
 
 
 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPROVED: 
 
Joseph Klein, Major Professor and Chair 

of the Division of Composition 
Studies 

Robert Akl, Minor Professor 
Jon Christopher Nelson, Committee 

Member 
John Murphy, Interim Director of 

Graduate Studies in the College 
of Music 

James Scott, Dean of the College of 
Music 

Mark Wardell, Dean of the Toulouse 
Graduate School 

MODERN API DESIGN AND PHYSICAL COMPUTING TECHNIQUES IN JUST  

INTONATION PERFORMANCE PRACTICE 

Mark Sonnabaum 

Thesis Prepared for the Degree of 

MASTER OF ARTS 

 
 

UNIVERSITY OF NORTH TEXAS 
 

May 2013 



Sonnabaum, Mark. Modern API Design and Physical Computing Techniques 

in Just Intonation Performance Practice. Master of Arts (Music ), May 2013, 48 pp.,

16 figures, references, 18 titles.

Music that uses just intonation has been historically difficult to perform. Using 

modern instruments and custom built instruments both have different sets of 

advantages and disadvantages. This paper explores how the problem has been 

approached previously by both Harry Partch and Ben Johnston, and proposes the 

decoupling of interface and sound production as a way forward. The design and 

implementation of a software instrument and a hardware prototype are described, both 

using a simple API for variable tuning instruments. The hardware prototype uses 

physical computing techniques to control the tuning of a string with a servo motor, while 

the software instrument exists entirely in a web browser. Finally, potential algorithms for 

clients of the API are presented, and the effectiveness of the hardware prototype is 

evaluated by measuring its pitch accuracy.



Copyright 2013 

by 

Mark Sonnabaum

 ii 



TABLE OF CONTENTS 

Page 
 
LIST OF FIGURES .......................................................................................................... iv 

CHAPTER 1. INTRODUCTION ....................................................................................... 1 

CHAPTER 2. JUST INTONATION PERFORMANCE ..................................................... 2 

CHAPTER 3. INSTRUMENT DESIGN .......................................................................... 14 

Dynamically Tunable Bridge ............................................................................... 16 

OSC as an Interface ........................................................................................... 17 

CHAPTER 4. IMPLEMENTATION ................................................................................ 19 

API ...................................................................................................................... 19 

Software Instrument ........................................................................................... 21 

Hardware Instrument .......................................................................................... 25 

CHAPTER 5. TESTING ................................................................................................. 28 

Hardware Testing ............................................................................................... 28 

Client Software Application ................................................................................. 33 

CHAPTER 6. FURTHER IDEAS AND POTENTIAL IMPROVEMENTS ........................ 35 

Hardware ............................................................................................................ 35 

Software ............................................................................................................. 35 

APPENDIX: CODE SAMPLES ...................................................................................... 39 

REFERENCES .............................................................................................................. 47 

 
 

 iii 



LIST OF FIGURES 
 

Page 
 
2.1  Johnson’s tuning system ...................................................................................... 8 

3.1  Steel guitar rods ................................................................................................. 16 

3.2  Steel guitar changer ........................................................................................... 17 

4.1  MIDI note numbers to frequency offset ............................................................... 20 

4.2  Five-limit API example ........................................................................................ 21 

4.3  Software instrument user interface ..................................................................... 23 

4.4  Note class  .......................................................................................................... 24 

4.5  Prototype body ................................................................................................... 26 

4.6  Hammer/damper diagram ................................................................................... 27 

5.1  Ball link end attached to tuning bar ..................................................................... 28 

5.2  Tuning bridge...................................................................................................... 29 

5.3  Roller bridge ....................................................................................................... 30 

5.4  Tuning bar test script .......................................................................................... 31 

5.5  Tuning bar test pitch analysis ............................................................................. 32 

5.6  Key detection example ......................................................................................  34 

6.1  Tonality example ................................................................................................ 36 

 

 iv 



CHAPTER 1

INTRODUCTION

The performance of music using just intonation is problematic for a number of rea-

sons, not least of which is the fact that modern instruments are often designed for equal

temperament and performers are trained to fight against the justly intonated characteris-

tics their instrument may have. Most well known composers who have attempted to solve

this problem have done so in very different ways. Because issues lie with both performers

and the use of modern instruments, a common approach has been to focus largely on one

area or the other, which has mixed results.

