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Renewal and memory origin of anomalous diffusion: A discussion of their joint action
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The adoption of the formalism of fractional calculus is an elegant way to simulate either subdiffusion or
superdiffusion from within a renewal perspective where the occurrence of an event at a given time t does not have
any memory of the events occurring at earlier times. We illustrate a physical model to assign infinite memory
to renewal anomalous diffusion and we find (i) a condition where the simultaneous action of a renewal and a
memory source of subdiffusion generates localization and (ii) a condition where they make subdiffusion weaker
and superdiffusion emerge. We argue that our approach may provide important contributions to the current search
to distinguish the renewal from the memory source of subdiffusion.
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I. INTRODUCTION

Strange kinetics [1,2] constitute the underlying dynamics
of subdiffusive and superdiffusive processes that appear to
be ubiquitous in physical [3], social [4], and biological [5]
phenomena. The term strange was adopted from chaotic
dynamical systems theory as an application of the notion of
fractal space and time to explain the microscopic dynamics
of anomalous transport [1] in complex phenomena. In strange
kinetics the familiar integer differential formalism is replaced
with the fractional differential formalism in order to adequately
describe the dynamics of superdiffusion and subdiffusion.
In the phase space equations describing the evolution of a
probability density function (PDF) the fractional formalism
implies that the statistics are renewal. In fact, subdiffusion
can be simulated by replacing discrete random walk processes
with the continuous time random walk processes of Montroll
and Weiss [6]. On the other hand superdiffusion can be
generated by assuming that at any time step in the random
walk the statistics of the walker’s jumps has a diverging second
moment [4]. Both cases satisfy the renewal condition because
the waiting times and the jump intensities are randomly
selected from distributions with a diverging first moment and
a diverging second moment, respectively, with no correlation
between drawings.

Given the increasing level of activity in the field of strange
kinetics it is virtually impossible to provide an authoritative
bibliography and so we restrict our attention here to addressing
a single technical issue. That issue concerns the proper way
to incorporate memory into the fractional diffusion equation
for the PDF describing an anomalous diffusion process.
The observed experimental results are reproduced using the
fractional diffusion equation [3,4]

∂α

∂tα
p(x,t) = D

∂β

∂xβ
p(x,t), p(x,t = 0) = δ(x), t � 0

(1)
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with α � 1 and β � 2. The condition α = 1, β = 2 corre-
sponds to the ordinary diffusion equation, which only applies
in simple media. Real diffusion processes in complex media
are called anomalous since they obey the more general
fractional diffusion equations with α �= 1 and/or β �= 2. We
use the Caputo fractional derivatives in time defined in terms
of the Laplace transform as

LT
{

∂α

∂tα
p(x,t); s

}
= sαp̂(x,s) − sα−1p(x,0), (2)

where p̂(x,s) denotes the Laplace transform of the PDF in
time. One way to construct the fractional derivative in time
is by assuming that the random walker spends a very large
amount of time at each site, with a waiting time PDF

ψ(τ ) ∝ 1/τ 1+α. (3)

See Ref. [7] for recent work on the issues connecting
a fractional derivative in time with underlying stochastic
processes. We adopt the Riesz fractional derivative in space
defined in terms of the Fourier transform in the symmetric
case to be

FT
[

∂β

∂xβ
p(x,t); k

]
= −|k|βp̃(k,t), (4)

where p̃(k,t) is the Fourier transform of the PDF in space and
is known as the characteristic function. We refer the readers to
the excellent review paper [4] and to the original paper [8] for
discussions of Eq. (4).

To make the present paper as self-contained as possible we
devote Sec. II to a concise derivation of the stochastic Liouville
equation method, which we use to generate infinite memory
in the conventional case and which is manifest in a time-
dependent diffusion coefficient. In this case the waiting-time
PDF has a finite first moment, the PDF of jump lengths has
a finite second moment, and the scaling index of the solution
to the diffusion equation involves the scaling indices from
both space and time. The more general situation including
diverging average waiting times and/or infinite second spatial
moments is discussed in Sec. III. The exact solution to the
fractional diffusion equation in space and time along with
infinite memory, produced through an inverse power-law bath
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spectrum, is obtained in this section and shown to satisfy the
generic scaling equation

p(x,t) = 1

tη
F

(
x

tη

)
. (5)

In Sec. IV we study the α < 1 diffusion process for a particle
under the influence of bath fluctuations generated by the
subordination to fluctuations already possessing an infinite
memory. In Sec. V we draw some conclusions.

