., June 1994

"The Modernization of Military Piston Engine Aviation Oil Specifications," Shimski, J.T., and Mearns, D.F., April 1991.

"Helicopter Drive System Seeded Fault Test Program," Emmerling, W.C., PE, October 1993

"Tapered Roller Bearing Adjustment-Lessons Learned," Emmerling, W.C., and Johnson, J.B., July 1992

"Review of Photonic System Development for Propulsion Controls," Fields, C.V., and Agnelio, M., March 1994

"Control Systems for the Next Century's Fighter Engines," Skira, C.A., and Agnello, M., June 1991

"Aircraft Propulsion Control Systems for the Next Century," Skira, C., and Angello, M., July 1990

_ ---

_ _ _ _ _ _ _ _ _ _

"Avionics Cleaning and Corrosion Prevention/Control," NAVAIR Technical Manual 16-1-540.

"Aircraft Cleaning and Corrosion Control," NAVAIR Technical Manual 01-1A-509.

"Fluid Meters," The American Society of Mechanical Engineers

- -

"Magnetic Test Procedures," Chapter 7.

"Test Methods for Recording/Reproducer Systems and Magnetic Tape," Volume III.

Granata, D. M., Kulowich, P., and Scott, W. R., "In-Flight Acoustic Emission Monitoring of Crack Growth," to be published in Review of Progress in Quantitative Nondestructive Evaluation, Vol. 13.

Granata, D. M., Scott, W. R., and Ryan, M. J., "Fourier Transform Techniques for Mode Separation in Piezocomposites," in Mathematics in Smart Structures, Vol. 1919, pp. 55-64, Ed. V. K. Varadan, SPIE.

Lee, E. U., Granata, D. M., and Scott, W. R., "Acoustic Emission Monitoring of Fatigue in Titanium Aluminide XD Composite," in Evaluation of Advanced Materials STP 1157, pp. 293-331 ASTM.

Range Commander's Council, Document Number 118-89, "Test Methods for Telemetry Systems and Subsystems."

Scott, W. R., Ryan, M. J., and Granata, D. M., "Interferometric Study of Audio Frequency Vibrations in Type 1-3 Piezocomposites," in Smart Materials Vol. 1916, pp. 300-308 Ed. V. Varadan, SPIE.

Sotos, N. R. Li, L., Scott, W. R., and Ryan, M. J., "Micromechanical Behavior of 1-3 Piezocomposites," in Smart Materials Vol. 1916, pp. 87-96 Ed. V. K. Varadan, SPIE.

"Coating Technology for US Naval Aircraft," in Paint and Ink International, Vol. 3, 2-3, May/August 1990.

"Measurement of Fluid Flow in Pipes Using Orifice," The American Society of Mechanical Engineers 1990.

"Performance Test Code 13.2, Pressure Measurements," The American Society of Mechanical Engineers 1990.

"Performance Test Code 3.2, Solid Fuels," The American Society of Mechanical Engineers 1990.

"Performance Test Code 8.2, Centrifugal Pumps," The American Society of Mechanical Engineers 1990.

Bobb, L., "An Optical Fiber Hot-wire Anemometer in Optical Fiber Sensors," edited by Arditty, H.J., Dakin, J. P., and Kersked, R., Springer-Verlag, Heidelberg, pp. 201-205, 1990.

.

Chanda, T., Frazier, W. E., Mohamed, F. A., and Lavernia, E. J., "A Fundamental Study of the Microstructure of Al-Ti-SiCp Materials Using Variable Co-Deposition of Multi-Phase Materials," in Advanced Metal and Ceramic Matrix Composites, ed. Bhagat, R. B., et al., Warrendale, PA: TMS-AIME, 1990.

Frazier, W. E., London, G. J., and Austen, A. R., "Microstructure and Properties of Extruded P/M Aluminum Polymer Blends," in Advanced Metal and Ceramic Matrix Composites, ed. Bhagat, R. B., et al., Warrendale, PA: TMS-AIME, 1990.

Granata, D. M., Scott, W. R., Lee, E. U., and Davis, J., "Acoustic Emission Potential in Intelligent Manufacturing: A Sample Problem", in Proceedings of the Fifth IEEE International Symposium on Intelligent Control, Vol. III, Philadelphia, PA, 1990.

Granata, D. M., Scott, W. R., Lee, E. U., and Davis, J., "Acoustic Emission Potential in Intelligent Manufacturing: A Sample Problem," in Proceedings of the Fifth IEEE International Symposium on Intelligent Control, Vol. III, Philadelphia, PA, 1990.

Kaufman, J. W., Dejneka, K. Y., Morrissey, S. J., and Bittner, A. C., Jr., "Impact of a Chemical Protective Ensemble on Cognitive and Psychomotor Performance," in Advances in Industrial Ergonomics and Safety II, pp. 905-912, ed. Das, B., Taylor and Francis, London, 1990.

Lee, E. U., "Fatigue of P/M Alloys 7091 and CW67," in Proceedings of TMS Symposium on Low Density, High Temperature P/M Alloy, Detroit, MI, 1990.

Ochadlick, A., A chapter on "Hard Target Detection," in Applied Physics Laboratory Report (Classified), April, 1990.

Skinner, D. J., Zedalis, M. S., Frazier, W. E., Koczak, M. J., and Sahoo, P., "The Microstructural Stability of TiC Reinforced Rapidly Solidified Al-Fe-V-Si Composite Structures," in Advanced Metal and Ceramic Matrix Composites, ed. Ram B. Bhagat et al., Warrendale, PA: TMS-AIME, 1990.

Skinner, D. J., Zedalis, M. S., Frazier, W. E., Koczak, M. J., and Sahoo, P., "The Microstructural Stability of TiC Reinforced Rapidly Solidified Al-Fe-V-Si Composite Structures," in Advanced Metal and Ceramic Matrix Composites, ed. Bhagat, R. B., et al., Warrendale, PA: TMS-AIME, 1990.

Subrahmanyam, M. B., "Optical Control with a Worst-Case Performance Criteria and Application," Springer Verlog, Germany, 1990.

Varma, A., "Handbook of Furnace Atomic Absorption Spectroscopy," CRC Press Inc., 1990.

"Light Weight Alloys for Aerospace Applications II," edited by Lee, E. W., and Kim, N. J., TMS-AIME, Warrendale, PA, 1991.

"Low Density, High Temperature P/M Alloy," edited by Frazer, W., Koczak, M., and Lee, P., TMS, Warrendale, PA, April, 1991.

"Performance Test Code #1," The American Society of Mechanical Engineers 1991.

Agarwala, V. S., "Catastrophic Damage Phenomena - An In-situ Crack Tip Study," in Mechanical Behavior of Materials - VI, Vol. 2, edited by M. Jono and I. Inoue, Pergamon Press, Tokyo, Japan, 1991.

Agarwala, V. S., and Gabiszwesky, A., "Processing and Corrosion Behavior of Metal Matrix Composites," in Environmental Effects on Advanced Materials, edited by R. Kane, NACE International Publications, Houston, TX 1991.

Basis for Developing Cognitive Engineering Guidelines in Adaptive Automation," in Proceedings 1991 Human Factors Society 35th Annual Meeting, San Francisco, CA, pp. 116-120, 1991.

Benci, J. E., and Frazier, W. E., "Evaluation of a New Aluminum Alloy for 700 of Aerospace Applications," in Light Weight Alloys for Aeropace Applications, edited by Lee, E, and Kim, N., Warrendale, PA: TMS-AIME, 1991.

Boodey, B., Scott, W. R., Granata, D., and Connelly, G, "Acoustic Emission from Micro Indentation Fracture Toughness Tests" in Progress in Quantitative Nondestructive Evaluation, Vol. 10a, p. 1905, Plenum, 1991.

Boodley, B., Scott, W. R., Granata, D., and Connelly, G., "Acoustic Emission from Micro Indentation Fracture Toughness Tests," presented in Review of Progress in Quantitative Nondestructive Evaluation, UCSD, August, 1990; submitted for publication in Progress in Quantitative Nondestructive Evaluation, Vol. 9, Plenum, 1991.

Chanda, T., Frazier, E. E., Mohamed, F. A., and Lavernia, E. J., "Elevated Temperature Behavior of Al-Ti-SiC_p Materials," in Low Density, High Temperature P/M Alloys edited by Frazier, W. E., Koczak, M. J., and Lee, P. W., Warrendale PA: ATMS-AIME, 1991.

Chanda, T., Frazier, W. E., Mohamed, F. A., and Lavernia, E. J., "Elevated Temperature Behavior of Al-Ti-SiCp Materials," in Low Density, High Temperature P/M Alloys, ed. Frazier, W. E., Koczak, M. J., and Lee, P. W., Warrendale, PA: TMS-AIME, 1991.

Frazeer, W. E., London, G. J., and Talia, J. E., "In Situ Polymer Reinforced Hybrid Materials," in Light Weigh Alloys for Aerospace Applications, edited by Lee, E., and Kim, N., Warrendale, PA: TMS, 1991.

Frazier, W. E., Benci, J. E., and Zanter, J. W., "Microstructural Evaluation of As-Cast and Melt Spun Al3Ti and Al3Ti Plus Copper," in Low Density, High Temperature P/M Alloys, ed. Frazier, W. E., Koczak, M. J., and Lee, P. W., Warrendale, PA: TMS-AIME, 1991.

FOR OFFICIAL USE ONLY REDECISIONAL INFORMATION

Hegedus, C. R., Spadafora, S. J., and Pulley, D. F., "Aerospace and Aircraft Coatings" Chapter of the ASTM Paint Test Manual, 1991.

- - - - -

Lee, E., "Fatigue of P/M Aluminum Alloys 7091 and CW67," in Low Density High Temperature Powder Metallurgy Alloys, TMS, 1991.

Ryan, M. J., Scott, W. R., and Sottos, N. R., "Repeatability of Local Thermal Displacement Measurements near the Fiber/Matrix Interface Using Micro-Interferometry" in Progress in Quantitative Nondestructive Evaluation, Vol. 10a, p. 1057, Plenum, 1991.

Ryan, M. J., Scott, W. R., and Sottos, N., "Scanning Heterodyne Micro-Interferometer for High Resolution Counter Mapping," in Progress in Quantitative Nondestructive Evaluation, Vol. 10b, p. 2069, Plenum, 1991.

Task Environments: A Basis for the Application of Adaptive Automation," in Proceedings of the Sixth International Symposium on Aviation Psychology, April 29 - May 2, 1991, pp. 96-101, The Department of Aviation, The Aviation Psychology Laboratory, The Ohio State University, Columbus, OH, 1991.

Varma, A., "Handbook of Inductively Coupled Plasma Emission Spectroscopy," CRC Press Inc., 1991.

"Failure Modes in a Type 316 Stainless Steel Under Biaxial Strain Cycling," edited by Kulowitch, Zamjik, and Davis, ASTM-STP, 1122, pp. 299-318, Philadelphia, PA, 1992.

"New Methods for Corrosion Testing of Aluminum Alloyws," edited by Agarwala, V. S., ASTM Philadelphia, STP 1134, January, 1992.

Agarwala, V. S., "Macrocyclic Compounds - A New Family of Corrosion Inhibitors," in Reviews on Corrosion Inhibitor Science and Technology, edited by A. Raman and P. Labine, NACE International Publications, Houston, TX, 1992.

Agarwala, V. S., and Ugiansky, G.M., "New Methods for Corrosion Testing of Aluminum Alloys," ASTM STP-1134, ASTM Philadelphia, 1992.

Balldin, U., and Whinnery, J. E., "May Breathing Sounds Reveal a G-induced Loss of Consciousness in Fatal Aircraft Crashes?" in Medicine Aeronautique et Spatiale Vol. XXXI No. 123:1992.

Boodey, B., Granata, D., Scott, W. R., "Acoustic Emission From Micro Indentation Fracture Toughness," in Review of Progress in Quantitative Nondestructive Evaluation, Vol. 11B, p. 1709, Plenum, 1992.

Granata, D., Scott, W. R., Davis, J., Lee, E. U., Boodey, B., and Kulowitch, P., "Acoustic Emission Monitoring of a Fatigue Crack," in Progress in Quantitative Nondestructive Evaluation, Vol. 11B, p. 1593, Plenum, 1992.

Guy, T. T., Barrera, E. V., Frazier, W. E., and Talia, J. E., "Microstructural Characterization of Melt Spun Al3Ti-Nb Intermetallics," in Melt Spinning and Strip Casting, edited by Matthys, E. F., Warrendale, PA: TMS, March 1992.

Wang, S., Kowalik, R. W., and Sands, R. R., "Strength of Nicalon Fiber Reinforced Glass-Ceramic Matrix Composites After Corrosion with Na₂SO₄ Deposits," in Ceramic Engineering & Science Proceedings, Vol. 13, No. 9-10, 1992

Whinnery, J. E., "Describing an Aircrewman's Ability to Withstand Acceleration Stress," in Medicine Aeronautique et Spatiale Vol. XXXI No. 123: 186-191, 1992.

"Complexity and Chaos," Co-edited by Passamante, A. (NAWCADWAR), World Scientific Publishing Co. Pte. Ltd., Singapore, 1993.

Frazier, W. E., and Chen, J. S. J., "Melt Spun Intermetallic Alloys," in Computational and Numerical Techniques in Powder Metallurgy, edited by Madan, D. S., Anderson, I. E., Frazer, W. E., and McKimpson, M. G., Warrendale, PA: TMS, 1993.

Gluckman, J. P., Carmody, M. A., Morrison, J. G., Hitchcock, E. M., and Warm, J. S., "Effects of Allocation and Partitioning Strategies of Adaptive Automation on Task Performance and Perceived Workload in Aviation Relevant Tasks," in Proceedings of the Seventh International Symposium on Aviation Psychology, April 27-30, 1993, The Department of Aviation, The Aviation Psychology Laboratory, The Ohio State University, Columbus, OH, 1993.

Granata, D. M., Kulowitch, P., Scott, W. R., and Talia, J., "Acoustic Emission Waveform Acquisition During Crack Growth," in Review of Progress in Quantitative NDE Vol. 12B, UCSD, La Jolla, CA, July 19-24, 1992, p. 2183, Plenum, 1993.

Kirsch, B., "Adaptive Beamforming Using RNS Arithmatic," 11th IEEE Symposium on Computer Arithmatic, 30 June - 2 July 1993 & the National Meeting of the Society of Industrial and Applied Mathematics (SIAM), Philadelphia, July, 1993.

Morrison, J., Cohen, D., and Gluckman, J., "Prospective Principles and Guidelines for the Design of Adaptively Automated Crewstations," in Proceedings of the Seventh International Symposium on Aviation Psychology, April 27-30, 1993, The Department of Aviation, The Aviation Psychology Laboratory, The Ohio State University, Columbus, OH, 1993.

Perez, I., Wilson, M., Thomas, M., Price, D., and Scott, W. R., "Light Scatterometry as an NDE Technique for Surface Characterization of Ge Windows," in Review of Progress in Quantitative NDE Vol. 12B, p. 1703, Plenum, 1993.

Scott, W. R., Ryan, M. J., and Granata, D. M., "Imaging Surface Displacements in Piezoelectric Composites," in Review of Progress in Quantitative NDE Vol. 12A, p. 965, Plenum, 1993.

Wang, S., Kowalik, R. W., and Sands, R. R., "Hot Corrosion of Two Nicalon Fiber-Reinforced Glass-Ceramic Matrix Composites," in Ceramic Engineering & Science Proceedings, Vol. 14, No. 7-8, 1993.

> FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

"Performance Test Code #2, Definitions and Values," The American Society of Mechanical Engineers 1994.

Agarwala, V. S., "Corrosion and Corrosivity Sensors," Corrosion 94 Symposium Publications, NACE International Publications, Houston, TX 1994.

Glenn, F., Barba, C., Wherry, F. J., Morrison, J., Hitchcock, E., Gluckman, J. P., "Adaptive Automation Effects on Flight Management Task Performance," in Human Performance in Automated System: Current Research and Trends, ed. Mouloua, M., and Parasuraman, R., Lawrence Erlbaum Associates, Publishers, Hillsdale, NJ, pp. 33-39, 1994.

Kennedy, P. J., Conte, A. A., Whitentow, E. P., Ives, G. K., and Peterson, M. B., "Surface Damage and Mechanics of Friction Wear" in Ceramics: Friction and Wear of Ceramics, edited by S. Jahanmir, Marcel Dekker Inc., New York, NY, 1994.

Lee, E. W., "Fatigue and Fracture Mechanic Properties of Light Structured Alloys," Al-Li Wrought Alloy Chapter, ASM, Materials Park, OH, 1994.

Morrison, J. G., and Gluckman, J. P., "Definitions and Prospective Guidelines for the Application of Adapative Automation," in Human Performance in Automated System: Current Research and Trends, ed. Mouloua, M., and Parasuraman, R., Lawrence Erlbaum Associates, Publishers, Hillsdale, NJ, pp. 256-263, 1994.

Perez, I., Granata, D., Scott, W. R., "Crack Growth Techniques for Use in Fabrication of Superconducting Microcircuits," accepted for publication in Fracture Mechanics: 25th Volume, ASTM STP 1220, edited by Erdogan, F., and Hartranft, R., American Society for Testing and Materials, Philadelphia, PA 1994.

Sotos, N. R., Heimstra, D. L., and Scott, W. R., "Correlating Interphase Material Properties and Interfacial Microcracking in Polymer Composites," submitted for publication in Fracture Mechanics: 25th Volume, ASTM STP 1220, edited by Erdogan, F., and Hartranft, R., American Society for Testing and Materials, Philadelphia, PA, 1994.

Wang, S., Kowalik, R. W., and Sands, R. R., "High Temperature Behavior of Salt Coated Nicalon Fiber Reinforced Calcium Aluminosilicate Composite," in Ceramic Engineering & Science Proceedings, Vol. 15, 1994.

Monaghan, T., "Dependability Requirements of Military Systems" chapter of "Foundations of Ultradependable Parallel and Distributed Computing" to be published by Kluwer Academic Publishers, Spring, 1995.

f. Identify any Nobel laureates employed at this activity.

Information not available through official manpower data bases.

g. List all non-governmental awards for research or technical excellence given to members of your technical staff since 1 January 1990.

PATUXENT RIVER COMPLEX

1992 ENVIRONMENTAL PROTECTION AGENCY (EPA) ADMINISTRATOR'S NATIONAL AWARD FOR POLLUTION PREVENTION: UNICOAT.

AGARWALA, V.S.

- Member of the DoD Tri-Service Panel on Material Degradation
- Secretary NACE Technical Practice Committee T-9 and Chairman Unit Committee
- T-9B on Degradation of Materials in Aircraft and Military Systems (1987-1992)
- Member of the Organizing Panel of the International Corrosion Congress, 1993.
- Organized and Chaired an International Symposium on Corrosion and Corrosivity
- Sensors by the NACE The International Corrosion Society, Baltimore, MD, 1994.
- Served on the Organizing Committee, 12th International Corrosion Congress, Houston, TX, 1993.
- Chairman, Aircraft Corrosion Symposiium, 12th International Corrosion Congress, Houston, TX, 1993.
- Chairman, NACE Task Group T-3L-18 on Corrosion Sensors, 1993.
- Member, DoD Tri Service Panel on Material Degradation, 1994.
- Chairman, NACE Technical Practice Committee T-9 on Corrosion of Military and Aerospaace Equpment.
- Vice Chairman, ASTM Committee G1.05 on Corrosion.
- Chairman, ASTM International Symposium on Corrosion Testing of Aluminum Alloys, 1990.
- Technical Committee Award, NACE INTERNATIONAL, 1994
- Technical Committee Award on Corrosion Sensors, NACE INTERNATIONAL, 1994.
- Technical Practice Award for Chairing Corrosion in Military Committee, NACE INTERNATIONAL, 1990.
- Chaired an International Symposium on "Environmental Effects on Advanced Materials, held in San Diego, CA, 1991.
- Invited speaker for the ASM/NACE Chapter of Greater San Antonio, TX at Southwest Research Institute, San Antonio, TX, 1990.
- Invited speaker at the Western Regional NACE Conference on Aging Aircraft Double Tree Hotel, Orange County, CA 1990.
- Invited speaker at the Indira Gandhi Center for Atomic Research, Kalpakkam, Tamilnadu, India, 1991.
- Invited speaker for the Canadian Institute of Metallurgists at the 30th Conference of Metallurgists, Ottawa, Canada, 1991.
- Organizing Chairman, Symposium on Protection Systems for Military & Aircraft Materials, NACE National Conference, CORROSION/90, Las Vegas, NV, 1990
- Plaque Award, Certificate of Appreciation for Outstanding Contribution as Chairman of the Corrosion/90 Symposium, National Association of Corrosion Engineers, Houston, TX.
- Elected, Task Chairman, NACE Technical Practice Committee, T-3A on Corrosion Inhibitors for High Temperature Application, April 1990.

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

- Organizing Chairman, ASTM Sympossium on Corrosion Testing of Aluminum Alloys, The American Society for Testing of Materials, San Francisco, CA, 21-22 May 1990.
 Invited Speaker, Gordon Research Conference on Corrosion, Aging
- Invited Speaker, Gordon Research Conference on Corrosion, Aging Aircraft and Corrosion, New London, NH, 26 July 1990 (letter of appreciation).
- Organizer and Course Director, Liberty Bell Corrosion Course, Philadlephia PA, 17-19 September 1990.
- General Chairman and Organizer, 1989 Tri-Service Conference on Corrosion, Atlantic City, NJ, 17-19 October 1989.
- Chairman, Marine Corrosion Session, 11th International Corrosion Congress, Florence, Italy, 6 April 1990.
- Appointed Vice-Chairman, ASTM Sub-Committee on Corrosion, G.01.05.

SAITTA, M.

- Research or Technical Excellence Awards: Bronze Medal in the Field of ASW, 1990.

KAUFMAN,

- Special Achievement Award, National Aeronautics and Space Administration Astronaut Office.
- Session Chairman, 4th International Conference on Environmental Ergonomics, Austin, TX, 1990.

CLARK, J.W.

- AIAA (Greater Philadelphia Section) Ground Testing/Simulation Award, 1990.

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATIZE

- - - -

CYRUS, J.D.

- ASME International Gas Turbine Institutue
- Certificate of Appreciation for Advancing the Engineering Profession.

COTE, S.

- Associate Fellow AIAA, 1990.

STEINBERG, M.

- Best Conference Paper, IEEE National Aerospace Electronics Conference, 1992.

CALVERT, J.

- Greater Philadelphia Area AIAA Award for Flight Testing and Simulation, 1993.

CENKO, A.

- Associate Fellow, AIAA, 1990.

KEYSER, D.

- Fellow, American Society of Mechnical Engineers.
- Certificate of Awards from the Board of Governors, ASME.

FRAZIER, W.E.

- TMS-Materials Design and Manufacturing Division, for Exemplary Service on the Publications Coordinating Committee, 1994.
- American Biographical Institute, Distinguished Leadership Award for Extraordinary Technical Contribution to the Engineering Profession.

MORRISON, J.G.

- George E. Briggs Dissertation Award for original research exhibiting creative application of scientific inquiry in the area of engineering Psychology, from the America Psychological Association Division of Applied Experiment Psychologists (Division 21) and The New Mexico State University, 1993.

MCEACHERN, J.F.

- Recieved the Kenneth T. Simowitz Memorial Citation, from Pennsylvania State University, 1993.

FOSTER, E.M.

- Certificate of Commendation - Young Investigators Award, Aerospace Medical Association, 1991.

WHINNERY, J.E.

- Who's Who in Science and Engineering, 1991.
- American Men and Women of Science, 1992.
- Alliance of Air National Guard Flight Surgeons; Scientific Achievement Award, 1992.
- Minuteman Award of the National Guard Bueau, 1993.
- Alliance of Air National Guard Flight Surgeons; Board of Director's Award (for career contributions) 1993.

OHLSON, J.

- Society of Automotive Surgeons SAE Recognition of Performance Award 1992.
- Society of Automotive Engineers, Inc. Recognition Award Air 4543 "Aerospace Hydraulics & Actuation Lessons Learned", 1993.

BAGWELL, D.

- SAE A-G Fluid Power Committee Outstanding Performance, 1990.

PANETTA, D.

- American Defense Preparedness Association Award, 1993.

WALDMAN, J

- ASM International Fellow

- ----

TRABACCO, R.

- ASM Fellow

KAUFMAN, J.W.

- "Silver Snoopy" Special Achievement Award from NASA Astronaut Office, 1990.
- Session Chairman, 4th International Conference on Environmental Ergonomics, Austin, TX, 1990.

GABRIELSON, T.B.

- Outstanding Independent Exploratory Development Project, 1990.
- Special Act Award for IED presentation to Navy IR/IED Symposium, 1991.

KERN, S.B.

- This IED project received the Center Award for most significant accomplishments in one year.

OCHADLICK, A.R.

- NADC/MATD Annual Award for the Outstanding Technical Publication, a plaque award, 1990.
- Vice Chairman of IEEE Philadelphia Antennas and Propagation/ Microwave Theory and Techniques (AP/MTT) Society Chapter (1991 to present).

BUCKLEY, L.J.

- Chairperson, SAMPE Electronics Conference, Albuquerque, NM, "Photonics." 1990.
- Chairperson, Aerospace Materials Conference, Long Beach, CA, "Electroactive Polymers." 1990.
- Chairperson, Aerospace Materials Conference, Long Beach, CA, "Smart Materials." 1991.

Barrett, D. J., Ph.D.

Chairman, ASME Applied Mechanics Committee, Philadelphia Section, 1990

Buckley, L. J., Ph.D.

- Chairman, "Photonics and Conductive Polymers I and II, "4th International SAMPE Electronic Materials Conference, June 1990.
- Chairman, "Electroactive Polymers and Composites," First ASM Aerospace Material Conference, May 1990. Chairman, "Smart Materials," 2nd ASM Aerospace Materials Conference,
- May 1991.

Conte, A .A., Jr.

- Member, Editorial Board, Journal of Synthetic Lubrication
- Vice Chairman, Third International Conference on Solid Lubrication American Society of Lubrication Engineers Best Technical Paper Award. A. Deuterated Lubricants. B. Intercalated Solid Lubrication.
- Chairman, Herb Meyers Memorial Lubrication Seminar, Philadelphia Section, American Society of Lubrication Engineers.

Herman, W. N.

- Co-chair, Intergrated Optics session, University of Va/ONR Optoelectronics Workshop, U. Va., November 1992.
- Acting President, Photoinduced Processes and Devices session, ACS/OSA Topical Meeting on Organic Thin Films for Photonic Applications, Toronto, October 1993.

Rosen, W. A.

- Chairman for Electronic and Optoelectronic Materials Growth Technology Session at the Fourth Navy R&D Information Exchange Conference, San Diego, CA, 13 April 1993.
- The Society of Automative Engineers (SAE) Avionics System Division, Sensor/video Implementation Taskgroup (SVIT) has selected an approach proposed in Dr. Rosen's project as the baseline for a new standard for sensor and video data distribution in avionics applications.

Ochadlick, A. R., Jr.

- Secretary/treasurer of the IEEE Philadelphia AP-S/MTT-S chapter, August 1989 till present.
- Recipient of the 1990 MATD Award for the Outstanding Technical Publication.

Sheehy, O., Dr.

- Chairman, Bioeffects Session, 11th Annual Lasers on the Modern Battlefield, October 1989.
- Chairman, Dynamic Eye Protection, SPIE Conference January 1990.
- U. S. Chairman, Bioeffects Subpanel US/UK Informatin Exchange Program, Effective January 1989.
- Chairman, Bioeffects Session & Bioeffects Roundtable Discussions 12th Annual Lasers on the Modern Battlefield, October 1990.
- Invited Session Chair, 62nd and 63rd Annual Scientific Meeting of the AsMA.

Varma, A.

Fellow, The American Institute of Chemists and Chemical Engineers. Comissioner, National Certification Commission, AIC, Bethesda, MD.

h. List all governmental awards for research or technical excellence given to members of your technical staff since 1 January 1990.

NAWCAD PATUXENT RIVER

Yearly awards given for technical excellence at Patuxent River does not include awards from outside the organization. Data for that is not available.

John Burdette Award: Presented annually to the outstanding project engineer at the NAWCAD PAX Flight Test & Engineering Group by the Society of Engineers and Scientists to perpetuate the professional achievements and integrity of John E. Burdette, Flight Test Engineer.

Richard Wernecke Award: The Wernecke award was established in 1988 and is presented annually to a civilian or military person who has exhibited exceptional performance in advancing the principles of engineering, planning, testing, reporting, leadership, teamwork, and innovation in the test and evaluation of rotorcraft and Vertical Takeoff and Landing aircraft.

John B. Paradis Award: To recognize the outstanding manager of the year AT the NAWCAD PAX Flight Test & Engineering Group.

Test Pilot Award,

Test Naval Flight Officer Award

Test Pilot Instructor Award

Demonstrated ability, aptitude, and motivation toward flight or systems testing and leadership management as a professional aviator, flight officer, or test engineer. For the Test Pilot Flight Instructor Award: ability, aptitude and motivation toward flight instruction in the science of flight test and engineering.

NAWCAD Patuxent River Maintenance Chief Petty Officer of the Year Award

PATUXENT RIVER COMPLEX

Yearly awards given for technical excellence at Patuxent River Complex:

- ·

<u>1990</u>

Commander/Technical Director Award for Scientific Achievement

Commander/Technical Director Award for Junior Professional

Commander/Technical Director Award for Engineering Achievement

Commander/Technical Director Award for Project Leadership

Commander/Technical Director Award for Technical Support Achievement

1990

Survival and Flight Equipment Association's East Coast Chapter Daniel S. McCauley Junior

Failsafe Award for Individual Engineering Achievement

Failsafe Special Award for Sustained Engineering Excellence

Wiley Post Award for Contributions to Operational Aerospace Physiology

AVCSTD Scientific and Engineering Award

<u>1991</u>

ONT Extraordinary Accomplishment Award for Exploratory Development

Best IR Project Award

AIAA Ground Testing/Simulation Award for Engineering Excellence

AIAA Ground Test & Simulation Research Award

Recognition for Singular Distinctive Service During Medical Operation in Operation Desert Storm

1

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION
<u>1992</u>

Engineering Achievement

Desert Storm Medals

<u>1993</u>

AVCSTD Scientific & Engineering Award

Commander/Technical Director Award

Patent Award on Epoxy Self-Priming Topcoat

Patent Award on Goggles Emergency Release Apparatus

Patent Award on Helmet Visor Support Apparatus

American Psychological Association

Black Engineer of the Year Nominee

Safe Junior Professional Award Nominee-Axten

NAWCADWAR PHD Fellowship Award

AIAA Ground Testing/Simulation Award

ASM International Fellow

P-3 Update Program Plaque/Letter Award

i. List all patents <u>awarded</u> to the in-house technical staff members of this activity since 1 January 1990.

TITLE	AUTHOR (S)	PATENT NUMBER	DATE OF ISSUE
Apparatus and Method Utilizing Interference Fringes to Determine the Thermal Stability of a Licquid	Darrah, S.D., DiGiusseppe, T.D., Marram, E.P., Kamin,	4,842,410	
Multi-Channel Acoustic Simulator	Rearc Naw Dikemind.,	4,908,800	03/13/90
Helmet-Mounted Head Restraint	MichaernHal,Patterson	4,909,459	03/20/90
Fiber Optic Magnetometers for Multiple Order Gradiometers	Lloyd C. Bobb	4,918,371	04/17/90
Apparatus for Cooling Electronic Components in Aircraft	Frank E. Altoz; John D. McClure	4,934,154	06/19/90
Production of Monoclonal Antibodies to Treponema Denticola by Hybridoma TDIII, IIIBB2	Lloyd G. Simonson	4,959,304	09/25/90

TITLE	AUTHOR (S)	PATENT	DATE OF
High Tomporature Connection Proventive	Starbar I Such C	NUMBER	ISSUE
Coating	Stephen J. Spadatora	4,960,817	10/02/90
Polymer Composite Preform and Process	John J. Reilly;	4,960,818	10/02/90
for Producing Same	Ihab L. Kamel		
Control Surfaces	Maurice M. Sevik	4,979,455	12/25/90
Optical Fiber Refractometer	Lloyd C. Bobb;	4,981,338	01/01/91
	Howard D. Krumboltz		
Optical Fiber Refractometer Launching	Lloyd C. Bobb;	4,988,863	01/29/91
Light at a Non-Zero Launch Angle	Howard D. Krumboltz		
Method and Apparatus for Measuring	Vinod S. Agarwala;	4,994,159	02/19/91
Corrosion Beneath Thin Films	Paul J. Kennedy		
Hydrophone Deployment System for a	John R. Dale;	4,999,816	03/12/91
Sonobuoy	Roger A. Holler		
Interferometric Surface Distortion Detector	Arthur E. Scotese;	5,000,574	03/19/91
	Shih L. Huang;		
Deep Ocean Reconception According Service	Armando J. Gaetano		
Deep Ocean Recoverable Acoustic Sensor	Edward J. Cotilla;	5,003,514	03/26/91
Venicie	Joseph M. McCandless;		
	Faul Savitz; Edwin H Kribbs In		
Air-Surface-Missile Data Link System	John C. Lookhort	5 004 195	04/02/01
All-Surface-Missile Data Link System	Standish C. Hartman.	5,004,185	04/02/91
	Bruce R Meuron		
•	Joseph B. Lyons, Jr.		
ationary Probability Integrator System	Paul F. Reimel	5.008.630	04/16/91
Vehicle Steering Device	Bruce W. Travor:	5.011.097	04/30/91
	Roger A. Holler	5,011,077	04/50/91
Air-to-Subsurface Missile System	Morton L. Metersky:	5.012.717	05/07/91
	James R. Howard	.,,	00/0////
Data Link and Return Link	Bruce R. Meuron;	5.018.685	05/28/91
	Joseph B. Lyons	-,,	
Sonobuoy Suspension System	John R. Dale;	5.020.032	05/28/91
	Lawrence F. Coar	, ,,,,,	
Corrosion-Inhibiting Coating Composition	Walter E. Knight;	5,021,489	06/04/91
	Kenneth G. Clark;	, ,	
	David L. Gauntt		
Lock Means and TV Sync for Air-to-Surface	John C. Lockhart, Jr.	5,022,079	06/04/91
Missile			
Sonic Detection and Tracking System	Henry Suter	5,025,425	06/18/91
Engine Block Cylinder Head Bolt Hole	James C. Stafford	5,025,556	06/25/91
Kepair			
Video Processor for a Counter-	Burton L. Hulland	5,027,121	06/25/91
Countermeasure System			
Electro-Optic Line Narrowing of Optical	Bruce O. Boczar	5,028,816	07/02/91
rarametric Uscillators			
Stabilized Square Parachute	<u>Carl T. Calianno</u>	5,037,042	08/06/91
Guideable Stores	Bruce W. Travor;	5,042,744	08/27/91
	James F. McEachern;		
	гганк г. магулан		

		·····	
TITLE	AUTHOR (S)	PATENT	DATE OF
High Gloss Corrosion-Resistant Coatings	Charles R. Hegedus; Donald J. Hirst; Anthony T. Eng:	5,043,373	08/27/91
	William J. Green		
Optical Fiber Sensor for Measuring Physical Properties of Liquids	Lloyd C. Bobb; Barbara J. White; Jon P. Davis	5,047,626	09/10/91
Multi-Sonobuoy Launch Container with Constant Force Spring	Bruce W. Travor; Richard M. Coughlan; Edward J. Cotilla; Frank P. Marshall	5,052,270	10/01/91
Naval Electrochemical Corrosion Reducer	Howard L. Clark	5,052,962	10/01/91
Seismic-Acoustic Detection Device	George A. Gimber; Edward J. Cotilla; Salvatore R. Picard; Robert F. Starry	5,054,006	10/01/91
Multi-Sonobuoy Launch Container with Mechanical Actuator	Leo Dragonuk	5,054,364	10/08/91
Superconducting Josephson Junction Gyroscope Apparatus	Francis A. Karwacki	5,058,431	10/22/91
Epoxy Corrosion-Resistant Coating	Charles R. Hegedus; Donald J. Hirst; Anthony T. Eng; William J. Green	5,059,640	10/22/91
omposition and Method for Producing an Aluminum Alloy Resistant to Environmentally-Assisted Cracking	John J. DeLuccia	5,061,323	10/29/91
Launch Container for Multiple Stores Using Electrically-Actuated Paddle Assemblies	Frank P. Marshall; Bruce W. Travor; Timothy L. Kraynak	5,063,823	11/12/91
Pivoting Seat for Fighter Aircraft	Chi Tung	5,064,146	11/12/91
Programmable Pulse Shaper for Sonobuoy Apparatus	Keith S. Rizkowski; David E. Zeidler	5,065,370	11/12/91
Optical Interconnects In The Computer Environment	Todd A. Kline; Warren A. Rosen; William J. Bermingham; Eric A. Alfonsi	5,068,880	11/26/91
Pneumatically Actuated Multiple Store Launcher	Frank P. Marshall; Bruce W. Travor	5,070,760	12/10/91
Electrically Actuated Multiple Store Launcher	Frank P. Marshall; Bruce W. Travor	5,074,186	12/24/91
Wing-Extendible Gliding Store	Samuel Greenhalgh	5,074,493	12/24/91
Launch Container for Multiple Stores Using Piezo Electrically-Actuated Paddle Assemblies	Frank P. Marshall; Bruce W. Travor; Timothy L. Kraynak	5,076,134	12/31/91
Floating Sensor to Detect Very Low Frequency Pressure Signals	James F. McEachern; Robert M. Balonis	5,077,696	12/31/91
Digital Bottom Mapping	Anthony P. Passamante; Paul A. Labonski; Nancy J. Harned; Timothy B. Hediger; John Ambrose	5,077,699	12/31/91

		_	
TITLE	AUTHOR (S)	PATENT	DATE OF
		NUMBER	ISSUE
Doppler Velocity Profiler	Peter T. Shaw; Arthur P. Stevens;	5,077,700	12/31/91
	Anthony Marino		
Nonlinear Optical Acrylic Polymers and	Leslie H. Sperling;	5,079,321	01/07/92
Devices	Clarence J. Murphy;		
Devices	Warren A. Kosen; Himanshy Joiny		
	Warren N. Herman		
Vibration-Dampling Structural Member	David J. Barrett	5.087 491	02/11/02
Corrosion-Resistant Alkyd Coatings	Charles R. Hegedus:	5,089,551	02/18/92
	Donald J. Hirst;	-,,	
	William J. Green;		
	Anthony T. Eng		
Launch Container for Multiple Stores	Bruce W. Travor;	5,092,221	03/03/92
Tanarad Ontical Fiber Server	James F. McEachern	5 002 5 60	0.0 (0.0 (0.0
Tapereu Optical Fiber Sensor	Lloyd C. Bobb	5,093,569	03/03/92
of Wideband or Offset Narrowband Radio	Jeffery J. Miller	5,097,221	03/17/92
Frequency Interference			_
Radial Damper Disk	Martha E. Snyderwine;	5,097,451	03/17/92
	Saroja Mahadevan		
Polymer-Keinforced Metal Matrix	Gilbert J. London;	5,100,736	03/31/92
omposite	William E. Frazier;		
Corrosion-Resistant Acrylic Coatings	Charles R. Hegedus	5 100 942	03/31/02
contrastice receiver interview countings	Donald J. Hirst:	5,100,942	03/31/92
	William J. Green;		
	Anthony T. Eng		
Optoelectronic Devices	Leslie H. Sperling;	5,112,531	05/12/92
	Clarence J. Murphy;		
	Warren A. Kosen; Uimanchu Joine		
	Warren N. Herman		
Optical Fiber Sensor for Measuring	Llovd C. Bobb:	5,115.127	05/19/92
Physical Properties of Fluids	Barbara J. White;	.,	
	Jon P. Davis;		
	Arthur Samouris		
Apparatus for Preparing Thermoplastic	Roland C. Cochran;	5,116,216	05/26/92
Polyurethane Self Priming Tancasts	Charles P Useduat	£ 124 205	06/22/02
rosymethane Sen-riming ropeoats	Donald I. Hirst:	3,124,303	00/43/92
	Anthony T. Eng		
Epoxy Self-Priming Topcoats	Charles R. Hegedus;	5,130,361	07/14/92
	Donald J. Hirst;		
	Anthony T. Eng		
Synthetic Lubricating Oil Greases	Vinod S. Agarwala;	5,147,567	09/15/92
Containing Metal Chelates of Schiff Bases	Alteo A. Conte, Jr.;	1	
	Arisnnaswamy S.; Prahir K San	1	
Aircraft Controlled Launch Container for	Frank P. Marshall	5,155,288	10/13/02
Yultiple Stores	Bruce W. Travor:	5,155,400	
• • • • •	James F. McEachern		

TITLE	AUTHOR (S)	PATENT	DATE OF
		NUMBER	ISSUE
Obturator Retaining Means	Bruce W. Travor; Frank P. Marshall;	5,160,800	11/03/92
	Limothy L. Kraynak		
Temperature Compensated Lithium Battery Energy Monitor	Albert M. Bates	5,162,741	11/10/92
Optical Antenna Beam Steering Using	William D. Jemison;	5,164,736	11/17/92
Digital Phase Shifter Control	Peter R. Herczfeld; Arthur Paolella		
Thermal Phase Modulator and Method of Modulation of Light Beams by Optical Means	Lloyd C. Bobb; Howard D. Krumboltz	5,166,988	11/24/92
Goggles Emergency Release Apparatus	Daniel J. Schmidt; Thomas J. Dillon; Ricky L. Greth	5,176,342	01/05/93
Helmet Visor Support Apparatus	Daniel J. Schmidt; John D. Jacks	5,177,816	01/12/93
Cable Pack Winding and Payout System	Roger A. Holler; Peter A. Ulrich	5,183,217	02/02/93
Optically Controlled Active Impedance Element Particularly Suited for a Microwave Oscillator	William D. Jemison; Peter R. Herczfeld	5,198,783	03/30/93
Epoxy Self-Priming Topcoats	Charles R. Hegedus; Donald J. Hirst; Anthony T. Eng	5,202,367	04/13/93
xtending Bandwidth of Optical Emitters Using Active Matching Technique	Vladimir Gershman; Afshin S. Daryoush; Warren A. Rosen	5,214,525	05/25/93
Underwater Transducer	Robert A. DeChico	5.218.576	06/08/93
Buoy Launch Container Extender	Frank P. Marshall; Bruce W. Travor; Saroja Mahadevan	5,222,996	06/29/93
Lift Enhancement Device	Samuel Greenhalgh	5,226,618	07/13/93
Optically Controlled Active Impedance Element and Filters Employing the Same	William D. Jemison; Peter R. Herczfeld	5,229,665	07/20/93
Multiplatform Sonar System and Method for Underwater Surveillance	Marvin C. Gaer	5,231,609	07/27/93
Process for Preparing Thermoplastic Composites	Roland C. Cochran; Edwin L. Rosenzweig	5,236,646	08/17/93
Polyurethane Self-Priming Topcoats	Charles R. Hegedus; Donald J. Hirst; Anthony T. Eng	5,236,983	08/17/93
Strain Sensing Composites	Leonard J. Buckley; Gary C. Neumeister	5,240,643	08/31/93
Flexible Acoustic Array with Polymer Hydrophones	Robert A. DeChico; James F. McEachern; Timothy L. Kraynak	5,257,243	10/26/93
Stainless Steel Surface Treatment	Georgette B. Gaskin; Gabriel J. Pills; Stanley R. Brown; Robert B. Boak	5,275,696	01/04/94
Dielectric Viscometer Including Fixed and ariable Cells	John G. Williams; Thomas M. Donnellan; Ronald E. Trabocco	5,279,149	01/18/94

78

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

E.

TITLE	AUTHOR (S)	PATENT NUMBER	DATE OF
Active Vortex Control for a High Performance Wing	Marvin M. Walters; Steven B. Kern	5,282,591	02/01/94
Polyurethane Self-Priming Topcoats	Charles R. Hegedus; Donald J. Hirst; Anthony T. Eng	5,290,599	03/01/94
Polyurethane Self-Priming Topcoats	Charles R. Hegedus; Donald J. Hirst; Anthony T. Eng	5,290,839	03/01/94
Polyurethane Self-Priming Topcoats	Charles R. Hegedus; Donald J. Hirst; Anthony T. Eng	5,290,840	03/01/94
Trivalent Chromium Conversion Coatings for Aluminum	Fred Pearlstein; Vinod S. Agarwala	5,304,257	04/19/94

j. List all patents <u>applied</u> for by the in-house technical staff members of this activity since 1 January 1990.