In this paper, I discuss historical precedents in the area of just intonation perfor-

mance, specifically focusing on the work of Harry Partch and Ben Johnston. Both com-

posers have approached this problem differently due to skill sets or available technologies,

so I highlight the most effective methods in each case and how we can learn from them.

My approach to this topic involves the use of a simple application programming

interface to facilitate the use of both software modeling and physical computing techniques

to achieve the level of pitch accuracy necessary for just intonation music. It is my belief that

developing standard interfaces and tools that address these technical challenges will allow

a greater number of composers and musicians to explore the rich musical possibilities of

extended just intonation.

1



CHAPTER 2

JUST INTONATION PERFORMANCE

Unlike many musical trends in the twentieth century, composing using just intona-

tion is neither a way to break free of tonality nor an attempt to return to it. It is inherently

free of the western European musical associations that so many composers try to exorcise

from their musical consciousness, simply because it’s neither a genre, style, nor a school,

all of which are ephemeral, but rather a musical foundation. Its practice is as ancient

as music itself because it is based on the two musical phenomena, which are absolutely

unchangeable: an object’s ability to produce sound as it vibrates, and the human ear’s

ability to perceive it.1 As a musical system, its rationale is irrefutable, although a modern

composer’s implementation of this system in his or her music tends to require a bit more

conviction, if not downright evangelism. Because each composer who either experiments

with or dedicates himself to using just intonation will likely use it differently in his or her mu-

sic, most of this music will get broadly classified as “microtonal.” Even the most educated

performers will likely find this method of developing scales and harmonies by adding and

subtracting whole number ratios to be confusing. The fact that there is no standard set

of pitches, which can change with each composer (or piece), makes it even more difficult

to understand as a whole. This alone is likely to intimidate most performers, who will not

want to commit to learning the theory behind your system of tuning, becoming accustomed

to the notation, and practicing in this unfamiliar system, only to sound “out-of-tune” to a

lay audience. All composers who make the decision to compose in just, or extended just

intonation deal with these issues in one way or another. The following section will explore,

1Partch, Genesis of a Music: An Account of a Creative Work, Its Roots, and Its Fulfillments, Second Edition.

2



compare, and contrast two very different approaches to composing and performing us-

ing just intonation through two of its most dedicated composers: Harry Partch and Ben

Johnston.

Partch was initially inspired to develop a system of tuning based on just intonation

to closer approximate the human voice. About his early work, Partch writes, “I came to the

realization that the spoken word was the distinctive expression my constitutional makeup

was best fitted for, and that I needed other scales and other instruments.”2 He then decided

to build a new instrument, which would allow him to realize these pitches more easily. He

constructed a viola with an elongated neck that he initially called the “monophone,” but later

renamed it the “adapted viola.” With the pitches clearly marked on the neck and the longer

fingerboard, allowing for more widely spaced intervals, he was able to write and perform

music using this instrument, which would provide a monophonic vocal accompaniment.

Partch eventually settled on a 43-tone-to-the-octave scale that he would build his

instruments around and which would become the basis of all of his compositions. This

system was developed using just ratios up to the 11th partial. The 11th partial is more

or less an arbitrary stopping point for Partch, but necessary considering that he would be

building instruments around this tuning, and the system needed to be somewhat fixed for

his musicians to be able to play the instruments and understand what they were playing.

In a way, the 11th partial is a rather modest stopping point since it could be considered the

first step into “extended” just intonation. Although the natural harmonic 7th is still far from

what we hear used in 12-tone equal temperament, it still naturally occurs in a cappella

vocal groups, and is still heard as a “dominant seventh.” The 11th partial, however, occurs

2Partch, Genesis of a Music: An Account of a Creative Work, Its Roots, and Its Fulfillments, Second Edition.

3



almost exactly between a perfect fourth and a tritone—so if anything, it is heard as a very

flat tritone, though I think most would agree that it has its own unique harmonic quality.

Partch refers to his pitches as either “otonal” or “utonal,” meaning they are derived either

directly from the overtone series, or they are the inverse of an overtone. These terms

can roughly be considered synonymous with “major” and “minor” since the major triad that

occurs in the 4th, 5th, and 6th partials (1:1, 5:4. 3:2) invert into a minor triad (1:1, 8:5, 4:3).