II. DYNAMICAL ORIGIN OF INFINITE MEMORY

The dynamics of mechanical systems are Hamiltonian
based and the equations of motion can be expressed in terms
of the Liouville operator. We adopt the Liouville operator
technique here and use it to construct a Fokker-Planck equation
for the PDF when the thermal bath is non-Ohmic, which is to
say the thermal fluctuations are correlated in time with an
inverse power-law autocorrelation function. It is shown that
under these conditions the Liouvillian is itself a stochastic
operator.

A. Stochastic Liouville equation

We begin our discussion with the familiar case of a diffusing
particle characterized by the dynamic variable X(t). Assume
that the dynamics of the particle can be described by

dX(t)

dt
= ξ (t), (6)

where the driving force is the sum over the environmental
variables

ξ (t) =
∑

j

ξj (t). (7)

The set of variables {ξj } denotes the degrees of freedom of the
environment which we model here as a heat bath with which
the diffusing particle is in contact. In the latter case the bath
variable would be an oscillator with frequency ωj . In principle
we should study the Liouville equation for the coupled system

∂

∂t
pT (x,ξ1,...,ξj ,...; t) = LpT (x,ξ1,...,ξj ,...; t) (8)

from which we can derive the equation of motion for the
reduced PDF where p(x,t)dx is the probability that the
dynamic variable X(t) lies in the interval(x,x + dx) at time t :

p(x; t) =
∫

dξ1 · · · dξj · · ·pT (x,ξ1,...,ξj ,...; t). (9)

In order to carry out the coarse graining indicated in Eq. (9)
we partition the Liouville operator into two parts

L = L1 + LB (10)

with the bath-particle coupling determined by

L1 ≡ −ξ
∂

∂x
(11)

and LB denotes the Liouvillian for a set of harmonic oscillators
constituting the heat bath. The equation of motion for the
reduced distribution density p(x,t) can be obtained using the
Zwanzig projection method [9,10]. However, for the sake of

simplicity we herein adopt the stochastic Liouville equation
method [11], which reads

∂

∂t
σ (x,t) = L1(t)σ (x,t), (12)

to describe the evolution of the stochastic PDF σ (x,t).
The intuitive foundation of this useful equation is based

on the adoption of the interaction picture corresponding to
Eq. (9). In this picture the interaction Liouvillian becomes
time dependent and reads

L1(t) = −ξ (t)
∂

∂x
. (13)

The formal solution of Eq. (12) is given by the operator
equation

σ (x,t) = exp

(∫ t

0
L1(t ′)dt ′

)
σ (x,0). (14)

It is important to notice that because ξ (t) is a random variable
the PDF σ (x,t) determined by Eq. (14) is also a stochastic
quantity. Consequently, an average over many realizations of
ξ (t) has to be made to establish the desired PDF p(x,t):

p(x,t) =
〈
exp

(∫ t

0
L1(t ′)dt ′

)〉
p(x,0), (15)

since

p(x,t) = 〈σ (x,t)〉 and p(x,0) = σ (x,0). (16)

The central limit theorem applied to the bath requires that the
statistics of ξ (t) be Gaussian, which enables us to evaluate the
average in Eq. (15) to obtain

p(x,t) = exp

[
1

2

〈( ∫ t

0
ξ (t ′)dt ′

)2〉
∂2

∂x2

]
p(x,0) (17)

whose time derivative generates the following diffusion
equation:

∂

∂t
p(x,t) = 1

2
D(t)

∂2

∂x2
p(x,t). (18)

The time-dependent diffusion coefficient in Eq. (18) is given
by the integral over the bath autocorrelation function

D(t) ≡ 2〈ξ 2〉eq

∫ t

0
�ξ (τ )dτ, (19)

where the bath autocorrelation function is defined in terms of
the average over the equilibrium bath

�ξ (t) = 〈ξ (0)ξ (t)〉eq

〈ξ 2〉eq
. (20)

On the other hand, the time integration of Eq. (6) yields

X(t) =
∫ t

0
dt ′ξ (t ′) + X(0). (21)

Setting the initial condition X(0) = 0 and again assuming that
ξ (t) is a stationary Gaussian variable with vanishing mean
value we obtain

〈X(t)2〉 = 2〈ξ 2〉eq

∫ t

0
dt ′

∫ t ′

0
�ξ (τ )dτ. (22)
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The time rate of change of the second moment of the dynamic
variable

d〈X(t)2〉
dt

= 2〈ξ 2〉eq

∫ t

0
�ξ (τ )dτ = D(t) (23)

which therefore provides a second way to calculate the time-
dependent diffusion coefficient.