PATUXENT RIVER COMPLEX

		N A WW		
	NUMBER OF (G)	NAVI		
TITLE	AUTHOR (S)	CASE	SERIAL	DATE
Description has a stranger State Constant		NUMBER	NUMBER	FILED
Reconfigurable Aircraft Stick Control		75350	<u> </u>	10/8/93
<u>A Jack Mechanism Having Positive Stop</u>		75876		1/12/94
Mrage Somling Huteridyde	William R. Scott	74227	07/827,233	1/29/92
Microinterferometer				
Nonlinear Frequency Conversion Optical	Bruce P. Boczar	74269	08/123,959	9/20/93
Filter			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Offset Corrugated Sandwich	Hemen Ray	74298	08/082,069	6/23/93
Corrosivity Sensor	Vinod S. Agarwala,	74845	07/942,914	9/10/92
	Fred Pearlstein		,	
Josephson Break Junction and Method of	Ignacio M. Perez.	74889	07/947.022	9/17/92
Making Same	William R. Scott		,	
A System for Conveniently Producing	Wilbert J. Morell.	74934	07/972 701	11/5/92
Load Testing Termination of an AC	П		0////2,/01	11/3/34
Power Source Having at Least One				
Battery				
Lift Enhancement Device	Samuel Greenhalgh	74935	08/067.763	5/26/93
Shin's Attitude Date Converter (SADC)	Peter I	75037	08/096 088	7/21/93
	Kononelski	/203/	00/0/0,000	//21/33
Wavefront Simulator for Evaluating PF	Stavan R Minarik	75055	08/145 352	10/27/02
Communication Array Signal Processors	Steven D. Minarik	13033	00/145,552	10/2//93
Communication Array Signal Processors		851(2	00/126 625	
Underwater Acoustic Intensity Probe	Inomas B.	/5102	08/130,037	10/12/93
	Gabrielson, James			
	F. McEachern,			
	Gerald C. Launchle			· · · · · · · · · · · · · · · · · · ·
An Automatic Repeater System for	Elliott L. Ressler,	72839	08/106,746	8/16/93
Signal Transmissions	Yoram Levy,			
	Douglas Bancroft			
Vibration-Damping Structure Component	David John Barrett	73018	07/800,902	11/26/91
Simplified Reuseable Sonobuoy	Bruce W. Travor,	73043	08/102,023	7/28/93
Launcher	Richard M.		·	
	Coughlan			

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

	1	NAVY	T	T
TTTLR	AUTHOR (S)	CACE	CEDTAT	
	A A A A A A A A A A A A A A A A A A A	NUMPER	NUMBER	DATE
Liquid Metal Confinement Cylinder for	Maria F. Taular	72105	NUMBER	FTTRD
Ontical Discharge Devices	Edward I Saibart	/3195	08/1/2,/95	12/27/93
Johnson Break Junction and Mathad of	Lawaru J. Seibert	72205	0.5/5.5.5.5.5.5	
Making Same	William D Soott	/3325	0/////,//3	10/10/91
Dassiva Danga Maasuramant System	Wolter I Haw		0.0001.050	
Method of Making on Offset Corrugated	Walter L. Harriman	/3330	07/921,863	7/27/92
Sandwich Construction	W Course	73384	08/082,068	6/23/93
Lattice Cone Sondwich Construction	W. Gause		00/000 0 (5	
Lattice Core Sandwich Construction	Hemen Kay, Lee	73428	08/082,067	6/23/93
Aincreft Control Long Simulator	w. Gause			
Aircrait Control Lever Simulator	G. lerry lhomas	73610	08/130,950	10/4/93
An Elastomeric Electrical Connector	Joseph E. Laska,	73688	08/107,431	8/16/93
	John T. Oakley,			
Language A Million (1) - Design of the A	Francis K. Reinert			
Improved Vibration-Damping Structural	David John Barrett	73728	08/025,535	3/3/93
Component				
System and Method for Automatic Ship	Jules Kriegsman,	73748	07/758,976	9/6/91
Steering	Martin E. Leblang			
Apparent Size Passive Range Method	Walter L. Harriman	73890	08/094,663	7/15/93
Meniscus Regulator System	Marshall K.	74028	08/123,944	9/20/93
	Thomas			
Reconfigurable Aircraft Stick Control	Thomas M. Kelso,	75350	08/129,729	9/29/93
	John K. Kotch,			
	Damon Boyle,			
1	David H. Meiser,			
	William Flaherty,			
	Benard Baird			
Polyurethane Self-Priming Topcoats	Charles R.	75351	08/207,445	3/7/94
	Hegedus, Donald J.	1		
	Hirst, Anthony T.			
	Eng			
Cable Multi-Pack	Roger A. Holler,	75487	08/093,961	6/23/93
	Peter R. Ulrick			
Thoriated Tungsten Split Ring Hollow	Edward J. Seibert,	75523	08/209,345	3/14/94
Cathode Electrode for Longitudinal	Gerald D.			
Discharge of Gases and Metal Vapors	Ferguson, Marie E.]
	Taylor			
Corrosivity Sensor	vinod S. Agarwala,	75524	08/087,237	6/30/93
Energy Cale Datation (7)	rreu rearistein			
Epoxy Self-Friming Topcoats	Charles K.	75558	08/207,448	3/7/94
	negeaus, Donald J.			
	mirst, Anthony T.		[
Trincland Charming Schotlers	Eng		00/10 1 2 5	
Fivalent Unromium Solutions for	rrea Pearistein,	75047	08/134,762	10/1/93
Sealing Anodized Aluminum	vinod S. Agarwala		0.0/0.01	
Ull/Coolant Separator	Jack H. Fentz	75693	08/221,126	3/31/94
A Jack Mechanism Having Positive Stop	watkins Crockett	75876	08/183,707	1/18/94
ivieans for Crank Handle	IV, Bernard W.]]
	Baird		1	

TITLE	AUTHOR (S)	NAVY CASE NUMBER	SERIAL NUMBER	DATE FILED
Ice Penetrating Buoy	Bruce W. Travor; Ronald D. DiGirolamo	73230	08/053,763	05/03/94
Polyurethane Self-Priming Topcoats	Charles R. Hegedus; Donald J. Hirst; Anthony T. Eng	75419	08/062,864	05/03/94

- - - - - - - -

PATUXENT RIVER COMPLEX List of Invention Disclosures

TITLE	AUTHOR (S)	NAVY CASE NUMBER	DATE RECEIVED
Optical Fiber Strain-to-Failure Sensor	Lloyd C. Bobb, Howard D. Krumboltz	74061	10/11/91
Repeated Rapid Response Anti-G Valve	Matthew J. Lamb	74220	12/30/91
Biodegradable Wheel Well Cleaner Via a Lyotropic Liquid Crystal	Douglas P. Jackson, Kenneth G. Clark, David L. Gauntt	74357	2/27/92
Switchable Beam Position Antenna	Joseph F. Miller	74446	4/3/92
Method of Enhancing Superplasticity and Reducing Cavity by the Application of Cyclic Strain Rates During Deformation of Al-Li Alloys	Jorge E. Talia, Eui W. Lee	74501	4/21/92
Self-Lubricating Composite Ceramic	Alfeo A. Conte, Jr., Vinod S. Agarwala	74503	10/29/91
Composite Implants for Active Thermography	William R. Scott	74539	4/21/92
Fiber Optic Bolt Stress/Strain Sensor	Peter A. Raiti	74540	4/21/92
Recording Fiber Optic Strain Gauge Extensometer	Peter A. Raiti	74541	4/21/92
Cross-Corrugated Sandwich	Hemen Ray	74594	5/7/92
Phase Shifting Jitter Clock	Chul Ho Oh, Rick Massary	74624	5/26/92
Pneumatic Urine Collection Device for Female Aviators	David C. Johanson, Mark K. Ammerman	74625	5/28/92
Periscope Buoy	Albert M. McCarty, Bruce W. Travor, Richard M. Coughlan	74664	6/1/92
Multichannel, Multifunction Radio Relay Architecture	Dean Nathans	74725	7/7/92
Gib Key Puller	Gregory L. Phillips	74764	7/7/92
Oxygen Sensor Using Hall Effect Device	James Roche, Paul Klein	74765	6/2/92
Effective Etching of Titanium-Aluminides and Their Intermetallics	Thu-Ha Mickle	74787	7/15/92
Tank Cover Storage Bracket	Aaron Blandon	74844	7/24/92
Rescue/Location Unit	Bruce W. Travor, Patrick J. Kelly, Frank P. Marshall	74846	3/5/92
Fluidic Angle of Attack Sensor	David R. Keyser	74918	9/11/92

		NAVY	DATE
TITLE	AUTHOR (S)	CASE	RECEIVED
		NUMBER	
Low Volatile Organic Compound (VOC), Water	Charles R. Hegedus,	75002	9/25/92
Borne Polyurethane Self-Priming Topcoat	Donald J. Hirst,	}	
	Anthony T. Eng		
Desulfurization of Nickel-Base Superalloys	Thu-Ma Mickle	75015	10/1/02
	Thomas Kircher Bruce	/5015	10/1/94
	Droggon		
Disc Segmented Buoy	Prince W/ Transa Final		
Disc Segmented Duby	bruce w. Iravor, Frank	75016	10/1/92
	P. Marshall		
Oscillating Flapped Wing	Samuel Greenhalgh	75017	10/1/92
Fluorescent Redox Materials as Corrosion	Vinod S. Agarwala,	75038	10/9/92
Indicators	Richard E. Johnson		
Reactive Phase, Hot Isostatic Pressing of	William E. Frazier	75044	6/23/92
Intermetallic Alloys and Intermetallic Matrix			
Composites			
Functional Replica of the Human Eve	Dr James B Sheeby	75004	11/12/02
	Dr Kenneth W Cich	73034	11/15/94
	John I Sprenger		
Holicopton Cuolic Deletholization Method	John J. Sprenger		
mencopter Cyclic Delethalization Method	Nancy H. Tillman, Chi	75194	1/7/93
	Tung		
RR-184 Chaff Packet Loader/Downloader	Francis A. Guffey, III	75208	1/15/93
Separation Assembly			
Communications Planning Tool	Paul Hodowanec	72847	5/11/90
Water-Base Turbine Engine Cleaning Compound	Kenneth G. Clark.	72856	3/29/90
and Method for Engine Cleaning Compound	David L. Gauntt	. 2000	5127170
Evaluation			
High Temperature Aluminum/Thermoplastic	Mary F Donnellan	72042	6/10/00
Reinforced Laminate	Mary E. Donnenan	12942	0/19/90
Thick Articulated Variable Combon Airfeil With			
a Multi Someant Trailing Edge Eleg	Samuel Greenhalgh,	72970	6/21/90
a Multi-Segment Trailing Edge Flap	Douglas_R. Hall		
Moored Buoy-Compass Alignment	Bruce W. Travor	73044	8/9/90
Capstan Jet Pump	Bruce W. Travor	73045	8/9/90
Controlled Cable Payout System	Bruce W. Travor	73046	8/9/90
Buoy Release Mechanism	Bruce W. Travor	73047	8/0/00
Die Assembly and Insertion Cradle	Leffry Cook	73224	10/0/00
Occupant Reach and Mobility Apparatus	Gary P Whitman	73227	11/16/00
overpane Reach and Woomey Apparatus	Dovid A Dece	13493	11/10/90
Aligned In Site Comparis Single Constal of a Ti	David A. Kose		
Anglieu In-Situ Composite Single Crystal of a 11-	Kabindra N. Mahapatra,	73329	12/6/90
44AI-IIND AHOY	J. H. Perepezko, Eni		1
	W. Lee		
A Thin Membrane Flap Projecting Out From the	Samuel Greenhalgh	73633	4/26/91
Trailing Edge of a Wing to Increase the			4
Operational Lift/Drag			
Tactical Aircraft Articulating Ejection Seat for	Joseph P. Notaro	73643	5/3/91
Gravity-Loss of Consciousness (G-LOC)			
Protection			
Means to Make a Featureless Radio Signal	Chul Ho Ob	72606	5/16/01
The Maire Interferometric Surface Stanin	Anthun E Contaco	73730	5/10/91
Inc motive interferometric Surface Strain	Arthur L. Scotese,	75729	5/28/91
Inspection (MISSI) Apparatus	nowara D. Krumboltz		
Flush Mounted Instantaneous Velocity Sensing	Samuel Greenhalgh,	73891	8/14/91
System	Donald P. McErlean		

		· · · · · · · · · · · · · · · · · · ·	······································
		NAVY	DATE
TITLE	AUTHOR (S)	CASE	RECEIVED
		NUMBER	
Unobtrusive Instantaneous Velocity Sensing	Samuel Greenhalgh	73892	8/14/91
System			
Unobtrusive Instantaneous Velocity Sensing	Samuel Greenhalgh	73893	8/14/91
System			
Unobtrusive Instantaneous Velocity Sensing	Samuel Greenhalgh	73804	8/1//01
System	Sumuel Ortenhaigh	75074	0/14/71
Highly Conductive Thermal Heatsinks	Steven I Thoman	73062	0/6/01
inghiy conductive inclinat incatomics	Mony F Donnellan	13902	9/0/91
	Donald E Trabassa		
Ontical Fiber Strain Sensor With Memory	Konald E. Trabocco		0.110.101
Optical Fiber Strain Sensor with Memory	Lloyd C. Bobb, Howard	73976	9/18/91
Starting Manifestry Hills D. H. dt. C.D.C.	D. Krumboltz		
Diffunction Cost	Arthur E. Scotese,	74027	9/17/91
Diffraction Gratings	Howard D. Krumboltz		
???rted, Lightweight Barrel Stave Flextensional	Robert A. DeChico	75293	2/25/93
Projector			
Spinning Target for the Simulation of	Michael Jenquin	75343	3/2/93
"Pushbroom" Sensors	-		
Force Deflection Anemometer	Curtis L. Meverhoff.	75418	4/19/93
	Robert E. Lake		
Survival Equipment Carrier	Gary King Cary	75443	5/10/02
Sarriva Dyarpinone Carrier	Whitman Cary Bradley	73443	5/15/55
Method for Improving the Freeture Toughness and	Filcon Armstrong	75550	(120/02
Domping of Composite Motorials	Elleen Armstrong-	75559	0/30/93
Damping of Composite Materials	Carroll, Roland C.		
	Cochran		
Manual Soldering Process Monitoring System	Michael D.	75681	8/18/93
(MSPMS)	Frederickson, Stephen		
	T. Kertis, Joel A.		
	Mearig		
Improved Buoy Separation Means	Bruce W. Travor, Ralph	75717	10/30/91
	Damato, Dean Stanley		Į
Cross-Corrugated Sandwich Construction	Hemen Rav	75754	9/7/93
Antenna Control With Interface for PC	Joseph Arico	75795	9/22/93
Dual Channel Reference Hydronhone	Peter T Show	75860	10/18/02
Control/Calibration Unit		73009	10/10/93
Actively Pumned Faraday Ontical Filter	Richard I Billmore	75000	10/22/02
Actively Fumpeu Furaday Optical Flitt	Montin E Souississis	13000	10/22/93
	Wartin F. Squicciarini,		
	William J. Scharpi,		
	vincent M. Contarino,		
	David M. Allocca		
bragg Grating Corrosion Monitoring Sensor	Vinod Agarwala,	75942	11/29/93
	Ignacio Perez		
Hydraulic Separator/Transfer Tank	John L. Standish	75947	3/26/90
Separation of Two Co-Channel FM Signals	Jeffery J. Miller	75978	12/17/93
Modified Reduced Frequency Equation	Samuel Greenhalgh	75992	1/7/94
Aircraft Integrated CBR Protective Respirator	Timothy J. Jones, John	76043	2/10/94
G	E. Hollingsworth		
CAIS (Trademark)	Wes Gleason	76058	2/18/04
Tactical Airborne Digital Campus System	Michool Massadam	76100	2/15/04
TADOG	Successful Data	/0104	3143194
	SICCRAIIII RAJAII		1

		<u> </u>	
1		NAVY	DATE
TITLE	AUTHOR (S)	CASE	RECEIVED
		NUMBER	L
A Design For Shape Memory Metal Matrix	David John Barrett	76213	4/1/94
Composites		1	
Sonobuoy Large Receive Array for Acoustic	Bruce W. Travor	75300	3/2/93
Signals			0,2,20
Multi-Functional (Corrosion Inhibiting and Radar	Charles R. Hegedus	75383	A/1A/03
Absorbing Coating	Donald I Hirst	75505	4/14/75
	Anthony T Eng		
	William I Croop		
Quick Pologge Langerd Anchoning Device	Com E King In Com		F (10 (00)
Quick Release Lanyard Anchoring Device	Gary E. King, Jr., Gary	75444	5/19/93
	R. Whitman		
Offset-Corrugated Sandwich Construction With	Hemen Ray	75753	9/7/93
Curved Corrugations			
Bragg Grating Writing Device	Ignacio M. Perez, Som	75755	9/3/93
	Dev Tyagi		
W1 Connector Switch Assembly	Melvin Brown	75843	10/1/93
Remote Single-User Simulation Control System	Thomas M. Kelso.	75918	11/1/93
	David T. Purdue, Gary		
	L. Pratz. Damon L.		
	Boyle, Scott R. Davis		
	Douglas M Vojik		
Latching Tool for Aero-1B	Theodore Malone	75946	3/10/01
Intense Light Filter for Imaging Systems	George E. Bray	75964	12/7/03
Fine Water Mist Nozzle System	Losenh F Wolfe	75093	12/20/02
Polymethone Salf Driming Toneset Using a Law	Charles P. Handur	75765	12/20/93
Popotivity Digmont System Including Molublete	Denold J Illingt	/0000	10/31/91
Medified Time Described	Donald J. Hirst,		
Modified Zinc Phosphate	Anthony I. Eng		
Polyurethane Self-Priming Topcoat Using a Low	Charles R. Hegedus,	76001	10/31/91
Reactivity Pigment System Including Calcium	Donald J. Hirst,		
Zinc Molybdate/Phosphate	Anthony T. Eng		
Polyurethane Self-Priming Topcoat Using a Low	Charles R. Hegedus,	76002	10/31/91
Reactivity Pigment System Including Barium	Donald J. Hirst,		
Metaborate	Anthony T. Eng		·
Explosive Line Array Failure Mode Analysis	Timothy B. Hediger,	76055	2/16/94
System	Donato M. Russo.		
-	Nancy J. Harned, Paul		
	A. Labonski		
Scattered Light as a Non-Destructive Evaluation	Michael Wilson	76210	3/28/94
Tool			0, = 0, 2 4
Fax Machine Attachment	Vladimir Gershman	76246	4/14/04
A MA THUCHING ALGORIMOME	Julian Alvanety	/0470	4/14/24
Occupant Beach and Probability Apparatus	Cory D Whitmon	73202	11/16/04
occupant reach and i tonannity Apparatus	Dovid A Dosc	13473	11/10/94
	David A. RUSE		i i i

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

Reuted Pg

k. Identify any in-house staff that are members of the National Academy of Engineering.

Information not available through official manpower data bases.

1. Identify any in-house staff that are members of the National Academy of Sciences.

Information not available through official manpower data bases.

m. How many Cooperative Research and Development Agreements (CRDAs) have been signed by the activity since 1 January 1990?

NAWCAD PATUXENT RIVER

Signed with SBS Engineering on 5/21/91 regarding development of software to support the AYK-14 computer control unit emulator.

PATUXENT RIVER COMPLEX

ARRCA -- Relationship of Seat Design to Spinal Compression Injury (\$24.9K)

Low-Cost Ceramic Composites Virtual Company -- Interface Characterization and Non-Destructive Evaluation of Ceramic Matrix Composites (data exchange)

General Dynamics Corporation -- Use of the Dynamic Flight Simulator to Test Response to G-Stress

n. What has been the activity's annual royalty income from CRDAs and patent licenses for each year since 1 January 1990?

NAWCAD PATUXENT RIVER

FY91	\$40K
FY92	\$25K
FY93	\$40K

R

PATUXENT RIVER COMPLEX

Patents Licensed Since 1990

PATENT NO.	LICENSEE	PATENT TITLE	INVENTOR (S)	ROYALTIES RECEIVED
4,469,976	PenWalt Corporation	One-Side Transducer Lead Connection	W. R. Scott	\$4k
4,255,810	C.M. Brubaker Corporation	Jam Resistant Frequency Modulation System	George C. Hennessy Karl Solomon	\$25k

X. Identify any in-house staff that are members of the National Academy of Engineering.

Information not available through official manpower data bases.

1. Identify any in-house staff that are members of the National Academy of Sciences.

Information not available through official manpower data bases.

m. How many Cooperative Research and Development Agreements (CRDAs) have been signed by the activity since 1 January 1990?

NAWCAD PATUXENT RIVER

Signed with SBS Engineering on 5/21/91 regarding development of software to support the AYK-14 computer control unit emulator.

PATUXENT RIVER COMPLEX

ARRCA -- Relationship of Seat Design to Spinal Compression Injury (\$24.9K)

Low-Cost Ceramic Composites Virtual Company -- Interface Characterization and Non-Destructive Evaluation of Ceramic Matrix Composites (data exchange)

General Dynamics Corporation -- Use of the Dynamic Flight Simulator to Test Response to G-Stress

n. What has been the activity's annual royalty income from CRDAs and patent licenses for each year since 1 January 1990?

NAWCAD PATUXENT RIVER

FY91 \$55K FY92 \$25K FY93 \$40K

PATUXENT RIVER COMPLEX

Patents Licensed Since 1990

PATENT NO.	LICENSEE	PATENT TITLE	INVENTOR (S)	ROYALTIES RECEIVED
4,469,976	PenWalt Corporation	One-Side Transducer Lead Connection	W. R. Scott	\$4k
4,255,810	C.M. Brubaker Corporation	Jam Resistant Frequency Modulation System	George C. Hennessy Karl Solomon	\$25k

o. List and describe any major end item prototypes, either product or process technology, developed in-house by the activity that are currently in production and/or are currently in use by the U.S. Armed Forces or by industry. Cite a published reference that documents the work.

NAWCAD PATUXENT RIVER

The NAWCAD/Flight Test and Engineering Group (FTEG) designed and developed a vessel traffic system for purposes of monitoring surface traffic in and out of a bombing range in the Chesapeake Bay. This system has been modified and has been transitioned to the U.S. Coast Guard as its baseline vessel traffic system. The New York harbor installation is the first of three installations to be made by the NAWCAD/FTEG. This product is also being transitioned to the Panama Canal Commission to track vessels into and out of the Panama Canal.

Fleet Imagery Support Terminal (FIST). Reference document is Program Change Approval Document (PCAD), PE# 0205670N, Project X0521 signed by ASN (Shipbuilding and Logistics) 6 Apr 89.

MIL-STD-1553 Quick Installation Data System

A-6 Radar Altimeter Digital Dispaly

PATUXENT_RIVER_COMPLEX

PROTOTYPES/PRODUCTS/PROCESS

Self-Priming Coat (TT-P-2765) product technology developed. This product is used by the Navy and Air Force on operational aircraft at all maintenance levels.

Reference:

1. Hegedus, C. R., "Development of a Primer/Topcoat and Flexible Primer for Aluminum," NADC Rep. No. 87016-60. 20 March 1987.

2. Hegedus, C. R., Eng, A. T., and Hirst, D. J., "Program Summary: Unicoat Development, Laboratory Characterization and Full Evaluation," 30 March 1990.

Corrosion and Corrosivity Sensors developed and are currently being tested by Boeing Defense & Space Group, Seattle, WA and Oak Ridge National Laboratory, Nashville, TN.

Multi-Purpose Corrosion and Crack Retarding Inhibitor is listed on Product List and is used by Rockwell International Collins Communication and Avionics Division, Cedar Rapids, IA.

LRU-18U VC - Bottom Life Raft 10C USN 6/90, used by NASA, VSCG, US Army, and US Navy.

Solid State Oxygen Monitor for USN/USMC fighter/attack aircraft equipped with On Board Oxygen Generation Systems (OBOGS).

SV-2 Survival Vest Zipper Mod: Added Velcro taps and directional change, Incorporated into SV-2 vests via IACC 1994. Navy-wide impact.

86

IBAHRS 10C Nov 95 for AH-1W (Marines) and for AH-1F (Army) Program nominated by SH-60 PMA to put IBAHRS in all SH-60 aircraft by approximately 1996.

Variable Load Energy Absorber (VLEA) developed which is now operational on SH-3, CH-5553, and V-22 aircraft crashworthy crew seats.

PROTOTYPES PRODUCT AND/OR PROCESS TECHNOLOGY, TRANSITIONS TO THE FLEET

PRINCIPLES FOR ADAPTIVE FUNCTION ALLOCATION FOR INTELLIGENT COCKPITS

Transitioned to the Air Force (Wright-Patterson AFB), Army, NASA, and Universities in 1990. This product improves effectiveness of Pilot Vehicle Interface Designs in all DoD aircrew weapon systems.

COMPENDIUM OF HUMAN FACTORS ENGINEERING TOOLS FOR CREW STATION DEVELOPMENT

Transitioned to the Air Force, Army, Navy Laboratories, and the Airframe Industry in 1991. Improved the design and evaluation of advanced aircraft weapon systems, for example: F/A-18 E/F, AX, F22.

KNOWLEDGEABLE OBSERVATION ANALYSIS - LINKED ADVISORY SYSTEM ARCHITECTURE (KOALAS)

Transitioned to the F-14 and F/A-18 Program Offices in 1992. Significantly improved multi-sensor integration in the Navy's F-14 aircraft.

AUDIO TONE GENERATOR

Transitioned in 1992 for the A-4, F-4, and A-6 aircraft. The Audio Tone Generator is part of the Navy standard two target system designed to provide low cost augmented aerial tow target for air-to-air and surface-to-air gunnery and missile training. The tone generator is currently provided as a piece of crew equipment in order to preclude costly cockpit instrumentation modifications.

Prototype Visors:

Under management of the Vision Laboratory, visors which offer multiple wavelength laser protection are being developed. Unlike eyewear currently available to the fleet, these visors have the unique characteristic of providing seven wavelengths of protection with high scotopic transmission (i.e., they are usable at night as well as day) and minimal color distortion. Milestone II transition for this program is expected in the 4th quarter, FY95.

PROTOTYPES PRODUCT AND/OR PROCESS TECHNOLOGY, TRANSITIONS TO THE FLEET

- ---- --

DYNAMIC RELAY ROPE

.....

Transitioned in 1990. It was a military rope which was transitioned to Navy use for rapelling.

LOCKING CARBINEERS

Transitioned in 1990. It is a carbineer with a screw down locking feature for added safety while rapelling.

FLARE MK 124

Transitioned in 1990. Designed as a replacement for the MK-13 Flare. It has both day (smoke) and night (flare) capabilities.

HAND HELD CABLE CUTTER

Transitioned in 1991. It is a replacement for the pneumatic hand tool used to free entangled aircrewmen.

NEW SURVIVORS SLING ASSEMBLY

Transitioned in 1992. It replaces the kaplok filled sling with closed cell foam. Flotation and longevity were improved.

NEW RESCUE SWIMMER WETSUIT ENSEMBLE

Transitioned in 1992. This new wetsuit has expansion zippers to allow the wetsuit to be loosely worn when the SAR swimmer is not in the water.

NEW RESCUE SWIMMER HARNESS

Transitioned in 1992. It is an updated version of the HBU-11 Harness.

COMPUTER ASSESSMENT OF REACH (CAR)

Transitioned to Universities, Airframe industry, FAA, Air Force, Army, NASA, International Industry (Germany), Automotive Industry (GM) during 1980 thru 1991. CAR is an anthropometric model to assess aircrew reach within a crew station design; reduced crew station evaluation by 25%. Applications included F/A-18, F-14, AV-8, A-6, T-45.

PROTOTYPES PRODUCT AND/OR PROCESS TECHNOLOGY, TRANSITIONS TO THE FLEET

E-2C CREW BACKPACK

Transitioned in 1990. It is more compact, lighter weight and provides twice as much oxygen as its predecessor.

FOR OFFICIAL USE ONLY PREDICISIONAL INFORMATION

LPU-31 LIFE PRESERVER

It is authorized for use with the T-65 body armour for helicopter combatant aircrew. It is composed of the LPU-21P with a protected bladder cover.

LRU-18/U MINI BOAT

Transitioned in 1990. This compact one man life raft is used in the E-2C crew backpack and is carried on the person. It is inflatable to a size and shape that enables an abandoned aircrew member to easily board and remain stably contained in a sea environment. Designed, developed, and introduced entirely by Navy. Helicopter introduction is in progress.

The following ejection Seat Kits have been designed, developed and introduced to the Fleet in 1992 for various indicated tactical aircraft:

RIGID SEAT KIT (RSSK) SKU-7/A 1992 F-14 RIGID SEAT KIT (RSSK) SKU-10/A 1992 F-18 RIGID SEAT KIT (RSSK) SKU-11/A 1992 T-45 RIGID SEAT KIT (RSSK) SKU-12/A 1992 A-6 & F-14

CWU-62/P ANTI-EXPOSURE COVERALL

Designed, developed, and transitioned in the 1980s.

RESCUE SWIMMERS WETSUIT ENSEMBLE

The Rescue Swimmers Westsuit Ensemble is a custom fit wetuit with hood, gloves, and boots designed for anti-exposure protection for the SAR swimmer.

PROTOTYPES PRODUCT AND/OR PROCESS TECHNOLOGY, TRANSITIONS TO THE FLEET

HGU-67/P NIGHT CAPABLE COBRA HELMET

Transitioned to the fleet in 1991. This helmet has provisions for ANVIS night vision goggles and a magnetic tracker targeting system.

HGU-68/P

This new TACAIR helmet was flight evaluated in the F/A-18, AV-8B, and A-6 aircraft in 1992 for possible use in night attack applications. It will primarily satisfy an urgent F/A-18 requirement. Initial deliveries are scheduled for 1992.

EDU-5/P MULTI-WAVELENGTH LASER EYE PROTECTION

Developed, qualified, and transitioned in 1990. The technical data package has been completed.

- - -

A-4 NEGATIVE G RESTRAINT

A new restraint concept was designed and developed in 1989 to enable control of the aircraft during negative G maneuvers. This improvement presents loss of aircraft control resulting from high G maneuvers.

NAVY AIRCREW COMMON EJECTION SEAT (NACES)

The NACES development program was initiated to reduce the proliferation of ejection seat types in the aircraft inventory and was the most extensive ejection seat development ever undertaken by the US Navy. The NACES seat has been recently approved for full scale production and approximately 1800 seats will be installed in Naval aircraft. The NACES incorporates a state-of-the-art microprocessor sequencing system, a new acceleration sensitive inertial reel, improved signal transmission system, and an improved parachute. An advanced seat mounted harness and a passive limb restraint system are targeted for the product improvement program (P3I).

HAU-12/P ANTI-EXPOSURE MITTENS

Developed, qualified, and transitioned in 1990. Used by all USN/USMC aircrew.

HGU-32/P ANTI-EXPOSURE HOOD

Developed, qualified, and transitioned in 1990. Used by all USN/USMC aircrew.

NAVY AIRCREW COMMON EJECTION SEAT

NAWC WARMINSTER directed and managed the technical team that developed and qualified NACES which provides a common ejection seat for the F/A-18, TF-18, F-14D, and the T-45 aircraft. The baseline NACES seat is a state-of-the-art system, and is also designed to incorporate future aircraft performance requirements through a preplanned product improvement program. As a result of this program, the Navy has a common ejection seat which is both reliable and maintainable, and significantly reduces overall life cycle costs. This seat is currently in production, and has been incorporated into F-18C/D, F-14D, and T-45.

Reference: SECNAV Directive 1984

FOURTH GENERATION EJECTION SEAT

The objectives of the Fourth Generation Escape System Technologies Demonstration Program is to demonstrate advanced propulsion, flight controls, and life protection devices. The approach of the propulsion system is to utilize multiple (four) fixed nozzles with independent thrust level control in order to stabilize and control the orientation of the ejection seat in free flight. The first phase of the program is to demonstrate specific propulsion technologies. The second phase of the program consists of demonstration ejection seat sled track tests, including dynamic conditions.

Reference: Memorandum of Agreement between the US Air Force Armonstrong Laboratory, Crew Systems Directorate, and Wright Laboratory, Flight Dynamics Directorate, and US Navy, Naval Air Systems Command, Aircrew Systems Program Office, of 1992.

IMPROVED TREATMENT REGIMEN FOR RESPIRATORY DISTRESS SYNDROME

<u>Operational Impact:</u> Reduce the risk from adult respiratory distress syndrome (ARDS), a potentially fatal condition which can be the result of a wide variety of combat injuries.

Task: MM33C30

Transition: P.E. 63706N in FY94

ARDS is an important medical problem of Navy and Marine personnel. In fatal cases the lungs are found to be nearly airless, intensely congested, and filled with a proteinaceous edema fluid that also contains a large number of red blood cells. Conditions which may cause ARDS generally involve injury to the alveolarcapillary membrane, including infection, trauma, liquid aspiration, or inhaled toxins, any of which can be encountered in combat situations. Current therapy using the drug Exosurf is non-specific and is of marginal value. The ARDS research which the Navy is sponsoring involves three main approaches.

It has been found that interleukin-8 (IL-8) and tumor necrosis factor (TNF) are central to the development of septic shock and ARDS. Better understanding of mechanisms involved are resulting in dramatically improved treatment methods. Antibodies to IL-8 and TNF that interact with the active site of these cytokines have been developed and ar in-hand. These will be used to prevent or inhibit the development of septic shock or ARDS.

Experiments in human beings with ARDS haves shown that leukocytic proteases and oxidants were generated at the time of injury. These do extensive damage to nearby lung cells. Further study is underway which will determine the most effective combinations of anti-oxidants and protease inhibitors to inhibit pulmonary inflammation in primates.

The final component of this research involves the development of a synthetic surfactant for replacement therapy in RDS. Loss of surfactant function is a common event in ARDS. A pulmonary surfactant has been developed, consisting of a synthetic peptide of leucine stretches and intermittent lysines (KL4) and phospholipids. It offers the additional benefits of being relatively inexpensive and free of the problem of viral transfer that exists with extracts of animal surfactants. It appears to be equal in activity to native human surfactant, and has been shown to be significantly better than Exosurf in primates. Human trials are expected to begin within six months.

91

FOR OFFICIAL USE ONLY

REDECISIONAL INFORMATION

SOMAN-INDUCED PERFORMANCE CHANGES LINKED TO THE BRAIN'S HIPPOCAMPUS

<u>Operational Impact:</u> Protection of the lives and performance of combat personnel exposed to chemical warfare agents.

Task: MM33B30

Transition: Army 6.3B Drug Development Program in FY91 - FY92

The DoD has long recognized the lethal effects of the chemical warfare (CW) agent, soman, and has, in the past, accepted the prophylactic use of the drug, pyridostigmine, to protect servicemen who may be exposed to CW agent attack. Pyridostigmine, although effective against soman-induced death, has been shown not to be protective against injury to cognitive performance and is therefore suboptimal for military operations. A second drug, physostigmine, has subsequently been investigated as a protectant against both death and performance degradation. Hopes for the effectiveness of this alternate drug were based on the fact that, unlike pyridostigmine, physostigmine crosses the "blood brain barrier" and thus might directly protect the brain and ensuing performance from the damaging effects of soman.

Study results have shown, however, that physostigmine does not significantly enhance the level of performance protection already provided by pyridostigmine. Primates protected with the drug and then exposed to soman demonstrated only low levels of protection to cognitive performance, to a degree which would not be militarily relevant. Thus, physostigmine has been shown not to be an answer to the problem of overall protection of deployed Navy forces from the injury of chemical agent attack.

As this disappointing result was being demonstrated, however, additional insight on the neural targets of soman injury was gained. Neurochemical studies showed that continual, low level soman exposure of rodents caused a loss of "long-term potentiation" (LTP) which is an exaggerated, long-lasting measurable brain response thought to be directly related to memory storage in the brain. The loss of LTP in soman-treated animals suggests that soman may act directly on the brain hippocampus, destroying the normal synaptic activity which forms the basis of information retention and cognitive performance. This novel finding identifies a previously unknown brain tissue target of soman activity and potentiates a new focus for the development of improved prophylactic drugs and/or performancesaving therapies for chemical warfare protection.

MODIFICATIONS IN NITROGENT ELECTRODE DESIGN EXTENT STABILITY AND IMPROVE ACCURACY

<u>Operational Impact:</u> Augmented safety for Navy divers by facilitating the development of improved decompression tables.

Task: MM33P30

FOR OFFICIAL USE ONLY. REDECISIONAL INFORMATION

Transition: P.E. 63713N in FY95

After all but the shortest and shallowest dives, too much breathing gas dissolves in a diver's tissues to permit safe immediate return to the surface. With rapid ascent, dissolved gas comes out of solution faster than it can be exhaled, and forms bubble throughout the body. This condition, known as decompression sickness (DCS) or "the bends", can cripple or even kill. A staged schedule of ascent, called "decompression", during which a diver gradually exhales the dissolved gas as it comes out of solution, minimizes the risk of DCS.

Current decompression schedules are sub-optimal. They have been derived empirically due to an inadequate understanding of the physics and kinetics of bubble formation in tissues. Current schedules have a variable risk of bends, and probably do not surface a diver in the shortest time for the risk incurred. Optimal decompression schedules will be based on mathematical models of tissue gas exchange kinetics and bubble physics. For most diving, Nitrogen (N_2) , which constitutes 79% of the air at sea level, is the gas of concern for DCS. However, scientists are presently unable to measure dissolved tissue N₂.

Almost a decade ago, a prototype in vitro N_2 electrode was developed. It was relatively large, fragile, unstable, unsuitable for hyperbaric exposures, and required rejuvenation after only several minutes of measurement. Several years ago, the development team became convinced that advances in materials technology and transition metal electro chemistry would enable the limitations of the previous design to be overcome. Within the past year, dramatic progress has been made towards the fabrication of a durable, stable, pressure resistant electrode, small enough for in vivo use, and capable of sustained performance over the anticipated duration of the gas kinetics experiments.

The newest design combines a Ru/Nafion coated glassy carbon rod electrode with a durable Pt foil auxiliary electrode and a thin Pt wire pseudo-reference electrode into a single unit. The quantity of Nafion coating to provide electrochemical continuity between the three elctrodes of the assembly has been optimized for best compromise between response time and usable life expectancy before a required chemical rejuvenation. When the Nafion membrane is saturated with electrolyte solution, it provides electrical continuity between the electrodes, and function as a thin-layer cell within which the elctrochemical reactions required for PN₂ measurement take place. The new design appeared completely stable during six days of testing in a pressure reactor while exposed to humidified hyperbaric nitrogen. Variations in repetitive measurements with the same electrode varied from $\pm 6\%$ to 10%, significantly better than previous designs with 22% variation. Correlation coefficients along measurements made with several protoype sensors was 0.9817.

Scientists are optimistic that current efforts focusing on electrode miniaturization, pressurization hardening, and minimal variation between repetitive measurements will yield a valuable scientific instrument in the near term.

HIGH PRECISION INERT GAS SOLUBILITY MEASUREMENTS UNDER HYPERBARIC PRESSURE WILL IMPROVE QULAITY OF GAS KINETICS MODEL

<u>Operational Impact:</u> More accurate predictive mathematical models of inert gas kinetics will provide safer decompression schedules for divers.

Task: MM33P30

Transition: P.E. 63713N in FY95

After all but the shortest and shallowest dives, too much breathing gas dissolves in a diver's tissues to permit safe immediate return to the surface. With rapid ascent, dissolved gas comes out of solution faster than it can be exhaled, and forms bubble throughout the body. This condition, known as decompression sickness (DCS) or "the bends", can cripple or even kill. A staged schedule of ascent, called "decompression", during which a diver gradually exhales the dissolved gas as it comes out of solution, minimizes the risk of DCS.

Current decompression schedules are sub-optimal. They have been derived empirically due to an inadequate understanding of the physics and kinetics of inert gas bubble formation in tissues. Current schedules have a variable risk of bends, and probably do not surface a diver in the shortest time for the risk incurred. Optimal decompression schedules will be based on mathematical models of tissue gas exchange kinetics and bubble physics. These models will require accurate values for the solubility constants of the inert gases used in diving. The complexity of the mathematics magnifies imprecision, and low quality data seriously degrades the accuracy of the model.

Until recently, the solubility constants of the inert gases used in diving were known with a precision of only 5%, and measurements were restricted to relatively low pressures by the physical limitations of the equipment. These low pressures did not approximate the pressure associated with current Navy deep diving operations. Measurements were even less precise for gases with high diffusibility and low solubility, such as helium. Furthermore, relatively few measurements had been made using biological media, such as plasma. However, using innovative techniques and custom-designed equipment, inert gas solubility constants can now be measured with a precision of 1.5%, and at pressures up to 30 atmospheres (equivalent to a depth of -960 feet of sea water).

Newly obtained data reveals that at 30 atmospheres, and at temperatures of 10° C, 25° C, and 37° C, helium is 6% less soluble in blood plasma than it is in distilled water. The difference in solubility is temperature dependent, and is larger at 37° C than at 10° C. Under the same conditions of temperature and pressure, nitrogen is 11% less soluble in blood plasma than in distilled water. In fact, the solubility of nitrogen in plasma at 30 atmospheres is less than it is in distilled water at 1 atmosphere. These findings can be explained by postulating clathrate formation in plasma, associated with the phenomenon of salting-out, most likely due to the availability of free ions that are absent in distilled water. Analogous findings have been obtained from preliminary measurements made with hydrogen gas.

94

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION These new precision measurements have conclusively demonstrated that solubility constants based upon measurements made with distilled water should not be used in mathematical models that describe inert gas kinetics in biological systems. Diving medical scientists are optimistic that the newly available precision data will greatly improve the quality of future mathematical models of inert gas tissue kinetics, enabling safer and more efficient decompression schedules.

STEM CELL FACTOR AND INTERLEUKIN-3 SHOWN TO STIMULATE STEM CELL REPLICATION AND DIFFERENTIATION

<u>Operational Impact:</u> Reduce the risk of severe injury and/or death from exposure to radiation, chemical agents, and other trauma by enhancing the recovery of the blood cell-forming system.

<u>Task:</u> MM33C30

Transition: P.E. 63706N in FY95

Because of threats posed to the human immune and hematopoietic systems by radiation, chemical agent exposure, and other trauma, the military is very interested in developing treatment regimens which can cause the recovery of blood-forming cells (stem cells) in the bone marrow and the replenishment of the functional blood cells (red blood cells, leukocytes, and other immune cell types, platelets) which mature from cells and are essential for casualty recovery. Much of the current work focuses on cellular control mechanisms and on the effects of growth factors and other indigenous cell products (cytokines) on these mechanisms. Studies conducted this year have considered the effects of Stem Cell Factor (SCF) and other cytokine, interleukin-3, on the recovery of leukocytes, platelets, mast cells, and basophils.

In preclinical studies conducted in collaboration with NIH, SCF was used with other cytokines to expand populations of purified stem cells and progenitor cells <u>in vitro</u>. Treated cells were replaced into lethally (10.0 Gy) irradiated Rhesus monkeys in an autologous bone marrow transplantation model. Preliminary results indicated that peripheral blood leukocytes (myeloid) and platelets return to normal levels as soon as 2 weeks post-irradiation and transplantation. Genetic marking of the cells, using a retroviral vector intended for genetic therapy, indicated that the peripheral blood cells originated from the progenitors manipulated <u>in vitro</u>.

In other collaborative studies, the effect of SCF on human mast cells and basophils derived from bone progenitors was studied. Over a 3-4 week period, cultures treated with recombinant human interleukin-3 (rhIL-3) or rhIL-3 plus SCF gave equal percentages of cell types, with basophils constituting 25-50% of the final cultured cells, and mast cells 3% or less of the final number. The two factors together synergized to give a 3-5 fold increase in the total cell number at 3 weeks (compared to effect of either factor alone). Thus, SCF in conjunction with rhIL-3 is able to increase the proliferation of precursors to mast cells and basophils.

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

These studies have profound implications for stem cell transplantation and transfusion therapy. Further successes in understanding growth factor and cytokine regulation of specific blood cell progenitors will result in the development of effective therapeutic applications for combat casualty care.

<u>G-CSF THERAPY SHOWN EFFECTIVE FOR MUSTARD EXPOSURE AND</u> <u>DEPLOYED FOR CASUALTY TREATMENT DURING OPERATION DESERT</u> <u>STORM</u>

<u>Operational Impact:</u> A unique and improved treatment for exposure to mustard gas was developed in response to the threat of chemical warfare during Operation Desert Shield/Desert Storm.

Task: MM33C30

Transition: P.E. 63706N in FY95

The situation in Southwestern Asia during August 1990 raised the strong possibility of warfare with a country known to have already demonstrated their willingness to use chemical weapons. At that time there were very limited clinical data regarding the effects of mustard agents on patients or the optimal means for treating those patients.

The most common casualties due to mustard gas exposure are skin, ocular, gastrointestinal, and pulmonary injuries. Only the latter is likely to be a cause of mortality, which in World War I amounted to roughly 5% of the injured. A significant contributing factor to the pulmonary injury is neutropenia which predisposes to pulmonary infection and the adult respiratory distress syndrome (ARDS). It was determined by a working group at NMRDC that the Navy should be prepared to treat some of the anticipated mustard gas victims for neutrophil.

To meet this requirement, antibiotics, fluids, blood products, and intensive care needs were assessed. In addition, the possibility of using newer therapies was also considered. One such therapy is the use of hematopoietic growth factors to enhance the rate of neutrophil recovery after injury to the bone marrow. Over the past several years, a class of biological proteins with myeloid stimulating activity have been identified, the genes have been cloned, and pharmaceutical levels of the protein have been produced for use in experimental and clinical settings. Two of these proteins, granulocyte colony-stimulating factor (G-CSF) and granulocytemacrophage colony-stimulating factor (GM-CSF) have been evaluated in clinical trials for the purpose of ameliorating neutrophil after either chemotherapy or bone marrow transplantation. Preclinical testing of these proteins has also been conducted at NMRI using nonhuman primate models of both bone marrow transplantation and high dose, nonuniform radiation exposure (previously funded 6.2 work).

After comparative evaluation of the drugs available, G-CSF, from AMGEN, was chosen. Testing found that G-CSF therapy shortened the period of neutrophil induced by intravenous mustard chemotherapy. G-CSF therapy could be delayed to as long as 7 days after mustard exposure and still have beneficial clinical consequences.

FOR OFFICIAL USE ONLY REDECISIONAL INFORMATION

As a result of this effort, a unique protocol for field use was developed by the Navy and approved by AMGEN, the Navy IRB, the FDA, and the DoD, in a very short time. AMGEN generously donated 1000 doses of G-CSF in single injection vials (5ug/kg/d, sc). Dr. Meisenberg, the principal investigator, went to Landstol Army Hospital in January 1991 to receive casualties.

<u>CROSS-LINKED BOVINE HEMOGLOBIN INHIBITS MYOCARDIAL</u> <u>FUNCTION</u>

<u>Operational Impact:</u> The search for a safe human blood substitute has led to cross linked bovine hemoglobin as a possible source. The discovery that it has toxic side effects may have saved human lives.

Task: MM33C30

Transition: P.E. 63706N in FY94

There is a potential for shortage of blood for transfusion if the U.S. is involved in large scale military conflicts. During the recent war in the Persian Gulf, appeals were made by blood banks throughout the country in anticipation of the need for blood and blood products. The utilization of red cell substitutes for transfusion presents a possible solution to the problem of blood availability in emergency combat situations. However, potential hazards may exist in using these substitutes and studies must be performed to determine their safety and efficacy. Combat casualties may not be able to survive dramatic alterations, activations, or toxic effects of reiculoendothelial or other system failures.

Preliminary studies have been completed where hypovolemic, hypotensive baboons were resuscitated with a saline-bovine hemoglobin solution. The baboons demonstrated a significant reduction in cardiac function and increased peripheral vascular resistance. The studies support the observations that have been made using perfused rabbit hearts that hemoglobin solutions can depress cardiac contractibility. These fundings resulted in the suspension of plans for FDA approved testing on human subjects, possibly saving human lives.

HORMONE - CONTAINING NASAL SPRAYS MAY EXTEND DIVING OPERATIONS

<u>Operational Impact:</u> Increased time periods that Navy SEALS can spend submerged in the water performing sustained operations.

<u>Task:</u> MM33P30

Transition: P.E. 63706N in FY92

Prolonged water immersion of Navy divers can induce diuresis (increased urine output potentially leading to dehydration), intravascular volume contraction, hypotension, decreased cerebral perfusion, and subsequent decrements in task performance. Furthermore, these effects of water immersion can be augmented under adverse environmental temperatures. For example, an increase in the ambient temperature will result in further volume loss through sweating; and a decrease in the ambient temperature will result in cutaneous vasoconstriction, a transient increase in central blood volume, and subsequently, an exaggerated diuresis. Countermeasures must be developed to prevent the untoward physiologic response that Navy divers can experience during the prolonged water immersion and adverse climates in which they need to operate.

Studies conducted this year tested the hypothesis that specific therapies using diuretic hormones may significantly alter the undesirable effects of extended water immersion. 8-Desaminoargenine vasopressin (DDAVP), a long acting synthetic analogue of a naturally occurring hormone, was tested for the ability to decrease the dehydration induced by water immersion and concomitantly increase the time available for Navy SEALs to perform operational tasks. Water balance (urine output) was measured in over 30 subjects (including Navy SEAL candidates) during three hours of immersion in thermal-neutral water.