After writing mostly accompanied speech music for a number of years, Partch was

criticized for focusing solely on pitch, resulting in a lack of rhythmic interest. He then began

conceiving and building percussion instruments to add to his growing ensemble of custom

built instruments. Being a very competent carpenter, he naturally gravitated towards build-

ing marimba-like instruments. As obsessive as Partch was with tuning, he was equally

passionate about the idea of corporeality in music. The design of his instruments was

heavily influenced by this idea, putting great stress on how the performer would play the

instrument, and how he or she would look playing it. One example of this is the diamond

marimba. The basic principals of the instrument are identical to a traditional marimba,

but the keys are laid out in a diamond shape rather than the typical linear keyboard. This

makes it possible to play just ratios in a logical way, since the bars are arranged according

to Partch’s tonality diamond, where diagonal lines from left to right are utonal and lines

from right to left are otonal.

Partch’s early attempts at developing a notation for his music were not terribly suc-

cessful. He did not want to simply specify how the notes were different from 12-tone equal

temperament, but rather write each note as its true whole number ratio. Although this may

have seemed intuitive for Partch, it was not the case for those who tried to perform his

4



music. He finally developed different notations for each instrument that were based on the

layout and how the instrument was played. Still, Partch was present at each performance

to coach players on how to correctly play the instruments, read the notation, and interpret

the music.

In 1947, Partch published his book Genesis of a Music, where he explains in great

detail his view that twelve-tone equal temperament was a terrible mistake and how he

developed his own tuning system to correct this mistake. While still in school, Ben John-

ston was given Partch’s book by one of his professors who knew that he had an interest

in just tuning and the harmonic series. Soon after reading Partch’s book, Johnston wrote

to him, and they arranged for Johnston to come to California where he could live and

work with Partch. Although “studying” with him was surely Johnston’s original intention,

Partch insisted that he was not a teacher; Johnston would be more of an apprentice than

a student. Johnston recalls, “He told me that if I or anyone else ever claimed to have

been a student of his, he’d cheerfully strangle us; and I think he meant that very literally.”3

Partch was adamantly against the idea of influencing someone else’s art, so he would

never comment on Johnston’s music. Partch simply had work that needed to be done,

so in exchange for labor, he would answer Johnston’s questions. Because Johnston did

not have a talent for carpentry (which did not take long for Partch to notice), he was given

mostly errands and chores around the property. One of Johnston’s more musical tasks

was tuning the instruments everyday. He had a very good ear to begin with and Partch

took notice of this; soon Johnston was able to easily distinguish all forty-three tones in

Partch’s system. Although he was not teaching Johnston to train his ear in a formal way, it

3Johnston, “The Corporealism of Harry Partch.”

5



is likely that Partch saw that this was his strong suit, and gave him this task so that he could

develop his ear further. Through answering some of Johnston’s questions and refining his

ability to discern just intervals, Partch left him with a strong foundation in just intonation

theory, while not directly interfering with how he composed. And although he was against

the idea of influencing Johnston’s music, being as opinionated as Partch was, he would

still give Johnston pieces of advice like, “Never write a fugue or a sonata or anything else

unless you have something to add to the tradition that nobody has added before you.”4

While working with Partch in northern California, Johnston met Darius Milhaud, who

immediately took an interest in him. Knowing that he had absorbed what he could from

Partch, Johnston decided it was time to move on and went to study with Milhaud. Here

Milhaud taught him about compositional process, but did not teach him how to compose.

He felt that Johnston was talented enough to find his path with some guidance rather

than shaping his music as he might have done with a weaker student. Before this period,

Johnston still was writing very intuitively and had never been taught traditional methods of

composing.

In 1951, Johnston joined the faculty of the University of Illinois as a professor of

theory and composition. After attending a lecture given by John Cage at his university,

they quickly became friends and Cage invited him to come to New York and study with

him that summer. This, in a way was similar to his experience with Partch, as Cage did

not play the typical role of a teacher, but rather he exposed Johnston to the New York

avant-garde scene — which, incidentally, Johnston never identified with, nor felt that he

belonged to. He returned to New York a few years later on a Guggenheim fellowship to

4Duckworth, Talking Music: Conversations With John Cage, Philip Glass, Laurie Anderson, And 5 Genera-
tions Of American Experimental Composers.