B. Non-Ohmic bath as a source of time-dependent
diffusion coefficients

It is interesting to note that the time dependence of the
diffusion coefficient is a direct consequence of the structure
of the bath autocorrelation function, which in turn stems from
the bath spectrum. Let us assume that each oscillator of the
bath system generating the environmental fluctuation ξ (t) has
a specific frequency ω. The autocorrelation function �ξ (t) can
then be expressed, using the Wiener-Khintchin theorem, as

�ξ (t) =
∫ ∞

0
dω ρ(ω)cos(ωt). (24)

We assume that the frequency distribution ρ(ω) has the power-
law form

ρ(ω) ∝ ωδ−1, (25)

to obtain

�ξ (t) =
∫ ∞

0 dω ωδ−1cos(ωt)∫ ∞
0 dω ωδ−1

. (26)

We determine the scaling behavior of the autocorrelation
function by transforming to the integration variable z = ωt

and using simple algebra to factor the time from the integral
in Eq. (26):

�ξ (t) ∝ sgn(1 − δ)

t δ
. (27)

The well-known Tauberian theorem is

LT
{

1

tψ

}
=

(
1

s

)1−ψ

�(1 − ψ), (28)

where as noted in the Introduction LT {f (t)} denotes the
Laplace transform of f (t), and can be used to obtain for the
Laplace transform of �ξ (t) in Eq. (27), denoted by �̂ξ (s):

�̂ξ (s) ∝ sδ−1. (29)

Consequently, the Laplace transform of the diffusion coeffi-
cient denoted by D̂(s) using Eq. (23) becomes

D̂(s) ∝ 1

s2−δ
. (30)

Inverse Laplace transforming this expression and again using
the Tauberian theorem we obtain

D(t) ∝ 1

t δ−1
. (31)

The inverse power-law behavior of the diffusion coefficient is
a direct consequence of the assumed power-law spectrum of
the bath oscillators.

C. Connection between non-Ohmic bath and Hurst coefficient

The Hurst coefficient H denotes the scaling behavior of
the diffusing particle in anomalous diffusion. This means that
the second moment 〈X2(t)〉 is expected to have the asymptotic
property

〈X2(t)〉 ∝ t2H . (32)

On the other hand, according to Eq. (22), the second derivative
of the second moment yields the autocorrelation function

d2

dt2
〈X2(t)〉 ∝ �ξ (t). (33)

Equating the coefficients for the scaling of the autocorrelation
function in Eqs. (27) and (33) we obtain

H = 1 − δ

2
. (34)

As a consequence of this relation the time-dependent diffusion
coefficient D(t) in Eq. (31) can be rewritten in terms of the
Hurst exponent as

D(t) ∝ t2H−1. (35)

This analysis leads us to express the diffusion equation (18) as

∂

∂t
p(x,t) = DHt2H−1 ∂2

∂x2
p(x,t), (36)

with 0 < H < 1. It is important to stress that earlier work [12]
has proven that Eq. (36) leads to results equivalent to the
well-known theory of fractional Brownian motion (FBM) [13].

On the basis of these theoretical arguments we propose to
include memory into the anomalous renewal process described
by Eq. (1) by means of the following prescription:

∂α

∂tα
p(x,t) = DHt2H−1 ∂β

∂xβ
p(x,t). (37)

The main result of this paper is to obtain the exact solution to
Eq. (37), but before we get to that let us examine the scaling
behavior of some related dynamic equations.