Results showed that a single, intra-nasal spray containing 20 micrograms of DDAVP decreased urinary water loss by nearly 90%, compared with the water output of normal controls, with no reported side effects or untoward reactions. Additionally, DDAVP decreased the urinary loss of salt. These findings indicate that DDAVP could prove to be an effective measure for avoiding submersion-induced diuresis and for markedly increasing the operational underwater time of deployed Navy SEALs.

ACUTE AND CHRONIC COLD EXPOSURE CAUSES ADAPTIVE CHANGES IN NOREPINEPHRINE, TRIIODOTHYRONINE, HYPTERTENSION, CORE TEMPERATURE AND WHOLE BLOOD VISCOSITY

<u>Operational Impact:</u> Reduced injury to personnel deployed in cold weather environments through increased understanding of cold-induced physiological responses.

Task: MM33C30

Transition: P.E. 63706N in FY92

Navy personnel working in extremely cold environments commonly experience cold-induced physiological and performance injuries which are preventable by repeated, prolonged, pre-deployment cold exposures to allow adaptation to cold. Such expensive and time-consuming acclimation periods could be avoided if methods for accelerating cold adaptation could be identified. Such techniques must be based on a full understanding of the biological events associated with the cold adaptive response, so that appropriate targets of biochemical or drug therapy can be identified.

A number of such cold-induced physiological alterations has recently been discovered in the blood and hormonal composition of human subjects who were either naturally exposed to a cold environment or experimentally cold-adapted in climate chambers at the Navy Medical Research Institute. The most pertinent changes, in the context of cold adaptation regimens, were noted in blood viscosity, blood pressure, and the level of the hormone, triiodothyronine (T_3) .

Reduced capillary blood flow and greatly increased blood viscosity during low temperature (10 degrees C) exposure have now been linked to an aggregation of plasma proteins. Cold exposure was shown to increase the viscosity of human whole blood and plasma equally, but to increase serum viscosity to a lesser degree. This finding implicates a central role for aggregating plasma proteins in this process, because such proteins, which are abundant in both whole blood and plasma, are relatively absent from serum. In addition, administration of the drug, pentoxifylline, was shown not to decrease the blood viscosity associated with cold exposure (pentoxifylline is an agent known to decrease blood viscosity by altering red blood cell rheological properties).

Short exposures to cold air also was shown to induce a characterstic elevation in blood pressure that is effectively attenuated by cold adaptation. Studies showed that while the beta-adrenergic blocker, propranolol, acutely lowers blood pressure at room temperature, this drug does not reduce cold-induced hypertension. Coldassociated changes in systemic blood pressure were shown to be mediated by the sympathetic nervous system through the circulating levels of plams norepinephrine.

Lastly, studies, published this year, have now verified that cold adaptation results in a condition now termed the "Polar T₃ Syndrome", characterized by a near doubling of the T₃ production rate and distribution volume, a decrease in the free, unbound fraction of T₃, a decrease in the core body temperature, and a blunted pressor response to cold with systemic hypertension. Results of these studies suggest that a resetting of both the serum and select tissue binding constants for T₃ may lead to a heterogeneous delivery of thyroid hormone to thermogenetic sites and provide a mechanism for changes in body temperature found with cold adaptation in persons who dwell at McMurdo Sound, Antarctica.

SYNTHETIC RED BLOOD CELLS

<u>Operational Impact:</u> The synthetic red blood cell will provide a stable, shortterm blood substitute to be used for acute combat casualty care and will help reduce mortality due to severe combat trauma.

Task: MM33C31

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

Same 1

Transition: P.E. 63792N in FY91

In order to increase the availability of oxygen-carrying cells for combat casualty resuscitation, the Navy has embarked on the development of a synthetic red blood cell, based on the concept of liposome-encapsulated hemoglobin (LEH). These "cells" mimic the function of natural red blood cells, are stable and typeless (therefore can be transfused into any casualty without the need to type and crossmatch), and, because of their very small size, may be superior to natural red blood cells in trauma states where vasoconstriction occurs.

Because LEH differs significantly from natural red blood cells, they require extensive biocompatibility studies prior to pre-clinical testing in humans. The 6.2 work on LEH has focused primarily on the product's interaction with tissues in animals, in particular with the blood system and the reticuloendothelial system. In pre-clinical studies at the Naval Research Laboratory, <u>in vitro</u> analyses of the effects of LEH on fibrinolysis indicated that LEH had no signicant influence on prothrombin or partial thrombin times in blood. In clinical blood chemistries, post LEH injection, there were no effects on enzyme markers for heart, liver, brain, spleen, or muscle function. Representative tissues infused with fresh or freeze-dried LEH were prepared and examined by microscopy, showing any vacuolation of liver and spleen cells, which resolved by two weeks following infusion. In addition, ganglioside modification of LEH did not extend the halflife of LEH, but did alter tissue distribution.

These very promising findings on the biocompatibility of LEH facilitated the transition of this work into an Advanced Technology Demonstration (ATD) entitled "Synthetic Red Blood Cells". Supported by the early results of the 6.2 study, this ATD initiated in FY90 is funded at a level of \$4.1 million. The focus of the ATD is to determine the feasibility of using LEH as a temporary blood substitute for the transfusion of combat casualties in those instances where natural red blood cells are not available.

Tactical Airborne Digital Camera System

Developed Real-Time Image Reconnaissance System for F-14. Principle of operation: R10 uses hand-held digital camera that can take over 250 high resolution 1K x 1K images saved to a disk. R10 can view all images on TID and selectively transmit image(s) to base station in 90 seconds.

System design completed Dec 93. One prototype system was tested and heavily used with VF102, USS America, June 93 to Jan 94, a second system was built in Jan 94 and both are being used with VF103, USS Saratoga.

Information about System can be found in:

Defense International, June 93, p. 42 Aviation Week & Space Technology, Feb 29, 1994, p. 27 The Intelligencer/Record, March 1, 1993, p. A4

> FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

F/A-18 Fiber Optics Data Bus

Developed Fiber Optic-1553 data converters for implementation of Fiber Optic data bus into F/A-18A SMS system. Initial flight tests successfully completed August, 1991.

Currently in second phase of flight tests, where AIM-7 capture carry weapon will be engaged through Fiber Optic Bus. (May 1994)

Final phase will involve dropping 'dummy' bomb through Fiber Optic Bus. (June-July 1994)

System designed, built, and tested completely in-house by code 5052 and 60. This is the first implementation and flight test of an operational Fiber Optic Bus in a tactical aircraft.

Engineering Design, Fabrication, and Aircraft Installation to Provide Upgraded High Resolution Recording of the Head Up Display (HUD) and the Pilot's Right and Left Digital Display Indicators (DDI)

The upgraded system will provide color recording capability, a four-fold increase in recording time, and significant weight savings. The installation in F/A-18C and F/A-18D are intended to provide proof of concept demonstration and design data that will define follow-on procurement and design actions to support NADEP ECP retrofit activities and MDA forward fit ECP tasks. The system includes three cameras, power supplies, controls and indicators, and attaching hardware. The design is documented through engineering documentation packages defined by the following:

- TE28091 General Arrangement, Cockpit Video Recorder System F/A-18C Model Aircraft
- TE28092 General Arrangement, Cockpit Video Recorder System F/A-18D Model Aircraft

Engineering Design, Fabrication, and Aircraft Installation to Provide Upgraded 8mm Recording Capability in Select USMC F/A-18D Aircraft to Support Operation Deny Flight

The task required replacing the current 3/4" tape recorder with a High 8mm recorder. Some of the design data from the F/A-18 C/D CVRS program was used. The design is documented through an engineering documentation package defined by the following:

TE28675 - General Arrangement, High 8mm Recorder System F/A-18-D Model Aircraft

> FOR OFFICIAL USE ONLY REDECISIONAL INFORMATION

NATOPS Performance Charts

This effort encompasses the generation of "camera ready" performance charts for use in the NATOPS Manual series for out of production fixed and rotary wing aircraft. This process also supports the flight performance shown in the pocket check list. This product is in direct support of the Fleet and is a unique capability necessary for general aircraft operations and safety of flight. (United States Patent #4568766, 25 March 1986. This patent is used in support of the unique capability for generation of "camera ready" performance charts for aircraft weapons systems.

TACTICAL Maneuver Performance Charts

This effort encompasses the generation of "camera ready" maneuver performance charts for use in Naval Weapons Series 55 Tactical Manuals. These charts are used by both fixed and rotary wing pilots to define the energy maneuverability characteristics of their weapon systems versus threat weapon systems in order to effect a more efficient weapons system kill. This is a unique NAVAIR/NAWC capability.

Flight Optimization Routines for Energy Management (FOREM)

FOREM is a flight planning computer program developed to optimize fuel usage and reduce flight planning time by providing fleet pilots with readily accessible software on floppy disks for use on fleet standard desktop and laptop computers and other DOS compatible PC's. Version 1 is operational in the following communities: F/A-18, TA-4J, A-6E, F-14A, EA-6B, and KC-130R/T. The system is documented in the FOREM user manuals (e.g., F/A-18A Flight Optimization Routines for Energy Mangement (FOREM) Version 1.2 User Manual, 10 June 1991) which have been distributed to the Fleet along with the software. Version 2 will be distributed to the Fleet in May 1994 along with a new FOREM Version 2 User Manual. FOREM Version 3 is in development at NAWCAD Warminster.

Pocket-Size Aircraft Performance Advisory Computer (P-S APAC)

P-S APAC is a hand-held computer system developed by NAWCAD Warminster and distributed to the Fleet to simplify pre-flight and in-flight aircraft performance and weight and balance computations. P-S APAC utilizes NAWCAD Warminster developed computer programs running on commercially available hand-held computers. The system is operational in the following communities: P-3, UC-12B, C-2A, KC-130F, C-9B, and KC-130R/T. The system is documented in the P-S APAC Training and User Manuals (e.g., C-9B Pocket-Size Aircraft Performance Advisory Computer, Volumes 1 and 2, Performance Programs and Weight and Balance Programs, 30 December 1993) which have been distributed to the Fleet along with the computers and software.

Ŧ

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

102

Flight Performance Advisory System (FPAS)

FPAS is an aircraft performance and navigation computer program resident on all lot 10 to 14 F/A-18 aircraft mission computers which provides the pilot with a display of optimum speeds and altitudes for minimum fuel usage and/or maximum range and endurance. The system is documented in the Naval Air Training and Operating Procedures Standardization (NATOPS) Flight Manual AI-F18AC-NFM-000, Change 5, 15 August 1993.

Energy Efficient Environmental Control System for Tactical Aircraft: Joint Project with US Air Force - in development for F-22

Tim Springer and Jim McNamara: Report No. NADC-91117-60, "Flight Test of an Energy Efficient Environmental Control System (EEECS) in a P-3 Aircraft", 18 December 1991.

Tim Springer and Jim McNamara: SAE Technical Paper 921225, "Testing of an Energy Efficient Environmental Control System for Patrol-Type Aircraft", July 1992.

TRANSITIONS TO 6.3/OTHER TECHBASE PROGRAMS/FLEET USE

Silicon carbide fiber reinforced lithium alumino-silicate, UTRC-2000 (Compglas (TM)) has been selected as the bill-of-material for the F119 engine which has been chosen to power the Advanced Tactical Fighter (ATF) and the Navy Advanced Tactical Fighter (NATF). This material will be used in the 4th and 5th compressor stage vane inner shrouds and provide improved wear resistance compared to titanium, as well as a 12 lb. weight savings per engine and a reduced parts count.

A Manufacturing Technology program was initiated to apply high temperature aluminum in the F-18 auxiliary power unit impeller GTC 36-200. The program will include component manufacturing, demonstration and testing.

Manufacturing Technology is also sponsoring two new programs in FY92 for (1) Production scale-up of the advanced single crystal alloy, CMSX-Mod 4A, developed under Task 6.1 for fabricated turbine vanes and blades with transpiration cooling, and (2) Silicon carbide fiber reinforced lithium aluminosilicate, Modified UTRC-200, for engine external exhaust nozzle flaps. Both programs will culminate in 6.3 demonstrator engine testing (XTC45-3 and XTE66) under the IHPTET program in the 1994/95 time period.

Non-Autoclave Processing for Composite Materials Repair. Report number of same title NADC-83084-60

Video Landing Loads Data Acquisition System in use by the FAA for obtaining commercial aircraft kinematic performance parameters. Report number is DOT/FAA/CT-93/7.

POR OFFICIAL USE ONLY

Developed the computer algorithms to process reflected acoustic pulses from the ocean bottom so as to reconstruct the bottom profiles over a wide swath. This information is currently used for undersea navigation and for commercial location of minerals and petroleum. Reference to this work is given in US Patent 5,077,699 (Passamante et al.) of Dec. 31, 1991.

Counterintelligence Communication System, a handheld communication device for the Marine Corps, initially built in 1990 and updated in 1993 based on Marine Corps field testing.

UYS-2 "Fast Start" signal processing graph used by ATT for UYS-2 testing of BSY-2 requirements.

Repair Adhesive HYSOL 9391 developed and transitioned to industry. Reference: NADC Report # 79-286-60, October 1991.

Staged Composite Prebreg Patches developed for composite structure repairs. Transition to fleet use, NADEPS, and Field Activities. Reference: NADC Report # 90664-60, 1990.

Double Vacuum Non-Autoclave Composite Processing developed and transitioned to the fleet and industry. Reference: NADC Report # 92091-60, 1992.

PROTOTYPES PRODUCT AND/OR PROCESS TECHNOLOGY, TRANSITIONS TO THE FLEET

Dr. Shender has taken an existing thermal model and developed and enhanced it to make its predictions applicable to USN survival and mission scenarios. Dr. Shender performed both validation and sensitivity analyses on this enhanced model to ensure its utility and define its limitations. This model is now also being used at the Navy Cloth and Textile Research Facility in Natick and the Naval Health Research Center in San Diego.

Shender, B. S. "Predictions of Human Tolerance to Heat Stress During Simulated Fighter Aircraft Mission Scenarios." Proceedings of the 6th International Conference on Environmental Ergonomics, September 1994.

SONOBUOYS

"Developed Under NAWCAD Technical Direction"

AN/SSQ-1 AN/SSQ-37 AN/SSQ-50 (CASS) AN/SSQ-101 (HLA/ADAR))**
---	-----

- AN/SSQ-2 AN/SSQ-38 AN/SSQ-53 (DIFAR)* AN/SSQ-102 (TSS)
- AN/SSQ-3 AN/SSQ-41 (LOFAR) AN/SSQ-57 * AN/SSQ-103 (LCS)
- AN/SSQ-10 AN/SSQ-42 AN/SSQ-71 (ATAC) AN/SSQ-110 *
- AN/SSQ-15 AN/SSQ-44 AN/SSQ-73 (DSD) VLF IIA *

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

4

AN/SSQ-36 *	AN/SSQ-	-49	AN/SSQ-90 (AMP)
AN/SSQ-28 AN/S	SQ-48 AN/SSQ-	86 (DLC) * PER	SS *
AN/SSQ-23 AN/S	SQ-47 AN/SSQ-	79 (SVLA) NUA	AMP
AN/SSQ-20 AN/S	SQ-46 AN/SSQ-	77 (VLAD) * NBI	DS
AN/SSQ-17 AN/S	SQ-45 AN/SSQ-	75 (ERAPS) VLF	F III

* IN OPERATIONAL USE

** IN FSD

SIGNIFICANT ACOUSTIC PROCESSING TECHNOLOGY IMPACT **OF PROTOTYPES IMPACT ON THE FLEET**

Common signal processor is a programmable, high speed, linear flow computer which was designed to replace the numerous special purpose acoustic processors onboard aircraft, submarines, and surface ships. Various configurations are used in the P-3, S-3, LAMPS, surface ships, and submarines.

Multi-acoustic sensor data fusion efforts have increased ASW detection and classification capabilities of advanced systems.

SIGNIFICANT PASSIVE ACOUSTICS TECHNOLOGY IMPACT

Low Frequency Analyzing and Recording

Vertical Line Array Measurements (VLAM)

Airborne low frequency analyzing, recording, and directional sonobuoys

In-buoy data storage and signal detection algorithms reduced processing capability needed in aircraft.

Low cost, more reliable, more sensitive sonobuoys reduced the number of buoys required and maximizes the aircraft coverage range per mission.

SIGNIFICANT ACTIVE ACOUSTICS TECHNOLOGY IMPACT

IMPACT ON THE FLEET

Developed every sonobuoy that is used in the Fleet dating back to World War П

Developed first helicopter dipping sonar

Developed sonobuoy communication links which greatly increase aircraft's ability to command and monitor sonobuoy signals

> FOR OFFICIAL USE ONLY REDECISIONAL INFORMATION

Developed acoustic prediction models which provide more accurate simulation of acoustic environments

<u>IACS</u>

Description

The Magnavox Generator-Processor Group OV-78/A is the airborne portion of the Low Data Rate (LDR) Integrated Acoustic Communication System (IACS). This equipment group is designed to interface with existing P-3 aircraft avionics to provide two way communications between the P-3 and the AN/SSQ-71 ATAC sonobuoy.

This aircraft system group consists of two units; a Reference Signal Control-Display-Generator C-10903/A (CDG) and a Signal Data Processor-Verifier CV-3678/A (SPV). The CDG is the heart of the system as it contains the system microprocessor, memory, and power supply. It is utilized for downlink message composition and encoding as well as uplink message decoding and review. The SPV performs signal conditioning on the uplink transmission to provide data compatibility with the on-board acoustic signal processor. It is likewise used to transcribe processed uplink data from the acoustic signal processor display to the CDG memory for final decoding and review.

Both units are of modular design and are comprised entirely of modules which are replaceable in the aircraft. With the aid of an automated, comprehensive Built-In Test (BIT) program, there is virtually no need to remove an entire unit from the aircraft. Fault isolation to the module (SRA) level with a numeric readout identifying any defective module to the system operator.

P-3C Aircraft Installation

The Magnavox IACS Generator-Processor Group OV-78/A has been specifically designed to interface with the existing P-3C aircraft avionics. The CDG is located at the Navigation/Communication position of the aircraft while the SPV is located in the AN/AQA-7(V) sensor station area. As illustrated in the block diagram, the CDG provides downlink transmission data to the AN/ARC-143 UHF radio set. Uplink data is received by the SPV through the AN/ARR-72 Sonobuoy Receiver, and the signal conditioned uplink data is then routed to the AN/AQA-7(V) Sonar Computer-Recorder Group via the Sono Junction Box. The AN/AQA-7(V) processes the uplink data and presents a permanent display/record to the operator on the AN/AQA-7(V) Signal Data Recorder (SDR).

The P-3C update III Configuration utilizes the AN/ARR-78 ASCL Receiver and the AN/UYS-1(V) Analyzer Detecting Set in place of the AN/ARR-72 Sonobuoy Receiver and the AN/AQA-7(V) Sonar Computer-Recorder Group.

FOR OFFICIAL USS ONLY PREDECISIONAL INFORMATION

FACILITIES AND EQUIPMENT

6. **Special Facilities/Equipment Resources.** Include a copy of the form provided at Tab B of this data call for each facility and "major" piece of equipment located at this activity. <u>Include</u> information on separate detachments. The following definitions will apply:

Facilities - Will include such things as rocket firing bays, towing tanks, anechoic chambers, hypervelocity gun ranges, hyperbaric chambers, wind tunnels, simulation/emulation laboratories, etc. Include buildings that are integral to the facility/equipment. Do not include major outdoor ranges or land.

Also, describe modeling and simulation capabilities, hardware in-the-loop facilities and analysis or wargaming capabilities.

Equipment - Resources used to support the operation of the site with a replacement value of \$500,000 or greater. Do not include land or buildings in this category. In reporting equipment, provide information to indicate the degree of portability of the equipment. Class 3 Personal Property items ("plant equipment" or "equipment in place") by definition are highly portable and can be moved easily. Some Class 2 Installed Equipment, such as Main-frame computers, test stands and small hyperbaric chambers, require more extensive utilities support and assembly of components, but can be relocated without damage to the facility or equipment, and therefore are considered "moveable" assets. Other Class 2 items are so large and/or integral to the facility that houses them that major demolition and construction would be required to relocate them, and therefore are considered "fixed" assets. Where appropriate, pieces of equipment can be aggregated for the purposes of completing Tab B.

7. General Facilities.

a. Is there any cash revenue generated by this activity? Example: Electricity generated at this activity and sold to the local community. If yes, describe.

No.

b. What MILCON projects are currently programmed to be completed by the <u>end of</u> <u>FY1995</u>? For each project provide:

(1) A description of the proposed facility with title and project number. Be sure to include the trailing alpha designator for BRACs-88, 91 and 93 realignment projects, i.e., $P-xxx\underline{R}$, $P-xxx\underline{S}$, P-xxxT.

Aircraft Technologies Laboratory

P-920-S

Description: Provides an integrated laboratory to study aircraft materials and structures in a naval operating environment. Meets current EPA and OSHA requirements.

Frank Knox School Improvements For HRO P-930-1-S

Description: Provides a centralized base training facility to handle expanding training requirements. Renovates a Navy owned, former elementary school for training and meeting space.

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

Aircraft MODS Shop

P-930-3-S

Description: Provides an aircraft modifications shop building to support a R&D function being relocated. Shop performs prototype modifications to aircraft to prove concept validity. Meets current EPA and OSHA standards for this type of work.

Ejection Tower (Support Structure) P-930-3A-S

Descriptions: Project will provide utilities and support building for the relocation of the only man-rated ejection tower in the DOD inventory. Supports crew survivability R&D.

Addition to Building 1490 P-930-4B-S

Description: Provides additional space and interior alterations to support expanded R&D Mainframe computer processing requirements at the computer center.

Building 1406 Addition

P-930-4-S

Description: Provides additional space to move noncomputer center personnel from computer center to allow for additional R&D mainframe computer processing at the computer center.

Addition/Renovation to Building 1652 P-930-4A-S

Description: Provides additional space and interior alterations to support consolidated RDT&E for the TACAMO Strategic Communications Program.

ACLS Integration Test Facility.

P-712

PREDECISIONAL INFORMATION

Description: 7,200 SF, building will include integration lab, test lab, staging and test area, repair and instrumentation area, parts storage, fire protection system, security alarms, handicapped access, parking and utilities.

FACSFAC Electronic System Integration Facility P-723

Description: 27,000 SF provides space for all hardware and software functions, logistics support, and administrative personnel.

AN/SPN-46(V) Life Cycle Support Facility P-720

Description: 27,900 SF, single story, pile supported concrete foundation, steel framed masonry walls with computer room, bench labs, offices, storage, controlled access and parking areas. Will provide software and hardware maintenance, repair, configuration management, problem analysis, and logistics support for AN/SPN-46 ACLS installations.

108
(2) The functional support area(s) that the new facility will support. Refer to Appendix A.

......

P-920-S

1.2 Platform (Aircraft)

3. Combat System Integration

8. Defense Systems

11. Generic Technology Base

P-930-1-S

10.1 Personnel and Trainging

P-930-3-S

1.2 Platform (Aircraft)

11. Generic Technolgy Base

P-930-3A-S

10.6 Crew Equipment and Life Support

P-930-4B-S

11.1 Computers

10.9 Activity Mission & Function Support P-930-4-S

10.9 Activity Mission & Function support P-930-4A-S

1.2 Platform (Aircraft)

9. Strategic Programs

P-712

1.2 Platform (Aircraft)

3.2 Combat Sysyem Integration (Air)

7.7 (1) Air Traffic Control System

P-723

7.7 (3) Air Traffic Control System

P-720

7.7 (1) Air Traffic Control System

(3) Identify installed equipment to be provided based on the threshold guidance of paragraph 6, page 12, of this data call.

P-920-S; Aircraft Technologues - No major equipment facilities P-930-1-S; N/A; P-930-3-S; Aircraft Mods Shop Code 60725 Machine shop P-930-3A-S; Ejection Tower P-930-4B-S P-930-4A-S; N/A P-930-4A-S; Airborne Strategic communication Engineering and Test (ASCET) Facility P-712; N/A P-723; N/A P-720; N/A

Revised pg

(4) The additional square footage that this project will provide to the functional support area(s).

Sq. Ft.	<u>Proj. #</u>
65,000	P-920-S
33,927	P-930-1-S
11.624	P-930-3-S
1.728	P-930-3A-S
11,400	P-930-4-S
8,600	P-930-4A-S
13.576	P-930-4B-S
7.200	P-712
27.000	P-723
27,900	P-720
,	

(5) The current working estimate (CWE) & planned beneficial occupancy date (BOD) of the project.

Proj. #	<u>CWE</u>	BOD
P-920-S	12,000	21 December 94
P-930-1-S	3,562	1 November 94
P-930-3-S	2,300	1 June 95
P-930-3A-S	785	1 February 95
P-930-4-S	1,972	1 September 95
P-930-4A-S	450	31 August 95
P-930-4B-S	2,450	August 95
Proj. #	CWE	BOD
P-712	1,053	1 September 94
P-723	2,632	1 October 94
P-720	3,437	1 April 95

c. What MILCON projects are currently programmed to be executed/completed <u>after</u> <u>FY1995</u>? For each project provide:

(1) A description of the proposed facility with title and project number.

<u>Title</u>			<u>Proj. #</u>
North	and South	Centers	P-930-S

Description: Provide two integrated engineering R&D laboratory centers to support BRAC 91 decisions to consolidate Naval Aviation RDT&E. Laboratories support crew systems, air vehicle research, embedded computer systems and airborne anti-submarine warfare.

Jet Engine Test Cell Facility P-383

Description: This project will construct a T-10 jet engine test cell relocated from Subic Bay. Neither of the two existing cells can be adapted to perform post maintenance engine runup of the engines in our existing inventory or those programmed to be here by FY96.

R

R

(4) The additional square footage that this project will provide to the functional support area(s).

33,927 P-930-1-S 11,624 P-930-3-S 1,728 P-930-3A-S 11,400 P-930-4-S 8,600 P-930-4A-S	<u>Sq. Ft.</u> 65,000	<u>Proj. #</u> P-920-S
1,728 11,400 8,600 P-930-3A-S P-930-4A-S P-930-4A-S	33,927	P-930-1-S P-930-3-S
8.600 P-930-4A-S	1,728 \ 11.400	P-930-3A-S P-930-4-S
13 526 \D 030 4B	8,600	P-930-4A-S
7,200 R -712	7,200	R -712
27,000 P-723 27,900 P-720	27,000 27,900	Р-723 Р-720

(5) The current working estimate (CWE) & planned beneficial occupancy date (BOD) of the project.

		\mathbf{N}
<u>Proj. #</u>	<u>CWE</u>	$\frac{BOD}{21}$
F-940-5	12,000	21 December 94
P-930-1-8	3,562	I November 94
P-930-3-S	2,300	\ 1 June 95
P-930-3A-S	785	🔪 1 February 95
P-930-4-S	1,972	1 September 95
P-930-4A-S	•	§1 August 95
P-930-4B-S	2,450	August 95
		\sim
<u>Proj. #</u>	<u>CWE</u>	BOD
P-712	1,053	1 September 94
P-723	2,632	1 October 94
P-720	3,437	1 April 95

c. What MILCON projects are currently programmed to be executed/completed <u>after</u> <u>FY1995</u>? For each project provide:

(1) A description of the proposed facility with title and project number.

<u>Title</u>

North and South Centers

Description: Provide two integrated engineering R&D laboratory centers to support BRAC 91 decisions to consolidate Naval Aviation RDT&E. Laboratories support crew systems, air vehicle research, embedded computer systems and airborne anti-submarine warfare.

Jet Engine Test Cell Facility

P-383

FOR OFFICIAL USE ANLY PROECISIONAL INFORMATION

Pr<u>oj.</u>

P-930\S

Description: This project will construct a T-10 jet engine test cell relocated from Subic Bay. Neither of the two existing cells can be adapted to perform post maintenance engine runup of the engines in our existing inventory or those programmed to be here by FY96.

110

Hazardous/Flammable Material Store House P-426

Description: This project will construct a building to meet safety requirements for the storage of hazardous materials. Currently hazardous materials are stored in an environmentally unsuitable structure that is in violation of the Navy Occupational Safety and Health and Environmental Standards.

Library Renovations

P-930-1A-S

Description: Provides interior alterations to support scientific, technical and classified libraries in support of the BRAC 91 decision to consolidate Naval Aviation RDT&E. Existing library is too small to handle combined functions.

Recreation Cottages (Solomons) P-497

Description: This project will construct five duplex cabins for ten recreational lodging units for military personnel. Some of the Naval Recreational Center's lodging units have been condensed due to facility age.

Sewage Flow Equalization Basin P-505

Description: This MILCON will pay the one time cost of the Navy's share of a county planned upgrade to the treatment plant. This MILCON solves a waste water quantity sewage problem.

Administration Facilities (NAVAIR) P-951-T

Description: (Integrated Project Team Building) Provides space for integrated project teams (IPTs) that support aircraft acquisition and need to be collocated with RDT&E. The IPT's will move from Arlington, VA, (Crystal City) resulting from BRAC 93 decision to move Headquarters out of the National Capital Region.

Propulsion System Evaluation Facility P-953-T

Description: Provides a facility to support the BRAC 93 decision to consolidate small engine RDT&E. Building houses test chambers, component test rigs and supporting laboratories.

Waste Water Treatment Plant

P-516

Description: This MILCON will pay a one time cost to the Navy for a planned county upgrade to the sewage treatment plant. This MILCON will bring the facility into compliance with the latest water quality standards imposed by the Maryland Department of the Environment.

Airframe Systems Integration Lab

P-493

Description: This project will construct a two story integrated laboratory to test and evaluate, in a night combat environment, integrated weapons systems being developed. Facility will also be used for foreign weapon technology and international cooperative programs.

AEGIS Electronic Equipment Staging Facility P-721

Description: A permanent one story masonry building having a pile supported concrete foundation and floor, steel framed clear span staging and storage area, fire alarm system, security fence, environmental controls, access road, parking and utilities. Will provide logistics support and staging facilities for electronic and communication systems and equipment undergoing integration, test and evaluation in support of the AEGIS CG-47 and DDG-51 radio communication system integration and the related in-service engineering program.

(2) The functional support area(s) the new facility will support.

P-930-S

- 1. Platforms
- 3. Combat System Integration
- 5. Sensors & Surveillance
- 6. Navigation
- 7. C³I
- 8. Defense Systems
- 9. Strategic Programs
- 10. General Mission support
- 11. General Technology Base

P-383

1. Platforms

P-951-T

All functional support areas

P-426

10. General Mission Support P-930-1A-S

10. General Mission Support P-497

- r-49/
- N/A P-505

10. General Mission Support

P-951-T

All Functional Support Areas P-953-T

1. Platforms

3. Combat System Integration

P-516

N/A

P-493

- 1. Platforms
- 2. Weapon Systems
- 3. Combat System Integration
- 5. sensors and Surveillance
- 6. Navigation
- 7. $C^{3}I$
- 8. Defense Systems

P-721

7.3 Shipboard

Revised pg

(3) The identified installed equipment to be provided based on the threshold guidance of paragraph 6, page 12, of this data call.

P-953-T - Installed equipment of replacement value greater than \$500k is limited to the gearbox/power absorption system in the Helicopter Transmission Test Chambers, and Air Supply equipment servicing the Accessories Test Area.

The additional square footage this project will provide to the functional support

P-930-S VS Labs Vertical Flight VP Facility - Software Program Facility VP Facility Program Hardware Integration Center VH Facility (Helicopter Integration System - 2) Horizontal Accelerator **Structural Test Facility** Hydraulics Research Lab P-383 P-426 N/A P-930-1A-S P-497 N/A P-505 N/A P-951-T P-953-T **P-516 P-493** Aircrew Systems Test Facility **P-721**

area(s).

(4)

<u>Sq. Ft.</u>	<u>Proj. #</u>
705,000	P-930-S
6,720	P-383
12,860	P-426
Ó	P-930-1A-S
5,280	P-497
0	P-505
495,012	P-951-T
77,000	P-953-T
0	P-516
42,400	P-493
57,560	P-721

R

(3) The identified installed equipment to be provided based on the threshold guidance of paragraph 6, page 12, of this data call.

P-953-T - Installed equipment of replacement value greater than \$500k is limited to the gearbox/power absorption system in the Helicopter Transmission Test Chambers, and Air Supply equipment servicing the Accessories Test Area.

P-930-S **WS** Labs Vertical Flight VP Facility - Software Program Facility VP Facility Program Hardware Integration Center VH Facility (Helicopter Integration System - 2) Horizontal Accelerator Structural Test Facility Hydraulics Research Lab P-383 P-426 N/A P-930-1A-S P-497 N/A P-505 N/A P-951-T P-953-T **P-516 P-493** Aircrew Systems Test Racility **P-721**

(4) The additional square footage this project will provide to the functional support

area(s).

<u>Proj. #</u>
P-930-S
P-383
P-426
P-930-1A-S
P-497
P-505
P-951-T
P-953-T
P-516
P-493
P-721

(5) CWE & planned BOD.

Revised py

R*

Proj. #	CWE \$(000)	BOD
P-930-S	78,500	30 March 96
P-383	4,400	21 November 95
P-426	3,400	30 June 96
P-930-1A-S	1,000	1 January 96
P-497	440	31 January 96
P-505	1,000	8 December 96
P-951T	94,500	20 June 97
P-953T	25,575	Unknown
P-516	2,500	26 August 96
P-493	7,600	10 January 00
P-721	6,700	1 Apr 2000

d. What is the distance (in miles) to the nearest military airfield and/or pier not located at your site? Describe. Assume all previous BRAC closures have been executed.

37 miles, Andrews Air Force Base; 81 miles, Norfolk Pier

e. How many certified magazines, used for the storage of explosives, does this activity own or control? What is the total explosive weight storage capacity.

	MAXIMUM
	RATED
Facility	CAPABILITY
Number	
	TONS
209A	4.8
209B	23.8
209C	20.0
210A	7.6
210B	4.2
210C	12.0
212	1.0
1412A	6.9
1412B	10.8
1412C	6.0
1412D	10.0
1412E	30.0
1412F	5.4
1412G	9.6
1371	4.8
1372	2.0
1373	21.0
1374	13.2
1375	40.5
208	4.8

* 8 December 1996 is the projected usable completion date.

Υ.

Proi #	CWE \$(000)	BOD
P-938-S	78,500	30 March 96
P-383	4,400	21 November 95
P-426	3,400	30 June 96
P-930-1A-S	1,000	1 January 96
P-497	440	31 January 96
P-505	1,000	8 December 96
P-951T	94,500	20 June 97
P-953T	25,575	Unknown
P-516	2,500	26 August 96
P-493	7,600	10 January 00
P-721	\6,700	1 Apr 2000
	\mathbf{N}	-

d. What is the distance (in miles) to the nearest military airfield and/or pier not located at your site? Describe. Assume all previous BRAC closures have been executed.

37 miles, Andrews Air Force Base; 81 miles, Norfolk Pier

e. How many certified magazines, used for the storage of explosives, does this activity own or control? What is the total explosive weight storage capacity.

	MAXIMUM	
	RATED	
Facility	CAPABILITY	
Number		
	TONS	
209A	4.8	
209B	23.8	
209C	20.0	
210A	7.6	
210B	4.2	
210C	12.0	
212	<u>\</u> 0	
1412A	6.2	
1412B	10.8	N N
1412C	6.0	
1412D	10.0	
1412E	30.0	
1412F	5.4	
1412G	9.6	
1371	4.8	
1372	2.0	
1373	21.0	
1374	13.2	
1375	40.5	
208	4.8	
		\mathbf{X}
		TON UTTICIAL USE UNLT

È

PREDECISIONAL INFORMATION

114

245	5.4
248	13.8
211	720.0
213	1.85
221A	1.0
221B	1.0
577A	1.3
<u>577</u> B	1.0
138	1.1
219A	1.0
219B	1.0
225A	1.05
225B	1.1
218A	2.2
218B	1.15
231A	1.0
231B	1.0
222A	1.0
222B	1.0
142	.5
220A	1.05
220B	1.0
1388A	1.1
1388B	1.1
240A	1.0
240B	1.0
3181	1.0
Port.RSL	1.0
TOTAL	1005.1
	100011

FOR OFFICIAL USE ONLY

8. Geographic Location.

a. Is there an imperative in facility, function or synergy that requires the installation/base/ facility to be in its present location? If yes, describe.

The Naval Air Warfare Center Aircraft Division Patuxent River (NAWCADPAX) is ideally located in a rural area about 70 miles southeast of Washington, D.C., and is surrounded on three sides by the Patuxent River and Chesapeake Bay making available the sea level atmospheric conditions and salt laden heavy air necessary for the RDT&E of carrier-based aircraft, rotary wing aircraft and anti-submarine warfare aircraft. NAWCADPAX Complex is 60 miles west of the Atlantic and 90 miles northwest of Norfolk.

The importance of NAWCADPAX's location relative to clustering of other activities is: (1) close proximity to the fleet in Norfolk (90 air miles) for direct technical interchange, platform availability, and range support; (2) rapid access to sponsors, intelligence agencies; and other SYSCOMS; (3) direct access to NSWC-Dahlgren, and Indian Head for synergism across the cognizant platform, types and systems of all three SYSCOMS; (4) support to more than 50 tenants.

The NAWCADPAX Complex has ample land available to receive other compatible functions, has strong community support; has ideal geography for sea-level testing in an open ocean/littoral environment; has a diverse infrastructure capable of supporting increased operations; and has no encroachment problems.

NAWCADPAX Complex exists in the temperate climate conditions that prevail in Southern Maryland. This climate is conducive to the full spectrum of operations required for aircraft systems RDT&E. Experience indicates there is good, yearround VFR weather conditions 89% of the time. The facility is essentially at sea level with approaches over water making for a true direct link to the maritime environment. The Chesapeake Bay range provides an aerial firing and shallow water recovery area and includes a supersonic test corridor. The rural nature of the area allows virtually unrestricted operations under prevailing climatic and other operational conditions.

Patuxent River Complex real property consists of 6,829 acres, including 7,114K SF of facilities, of which 2,054 undeveloped acres are available for expansion with minimal constraints that would have any impacts on the current mission.* The St. Mary's County land use plan and zoning ordinance recognizes the importance of the naval establishment. The county manages one of the strictest and most supportive Air Installation Compatible Use Zone (AICUZ) provisions ever enacted. The AICUZ provision has provided and will continue to provide the buffer against encroachment. NAWCADPAX Departure and Arrival Control has been delegated by the FAA to control 28 airfields in a 4,600 square-mile Mid-Atlantic region. Eight of these airports have published instrument approaches, and twenty-three are civilian-operated. NAWCADPAX has direct cognizance of four Chesapeake Bay restricted areas and two military operating areas (MOA's).

* Includes only the Patuxent River Complex. Total is 7,124 which includes special areas outside of the complex. R

8. Geographic Location.

a. Is there an imperative in facility, function or synergy that requires the installation/base/ facility to be in its present location? If yes, describe.

The Naval Air Warfare Center Aircraft Division Patuxent River (NAWCADPAX) is ideally located in a rural area about 70 miles southeast of Washington, D.C., and is surrounded on three sides by the Patuxent River and Chesapeake Bay making available the sea level atmospheric conditions and salt laden heavy air necessary for the RDT&E of carrier-based aircraft, rotary wing aircraft and antisubmarine warfare aircraft. NAWCADPAX Complex is 60 miles west of the Atlantic and 90 miles northwest of Norfolk.

The importance of NAWCADPAX's location relative to clustering of other activities is: (1) close proximity to the fleet in Norfolk (90 air miles) for direct technical interchange, platform availability, and range support; (2) rapid access to sponsors, intelligence agencies; and other SYSCOMS; (3) direct access to NSWC-Dahlgren, and Indian Head for synergism across the cognizant platform, types and systems of all three SYSCOMS; (4) support to more than 50 tenants.

The NAWCADPAX Complex has ample land available to receive other compatible functions, has strong community support; has ideal geography for sea-level testing in an open ocean/littoral environment; has a diverse infrastructure capable of supporting increased operations; and has no encroachment problems.

NAWCADPAX Complex exists in the temperate climate conditions that prevail in Southern Maryland. This climate is conducive to the full spectrum of operations required for aircraft systems RDT&E. Experience indicates there is good, yearround VFR weather conditions 89% of the time. The facility is essentially at sea level with approaches over water making for a true direct link to the maritime environment. The Chesapeake Bay range provides an aerial firing and shallow water recovery area and includes a supersonic test corridor. The rural nature of the area allows virtually unrestricted operations under prevailing climatic and other operational conditions.

Patuxent River Complex real property consists of 6,829 acres, including 7,114K SF of facilities, of which 2,054 undeveloped acres are available for expansion with minimal constraints that would have any impacts on the current mission. The St. Mary's County land use plan and zoning ordinance recognizes the importance of the naval establishment. The county manages one of the strictest and most supportive Air Installation Compatible Use Zone (AICUZ) provisions ever enacted. The AICUZ provision has provided and will continue to provide the buffer against encroachment. NAWCADPAX Departure and Arrival Control has been delegated by the FAA to control 28 airfields in a 4,600 square-mile Mid-Atlantic region. Eight of these airports have published instrument approaches, and twenty-three are civilian-operated. NAWCADPAX has direct cognizance of four Chesapeake Bay restricted areas and two military operating areas (MOA's).

FOR OFFICIAL USE ONLY REDECISIONAL INFORMATION

- R4005
- R4006
- R4007
- R4008
- Rappa MOA
- Delmar MOA

Other areas are available on a shared basis:

- R4002
- R6609
- W-386, W-108, W-72, W-107, and W-105
- Low Tide A & B

NAWCADPAX Complex also has available 233.7 acres of water area in the Chesapeake Bay as a water target aerial firing range for non-explosive weapons. The area is referred to as the Hooper Target (surrounded by a 1,000 yd. radius surface prohibited area) and is under a permanent license granted by the State of Maryland in 1949. The Hannibal ship target is also located close by in the Chesapeake Bay. In addition, Bloodsworth Island (12 mi) and Dare County (155 mi) ranges provide land targets.

Adjacency to a salt water river, bay and close proximity to the Atlantic provides the extensive land/water interface diversity in water depth, temperature and sea states necessary for aircraft RDT&E. Being centrally located along the east coast provides a wide variety of weather and water conditions needed for Navy aircraft RDT&E. Located 100 miles from the Appalachian Mountains provides a large variation in terrain (sea level to approximately 6,000 ft.).

The location also provides the over the water approaches for testing ATC/ACLS and IFF shipboard systems to ensure that over the water propagation characteristics are also considered.

Combined inland and offshore operating areas available to NAWCADPAX exceed 50,000 square miles. Aircraft operations are essentially unconstrained and have access to the Chesapeake Bay and the East Coast Open Ocean Test Ranges. Transit to and from offshore operating areas is available via low-altitude IFR or VFR routing. The NASA Wallops airfield has been configured as primary divert and support facility for offshore operations. NAWCADPAX has leveraged, through incurring only labor costs, the \$400M plus of NASA Wallops range assets into daily support of the NAWCADPAX mission.

The terrain offers no obstacles and the decentralized base layout allows for many simultaneous operations to be underway.

The natural geography, layout, and security posture of the base provide for a secure environment for all aspects of RDT&E testing and other programs.

NAWCADPAX Complex has a very low exposure to natural disasters (e.g., earthquakes, floods, forest fires, tornadoes, hurricanes).

NAWCADPAX Complex has the diversity and size of air and water operating areas to perform projects in assigned mission areas and compatible expansions unencroached with low environmental impact. The geography and dispersion of facilities permit the safe and environmentally sound storage of fuel, ordnance,

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

and hazardous materials. Close proximity of Atlantic Ocean operating areas provides nearly unlimited maneuvering space with deployable instrumentation systems and range safety.

Webster Field Annex is situated on 852 acres on the shores of the St. Mary's River with boat launching facilities and active runways. Because of its rural location a quiet electromagnetic environment exists, making it possible to test and evaluate electronic equipment without interference from the surrounding elements such as those found in urban communities and be able to support many critical Navy, DoD, and other Agency programs which require high power transmitters to radiate. Additionally, because of this isolation it is capable of testing equipment which might need to be considered "out of public view," yet not considered classified in nature.

Webster Field Annex has the capability to:

Test water, land and air communication platforms for the Special Forces and other customers to verify interoperability between platforms.

Use SPECWAR High Speed Boats for system development platforms.

Use shoreline coastal observation systems for Navy SEAL training.

Support the White House Communications Agency design, integration, installation, and support of communication vehicles because of our remote location which is also close to Washington DC.

Provide test and ILS support for the LAMPS, IFF, and ATC/ACLS test and development programs with shipboard electronic systems and ranges.

The Patuxent River Complex is one of three Naval bases which are all within 2 hours of Washington, DC. The other two commands are the Naval Ordnance Command, Indian Head, MD (57 miles) and the Naval Surface Warfare Center Division (NSWC), Dahlgren, VA. NSWC is 75 miles from Patuxent River Complex and is separated by a natural barrier (the Potomac River) - yet is close enough again to provide or receive support where needed. The close proximity to The Naval Ordnance Command and NSWC has evolved into a close working relationship in several major Navy programs, i.e., Automatic Carrier Landing Systems, ASWOC/ASCOMM, AEGIS, IFF, and the LAMPS MK III ASW program. The three activities provide the Navy with closely located areas of expertise representing the NAVAIR, NAVSEA and SPAWAR communities and our mutually convenient locations allow joint program support in the "local area."

b. What is the importance of the present location relative to customers supported?

NAWCADPAX Complex is ideally located to provide and receive support from other RDT&E centers: NSWC Dalghren, White Oak, Indian Head, and Carderock; NRL; Aberdeen Proving Ground; Washington Headquarters; NASA and FAA Center - Atlantic City; Major Defense Companies, Grumman, McDonnell Douglas, Sikorsky, General Electric, Westinghouse, RCA, Bendix; and Operational Units, Norfolk Oceana, AEGIS Training Center - Wallops and Atlantic Range Op areas; AUTEC, NASA Wallops, VACAPES, and Maine and Florida Tomahawk ranges. NAWCADPAX's location in rural Southern Maryland has an established base of contractor and industry support that facilitates all its mission operations.

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

NAWCADPAX's relatively close proximity to Washington, D.C. allows for rapid and efficient communication and direct liaison with its customers and decision makers. In addition, the access to fleet units on the East Coast allows for real world input into the developmental T&E process. The area around the base, has over the years, been populated with a number of technical support contractors that are critical to the completion of mission activities. Some of these contract operations provide support both on and off base and are a major part of the technical establishment.

Being both located on the east coast and having internationally unique capabilities has enabled NAWCADPAX to be not only a national asset, but also an international center of aircraft T&E. Examples of European and South American aircraft tested include the British Nimrod, French Rafale, Spanish Harrier/Principe DeAsturias, Italian Harrier/Garibaldi, and Brazilian and Argentinean S-2s.