6



work in the electronic music studios at Columbia/Princeton. Knowing his limitations as a

carpenter and that he would not be able to build his own instruments, Johnston thought

that electronic music would be an ideal way to write music using just intonation, finally

applying the skills he learned from Partch. He soon discovered that the equipment was

not sophisticated enough to do what he wanted, and that he wasn’t particularly good at

making electronic music either. During this period, Cage invited him back to study with him

in a more formal composition lesson once a month. Here Cage would critique his pieces,

and they would also work on serial techniques, which Johnston was experimenting with

at the time; in this regard, Cage would be a great help, having studied with Schoenberg

himself.

Johnston took what he could from all three composers because he wanted a very

“full” background. Unlike Partch, who detested music education as a whole, Johnston

prepared himself for a very typical career as a well-rounded composer and professor of

composition and theory. His works were largely composed in a neo-classical in style for

around 10 years, with a brief period where he would explore serial techniques.

Johnston eventually decided that if he wasn’t able to build his own instruments and

the current electronic instruments were not sophisticated enough to do what he wanted,

he would have to write music in extended just intonation for traditional instruments. He

also decided to use traditional notation, but instead of treating the notes on the page as if

they were equally tempered with accidentals showing how the just tones differ, his music

made the assumption that the notes on the staff were a 5-limit C just intonation scale.

Then, to get the pitches he needed to represent just ratios, he developed a system of

accidentals that would raise or lower a pitch by a comma based on a particular prime

7



number. Figure 2.1 shows each pitch with the corresponding ratio and cents offset from

equal temperament.

Figure 2.1. Johnson’s tuning system.

The advantages and disadvantages of Partch’s approach to the performance of

extended just intonation seems to tend toward the extreme on either side. The obvious

disadvantage is that a musician can’t play his music without first being trained on the

8



particular instrument. This puts great limitations on his music’s complexity since even mu-

sicians who were willing to learn the instrument along with the music would require parts

that could be easily learned in the amount of rehearsal time available for each perfor-

mance. Additionally, the performer would have to learn a new form of notation to play the

instrument. Considering these two rather large obstacles, Partch’s method is not likely to

attract virtuoso performers, who would be uncomfortable playing such foreign instruments.

To Partch, these seemingly deal-breaking disadvantages would not be problematic at all:

on the contrary, these obstacles keep those performers conditioned by western music and

twelve-tone equal temperament far away from his music. As a result, Partch was not con-

cerned about western habits creeping into his work, which adds to the approachability and

accessibility of his music to the lay audience.

For Partch, the decision to build instruments was not a difficult one to make, since

he already had basic carpentry skills that he developed in his youth. He did, however,

have a very difficult time gathering tools and quality materials to build with since he never

had a steady income to live on, let alone to buy supplies. This was very influential in the

design of his instruments, because if it was not made of wood, it was usually made from

found objects (such as the “zymo-xyl,” which is made from whisky bottles).

Using traditional instruments with flexible intonation has clear advantages since the

only effort required is either practicing yourself or convincing a performer to adjust his or

her technique to play your music. With instruments like those in the traditional string family,

it’s almost as natural to play in just intonation as it would be to play in equal temperament

(arguably more so). In the example of a violinist, the instrument is in no way an obstacle

in the performance of extended just intonation. However, a classically trained violinist

9



who has been trained to play in equal temperament may find it difficult to adjust his or her

fingerings to just intonation. To complicate matters further, most just intonation composers

are likely to require their music to be played with little or no vibrato to accentuate the natural

beauty of the just intervals they have worked so hard to create. Some would argue, as I

believe Partch did, that the cost of overcoming these obstacles is far greater than that of

teaching someone to play a new instrument.

Modified traditional notations have similar drawbacks. While Johnston assumes

that even unmodified notes on the staff are derived from just intervals, this requires the

performer to be comfortable playing these pitches first before they can attempt to raise or

lower the pitch according to specialized accidentals. While this makes Johnston’s music

very approachable on the surface, and considerably easier to understand from the point

of someone who would analyze his work, it is still enormously difficult to perform with even

a modest level of accuracy. Performing this music assumes knowledge of just ratios that

very few performers have and even fewer would be willing to learn in order to perform a

piece of music. It is my belief that the vast majority of trained performers will play the music

from a “this far from equal temperament” approach rather than reevaluating everything

they know and have learned about where their pitches lie.