D. Scaling

Equation (37) is an important equation whose general
solution illustrated in this paper recovers the interesting results
discussed in the recent review paper [14]. To address this
problem, it is convenient to study Eq. (36) first. Let us express
Eq. (36) in the Fourier representation to obtain the dynamic
equation for the characteristic function, the Fourier transform
of the PDF:

∂

∂t
p̃(k,t) = −k2DHt2H−1p̃(k,t). (38)

The time integration of this equation yields

p̃(k,t) = exp

[
− k2 DHt2H

2H

]
(39)

since the characteristic function has the initial condition
p̃(k,0) = 1. Here we introduce dimensional analysis and adopt
the notation that [y] denotes the dimension of the variable y.
The scaling of the characteristic function is determined by the
condition that the dynamic variable scales as

[x] = [t]η (40)
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together with the product in the exponential k2t2H being kept
constant such that

[k] = [t]−H . (41)

Since the phase space and Fourier variables are inversely
related [x] = 1/[k] the two scaling exponents of the time must
be equal,

η = H. (42)

Now consider the more complicated condition of a diffusion
equation with a fractional spatial derivative:

∂

∂t
p(x,t) = DHt2H−1 ∂β

∂xβ
p(x,t). (43)

The adoption of the Fourier transform in this case and using
Eq. (4) yields [8]

∂

∂t
p̃(k,t) = −|k|βDH t2H−1p̃(k,t), (44)

which simply integrates to

p̃(k,t) = exp

[
− |k|β DH t2H

2H

]
. (45)

Using analogous dimensional arguments to those adopted
to obtain Eq. (42) yields for the relation between scaling
exponents

η = 2H

β
. (46)

The authors of the recent work [7] have shown that moving
from the integer partial differential operator in time in Eq. (43)
to that of the fractional differential operator in time in Eq. (37)
corresponds to the time dilatation

[t] = [τ ]1/α. (47)

To implement this relation we interpret the time in Eq. (43)
as the operational time τ , thereby interpreting the scaling of
Eq. (46) as

[x] = [τ ]2H/β. (48)

From Eq. (47) we therefore require the equality between
chronological time t and operational time τ to be

[τ ] = [t]α, (49)

and inserting Eq. (49) into Eq. (48) we obtain for the
dimensional scaling in terms of chronological time

[x] = [t]η, (50)

with the relation between scaling exponents

η = 2Hα

β
. (51)

The scaling result given by Eq. (51) is found to be incorrect,
and the theory subsequently developed herein explains how to
obtain the correct scaling. Using Eq. (43) we are led to the
following equality between the dimensions:

1

[t]α
= [t]2H−1

[x]β
= [t]2H−1

[t]βη
, (52)

which equating coefficients immediately yields

η = α + 2H − 1

β
. (53)

Since η < 0 does not make sense physically, because it
would imply the regression to the origin of a spreading
PDF, we conclude that α + 2H − 1 < 0 implies η = 0 and
consequently would be a localization process due to the joint
action of two different sources of subdiffusion: one renewal
(α < 1) and one implying infinite memory (H < 0.5).

It is interesting to notice that when α = 1, this prediction
recovers the result of Eq. (46). This last result coincides with
the one recently proposed by Eliazar and Shlesinger [14].

III. JOINT ACTION OF TWO SOURCES
OF SUBDIFFUSION

In this section we illustrate a way to solve Eq. (37), the
central equation of this article, and we show using this solution
that in fact the correct prediction for the scaling η is given by
Eq. (53).

A. General solution of Eq. (37)

Consider the following fractional diffusion equation with
infinite memory:

∂α

∂tα
P (x,t) = Dt2H−1 ∂β

∂xβ
P (x,t). (54)

To solve Eq. (54) first eliminate the spatial derivative by taking
the spatial Fourier transform and using the Riesz derivative
[4,8] obtain the fractional dynamic equation for the character-
istic function

∂α

∂tα
P̃ (k,t) = −Dt2H−1|k|βP̃ (k,t). (55)

We assume that the characteristic function P̃ (k,t) is analytic
and can be expressed in the series form

P̃ (k,t) =
∞∑

n=0

cn(k)tnγ . (56)

Insert Eq. (56) into Eq. (55)and using the Caputo derivative
[15] in time yields

∞∑
n=1

cn(k)
�(nγ + 1)

�(nγ + 1 − α)
tnγ−α−2H+1 =−D|k|β

∞∑
n=0

cn(k)tnγ .

(57)

Selecting the scaling exponent in the series expansion to be
γ = α + 2H − 1 we obtain

∞∑
n=0

cn+1(k)
�[(n + 1)γ + 1]

�[(n + 1)γ + 1 − α]
tnγ =−D|k|β

∞∑
n=0

cn(k)tnγ .