The Patuxent River Complex is close to three major airports, allowing rapid departure for intercontinental and overseas travel.

Washington National Airport: 65 miles Baltimore/Washington International Airport: 76 miles Washington Dulles International Airport: 88 miles

FEATURES AND CAPABILITIES

9. **Computational Facilities.** Describe the general and special computational capabilities at this site. Include super computing, parallel computing, distributed computing and networking. Include high-speed data transfer, fiber optic links, microwave links, network interconnectivity and video teleconferencing capabilities. Do not discuss desktops and laptops except as they relate to networking.

The current and future computational capability at the Patuxent River complex The Central Computer System (CCS) is an extremely powerful. includes: scientific and engineering computing facility. It is the largest hybrid computer complex in the Navy. It supports all major projects and programs at the Naval Air Warfare Center Aircraft Division Warminster. Additionally, the CCS supports over 130 remote sites throughout the United States. The CCS supports weapons system development and other research for the P-3 program, the S-3 program, the ASP program, the CV/ASWM module, the E3/AWAC program and the Oceanographic Systems Program. Through the Facility for Automated Software Production (FASP), the CCS supports structured software development for the AYK/14, UYK/7, UYK/20, UYK/32, UYS/1, and Motorola 68000 computers and microprocessors. Languages supported under this system include SPL, CMS-2M, CMS-2Y, FORTRAN, ADA, PASCAL and C. The assembly languages are also There are currently more than 40 million lines of code under supported. structured control within the FASP. The CCS FASP assures that all software developed remains the property of and under control of the Navy throughout its entire life cycle. Through a variety of communications links which include fiber optics, high-speed coax, local area networks, loosely coupled networks, satellite links, laser links, microwave links and RS-232 phone lines, the CCS is connected to other computers both at Warminster and around the country. There are currently more than 2000 workstations connected to the CCS via various The CCS also supports a very powerful real-time simulation networks. capability. Simulations that run on these computers include the Dynamic Flight Simulator which is connected via a fiber optic link to the Warminster centrifuge and an F-14/F-18 weapons system simulator. These are man-in-the-loop real-time simulations.

The CCS includes a fully integrated configuration of 7 large scale mainframes and various minicomputers and superminicomputers. There is a CDC CYBER 875 mainframe which acts as a front end processor and job scheduler for the other There are also 2 CDC CYBER 760s, one CYBER 860, a CYBER mainframes. 830 and 2 CYBER 825s. These computers, in addition to their internal memories. share access to 50 million bytes of external memory. The CCS has more than 100 billion bytes of on-line mass storage provided by more than 125 disk drives and mass storage systems. There are more than 150,000 disk files on-line and available 24 hours a day, 7 days a week, for immediate access by the more than 3000 users of the CCS. The CCS also has more than 160 billion bytes of automated cartridge storage. The CCS also has 30 tape drives which handle all densities of tape from 200 bits per inch up through 6250 bytes per inch. These tape drives enable the CCS to be used for the analysis of experimental and operational data obtained from all weapons systems under projects and programs at Warminster. Additionally, the tape drives are used for preparing operational load tapes for providing the software that runs these weapons systems in the fleet. The CCS also has 18 communications processors having a capacity of more than 1100 communications lines and up to 56 kilobaud per line. For mainframe to mainframe communications, the CCS has a loosely coupled network with a 50

120

.

Revised

megabit capacity. The CCS is also connected to a broadband network with over 3500 connections, an 11 megabit satellite earth station and an Ethernet for access by its users.

The CCS is available to users 24 hours per day, 7 days a week. The fully integrated configuration with all computers having access to all data and program files permits the CCS to have an availability to users that is consistently above 99 percent.

Chesapeake Test Range (CTR) is a key component of open air testing at Patuxent River. It has interconnectivity with virtually all flight test activities at Patuxent River as well as interconnectivity with the major ground test facilities. The CTR has the ability to support flight test for the full spectrum of aircraft test and evaluation types by flexible application of resources to the required open air test. It has the ability to provide simultaneous capability to support a number of different test requirements. CTR resources when coupled with the other extensive open air range facilities, ground test facilities, and measurement facilities available at Patuxent River provide a unique capability to conduct full spectrum Navy aircraft RDT&E as well as support of Atlantic Navy fleet training exercises.

Inter/Intra Range data links include:

NASA Wallops Flight Facility (WFF) - Real-time bi-directional - microwave link at 12.9Mbps (DSA).

Fleet Area Control & Surveillance Facility (FACSFAC), Virginia Capes - Realtime unidirectional - encrypted dedicated link at 56Kbps.

Naval Warfare Assessment Division (NWAD), Corona - encrypted telephone link at 9.6Gkbps.

Atlantic Underwater T&E Center (AUTEC), Bahamas (via West Palm Beach, FL) - at 56Kbps (DSO).

Webster Field Annex - microwave link at 1.5Mbps (DS2) plus 5MHz video. R

ATLAS - real-time unidirectional landing link at 56Kbps.

Telemetry Data Center - Real-time bi-directional wire link at 1.5Mbps (DSI).

Landing Site Test Facility (LSTF) - Real-time unidirectional landline link at 56Kbps.

Ships Ground Station (SGS) - Real-time bi-directional encrypted fiber optic link at 1.5Mbps (DSI).

Coast Guard Vessel Traffic Control System (CGVTS) development facility - 1.5Mbps.

megabit capacity. The CCS is also connected to a broadband network with over \$500 connections, an 11 megabit satellite earth station and an Ethernet for access by its users.

--- -----

The CCS is available to users 24 hours per day, 7 days a week. The fully integrated configuration with all computers having access to all data and program files permits the CCS to have an availability to users that is consistently above 99 percent.

Chesapeake Test Range (CTR) is a key component of open air testing at Patuxent River. It has interconnectivity with virtually all flight test activities at Patuxent River as well as interconnectivity with the major ground test facilities. The CTR has the ability to support flight test for the full spectrum of aircraft test and evaluation types by dexible application of resources to the required open air test. It has the ability to provide simultaneous capability to support a number of different test requirements. CTR resources when coupled with the other extensive open air range facilities, ground test facilities, and measurement facilities available at Patuxent River provide a unique capability to conduct full spectrum Navy aircraft RDT&E as well as support of Atlantic Navy fleet training exercises.

Inter/Intra Range data links include:

NASA Wallops Flight Facility (WFP) - Real-time bi-directional - microwave link at 12.9Mbps (DSA).

Fleet Area Control & Surveillance Facility (FACSFAC), Virginia Capes - Realtime unidirectional - encrypted dedicated link at 56Kbps.

Naval Warfare Assessment Division (NWAD), Corona - encrypted telephone link at 9.Gkbps.

Atlantic Underwater T&E Center (AUTEC), Bahamas (via West Palm Beach, FL) - at 56Kbps (DSO).

Webster Field Annex - microwave link at 6Mbps (DS2).

ATLAS - real-time unidirectional landing link at 56Kbps

Telemetry Data Center - Real-time bi-directional wire link at 1.5Mbps (DSI).

Landing Site Test Facility (LSTF) - Real-time unidirectional landline link at 56Kbps.

Ships Ground Station (SGS) - Real-time bi-directional encrypted fiber optic link at 1.5Mbps (DSI).

Coast Guard Vessel Traffic Control System (CGVTS) development facility - 56Kbps.

121

Revised Pg

•

Real-time unidirectional CATV coaxial link for transmission of video and data to multiple sites throughout the Patuxent River complex - Broad band (up to 10Mbps).

Air Combat Environment T&E Facility (ACETEF) - real-time bi-directional encrypted at 1.5Mbps (DSI).

The TDS facility includes telemetry antennas at two Patuxent sites and access to telemetry antennas at NASA Wallops, all connected to the TDS Real-time Telemetry Processing System (RTPS) via microwave links. RTPS can select any required measurements from a telemetry data stream for throughput to the interconnected facilities listed below. RTPS also can accept simulation data, time/space position data, etc., from interconnected facilities and merge this data with telemetry data. Telemetry antenna sites provide raw telemetry signals to RTPS, but also interconnect to aerospace contract facilities via satellite. TDS facilities interconnect with other facilities as follows:

The Patuxent River Information Computing Environment (PRICE) at the Naval Air Warfare Center Aircraft Division Patuxent River (PAX) complex is a state-of-the-art, distributed, open systems-based corporate information processing facility. It supports all Patuxent River Flight Test and Engineering Group (FTEG) activities and 50 other remote and local tenants and agencies throughout the United States. The PRICE allows over 2800 users to access corporate business and aviation-support applications.

Control of visits/visitors to Naval Air Warfare Center Aircraft Division (NAWCAD) is provided by a centralized system which supports the complete life cycle of visitor processing, starting with the receipt of visitor requests through visitor exit. Processing of classified, unclassified and foreign nation visits is encompassed with electronic approvals between Security Department personnel and unit security coordinators. Personal and vehicle passes are automatically generated and the system interfaces to existing military and civilian personnel systems for point-of-contact verification.

The NAWCAD inventory is supported by a system that accounts in quantitative and monetary terms for the procurement, receipt, issue, and control of plant and minor property, including both sponsor and government furnished equipment. Accounting controls over inventory ledgers are encompassed and subsidiary property records are reconciled quarterly to general ledger accounts. Depreciation is computed and accumulated on class 3 and class 4 property. An automated barcoding process is also provided by the system.

A Workload Planning System supports the accountability for project resources such as; aircraft, labor, material, contracts, facilities etc.. The system ensures compliance with the NAWCAD mission and Naval Air Warfare Center Headquarters (NAWCHQ) and Naval Air Systems Command (NAVAIR) requirements, identifies workload by core capabilities, maintains continuity and consistency with Long Range Plans, Master Activity Plans, A-11/DBOF/MRTFB Budgets, and other reporting requirements.

To relieve Contract Officers' Representatives (COR) of their administrative burden, a Contract Monitoring System supports the tracking of contract deliverables and expenditures. The system functions as a management tool, providing management, CORs, and administrative personnel with an efficient and Real-time unidirectional CATV coaxial link for transmission of video and data to multiple sites throughout the Patuxent River complex - Broad band (up to 100 Mbps)

Air Combat Environment T&E Facility (ACETEF) - real-time bi-directional encrypted at 1.5Mbps (DSI).

The TDS facility includes telemetry antennas at two Patuxent sites and access to telemetry antennas at NASA Wallops, all connected to the TDS Real-time Telemetry Processing System (RTPS) via microwave links. RTPS can select any required measurements from a telemetry data stream for throughput to the interconnected facilities listed below. RTPS also can accept simulation data, time/space position data, etc., from interconnected facilities and merge this data with telemetry data. Telemetry antenna sites provide raw telemetry signals to RTPS, but also interconnect to aerospace contract facilities via satellite. TDS facilities interconnect with other facilities as follows:

The Patuxent River Information Computing Environment (PRICE) at the Naval Air Warfare Center Aircraft Division Patuxent River (PAX) complex is a state-of-the-art, distributed, open systems-based corporate information processing facility. It supports all Patuxent River Flight Test and Engineering Group (FTEG) activities and 50 other remote and local tenants and agencies throughout the United States. The PRICE allows over 2800 users to access corporate business and aviation-support applications.

Control of visits/visitors to Naval Air Warfare Center Aircraft Division (NAWCAD) is provided by a centralized system which supports the complete life cycle of visitor processing, starting with the receipt of visitor requests through visitor exit. Processing of classified, unclassified and foreign nation visits is encompassed with electronic approvals between Security Department personnel and unit security coordinators. Personal and vehicle passes are automatically generated and the system interfaces to existing military and civilian personnel systems for point-of-contact verification.

The NAWCAD inventory is supported by a system that accounts in quantitative and monetary terms for the procurement, receipt, issue, and control of plant and minor property, including both sponsor and government furnished equipment. Accounting controls over inventory ledgers are encompassed and subsidiary property records are reconciled quarterly to general edger accounts. Depreciation is computed and accumulated on class 3 and class 4 property. An automated barcoding process is also provided by the system.

A Workload Planning System supports the accountability for project resources such as; aircraft, labor, material, contracts, facilities etc. The system ensures compliance with the NAWCAD mission and Naval Air Warfare Center Headquarters (NAWCHQ) and Naval Air Systems Command (NAVAIR) requirements, identifies workload by core capabilities, maintains continuity and consistency with Long Range Plans, Master Activity Plans, A 11/DBOF/MRTFB Budgets, and other reporting requirements.

To relieve Contract Officers' Representatives (COR) of their administrative burden, a Contract Monitoring System supports the tracking of contract deliverables and expenditures. The system functions as a management tool, providing management, CORs, and administrative personnel with an efficient and timely method of responding to contract related questions from NAWCAD and NAVAIR. Information on contract milestones, work in process, contract awards and post award is maintained by the system to support contract personnel in the management of their business.

For Federal Information Processing (FIP) approvals a system is provided which supports SECNAVINST 5232.1C. This system tracks all approved Abbreviated System Decision Papers (ASDPs) and all FIP procurement orders issued against those papers. The system provides a means for Information Resources Management Office personnel to manage, monitor and report on procurements of FIP resources for NAWCAD.

The Financial System supports the accountability of all categories of financial transactions such as: military and civilian labor, material, flight hours, travel, training, and incoming/outgoing funding. All financial processing and reporting is conducted in accordance with NAVY COMPTROLLER Manuals, Sponsors and NAWCAD requirements. Financial actuals processed by the system are also utilized in comparisons to budget and plans such as; A-11/DBOF/MRTFB, and PROJECT PLANS.

Training is supported by a Training Information Processing System (TIPS) which automates the DD Form 1556 Training Request. The system provides the accountability for all onsite, offsite, mandatory, formal and informal types of training for both military and civilians. TIPS interfaces with the Defense Civilian Personnel Data System, Defense Civilian Payroll System and the Financial System. All historic training records and output reports are in accordance with the Federal Personnel Manual, Office of Personnel Management and NAWCAD requirements.

A Flight Information and Scheduling Tracking (FIST) system supports the process of preparing flight schedules and tracking flight data with the entry of the Naval Aircraft Flight Record (OPNAV 3710/4). The FIST provides real-time information about aircrew qualifications, currency, and availability. In addition, it tracks aircraft status and availability, special inspections, phase inspections and ground hours. The system was developed in accordance with OPNAV 3710/4, OPNAV 3710/7P, and FTEGINST 3700.1 and electronically interfaces with the Financial System and the Aviation 3M Maintenance Data System.

To support aviation acquisition and logistics a Naval Aviation Lessons Learned (NALL) system is provided and is mandated by a MOA from the Joint Logistics Commanders (JLC). The information contained in NALL is used for many purposes. The various Naval Aviation Depots, as well as most major airframe manufacturers, use the lessons during new design formulation, engineering investigations, and other valuable research to ensure that problems encountered in the past are not repeated. The NALL uses an electronic Bulletin Board System and Folio Views to manage textual information. In addition to the NAVY's lessons learned, the Federal Aviation Administration and U. S. Air Force are also supported with plans and agreement in process to support NASA.

A Reliability and Maintainability Logistics (RAMLOG) system records reliability and maintainability data of the various testing phases performed on aircraft weapons systems. RAMLOG consists of several aircraft data bases, such as V-22, F/A-18, T-45 etc. Types of data stored in each of the aircraft data bases which can be retrieved in report formats include Maintenance Data Reporting

123

(MDR) or Visual Information Display System/Maintenance Action Form (VIDS/MAF) data and flight data from the Naval Flight Record Subsystem (NAVFLIRS).

Languages supported under this system include Ada, C, FORTRAN, COBOL and Through a variety of communications links which include high-speed C++. broadband coax, local area networks, fiber optics, T-1 and 56KB data links, NAVNET links, Defense Research and Engineering Network, Defense Simulation Internet and telephone lines, the PRICE is connected to other computers both internally to PAX and externally around the world. The Patuxent River Information Computing Environment includes a fully integrated configuration of three distributed high-end database servers and multiple minicomputers, file servers and application servers. There are two Sun SPARCcenter 2000 symmetric multi-processing (SMP) computer systems and one DEC VAX 6510 which serve as production database servers utilizing the Oracle database management system software. In addition, there are Sun SPARCserver 1000 and Sun SPARC 10 SMP front-end application servers, DEC VAX 6410 and VAX 4100 database file servers, and numerous Sun and DEC network and systems management workstations. These computers each have a high memory level (some up to 640 bytes) which provide rapid, efficient application execution and user million The PRICE has more than 100 billion bytes of on-line mass response time. storage provided by modern, plug-and-play SCSI disks and mass storage units. The PRICE can handle magnetic tape management and processing of 1/2", 8mm, 4mm, 1/4" cartridge, and DEC cartridge. All computer systems are available 24 hours a day, 7 days a week, for immediate access by remote and local users. The fully integrated modern, low-maintenance configuration permits the PRICE to have an availability that is consistently above 99 percent.

The NAWCAD has a series of Video Teleconferencing facilities (VTCs) that provide interactive communications between two or more groups or three or more individuals located at separate locations. The VTCs are networked through a leased T-1 terrestrial data link to a central TELCO (telephone company). The TELCO links facilities, providing for the transmission of secure/nonsecure video, audio, graphics and data. Two of the VTCs will multiplex the signals from their Codexs into one T-1 data service. The third VTC is planned for the new NAWCAD North Engineering Facility in FY95. This facility will provide for secure and nonsecure large volume conferences. Currently being installed are two low bit rate desktop VTCs that will be point-to-point using switched service and or ISDN as its data link.

As a result of decisions made under BRAC 91 and continued under BRAC 93, a requirements analysis was conducted, and design specification developed, for a new outside communications cable plant with bandwidth capable of supporting increased need for voice, data and video for business and scientific information exchange at the expanded RDT&E facility at Patuxent River. The result was a Fiber Optic Backbone ring of approximately thirteen miles with eleven Fiber Distribution Nodes (FDN's) located in geographic zones that allow connection of new BRAC 91 facilities, and BRAC 93 facilities, with existing facilities. With this concept the system is capable of accommodating future growth and expansion for the next 15 to 20 years. With implementation beginning in FY94, completion of entire ring is envisioned by FY98. Blown Fiber technology will be used to provide the capability of installing either single mode or multi-mode fiber as required. Additional fiber can be installed without additional backbone trenching and construction being necessary. With a raw bandwidth capability in the

124

Gigahertz range, initial transmission technology for data will be the Fiber Distributed Data Interface (FDDI) transmission standard of 100 Mbps to support the internetworking of several thousand Personnel Computers and Work Stations on approximately 100 Local Area Networks (LAN) throughout the Patuxent River complex. The system is also capable of supporting DS1 & DS3 point to point data transmission with scalability to future Optical Carrier (OC) standards of OC-3 and beyond as they become defined. These point to point technologies can be used to support interconnection of security monitoring systems and voice system technologies such as ISDN throughout the complex. Future planning calls for migration to a integrated multi-media transmission architecture utilizing the Asynchronous Transfer Mode (ATM) transmission standard of 622 Mbps when it is fully developed. In addition to traditional communications and networking applications, the system will be used to provide connectivity for unique applications between scientific and engineering laboratories in aircraft and weapon system test organizations (TACAIR, ASW, RW) located across the An ultra high speed communications network will be implemented complex. between these facilities and the Manned Flight Simulator, Aircraft Test & Evaluation Facility (ATEF), Anechoic Chamber and Chesapeake Test Range to create a very powerful real time simulation capability.

The Exec-Net is a portable pc-based 50 user electronic meeting system which offers a comprehensive tool set to support and improve a wide variety of group processes or team collaborative efforts. The software allows teams to construct meeting agendas, brainstorm, submit ideas for discussions, build a decision list and then vote on prioritizing the items on that list. It can help take input from several people and massage it into an agreed-on solution. Anonymous input allows ideas to be judged on their merits rather than by who proposed them. It makes meetings more focused, increases productivity, saves time, gives everyone an end product to take away and helps get full participation. Beyond electronic meetings, the software also allows collaborative work efforts on documents, spreadsheets or other database systems and software.

The Exec-Net system has been extended to broader applications. It provides a multi-site capability using current wide area network and VTC capabilities. With systems connected by hubs at each site and the main server within the Video Teleconferencing Center located at Pax River, people can tap in from various geographical locations and attend electronically. In this way, the sites share screens simultaneously through broadband connectivity and ordinary telephone lines thus providing real-time communications without the associated travel. This same time, different place technology looks toward the future of virtual meetings, which will permit people in various places to interact as if they were face to face.

In FY96, Exec-Net efforts will focus on "desktop conferencing" where participants will be able to share or edit information with several other parties on the local or wide area network. This system will provide project oriented interface that allows teams to collaborate with other people from their desks thereby permitting anytime, anywhere collaborative work efforts.

Naval Air Warfare Center Aircraft Division (NAWCAD) Patuxent River currently supports 3,456 working telephone lines. Per Base Realignment and Closure (BRAC), the NAWCAD Warminster, Trenton, and NAVAIR will be relocated to NAWCAD Patuxent River during the FY-94 through FY-97 time-frame. Additional lines are being provided to accommodate these personnel. This system uses the Fiber Optic Backbone as the transmission medium. The system will be able to accommodate required features for DoD Technical Architecture Framework/Information Standards such as: Integrated Services Digital Network (ISDN), North American Numbering Plan (NANP), Desk To Video Connectivity, FTS-2000, and Fiber Optic (Backbone) Connectivity.

The current FTEG network operating system supports approximately 3500 local users with about 5000 Navy-wide users accessing the various electronic mail gateways at Patuxent River. The BRAC initiatives will make Pax a major hub for Naval Aviation on the East Coast which results in approximately 9,000 local users needing support from the Pax River local area network. The current 3Com network is a proprietary operating system which has been used for the past several years and does not allow the connection of additional users. 3Com Corporation has terminated the development of any future NOS software and has not supported the current product since December 1992. **Our** environment consists of 90 dedicated fileservers; over 3,000 Motorola and Intel based personal computers physically located at every corner of the naval base; dial-in/dial-out capabilities; and over 100 networked applications. The immediate need to migrate from this NOS rises not only from lack of vendor support, limited growth opportunities and obsolescence, but also from the lack of interoperability with the many heterogeneous systems within NAWCAD.

The decision was made to transition to Microsoft Windows NT Advanced Server (NTAS) as the network operating system and Microsoft Mail for users at Patuxent River. The transition includes migrating current 3Com users and incorporating the Naval Air Systems Command (NAVAIR), Trenton and Warminster personnel as they move to Patuxent River during the FY94 through FY97 timeframe. Our future environment will consist of approximately 60 PC-based fileservers with gigabyte hard drives, CD-Rom drives, corporate modem pools for dial-in/out capabilities, networked printers, and over 9,000 personal computers decentralized around Patuxent River.

The Naval Air Warfare Center Aircraft Division, Patuxent River, Maryland operates a base-wide communications network which provides data and communications to on and off-site facilities. The actual communication activity is provided by computer network and telephone cabling located in over 110 buildings on the Pax River site.

Webster Field Annex computational capability consists of 21 mini systems and 827 personal computers. These systems provide internal Command/Directorate/ Division support for DDN connectivity, electronic mail, financial management, administrative support, contract tracking, property management, and project management. Local area networking (LAN) capability exists within divisions; command wide communication is accomplished through existing LAN capability An FDDI rated, 18 strand, fiber optic backbone runs and multiplexing. throughout the base connecting 19 buildings with plans to connect to all the remaining occupied buildings. The backbone is currently running at 10-megabits but is capable of 100 megabits. We have 4-T1 trunks for off-station communication, two in the local area and one to Crystal City and one to In addition, we provide Defense Data Network (DDN) Charleston, SC. connectivity support to approximately 14 government commands (including SPAWAR, NAVSEA, NAVAIR, NAWCAD/NAS Patuxent River, and Ft. Huachuca) and to approximately 50 contractor facilities as well as total mailbox coverage to over 1000 users.

•

10. Mobilization Responsibility and Capability.

a. Describe any mobilization responsibility officially assigned to this site. Cite the document assigning the responsibility.

The NAWCADPAX is designated in classified DOD mobilization plans to support operational forces during times of national contingencies and operational exercises as outlined by Commandant Naval District Washington, DC, Continuity of Operations Plan 1-73 and the Joint Resource Assessment Database Report (JADREP) JCSPUB 2-FY CSCW-1 OPORDER 3121. The airfield, with three runways, is capable of handling any size aircraft and provides a quick reaction capability. As a result of tenant operational squadrons including one strategic squadron, systems supporting operational forces, such as Uniform Automation Data Processing System, Naval Air Logistics Command Monitoring Information system, Aircraft Intermediate Maintenance Department, Marine Security Force, and Fleet Communications already exist. The site is capable of supporting in excess of 300 aircraft. In addition the capability to modify man-rated aircraft and The organic engineering talent rounds out this capability to prototype exists. with the expertise to technically support most aviation technical issues worldwide. With the addition of the NAWCAD Warminster complement, the fleet will have almost instant access to the most extensive aircraft scientific and engineering capabilities available in the world today. The NAWCADPAX Hospital staff has as a mobilization role, the staffing of the U.S. Hospital Ship Comfort during contingencies as was done during Desert Storm.

Webster Field Annex is included in the mobilization plans for approximately 30 programs at various sites (ship/shore). This activity is directly involved in all phases of communication support and has the ability to assemble all types of systems for all classes of ships and shore facilities. We have operational Tactical Support Center Communications (TSC) capabilities and in an emergency could provide full communications capability at the CINC level at this time. (this capability will be transferred to Charleston). We have sufficient space in existing facilities to do emergency development of most types of electronic systems in the command, control, and communication arena. We also have open space for location of temporary facilities to undertake short notice programs of practically any kind, small manufacturing capabilities, and in excess of 300 acres of land that could be developed with new facilities.

What unique features of this Center would be of value in the case of a future contingency requiring the rebuilding of U.S. Naval forces?

NAWCADPAX consists of 7,124 acres, including 7,114K SF of facilities. Of the total acreage, 2,054 is undeveloped and available for expansion with minimal impacts on the current mission.

The natural geography, layout, and security aspects of the base provide for a secure environment for all aspects of RDT&E testing along with support of operational units.

The physical security aspects of the base include perimeter fencing, land, air and sea perimeter patrols, island security enclaves, and protected facilities and bunkers. The security response force consists of a DOD police force, and

10. Mobilization Responsibility and Capability.

a. Describe any mobilization responsibility officially assigned to this site. Cite the document assigning the responsibility.

The NAWCADPAX is designated in classified DOD mobilization plans to support operational forces during times of national contingencies and operational exercises as outlined by Commandant Naval District Washington, DC, Continuity of Operations Plan 1-73 and the Joint Resource Assessment Database Report (JADREP) CSPUB 2-FY CSCW-1 OPORDER 3121. The airfield, with three runways, is capable of handling any size aircraft and provides a quick reaction capability. As a result of tenant operational squadrons including one strategic squadron, systems supporting operational forces, such as Uniform Automation Data Processing System, Naval Air Logistics Command Monitoring Information system, Aircraft Intermediate Maintenance Department, Marine Security Force, and Fleet Communications already exist. The site is capable of supporting in excess of 300 aircraft. In addition the capability to modify man-rated aircraft and to prototype exists. The organic engineering talent rounds out this capability with the expertise to technically support most aviation technical issues worldwide. With the addition of the NAWCAD Warminster complement, the fleet will have almost instant access to the most extensive aircraft scientific and engineering capabilities available in the world today. The NAWCADPAX Hospital staff has as a mobilization role, the staffing of the U.S. Hospital Ship Comfort during contingencies as was done during Desert Storm.

Webster Field Annex is included in the mobilization plans for approximately 30 programs at various sites (ship/share). This activity is directly involved in all phases of communication support and has the ability to assemble all types of systems for all classes of ships and shore facilities. We have operational Tactical Support Center Communications (TSC) capabilities and in an emergency could provide full communications capability at the CINC level at this time. (this capability will be transferred to Charleston). We have sufficient space in existing facilities to do emergency development of most types of electronic systems in the command, control, and communication arena. We also have open space for location of temporary facilities to undertake short notice programs of practically any kind, small manufacturing capabilities, and in excess of 300 acres of land that could be developed with new facilities.

What unique features of this Center would be of value in the case of a future contingency requiring the rebuilding of U.S. Naval forces?

NAWCADPAX consists of 7,950 acres, including 7,111K SF of facilities. Of the total acreage, 2,054 is undeveloped and available for expansion with minimal impacts on the current mission.

The natural geography, layout, and security aspects of the base provide for a secure environment for all aspects of RDT&E testing along with support of operational units.

The physical security aspects of the base include perimeter feacing, land, air and sea perimeter patrols, island security enclaves, and protected facilities and bunkers. The security response force consists of a DOD police force, and

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

auxiliary security force, and a combat-ready Marine Security Force. This force is augmented, when needed, by contractor security forces and local law enforcement personnel.

NAWCADPAX, using the above-mentioned security forces and measures, is capable of responding to threat types 1-6 as defined in OPNAVINST 5530.14B, and meets or exceeds all physical security program requirements as defined in the above instruction. The hostile attack threat to the base has been rated as minimal by the Naval Investigative Service.

NAWCADPAX has a very low exposure to natural disasters (e.g., earthquakes, floods, forest fires, tornadoes, hurricanes).

NAWCADPAX operates a complete Aircraft Intermediate Maintenance Department and supports fleet and RDT&E organizational-level maintenance activities in 18 hanger bays. Our AIMD is the Navy's most diverse level-2 aircraft maintenance activity supporting 180 aircraft representing 62 different types/models/series consisting of 728 different avionics and mechanical systems. It is also a first degree repair site for six different type engines representing 16 different models/series. The Supply Department is configured to meet the unusual and varied demands of over 50 tenants and NAWCADPAX.

Major embedded assets include:

- RDT&E Hangers, Aircraft Maintenance Facilities, and Airfield

Infrastructure

- Catapult Launch System (Land Based)
- Arrested Landing System (Land Based)
- Landing Systems Test Facility
- Automatic Carrier Landing System (AN/SPN 42 & 46)
- Instrument Landing System (AN/TPS 38)
- Marine Air Traffic Control, Approach and Landing System
- Marine Remote Approach and Landing System (AN/TPN 30)
- Visual Landing System
- Chesapeake Test Range
- Range EW & Inflight Radar Cross-Section Facility
- Aircraft Electrical and Environmental Evaluation Facility
- Antenna and Avionics Test Facility
- Ship Ground Station Helo-ship Data Link Evaluation Facility
- Air Combat Environment T&E Facility
- Manned Flight Simulator
- EW Integrated Systems Test Laboratory
- Anechoic Chamber
- Electromagnetic Environmental Effects Facility
- Aircraft TEMPEST Test Laboratory
- Tactical Avionics Software T&E Facility
- EW Closed Loop Facility
- Real Time Telemetry Processing System
- Target Support Facility

Revised Pg

IR

Additional assets capable of supporting future contingencies include:

- Armory
- Landing aid sites
- Search-and-rescue aircraft and boats
- Administrative aircraft and services
- Airfield and air terminal
- Naval Electronic Systems Engineering Activity
- Aviation Board of Inspection and Survey (INSURV)
- Technology Demonstration Aircraft
- Takeoff Assist Ramp (Ski Jump)
- Helo and VTOL Dynamic Interface Facility
- R&M and ILS Facility
- Aircraft Support Systems Test Facility
- Test Technique and Data Analysis Facility
- Air Vehicle Systems Integration Lab
- U.S. Naval Test Pilot School
- Helo Mission Systems Support Center
- Aircrew Systems RDT&E Facilities
- Escape and Survival System Facility
- Human Factors Facility
- Environmental Control/Life Support Facility
- Life Support System Facility
- VTOL Downwash Facility
- Bioenvironmental Test Facility
- Aircraft Lighting Laboratory
- Crew Systems Integration Laboratory
- Crew Technology Laboratory
- Aircraft Radar Laboratory
- Navy IFF Test and Evaluation Laboratory
- EO/IR Test Range
- Electrostatics Effects Facilities
- TACAMO Mission Systems Test and Engineering Facility
- Flight Control Computer Test Laboratory
- Strain Gauge and Structures Laboratory
- AEW Aircraft Test Facility
- Fixed Wing ASW Laboratories
- ASW Acoustic T&E Facility
- Ordnance Systems Test Facility
- Gun Firing Evaluation Facility
- Ordnance Electronic Laboratory
- Rocket Test Facility
- Bomb Rack Test Facility
- Laboratory Instruments and Calibration Facility
- Airborne Instrumentation Support
- Synergistic tenant activities
- Naval Aviation Depot Operations Center
- Naval Aviation Maintenance Office
- Naval Research Laboratory
- Naval Surface Weapons Center
- VX-1
- VQ-4

NAWCHO Charge VBC 9/20/94 NAUX-21D

129 R(9-15-94)

Additional assets capable of supporting future contingencies include:

- Armory
- Landing aid sites
- Search-and-rescue aircraft and boats
- Administrative aircraft and services
- Aixfield and air terminal
- Naval Electronic Systems Engineering Activity
- Aviation Board of Inspection and Survey (INSURV)
- Technology Demonstration Aircraft
- Takeoff Assist Ramp (Ski Jump)
- Helo and VTOL Dynamic Interface Facility
- **R&M and ILS Facility**
- Aircraft Support Systems Test Facility
- Test Technique and Data Analysis Facility
- Air Vehicle Systems Integration Lab
- U.S. Naval Test Pilot School
- Helo Mission Systems Support Center Aircrew Systems RDT&E Facilities
- Escape and Survival System Facility
- **Human Factors Facility**
- Environmental Control/Life Support Facility
- Life Support System Facility
- **VTOL Downwash Facility** -
- **Bioenvironmental Test Facility** -
- **Aircraft Lighting Laboratory**
- **Crew Systems Integration Laboratory**
- **Crew Technology Laboratory**
- **Aircraft Radar Laboratory**
- Navy IFF Test and Evaluation Laboratory
- **EO/IR** Test Range
- **Electrostatics Effects Facilities**
- **TACAMO** Mission Systems Test and Engineering Facility
- Flight Control Computer Test Laboratory
- Strain Gauge and Structures Laboratory
- **AEW Aircraft Test Facility**
- **Fixed Wing ASW Laboratories**
- **ASW Acoustic T&E Facility**
- **Ordnance Systems Test Facility**
- **Gun Firing Evaluation Facility**
- **Ordnance Electronic Laboratory**
- **Rocket** Test Facility
- **Bomb Rack Test Facility**
- Laboratory Instruments and Calibration Facility .
- **Airborne Instrumentation Support** .
- Synergistic tenant activities
- Naval Aviation Depot Operations Center
- Naval Aviation Maintenance Office
- **Naval Research Laboratory**
- Naval Surface Weapons Center
- VXN-8
- **VX-1**
- **VQ-4**

FOR OFFICIAL USE ONLY EDECISIONAL INFORMATION

(1) What functional support area(s) does this responsibility support? Refer to Appendix A for the list of functional support areas?

- **1.2 Platforms (Aircraft)**
- 3.2 Combat System Integration (Subsurface)
- 7.2 Command, Control, Communications and Intelligence (C³I) (Airborne)
- 7.7 Command, Control, Communications and Intelligence (C³I) (Air Traffic Control Systems)
- 9.1 Strategic Programs (Navy Strategic Systems)

(2) What portion of the work years and dollars, as reported in each applicable functional support area reported in Tab A, are spent solely on maintaining your activity's readiness to execute the mobilization responsibilities?

Pax River Complex - None

(3) How many additional personnel (military & civilian) would be assigned to your activity as part of the mobilization responsibility? Include separately any contractor assets that would be added.

Pax River Complex - > 1,500

b. Does your activity have adequate facilities to support your mobilization responsibilities? (yes/no)

Pax River Complex - Yes

(1) If yes, is any space assigned for the sole purpose of maintaining mobilization readiness? (yes/no) If yes, list the square footage assigned.

Pax River Complex - No.

(2) If no, what repairs, renovations and/or additions are required to provide adequate facilities? What is the estimated cost of this work?

Pax River Complex - None identified

(3) Are there any restrictions that would prevent work (noted in paragraph 10.b.(2) above) from taking place (i.e., AICUZ, environmental constraints, HERO, etc.)? If yes, describe.

Pax River Complex - No

c. Describe any production facilities that would be activated in case of a future contingency.

There are some RDT&E facilities that are capable of providing limited production.

d. Is your activity used as a Reserve Unit mobilization and/or training site?

Yes

11. **Range Resources.** Include a copy of the form provided at Tab C of this data call for each range located at this activity or operated by this activity. Also, report ranges at detachments and sites not receiving a separate data call. The following definition of a range will apply:

Range - An instrumented or non-instrumented area that utilizes air, land, and/or water space to support test and evaluation, measurements, training and data collection functions, but is not enclosed within a building.

QUALITY OF LIFE

12. Military Housing

- (a) Family Housing:
 - (1) Do you have mandatory assignment to on-base housing? (circle) yes (no)
 - (2) For military family housing in your locale provide the following information:

Type of Quarters	Number of Bedrooms	Total number of units	Number Adequate	Number Substandard	Number Inadequate
Officer	4+	33	33	0	0
Officer	3	44	44	0	0
Officer	1 or 2	2	2	0	0
Enlisted	4+	202	202	0	0
Enlisted	3	303	303	0	0
Enlisted	1 or 2	273	213	60	0
Mobile Homes	0	0	N/A	N/A	N/A
Mobile Home lots	0	0	N/A	N/A	N/A

(3) In accordance with NAVFACINST 11010.44E, an inadequate facility cannot be made adequate for its present use through "economically justifiable means". For all the categories above where inadequate facilities are identified provide the following information: N/A.

Facility type/code: What makes it inadequate? What use is being made of the facility? What is the cost to upgrade the facility to substandard? What other use could be made of the facility and at what cost? Current improvement plans and programmed funding: Has this facility condition resulted in C3 or C4 designation on your BASEREP?

Revised pag

Day Grada	Number of Dedroener		····
		Number on List ¹	Average Wait
	1*	None	None
	2	0	Immediate**
O-6/7/8/9	3*	None	None
	4+	2	Immediate**
	1*	None	None
	2*	None	None
O-4/5	3	3 (R)	Immediate**
	4+	3	Immediate**
	1*	None	None
	2*	None	None
O-1/2/3/CWO	3	10	Immediate**
	4+	2	Immediate**
	1*	None	None
	2*	None	None
E7-E9	3	3	1-9 months
	4+	2	1-9 months
	1*	None	None
	2	101	1-9 months
E1-E6	3	30 (R)	1-9 months
	4+	3	1-9 months

(4)	Complete the following table for the military	y housing waiting list.
(-)	Complete the following table for the minitary	y nousing waiting h

As of 31 March 1994 * Do not have this type of housing ** Immediate - for those people that are ready to accept housing (these people are locked into a lease, once their lease is up they will not have to wait).

Pay Grade	Number of Bedrooms	Number on List ¹	Average Wait
	1*	None	None
	2	0	Immediate**
0-6/718/9	3*	None	None
	4+	2	Immediate**
	1*	None	None
	2*	None	None
O-4/5	3	4	Immediate**
	4+	3	Immediate**
	1*	None	None
	2*	None	None
O-1/2/3/CWO	3	10	Immediate**
	4+	2	Immediate**
	1*	None	None
	2*	None	None
E7-E9	3	3	1-9 months
	4+	2	1-9 months
	1*	None	None
	2	101	1-9 months
E1-E6	3	ઞ	1-9 months
	4+	3	1-9 months

(4) Complete the following table for the military housing waiting list.

As of 31 March 1994

* Do not have this type of housing ** Immediate - for those people that are ready to accept housing (these people are locked into a lease, once their lease is up they will not have to wait).

¹As of 31 March 1994.

(5) What do you consider to be the top five factors driving the demand for base housing? Does it vary by grade category? If so provide details.

	Top Five Factors Driving the Demand for Base Housing
1	More economical
2	Close to work
3	Safe/secure
4	Utilities included except phone and cable
5	Good sized units - square footage and bedrooms

(6) What percent of your family housing units have all the amenities required by "The Facility Planning & Design Guide" (Military Handbook 1190 & Military Handbook 1035-Family Housing)? 90%

There are 857 housing units at NAWCADPAX. Ninety percent (90%) have all the required amenities as outlined in the Military Handbook 1190 and the Military Handbook 1035-Family Housing.

Type of Quarters	Utilization Rate
Adequate	98%
Substandard	80%
Inadequate	N/A

(7) Provide the utilization rate for family housing for FY 1993.

(8) As of 31 March 1994, have you experienced much of a change since FY 1993? If so, why? If occupancy is under 98% (or vacancy over 2%), is there a reason?

The utilization rate in the 60 substandard units was 80% for FY93. The reason is because the units are cinderblock, have radiator heat, no air conditioning, and very little ventilation. The units are 764 square feet and do not meet today's standards.

(b) <u>BEQ</u>:

Type of Quarters	Utilization Rate
Adequate	90%
Substandard	0
Inadequate	0

(1) Provide the utilization rate for BEQs for FY 1993.

(2) As of 31 March 1994, have you experienced much of a change since FY 1993? If so, why? If occupancy is under 95% (or vacancy over 5%), is there a reason?

Yes. Occupancy is under 95% because Bachelor Enlisted Quarters are currently under renovations.

(3) Calculate the Average on Board (AOB) for geographic bachelors as follows:

AOB = (# Geographic Bachelors x average number of days in barracks) 365

$$AOB = \frac{40x365}{365} = 40$$

(4) Indicate in the following chart the percentage of geographic bachelors (GB) by category of reasons for family separation. Provide comments as necessary.

Reason for Separation from Family	Number of GB	Percent of GB	Comments
Family Commitments (children in school, financial, etc.)	Data unavailable	Data unavailable	
Spouse Employment (non-military)	Data unavailable	Data unavailable	
Other	Data unavailable	Data unavailable	
TOTAL			

(5) How many geographic bachelors do not live on base?

Data unavailable.
(c) <u>BOQ</u>:

Type of Quarters	Utilization Rate
Adequate	93%
Substandard	0%
Inadequate	0%

(1) Provide the utilization rate for BOQs for FY 1993.

(2) As of 31 March 1994, have you experienced much of a change since FY 1993? If so, why? If occupancy is under 95% (or vacancy over 5%), is there a reason?

Yes. The occupancy is under 95% because the Bachelors Officers Quarters is being renovated. Occupancy is expected to be between 95% and 100% when completed.

(3) Calculate the Average on Board (AOB) for geographic bachelors as follows:

AOB = <u>(# Geographic Bachelors x average number of days in barracks)</u> 365

$AOB = \frac{11x365}{365} = 11$

(4) Indicate in the following chart the percentage of geographic bachelors (GB) by category of reasons for family separation. Provide comments as necessary.

Reason for Separation from Family	Number of GB	Percent of GB	Comments
Family Commitments (children in school, financial, etc.)	Data unavailable	Data unavailable	
Spouse Employment (non-military)	Data unavailable	Data unavailable	
Other	Data unavailable	Data unavailable	
TOTAL			

FOR OFFICIAL USE ONLY

PREDECISIONAL INFORMATION

Revised pg

(5) How many geographic bachelors do not live on base?

Data not available. Only track those that request housing.

Note: After the below threshold is met, there will be a waiting list for geographical bachelors.

*E5-E6 - 40 beds in building #404. *E7-E9 - 40 beds in building #467. *Officers - Not to exceed 10 rooms in building 406 (the number could come down to 5 only).

* Once the number of beds are filled, anyone else goes on a waiting list.

(d) BOO/BEO Housing and Messing.

(1) Provide data on the BOQs and BEQs assigned to your current plant account. The desired unit of measure for this capacity is people housed. Use CCN to differentiate between pay grades, i.e., E1-E4, E5-E6, E7-E9, CWO-O2, O3 and above.

Facility Type, Bldg. # & CCN	Total No. of Beds	Total No. of Rooms	Ade	quate	Subst	andard	Inade	quate
			Beds	Sq Ft	Beds	Sq Ft	Beds	Sq Ft
BEQ, #404, CCN 721-11	40	1	40	10,875		0		0
¹ BEQ, #469, CCN 721-11	80	0	0	0	80	20,344		0
BEQ, #1451, CCN 721-11	162	54	162	24,475		0		0
BEQ, #1452, CCN 721-11	149 (R)	54	162	24,475		0		0
¹ BEQ, #1453, CCN 721-11	0	54	0	27,605		0		0
¹ BEQ, #1454, CCN 721-11	0	54	0	27,605		0		0
BEQ, #1455, CCN 721-11	70 (R)	24	72	18,655		0		0
BEQ, #469, CCN 721-12	25	40	25	3,628		0		0
BEQ, #492, CCN 721-12	99	37	99	19,237		0		0
² BEQ, #468, CCN 143-40	69	28	69	23,952		0		0
¹ BEQ, #1453, CCN 721-12	0	0	0	3,130		0		0
¹ BEQ, #1454, CCN 721-12	0	0	0	3,130		0		0

(5) How many geographic bachelors do not live on base?

Data not available. Only track those that request housing.

Note: After the below threshold is met, there will be a waiting list for geographical bachelors.

*E5-E6 - 40 beds in building #404. *E7-E9 - 40 beds in building #467. *Officers Not to exceed 10 rooms in building 406 (the number could come down to 5 only).

* Once the number of beds are filled, anyone else goes on a waiting list.

(d) <u>BOO/BEQ Housing and Messing</u>.

(1) Provide data on the BOQs and BEQs assigned to your current plant account. The desired unit of measure for this capacity is people housed. Use CCN to differentiate between pay grades, i.e., E1-E4, E5-E6, E7-E9, CWO-O2, O3 and above.

Facility Type, Bldg. # & CCN	Total No. of Beds	Total No. of Rooms	Adequate		Adequate Substandard		Inade	quate
			Beds	Sq Ft	Beds	Sq Ft	Beds	Sq Ft
BEQ, #404, CCN 721-11	40	1	40	10,875		0		0
¹ BEQ, #469, CCN 721-11	80	0		0	80	20,344		0
BEQ, #1451, CCN 721-11	162	54	162	24,475		0		0
BEQ, #1452, CCN 721-11	162	54	162	24,475		0		0
¹ BEQ, #1453, CCN 721-11	0	54	0	27,605		0		0
¹ BEQ, #1454, CCN 721-11	0	54	0	27,605	\backslash	0		0
BEQ, #1455, CCN 721-11	72	24	72	18,655	$\overline{\}$	0		0
BEQ, #469, CCN 721-12	25	40	25	3,628		0		0
BEQ, #492, CCN 721-12	99	37	99	19,237		0		0
² BEQ, #468, CCN 143-40	69	28	69	23,952		ð		0
¹ BEQ, #1453, CCN 721-12	0	0	0	3,130		0		0
¹ BEQ, #1454, CCN 721-12	0	0	0	3,130		0		0

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

Facility Type, Bldg. # & CCN	Total No. of Beds	Total No. of Rooms	of		Subst	andard	Inadequate	
			Beds	Sq Ft	Beds	Sq Ft	Beds	Sq Ft
BEQ, #1455, CCN 721-12	36	12	36	3,037		0		0
³ BEQ, #464, CCN 721-13	42	42	0	0	42	22,036		0
BEQ, #467, CCN 721-13	40	20	40	10,529		0		0
CIV BARRACKS, #423, CCN 721-30	35	25	35	9,892		0		0
BOQ, #409, CCN 724-11	1	1	1	426		0		0
BOQ, #406, CCN 724-12	90	90	90	68,868		0		0
BOQ, #461, CCN 724-12	1	1	1	1,016		0		0
*BOQ, #972, CCN 724-12	1	1	0	0		0	1	825

1 This building is shut down for renovation.

2 General purpose Marine barracks.

3 Will be renovated in Nov 1994.

(2) In accordance with NAVFACINST 11010.44E, an inadequate facility cannot be made adequate for its present use through "economically justifiable means". For all the categories above where inadequate facilities are identified provide the following information:

a. Facility type/code:

* Building #972 CAT Code 724-12 BOQ.

b. What makes it inadequate?