Although it would be difficult to compare the success (monetary or otherwise) of

the two composers explored in this paper, because such a thing is wholly subjective, I

attempt to do so here for the sake of this argument. If at any time in his life, financial

success (or even stability) appeared to be within reach, Partch surely would have sabo-

taged the opportunity with either his unapologetic stubbornness concerning his musical

aesthetic, or his sheer brashness alone. An inability (or unwillingness) to maintain steady

10



employment aside, Partch detested the idea of music in higher education, which has been

considered the most common, and more importantly, sensible career path for generations

of composers, including his former apprentice, Ben Johnston. It is of little use to specu-

late about what Partch could have accomplished for himself, his music, and the practice of

composing and performing using extended just intonation had he taken a more traditional

approach to new music; but to imagine Partch doing this is to not imagine Partch at all.

With every new school and trend that arose in the twentieth century came the impression

of a new found musical freedom: a release from the oppression of tonality. However,

when you look at this from Partch’s perspective, it starts to look more like a prison than

ever before. It is his complete stubbornness to uphold his aesthetic, no matter what the

cost, that made it possible for him to accomplish what he did in his lifetime. No school

in his day (or perhaps even today) would allow him this kind of artistic freedom without

significant compromises, which Partch was simply unwilling to make.

Johnston on the other hand was very quick to join the faculty of the University of

Illinois early in his compositional career, where he would be a professor of theory and

composition for over thirty years. It was never his intention to completely reinvent music

the way Partch did; Johnston felt very much a part of the western tradition, and was happy

to contribute to it. This is made evident by his studying with other composers such as

Milhaud and Cage, as he wanted very much to be a “well-rounded” composer. He made

his commitment to using just intonation not because he was unsatisfied by contemporary

music itself, but rather because he “thought it was out of tune.”5 Although his use of just

intonation would go well beyond 5-limit (which could be used to “tune” equally tempered

5Duckworth, Talking Music: Conversations With John Cage, Philip Glass, Laurie Anderson, And 5 Genera-
tions Of American Experimental Composers.

11



music), he approached it as a natural progression of European music just as he viewed

twelve-tone equal temperament as a necessary mistake to correct. This allowed him to

be quite successful in academia without compromising his own aesthetic.

Although Johnston’s music doesn’t receive nearly as many performances as many

other experimental or avant-garde composers do, it has attracted many highly accom-

plished performers that are willing to make a commitment to performing his music ac-

curately. The flutist/composer John Fonville has not only recorded Johnston’s Twelve

Partials for Flute and Microtonal Piano, but he has also written an excellent article on

the performance of extended just intonation, with a clear explanation of Johnston’s nota-

tion from a performance perspective. More recently is the founding of the Kepler Quartet,

whose sole purpose is to perform and record the complete set of Johnston’s string quartets,

which are his most widely known works. 6

Because of the difficulty in putting together performances of Partch’s music, it

seemed logical that recordings would be an important part of preserving his music. Unfor-

tunately, most all of his later music is highly theatrical in nature, so the performances are

poorly represented on audio recording. His most grand theatrical work, Delusion of the

Fury, is an example of this: the film version of the work represents the theatrical elements

poorly, much to Partch’s dissatisfaction.

Partch’s music is still quite difficult to perform today, regardless of the performer’s

dedication to the music. His instruments are currently housed in the Newbandinstrumen-

tarium at Montclair State University. Composer and former Partch musician, Dean Drum-

mond, currently directs Newband, the microtonal ensemble that is still performing Partch’s

6Formed in 2002 by Sharan Leventhal, Eric Segnitz, Brek Renzelman and Karl Lavine.
http://www.keplerquartet.com/

12



music on a mix of original and replica instruments. There have been transcriptions of his

music for traditional instruments, the most famous of which was a transcription of Barstow,

done by Johnston, which was recorded by the Kronos quartet.7 As noble an effort as this

was, those who worked closest with Partch later in his life agree that he would have most

likely hated it.

Johnston’s notational system has served as a valuable tool to the next generation

of composers using just intonation. David Doty uses the Johnston notation for all of the

examples in his book, The Just Intonation Primer, which often serves as an introduction

to young composers interested in the topic. Some of Johnston’s students have also con-

tinued to use his notation system, such as Toby Twining, who’s choral work Chrysalid

Requiem uses 13-limit extended just intonation. Another former student of Johnston, Kyle

Gann, has written extensively on the topic of just intonation, and has composed several

works using the Johnston notation for both traditional and electronic instruments. While

Partch continues to inspire and provide guidance to composers interested in just intona-

tion through his book, A Genesis of a Music, this is generally the extent of direction one

can receive from his legacy.