(58)

The above equation gives the recurrence relationship for the
expansion coefficients

cn+1(k) = −D|k|β �[(n + 1)γ + 1 − α]

�[(n + 1)γ + 1]
cn(k), (59)
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Α

FIG. 1. (Color online) Region of parameter values allowed by
Eq. (61).

which implies

cn(k) = c0(−D|k|β)n
n−1∏
i=0

�[(i + 1)γ + 1 − α]

�[(i + 1)γ + 1]
, n � 1.

(60)

In order for the series solution to converge the exponent must
satisfy γ � 0 implying the condition we imposed earlier on
physical grounds,

γ = α + 2H − 1 � 0. (61)

The plot of the corresponding allowed region of the parameter
values, for 0 � α � 1 and 0 � H � 1, is depicted in Fig. 1.
It is rather straightforward to demonstrate that the radius of
convergence of the solution is infinite.

Since we are looking for a normalized P (x,t) we require
P̃ (0,t) = 1. Using this normalization condition the solution of
Eq. (55) can be written as follows:

P̃ (k,t) = 1

�[1 − α]

∞∑
n=0

(−|k|βtγ D)n
n∏

i=0

�[iγ + 1 − α]

�[iγ + 1]
(62)

and consequently the PDF solution to the fractional phase
space equation with memory is given by the inverse Fourier
transform

P (x,t) =
∫ ∞

−∞

dk

2π

exp[−ıkx]

�[1 − α]

∞∑
n=0

(−|k|βtγ D
)n

×
n∏

i=0

�[iγ + 1 − α]

�[iγ + 1]
. (63)

Note that P (x,t) given by Eq. (63) is of the form

P (x,t) = 1

φ(t)
F

[
x

φ(t)

]
, with φ(t) = tγ /β (64)

as expected. Asymptotically, for x → ∞ and β < 2, we have
the inverse power law

P (x,t) ≈ D
�[1 − α + γ ]

�[1 + γ ]

�[1 + β] sin
[

πβ

2

]
π

tγ

|x|1+β

= D
�[2H ]

�[α + 2H ]

�[1 + β] sin
[

πβ

2

]
π

tα+2H−1

|x|1+β
. (65)

It is important to notice that this general solution fits the
typical scaling prescription of diffusion processes,

P (x,t) = 1

tη
F

(
x

tη

)
(66)

with the scaling index η given by the prediction in Eq. (53).

B. Particular cases

Consider the particular case of the solution given by
Eq. (62) with the parameter values α = 1 (or γ = 2H ). It
follows that

1

�[1 − α]

n∏
i=0

�[iγ + 1 − α]

�[iγ + 1]
= 1

n!γ n
(67)

and the series for the characteristic function becomes

P̃ (k,t) =
∞∑

n=0

(−|k|βtγ D)n

n!γ n
= exp

[
−|k|β D

2H
t2H

]
. (68)

Consequently the PDF in this case is the Lévy distribution
obtained by taking the inverse Fourier transform and β is the
Lévy index.

Consider a second particular case with the parameter value
2H = 1 (or γ = α). Then we have

1

�[1 − α]

n∏
i=0

�[iγ + 1 − α]

�[iγ + 1]
= 1

�[nγ + 1]
, (69)

and the characteristic function becomes

P̃ (k,t) =
∞∑

n=0

(−|k|βtγ D)n

�[nγ + 1]
= Eα[−|k|βDtα], (70)

where Eα[z] is the Mittag-Leffler function (MLF). Note that
since the MLF is a stretched exponential at early times that the
Fourier transform of the characteristic function (70) at early
times is again a Lévy PDF but with a different time dependence
than that given by Eq. (68).

IV. MOVING THE BATH FROM OPERATIONAL TO
CHRONOLOGICAL TIME

A recent dynamical interpretation of the Caputo fractional
time derivative [7] corresponds to replacing the operational
time experienced by a complex phenomenon with the chrono-
logical time measured by the clock on the wall. Therefore it
is interesting to study the situation in which we interpret the
dynamics of the bath oscillators as taking place in operational
time. We then shift our perspective from the operational to the
chronological time. For each of the oscillators, according to
the new theoretical perspective [7] the harmonic time evolution
cos(ωτ ) is expressed in terms of the Mittag-Leffler function
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Eα(iωtα). For this reason we have to adopt the procedure
illustrated below in Sec. IV A to establish the special form of
the time-dependent diffusion coefficient D(t) obtained in this
case.