This building is an 825SF BOQ built in 1944 that due to age, and deterioration, (walls, floors, and water leaks) inadequate.

c. What use is being made of the facility?

Building used for temporary assignment of officers for short periods of time.

d. What is the cost to upgrade the facility to substandard?

Cost to upgrade this facility to substandard is \$25K

e. What other use could be made of the facility and at what cost?

Cost to upgrade is approximately \$10K to use as storage facility

f. Current improvement plans and programmed funding:

None.

g. Has this facility condition resulted in c3 or c4 designation on your BASEREP?

No.

(3) Provide data on the BOQs and BEQs projected to be assigned to your plant account in FY 1997. The desired unit of measure for this capacity is people housed. Use CCN to differentiate between pay grades, i.e., E1-E4, E5-E6, E7-E9, CWO-O2, O3 and above.

Facility Type, Bldg. # & CCN	Total No. of Beds	Total No. of Rooms	Ade	quate	Subst	andard	Inade	equate
			Beds	Sq Ft	Beds	Sq Ft	Beds	Sq Ft
BEQ, #404, CCN 721-11	40	1	40	10,875		0		0
¹ BEQ, #468, CCN 143-40	69	23	69	23,952		0		0
BEQ, #1451, CCN 721-11	162	54	162	27,605		0		0
BEQ, #1452, CCN 721-11	162	54	162	27,605		0		0
BEQ, #1453, CCN 721-11	162	54	162	27,605		0		0
BEQ, #1454, CCN 721-11	162	54	162	27,605		0		0
BEQ, #1455, CCN 721-11	72	24	72	18,655		0		0
BEQ, #469, CCN 721-12	40	40	40	23,972		0		0
BEQ, #492, CCN 721-12	37	37	37	19,237		0		0
BEQ, #1455, CCN 721-12	36	12	36	3,037		0		0
BEQ, #464, CCN 721-13	36	36	36	22,306		0		0
BEQ, #467, CCN 721-13	40	20	40	10,529		0		0

Facility Type, Bldg. # & CCN	Total No. of Beds	Total No. of Rooms	Ade	quate	Subst	andard	Inade	quate
			Beds	Sq Ft	Beds	Sq Ft	Beds	Sq Ft
CIV BARRACKS, #423, CCN 721-30	35	25	35	9,892		0		0
BOQ, #409, CCN 724-11	1	1	1	426		0		0
BOQ, #406, CCN 724-12	74	74	74	68,868		0		0
² BOQ, #461, CCN 724-12	1	1	1	1,016		0		0
³ BOQ, #972, CCN 724-12	1	1		0		1	1	825

- 1 General purpose Marine barracks.
- 2 One apartment with 4 rooms.
- 3 One cottage with 3 rooms.

(4) In accordance with NAVFACINST 11010.44E, an inadequate facility cannot be made adequate for its present use through "economically justifiable means". For all the categories above where inadequate facilities are identified provide the following information:

- a. Facility type/code:
- * Building #972 CAT Code 724-12 BOQ.
- b. What makes it inadequate?

This building is an 825SF BOQ built in 1944 that due to age, and deterioration, (walls, floors, and water leaks) inadequate.

c. What use is being made of the facility?

Building used for temporary assignment of officers for short periods of time.

d. What is the cost to upgrade the facility to substandard?

Cost to upgrade this facility to substandard is \$25K

e. What other use could be made of the facility and at what cost?

Cost to upgrade is approximately \$10K to use as storage facility

f. Current improvement plans and programmed funding:

None.

Has this facility condition resulted in c3 or c4 designation on your BASEREP? g.

No.

Facility Type, CCN and Bldg. #	Total Sq. Ft.	Ad	equate	Subs	tandard	Inade	equate	Avg # Noon Meals Served
	1	Seats	Sq Ft	Seats	Sq Ft	Seats	Sq Ft	
Flight Deck, CCN 724-30, #406	6,787	0	0	125	6,787	0	0	01
Commissioned Officer Mess, CCN 740-60, #461	18,852	330	18,852	0	0	0	0	175
Enlisted Mess, CCN 740-64, #441	24,774	0	0	1250	24,774	0	0	2252
Patuxent Landing, CCN 470-26, #467	25,113	368	25,113	0	0	0	0	325
Golf Club Snack Bar, CCN 740-80, #663	1,300	42	1,300	0	0	0	0	50
McDonalds ³ #3139	2,840	125	2,840	0	0	0	0	550
Mini Mart Pizza, CCN 740-01, #421	620	32	620	0	0	0	0	100
Air Ops Snack Bar, CCN 740- 05, #103	290	12	290	0	0	0	0	58
Test Pilot Snack Bar, CCN 740-05, #157	352	0	352	0	0	0	0	67
AIMD Snack Bar, CCN 740- 05, #301	600	24	600	0	0	0	0	35
Coast Guard Dining Fac., NISE East	500	20	500	0	0	0	0	10

(3) From the data on the messing facilities assigned to your current plant ac	iccount
---	---------

. _ _ _ _ _ ~

1 Lounge operation - No noon meals served but could serve approximately 200

Lounge operation as of April 1994Licensed to be aboard base

(6) In accordance with NAVFACINST 11010.44E, an inadequate facility cannot be made adequate for its present use through "economically justifiable means". For all the categories above where inadequate facilities are identified provide the following information:

- a. Facility type/code:
- b. What makes it inadequate?
- c. What use is being made of the facility?
- d. What is the cost to upgrade the facility to substandard?
- e. What other use could be made of the facility and at what cost?
- f. Current improvement plans and programmed funding:
- g. Has this facility condition resulted in c3 or c4 designation on your BASEREP?

(7) Provide data on the messing facilities projected to be assigned to your plant account in FY 1997.

Facility Type, CCN and Bldg. #	Total Sq. Ft.	Ad	equate	Subs	tandard	Inadequate		Avg # Noon Meals Served	
	_	Seats	Sq Ft	Seats	Sq Ft	Seats	Sq Ft		
Flight Deck, CCN 724-30, #406	6,787	0	0	125	6,787	0	0	01	
Commissioned Officers Mess, CCN 740-60, #461	18,852	330	18,852	0	0	0	0	175	
Enlisted Mess, CCN 740-64, #441	24,774	0	0	1250	24,774	0	0	225 ²	
Patuxent Landing, CCN 470-26, #467	25,113	368	25,113	0	0	0	0	325	
Golf Club Snack Bar, CCN 740-80, #663	1,300	42	1,300	0	0	0	0	50	
McDonalds ³ #3139	2,840	125	2,840	0	0	0	0	550	
Mini Mart Pizza, CCN 740-01, #421	620	32	620	0	0	0	0	100	
Air Ops Snack Bar, CCN 740- 05, #103	290	12	290	0	0	0	0	58	

Facility Type, CCN and Bldg. #	Total Sq. Ft.	Ade	equate	Subs	tandard	Inade	equate	Avg # Noon Meals Served
		Seats	Sq Ft	Seats	Sq Ft	Seats	Sq Ft	
Test Pilot Snack Bar, CCN 740-05, #157	352	0	352	0	0	0	0	67
AIMD Snack Bar, CCN 740- 05, #301	600	24	600	0	0	0	0	35
Coast Guard Dining Fac., NISE East	500	20	500	0	0	0	0	10
4ITP Cafeteria,CCN 740-05, Bldg 2272	10,000	300	4500	0	0	0	0	10004

1 Lounge operation - No noon meals served but could serve approximately 200

- 2 Lounge operation as of April 1994
- 3 Licensed to be aboard base

4 Planned/Estimated

(8) In accordance with NAVFACINST 11010.44E, an inadequate facility cannot be made adequate for its present use through "economically justifiable means". For all the categories above where inadequate facilities are identified provide the following information:

- a. Facility type/code:
- b. What makes it inadequate?
- c. What use is being made of the facility?
- d. What is the cost to upgrade the facility to substandard?
- e. What other use could be made of the facility and at what cost?
- f. Current improvement plans and programmed funding:
- g. Has this facility condition resulted in c3 or c4 designation on your BASEREP?

13. **MWR Facilities**. For on-base MWR facilities² available, complete the following table for each separate location. For off-base government owned or leased recreation facilities indicate distance from base. If there are any facilities not listed, include them at the bottom of the table.

LOCATION: NAWCA	DISTANCE:			
Facility	Unit of Measure	Total	Profitable (Y,N,N/A)	
Auto Hobby	Indoor Bays	10	N/A	
	Outdoor Bays	0	N/A	
Arts/Crafts	SF	4,000	Y	
Wood Hobby	SF	8,000	Y	
Bowling	Lanes	14	Y	
Enlisted Club	SF	24,777	Y	
Officer's Club	SF	18,852	Y	
Library	SF	12,436	N/A	
Library	Books	50,000	N/A	
Theater	Seats	496	Y	
ПТ	SF	600	N/A	
Museum/Memorial	SF	44,141	N/A	
Pool (indoor)	Lanes	10	N/A	
Pool (outdoor)	Lanes	8	N/A	
Beach	LF	1,000	N/A	
Swimming Ponds	Each	0	N/A	
Tennis Court	Each	15	N/A	
Gear Issue	Each	376	N	

²Spaces designed for a particular use. A single building might contain several facilities, each of which should be listed separately.

Facility	Unit of Measure	Total	Profitable (Y,N,N/A)
Volleyball CT (outdoor)	Each	2	N/A
Basketball CT (outdoor)	Each	0	N/A
Racquetball CT	Each	3	N/A
Golf Course	Holes	18	Y
Driving Range	Tee Boxes	20	N/A
Gymnasium	SF	54,803	N/A
Fitness Center	SF	1,000	N
Marina	Berths	194	Y
Stables	Stalls	30	N/A
Softball Fld	Each	11	N/A
Football Fld	Each	1	N/A
Soccer Fld	Each	2	N/A
Youth Center	SF	4,034	Y
Patuxent Landing (restaurant)	SF	25,113	Y

(a) Is your library part of a regional interlibrary loan program? Yes

14. Base Family Support Facilities and Programs.

Age Category	Capacity (Children)	Adequate	SF Substandard	Inadequate	Number on Wait List	Average Wait (Days)
0-6 Mos	6	390			39	270
6-12 Mos	18	1,170		<u> </u>	18	270
12-24 Mos	20	1,300			21	180
24-36 Mos	26	1,690			37	360
3-5 Yrs	96	6,240			52	150

a. Complete the following table on the availability of child care in a child care center on your base.

b. In accordance with NAVFACINST 11010.44E, an inadequate facility cannot be made adequate for its present use through "economically justifiable means." For all the categories above where inadequate facilities are identified provide the following information:

Facility type/code: What makes it inadequate? What use is being made of the facility? What is the cost to upgrade the facility to substandard? What other use could be made of the facility and at what cost? Current improvement plans and programmed funding: Has this facility condition resulted in C3 or C4 designation on your BASEREP?

c. If you have a waiting list, describe what programs or facilities other than those sponsored by your command are available to accommodate those on the list. When on base child care facilities are not available active duty members utilize local community services. Quality of care is unknown. In additon to community facilities MWR operates/monitors the Family Child Care program where care is provided in Base Housing.

d. How many "certified home care providers" are registered at your base? 30

e. Are there other military child care facilities within 30 minutes of the base? State owner and capacity (i.e., 60 children, 0-5 yrs). NO

Service	Unit of Measure	Qty
Exchange	SF	42,263
Gas Station	SF	5,617
Auto Repair	SF	0
Auto Parts Store	SF	0
Commissary	SF	53,358
Mini-Mart	SF	5,230
Package Store	SF	1,000
Fast Food Restaurants	Each	1
Bank/Credit Union	Each	3
Family Service Center	SF	8,847
Laundromat	SF	2,086
Dry Cleaners	Each	0
ARC	PN	Note 1
Chapel	PN	337
FSC Classrm/Auditorium	PN	50
Navy Lodge	RM/SF	50/30,904
Post Office	EA/SF	1/6,602

f. Complete the following table for services available on your base. If you have any services not listed, include them at the bottom.

Note 1 Red Cross Programs (clients served/trained):

- (1) Health and Safety 3,000 4,000 per year (First Aid and CPR)
- (2) Aquatics 2,000-3,000 per year
- (3) AIDS 6,000 per year
- (4) Youth Programs 300 per year
- (5) Casework 900-1,000 per year
- (6) Financial Assistance 450-500 per year 150-175 Volunteers including:
- (1) Blood Drives Assist DOD every other month (6-7 volunteers)
- (2) Naval Hospital volunteers (25-30)
- (3) Disaster Program (30)
- (4) Charlotte Hall Veterans Home (15)

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

20

15. Proximity of Closest Major Metropolitan Areas (provide at least three):

City	Distance (Miles)
Washington, DC	60
Annapolis, MD	65
Baltimore, MD	75
Richmond VA	120
Philadelphia PA	177
Norfolk, VA	184

Patuxent River Complex is within 50 miles of the Washington - Baltimore Metropolitan Statistical area.

Paygrade	With Dependents	Without
		Dependents
E1	\$202.84	\$113.49
E2	\$202.84	\$127.56
E3	\$191.91	\$141.41
E4	\$219.11	\$152.92
E5	\$242.71	\$169.46
E6	\$272.88	\$185.76
E7	\$303.72	\$210.98
E8	\$279.93	\$211.62
E9	\$265.98	\$201.91
W1	\$342.34	\$259.99
W2	\$322.64	\$253.06
W3	\$311.04	\$252.85
W4	\$308.98	\$273.95
OIE	\$291.25	\$216.04
O2E	\$318.06	\$253.59
O3E	\$316.87	\$268.08
01	\$258.78	\$190.69
O2	\$244.08	\$190.78
O3	\$283.90	\$239.02
O4	\$326.87	\$284.25
O5	\$315.59	\$260.99
O6	\$294.40	\$243.68
07	\$225.70	\$183.38

16. Standard Rate VHA Data for Cost of Living:

As of January 1994

17. Off-base Housing Rental and Purchase

		وعداد المتواجد		
	Average M	onthly Rent ¹	Average Monthly	
Type Rental			Utilities Cost ³	
	Annual	Annual Low		
	High			
Efficiency		\$353	Insufficient data	
Apartment (1-2 Bedroom)		\$621	\$109.27	
Apartment (3+ Bedroom)		\$7462	\$155.77	
Single Family Home (3 Bedroom)		\$828	\$156.37	
Single Family Home (4+ Bedroom)		\$998	\$191.21	
Town House (2 Bedroom)		\$720	\$120.70	
Town House (3+ Bedroom)		\$786	\$155.77.4	
Condominium (2 Bedroom)		\$648	\$120.70	
Condominium (3+ Bedroom)		\$803	\$155.774	

Fill in the following table for average rental costs in the area for the period 1 April 1993 (a) through 31 March 1994.

1 Not a seasonal market. Average rents are fairly consistent throughout the year. Source: Multiple Listing Services (MLS) - Tri-County.

² MLS data supplemented by Department of Economic and Community Development survey to augment small sample size.
³ HUD: Section 8 existing housing allowances for tenant furnished utilities.

Tri-County data averaged.

Same as apartment not differentiated by HUD. 4

> FOR OFFICIAL USE ONLY REDECISIONAL INFORMATION

Type Rental	Percent Occupancy Rate
Efficiency	72%1
Apartment (1-2 Bedroom)	94 % ¹
Apartment (3+ Bedroom)	95 % ¹
Single Family Home (3 Bedroom)	*no way to quantify market MLS has 80 units (4/26/96)
Single Family Home (4+ Bedroom)	*MLS has 31 units
Town House (2 Bedroom)	98 % ¹
Town House (3+ Bedroom)	75% MLS has 57 units 1
Condominium (2 Bedroom)	*MLS has 3 units
Condominium (3+ Bedroom)	*MLS has 1 unit

(b) What was the rental occupancy rate in the community as of 31 March 1994?

- ¹ Department of Economic and Community Development survey of market rate Apt. and complexes 4/11-4/22 (There are none established in Calvert Co. One is coming on line).
 - (c) What are the median costs for homes in the area?

Type of Home	Median Cost
Single Family Home (3 Bedroom)	\$123,000
Single Family Home (4+ Bedroom)	\$167,500
Town House (2 Bedroom)	\$97,000
Town House (3+ Bedroom)	\$96,600
Condominium (2 Bedroom)	\$75,000
Condominium (3+ Bedroom)	\$90,000

* Tri-County market. Settled sales (not asking price) 4/1/93 - 3/31/94.

.

(d) For calendar year 1993, from the local MLS listings provide the number of 2, 3, and 4 bedroom homes available for purchase. Use only homes for which monthly payments would be within 90 to 110 percent of the E5 BAQ and VHA for your area.

Month	Number of Bedrooms				
	2	3	4+		
31 January 94	103	480	16		
28 February 94	107	493	17		
March 94	120	538	18		
30 April 93	51	333	15		
May 93	55	332	14		
June 93	64	366	13		
July 93	70	375	15		
August 93	77	377	13		
September 93	77	402	12		
October 93	86	422	13		
November 93	92	439	15		
December 93	97	450	14		

Note:

Some listings may have been deleted. Assumptions: 1.90 - 110% = \$580 - \$708 for P+I.

2.8% VA for 30 years.

3. Home price range \$79,000 - \$96,500.

4. Tri-County Market.

(e) Describe the principal housing cost drivers in your local area.

Although there are many factors in St. Mary's County our local Realtors believe there are three major factors:

1. Government regulation i.e., permit process, critical areas of legislation, impact fees, etc.

- 2. Limited developable land.
- 3. Economics of the community

With approximately 50% of the county revenue being related to the Naval Air Warfare Center, the communities sense of security as it relates to the stability of the base have been a very large factor in the unchanging and sometimes descending property value over the past several years, even though the supply has been abundant for resales and new developments as well as very low interest rates.

18. For the top five sea intensive ratings in the principal warfare community your base supports, provide the following:

Rating (Only 3)	Number Sea Billets in the Local Area	Number of Shore billets in the Local Area
AB	0	69
AME	0	31
AO	0	99

19. Complete the following table for the average one-way commute for the five largest concentrations of military and civilian personnel living off-base.

Location	% Employees	Distance (mi)	Time(min)
Lexington Park, MD	23.19	1	5
California, MD	10.29	3.5	15
Hollywood, MD	8.20	7	20
Great Mills, MD	5.26	3.5	15
Mechanicsville, MD	4.98	20	30

20. Complete the tables below to indicate the civilian educational opportunities available to service members stationed at the installation (to include any outlying sites) and their dependents:

(a) List the local educational institutions which offer programs available to dependent children. Indicate the school type (e.g. DODDS, private, public, parochial, etc.), grade level (e.g. pre-school, primary, secondary, etc.), what students with special needs the institution is equipped to handle, cost of enrollment, and for high schools only, the average SAT score of the class that graduated in 1993, and the number of students in that class who enrolled in college in the fall of 1994.

					1993		
			a • 1	Annual	Avg	% HS	
		Grada	Education	Enrollment	SAI/	Grad to	Source of Info
Traditation	Truno	Grade	Ausilable	Cost per	AC1 Score	Educ	Source of into
Institution	Type	Level(s)	Available	Student	Scole	Educ	
ARCHBISHOP	PAR	PK-8	N*	Catholic =	N/A	N/A	SO MD
NEALE SCHOOL				1450			RESOURCE
				NonCath =			GUIDE
FATHER ANDREW	PAR		N	In Parish .	N/A	N/A	
WHITE SCHOOL	IAN	IX-0		1200	1.0.1.		
				Out Parish -			
				1775			
HOLY ANGELS	PAR	K-8	N	\$800	N/A	N/A	
SACRED HEART				[
CHOOL	DAD	V o	N*	To 1260	NZA	NZA	
SCHOOL	ГАК	V-0	14.5	Out - 1884		11/A	
MOTHER	PAR	K-8	N*	In . 1200	N/A	N/A	11 11
CATHERINE	IAN	IX-0	14	Out - 1400	11/23	14/28	
SPALDING							
SCHOOL							
OUR LADY STAR	PAR	K-8	N*	In - 1200	N/A	N/A	99 99
OF THE SEA				Catholic -			
SCHOOL				1300 NonCoth			
				1800			
ST. JOHN'S	PAR	K-8	N*	In - \$975	N/A	N/A	11 11
SCHOOL				Out - \$1300			
ST. MARY'S	PAR	K-8	N*	In - \$1453	N/A	N/A	11 11
SCHOOL				Out - \$2185			
ST. MARY'S STAR	PAR	K-8	N*	In - 1887	N/A	N/A	77 77
OF THE SEA				Out - 2887			
ST. MICHAEL'S	PAR	K-8	N *	In Parish -	N/A	N/A	11 11
SCHOOL				1350			
				Out Parish -			
				1450			

- - -----

		T					
Institution	Туре	Grade Level(s)	Special Education Available	Annual Enrollment Cost per Student	Avg SAT/ ACT Score	% HS Grad to Higher Educ	Source of Info
ST. PETER'S SCHOOL	PAR	K-8	N*	In Parish - 1350 Out Parish - 1450	N/A	N/A	17 17
ST. MARY'S RYKEN HIGH SCHOOL	PAR	9-12	N	\$3775	931	98%+	** **
CHRIST CHURCH DAY SCHOOL	PAR	РК-5	N*	Out Parish - 2280 In Parish - 1995	N/A	N/A	,, ,,
FIRST BAPTIST CHURCH OF ST. CHARLES	PAR	РК-К	N*	3 day - 960 5 day - 1140 K - 1200	N/A	N/A	11 17
GRACE BRETHREN CHRISTIAN SCHOOL	PAR	PK-5	Limited*	\$2990	N/A	N/A	-98 93
GRACE LUTHERAN SCHOOL	PAR	РК-5	N*	\$2070	N/A	N/A	** **
LEXINGTON PARK CHRISTIAN SCHOOL	PAR	1-8	Limited	1-5 - 2434 6-8 - 2584	N/A	N/A	** **
POTOMAC HEIGHTS CHRISTIAN SCHOOL	PAR	РК-8	N	\$2218	N/A	N/A	11 11
SOUTHERN MARYLAND CHRISTIAN ACADEMY	PAR	РК-12	Y - \$3379	\$2453 yr.	1040	N/A	11 H
VICTORY BAPTIST ACADEMY	PAR	K-12	N	K-6 - \$1900 7-12 - \$2150	N/A	N/A	17 11
WALDORF BAPTIST KINDERGARTEN & PRE-SCHOOL	PAR	РК-К	N	5 day - \$1056 3 day - \$900	N/A	N/A	11 11
WALDORF SEVENTH DAY ADVENTIST SCHOOL	PAR	K-8	N	M - \$1560 NM - \$1800	N/A	N/A	11 11

.

ناط کر

1				Annual	1993 Avg	% HS	
			Special	Enrollment	SAT/	Grad to	
Institution	Type	Grade	Education Available	Cost per Student	ACT	Higher	Source of Info
	n pp rype		Availaule N/A	\$7200	1100	1000	** **
SCHOOL	PRIV	PK-12	N/A	\$7200	1100	100%	
CHESAPEAKE MONTESSORI CENTER	PRIV	РК-1	Y	3-5 - 2200 1-3 - 3100 YRS OLD	N/A	N/A	
THE TIDEWATER SCHOOL	PRIV	РК-3	Y	PK - 3130 K - 4100 1-3 - 4350	N/A	N/A	** **
THE BEDDOW SCHOOL	PRIV	РК-5	N	\$3672 YR	N/A	N/A	11 11
LEONARD HALL JUNIOR NAVAL ACADEMY	PRIV	5-12	N*	5-8 - \$2375 9-12 - \$2600	N/A	N/A	** **
CHOPTICON HIGH SCHOOL	PUB	9-12	YES	NO COST	910	48.60	MD SCHOOL PERF. RPT.
GREAT MILLS HIGH SCHOOL	PUB	9-12	YES	NO COST	894	44.10	11 11
ESPERANZA MIDDLE SCHOOL	PUB	6-8	YES	NO COST	N/A	N/A	18 88
LEONARDTOWN HIGH SCHOOL	PUB	9-12	YES	NO COST	924	47.90	11 11
MARGARET BRENT MIDDLE SCHOOL`	PUB	6-8	YES	NO COST	N/A	N/A	¥9 ¥9
LEONARDTOWN MIDDLE SCHOOL	PUB	6-8	YES	NO COST	N/A	N/A	\$\$ FF
SPRING RIDGE MIDDLE SCHOOL	PUB	. 6-8	YES	NO COST	N/A	N/A	11 11
BANNEKER- LOVEVILLE ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	1, 1,
CARVER ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	F# F#
DENT ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	77 11
DYNARD ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	** **

		Grade	Special Education	Annual Enrollment Cost per	1993 Avg SAT/ ACT	% HS Grad to Higher	Source of Info
Institution	Туре	Level(s)	Available	Student	Score	Educ	
GREEN HOLLY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	11 11
GREENVIEW KNOLLS ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	** **
HOLLYWOOD ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	** **
LEONARDTOWN ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	
LEXINGTON PARK ELEMENTARY	PUB	1-5	YES	NO COST	N/A	N/A	** **
MECHANICSVILLE ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	() 11
OAKVILLE ELEMENTARY 3CHOOL	PUB	1-5	YES	NO COST	N/A	N/A	** **
PARK HALL ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	., .,
PINEY POINT ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	
RIDGE ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	** **
TOWN CREEK ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	•• ••
WHITE MARSH ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	., .,
DR. GUSTAVUS BROWN ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	
GALE-BAILEY ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	

- - - --

	1		1		1002		
Institution	Туре	Grade Level(s)	Special Education Available	Annual Enrollment Cost per Student	Avg SAT/ ACT Score	% HS Grad to Higher Educ	Source of Info
DR. THOMAS HIGDON ELEMENTARY	PUB	1-5	YES	NO COST	N/A	N/A	11 11
INDIAN HEAD ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	,, ,,
DANIEL OF ST. THOMAS JENIFER ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	11 11
MALCOM ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	10 11
T.C. MARTIN ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	** **
MARY MATULA ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	
ARTHUR MIDDLETON ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	17 11
WALTER J. MITCHELL ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	., .,
MT. HOPE/NANJEMOY ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	11 11
DR. SMAUEL A. MUDD ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	" "
J.C. PARKS ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	** **
J. P. RYON ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	** **
EVA TURNER ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	11 11

Institution	Tumo	Grade	Special Education	Annual Enrollment Cost per	1993 Avg SAT/ ACT	% HS Grad to Higher	Source of Info
	Type	Level(s)	Available	Student	Score	Educ	
ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	
JOHN HANSON MIDDLE SCHOOL	PUB	6-8	YES	NO COST	N/A	N/A	** **
MATTHEW HENSON MIDDLE SCHOOL	PUB	6-8	YES	NO COST	N/A	N/A	
PICCOWAXEN MIDDLE SCHOOL	PUB	6-8	YES	NO COST	N/A	N/A	11 11
GENERAL SMALLWOOD MIDDLE SCHOOL	PUB	6-8	YES	NO COST	N/A	N/A	11 11
MILTON M. SOMERS MIDDLE SCHOOL	PUB	6-8	YES	NO COST	N/A	N/A	11 11
BENJAMIN STODDERT MIDDLE SCHOOL	PUB	6-8	YES	NO COST	N/A	N/A	10 11
WESTLAKE HIGH SCHOOL	PUB	6-8	YES	NO COST	N/A	N/A	** **
LACKEY HIGH SCHOOL	PUB	9-12	YES	NO COST	858	43.1	** **
MCDONOUGH HIGH SCHOOL	PUB	9-12	YES	NO COST	871	49.5	11 11
LA PLATA HIGH SCHOOL	PUB	9-12	YES	NO COST	876	52.9	11 11
THOMAS STONE HIGH SCHOOL	PUB	9-12	YES	NO COST	872	54.2	tt tt
APPEAL ELEMENTARY SC HOOL	PUB	1-5	YES	NO COST	N/A	N/A	11 11
BEACH ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	17 17
CALVERT ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	11 11
HUNTINGTOWN ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	11 11

-

Institution	Туре	Grade Level(s)	Special Education Available	Annual Enrollment Cost per Student	1993 Avg SAT/ ACT Score	% HS Grad to Higher Educ	Source of Info
MT. HARMONY ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	11 11
MUTUAL ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	•• ••
PATUXENT ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	** **
PLUM POINT ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	
SUNDERLAND ELEMENTARY SCHOOL	PUB	1-5	YES	NO COST	N/A	N/A	
CALVERT MIDDLE SCHOOL	PUB	6-8	YES	NO COST	N/A	N/A	71 11
NORTHERN MIDDLE SCHOOL	PUB	6-8	YES	NO COST	N/A	N/A	11 11
PLUM POINT MIDDLE SCHOOL	PUB	6-8	YES	NO COST	N/A	N/A	11 11
SOUTHERN MIDDLE SCHOOL	PUB	6-8	YES	NO COST	N/A	N/A	19 19
CALVERT HIGH SCHOOL	PUB	9-12	YES	NO COST	905	36.42	11 11
NORTHERN HIGH SCHOOL	PUB	9-12	YES	NO COST	888	54	

* Special Education: Use Public School Program

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION (b) List the educational institutions within 30 miles which offer programs off-base available to service members and their adult dependents. Indicate the extent of their programs by placing a "Yes" or "No" in all boxes as applies.

Turkin di	Type		Program Type(s)					
Institution	Clas	sses	Adult High School	Vocational/ Technical	Underg	graduate	Graduate	
					Courses only	Degree Program		
St. Mary's College	Day	Yes	No	No	Yes	Yes	No	
	Night	Yes	No	No	Yes	Yes	No	
Charles County Comm. College	Day	Yes	No	Yes	Yes	Yes	No	
	Night	Yes	No	Yes	Yes	Yes	No	
University of Maryland	Day	Yes	No	No	Yes	Yes	Yes	
	Night	Yes	No	No	Yes	Yes	Yes	
St. Mary's Technical Center	Day	Yes	No	Yes	No	No	No	
	Night	Yes		Yes	No	No	No	
H&R Block	Day	Yes	No	Yes	No	No	No	
	Night	Yes	No	Yes	No	No	No	
Airpack Pilot Training	Day	Yes	No	Yes	No	No	No	
	Night	Yes	No	Yes	No	No	No	
Navy Flying Coach	Day	No	No	Yes	No	No	No	
	Night	Yes	No	Yes	No	No	No	
Great Mills High School	Day	Yes	Yes	No	No	N 0	No	
	Night	Yes	Yes	No	No	No	No	
Leonardtown High School	Day	Yes	Yes	No	No	No	No	
	Night	Yes	Yes	No	No	No	No	
Chopticon High School	Day	Yes	Yes	No	No	No	No	
	Night	Yes	Yes	No	No	No	No	

Ŧ

Institution	Type Classes	Program Type(s)				
		Adult High School	Vocational/ Technical	Undergraduate G		Graduate
				Courses only	Degree Program	
St. Mary's Ryken High School	Day Yes		Yes	No	No	No
	Night No	No	N o	No	No	No
Aaron's Beauty School	Day Yes	No	Yes	No	No	No
	Night No	No	Yes	No	No	No

(c) List the educational institutions which offer programs on-base available to service members and their adult dependents. Indicate the extent of their programs by placing a "Yes" or "No" in all boxes as applies.

		Program Type(s)					
- · ·	Туре			J			
Institution	Classes	A dulle I I inch	Veeetierel/	I to do an			
		School	Technical	Underg	raduate	Graduate	
				Courses only	Degree Program		
Embry Riddle	Day	No	No	No	No	No	
	Night	No	No	No	Yes	No	
	Corres- pondence	No	No	No	No	No	
Florida Institute	Day	No	No	No	No	No	
or reemotogy	Night	No	No	No	No	Yes	
	Corres- pondence	No	No	No	No	No	
Univ. of Tenn. Space Institute	Day	No	No	No	No	No	
- F	Night	No	No	No	No	Yes	
	Corres- pondence	No	No	No	No	Yes	
Univ. of Maryland	Day	No	No	No	No	Yes	
	Night	No	No	No	No	Yes	
	Corres- pondence	No	No	No	No	No	
Charles Co.	Day	No	No	Yes	No	No	
	Night	No	No	No	No	No	
	Corres- pondence	No	No	No	No	No	
Naval War College	Day	No	No	Yes	No	No	
	Night	No	No	No	No	No	
	Corres- pondence	No	No	No	No	No	

20

21. Spousal Employment Opportunities.

Skill Level	Number of Mili Service Center	*Local Community Unemployment Rate		
	1991	1992	1993	
Professional	14	25	13	
Manufacturing	1	0	1	
Clerical	196	215	143	· · · · · · · · · · · · · · · · · · ·
Service	10	7	4	
Other	4	5	4	

Provide the following data on spousal employment opportunities.

* Unemployment rates by skill level not available. Unemployment rates by counties for 1993 are:

St. Mary's	5.8%
Calvert	4.6%
Charles	4.3%
So. MD. Avg.	4.9%

Southern Maryland provides a wide variety of job opportunities for spouses of Navy employees. Over 63,000 people are employed in Southern Maryland. A growing support contractor community provides in excess of 5,000 jobs ranging from clerical through technical positions. Seventy-three percent (73%) of the workers residing in St. Mary's County are employed in St. Mary's County.

22. Medical/Dental.

a. Do your active duty personnel have any difficulty with access to medical or dental care, in either the military or civilian health care system? Develop the why of your response.

Active duty military personnel have access to military medical and dental care on base in addition to the Naval Medical Center in Bethesda, MD and Malcom Grow at Andrews Air Force Base for the most serious and specialty medical cases. There are civilian medical facilities in the local area at St. Mary's Hospital, 10 miles away and Calvert County Memorial Hospital, 30 miles away.

b. Do your military dependents have any difficulty with access to medical or dental care, in either the military or civilian health care system? Develop the why of your response.

Dependents have access to medical care as stated in 22.a. for active duty personnel. Dental care is provided on a space available basis to dependents.

7

MILITARY:

The Naval Hospital/Branch Dental Clinic's primary mission is to provide health care services to active duty personnel and to maintain a proper state of material and personnel readiness to fulfill wartime and contingency mission plans. The hospital is equally committed to its peacetime mission to provide maximum health care services to all categories of eligible beneficiaries. The facility provides health care services to an estimated 25,000 beneficiary population. Nineteen (19) physicians provide both inpatient and outpatient services in primary care, emergency medicine, aviation medicine, family practice, general surgery, obstetrics and gynecology, internal medicine, and pediatrics supported by ancillary services. Dental services including dental surgery and limited orthodonture are also provided.

CIVILIAN:

A wide range of medical care, specialists and services are available in Southern Maryland. There are public health departments and full service hospitals in each of the Southern Maryland Counties. Hospitals are: St. Mary's (Co.) Hospital in Leonardtown, Physicians Memorial Hospital in Charles County and Calvert (Co.) Memorial in Prince Frederick. These Southern Maryland hospitals are licensed to accommodate approximately 400 patients. All are accredited by the Joint Commission on Accreditation of Healthcare Organizations, licensed by the Maryland Department of Health and Mental Hygiene and certified for Medicare and Medicaid. Services include 24 hour emergency care, obstetrical care and surgery as well as an array of therapeutic and diagnostic services including CAT scan and MRI equipment, and chemotherapy.

Maryland State Police helicopter MEDEVAC services originate from St. Mary's County Airport and serve not only the local hospitals but also provide critical care enroute to Washington and Baltimore area shock trauma units.

There are 56 physicians and surgeons and 33 dentists practicing in St. Mary's County. Selected specialized medical services available in St. Mary's County include:

Marcey House - State and county funded residential halfway house for recovering substance abusers.

Orthopedic and Sports Medicine Clinic - Three board certified orthopedic surgeons offer a full berth of services including treatment of degenerative disorders of the spine and joint, trauma, and non-surgical and surgical repair of sports injuries. A fully staffed and equipped rehabilitation center is on the premises. Physical therapy facility offers water therapy equipment and a complete gymnasium for patients' use.

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

Shanti Medical Center - Houses a multispecialty medical group providing comprehensive medical care. Board certified specialties include allergy, cardiology, dermatology, gastroenterology, radiology, pulmonary medicine, internal medicine, ophthalmology, pediatrics, psychiatry and family practice. There is a specific emphasis on early detection, prevention and risk-factor modification programs. Laboratory and radiology procedures are performed on site, using the latest diagnostic technology.

Chesapeake Regional Cancer Center - The Chesapeake Regional Cancer Center works with the Southern Maryland medical community to provide patients with cancer and tumors radiation therapy services. The primary treatment is delivered through a state of the art linear accelerator. A radiation oncologist and a physician trained in treating patients using radiation therapy are on staff. Free van service is offered to all patients.

BMA Dialysis - provides hemodialysis on site in St. Mary's County.

Home Health Agency - The Agency is managed by St. Mary's County Health Department and provides skilled nursing to recovering patients in the home. Services include physician-directed physical, occupational and speech therapy as well as personal care functions.

Hospice of St. Mary's County - Provides support and volunteer caretakers to terminally ill patients in their homes.

All three counties have fully staffed nursing homes providing the full range of resident geriatric care.

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION 23. **Crime Rate**. Complete the table below to indicate the crime rate for your air station for the last three fiscal years. The source for case category definitions to be used in responding to this question are found in NCIS - Manual dated 23 February 1989, at Appendix A, entitled "Case Category Definitions." Note: the crimes reported in this table should include 1) all reported criminal activity which occurred on base regardless of whether the subject or the victim of that activity was assigned to or worked at the base; and 2) all reported criminal activity off base.

This report includes all individuals founded or unfounded. Off-base information for this report is Navy property off-station (i.e. Glenn forest, Solomon's Annex). The numbers of people involved in each incident are included so the total crimes will not agree with number of people. 1991 only includes the total incidents due to records are only kept for two years.

Crime Definitions	FY 1991	FY 1992	FY 1993
1. Arson (6A)	1		1
Base Personnel - military			0
Base Personnel - civilian			1
Off Base Personnel - military	/		0
Off Base Personnel - civilian			0
2. Blackmarket (6C)			
Base Personnel - military			
Base Personnel - civilian		1	
Off Base Personnel - military	·	1	
Off Base Personnel - civilian			
3. Counterfeiting (6G)			
Base Personnel - military			
Base Personnel - civilian			
Off Base Personnel - military			
Off Base Personnel - civilian			
4. Postal (6L)			
Base Personnel - military		}	
Base Personnel - civilian	T		
Off Base Personnel - military			
Off Base Personnel - civilian			

Crime Definitions	FY 1991	FY 1992	FY 1993
5. Customs (6M)			1
Base Personnel - military			
Base Personnel - civilian			
Off Base Personnel - military			1
Off Base Personnel - civilian			
6. Burglary (6N)	29	9	18
Base Personnel - military		2	16
Base Personnel - civilian		4	14
Off Base Personnel - military		4	1
Off Base Personnel - civilian		1	2
7. Larceny - Ordnance (6R)			
Base Personnel - military			
Base Personnel - civilian			
Off Base Personnel - military			
Off Base Personnel - civilian			
8. Larceny - Government (6S)	61	24	54
Base Personnel - military		10	30
Base Personnel - civilian		17	50
Off Base Personnel - military		1	1
Off Base Personnel - civilian		8	3

.....

-

-

- - -----

.

Crime Definitions	FY 1991	FY 1992	FY 1993
9. Larceny - Personal (6T)	167	84	98
Base Personnel - military		51	69
Base Personnel - civilian		44	35
Off Base Personnel - military		4	7
Off Base Personnel - civilian		10	7
10. Wrongful Destruction (6U)	150	85	97
Base Personnel - military		49	65
Base Personnel - civilian		45	40
Off Base Personnel - military		6	1
Off Base Personnel - civilian		4	4
11. Larceny - Vehicle (6V)	9	2	3
Base Personnel - military		2	2
Base Personnel - civilian		1	1
Off Base Personnel - military		0	0
Off Base Personnel - civilian		0	3
12. Bomb Threat (7B)	2	3	1
Base Personnel - military		3	1
Base Personnel - civilian		0	1
Off Base Personnel - military		0	0
Off Base Personnel - civilian		0	0

- -

. .

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

Crime Definitions	FY 1991	FY 1992	FY 1993
13. Extortion (7E)			
Base Personnel - military			
Base Personnel - civilian			
Off Base Personnel - military	<u> </u>		
Off Base Personnel - civilian			
14. Assault (7G)	65	46	78
Base Personnel - military		36	73
Base Personnel - civilian		41	83
Off Base Personnel - military		19	29
Off Base Personnel - civilian		16	28
15. Death (7H)	2	1	1
Base Personnel - military		0	0
Base Personnel - civilian		0	0
Off Base Personnel - military		0	1
Off Base Personnel - civilian		2	0
16. Kidnapping (7K)			
Base Personnel - military			
Base Personnel - civilian			
Off Base Personnel - military			
Off Base Personnel - civilian			

- -----

- ----- -

7,1
Crime Definitions	FY 1991	FY 1992	FY 1993
18. Narcotics (7N)	2		6
Base Personnel - military			2
Base Personnel - civilian			4
Off Base Personnel - military			0
Off Base Personnel - civilian			0
19. Perjury (7P)	1		
Base Personnel - military			
Base Personnel - civilian			
Off Base Personnel - military			-
Off Base Personnel - civilian			
20. Robbery (7R)	1		
Base Personnel - military			
Base Personnel - civilian			
Off Base Personnel - military			
Off Base Personnel - civilian			
21. Traffic Accident (7T)	108	108	159
Base Personnel - military		75	128
Base Personnel - civilian		97	146
Off Base Personnel - military		1	10
Off Base Personnel - civilian		11	13

Crime Definitions	FY 1991	FY 1992	FY 1993
22. Sex Abuse - Child (8B)	1		
Base Personnel - military			
Base Personnel - civilian			
Off Base Personnel - military	-		
Off Base Personnel - civilian			
23. Indecent Assault (8D)			
Base Personnel - military			
Base Personnel - civilian			
Off Base Personnel - military			
Off Base Personnel - civilian			
24. Rape (8F)	2	1	2
Base Personnel - military		1	0
Base Personnel - civilian		3	3
Off Base Personnel - military		0	0
Off Base Personnel - civilian		0	0
25. Sodomy (8G)			
Base Personnel - military			
Base Personnel - civilian			
Off Base Personnel - military			
Off Base Personnel - civilian			

-

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

FOR OFFICIAL USE ONLY - BRAC '95 WORKING PAPERS NAWCAD PATUXENT RIVER 1993 CRIME RATE PER 100,000

Control #: ___001

Date sent: 8 September 1994

To: CAPT Doug Cook Fax: (703) 604-1859

Voice: (703) 604-1857

Activity: NAVAIR

CLARIFICATION/CORRECTION REQUESTED for Data Call #5. Question #23

To clarify ambiguities in responses to the above question, please provide the CRIME RATES for your surrounding community or county/township/parrish/city in these three categories: Violent Crime Rate Property Crime Rate Drug Crime Rate

Disregard previous format in question #23. Specify the rate per 100,000 population. Crime rates are expected to be obtainable from appropriate law enforcement offices.

Data is needed for the activities listed on page 2.

LT Christina May (703) 681-0481

NOTE: This information is needed urgently. Request you respond with clarification comments (below) or corrected page(s) within 24 hours after receipt at the activity. FAX a preliminary response directly to the BSAT at (703)756-2174. Then, send your official response, properly certified, through your chain of command for certification and further forwarding to the BSAT. Official documentation must be retained to support your response and be available for validation by the Naval Audit Service.

Reply: <u>Violent Crime Rate for St. Mary's: 445. Calvert: 368: Property Crime Rate for St. Mary's: 2,581, Calvert: 1,926; and Drug Crime Rate for St. Mary's: 414. Calvert: 826. Source: (1) MD UCR Crime Index Report and (2) DECD Calc. by category. Provided by St. Mary's County Department of Economic and Community Development.</u>

 Timothy S. Smith
 01
 (301) 826-1019
 9/16/94

 Name
 Code
 Commercial Phone #
 Date

Data Call 5 N00421 Page 1 of 1 Control # 001 FOR OFFICIAL USE ONLY - BRAC '95 WORKING PAPERS

TAB A

TECHNICAL OPERATIONS

FUNCTIONAL SUPPORT AREA - LIFE CYCLE WORK AREA FORM

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

Technical Center Site:	Flight Test and Engineering Group Naval Air Warfare Center Aircraft Division PAX Patuxent River, Maryland 20670-5304
Functional Support Area:	1. Platforms 1.2 Aircraft

-- -----

.