7Daugherty et al., Howl U.S.A..

13



CHAPTER 3

INSTRUMENT DESIGN

Perhaps the most problematic part of performing justly intonated music is the way

in which a performer interfaces with an instrument. While both designing new instruments

with unfamiliar interfaces and working with familiar instruments have had varying degrees

of success, neither is approachable enough to be widely practiced. One limitation histor-

ically has been the tight coupling of interface and sound production. For example, the

design of a piano is ideal for using alternate tunings. Each pitch has its own string and

can be tuned independently. However, the keyboard itself is immutable, so the use of

extended just intonation with pianos is conceptually limited by its interface. A violin on the

other hand is an example of an interface well suited for varying tunings, but puts all of the

responsibility for accuracy on the performer.

With the human interface decoupled from the sound production mechanism, the de-

sign of an instrument with variable tuning capabilities can be approached from a different

perspective. As seen in Partch’s instruments, the interface is usually tied to a particu-

lar system of tuning, thus limiting the versatility of the instrument. When the interface

is abstracted, the problems of accuracy and playability can be approached separately.

The tuning systems used and the theory behind the tuning system will likely change with

each composer and piece. On the other hand, an instrument with varying tuning capabili-

ties could be used in any situation where non-standard tunings are required. It therefore

makes sense to treat the interface as variable and instead build instruments that can be

dynamically tuned with a high degree of accuracy with only an application programming

interface (API) to interact with them.

14



The use of robotics in musical instruments has increased considerably in the last

few decades. Instruments like Yamaha’s Disklavier, a modern MIDI controlled player pi-

ano, have been embraced by composers who can use software to create piano music

beyond the capability of a human performer. While very capable, these instruments are

quite expensive and their flexibility is limited to what is necessary to emulate a human

performance.

As the price and size of microcontrollers and components has reduced, building

small robotics projects has become much more accessible. The term “physical computing”

has been used to describe this trend of programmers and artists controlling hardware with

software. As described in Physical Computing, “Physical computing is about creating a

conversation between the physical world and the virtual world of the computer.”8

A new generation of musical instrument makers have emerged, building custom, in-

expensive instruments using physical computing techniques. In 2000, musician/engineer

Eric Singer founded the group LEMUR,9 where they build robotic acoustic instruments

and put on performances. The first instrument they built, the “GuitarBot”,10 consists of

four guitar strings, each having its own metal body, with a bridge that moves up and down

the string on a track to change the pitch. The separating of each string allows for a more

modular design as well as more room for electronic components, which could not fit within

a typical guitar string spacing. This design choice proved to be influential to my own work.

And although the pitch can be controlled with a high degree of accuracy using the movable

bridge, this mechanism works more like a guitar slide, making large leaps by shortening

8Dan O’Sullivan and Igoe, Physical Computing: Sensing and Controlling the Physical World with Computers.
9LEMUR: Purveyors of Fine Musical Robots Since 2000.
10Singer et al., “LEMUR GuitarBot: MIDI Robotic String Instrument.”

15



the length of the string vibrating over the magnetic pickup, as opposed to a tremolo system

on a guitar that would change the string’s tension.

Dynamically Tunable Bridge

Very few instruments are designed to be tuned dynamically without the performer

being responsible for accuracy. The pedal steel guitar is a unique exception in that it uses

pedals and knee levers to adjust the tuning of the strings up to a full step, with a very high

degree of accuracy. Often seen in country music, the pedal steel is played with a slide bar,

usually made of glass or steel, placed perpendicularly across the strings. Compared to a

traditional guitar, it has more strings and is tuned in smaller steps, usually a half step to a

fourth apart. Because the left hand holding the bar cannot easily change the pitch of one

string independently of the rest, tunable knee levers and pedals are used to raise or lower

individual strings. A series of rods underneath the body of the instrument are attached to

the pedals and levers and they can travel a certain distance based on how they are tuned.

Figure 3.1. Steel guitar rods.

Each rod is connected to what is called the “changer”, which also acts as a bridge

for each string. The top of the changer, called the “finger”, is rounded so that the string

sits naturally as the rod pulls it forward or backward, changing the tuning of the string.

16



Figure 3.2. Steel guitar changer.