A. Evaluation of the bath autocorrelation function

We study the transition from operational to chronological
time by using the Weiner-Khinchin theorem in the two
representations for the bath autocorrelation function:

�ξ (τ ) =
∫ ∞

0
ρξ (ω) cos ωτ dω

⇒ Re

[∫ ∞

0
ρξ (ω)Eα(iωtα)dω

]
. (71)

The bath autocorrelation function can be evaluated by taking
the Laplace transform to obtain

LT
{

Re

[∫ ∞

0
ρξ (ω)Eα(iωtα)dω

]
; s

}

=
∫ ∞

0
ωδ−1 s2α−1

ω2 + s2α
dω = πsδα−1

2 sin π
2 δ

, (72)

where we have again used the power-law spectrum for the bath.
Inverting the Laplace transform of the bath autocorrelation
function and employing the Tauberian theorem from Eq. (28)
we finally obtain

Re

[∫ ∞

0
ρ(ω)Eα(iωtα)dω

]
= π

2 sin π
2 δ

1

�[1 − δα]t δα
. (73)

Consequently in this case the time-dependent diffusion coef-
ficient is

D(t) ∝ 1/tδα−1. (74)

The scaling index for the diffusion coefficient is here a
consequence of the correlated bath fluctuations in operational
time and reduces to the earlier result for α = 1.

B. The new diffusion equation

The scaling parameter δ in Eq. (74) is related to the Hurst
exponent by Eq. (34):

δ = 2(1 − H ). (75)

Thus, in the case when the bath oscillators evolving operational
time memory is included in the diffusion process

∂α

∂tα
p(x,t) = Dα,H t1−αδ ∂β

∂xβ
p(x,t), (76)

then by means of the new scaling indices we obtain

∂α

∂tα
p(x,t) = Dα,H t1−2α(1−H ) ∂β

∂xβ
p(x,t). (77)

Using the same dimensional procedure as that adopted to
obtain the scaling index in Eq. (53) yields in the present
situation

η = 1 + α(2H − 1)

β
. (78)

It is interesting to rewrite this scaling index in the form

η = 2αH

β
+ �η, (79)

where the shift from the previously obtained index is given by

�η = 1 − α

β
. (80)

Equation (79) vindicates our assertion that Eq. (51) is not
the correct scaling relation. The reason that Eq. (51) is not
the correct scaling is because it corresponds to realizing the
scaling 2H/β when the dynamics are unfolding in operational
time. Consequently, the result of this operational dynamics is
transferred with no change but the time dilatation between two
consecutive values of the phase space variable in operational
time, to that in the chronological time representation. However,
the result of Eq. (73) shows that the autocorrelation function
�ξ (t) ∝ 1/tδ , moving from operational to chronological time,
becomes �ξ (t) ∝ 1/tαδ . This may generate a significant
effect. The subdiffusional condition δ > 1 can turn into the
superdiffusional condition αδ < 1, for α sufficiently small.
This is the reason why the scaling η is always larger than the
scaling coefficient predicted by Eq. (51).

V. CONCLUDING REMARKS

We emphasize that the order in which the fractional
derivative and the long-term memory are obtained from the
bath dynamics is important for obtaining the proper scaling.
The scaling index found in the general case differs from that
obtained by Eliazar and Shlesinger [14] based on the indices
for the Joseph effect (divergence in time) and the Noah effect
(divergence in space) and obtained by completely different
arguments. The results of the present article afford an extension
of their work [14] to the case where α < 1. This is a timely
issue, since in the literature there is active research into strange
kinetics that establishes the origin of anomalous diffusion in
biological processes [16] and proposals are being made to
assess if the origin of subdiffusion is renewal or implies the
infinite memory of FBM [17].

The results of the present analysis may prove useful in
a number of research areas. For example, a recent study of
the processes of random growth of surfaces [18] has adopted
the renewal assumption and a diffusion theory equivalent
to Eq. (37) with α < 1, H = 0.5, and β = 2. More recent
research has revisited this earlier work using the infinite
memory of FBM [19], namely, a diffusion equation equivalent
to Eq. (37) with α = 1, H < 0.5, and β = 2, and found
that the persistence properties emerging from the numerical
treatment are reproduced more properly than in the earlier
work. Another area of application is in the analysis of
brain dynamics [20] adopting the hypothesis that the brain
undergoes phase transition. This theoretical perspective leads
to the conjecture that criticality generates renewal events
and with them 1/f noise, without ruling out the possibility
of a joint action of renewal and memory [21]. The single
column of a surface growing, thanks to the experimental
procedure of molecular epitaxy [18], under specific conditions
of cooperation with the other units, is expected to show signs of
criticality and with it renewal events properly described by the
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Mittag-Leffler function. However, slight changes in the growth
model may generate FBM memory, as recently proven [22]. It
is plausible that conditions exist where the diffusion processes
are generated by the joint action of renewal and memory, and
the results of this article will facilitate further progress on
these issues.
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[5] F. Höfling and T. Franosch, Rep. Prog. Phys. 76, 046602 (2013).
[6] E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167 (1965).
[7] P. Pramukkul, A. Svenkeson, P. Grigolini, M. Bologna, and