	· · · · · · · · · · · · · · · · · · ·	Tn-House	Th-House	Out Of House	Diment T	
4	,		I Emond	Out-Ot-House	Direct	Comments
8	,	I WID		Expena.	Cite	4
DDTL		t	<u>(() () () () () () () () () (</u>	(şk)	(\$K)	J
RD1@F	· Dente Denerality	1]	,	1 1	1	4
<u> </u>	Basic Research	↓	/'	L	·	/
2.	Exploratory Development	6.9	802.1		1	······································
3.	Advanced Development	27.3	4,298.6	360.0	3,679.5	
4.	Eng. & Mfg. Development	161.2	20,078.2	6,344.4	360.8	
5.	RDT&E Management Support		69.9	1		
6.	Operational Systems	1	· ····································	· · · · · · · · · · · · · · · · · · ·		
1	Development	42.1	6,480.8	1 2.3		
ACQUI	SITION	(t	/ }	/t	·	
7.	Production	í }	ļ	1 1	, 1	
8.	Acceptance Testing	242.9	23,886.7	2,906.4	2,574.3	
9.	Modernization	40.5	7,522.1	1 131.0	1.519.6	
10.	Program Support	0.2	2.7	1	·	
LIFE-	TIME SUPPORT	·	,	· · · · · · · · · · · · · · · · · · ·		
11.	Maintenance	1	, , ,	()		
12.	Repair	· · · · · · · · · · · · · · · · · · ·		·+	+	
13.	Testing	11.6	1,218.3	·		· · · · · · · · · · · · · · · · · · ·
14.	In-Service Engineering	10.7	3,309.7	·	1.384.7	
15.	Program Support	·		·+		······································
16.	Retirement		+	·		
GENER	AL	·		/t		
17.	Training/Operational Support	1.0	877.3			
18.	Simulation, Modeling, &					
L	Analysis	1.0	224.4		[

-+C: N00421

JIC: N00421

Technical Center Site:	Flight Test and Engineering Group Naval Air Warfare Center Aircraft Division PAX Patuxent River, Maryland 20670-5304
Functional Support Area:	2. Weapons Systems 2.2 Guided Missiles

		In-House	In-House	Out-Of-House	Direct	Comments
á.		WYs	Expend.	Expend.	Cite	
			(\$K)	(\$K)	(\$K)	
RDT&E						
1.	Basic Research					
2.	Exploratory Development	•				
3.	Advanced Development		31.6			
4.	Eng. & Mfg. Development	1.5	106.9		44.6	
5.	RDT&E Management Support					
6.	Operational Systems					
	Development					
ACQUIS	ITION					
7.	Production					
8.	Acceptance Testing	0.4	144.4			
9. 1	Modernization	8.4	1,114.6			
10.	Program Support					
LIFE-T	IME SUPPORT					
11. 1	Maintenance					
12.	Repair					
13. "	Testing					
14.	In-Service Engineering	0.3	847.3			
15.	Program Support					
16. J	Retirement					
GENERAJ	L					
17. 5	Training/Operational Support					
18.	Simulation, Modeling, &					
1	Analysis					

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

4

2

5

JLC: N00421

Technical Center Site:	Flight Test and Engineering Group Naval Air Warfare Center Aircraft Division PAX Patuxent River, Maryland 20670-5304
Functional Support Area:	2. Weapon Systems 2.3 Free Fall Weapons & Rockets

		In-House	In-House	Out-Of-House	Direct	Comments
		WIS	(\$K)	(\$K)	(\$K)	
RDT&I	3					
1.	Basic Research					
2.	Exploratory Development					
3.	Advanced Development					
4.	Eng. & Mfg. Development					1
5.	RDT&E Management Support					
6.	Operational Systems					
	Development					
ACQUI	SITION					
<u>7.</u>	Production					
8.	Acceptance Testing					
9.	Modernization					
10.	Program Support					
LIFE-	TIME SUPPORT					
11.	Maintenance	1				
12.	Repair					
13.	Testing					
14.	In-Service Engineering	3.6	527.5			
15.	Program Support					
16.	Retirement					
GENER	AL					
17.	Training/Operational Support					
18.	Simulation, Modeling, &					
	Analysis					

JIC: N00421

Technical Center Site:	Flight Test and Engineering Group Naval Air Warfare Center Aircraft Division PAX Patuxent River, Maryland 20670-5304
Functional Support Area:	2. Weapons Systems 2.5 Mines

-

-

		In-House	In-House Expend	Out-Of-House Expend	Direct	Comments
5) 1)		WIS	(\$K)	(\$K)	(\$K)	
RDT&F						
1.	Basic Research					
2.	Exploratory Development					
3.	Advanced Development					
4.	Eng. & Mfg. Development					
5.	RDT&E Management Support					
6.	Operational Systems					
	Development					
ACQUI	SITION					
7.	Production					
8.	Acceptance Testing					
9.	Modernization					
10.	Program Support					
LIFE-	TIME SUPPORT					
11.	Maintenance					
12.	Repair					
13.	Testing					
14.	In-Service Engineering	1.1	122.8		35.0	
15.	Program Support					
16.	Retirement					
GENER	AL					
17.	Training/Operational Support					
18.	Simulation, Modeling, &					
	Analysis					

JLC: N00421

Technical Center Site:	Flight Test and Engineering Group Naval Air Warfare Center Aircraft Division PAX Patuxent River, Marvland 20670-5304
Functional Support Area:	 Combat Systems Integration Air

-

-

5

-

.

\$					
	In-House WYs	In-House Expend. (\$K)	Out-Of-House Expend. (\$K)	Direct Cite (\$K)	Comments
RDT&E					
1. Basic Research					
2. Exploratory Development					
3. Advanced Development	14.1	4,697.9		1,487.5	
4. Eng. & Mfg. Development	97.4	10,595.0	1,470.8	1,175.4	
5. RDT&E Management Support					
6. Operational Systems					
Development	58.1	8,949.8	3.0	385.0	
ACQUISITION					
7. Production					
8. Acceptance Testing	74.6	8,997.5	1,631.6	3,294.8	
9. Modernization	100.9	16.665.9	777.3	200.0	
10. Program Support					
LIFE-TIME SUPPORT					
11. Maintenance				·····	
12. Repair					
13. Testing					
14. In-Service Engineering	15.7	2,835.2	275.0	335.8	
15. Program Support					
16. Retirement					
GENERAL					
17. Training/Operational Support					
18. Simulation, Modeling, &					
Analysis					

For official use only Predecisional information

••

.

JLC: N00421

Technical Center Site:	Flight Test and Engineering Group Naval Air Warfare Center Aircraft Division PAX Patuxent River, Maryland 20670-5304
Functional Support Area:	 Combat System Integration 3.3 Surface

.

		In-House	In-House	Out-Of-House	Direct	Comments
A	,	WYs	Expend.	Expend.	Cite	
	/	L/	(\$K)	(\$K)	(\$K)	
RDT&E		{ }	· · ·	1		
1.	Basic Research	L	<u> </u>	L'	1	
2.	Exploratory Development		'	<u> </u>		
3.	Advanced Development	0.3	18.3	!		
4.	Eng. & Mfg. Development					
5.	RDT&E Management Support		//	['		
6.	Operational Systems			· · · · · · · · · · · · · · · · · · ·		f,
l	Development	3.6	370.5	I'	<u> </u>	
ACQUI	SITION		,,	· · · · · · · · · · · · · · · · · · ·		
7.	Production		·!	L!	1	1
8.	Acceptance Testing	1.6	208.7	['		
9.	Modernization	0.8	76.0	//		
10.	Program Support	1	/	l/		
LIFE-'	TIME SUPPORT		,,	//		
11.	Maintenance	L	/	<u> </u>	<u> </u>	
12.	Repair			······································		
13.	Testing				· · · · · · · · · · · · · · · · · · ·	
14.	In-Service Engineering	0.9	62.1	5.6		
15.	Program Support					
16.	Retirement				· · · · · · · · · · · · · · · · · · ·	
GENER	AL	()		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
17.	Training/Operational Support	L		L	(′	
18.	Simulation, Modeling, &	1		· · · · · · · · · · · · · · · · · · ·	· · · ·	
A	Analysis	L		()	۱′	

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

.

<u>ب</u>

..C: N00421

Technical Center Site:	Flight Test and Engineering Group Naval Air Warfare Center Aircraft Division PAX Patuxent River, Maryland 20670-5304
Functional Support Area:	 Sensors and Surveillance Systems Sonar Systems

.

[In-House	In-House	Out-Of-House	Direct	Comments
		WYs	Expend.	Expend.	Cite	
			(\$K)	(ŞK)	(\$K)	
RDT&E						
1.	Basic Research					
2.	Exploratory Development	•				
3.	Advanced Development	1.7	138.2		105.0	
4.	Eng. & Mfg. Development	2.4	740.3		25.0	
5.	RDT&E Management Support					
6.	Operational Systems					
	Development					
ACQUI	SITION					
7.	Production					
8.	Acceptance Testing	5.7	386.9	10.0	36.0	
9.	Modernization					
10.	Program Support					
LIFE-	TIME SUPPORT					
11.	Maintenance					
12.	Repair					
13.	Testing					
14.	In-Service Engineering					
15.	Program Support					
16.	Retirement					
GENER	AL					
17.	Training/Operational Support					
18.	Simulation, Modeling, &					
	Analysis					

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

•

J+C: N00421

Technical Center Site:	Flight Test and Engineering Group Naval Air Warfare Center Aircraft Division PAX Patuxent River, Maryland 20670-5304
Functional Support Area:	 Sensors and Surveillance Systems Radar Systems

-

-

--

-

		In-House WYs	In-House Expend. (SK)	Out-Of-House Expend.	Direct Cite (SK)	Comments
RDT&I	<u> </u>	[<u>, , , , , , , , , , , , , , , , , ,</u>			f
1.	Basic Research	1 1	1 1			
2.	Exploratory Development	[]	· · · · · · · · · · · · · · · · · · ·			
3.	Advanced Development		1			1
4.	Eng. & Mfg. Development					
5.	RDT&E Management Support					
6.	Operational Systems Development					
ACQUI	SITION	· · · · · ·				1
7.	Production		I			
8.	Acceptance Testing	1.5	104.5			
9.	Modernization					
10.	Program Support	·				
LIFE-	TIME SUPPORT					
11.	Maintenance					
12.	Repair	l				
13.	Testing					
14.	In-Service Engineering					
15.	Program Support					
16.	Retirement					
GENER	AL					
17.	Training/Operational Support					
18.	Simulation, Modeling, &					
	Analysis	I				

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

__C: N00421

Technical Center Site:	Flight Test and Engineering Group Naval Air Warfare Center Aircraft Division PAX Patuxent River, Maryland 20670-5304
Functional Support Area:	5. Sensors & Surveillance Systems 5.3 Special Sensors

-

	In-House	In-House	Out-Of-House	Direct	Comments
	WYs	Expend.	Expend.	Cite	
		(\$K)	(\$K)	(\$K)	
RDT&E					
1. Basic Research					
2. Exploratory Development					
3. Advanced Development	2.3	427.6			
4. Eng. & Mfg. Development	4.5	757.1	200.0		
5. RDT&E Management Support					
6. Operational Systems					
Development	1.6	564.2			
ACQUISITION					
7. Production					
8. Acceptance Testing	17.1	5,753.5	1,615.9	786.8	
9. Modernization	0.1	6.9			
10. Program Support					
LIFE-TIME SUPPORT					
11. Maintenance					· · · · · · · · · · · · · · · · · · ·
12. Repair					
13. Testing					
14. In-Service Engineering					
15. Program Support					
16. Retirement					
GENERAL					
17. Training/Operational Support			A8105 5 1 1		
18. Simulation, Modeling, &					
Analysis					

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

_ _ _ _

_

JLC: N00421

Technical Center Site:	Flight Test and Engineering Group Naval Air Warfare Center Aircraft Division PAX Patuxent River, Maryland 20670-5304
Functional Support Area:	5. Sensors and Surveillance Systems 5.5 Ocean Surveillance

-

-

-

		In-House	In-House	Out-Of-House	Direct	Comments
		WYs	Expend.	Expend.	Cite	
ľ		L	(\$K)	(\$K)	(\$K)	
RDT&E						
1.	Basic Research					
2.	Exploratory Development					
3.	Advanced Development	4.8	1,111.8			
4.	Eng. & Mfg. Development					
5.	RDT&E Management Support					
6.	Operational Systems					
L	Development	0.8	125.0			
ACQUI	SITION					
7.	Production					
8.	Acceptance Testing	L				
9.	Modernization					
10.	Program Support					
LIFE-	TIME SUPPORT					
11.	Maintenance					
12.	Repair					
13.	Testing					
14.	In-Service Engineering					
15.	Program Support					
16.	Retirement					
GENER	AL					
17.	Training/Operational Support					
18.	Simulation, Modeling, &					
	Analysis					

For official use only PREDECISIONAL INFORMATION

JIC: N00421

Technical Center Site:	Flight Test and Engineering Group
	Naval Air Warfare Center Aircraft Division PAX
	Patuxent River, Maryland 20670-5304
Functional Support Area:	6. Navigation
	6.2 Aircraft Navigation Systems

	In-House	In-House	Out-Of-House	Direct	Comments
	WYs	Expend.	Expend.	Cite	
		(\$K)	(\$K)	(\$K)	
RDT&E					
1. Basic Research					
2. Exploratory Development					
3. Advanced Development	2.3	232.0	19.4		
4. Eng. & Mfg. Development	18.1	2,166.1			
5. RDT&E Management Support					
6. Operational Systems					
Development					
ACQUISITION					
7. Production					
8. Acceptance Testing	4.6	659.7			
9. Modernization	1.0	231.5		294.0	
10. Program Support					
LIFE-TIME SUPPORT					
11. Maintenance					
12. Repair					
13. Testing					
14. In-Service Engineering		14.6		31.4	
15. Program Support					
16. Retirement					
GENERAL					
17. Training/Operational Support					
18. Simulation, Modeling, &					
Analysis					

JJC: N00421

Technical Center Site:	Flight Test and Engineering Group Naval Air Warfare Center Aircraft Division PAX Patuxent River, Maryland 20670-5304
Functional Support Area:	7. Command, Control, Communications & Intelligence 7.2 Airborne

- --- -

.

		In-House WYs	In-House Expend. (\$K)	Out-Of-House Expend.	Direct Cite	Comments
				(\$K)	(\$K)	
RDT&E						
1.	Basic Research					
2.	Exploratory Development	•				
3.	Advanced Development					
4.	Eng. & Mfg. Development	2.5	1,096.7	64.0	240.6	
5.	RDT&E Management Support					
6.	Operational Systems					
	Development	3.1	276.8			
ACQUI	SITION					
<u>7.</u>	Production					
8.	Acceptance Testing	37.7	10,648.6	1,998.9	615.5	
9.	Modernization		450.9			
10.	Program Support					
LIFE-7	FIME SUPPORT					
11.	Maintenance					
12.	Repair					
13.	Testing					
14.	In-Service Engineering					
15.	Program Support					
16.	Retirement					
GENER!	AL					
17.	Training/Operational Support					
18.	Simulation, Modeling, &					
	Analysis					

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

-+C: N00421

Flight Test and Engineering Group						
Naval Air Warfare Center Aircraft Division PAX						
Patuxent River, Maryland 20670-5304						
7. Command, Control, Communications & Intelligence 7.7 Air Traffic Control System						

•

	In-House	In-House	Out-Of-House	Direct	Comments
	WYS	Expend. (\$K)	Expend. (\$K)	Cite (\$K)	
RDT&E					
1. Basic Research					
2. Exploratory Development					
3. Advanced Development	5.7	623.9			
4. Eng. & Mfg. Development	5.4	1,219.4	97.8		
5. RDT&E Management Support					
6. Operational Systems					
Development	0.7	57.1			
ACQUISITION					
7. Production					
8. Acceptance Testing	12.2	1,693.1	3.0		
9. Modernization					
10. Program Support					
LIFE-TIME SUPPORT					
11. Maintenance					
12. Repair					
13. Testing					
14. In-Service Engineering	10.8	1,319.8	5.6		
15. Program Support					
16. Retirement					
GENERAL					
17. Training/Operational Support					
18. Simulation, Modeling, &					
Analysis					

__C: N00421

Technical Center Site:	Flight Test and Engineering Group Naval Air Warfare Center Aircraft Division PAX Patuxent River, Maryland 20670-5304
Functional Support Area:	7. Command, Control, Communication & Intelligence 7.8 Intelligence Information Systems

.

	In-House WYs	In-House Expend.	Out-Of-House Expend	Direct	Comments
		(\$K)	(\$K)	CICE (QIC)	'
RDT&E		· · · · · · · · · · · · · · · · · · ·		1	······································
1. Basic Research		<u> </u> ′	l	· ·	í′
2. Exploratory Developmer	.it	/		· · · · · · · · · · · · · · · · · · ·	
3. Advanced Development	5.4	635.2		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
4. Eng. & Mfg. Developmer	lt	<u> </u>		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
5. RDT&E Management Suppo	ort.	· · · · · · · · · · · · · · · · · · ·		·/	
6. Operational Systems		,		· · · · ·	· · · · · · · · · · · · · · · · · · ·
Development	0.7	50.4		<u> </u> /	'
ACQUISITION		· · · ·			· · · · · · · · · · · · · · · · · · ·
7. Production		<u> </u>	L	<u> </u>	<u> </u>
8. Acceptance Testing	5.7	876.6			′
9. Modernization	0.1	428.0		/	
10. Program Support		<u> </u>	j'	<u> </u>	<u>í </u>
LIFE-TIME SUPPORT	· · · · · · · · · · · · · · · · · · ·	· · ·		· ·	ſ '
11. Maintenance	′	<u> '</u>	·	<u> </u>	<u> </u>
12. Repair		<u> </u>			
13. Testing		<u> </u>		<u> </u>	
14. In-Service Engineering	1.0	75.7		289.8	
15. Program Support		<u> </u>		!	
16. Retirement		<u> </u>		′	
GENERAL		· · ·	/	1	
17. Training/Operational S	Jupport	<u> </u>	L'	<u> </u>	1
18. Simulation, Modeling,	&	· · ·	1	ſ /	1
Analysis	′	<u> </u>	L'	<u> </u>	

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

.C: N00421

Technical Center Site:	Flight Test and Engineering Group Naval Air Warfare Center Aircraft Division PAX Patuxent River, Maryland 20670-5304
Functional Support Area:	8. Defense Systems 8.2 Countermeasure

.

		In-House	In-House	Out-Of-House	Direct	Comments
		WYs	Expend.	Expend.	Cite	
			(\$K)	(\$K)	(\$K)	
RDT&E						
1.	Basic Research					
2.	Exploratory Development					
3.	Advanced Development	7.4	2,526.7			
4.	Eng. & Mfg. Development	5.0	807.5			
5.	RDT&E Management Support					
6.	Operational Systems					
	Development					
ACQUI	SITION					
7.	Production					
8.	Acceptance Testing					
9.	Modernization					
10.	Program Support					
LIFE-	TIME SUPPORT					
11.	Maintenance					1
12.	Repair					
13.	Testing					
14.	In-Service Engineering					
15.	Program Support					
16.	Retirement					
GENER	AL					
17.	Training/Operational Support					(/ / / / / / / / / / / / /
18.	Simulation, Modeling, &					
	Analysis					

...: N00421

Technical Center Site:	Flight Test and Engineering Group Naval Air Warfare Center Aircraft Division PAX Patuxent River, Maryland 20670-5304
Functional Support Area:	8. Defense Systems 8.3 Electronic Warfare (EW) Systems

-

-

	In-House	In-House	Out-Of-House	Direct	Comments
	WYs	Expend.	Expend.	Cite	
		(\$K)	(\$K)	(\$K)	
RDT&E					
1. Basic Research					
2. Exploratory Development					
3. Advanced Development	10.9	4,049.4			
4. Eng. & Mfg. Development	4.1	790.7			
5. RDT&E Management Support					
6. Operational Systems					
Development	1.6	132.4			
ACQUISITION					
7. Production					
8. Acceptance Testing	26.8	5,815.0	272.3	60.0	
9. Modernization	54.3	8,901.2			
10. Program Support					
LIFE-TIME SUPPORT					
11. Maintenance			•		
12. Repair					
13. Testing					
14. In-Service Engineering					
15. Program Support					
16. Retirement					
GENERAL					
17. Training/Operational Support					
18. Simulation, Modeling, &					
Analysis	27.6	12,785.5	5,884.0		

_J: N00421

Technical Center Site:	Flight Test and Engineering Group
	Naval Air Warfare Center Aircraft Division PAX
	Patuxent River, Maryland 20670-5304
Functional Support Area:	9. Strategic Programs
	9.1 Navy Strategic Systems

	In-House	In-House	Out-Of-House	Direct	Comments
	WYS	Expend. (\$K)	(\$K)	(\$K)	
RDT&E					
1. Basic Research					
2. Exploratory Development					
3. Advanced Development					
4. Eng. & Mfg. Development					
5. RDT&E Management Support					
6. Operational Systems					
Development	4.2	189.1			
ACQUISITION					
7. Production					<u> </u>
8. Acceptance Testing					
9. Modernization					
10. Program Support					
LIFE-TIME SUPPORT					
11. Maintenance					
12. Repair					
13. Testing					
14. In-Service Engineering					
15. Program Support					
16. Retirement					
GENERAL					
17. Training/Operational Support					
18. Simulation, Modeling, &					
Analysis					

_C: N00421

Technical Center Site:	Flight Test and Engineering Group
	Naval Air Warfare Center Aircraft Division PAX
	Patuxent River, Maryland 20670-5304
Functional Support Area:	9. Strategic Programs
	9.2 Nuclear Weapons & Effects

-

-

-

-

-- -- -- -- ---

		In-House WYs	In-House Expend.	Out-Of-House Expend.	Direct Cite	Comments
I			(\$K)	(\$K)	(\$K)	1
RDT&E						
1.	Basic Research					
2.	Exploratory Development					
3.	Advanced Development	3.2	1,320.2			
4.	Eng. & Mfg. Development					
5.	RDT&E Management Support					
6.	Operational Systems					
	Development					
ACQUI	SITION					
7.	Production					
8.	Acceptance Testing					
9.	Modernization		49.7			
10.	Program Support					
LIFE-'	TIME SUPPORT					
11.	Maintenance					
12.	Repair					
13.	Testing					
14.	In-Service Engineering					
15.	Program Support					
16.	Retirement					
GENER	AL					
17.	Training/Operational Support					
18.	Simulation, Modeling, &					
	Analysis					

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

ULC: N00421

Technical Center Site:	Flight Test and Engineering Group Naval Air Warfare Center Aircraft Division PAX Patuxent River, Maryland 20670-5304
Functional Support Area:	10. General Mission Support 10.1.2 Aircraft Related Training Systems

- ----

		In-House	In-House	Out-Of-House	Direct	Comments
		WYs	Expend.	Expend.	Cite	
			(\$K)	<u>(</u> \$K)	(\$K)	
RDT&F						
1.	Basic Research					
2.	Exploratory Development					
3.	Advanced Development					
4.	Eng. & Mfg. Development	16.5	3,673.4	96.0		
5.	RDT&E Management Support					
6.	Operational Systems					
	Development	4.0	784.9			
ACQUI	SITION					
7.	Production					
8.	Acceptance Testing	23.4	8,729.3	190.4	10,615.0	
9.	Modernization	5.7	502.8		1,950.0	
10.	Program Support					
LIFE-	TIME SUPPORT					
11.	Maintenance					
12.	Repair					
13.	Testing					
14.	In-Service Engineering	14.5	3,971.9			
15.	Program Support					
16.	Retirement					
GENER	AL					
17.	Training/Operational Support					
18.	Simulation, Modeling, &					
1	Analysis				1,331.0	

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

19

•

.: N00421

Technical Center Site:	Flight Test and Engineering Group
	Naval Air Warfare Center Aircraft Division PAX
	Patuxent River, Maryland 20670-5304
Functional Support Area:	10. General Mission Support
	10.2 Logistics Planning & Implementation

-

. _ _ _ .

-

-

-

		In-House	In-House	Out-Of-House	Direct	Comments
		WYS	Expend. (\$K)	Expend. (\$K)	Cite (\$K)	
RDT&F						
1.	Basic Research					
2.	Exploratory Development					
3.	Advanced Development					
4.	Eng. & Mfg. Development	12.8	1,512.1			
5.	RDT&E Management Support					
6.	Operational Systems					
	Development					
ACQUI	SITION					
7.	Production					
8.	Acceptance Testing	0.2	48.8			
9.	Modernization	13.6	501.9			
10.	Program Support					
LIFE-	TIME SUPPORT					
11.	Maintenance	0.2	50.9		113.0	
12.	Repair					
13.	Testing					
14.	In-Service Engineering	0.4	364.9		657.8	
15.	Program Support					
16.	Retirement					
GENER	AL					
17.	Training/Operational Support					
18.	Simulation, Modeling, &					
	Analysis					

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

Technical Center Site:	Flight Test and Engineering Group
	Naval Air Warfare Center Aircraft Division PAX
	Patuxent River, Maryland 20670-5304
Functional Support Area:	10. General Missions Support
	10.6 Crew Equipment & Life Support

.

-

	In-House	In-House	Out-Of-House	Direct	Comments
	WYs	Expend.	Expend.	Cite	
		(\$K)	(\$K)	(\$K)	
RDT&E					
1. Basic Research					
2. Exploratory Development					
3. Advanced Development	4.0	222.4			
4. Eng. & Mfg. Development	17.1	2,896.7		45.9	
5. RDT&E Management Support					
6. Operational Systems					
Development	8.1	808.1			
ACQUISITION					
7. Production					
8. Acceptance Testing	9.8	630.6			
9. Modernization	2.9	317.5			
10. Program Support					
LIFE-TIME SUPPORT					
11. Maintenance					
12. Repair			•		
13. Testing	8.1	875.7			
14. In-Service Engineering	0.1	8.9			
15. Program Support					
16. Retirement					
GENERAL					
17. Training/Operational Support					
18. Simulation, Modeling, &					
Analysis					

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

Technical Center Site:	Flight Test and Engineering Group Naval Air Warfare Center Aircraft Division PAX Patuxent River, Maryland 20670-5304
Functional Support Area:	10. General Mission Support 10.7 Major Range Development & Operation

. . . .

-

-

		In-House	In-House	Out-Of-House	Direct	Comments
		WYs	Expend.	Expend.	Cite	
			(\$K)	(\$K)	(\$K)	
RDT&F						
1.	Basic Research					
2.	Exploratory Development		3,980.0	344.5		
3.	Advanced Development	20.9	2,522.0			
4.	Eng. & Mfg. Development	41.0	5,567.2	9.6	334.7	
_ 5.	RDT&E Management Support	1469.9	26,708.7			R
6.	Operational Systems				·····	
	Development	52.1	7,119.6	856.8	1,586.0	·
ACQU1	SITION					
7.	Production	_				
8.	Acceptance Testing	121.9	23,622.7	1,543.5	29,803.6	
9.	Modernization	26.9	3,296.1	6.0		
10.	Program Support				· · · · · · · · · · · · · · · · · · ·	
LIFE-	TIME SUPPORT					
11.	Maintenance					
12.	Repair					
13.	Testing					
14.	In-Service Engineering	64.0	19,367.9	824.9	24.0	
15.	Program Support	0.6	136.7			
16.	Retirement					
GENER	AL					
17.	Training/Operational Support					
18.	Simulation, Modeling, &					
	Analysis					

/	Technical Center Site:	Flight Test and Engineering Group Naval Air Warfare Center Aircraft Division PAX Patuxent River, Maryland 20670-5304
	Funstional Support Area:	10. General Mission Support 10.7 Major Range Development & Operation

	In-House	In-House	Out-Of-House	Direct	Comments
	WYs	Expend.	Expend.	Cite	
		(\$K)	(\$K)	(\$K)	
RDT&E					
1. Basic Research					
2. Exploratory Development		3,980.0	344.5		
3. Advanced Development	20.9	2,522.0			
4. Eng. & Mfg. Development	41.0	5, 567.2	9.6	334.7	
5. RDT&E Management Support	182.5	12,315,0			
6. Operational Systems					
Development	52.1	7,119.6	856.8	1,586.0	
ACQUISITION					
7. Production					
8. Acceptance Testing	121.9	23,622.7	1,543.5	29,803.6	
9. Modernization	26.9	3,296.1	5,0	:	
10. Program Support					
LIFE-TIME SUPPORT				$\overline{\ }$	
11. Maintenance					
12. Repair					
13. Testing					
14. In-Service Engineering	64.0	19,367.9	824.9	24.0	
15. Program Support	0.6	136.7			κ
16. Retirement					
GENERAL					
17. Training/Operational Support					
18. Simulation, Modeling, &					
Analysis					

Technical Center Site:	Flight Test and Engineering Group Naval Air Warfare Center Aircraft Division PAX Patuxent River, Maryland 20670-5304
Functional Support Area:	10. General Mission Support 10.9 Activity Mission & Function Support

.

		In-House WYs	In-House Expend. (\$K)	Out-Of-House Expend. (\$K)	Direct Cite (\$K)	Comments
RDT&E						
1.	Basic Research					
2.	Exploratory Development					
3.	Advanced Development					
4.	Eng. & Mfg. Development	4.4	1,380.6			A/C Maintenance Support & AIMD
5.	RDT&E Management Support	0	0			R
6.	Operational Systems Development					
ACQUI	SITION					
7.	Production					
8.	Acceptance Testing					
9.	Modernization					
10.	Program Support					
LIFE-	TIME SUPPORT					
11.	Maintenance					
12.	Repair					
13.	Testing					
14.	In-Service Engineering	1.2	302.4			
15.	Program Support	47.6	14,868.6	5,884.0		
16.	Retirement					
GENER	AL					
17.	Training/Operational Support	69.0	10,943.0	6,962.9		
18.	Simulation, Modeling, & Analysis					

•

ufC: N00421

Technical Center Site:	Flight Test and Engineering Group
	Naval Air Warfare Center Aircraft Division PAX
	Patuxent River, Maryland 20670-5304
Functional Support Area:	10. General Mission Support
	10.9 Activity Mission & Function Support
	10.9 Activity Mission & Function Support

.

		In-House	In-House	Out-Of-House	Direct	Comments
		WIS	(SK)	(\$K)	(\$K)	
RDT&F						
1.	Basic Research					
2.	Exploratory Development					
3.	Advanced Development					
4.	Eng. & Mfg. Development	4.4	1,380.6			A/C Maintenance Support & AIMD
5.	RDT&E Management Support	1,287.4	14,393.7			
6.	Operational Systems					
	Development				<u> </u>	
ACQUI	SITION					
/.	Production Monting					
0.	Acceptance resting				···· ·	k
9.	Modernization					
10.	Program Support					
LIFE-	TIME SUPPORT					
11.	Maintenance					
12.	Repair			· · · · · · · · · · · · · · · · · · ·		
13.	Testing					
14.	In-Service Engineering	1.2	302.4			
15.	Program Support	47.6	14,868.6	5,884.0		
16.	Retirement					
GENER	AL					
17.	Training/Operational Support	69.0	10,943.0	6,962.9		
18.	Simulation, Modeling, &					
	Analysis					

5

Technical Center Site:	Naval Air Warfare Center Aircraft Division
	Patuxent River, Detachments
Functional Support Area:	N/A

	In-House	In-House	Out-Of-House	Direct	Comments
	WYs	Expend.	Expend.	Cite	
		\$(K)	\$(K)	\$(K)	
RDT&E					
1. Basic Research					
2. Exploratory Development					
3. Advanced Development					
4. Eng. & Mfg. Development					
5. RDT&E Management Support					
6. Operational Systems					
Development .					
ACQUISITION					
7. Production					
8. Acceptance Testing					
9. Modernization					
10. Program Support					
LIFE-TIME SUPPORT					
11. Maintenance					
12. Repair					
13. Testing			•		
14. In-Service Engineering					
15. Program Support					
16. Retirement				-	
GENERAL					
17. Training/Operational Support					
18. Simulation, Modeling, &					
Analysis					

Both the Patuxent River detachments at Warminster and the detachment at Key West operate as service cost centers and do not receive funding separately from outside sponsors. All funding and manpower/workyears are contained in the Pax River Complex data shown in the basic table. The Quarry at Oreland is used as a facility, when required, but receives no separate funding or manpower authorizations.

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

7.•

Technical Center Site:	Naval Air Warfare Center Aircraft Division Webster Field Annex Patuxent River, Maryland 20670-5304
Functional Support Area:	 Special Operations Support Coastal/Special Warfare Support

_

.

. . . .

_

		In-House	In-House	Out-Of-House	Direct	Comments
		WYs	Expend.	Expend.	Cite	
 			Ş (K)	<u>\$(K)</u>	Ş(K)	
RDT&E						
1.	Basic Research					
2.	Exploratory Development					
3.	Advanced Development					
4.	Eng. & Mfg. Development					
5.	RDT&E Management Support					
6.	Operational Systems					
	Development					
ACQUIS	SITION					
7.	Production					
8.	Acceptance Testing					
9.	Modernization	60.1	26,813.0	9,089.0	25,807.0	
10.	Program Support					
LIFE-T	IME SUPPORT					
11.	Maintenance					
12.	Repair					
13.	Testing					
14.	In-Service Engineering					
15.	Program Support					
16.	Retirement					
GENERA	۱۲.					
17.	Training/Operational Support					
18.	Simulation, Modeling, &					
	Analysis					

Technical Center Site:	Naval Air Warfare Center Aircraft Division Webster Field Annex
Functional Support Area:	7. Command, Control, Communications and Intelligence (C3I) 7.3 Shipboard

		In-House	In-House	Out-Of-House	Direct	Comments
8		WYs	Expend.	Expend.	Cite	
			\$(K)	\$(K)	\$(K)	
RDT&F						
1.	Basic Research					
2.	Exploratory Development					
3.	Advanced Development					
4.	Eng. & Mfg. Development					
5.	RDT&E Management Support					
6.	Operational Systems					
	Development					
ACQUI	SITION					
7.	Production	25.0	15,380.0	10,164.0	27,715.0	
8.	Acceptance Testing	6.0	1,066.0	210.0	3,806.0	
9.	Modernization					
10.	Program Support	1.0	167.0	105.0	2,058.0	
LIFE-	TIME SUPPORT					
11.	Maintenance					
12.	Repair					
13.	Testing					
14.	In-Service Engineering	12.0	2,551.0	1,587.0	11,023.0	
15.	Program Support					
16.	Retirement					
GENER	AL					
17.	Training/Operational Support					
18.	Simulation, Modeling, &					
	Analysis					

.

Technical Center Site:	Naval Air Warfare Center Aircraft Division Webster Field Annex Patuxent River, Maryland 20670-5304
Functional Support Area:	 Command, Control, Communications and Intelligence (C3I) 7.7 Air Traffic Control Systems

.

		In-House	In-House	Out-Of-House	Direct	Comments
Ĭ		WYs	Expend.	Expend.	Cite	
			\$(K)	\$(K)	\$(K)	
RDT&E						
1.	Basic Research					
2.	Exploratory Development					
3.	Advanced Development	,				
4.	Eng. & Mfg. Development					
5.	RDT&E Management Support					
6.	Operational Systems					
li .	Development					
ACQUI	SITION					
7.	Production					
8.	Acceptance Testing	22.0	3,601.0	2,505.0	5,099.0	
9.	Modernization					
10.	Program Support	4.0	1,873.0	828.0	1,223.0	
LIFE-	TIME SUPPORT					
11.	Maintenance	2.0	132.0	136.0	181.0	
12.	Repair					
13.	Testing	3.0	119.0	118.0	292.0	
14.	In-Service Engineering	22.0	4,737.0	2,834.0	5,134.0	
15.	Program Support					·
16.	Retirement					
GENER	AL					
17.	Training/Operational Support					
18.	Simulation, Modeling, &					
ł	Analysis					

Technical Center Site:	Naval Air Warfare Center Aircraft Division Webster Field Annex					
	Patuxent River, Maryland 20670-5304					
Functional Support Area:	5. Sensors and Surveillance Systems					
	5.2 Radar Systems					

-

.

-

-

-

	In-House	In-House	Out-Of-House	Direct	Comments
	WYs	Expend.	Expend.	Cite	
		\$(K)	\$(K)	\$(K)	
RDT&E					
1. Basic Research					
2. Exploratory Development					
3. Advanced Development					
4. Eng. & Mfg. Development	7.0	3,679.0	1,307.0	958.0	
5. RDT&E Management Support					
6. Operational Systems					
Development					
ACQUISITION					
7. Production	4.0	794.0	902.0	240.0	
8. Acceptance Testing	8.0	6,245.0	1,350.0	1,583.0	
9. Modernization					
10. Program Support	2.0	354.0	261.0	410.0	
LIFE-TIME SUPPORT					
11. Maintenance					
12. Repair					
13. Testing	18.0	3,176.0	3,609.0	957.0	
14. In-Service Engineering	13.0	7,555.0	2,238.0	3,173.0	
15. Program Support					
16. Retirement					
GENERAL					
17. Training/Operational Support					
18. Simulation, Modeling, &					
Analysis					

**

Technical Center Site:	Naval Air Warfare Center Aircraft Division WAR
	Warminster, Pennsylvania 18974-5000
Functional Support Area:	1. Platform
[1.2 Aircraft

-

	In-House	In-House	Out-Of-House	Direct	Comments
	WYs	Expend.	Expend.	Cite	
		\$(K)	\$(K)	\$(K)	
RDT&E					
1. Basic Research	2.9	498.8	1.3		
2. Exploratory Development	52.2	9,077.1	6,858.1		
3. Advanced Development	23.4	3,805.0	1,022.8	379.7	
4. Eng. & Mfg. Development	25.6	4,346.0	606.1	133.7	
5. RDT&E Management Support	0.4	54.5			
6. Operational Systems					
Development	2.3	279.8	20.6	162.6	
ACQUISITION					
7. Production	2.0	304.0	13.1		
8. Acceptance Testing					
9. Modernization	24.1	3,715.1	277.4	300.7	
10. Program Support	2.1	345.3			
LIFE-TIME SUPPORT					
11. Maintenance		7,860.0			
12. Repair			-		
13. Testing					
14. In-Service Engineering	26.1	4,399.2	96.4	24.0	
15. Program Support					
16. Retirement					
GENERAL					
17. Training/Operational Support					
18. Simulation, Modeling, &					
Analysis					

ULC: N00421

Technical Center Site:	Naval Air Warfare Center Aircraft Division WAR Warminster, Pennsylvania 18974-5000
Functional Support Area:	 Combat Systems Integration 3.2 Air

_

ſ	In-House	In-House	Out-Of-House	Direct	Comments
	WYs	Expend.	Expend.	Cite	
		\$(K)	\$(K)	\$(K)	
RDT&E					
1. Basic Research	1.1	153.5			
2. Exploratory Development	5.6	987.5	790.8		
3. Advanced Development	170.5	20,708.4	2,721.4	12,874.9	
4. Eng. & Mfg. Development	198.0	34,556.0	13,245.3	8,377.7	
5. RDT&E Management Support	0.7	102.1	126.1	364.3	
6. Operational Systems					
Development	80.4	14,046.4	7,702.1	2,580.2	·
ACOUISITION					
7. Production	34.5	6,008.2	1,702.4	1,598.9	
8. Acceptance Testing					
9. Modernization	167.2	27,156.7	9,372.6	15,255.8	
10. Program Support	0.4	52.5	63.9	216.3	
LIFE-TIME SUPPORT					
11. Maintenance					
12. Repair					
13. Testing					
14. In-Service Engineering	77.7	10,361.3	3,551.2	4,946.6	
15. Program Support					
16. Retirement					
GENERAL					
17. Training/Operational Support					
18. Simulation, Modeling, &					
Analysis					

JIC: N00421

Technical Center Site:	Naval Air Warfare Center Aircraft Division WAR
	Warminster, Pennsylvania 18974-5000
Functional Support Area:	5. Sensors and Surveillance Systems
	5.1 Sonar Systems

-

í		In-House	In-House	Out-Of-House	Direct	Comments
ļ,		WYs	Expend.	Expend.	Cite	
			\$(K)	\$(K)	\$(K)	
RDT&F	6					
1.	Basic Research	0.6	110.0			
2.	Exploratory Development	0.4	75.0	6.8		
3.	Advanced Development	72.6	12,481.2	4,426.2	2,517.1	
4.	Eng. & Mfg. Development	34.8	5,791.7	4,431.8	3,716.4	
5.	RDT&E Management Support					
6.	Operational Systems					
	Development	5.1	832.9	112.3		
ACQUI	SITION					
7.	Production	13.2	2,985.3	226.0	290.1	
8.	Acceptance Testing					
9.	Modernization	0.6	77.1	33.8	47.1	
10.	Program Support	0.4	73.7		43.7	
LIFE-	TIME SUPPORT					
11.	Maintenance					
12.	Repair					
13.	Testing					
14.	In-Service Engineering	4.7	770.0	426.3	316.3	
15.	Program Support					
16.	Retirement					
GENER	AL					······································
17.	Training/Operational Support					
18.	Simulation, Modeling, &					
L	Analysis					

...

Technical Center Site:	Naval Air Warfare Center Aircraft Division WAR
	Warminster, Pennsylvania 18974-5000
Functional Support Area:	5. Sensors and Surveillance Systems
	5.2 Radar Systems

-

-

-

	In-House	In-House	Out-Of-House	Direct	Comments
· · · · ·	WYs	Expend.	Expend.	Cite	
		\$(K)	\$ (K)	\$(K)	
RDT&E					
1. Basic Research	0.9	179.7	97.7		
2. Exploratory Development	1.0	178.5	373.4	350.6	
3. Advanced Development	6.1	1,531.7	1,237.7	5,386.5	
4. Eng. & Mfg. Development	7.5	1,187.7	370.1	199.4	
5. RDT&E Management Support					
6. Operational Systems					
Development	10.3	2,565.0	470.8	2,533.2	
ACQUISITION					
7. Production					
8. Acceptance Testing					
9. Modernization	0.9	142.8	6.1		
10. Program Support	0.7	167.0		28.8	
LIFE-TIME SUPPORT	· · ·				
11. Maintenance					
12. Repair					
13. Testing					
14. In-Service Engineering				76.9	
15. Program Support					
16. Retirement					
GENERAL					
17. Training/Operational Support					· · · · · · · · · · · · · · · · · · ·
18. Simulation, Modeling, &					
Analysis					

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

۰.

Technical Center Site:	Naval Air Warfare Center Aircraft Division WAR Warminster, Pennsylvania 18974-5000
Functional Support Area:	5. Sensors and Surveillance Systems 5.3 Special Sensors

-- -- - - - -

.

-- - -

- - - - -

[^{*****}		In-House	In-House	Out-Of-House	Direct	Comments
		WYs	Expend.	Expend.	Cite	
			\$ (K)	\$(K)	\$(K)	
RDT&F						
1.	Basic Research	0.8	74.3			
2.	Exploratory Development	5.4	875.6	37.7	641.1	
3.	Advanced Development	16.9	1,854.4	1,499.0	4,441.1	
4.	Eng. & Mfg. Development	1.7	74.6	6.0	119.5	
5.	RDT&E Management Support	0.4	42.0	98.7		
6.	Operational Systems					
	Development	10.7	2,185.2	321.8	281.0	
ACQUI	SITION					
7.	Production	2.6	769.1	1.9	273.0	
8.	Acceptance Testing					
9.	Modernization	9.2	2,587.5	152.5	2,070.8	
10.	Program Support					
LIFE-	TIME SUPPORT					
11.	Maintenance					
12.	Repair					
13.	Testing					
14.	In-Service Engineering	5.4	978.0	44.7	799.9	
15.	Program Support					
16.	Retirement					
GENER	AL					
17.	Training/Operational Support					
18.	Simulation, Modeling, &					
	Analysis					

Technical Center Site:	Naval Air Warfare Center Aircraft Division WAR
	Warminster, Pennsylvania 18974-5000
Functional Support Area:	 Sensors and Surveillance Systems Ocean Surveillance

- -- -- -

_

		In-House	In-House	Out-Of-House	Direct	Comments
		WYs	Expend.	Expend.	Cite	1
			\$(K)	\$(K)	\$(K)	
RDT&F						
1.	Basic Research					1
2.	Exploratory Development	0.4	74.3			
3.	Advanced Development					
4.	Eng. & Mfg. Development					
5.	RDT&E Management Support					
6.	Operational Systems					
	Development					
ACQUI	SITION					
7.	Production					
8.	Acceptance Testing					
9.	Modernization					
10.	Program Support					
LIFE-	TIME SUPPORT					
11.	Maintenance			<u>*</u>		
12.	Repair					
13.	Testing					
14.	In-Service Engineering					
15.	Program Support					
16.	Retirement					
GENER	AL					
17.	Training/Operational Support					
18.	Simulation, Modeling, &					
	Analysis					

.

Technical Center Site:	Naval Air Warfare Center Aircraft Division WAR Warminster, Pennsylvania, 18974-5000
Functional Support Area:	8. Defense Systems 8.2 Countermeasure (CM)

- - -

		In-House	In-House	Out-Of-House	Direct	Comments
ł		WYs	Expend.	Expend.	Cite	
9			\$ (K)	\$ (K)	\$(K)	
RDT&E						
1.	Basic Research					
2.	Exploratory Development					
3.	Advanced Development					
4.	Eng. & Mfg. Development					
5.	RDT&E Management Support					
6.	Operational Systems					
	Development					
ACQUI	SITION					
7.	Production	3.5	1,000.1		39,886.0	
8.	Acceptance Testing					
9.	Modernization					
10.	Program Support					
LIFE-	TIME SUPPORT					
11.	Maintenance					
12.	Repair					
13.	Testing					
14.	In-Service Engineering					
15.	Program Support					
16.	Retirement					
GENER	AL					
17.	Training/Operational Support					
18.	Simulation, Modeling, &					
	Analysis					

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

JIC: N00421

Technical Center Site:	Naval Air Warfare Center Aircraft Division WAR
	Warminster, Pennsylvania 18974-5000
Functional Support Area:	8. Defense Systems
	8.3 Electronic Warfare (EW) Systems

- -

-

		In-House	In-House	Out-Of-House	Direct	Comments
		WYs	Expend.	Expend.	Cite	
			<u>\$(K</u>)	\$(K)	\$(K)	
RDT&E						
1.	Basic Research					
2.	Exploratory Development	4.4	872.0		67.3	
3.	Advanced Development	3.9	578.1			
4.	Eng. & Mfg. Development	0.9	265.4	25.1	63.9	
5.	RDT&E Management Support					
6.	Operational Systems					
	Development					
ACQUI	SITION					
7.	Production					
8.	Acceptance Testing					
9.	Modernization					
10.	Program Support					
LIFE-	TIME SUPPORT					
11.	Maintenance					
12.	Repair					
13.	Testing					
14.	In-Service Engineering	0.1	17.6			
15.	Program Support					
16.	Retirement					
GENER	AL					
17.	Training/Operational Support					
18.	Simulation, Modeling, &					
	Analysis					

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

Technical Center Site:	Naval Air Warfare Center Aircraft Division WAR
	Warminster, Pennsylvania 18974-5000
Functional Support Area:	10. General Mission Support
	10.6.2 Crew Equipment and Life Support, Aircraft

- -

-

-

		In-House WYs	In-House Expend.	Out-Of-House Expend.	Direct Cite	Comments
			\$ (K)	\$ (K)	\$(K)	
RDT&E						
1.	Basic Research					
2.	Exploratory Development	4.3	880.9	647.7	293.6	
3.	Advanced Development	17.2	4,302.4	5,279.0	6,415.9	
4.	Eng. & Mfg. Development	28.7	6,539.0	7,439.8	1,235.0	
5.	RDT&E Management Support					
6.	Operational Systems					
	Development					
ACQUI	SITION					
7.	Production	0.5	87.0	519.5		
8.	Acceptance Testing					
9.	Modernization	10.4	1,819.2	193.6	307.8	·
10.	Program Support					
LIFE-7	TIME SUPPORT					
11.	Maintenance					
12.	Repair					
13.	Testing					
14.	In-Service Engineering	21.5	4,063.2	1,012.1	697.7	
15.	Program Support					
16.	Retirement					
GENER	AL					
17.	Training/Operational Support					
18.	Simulation, Modeling, &					
	Analysis					

١

ufC: N00421

Technical Center Site:	Naval Air Warfare Center Aircraft Division WAR Warminster, Pennsylvania 18974-5000
Functional Support Area:	10. General Mission Support 10.9 Activity Mission and Function Support

-

		In-House	In-House	Out-Of-House	Direct	Comments
		WYs	Expend.	Expend.	Cite	
			\$(K)	\$(K)	\$(K)	
RDT&E						
1.	Basic Research					
2.	Exploratory Development					
3.	Advanced Development					
4.	Eng. & Mfg. Development					
5.	RDT&E Management Support				6,560.0	
6.	Operational Systems					
	Development					
ACQUI	SITION					
7.	Production					
8.	Acceptance Testing					
9.	Modernization					
10.	Program Support					
LIFE-	TIME SUPPORT					
11.	Maintenance	3.9	6,209.8			
12.	Repair					
13.	Testing					
14.	In-Service Engineering					
15.	Program Support					
16.	Retirement					
GENEF	AL					
17.	Training/Operational Support					
18.	Simulation, Modeling, &					
	Analysis					

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

--

Technical Center Site:	Naval Air Warfare Center Aircraft Division WAR Warminster, Pennsylvania 18974-5000
Functional Support Area:	11. General Technology Base 11.4 Electronic Devices

-

-

-

-

		In-House	In-House	Out-Of-House	Direct	Comments
		WYs	Expend.	Expend.	Cite	
			<u>\$ (K)</u>	<u>Ş(K)</u>	<u>Ş(K)</u>	
RDT&E						
1.	Basic Research				·····	
2.	Exploratory Development	71.3	12,764.7	22,717.2		
3.	Advanced Development					
4.	Eng. & Mfg. Development					
5.	RDT&E Management Support					
6.	Operational Systems					
	Development					
ACQUI	SITION					
7.	Production					······
8.	Acceptance Testing					
9.	Modernization					
10.	Program Support					
LIFE-	TIME SUPPORT					
11.	Maintenance					· · · · · · · · · · · · · · · · · · ·
12.	Repair					
13.	Testing					
14.	In-Service Engineering					
15.	Program Support					
16.	Retirement					
GENER	AL					
17.	Training/Operational Support					
18.	Simulation, Modeling, &					
ļ	Analysis					

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

Technical Center Site:	Naval Air Warfare Center Aircraft Division WAR Warminster, Pennsylvanía 18974-5000
Functional Support Area:	11. Generic Technology Base 11.5 Materials and Processes

.

		In-House	In-House	Out-Of-House	Direct	Comments
ł		WYs	Expend.	Expend.	Cite	
			\$(K)	\$(K)	\$(K)	
RDT&E						
1.	Basic Research	5.0	739.2	602.5		
2.	Exploratory Development	2.7	453.1	73.0	536.1	
3.	Advanced Development					
4.	Eng. & Mfg. Development					
5.	RDT&E Management Support					
6.	Operational Systems					
	Development					
ACQUI	SITION					
7.	Production					
8.	Acceptance Testing					
9.	Modernization					
10.	Program Support					·
LIFE-	TIME SUPPORT					
11.	Maintenance					
12.	Repair					
13.	Testing					
14.	In-Service Engineering					
15.	Program Support					
16.	Retirement					
GENER	AL					
17.	Training/Operational Support					
18.	Simulation, Modeling, &					
	Analysis					

ufC: N00421

Technical Center Site:	Naval Air Warfare Center Aircraft Division WAR Warminster, Pennsylvania 18974-5000
Functional Support Area:	11. Generic Technology Base 11.10 Other Tech Base Programs

		In-House	In-House	Out-Of-House	Direct	Comments
li –		WYs	Expend.	Expend.	Cite	
			\$(K)	\$(K)	<u>\$(K)</u>	
RDT&E						
1.	Basic Research	2.6	426.2	5.0		
2.	Exploratory Development	1.0	<u>175.6</u>	2.0		
3.	Advanced Development					
4.	Eng. & Mfg. Development					
5.	RDT&E Management Support					
6.	Operational Systems	_				
	Development					
ACQUI	SITION					
7.	Production					
8.	Acceptance Testing					
9.	Modernization					·
10.	Program Support					
LIFE-	TIME SUPPORT	_				
11.	Maintenance					
12.	Repair					
13.	Testing					<u> </u>
14.	In-Service Engineering					
15.	Program Support					
16.	Retirement					
GENER	AL					
17.	Training/Operational Support					
18.	Simulation, Modeling, &		_			
	Analysis					

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

Technical Center Site:	Naval Air Warfare Center Aircraft Division TRN Trenton, New Jersey 08628-0176
Functional Support Area:	1. Platforms 1.2 Aircraft

- --

-

- ----

		In-House	In-House	Out-Of-House	Direct	Comments
H		WYs	Expend.	Expend.	Cite	
			\$(K)	\$(K)	\$(K)	
RDT&E						
1.	Basic Research					······································
2.	Exploratory Development	47.6	8,533.0		6,567.0	
3.	Advanced Development	27.8	2,216.0		535.0	
4.	Eng. & Mfg. Development	239.6	22,482.2		685.0	
5.	RDT&E Management Support	364.0	26,812.7		1,645.6	
6.	Operational Systems					
	Development	10.0	1,000.0			
ACQUI	SITION					
7.	Production					
8.	Acceptance Testing					
9.	Modernization					
10.	Program Support					
LIFE-	TIME SUPPORT					
11.	Maintenance					<u> </u>
12.	Repair					
13.	Testing					
14.	In-Service Engineering					
15.	Program Support					
16.	Retirement				l	
GENER	AL					
17.	Training/Operational Support			 		,,,,,,,
18.	Simulation, Modeling, &					
8	Analysis					

FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

۰.

BRAC 95 DATA CALL 5

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

<u>G. H. Strohsahl, RADM, USN</u> NAME (Please type or print)

5/13/94 Signature

Commander Title

Date

Naval Air Warfare Center Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

NAME (Please type or print)

Title

Signature

Date

Date

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

MAJOR CLAIMANT LEVE

W. C. Bowes, VADM, USN NAME (please type or print)

Commander

Title

Naval Air Systems Command Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

DEPUTY CHIEF OF NAVAL OPERATIONS (LOGISTICS) DEPUTY CHIEF OF STAFF (INSTALLATIONS & LOGISTICS)

reenes E (Please type or print)

gnature

Le /Sun Signature

Date

DATA CALL 5 BRAC-95 CERTIFICATION

Reference: SECNAVNOTE 11000 of 8 December 1993

In accordance with policy set forth by the Secretary of the Navy, personnel of the Department of the Navy, uniformed and civilian, who provide information for use in the BRAC-95 process are required to provide a signed certification that states "I certify that the information contained herein is accurate and complete to the best of my knowledge and belief."

The signing of this certification constitutes a representation that the certifying official has reviewed the information and either (1) personally vouches for its accuracy and completeness or (2) has possession of, and is relying upon, a certification executed by a competent subordinate.

Each individual in your activity generating information for the BRAC-95 process must certify that information. Enclosure (1) is provided for individual certifications and may be duplicated as necessary. You are directed to maintain those certifications at your activity for audit purposes. For purposes of this certification sheet, the commander of the activity will begin the certification process and each reporting senior in the Chain of Command reviewing the information will also sign this certification sheet. This sheet must remain attached to this package and be forwarded up the Chain of Command. Copies must be retained by each level in the Chain of Command for audit purposes.

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

ACTIVITY COMMANDER

100

BARTON D. STRONG NAME (Please type or print)

COMMANDER

Title

NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION PATUXENT RIVER, MD Activity

*NAVAIR did not provide data for inclusion in this package.

DATA CALL 5 Change 2 NAWC AIRCRAFT DIVISION PATUXENT RIVER

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

pg 14, 18, 21

NEXT ECHELON LEVEL (if applicable)

BARTON D. STRONG, RADM, USN NAME (Please type or print) ACTING COMMANDER Title Bouten D. Strong Signature 28 June 1994

Date

Signature

Date

NAVAL AIR WARFARE CENTER Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

NAME (Please type or print)

Title

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

 MAJOR CLAIMANT LEVEL

 W. C. BOWES, VADM, USN

 NAME (Please type or print)

 COMMANDER

 Title

 Date

NAVAL AIR SYSTEMS COMMAND

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

DEPUTY CHIEF OF N	NAVAL OPERATIONS (LOGISTICS)
DEPUTY CHIEF OF ST	AFF (INSTALLATIONS & LOGISTICS)
J. B. GREENE, JR.	March
NAME (Please type or print)	Signature
ACTING	06 JUL 4994

Date

Title

Data Call #5

BRAC-95 CERTIFICATION

Reference: SECNAVNOTE 11000 of 08 December 1993

In accordance with policy set forth by the Secretary of the Navy, personnel of the Department of the Navy, uniformed and civilian, who provide information for use in the BRAC-95 process are required to provide a signed certification that states "I certify that the information contained herein is accurate and complete to the best of my knowledge and belief."

The signing of this certification constitutes a representation that the certifying official has reviewed the information and either (1) personally vouches for its accuracy and completeness or (2) has possession of, and is relying upon, a certification executed by a competent subordinate.

Each individual in your activity generating information for the BRAC-95 process must certify that information. Enclosure (1) is provided for individual certifications and may be duplicated as necessary. You are directed to maintain those certifications at your activity for audit purposes. For purposes of this certification sheet, the commander of the activity will begin the certification process and each reporting senior in the Chain of Command reviewing the information will also sign this certification sheet. This sheet must remain attached to this package and be forwarded up the Chain of Command. Copies must be retained by each level in the Chain of Command for audit purposes.

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

CHANGE II NAWCAD/PAX - 22 JUNE 94 - DATA CALL NUMBER 5

Revision pages 14, 18, 421

ACTIVITY COMMANDER

BARTON D. STRONG NAME (Please type or print)

ignature

Commander ______ Title <u>22 June 1994</u> Date

Naval Air Warfare Center Aircraft Division, Patuxent River, MD Activity DATA CALL 5 CHANGE 1 p 15 k NAWCAD PAX RIVER

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVE	<u>L</u> (if applicable)
	USE Jaman
S	Signature / / / / 94
Ī	Date

COMMANDER Title

W. E. NEWMAN, RADM, USN NAME (Please type or print)

NAVAL AIR WARFARE CENTER Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

NAME (Please type or print)

Title

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

MAJOR CLAIMANT LE

DONALD V. BOECKER, RADM USN

NAME (Please type or print)

COMMANDER (ACTING) Title

NAVAL AIR SYSTEMS COMMAND

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

> **DEPUTY CHIEF OF NAVAL OPERATIONS (LOGISTICS) DEPUTY CHIEF OF STAFF (INSTALLATIONS & LOGISTICS)**

W. A. EARNER

NAME (Please type or print)

nald V. Boecker Aug 94

Signature

Title

Signature

Date

Signature

Date

163

BRAC-95 CERTIFICATION

Reference: SECNAVNOTE 11000 of 08 December 1993

In accordance with policy set forth by the Secretary of the Navy, personnel of the Department of the Navy, uniformed and civilian, who provide information for use in the BRAC-95 process are required to provide a signed certification that states "I certify that the information contained herein is accurate and complete to the best of my knowledge and belief."

The signing of this certification constitutes a representation that the certifying official has reviewed the information and either (1) personally vouches for its accuracy and completeness or (2) has possession of, and is relying upon, a certification executed by a competent subordinate.

Each individual in your activity generating information for the BRAC-95 process must certify that information. Enclosure (1) is provided for individual certifications and may be duplicated as necessary. You are directed to maintain those certifications at your activity for audit purposes. For purposes of this certification sheet, the commander of the activity will begin the certification process and each reporting senior in the Chain of Command reviewing the information will also sign this certification sheet. This sheet must remain attached to this package and be forwarded up the Chain of Command. Copies must be retained by each level in the Chain of Command for audit purposes.

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

CHANGE I NAWCAD/PR 24 May 94 - DATA CALL NUMBER FIVE

ACTIVITY COMMANDER

BARTON D. STRONG NAME (Please type or print)

Signature

MAY 2 7 1994

COMMANDER Title

NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION <u>PATUXENT RIVER</u> Activity Data Call 5 Change 3 Pax River

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

W. E.	NEWMAN, RADM, USN
NAME	(Please type or print)
Comma	nder
Title	
Naval	Air Warfare Center

	_
D	
Date	

Signature

163

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

NAME (Please type or print)

Title

Signature

Date

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

W. C. BOWES, VADM, USN

NAME (Please type or print)

Commander

Title

Naval Air Systems Command Activity

MAJOR CLAIMANT LEVEL Signature 19 AUS 9 Date

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

DEPUTY CHIEF OF NAVAL OPERATIONS (LOGISTICS) DEPUTY CHIEF OF STAFF (INSTALLATIONS & LOGISTICS)

W. A. EARNER

NAME (Please type or print)

Signature

Date

Title

DATA CALL 5 BRAC-95 CERTIFICATION

Reference: SECNAVNOTE 11000 of 8 December 1993

In accordance with policy set forth by the Secretary of the Navy, personnel of the Department of the Navy, uniformed and civilian, who provide information for use in the BRAC-95 process are required to provide a signed certification that states "I certify that the information contained herein is accurate and complete to the best of my knowledge and belief."

The signing of this certification constitutes a representation that the certifying official has reviewed the information and either (1) personally vouches for its accuracy and completeness or (2) has possession of, and is relying upon, a certification executed by a competent subordinate.

Each individual in your activity generating information for the BRAC-95 process must certify that information. Enclosure (1) is provided for individual certifications and may be duplicated as necessary. You are directed to maintain those certifications at your activity for audit purposes. For purposes of this certification sheet, the commander of the activity will begin the certification process and each reporting senior in the Chain of Command reviewing the information will also sign this certification sheet. This sheet must remain attached to this package and be forwarded up the Chain of Command. Copies must be retained by each level in the Chain of Command for audit purposes.

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

ACTIVITY COMMANDER

CAPTAIN JOHN B. PATTERSON NAME (Please type or print) Jih Blatterson Signature 1/26/94

ACTING COMMANDER Title

Date

NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION PATUXENT RIVER, MD Activity

DATA CALL #5 CHANGE OF 22 SEP 94 BRAC-95 CERTIFICATION P9 15

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief. <u>NEXT ECHELON LEVEL</u> (if applicable)

WILLIAM E. NEWMAN NAME (Please type or print)

163

COMMANDER Title

NAVAL AIR WARFARE CENTER Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief. <u>NEXT ECHELON LEVEL</u> (if applicable)

NAME (Please type or print)

Signature

ature

Date

Date

Title

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

WILLIAM C. BOWES NAME (Please type or print)

COMMANDER Title

NAVAL AIR SYSTEMS COMMMAND Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief. DEPUTY CHIEF OF NAVAL OPERATIONS (LOGISTICS) DEPUTY CHIEF OF STAFF (INSTALLATIONS & LOGISTICS)

W. A. EARNER

Signature

NAME (Please type or print)

Title

Date

DATA CALL #5 CHANGE OF 22 SEP 94 BRAC-95 CERTIFICATION

Reference: SECNAVNOTE 11000 of 8 December 1993

In accordance with policy set forth by the Secretary of the Navy, personnel of the Department of the Navy, uniformed and civilian, who provide information for use in the BRAC-95 process are required to provide a signed certification that states "I certify that the information contained herein is accurate and complete to the best of my knowledge and belief."

The signing of this certification constitutes a representation that the certifying official has reviewed the information and either (1) personally vouches for its accuracy and completeness or (2) has possession of, and is relying upon, a certification executed by a competent subordinate.

Each individual in your activity generating information for the BRAC-95 process must certify that information. Enclosure (1) is provided for individual certifications and may be duplicated as necessary. You are directed to maintain those certifications at your activity for audit purposes. For purposes of this certification sheet, the commander of the activity will begin the certification process and each reporting senior in the Chain of Command reviewing the information will also sign this certification sheet. This sheet must remain attached to this package and be forwarded up the Chain of Command. Copies must be retained by each level in the Chain of Command for audit purposes.

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

ACTIVITY COMMANDER

CAPTAIN JOHN B. PATTERSON NAME (Please type or print) ACTING COMMANDER ______ Title

NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION PATUXENT RIVER, MD

Dato Call # 5 BSAT + Audit Changes Bar River

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXI	<u>ECHELON LEVEL</u> (It applicable)
NAME (Please type or print)	Signature
ACTING COMMANDER	9/20/94
Title	Date
NAVAL AIR WARFARE CENTER Activity	

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

NAME (Please type or print)

Title

Signature

Signature

Date

Date

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

MAJOR CLAIMANT

DONALD V. BOECKER, RADM USN WXXQXXRQWESXXXARMXXUSN NAME (Please type or print)

COMMANDER (ACTING)

Title

-

NAVAL AIR SYSTEMS COMMAND

	-	-	
AC			v
4			

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

> DEPUTY CHIEF OF NAVAL OPERATIONS (LOGISTICS) **DEPUTY CHIEF OF STAFF (INSTALLATIONS & LOGISTICS)**

W. A. EARNER

NAME (Please type or print)

Signature

Title

Date

DEPARTMENT OF THE NAVY NAVAL AIR WARFARE CENTER NAVAL AIR WARFARE CENTER HEADQUARTERS 1421 JEFFERSON DAVIS HWY ARLINGTON VA 22243

.

IN REPLY REFER TO

1000 Ser NAWC-21C/

.

SEP 1 6 1901

From: Commander, Naval Air Warfare Center Distribution To:

Subj: RELEASE OF BASE REALIGNMENT AND CLOSURE DATA CALL IN THE ABSENCE OF THE COMMANDER

1. During the period 19-21 September I will be on travel.

2. Mr. Lewis L. Lundberg, Technical Director, Naval Air Warfare Center, is designated as acting as Acting Commander during this period. As such, he is authorized to release completed Base Realignment and Closure Data Calls and to provide certification for the data calls.

W. E. ŃEWMAN

Distribution: COMNAVAIRWARCENWPNDIV COMNAVAIRWARCENACDIV NAVAIRWARTRASYSDIV

DATA CALL #5 PATUXENT RIVER BRAC-95 CERTIFICATION

Reference: SECNAVNOTE 11000 of 8 December 1993

In accordance with policy set forth by the Secretary of the Navy, personnel of the Department of the Navy, uniformed and civilian, who provide information for use in the BRAC-95 process are required to provide a signed certification that states "I certify that the information contained herein is accurate and complete to the best of my knowledge and belief."

The signing of this certification constitutes a representation that the certifying official has reviewed the information and either (1) personally vouches for its accuracy and completeness or (2) has possession of, and is relying upon, a certification executed by a competent subordinate.

Each individual in your activity generating information for the BRAC-95 process must certify that information. Enclosure (1) is provided for individual certifications and may be duplicated as necessary. You are directed to maintain those certifications at your activity for audit purposes. For purposes of this certification sheet, the commander of the activity will begin the certification process and each reporting senior in the Chain of Command reviewing the information will also sign this certification sheet. This sheet must remain attached to this package and be forwarded up the Chain of Command. Copies must be retained by each level in the Chain of Command for audit purposes.

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

ACTIVITY COMMANDER

Signature

CAPTAIN JOHN B. PATTERSON NAME (Please type or print)

SEP | 6 | 1994

<u>ACTING COMMANDER</u> Title

Date

NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION PATUXENT RIVER, MD

DATA CALL #5 NAWAD Patuxent River

I certify that the information contained herein is accurate and complete to the best of myknowledge and belief.

NEXT ECHELON LEVEL (if applicable)

NAME (Please type or print)

Signature

Title

Date

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

NAME (Please type or print)

Title

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

MAJOR CLAIMANT LEVEL

W. C. Bowes, VADM, USN NAME (please type or print)

Commander

Title

Naval Air Systems Command Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

DEPUTY CHIEF OF NAVAL OPERATIONS (LOGISTICS) DEPUTY CHIEF OF STAFF (INSTALLATIONS & LOGISTICS)

W. A. EARNER

NAME (Please type or print)

Signature

h/Jun-31 0 . 7 54

Title

Date

Signature

Date

Signature

Date

DATA CALL #5 NAWAD Patuxent River

BRAC-95 CERTIFICATION

Reference: SECNAVNOTE 11000 of 08 December 1993

In accordance with policy set forth by the Secretary of the Navy, personnel of the Department of the Navy, uniformed and civilian, who provide information for use in the BRAC-95 process are required to provide a signed certification that states "I certify that the information contained herein is accurate and complete to the best of my knowledge and belief."

The signing of this certification constitutes a representation that the certifying official has reviewed the information and either (1) personally vouches for its accuracy and completeness or (2) has possession of, and is relying upon, a certification executed by a competent subordinate.

Each individual in your activity generating information for the BRAC-95 process must certify that information. Enclosure (1) is provided for individual certifications and may be duplicated as necessary. You are directed to maintain those certifications at your activity for audit purposes. For purposes of this certification sheet, the commander of the activity will begin the certification process and each reporting senior in the Chain of Command reviewing the information will also sign this certification sheet. This sheet must remain attached to this package and be forwarded up the Chain of Command. Copies must be retained by each level in the Chain of Command for audit purposes.

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

ACTIVITY COMMANDER

W. E. Newman, RADM, USN NAME (Please type or print)

Commander

Title

<u>UEV Jarmon</u> Signature <u>10/28/94</u>

Date

<u>Naval Air Warfare Center</u> Activity

160

Activity Information:

Activity Name:	NAVAL AVIATION MAINTENANCE OFFICE
UIC:	68626
Host Activity Name (if response is for a tenant activity):	Naval Air Warfare Center, Aircraft Division, Patuxent River, MD
Host Activity UIC:	00421

General Instructions/Background. A separate response to this data call must be completed for each Department of the Navy (DON) host, independent and tenant activity which separately budgets BOS costs (regardless of appropriation), <u>and</u>, is located in the United States, its territories or possessions.

1. <u>Base Operating Support (BOS) Cost Data</u>. Data is required which captures the total annual cost of operating and maintaining Department of the Navy (DON) shore installations. Information must reflect FY 1996 budget data supporting the FY 1996 NAVCOMPT Budget Submit. Two tables are provided. Table 1A identifies "Other than DBOF Overhead" BOS costs and Table 1B identifies "DBOF Overhead" BOS costs. These tables must be completed, as appropriate, for all DON host, independent or tenant activities which separately budget BOS costs (regardless of appropriation), and, are located in the United States, its territories or possessions. Responses for DBOF activities may need to include both Table 1A and 1B to ensure that all BOS costs, including those incurred by the activity in support of tenants, are identified. If both table 1A and 1B are submitted for a single DON activity, please ensure that no data is double counted (that is, included on <u>both</u> Table 1A and 1B). The following tables are designed to collect all BOS costs currently budgeted, regardless of appropriation, e.g., Operations and Maintenance, Research and Development, Military Personnel, etc. Data must reflect FY 1996 and should be reported in thousands of dollars.

a. <u>Table 1A</u> - Base Operating Support Costs (Other Than DBOF Overhead). This Table should be completed to identify "Other Than DBOF Overhead" Costs. Display, in the format shown on the table, the O&M, R&D and MPN resources currently budgeted for BOS services. O&M cost data must be consistent with data provided on the BS-1 exhibit. Report only direct funding for the activity. Host activities should not include reimbursable support provided to tenants, since tenants will be separately reporting these costs. Military personnel costs should be included on the appropriate lines of the table. Please ensure that individual lines of the table do not include duplicate costs. Add additional lines to the table (following line 2j., as necessary, to

identify any additional cost elements not currently shown). <u>Leave shaded areas of table blank.</u>

<u>Table 1A</u> - Base Operating Support Costs (Other Than DBOF Overhead)			
Activity Name: NAMO UIC: 68626			
	FY 1996 BOS Costs (\$000)		
Category	Non-Labor	Labor	Total
1. Real Property Maintenance Costs:	0	0	0
1a. Maintenance and Repair	0	0	0
1b. Minor Construction	0	0	. 0
1c. Sub-total 1a. and 1b.	0	0	0
2. Other Base Operating Support Costs:			
2a. Utilities	130	0	0
2b. Transportation	25	0	0
2c. Environmental	0	0	0
2d. Facility Leases	0	0	0
2e. Morale, Welfare & Recreation	0	0	0
2f. Bachelor Quarters	0	0	0
2g. Child Care Centers	0	0	0
2h. Family Service Centers	0	0	0
2i. Administration	0	0	0
2j. Other (Specify)*	325	0	0
2k. Sub-total 2a. through 2j:	480	0	0
3. Grand Total (sum of 1c. and 2k.):	480	0	0

*TELEPHONE SERVICE, MESSENGER CONTRACT, JANITORIAL SERVICE, CIVILIAN ASSISTANCE PROGRAM

b. Funding Source. If data shown on Table 1A reflects more than one appropriation, then please provide a break out of the total shown for the "3. Grand-Total" line, by appropriation:

<u>Appropriation</u> <u>Amount (\$000)</u> OM&N Only

c. <u>Table 1B</u> - Base Operating Support Costs (DBOF Overhead). This Table should be submitted for all current DBOF activities. Costs reported should reflect BOS costs supporting the DBOF activity itself (usually included in the G&A cost of the activity). For DBOF activities which are tenants on another installation, total cost of BOS incurred by the tenant activity for itself should be shown on this table. It is recognized that differences exist among DBOF activity groups regarding the costing of base operating support: some groups reflect all such costs only in general and administrative (G&A), while others spread them between G&A and production overhead. Regardless of the costing process, all such costs should be included on Table 1B. The Minor Construction portion of the FY 1996 capital budget should be included on the appropriate line. Military personnel costs (at civilian equivalency rates) should also be included on the appropriate lines of the table. Please ensure that individual lines of the table do not include duplicate costs. Also ensure that there is no duplication between data provided on Table 1A. and 1B. These two tables must be mutually exclusive, since in those cases where both tables are submitted for an activity, the two tables will be added together to estimate total BOS costs at the activity. Add additional lines to the table (following line 2l., as necessary, to identify any additional cost elements not currently shown). Leave shaded areas of table blank.

Other Notes: All costs of operating the five Major Range Test Facility Bases at DBOF activities (even if direct RDT&E funded) should be included on Table 1B. Weapon Stations should include underutilized plant capacity costs as a DBOF overhead "BOS expense" on Table 1B..

Activity Name: NAMO				
	FY 1996 Net (Cost From LIC/FUND 4 (\$000)		
Category	Non-Labor	Labor	Labor Total	
1. Real Property Maintenance Costs:				
1a. Real Property Maintenance (>\$15K)			-	
1b. Real Property Maintenance (<\$15K)				
1c. Minor Construction (Expensed)				
1d. Minor Construction (Capital Budget)				
1c. Sub-total 1a. through 1d.	0	0	0	
2. Other Base Operating Support Costs:				
2a. Command Office				
2b. ADP Support				
2c. Equipment Maintenance				
2d. Civilian Personnel Services				
2e. Accounting/Finance				
2f. Utilities				
2g. Environmental Compliance				
2h. Police and Fire				
2i. Safety				
2j. Supply and Storage Operations				
2k. Major Range Test Facility Base Costs				
21. Other (Specify)				
2m. Sub-total 2a. through 2l:	0	0	0	
3. Depreciation	0	0	0	
4. Grand Total (sum of 1c., 2m., and 3.) :	0	0	0	

2. Services/Supplies Cost Data. The purpose of Table 2 is to provide information about projected FY 1996 costs for the purchase of services and supplies by the activity. (Note: Unlike Question 1 and Tables 1A and 1B, above, this question is not limited to overhead costs.) The source for this information, where possible, should be either the NAVCOMPT OP-32 Budget Exhibit for O&M activities or the NAVCOMPT UC/FUND-1/IF-4 exhibit for DBOF activities. Information must reflect FY 1996 budget data supporting the FY 1996 NAVCOMPT Budget Submit. Break out cost data by the major sub-headings identified on the OP-32 or UC/FUND-1/IF-4 exhibit, disregarding the sub-headings on the exhibit which apply to civilian and military salary costs and depreciation. Please note that while the OP-32 exhibit aggregates information by budget activity, this data call requests OP-32 data for the activity responding to the data call. Refer to NAVCOMPTINST 7102.2B of 23 April 1990. Subi: Guidance for the Preparation, Submission and Review of the Department of the Navy (DON) Budget Estimates (DON Budget Guidance Manual) with Changes 1 and 2 for more information on categories of costs identified. Any rows that do not apply to your activity may be left blank. However, totals reported should reflect all costs, exclusive of salary and depreciation.

<u>Table 2</u> - Services/Supplies Cost Data		
Activity Name: NAMO	UIC: 68626	
Cost Category	FY 1996 Projected Costs (\$000)	
Travel:	110	
Material and Supplies (including equipment):	70	
Industrial Fund Purchases (other DBOF (purchases)	: 8	
Transportation:		
Other Purchases (Contract support, etc.):	367	
Total:	555	

3. Contractor Workyears.

a. On-Base Contract Workyear Table. Provide a projected estimate of the number of contract workyears expected to be <u>performed "on base"</u> in support of the installation during FY 1996. Information should represent an annual estimate on a full-time equivalency basis. Several categories of contract support have been identified in the table below. While some of the categories are self-explanatory, please note that the category "mission support" entails management support, labor service and other mission support contracting efforts, e.g., aircraft maintenance, RDT&E support, technical services in support of aircraft and ships, etc.

<u>Table 3</u> - Contract Workyears		
Activity Name: Naval Aviation Maintenance Office	UIC: 68626	
Contract Type	FY 1996 Estimated Number of Workyears On-Base	
Construction:	0	
Facilities Support:	0	
Mission Support:	28	
Procurement:	0	
Other:*	0	
Total Workyears:	28	

* Note: Provide a brief narrative description of the type(s) of contracts, if any, included under the "Other" category.

b. Potential Disposition of On-Base Contract Workyears. If the mission/functions of your activity were relocated to another site, what would be the anticipated disposition of the <u>on-base contract workyears</u> identified in Table 3.?

1) Estimated number of contract workyears which would be transferred to the receiving site (This number should reflect the number of jobs which would in the future be contracted for at the receiving site, not an estimate of the number of people who would move or an indication that work would necessarily be done by the same contractor(s)): 28

2) Estimated number of workyears which would be eliminated: 0

3) Estimated number of contract workyears which would remain in place (i.e., contract would remain in place in current location even if activity were relocated outside of the local area): 0

c. "Off-Base" Contract Workyear Data. Are there any contract workyears located in the <u>local</u> community, but not on-base, which would either be eliminated or relocated if your activity were to be closed or relocated? If so, then provide the following information (ensure that numbers reported below do not double count numbers included in 3.a. and 3.b., above):

No. of Additional Contract Workyears Which Would Be Eliminated	General Type of Work Performed on Contract (e.g., engineering support, technical services, etc.)
62.6*	ADP and Technical Support

No. of Additional Contract Workyears Which Would Be Relocated	General Type of Work Performed on Contract (e.g., engineering support, technical services, etc.)
77.1**	ADP/Engineering/Technical Support

* If the activity were to be closed these positions would be eliminated.

** If, however, the activity relocated, these positions would then be required at the new location.

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

WILLIAM J. TINSTON, JR. RADM USN

(Please type or print LOGISTICS AND FLEET SUPPORT

Title

NAVAL AIR SYSTEMS COMMAND

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

NAME (Please type of print

Title

Activity

In certify that the information herein is accurate and complete to the best of my knowledge and belief.

MAJOR CLAIMANT LEVEL

W. C. BOWES, VADM USN

NAME (Please type or print

COMMANDER

Title

Title

NAVAL AIR SYSTEMS COMMAND

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge belief.

> DEPUTY CHIEF OF NAVAL OPERATIONS (LOGISTICS) DEPUTY CHIEF OF STAFF (INSTALLATIONS & LOGISTICS) W. A. EARNER

				······································	
NAME	(Please	type	of	print	

Signature

Date

Signature

Signature

Date

Date

NEXT ECHELON LEVEL

Signature Date
BRAC-95 CERTIFICATION

Reference: SECNAVNOTE 11000 of 08 December 1993

In accordance with policy set forth by the Secretary of the Navy, personnel of the Department of the Navy, uniformed and civilian, who provide information for use in the BRAC-95 process are required to provide a signed certification that states "I certify that the information contained herein is accurate and complete to the best of my knowledge and belief."

The signing of this certification constitutes a representation that the certifying official has reviewed the information and either (1) personally vouches for its accuracy and completeness or (2) has possession of, and is relying upon, a certification executed by a competent subordinate.

Each individual in your activity generating information for the BRAC-95 process must certify that information. Enclosure (1) is provided for individual certifications and may be duplicated as necessary. You are directed to maintain those certifications at your activity for audit purposes. For purposes of this certification sheet, the commander of the activity will begin the certification process and each reporting senior in the Chain of Command reviewing the information will also sign this certification sheet. This sheet must remain attached to this package and be forwarded up the Chain of Command. Copies must be retained by each level in the Chain of Command for audit purposes.

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief. <u>ACTIVITY COMMANDER</u>

RICHARD D. TIPPS NAME (Please type or print)

M. D. Comp. Signature

Commanding Officer Title

18 July 1994

Naval Aviation Maintenance Office Activity

DATA CALL 66

10-

Activity Information:

Activity Name:	NADOC	
UIC:	68520	
Host Activity Name (if response is for a tenant activity):	NAWCAD PAX RIVER	
Host Activity UIC:	00421	

General Instructions/Background. A separate response to this data call must be completed for each Department of the Navy (DON) host, independent and tenant activity which separately budgets BOS costs (regardless of appropriation), and, is located in the United States, its territories or possessions.

1. <u>Base Operating Support (BOS) Cost Data</u>. Data is required which captures the total annual cost of operating and maintaining Department of the Navy (DON) shore installations. Information must reflect FY 1996 budget data supporting the FY 1996 NAVCOMPT Budget Submit. Two tables are provided. Table 1A identifies "Other than DBOF Overhead" BOS costs and Table 1B identifies "DBOF Overhead" BOS costs. These tables must be completed, as appropriate, for all DON host, independent or tenant activities which separately budget BOS costs (regardless of appropriation), and, are located in the United States, its territories or possessions. Responses for DBOF activities may need to include both Table 1A and 1B to ensure that all BOS costs, including those incurred by the activity in support of tenants, are identified. If both table 1A and 1B are submitted for a single DON activity, please ensure that no data is double counted (that is, included on <u>both</u> Table 1A and 1B). The following tables are designed to collect all BOS costs currently budgeted, regardless of appropriation, e.g., Operations and Maintenance, Research and Development, Military Personnel, etc. Data must reflect FY 1996 and should be reported in thousands of dollars.

a. <u>Table 1A</u> - Base Operating Support Costs (Other Than DBOF Overhead). This Table should be completed to identify "Other Than DBOF Overhead" Costs. Display, in the format shown on the table, the O&M, R&D and MPN resources currently budgeted for BOS services. O&M cost data must be consistent with data provided on the BS-1 exhibit. Report only direct funding for the activity. Host activities should not include reimbursable support provided to tenants, since tenants will be separately reporting these costs. Military personnel costs should be included on the appropriate lines of the table. Please ensure that individual lines of the table do not include duplicate costs. Add additional lines to the table (following line 2j., as necessary, to identify any additional cost elements not currently shown). Leave shaded areas of table blank.

<u>Table 1A</u> - Base Operating Support Costs (Other Than DBOF Overhead)			
Activity Name: NADOC UIC: 68520			
	FY 1996 BOS Costs (\$000)		
Category	Non-Labor	Labor	Total
1. Real Property Maintenance Costs:			
1a. Maintenance and Repair			
1b. Minor Construction			
1c. Sub-total 1a. and 1b.			•
2. Other Base Operating Support Costs:			
2a. Utilities	430		430
2b. Transportation			
2c. Environmental			
2d. Facility Leases			
2e. Morale, Welfare & Recreation			-
2f. Bachelor Quarters			
2g. Child Care Centers			
2h. Family Service Centers			
2i. Administration			
* 2j. Other (Specify) Communications	211		
Other Eng		240 *	451
2k. Sub-total 2a. through 2j:			
3. Grand Total (sum of 1c. and 2k.):	641	240	881

These costs reflect within CONUS (NADOC Pax River) vice costs annotated on BS-1 exhibit

* Non-Government Labor

b. Funding Source. If data shown on Table 1A reflects more than one appropriation, then please provide a break out of the total shown for the "3. Grand-Total" line, by appropriation:

NOT APPLICABLE

<u>Appropriation</u> <u>Amount (\$000)</u>

c. <u>Table 1B</u> - Base Operating Support Costs (DBOF Overhead). This Table should be submitted for all current DBOF activities. Costs reported should reflect BOS costs supporting the DBOF activity itself (usually included in the G&A cost of the activity). For DBOF activities which are tenants on another installation, total cost of BOS incurred by the tenant activity for itself should be shown on this table. It is recognized that differences exist among DBOF activity groups regarding the costing of base operating support: some groups reflect all such costs only in general and administrative (G&A), while others spread them between G&A and production overhead. Regardless of the costing process, all such costs should be included on Table 1B. The Minor Construction portion of the FY 1996 capital budget should be included on the appropriate line. Military personnel costs (at civilian equivalency rates) should also be included on the appropriate lines of the table. Please ensure that individual lines of the table do not include duplicate costs. Also ensure that there is no duplication between data provided on Table 1A. and 1B. These two tables must be mutually exclusive, since in those cases where both tables are submitted for an activity, the two tables will be added together to estimate total BOS costs at the activity. Add additional lines to the table (following line 21., as necessary, to identify any additional cost elements not currently shown). Leave shaded areas of table blank.

Other Notes: All costs of operating the five Major Range Test Facility Bases at DBOF activities (even if direct RDT&E funded) should be included on Table 1B. Weapon Stations should include underutilized plant capacity costs as a DBOF overhead "BOS expense" on Table 1B..

Table 1B - Base Operating Support Costs (DBOF Overhead) NOT APPLICABLE				
Activity Name:		UIC:		
0 -4	FY 1996 Net Cost From UC/FUND-4 (\$000)			
Category	Non-Labor	Labor	Total	
1. Real Property Maintenance Costs:				
1a. Real Property Maintenance (>\$15K)				
1b. Real Property Maintenance (<\$15K)				
1c. Minor Construction (Expensed)				
1d. Minor Construction (Capital Budget)				
1c. Sub-total 1a. through 1d.				
2. Other Base Operating Support Costs:				
2a. Command Office				
2b. ADP Support				
2c. Equipment Maintenance				
2d. Civilian Personnel Services				
2e. Accounting/Finance				
2f. Utilities				
2g. Environmental Compliance		·		
2h. Police and Fire				
2i. Safety				
2j. Supply and Storage Operations				
2k. Major Range Test Facility Base Costs				
21. Other (Specify)				
2m. Sub-total 2a. through 2l:				
3. Depreciation				
4. Grand Total (sum of 1c., 2m., and 3.) :				

2. <u>Services/Supplies Cost Data</u>. The purpose of Table 2 is to provide information about projected FY 1996 costs for the purchase of services and supplies by the activity. (Note: Unlike Question 1 and Tables 1A and 1B, above, this question is not limited to overhead costs.) The source for this information, where possible, should be either the NAVCOMPT OP-32 Budget Exhibit for O&M activities or the NAVCOMPT UC/FUND-1/IF-4 exhibit for DBOF activities. Information must reflect FY 1996 budget data supporting the FY 1996 NAVCOMPT Budget Submit. Break out cost data by the major sub-headings identified on the OP-32 or UC/FUND-1/IF-4 exhibit, disregarding the sub-headings on the exhibit which apply to civilian and military salary costs and depreciation. Please note that while the OP-32 exhibit aggregates information by budget activity, this data call requests OP-32 data for the activity responding to the data call. Refer to NAVCOMPTINST 7102.2B of 23 April 1990. Subj: Guidance for the Preparation, Submission and Review of the Department of the Navy (DON) Budget Estimates (DON Budget Guidance Manual) with Changes 1 and 2 for more information on categories of costs identified. Any rows that do not apply to your activity may be left blank. However, totals reported should reflect all costs, exclusive of salary and depreciation.

Table 2 - Services/Supplies Cost Data			
Activity Name: NADOC	UIC: 68520		
Cost Category	FY 1996 Projected Costs (\$000)		
Travel:	151		
Material and Supplies (including equipment):	128		
Industrial Fund Purchases (other DBOF purchases):	2		
Transportation:	25		
Other Purchases (Contract support, etc.):	79		
Total:	385		

3. Contractor Workyears.

a. On-Base Contract Workyear Table. Provide a projected estimate of the number of contract workyears expected to be <u>performed "on base"</u> in support of the installation during FY 1996. Information should represent an annual estimate on a full-time equivalency basis. Several categories of contract support have been identified in the table below. While some of the categories are self-explanatory, please note that the category "mission support" entails management support, labor service and other mission support contracting efforts, e.g., aircraft maintenance, RDT&E support, technical services in support of aircraft and ships, etc.

<u>Table 3</u> - Contract Workyears				
Activity Name: NADOC UIC: 68520				
Contract Type	FY 1996 Estimated Number of Workyears On-Base			
Construction:				
Facilities Support:	8			
Mission Support:				
Procurement:				
Other:*				
Total Workycars:	8			

* Note: Provide a brief narrative description of the type(s) of contracts, if any, included under the "Other" category.

* Note: Estimated number of workyears based on a cost of \$30,000 per workyear.

b. Potential Disposition of On-Base Contract Workyears. If the mission/functions of your activity were relocated to another site, what would be the anticipated disposition of the <u>on-base contract workyears</u> identified in Table 3.?

1) Estimated number of contract workyears which would be transferred to the receiving site (This number should reflect the number of jobs which would in the future be contracted for at the receiving site, not an estimate of the number of people who would move or an indication that work would necessarily be done by the same contractor(s)):

8

2) Estimated number of workyears which would be eliminated:

0

3) Estimated number of contract workyears which would remain in place (i.e., contract would remain in place in current location even if activity were relocated outside of the local area):

0

c. "Off-Base" Contract Workyear Data. Are there any contract workyears located in the <u>local</u> community, but not on-base, which would either be eliminated or relocated if your activity were to be closed or relocated? If so, then provide the following information (ensure that numbers reported below do not double count numbers included in 3.a. and 3.b., above):

NOT APPLICABLE

No. of Additional Contract Workyears Which Would Be Eliminated	General Type of Work Performed on Contract (e.g., engineering support, technical services, etc.)				

No. of Additional Contract Workyears Which Would Be Relocated	General Type of Work Performed on Contract (e.g., engineering support, technical services, etc.)

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL	(if applicable)
M.L. JORDAN	1 X Jan
NAME (Please type or print	Signature
A(R-43	7/13/94
Title	Date
NAVAIRSYSCOMHQ	

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if WILLIAM J. TINSTON, JR. RADM USN Signature NAME (Please type of print ASSITANT COMMANDER FOR LOGISTICS AND FLEET SUPPORT Date Title NAVAL AIR SYSTEMS COMMAND

Activity

In certify that the information herein is accurate and complete to the best of my knowledge and belief.

MAJOR CLAIMANT LEVEL

W. C. BOWES, VADM USN NAME (Please type or print

NAME (Please type of print

COMMANDER

Title

NAVAL AIR SYSTEMS COMMAND Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge belief.

DEPUTY CHIEF OF NAVAL OPERATIONS (LOGISTICS) DEPUTY CHIEF OF STAFF (INSTALLATIONS & LOGISTICS) W. A. EARNER

WEame	
Signature	
8/10/74	

Title

Date

Date

BRAC-95 CERTIFICATION

Reference: SECNAV NOTE 11000 dtd 8 Dec 93

In accordance with policy set forth by the Secretary of the Navy, personnel of the Department of the Navy, uniformed and civilian, who provide information for use in the BRAC-95 process are required to provide a signed certification that states "I certify that the information contained herein is accurate and complete to the best of my knowledge and belief."

The signing of this certification constitutes a representation that the certifying official has reviewed the information and either (1) personally vouches for its accuracy and completeness or (2) has possession of, and is relying upon, a certification executed by a competent subordinate.

Each individual in your activity generating information for the BRAC-95 process must certify that information. Enclosure (1) is provided for individual certifications and may be duplicated as necessary. You are directed to maintain those certifications at your activity for audit purposes. For purposes of this certification sheet, the commander of the activity will begin the certification process and each reporting senior in the Chain of Command reviewing the information will also sign this certification sheet. This sheet must remain attached to this package and be forwarded up the Chain of Command. Copies must be retained by each level in the Chain of Command for audit purposes.

I certify the information contained herein is accurate and complete to the best of my knowledge and belief.

ACTIVITY COMMANDER

DONALD A. SCHRAMM, CAPT, USN NAME (Please type of print)

Commanding Officer

Title

12 July 1994 Date

Signature

Naval Aviation Depot Operations Center

Activity

Activity Name:	Naval Air Warfare Center Aircraft Division (NAWCAD) Patuxent River
UIC:	N00421
Host Activity Name (if response is for a tenant activity):	Not Applicable
Host Activity UIC:	Not Applicable

Activity Information:

General Instructions/Background. A separate response to this data call must be completed for each Department of the Navy (DON) host, independent and tenant activity which separately budgets BOS costs (regardless of appropriation), and, is located in the United States, its territories or possessions.

1. <u>Base Operating Support (BOS) Cost Data</u>. Data is required which captures the total annual cost of operating and maintaining Department of the Navy (DON) shore installations. Information must reflect FY 1996 budget data supporting the FY 1996 NAVCOMPT Budget Submit. Two tables are provided. Table 1A identifies "Other than DBOF Overhead" BOS costs and Table 1B identifies "DBOF Overhead" BOS costs. These tables must be completed, as appropriate, for all DON host, independent or tenant activities which separately budget BOS costs (regardless of appropriation), and, are located in the United States, its territories or possessions. Responses for DBOF activities may need to include both Table 1A and 1B to ensure that all BOS costs, including those incurred by the activity in support of tenants, are identified. If both table 1A and 1B are submitted for a single DON activity, please ensure that no data is double counted (that is, included on <u>both</u> Table 1A and 1B). The following tables are designed to collect all BOS costs currently budgeted, regardless of appropriation, e.g., Operations and Maintenance, Research and Development, Military Personnel, etc. Data must reflect FY 1996 and should be reported in thousands of dollars.

a. <u>Table 1A</u> - Base Operating Support Costs (Other Than DBOF Overhead). This Table should be completed to identify "Other Than DBOF Overhead" Costs. Display, in the format shown on the table, the O&M, R&D and MPN resources currently budgeted for BOS services. O&M cost data must be consistent with data provided on the BS-1 exhibit. Report only direct funding for the activity. Host activities should not include reimbursable support provided to tenants, since tenants will be separately reporting these costs. Military personnel costs should be

included on the appropriate lines of the table. Please ensure that individual lines of the table do not include duplicate costs. Add additional lines to the table (following line 2j., as necessary, to identify any additional cost elements not currently shown). Leave shaded areas of table blank.

Page 1 7 July 1994 UIC N00421 FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

.