B. J. West, Adv. Math. Phys. 2013, 498789 (2013).
[8] B. J. West and V. Seshadri, Physica A 113, 203 (1982).
[9] R. Zwanzig, in Quantum Statistical Mechanics, edited by P. H.

E. Meijer (Gordon-Breach, New York, 1966), pp. 139–172.
[10] P. Grigolini, Adv. Chem. Phys. 62, 1 (1986).
[11] R. Kubo, J. Math. Phys. 4, 174 (1963).
[12] R. Cakir, P. Grigolini, and A. A. Krokhin, Phys. Rev. E 74,

021108 (2006).

[13] B. B. Mandelbrot and J. W. van Ness, SIAM Rev. 10, 422
(1968).

[14] I. I. Eliazar and M. F. Shlesinger, Phys. Rep. 527, 101 (2013).
[15] F. Mainardi and R. Gorenflo, J. Comput. Appl. Math. 118, 283

(2000).
[16] E. Barkai, Y. Garini, and R. Metzler, Phys. Today 65(8), 29

(2012).
[17] Y. Meroz, I. M. Sokolov, and J. Klafter, Phys. Rev. Lett. 110,

090601 (2013).
[18] R. Failla, P. Grigolini, M. Ignaccolo, and A. Schwettmann, Phys.

Rev. E 70, 010101 (2004).
[19] E. Geneston, M. Bologna, A. Krokhin, and P. Grigolini,

Phy. Rev. E (to be published).
[20] P. Allegrini, D. Menicucci, R. Bedini, L. Fronzoni,

A. Gemignani, P. Grigolini, B. J. West, and P. Paradisi, Phys.
Rev. E 80, 061914 (2009).

[21] M. Zare and P. Grigolini, Phys. Rev. E 86, 051918 (2012).
[22] A. Taloni, A. Chechkin, and J. Klafter, Phys. Rev. Lett. 104,

160602 (2010).

062106-7

http://dx.doi.org/10.1038/363031a0
http://dx.doi.org/10.1038/363031a0
http://dx.doi.org/10.1016/S0301-0104(02)00543-8
http://dx.doi.org/10.1016/S0301-0104(02)00543-8
http://dx.doi.org/10.1002/mrm.24706
http://dx.doi.org/10.1142/S0218127408021877
http://dx.doi.org/10.1142/S0218127408021877
http://dx.doi.org/10.1088/0034-4885/76/4/046602
http://dx.doi.org/10.1063/1.1704269
http://dx.doi.org/10.1016/0378-4371(82)90015-2
http://dx.doi.org/10.1063/1.1703941
http://dx.doi.org/10.1103/PhysRevE.74.021108
http://dx.doi.org/10.1103/PhysRevE.74.021108
http://dx.doi.org/10.1137/1010093
http://dx.doi.org/10.1137/1010093
http://dx.doi.org/10.1016/j.physrep.2013.01.004
http://dx.doi.org/10.1016/S0377-0427(00)00294-6
http://dx.doi.org/10.1016/S0377-0427(00)00294-6
http://dx.doi.org/10.1063/PT.3.1677
http://dx.doi.org/10.1063/PT.3.1677
http://dx.doi.org/10.1103/PhysRevLett.110.090601
http://dx.doi.org/10.1103/PhysRevLett.110.090601
http://dx.doi.org/10.1103/PhysRevE.70.010101
http://dx.doi.org/10.1103/PhysRevE.70.010101
http://dx.doi.org/10.1103/PhysRevE.80.061914
http://dx.doi.org/10.1103/PhysRevE.80.061914
http://dx.doi.org/10.1103/PhysRevE.86.051918
http://dx.doi.org/10.1103/PhysRevLett.104.160602
http://dx.doi.org/10.1103/PhysRevLett.104.160602