	Table 1A - Base Operating Support Costs (Other Than DBOF Overhead)				
Ac	Activity Name: NAWCAD PATUXENT RIVER UIC: N00421				
	Category		FY 1996 BOS Costs (\$000)		(\$000)
			Non-Labor	Labor	Total
1.	Rea	l Property Maintenance Costs:			
	la.	Maintenance and Repair	7,343	1,572	8,915
	1b.	Minor Construction	990	0	990
	1c.	Sub-total 1a. and 1b.	8,333	1,572	9,905
2.	Oth	er Base Operating Support Costs:			
	2a.	Utilities	2,082	0	2,082
	2b.	Transportation	19	0	19
	2c.	Environmental	2,097	3	2,100
	2d.	Facility Leases	0	0	0
	2e.	Morale, Welfare & Recreation	1,587	992	2,579
	2f.	Bachelor Quarters	943	21	964
	2g.	Child Care Centers	258	751	1,009
	2h.	Family Service Centers	174	204	378
	2i.	Administration	0	0	0
	2j.	Other (Specify)*			A COLOR
	Project Unit 171AWC Project 17AWC Utilities Project Unit 17AFW Base		1,421	8,632	10,053
			140	0	140
			675	83	758
		Communications			
	2k.	Sub-total 2a. through 2j:	9,396	10,686	20,082
3.	3. Grand Total (sum of 1c. and 2k.):		17,729	12,258	29,987**

* 2j includes Galley/Messing, Office Equipment Maintenance, Photo Lab, Printing, Laundry, Legal Services, Air Operations/Firefighters, Aircraft Intermediate Maintenance, Safety, Security, and Common Support provided by HRO, Supply, Comptroller, etc. (G&A Cost Centers).

** This includes \$22K for Indy under 17AWC and \$29K for Warminster under 17ABQ.

Page 2 7 July 1994 UIC N00421 FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

----- ----- ----

.

NAWCAD TRENTON BRAC 91 INFLUX

	Table 1A - Base Operating Support Costs (Other Than DBOF Overhead)					
Ac	Activity Name: NAWCAD PATUXENT RIVER (TRENTON UIC: N00421					
IN	INFLUX)					
			FY 19	FY 1996 BOS Costs (\$000)		
		Category		· · · · ·		
			Non-Labor	Labor	Total	
1.	Rea	Property Maintenance Costs:				
	la.	Maintenance and Repair				
	<u>1b.</u>	Minor Construction				
	1c.	Sub-total 1a. and 1b.	0	0	0	
2.	Oth	er Base Operating Support Costs:				
	2a.	Utilities				
	2b.	Transportation				
	2c.	Environmental				
	2d.	Facility Leases				
	2e.	Morale, Welfare & Recreation				
	2f.	Bachelor Quarters				
	2g.	Child Care Centers				
	2h.	Family Service Centers				
	2i.	Administration				
	2j.	Other (Specify)				
	2k.	Sub-total 2a. through 2j:				
3.	Gra	nd Total (sum of 1c. and 2k.):	0	0	0	

Page 3 7 July 1994 UIC N00421 FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

.

	<u>Table 1A</u> - Base Operating Support Costs (Other Than DBOF Overhead)				
Activity Name: NAWCAD PATUXENT RIVERUIC: N00421(WARMINSTER INFLUX)			1		
		Category	FY 19	96 BOS Costs	(\$000)
			Non-Labor	Labor	Total
1.	Real	Property Maintenance Costs:			
	<u>1a</u> .	Maintenance and Repair			
	1b.	Minor Construction			
	1c.	Sub-total 1a. and 1b.	0	0	0
2.	Oth	er Base Operating Support Costs:			
	2a.	Utilities			
	2b.	Transportation			
	2c.	Environmental			
	2d.	Facility Leases			· · · · · · · · · · · · · · · · · · ·
	2e.	Morale, Welfare & Recreation			
	2f.	Bachelor Quarters			
	2g.	Child Care Centers			
	2h.	Family Service Centers			
	<u>2i</u> .	Administration			
	2j.	Other (Specify)			
	2k.	Sub-total 2a. through 2j:	0	0	0
3.	Gra	nd Total (sum of 1c. and 2k.):	0	0	0

NAWCAD WARMINSTER BRAC 91/93 INFLUX

Page 4 7 July 1994 UIC N00421 FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

b. Funding Source. If data shown on Table 1A reflects more than one appropriation, then please provide a break out of the total shown for the "3. Grand-Total" line, by appropriation

Appropriation Amount (\$000)

All data is O&MN

c. Table 1B - Base Operating Support Costs (DBOF Overhead). This Table should be submitted for all current DBOF activities. Costs reported should reflect BOS costs supporting the DBOF activity itself (usually included in the G&A cost of the activity). For DBOF activities which are tenants on another installation, total cost of BOS incurred by the tenant activity for itself should be shown on this table. It is recognized that differences exist among DBOF activity groups regarding the costing of base operating support: some groups reflect all such costs only in general and administrative (G&A), while others spread them between G&A and production overhead. Regardless of the costing process, all such costs should be included on Table 1B. The Minor Construction portion of the FY 1996 capital budget should be included on the appropriate line. Military personnel costs (at civilian equivalency rates) should also be included on the appropriate lines of the table. Please ensure that individual lines of the table do not include duplicate costs. Also ensure that there is no duplication between data provided on Table 1A, and These two tables must be mutually exclusive, since in those cases where both tables are $1\mathbf{B}$ submitted for an activity, the two tables will be added together to estimate total BOS costs at the Add additional lines to the table (following line 21., as necessary, to identify any activity. additional cost elements not currently shown). Leave shaded areas of table blank.

<u>Other Notes</u>: All costs of operating the five Major Range Test Facility Bases at DBOF activities (even if direct RDT&E funded) should be included on Table 1B. Weapon Stations should include underutilized plant capacity costs as a DBOF overhead "BOS expense" on Table 1B..

Page 5 7 July 1994 UIC N00421 FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

,

Table 1B - Base Operating Support Costs (DBOF Overhead)				
Activity Name: NAWCAD PATUXENT RIVER UIC: N00421			· · · · · · · · · · · · · · · · · · ·	
Category	FY 1996 Net Cost From UC/FUND-4 (\$000)			
	Non-Labor	Labor	Total	
1. Real Property Maintenance Costs:				
la. Real Property Maintenance (>\$25K)	2,253	0	2,253	
1b. Real Property Maintenance (<\$25K)	8,926	0	8,926	
1c. Minor Construction (Expensed)	661	0	661	
Id. Minor Construction (Capital Budget)	[548]	0	[548]*	
1e. Sub-total 1a. through 1d.	11,840	0	11,840	
2. Other Base Operating Support Costs:				
2a. Command Office	2,558	2,630	5,188	
2b. ADP Support	2,471	1,988	4,459	
2c. Equipment Maintenance	1,616	0	1,616	
2d. Civilian Personnel Services	473	1,533	2,006	
2e. Accounting/Finance	247	2,858	3,105	
2f. Utilities	4,407	0	4,407	
2g. Environmental Compliance	2,992	599	3,591	
2h. Police and Fire	313	942	1,255	
21. Safety	60	304	364	
2J. Supply and Storage Operations	850	1,797	2,647	
2k. Major Range Test Facility Base Costs	[21,520]	[10,408]	[31,928] **	
21. Other (Specify)		- ·		
Printing and Duplication	529	0	529	
Travel and Training	623	398	1,021	
Janitorial	1,425	0	1,425	
Audiovisual	755	221	976	
Headquarters	572	0	572	
Public Works	1,679	603	2,282	
Communications	848	28	876	
Awards	0	800	800	
Military	0	373	373	
Other G&A Cost Center Support	714	3.537	4.251	
2m. Sub-total 2a. through 21:	23.132	18.611	41.743	
3. Depreciation	4.477	0	4.477	
4. Grand Total (sum of 1c., 2m., and 3.):	39.449	18.611	58.060***	

* Minor Construction (Capital Budget) is provided as a non-add; this is an obligational number; total expenses for Minor Construction in the Capital Budget are covered in the Depreciation Line.

Page 6 7 July 1994 UIC N00421 FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

** MRTFB costs are shown as a non-add; the MRTFB is charged an assessment amount which is a share of total G&A costs; therefore the MRTFB costs are included as a share of the other line items. The amount in 2k. is shown to illustrate the Labor/Non-Labor split of MRTFB costs. *** Total agrees with NAWCAD Patuxent River FUND-4 submission of June, 1994. NOTE: Since FECA costs are not part of base operations, those are not included.

> Page 7 7 July 1994 UIC N00421 FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

NAWCAD TRENTON BRAC 91 IMPACTS

Table 1B - Base Operating Support Costs (DBOF Overhead)				
Activity Name: NAWCAD PATUXENT RIVER (TRENTON UIC: N00421				
Category	FY 1996	Net Cost From UC/FUND-4		
	(\$000)			
	Non-Labor	Labor	Total	
1. Real Property Maintenance Costs:				
la. Real Property Maintenance (>\$25K)	190	0	190	
lb. Real Property Maintenance (<\$25K)	745	0	745	
Ic. Minor Construction (Expensed)	54	0	54	
Id. Minor Construction (Capital Budget)	0	0	0	
1e. Sub-total 1a. through 1d.	989	0	989	
2. Other Base Operating Support Costs:				
2a. Command Office	214	220	434	
2b. ADP Support	205	165	370	
2c. Equipment Maintenance	136	0	136	
2d. Civilian Personnel Services	39	128	167	
2e. Accounting/Finance	21	237	258	
2f. Utilities	371	0	371	
2g. Environmental Compliance	248	50	298	
2h. Police and Fire	26	78	104	
2i. Safety	5	27	32	
2j. Supply and Storage Operations	71	150	221	
2k. Major Range Test Facility Base Costs	[2,980]	[1,539]	[4,519]*	
21. Other (Specify)	655	484	1,139 **	
2m. Sub-total 2a. through 21:	1,991	1,539	3,530	
3. Depreciation	0	0	0	
4. Grand Total (sum of 1c., 2m., and 3.):	2,980	1,539	4,519 ***	

*MRTFB costs are shown as a non-add; 100% of Trenton's overhead is MRTFB funded.

** Other includes the cost of Military Labor and all other Cost Center Support including Procurement, Air Operations, Security, Administration, Aircraft Maintenance, Technical Information, Public Works, Communication, Transportation, etc.

*** Grand Total does not agree with Trenton's FUND-4 exhibit since the costs above represent only the G&A support costs for the 130 engineers scheduled to relocate to Pax River as a result of BRAC 91. People relocating as a result of BRAC 93 will not become part of NAWCAD PAX until the FY97 time period.

Page 8 7 July 1994 UIC N00421 FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

.

	Table 1B - Base Operating Support Costs (DBOF Overhead)				
Ac	Activity Name: NAWCAD PATUXENT RIVER UIC: N00421				
<u>(</u>	(WARMINSTER INFLUX)				
	Category	FY 1996 Net Cost From UC/FUND-4 (\$000)			
		Non-Labor	Labor	Total	
1.	Real Property Maintenance Costs:				
	la. Real Property Maintenance (>\$25K)	520	0	520	
	lb. Real Property Maintenance (<\$25K)	1,084	2,145	3,229	
	1c. Minor Construction (Expensed)	0	0	0	
	Id. Minor Construction (Capital Budget)	0	0	0	
	1e. Sub-total 1a. through 1d.	1,604	2,145	3,749	
2.	Other Base Operating Support Costs:				
	*2a. Command Office	9,323	2,005	11,328	
	2b. ADP Support	0	0	0	
	2c Equipment Maintenance	126	223	349	
	2d. Civilian Personnel Services	1,632	863	2,495	
	2e. Accounting/Finance	5,020	2,914	7,934	
[2f. Utilities	3,089	318	3,409	
	2g. Environmental Compliance	358	307	665	
	2h. Police and Fire	1,128	1,690	2,818	
	2i. Safety	9	146	155	
	2j. Supply and Storage Operations	1,927	2,364	4,291	
	2k. Major Range Test Facility Base Costs	0	0	0	
	21. Other (Specify) Engineering Support	5,152	1,770	6,922	
	Military Labor	0	418	418	
	2m. Sub-total 2a. through 21:	27,764	13,018	40,784	
3.	Depreciation	1,118	0	1,184	
4.	Grand Total (sum of 1c., 2m., and 3.):	30,486	15,163	45,649	

NAWCAD WARMINSTER BRAC 91 IMPACTS

* Since FECA and B&P/MSI costs are not part of base operations, those are not included. 2a includes the following: Comptroller, Human Resources, Command Administration, Staff Assistants, Supply and Test & Evaluation costs.

Note: The sum of the Grand Totals on the three Warminster Table 1B submissions ties back to the Warminster FUND-4. The 1B does not necessarily tie back by line item since the BRAC call was approached from a different angle.

Page 9 7 July 1994 UIC N00421 FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

2. Services/Supplies Cost Data. The purpose of Table 2 is to provide information about projected FY 1996 costs for the purchase of services and supplies by the activity. (Note: Unlike Question 1 and Tables 1A and 1B, above, this question is not limited to overhead costs.) The source for this information, where possible, should be either the NAVCOMPT OP-32 Budget Exhibit for O&M activities or the NAVCOMPT UC/FUND-1/IF-4 exhibit for DBOF activities. Information must reflect FY 1996 budget data supporting the FY 1996 NAVCOMPT Budget Submit. Break out cost data by the major sub-headings identified on the OP-32 or UC/FUND-1/IF-4 exhibit, disregarding the sub-headings on the exhibit which apply to civilian and military salary costs and depreciation. Please note that while the OP-32 exhibit aggregates information by budget activity, this data call requests OP-32 data for the activity responding to the data call Refer to NAVCOMPTINST 7102.2B of 23 April 1990, Subj: Guidance for the Preparation, Submission and Review of the Department of the Navy (DON) Budget Estimates (DON Budget Guidance Manual) with Changes 1 and 2 for more information on categories of costs identified. Any rows that do not apply to your activity may be left blank. However, totals reported should reflect all costs, exclusive of salary and depreciation.

Table 2 - Services/Supplies Cost Data			
Activity Name: NAWCAD PATUXENT RIVER	UIC: N00421		
Cost Category	FY 1996 Projected Costs (\$000)		
Travel:	6,677		
Material and Supplies (including equipment):	97,838		
Industrial Fund Purchases (other DBOF purchases):	5,194		
Transportation:	6,152		
Other Purchases (Contract support, etc.):	233,534		
Total:	349,395		

NOTE: Total ties to Patuxent River's IF-4 submission as follows:

 Total IF-4
 512,917

 Less: Civ Pers Cost (158,672)
 Mil Pers Cost (373)

 Depreciation
 (4,477)

 Total
 349,395

* TRANSPORTATION INCLUDES: Freight and express, trucking and other local transportation, mail transportation and transportation of household goods related to permanent change of station.

Page 10 7 July 1994 UIC N00421 FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

NAWCAD TRENTON BRAC 91 IMPACTS

Table 2 - Services/Supplies Cost Data		
Activity Name: NAWCAD PATUXENT RIVER (TRENTON INFLUX)	UIC:	N00421
Cost Category		FY 1996 Projected Costs (\$000)
Travel:		60
Material and Supplies (including equipment):		337
Industrial Fund Purchases (other DBOF purchases):		0
Transportation:		5
Other Purchases (Contract support, etc.):		228
Total:		630

NAWCAD WARMINSTER BRAC 91 IMPACTS

Table 2 - Services/Supplies Cost Data			
Activity Name: NAWCAD PATUXENT RIVER (Warminster INFLUX)	UIC: N00421		
Cost Category	FY 1996 Projected Costs (\$000)		
Travel:	17,537		
Material and Supplies (including equipment):	15,194		
Industrial Fund Purchases (other DBOF purchases):	9,634		
Transportation:	255		
Other Purchases (Contract support, etc.):	133,568		
Total:	176,188		

Note: The sum of Warminster's three pieces tie to Warminster's portion of the NAWCAD NAV submit as follows:

IF4 Total Costs	299,542	
Less: Civ Pers	104,605	
Mil pers	2,21	3
Depreciation	14,560	

Total

178,164

Page 11 7 July 1994 UIC N00421 FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

3. Contractor Workyears.

a. On-Base Contract Workyear Table. Provide a projected estimate of the number of contract workyears expected to be <u>performed "on base"</u> in support of the installation during FY 1996. Information should represent an annual estimate on a full-time equivalency basis. Several categories of contract support have been identified in the table below. While some of the categories are self-explanatory, please note that the category "mission support" entails management support, labor service and other mission support contracting efforts, e.g., aircraft maintenance, RDT&E support, technical services in support of aircraft and ships, etc.

<u>Table 3</u> - Contract Workyears		
Activity Name: NAWCAD PATUXENT RIVER	UIC: N00421	
Contract Type	FY 1996 Estimated Number of Workyears On-Base	
Construction:	2087.2	
Facilities Support:	370	
Mission Support:	1604.7	
Procurement:	0	
Other:*	679.9	
Total Workyears:	4741.8	

* Note: Provide a brief narrative description of the type(s) of contracts, if any, included under the "Other" category.

(36 WYs) Technical and administrative services to support Technical Information Department customers in the following areas: Graphics arts, audiovisual, technical reports, forms management, photography and photographic processing. Naval Air Systems Command Contracts supporting (3 WYs) RDT&E and laboratory technical support services; (320 WYs) engineering manufacturing and development (EMD) of the F/A-18E/F; (8 WYs) F-14 information/instruction and training in the installation and operation, modification of maintenance automation systems equipment; (27 WYs) T-45 aircraft maintenance support; (4 WYs) F/A-18 C/D information/instruction and training; (12.9 WYs) engineering support for F/A-18 aircraft maintenance; (65 WYs) Navair contract for Bell Boeing. (204 WYs) Naval Air Station contracts which support the following: Admin Support, Public Affairs Office, Religious Program, Financial Support, Family Service Center, Counseling and Assistance Center, MWR, Physical Security (Pass Office), Hazmat Program, Fuel, Laundry and Office Moving Services.

> Page 12 7 July 1994 UIC N00421 FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

. _ . _ . _

NAWCAD TRENTON BRAC 91 IMPACTS

Table 3 - Contract Workyears		
Activity Name: NAWCAD PATUXENT RIVER (TRENTON INFLUX)	UIC: N00421	
Contract Type	FY 1996 Estimated Number of Workyears On-Base	
Construction:	0	
Facilities Support:	0	
Mission Support:	10	
Procurement:	0	
Other:*	0	
Total Workyears:	10	

* Note: Provide a brief narrative description of the type(s) of contracts, if any, included under the "Other" category.

Table 3 - Contract Workyears		
Activity Name: NAWCAD PATUXENT RIVER (WARMINSTER INFLUX)	UIC: N00421	
Contract Type	FY 1996 Estimated Number of Workyears On-Base	
Construction:	0	
Facilities Support:	0	
Mission Support:	0	
Procurement:	0	
Other:*	0	
Total Workyears:	0	

NAWCAD WARMINSTER BRAC 91 IMPACTS

* Note: Provide a brief narrative description of the type(s) of contracts, if any, included under the "Other" category.

Page 13 7 July 1994 UIC N00421 FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

b. Potential Disposition of On-Base Contract Workyears. If the mission/functions of your activity were relocated to another site, what would be the anticipated disposition of the <u>on-base contract workyears</u> identified in Table 3.?

1) Estimated number of contract workyears which would be transferred to the receiving site (This number should reflect the number of jobs which would in the future be contracted for at the receiving site, not an estimate of the number of people who would move or an indication that work would necessarily be done by the same contractor(s)):

1673 WORKYEARS FROM NAWCAD PATUXENT RIVER

10 WORKYEARS FROM NAWC AD TRENTON

2) Estimated number of workyears which would be eliminated:

102 WORKYEARS

3) <u>Estimated number of contract workyears which would remain in place</u> (i.e., contract would remain in place in current location even if activity were relocated outside of the local area):

All NAS contracts (except AIMD which are included in technical) will remain:

204 (NAS) + 364 (Facilities/NAS) + (56) CSD = 624

c. "Off-Base" Contract Workyear Data. Are there any contract workyears located in the <u>local</u> community, but not on-base, which would either be eliminated or relocated if your activity were to be closed or relocated? If so, then provide the following information (ensure that numbers reported below do not double count numbers included in 3.a. and 3.b., above):

NO

No. of Additional Contract Workyears Which Would Be Eliminated	General Type of Work Performed on Contract (e.g., engineering support, technical services, etc.)
0	N/A

Page 14 7 July 1994 UIC N00421 FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION

.

.

.

No. of Additional Contract Workyears	General Type of Work Performed on Contract (e.g., engineering
Which Would Be	support, technical services, etc.)
Relocateu	
0	N/A

Page 15 7 July 1994 UIC N00421 FOR OFFICIAL USE ONLY PREDECISIONAL INFORMATION DATA CALL 66 NAWCAD Pax River

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

W. E. NEWMAN, RADM, USN

NAME (Please type or print)

COMMANDER

Title

NAVAL AIR WARFARE CENTER Activity

Signature Date

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

Signature

Date

NAME (Please type or print)

Title

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

MAJO W. C. BOWES, VADM, USN	DR CLAIMANT LEVEL
NAME (Please type or print)	Signature 24 A UG R
Title	Date

NAVAL AIR SYSTEMS COMMAND

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

DEPUTY CHIEF OF NAVAL OPERATIONS (LOGISTICS) DEPUTY CHIEF OF STAFF (INSTALLATIONS & LOGISTICS)

W. A. EARNER

NAME (Please type or print)

Signature

Title

DATA CALL 66 BRAC-95 CERTIFICATION

Reference: SECNAVNOTE 11000 of 8 December 1993

In accordance with policy set forth by the Secretary of the Navy, personnel of the Department of the Navy, uniformed and civilian, who provide information for use in the BRAC-95 process are required to provide a signed certification that states "I certify that the information contained herein is accurate and complete to the best of my knowledge and belief."

The signing of this certification constitutes a representation that the certifying official has reviewed the information and either (1) personally vouches for its accuracy and completeness or (2) has possession of, and is relying upon, a certification executed by a competent subordinate.

Each individual in your activity generating information for the BRAC-95 process must certify that information. Enclosure (1) is provided for individual certifications and may be duplicated as necessary. You are directed to maintain those certifications at your activity for audit purposes. For purposes of this certification sheet, the commander of the activity will begin the certification process and each reporting senior in the Chain of Command reviewing the information will also sign this certification sheet. This sheet must remain attached to this package and be forwarded up the Chain of Command. Copies must be retained by each level in the Chain of Command for audit purposes.

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

ACTIVITY COMMANDER

BARTON D. STRONG NAME (Please type or print)

COMMANDER Title

NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION PATUXENT RIVER, MD Activity

DATA CALL 63 FAMILY HOUSING DATA

.....

Information on Family Housing is required for use in BRAC-95 return on investment calculations.

Installation Name:	NAWCAD Pax River MD
Unit Identification Code (UIC):	00421
Major Claimant:	NAVAIR

Percentage of Military Families Living On-Base:	44%
Number of Vacant Officer Housing Units:	0
Number of Vacant Enlisted Housing Units:	0
FY 1996 Family Housing Budget (\$000):	1,888.8
Total Number of Officer Housing Units:	29
Total Number of Enlisted Housing Units:	304

Note: All data should reflect figures as of the beginning of FY 1996. If major DON installations share a family housing complex, figures should reflect an estimate of the installation's prorated share of the family housing complex.

Enclosure (1)

163

4

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

MAJOR CLAIMANT LEVEL

J. E. BUFFINGTON, RADM, CEC, USN NAME (Please type or print)

COMMANDER Title

NAVAL FACILITIES ENGINEERING COMMAND Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

> DEPUTY CHIEF OF NAVAL OPERATIONS (LOGISTICS) DEPUTY CHIEF OF STAFF (INSTALLATIONS & LOGISTICS)

W. A. EARNER

NAME (Please type or print)

Signature

2/25/94

Title

Date

BRAC-95 CERTIFICATION

Reference: SECNAV NOTE 11000 dtd 8 Dec 93

In accordance with policy set forth by the Secretary of the Navy, personnel of the Department of the Navy, uniformed and civilian, who provide information for use in the BRAC-95 process are required to provide a signed certification that states "I certify that the information contained herein is accurate and complete to the best of my knowledge and belief."

The signing of this certification constitutes a representation that the certifying official has reviewed the information and either (1) personally vouches for its accuracy and completeness or (2) has possession of, and is relying upon, a certification executed by a competent subordinate.

Each individual in your activity generating information for the BRAC-95 process must certify that information. Enclosure (1) is provided for individual certifications and may be duplicated as necessary. You are directed to maintain those certifications at your activity for audit purposes. For purposes of this certification sheet, the commander of the activity will begin the certification process and each reporting senior in the Chain of Command reviewing the information will also sign this certification sheet. This sheet must remain attached to this package and be forwarded up the Chain of Command. Copies must be retained by each level in the Chain of Command for audit purposes.

I certify the information contained herein is accurate and complete to the best of my knowledge and belief.

ACTIVITY COMMANDER

Date

W.A. Waters, CAPT, CEC, USN NAME (Please type of print)

<u>Commanding Officer</u> Title

NORTHNAVFACENGCOM

Activity

BRAC-95 CERTIFICATION

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

Sandra B. Culbertson NAME (Please type or print)

ulberton Signaturé Date

<u>Housing Management Specia</u>list Title

Division

Housing/Real Estate

Department

NORTHNAVFACENGCOM Activity

Enclosure (1)

163

Activity Name:	Morale, Welfare and Recreation Training Unit
UIC:	N00022
Host Activity Name (if response is for a tenant activity):	Naval Air Station, Patuxent River
Host Activity UIC:	N00421

Activity Information:

General Instructions/Background. A separate response to this data call must be completed for each Department of the Navy (DON) host, independent and tenant activity which separately budgets BOS costs (regardless of appropriation), and, is located in the United States, its territories or possessions.

1. <u>Base Operating Support (BOS) Cost Data</u>. Data is required which captures the total annual cost of operating and maintaining Department of the Navy (DON) shore installations. Information must reflect FY 1996 budget data supporting the FY 1996 NAVCOMPT Budget Submit. Two tables are provided. Table 1A identifies "Other than DBOF Overhead" BOS costs and Table 1B identifies "DBOF Overhead" BOS costs. These tables must be completed, as appropriate, for all DON host, independent or tenant activities which separately budget BOS costs (regardless of appropriation), and, are located in the United States, its territories or possessions. Responses for DBOF activities may need to include both Table 1A and 1B to ensure that all BOS costs, including those incurred by the activity in support of tenants, are identified. If both table 1A and 1B are submitted for a single DON activity, please ensure that no data is double counted (that is, included on <u>both</u> Table 1A and 1B). The following tables are designed to collect all BOS costs currently budgeted, regardless of appropriation, e.g., Operations and Maintenance, Research and Development, Military Personnel, etc. Data must reflect FY 1996 and should be reported in thousands of dollars.

a. <u>Table 1A</u> - Base Operating Support Costs (Other Than DBOF Overhead). This Table should be completed to identify "Other Than DBOF Overhead" Costs. Display, in the format shown on the table, the O&M, R&D and MPN resources currently budgeted for BOS services. O&M cost data must be consistent with data provided on the BS-1 exhibit. Report only direct funding for the activity. Host activities should not include reimbursable support provided to tenants, since tenants will be separately reporting these costs. Military personnel costs should be included on the appropriate lines of the table. Please ensure that individual lines of the table do not include duplicate costs. Add additional

- -----

DATA CALL 66 INSTALLATION RESOURCES

lines to the table (following line 2j., as necessary, to identify any additional cost elements not currently shown). Leave shaded areas of table blank.

Table 1A - Base Operating Support Costs (Other Than DBOF Overhead)				
Activity Name: Morale, Welfare and Recreation Training UIC: N00022 Unit			22	
	FY 199	FY 1996 BOS Costs (\$000)		
Category	Non-Labor	Labor	Total	
1. Real Property Maintenance Costs:		-		
1a. Maintenance and Repair	0	0	0	
1b. Minor Construction	0	0	0	
1c. Sub-total 1a. and 1b.	0	0	0	
2. Other Base Operating Support Costs:				
2a. Utilities	80	0	80	
2b. Transportation	0	0	0	
2c. Environmental	0	0	0	
2d. Facility Leases	0	θ	0	
2e. Morale, Welfare & Recreation	0	0	0	
2f. Bachelor Quarters	0	0	0	
2g. Child Care Centers	0	0	0	
2h. Family Service Centers	0	0	0	
2i. Administration	0	0	0	
2j. Other (Specify) Grounds Maintenance/Janitorial	25	0	25	
2k. Sub-total 2a. through 2j:	105	0	105	
3. Sub- Total (sum of 1c. and 2k.):	105	0	105	

b. Funding Source. If data shown on Table 1A reflects more than one appropriation, then please provide a break out of the total shown for the "3. Grand-Total" line, by appropriation:

<u>Appropriation</u>	<u>Amount (\$000)</u>		
Non-Appropriated	\$ 25		
0&M,N	\$ 80		
Total	\$105		

c. <u>Table 1B</u> - Base Operating Support Costs (DBOF Overhead). This Table should be submitted for all current DBOF activities. Costs reported should reflect BOS costs supporting the DBOF activity itself (usually included in the G&A cost of the activity). For DBOF activities which are tenants on another installation, total cost of BOS incurred by the tenant activity for itself should be shown on this table. It is recognized that differences exist among DBOF activity groups regarding the costing of base operating support: some groups reflect all such costs only in general and administrative (G&A), while others spread them between G&A and production overhead. Regardless of the costing process, all such costs should be included on Table 1B. The Minor Construction portion of the FY 1996 capital budget should be included on the appropriate line. Military personnel costs (at civilian equivalency rates) should also be included on the appropriate lines of the table. Please ensure that individual lines of the table do not include duplicate costs. Also ensure that there is no duplication between data provided on Table 1A. and 1B. These two tables must be mutually exclusive, since in those cases where both tables are submitted for an activity, the two tables will be added together to estimate total BOS costs at the activity. Add additional lines to the table (following line 21., as necessary, to identify any additional cost elements not currently shown). Leave shaded areas of table blank.

<u>Other Notes</u>: All costs of operating the five Major Range Test Facility Bases at DBOF activities (even if direct RDT&E funded) should be included on Table 1B. Weapon Stations should include underutilized plant capacity costs as a DBOF overhead "BOS expense" on Table 1B..

Activity Name: Morale, Welfare and Recreation Training Unit		UIC: N00022	
-	FY 1996 Net Cost From UC/FUND-4 (\$000)		
Category	Non-Labor	Labor	Total
1. Real Property Maintenance Costs:			
1a. Real Property Maintenance (>\$15K)	0	0	(
1b. Real Property Maintenance (<\$15K)	0	0	(
1c. Minor Construction (Expensed)	0	0	(
1d. Minor Construction (Capital Budget)	0	0	(
1c. Sub-total 1a. through 1d.	0	0	(
2. Other Base Operating Support Costs:			
2a. Command Office	0	0	
2b. ADP Support	0	0	(
2c. Equipment Maintenance	0	0	
2d. Civilian Personnel Services	0	0	(
2e. Accounting/Finance	0	0	1
2f. Utilities	0	0	(
2g. Environmental Compliance	0	0	
2h. Police and Fire	0	0	
2i. Safety	0	0	
2j. Supply and Storage Operations	0	0	
2k. Major Range Test Facility Base Costs	0	0	
21. Other (Specify)	0	0	
2m. Sub-total 2a. through 21:	0	0	
3. Depreciation	0	0	

.
2. <u>Services/Supplies Cost Data</u>. The purpose of Table 2 is to provide information about projected FY 1996 costs for the purchase of services and supplies by the activity. (Note: Unlike Question 1 and Tables 1A and 1B, above, this question is not limited to overhead costs.) The source for this information, where possible, should be either the NAVCOMPT OP-32 Budget Exhibit for O&M activities or the NAVCOMPT UC/FUND-1/IF-4 exhibit for DBOF activities. Information must reflect FY 1996 budget data supporting the FY 1996 NAVCOMPT Budget Submit. Break out cost data by the major sub-headings identified on the OP-32 or UC/FUND-1/IF-4 exhibit, disregarding the sub-headings on the exhibit which apply to civilian and military salary costs and depreciation. Please note that while the OP-32 exhibit aggregates information by budget activity, this data call requests OP-32 data for the activity responding to the data call. Refer to NAVCOMPTINST 7102.2B of 23 April 1990, Subj: Guidance for the Preparation, Submission and Review of the Department of the Navy (DON) Budget Estimates (DON Budget Guidance Manual) with Changes 1 and 2 for more information on categories of costs identified. Any rows that do not apply to your activity may be left blank. However, totals reported should reflect all costs, exclusive of salary and depreciation.

<u>Table 2</u> - Services/Supplies Cost Data		
Activity Name: Morale, Welfare and Recreation Training Unit	UIC: N00022	
Cost Category		FY 1996 Projected Costs (\$000)
Travel:		223
Material and Supplies (including equipment):		. 0
Industrial Fund Purchases (other DBOF purchases):		0
Transportation:		0
Other Purchases (Contract support, etc.):		22,840
Total:		23,063

3. Contractor Workyears.

a. On-Base Contract Workyear Table. Provide a projected estimate of the number of contract workyears expected to be <u>performed "on base"</u> in support of the installation during FY 1996. Information should represent an annual estimate on a full-time equivalency basis. Several categories of contract support have been identified in the table below. While some of the categories are self-explanatory, please note that the category "mission support" entails management support, labor service and other mission support contracting efforts, e.g., aircraft maintenance, RDT&E support, technical services in support of aircraft and ships, etc.

<u>Table 3</u> - Contract Workyears		
Activity Name: Morale, Welfare and Recreation Training Unit	UIC: N00022	
Contract Type	FY 1996 Estimated Number of Workyears On-Base	
Construction:	0	
Facilities Support:	0	
Mission Support:	0	
Procurement:	0	
Other:*	0	
Total Workyears:	0	

* Note: Provide a brief narrative description of the type(s) of contracts, if any, included under the "Other" category.

b. Potential Disposition of On-Base Contract Workyears. If the mission/functions of your activity were relocated to another site, what would be the anticipated disposition of the <u>on-base contract workyears</u> identified in Table 3.?

1) Estimated number of contract workyears which would be transferred to the receiving site (This number should reflect the number of jobs which would in the future be contracted for at the receiving site, not an estimate of the number of people who would move or an indication that work would necessarily be done by the same contractor(s)):

N/A

2) Estimated number of workyears which would be eliminated:

N/A

3) <u>Estimated number of contract workyears which would remain in place</u> (i.e., contract would remain in place in current location even if activity were relocated outside of the local area):

N/A

c. "Off-Base" Contract Workyear Data. Are there any contract workyears located in the <u>local</u> community, but not on-base, which would either be eliminated or relocated if your activity were to be closed or relocated? If so, then provide the following information (ensure that numbers reported below do not double count numbers included in 3.a. and 3.b., above):

No. of Additional Contract Workyears Which Would Be Eliminated	General Type of Work Performed on Contract (e.g., engineering support, technical services, etc.)
0	N/A

No. of Additional Contract Workyears Which Would Be Relocated	General Type of Work Performed on Contract (e.g., engineering support, technical services, etc.)
0	N/A

Activity Information:

Activity Name:	Navy Motion Picture Service
UIC:	N00022
Host Activity Name (if response is for a tenant activity):	N/A
Host Activity UIC:	N/A

General Instructions/Background. A separate response to this data call must be completed for each Department of the Navy (DON) host, independent and tenant activity which separately budgets BOS costs (regardless of appropriation), and, is located in the United States, its territories or possessions.

1. <u>Base Operating Support (BOS) Cost Data</u>. Data is required which captures the total annual cost of operating and maintaining Department of the Navy (DON) shore installations. Information must reflect FY 1996 budget data supporting the FY 1996 NAVCOMPT Budget Submit. Two tables are provided. Table 1A identifies "Other than DBOF Overhead" BOS costs and Table 1B identifies "DBOF Overhead" BOS costs. These tables must be completed, as appropriate, for all DON host, independent or tenant activities which separately budget BOS costs (regardless of appropriation), and, are located in the United States, its territories or possessions. Responses for DBOF activities may need to include both Table 1A and 1B to ensure that all BOS costs, including those incurred by the activity in support of tenants, are identified. If both table 1A and 1B are submitted for a single DON activity, please ensure that no data is double counted (that is, included on <u>both</u> Table 1A and 1B). The following tables are designed to collect all BOS costs currently budgeted, regardless of appropriation, e.g., Operations and Maintenance, Research and Development, Military Personnel, etc. Data must reflect FY 1996 and should be reported in thousands of dollars.

a. <u>Table 1A</u> - Base Operating Support Costs (Other Than DBOF Overhead). This Table should be completed to identify "Other Than DBOF Overhead" Costs. Display, in the format shown on the table, the O&M, R&D and MPN resources currently budgeted for BOS services. O&M cost data must be consistent with data provided on the BS-1 exhibit. Report only direct funding for the activity. Host activities should not include reimbursable support provided to tenants, since tenants will be separately reporting these costs. Military personnel costs should be included on the appropriate lines of the table. Please ensure that individual lines of the table do not include duplicate costs. Add additional

lines to the table (following line 2j., as necessary, to identify any additional cost elements not currently shown). Leave shaded areas of table blank.

<u>Table 1A</u> - Base Operating Support Costs (Other Than DBOF Overhead)				
Activity Name: Navy Motion Picture Service UIC: N00022		22		
	FY 199	FY 1996 BOS Costs (\$000)		
Category	Non-Labor	Labor	Total	
1. Real Property Maintenance Costs:				
1a. Maintenance and Repair	0	0	0	
1b. Minor Construction	0	0	0	
1c. Sub-total 1a. and 1b.	· 0	0	0	
2. Other Base Operating Support Costs:				
2a. Utilities	32	0	32	
2b. Transportation	6	0	6	
2c. Environmental	0	0	0	
2d. Facility Leases	50	0	50	
2e. Morale, Welfare & Recreation	0	0	0	
2f. Bachelor Quarters	0	0	0	
2g. Child Care Centers	0	0	0	
2h. Family Service Centers	0	0	0	
2i. Administration	0	0	0	
2j. Other (Specify)	79	. 0	79	
2k. Sub-total 2a. through 2j:	167	0	167	
3. Sub- Total (sum of 1c. and 2k.):	167	0	167	

.

.

b. Funding Source. If data shown on Table 1A reflects more than one appropriation, then please provide a break out of the total shown for the "3. Grand-Total" line, by appropriation:

<u>Appropriation</u>	<u>Amount (\$000)</u>
Non-Appropriated	\$ 34
O&M,N	\$133
Total	\$167

c. <u>Table 1B</u> - Base Operating Support Costs (DBOF Overhead). This Table should be submitted for all current DBOF activities. Costs reported should reflect BOS costs supporting the DBOF activity itself (usually included in the G&A cost of the activity). For DBOF activities which are tenants on another installation, total cost of BOS incurred by the tenant activity for itself should be shown on this table. It is recognized that differences exist among DBOF activity groups regarding the costing of base operating support: some groups reflect all such costs only in general and administrative (G&A), while others spread them between G&A and production overhead. Regardless of the costing process, all such costs should be included on Table 1B. The Minor Construction portion of the FY 1996 capital budget should be included on the appropriate line. Military personnel costs (at civilian equivalency rates) should also be included on the appropriate lines of the table. Please ensure that individual lines of the table do not include duplicate costs. Also ensure that there is no duplication between data provided on Table 1A. and 1B. These two tables must be mutually exclusive, since in those cases where both tables are submitted for an activity, the two tables will be added together to estimate total BOS costs at the activity. Add additional lines to the table (following line 21., as necessary, to identify any additional cost elements not currently shown). Leave shaded areas of table blank.

<u>Other Notes</u>: All costs of operating the five Major Range Test Facility Bases at DBOF activities (even if direct RDT&E funded) should be included on Table 1B. Weapon Stations should include underutilized plant capacity costs as a DBOF overhead "BOS expense" on Table 1B..

Table 1B - Base Operating Support Costs (DBOF Overhead)				
Activity Name: Navy Motion Picture Service		UIC: N00022		
	FY 1996 Net (FY 1996 Net Cost From UC/FUND-4 (\$000)		
Category	Non-Labor	Labor	Total	
1. Real Property Maintenance Costs:		•		
1a. Real Property Maintenance (>\$15K)	0	0	0	
1b. Real Property Maintenance (<\$15K)	0	0	0	
1c. Minor Construction (Expensed)	0	0	0	
1d. Minor Construction (Capital Budget)	0	0	0	
1c. Sub-total 1a. through 1d.	0	0	0	
2. Other Base Operating Support Costs:				
2a. Command Office	0	0	0	
2b. ADP Support	0	0	0	
2c. Equipment Maintenance	0	0	0	
2d. Civilian Personnel Services	0	0	0	
2e. Accounting/Finance	0	0	0	
2f. Utilities	0	0	0	
2g. Environmental Compliance	0	0	0	
2h. Police and Fire	0	0	0	
2i. Safety	0	0	0	
2j. Supply and Storage Operations	0	0	0	
2k. Major Range Test Facility Base Costs	0	0	0	
21. Other (Specify)	0	0	0	
2m. Sub-total 2a. through 21:	0	0	0	
3. Depreciation	0	0	0	
4. Grand Total (sum of 1c., 2m., and 3.) :	0	0	0	

.

2. <u>Services/Supplies Cost Data</u>. The purpose of Table 2 is to provide information about projected FY 1996 costs for the purchase of services and supplies by the activity. (Note: Unlike Question 1 and Tables 1A and 1B, above, this question is not limited to overhead costs.) The source for this information, where possible, should be either the NAVCOMPT OP-32 Budget Exhibit for O&M activities or the NAVCOMPT UC/FUND-1/IF-4 exhibit for DBOF activities. Information must reflect FY 1996 budget data supporting the FY 1996 NAVCOMPT Budget Submit. Break out cost data by the major sub-headings identified on the OP-32 or UC/FUND-1/IF-4 exhibit, disregarding the sub-headings on the exhibit which apply to civilian and military salary costs and depreciation. Please note that while the OP-32 exhibit aggregates information by budget activity, this data call requests OP-32 data for the activity responding to the data call. Refer to NAVCOMPTINST 7102.2B of 23 April 1990. Subj: Guidance for the Preparation, Submission and Review of the Department of the Navy (DON) Budget Estimates (DON Budget Guidance Manual) with Changes 1 and 2 for more information on categories of costs identified. Any rows that do not apply to your activity may be left blank. However, totals reported should reflect all costs, exclusive of salary and depreciation.

Table 2 - Services/Supplies Cost Data		
Activity Name: Navy Motion Picture Service UIC: N00022		
Cost Category	FY 1996 Projected Costs (\$000)	
Travel:	0	
Material and Supplies (including equipment):	0	
Industrial Fund Purchases (other DBOF purchases):	0	
Transportation:	0	
Other Purchases (Contract support, etc.):	9,991	
Total:	9,991	

3. Contractor Workyears.

a. On-Base Contract Workyear Table. Provide a projected estimate of the number of contract workyears expected to be <u>performed "on base"</u> in support of the installation during FY 1996. Information should represent an annual estimate on a full-time equivalency basis. Several categories of contract support have been identified in the table below. While some of the categories are self-explanatory, please note that the category "mission support" entails management support, labor service and other mission support contracting efforts, e.g., aircraft maintenance, RDT&E support, technical services in support of aircraft and ships, etc.

<u>Table 3</u> - Contract Workyears		
Activity Name: Navy Motion Picture Service	UIC: N00022	
Contract Type	FY 1996 Estimated Number of Workyears On-Base	
Construction:	0	
Facilities Support:	0	
Mission Support:	0	
Procurement:	0	
Other:*	0	
Total Workyears:	0	

* Note: Provide a brief narrative description of the type(s) of contracts, if any, included under the "Other" category.

b. Potential Disposition of On-Base Contract Workyears. If the mission/functions of your activity were relocated to another site, what would be the anticipated disposition of the <u>on-base contract workyears</u> identified in Table 3.?

1) Estimated number of contract workyears which would be transferred to the receiving site (This number should reflect the number of jobs which would in the future be contracted for at the receiving site, not an estimate of the number of people who would move or an indication that work would necessarily be done by the same contractor(s)):

N/A

2) Estimated number of workyears which would be eliminated:

N/A

3) Estimated number of contract workyears which would remain in place (i.e., contract would remain in place in current location even if activity were relocated outside of the local area):

.

N/A

c. "Off-Base" Contract Workyear Data. Are there any contract workyears located in the <u>local</u> community, but not on-base, which would either be eliminated or relocated if your activity were to be closed or relocated? If so, then provide the following information (ensure that numbers reported below do not double count numbers included in 3.a. and 3.b., above):

No. of Additional Contract Workyears Which Would Be Eliminated	General Type of Work Performed on Contract (e.g., engineering support, technical services, etc.)
0	N/A

No. of Additional Contract Workyears Which Would Be Relocated	General Type of Work Performed on Contract (e.g., engineering support, technical services, etc.)
0	N/A

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

NAME (Please type or print

Signature

Title

ہے ہے ہے

Date

Activity '

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

NAME (Please type of print

Title ; ;

Date

Date

Signature

Activity

In certify that the information herein is accurate and complete to the best of my knowledge and belief.

MAJOR CLAIMANT LEVEL

R. J. ZLATOPER, VADM

NAME (Please type or print CHIEF OF NAVAL PERSONNEL

Title

BUREAU OF NAVAL PERSONNEL Activity

NAME (Please type of print

I certify that the information contained herein is accurate and complete to the best of my knowledge belief.

DEPUTY CHIEF OF NAVAL OPERATIONS (LOGISTICS) DEPUTY CHIEF OF STAFF (INSTALLATIONS & LOGISTICS)

2 0 JUL 1394

Signature Date

Title

BRAC-95 CERTIFICATION

Reference: SECNAV NOTE 11000 dtd 8 Dec 93

In accordance with policy set forth by the Secretary of the Navy, personnel of the Department of the Navy, uniformed and civilian, who provide information for use in the BRAC-95 process are required to provide a signed certification that states "I certify that the information contained herein is accurate and complete to the best of my knowledge and belief."

The signing of this certification constitutes a representation that the certifying official has reviewed the information and either (1) personally vouches for its accuracy and completeness or (2) has possession of, and is relying upon, a certification executed by a competent subordinate.

Each individual in your activity generating information for the BRAC-95 process must certify that information. Enclosure (1) is provided for individual certifications and may be duplicated as necessary. You are directed to maintain those certifications at your activity for audit purposes. For purposes of this certification sheet, the commander of the activity will begin the certification process and each reporting senior in the Chain of Command reviewing the information will also sign this certification sheet. This sheet must remain attached to this package and be forwarded up the Chain of Command. Copies must be retained by each level in the Chain of Command for audit purposes.

I certify the information contained herein is accurate and complete to the best of my knowledge and belief.

ACTIVITY COMMANDER

J. K. FYFE NAME (Please type of print)

ACTING HEAD, FINANCIAL MANAGEMENT Title BRANCH

MORALE, WELFARE AND RECREATION Activity

Date