The design of the changer is quite elegant and an ideal source of inspiration for a

dynamically tunable instrument. If the rods are removed and instead the changer is moved

by a stepper motor or servo, the tuning of the string could be changed in much smaller

intervals, with a high degree of accuracy.

OSC as an Interface

Abstracting the interface from sound production is not a new idea. The MIDI mes-

saging protocol has allowed for MIDI controllers to control any type of sound production

device that accepts these messages, usually in the form of a synthesizer or sampler.

Wendy Carlos took advantage of this in her piece, “That’s Just It”, using two keyboard

controllers.11 One is played traditionally using a JI tuning and the second controls what

pitch the tuning is based on by switching to a different table of tunings.12 This is a very

sensible approach given the technology available at the time. It allowed composers like

Carlos to explore JI tuning systems while completely avoiding issues related to instrument

building and performers of traditional acoustic instruments. While it is arguable whether

or not it is an advantage, the consistent timbre produced by synthesizers of this era would

make it easier for a listener to hear the sonic purity of a JI tuning system.

11Carlos, “Beauty in the Beast.”
12Milano, “A Many-Colored Jungle of Exotic Tunings.”

17



When viewed from an API perspective, MIDI still works well for many applications.

And although improvements have been made recently to allow MIDI over IP networks and

higher resolutions than the original 7-bits, it still lacks the flexibility and ease of use that

more modern communication protocols provide.

The Center for New Music and Audio Technology (CNMAT) at UC Berkeley devel-

oped Open Sound Control (OSC) as an alternative to MIDI. While it addresses some of

the limitations of MIDI, it was also designed with the modern computer networking stack

in mind. Because low latency is often more important than reliability and message order-

ing in real time music applications, OSC is often transmitted over the UDP networking

protocol, although TCP can also be used when it is preferred.

Another advantage of OSC over MIDI is its concept of “bundles.” Concerning MIDI’s

limitations in this area, Director of CNMAT, David Wessel, wrote, “MIDI provides no mech-

anism for atomic updates. Chords are always arpeggios and even when MIDI events are

time tagged at the input of a synthesizer they arrive as a sequence.”13 An OSC bundle

allows you to group messages together and send them as a single unit rather than sev-

eral messages in succession. This more closely represents how music is communicated

given that chords are best represented as an array of note messages, and would ideally

be sent as a single message.

Because of these advantages, OSC is the ideal choice when designing a generic

API for musical instruments. It is well supported in most all of the popular programming

environments and can be easily interfaced with hardware by using a micro-controller like

the Arduino14.

13Wessel and Wright, “Problems and Prospects for Intimate Musical Control of Computers.”
14A small, inexpensive, Atmel AVR based micro-controller. http://arduino.cc/

18



CHAPTER 4

IMPLEMENTATION

To demonstrate the ideas I have described previously, I designed a simple API for

dynamically tunable instruments, and both a software instrument that implements the API

and a hardware prototype capable of using the same API.

API

The API aims to be a RESTful15 design on top of OSC. The only two resources are

notes and pitch classes, as indicated below:

Notes

Resource Description

/inst/:id/note/:pitch/play :velocity :duration Plays a note when the duration is known.
/inst/:id/note/:pitch/on :velocity Turns a note on.
/inst/:id/note/:pitch/off Turns a note off.
/inst/:id/note/:pitch/tuning/offset/cents Returns a pitch’s current tuning offset in cents.
/inst/:id/note/:pitch/tuning/offset/cents :offset Sets a pitch’s tuning offset in cents.
/inst/:id/note/:pitch/tuning/offset/frequency Returns a pitch’s current tuning offset as a frequency.
/inst/:id/note/:pitch/tuning/offset/frequency :offset Sets a pitch’s tuning offset as a frequency.

Pitch class

Resource Description

/inst/:id/pitch-class/:pitch-class/tuning/offset/cents Get the current offset in cents for a pitch class.
/inst/:id/pitch-class/:pitch-class/tuning/offset/cents :offset Set an offset in cents for a pitch class.
/inst/:id/pitch-class/:pitch-class/tuning/ratio Get the current ratio for a pitch class.
/inst/:id/pitch-class/:pitch-class/tuning/ratio :ratio Set a ratio for a pitch class.
/inst/:id/pitch-class/tuning-base :pitch-class Set a pitch class to calculate ratios from.

15Fielding, “Architectural styles and the design of network-based software architectures.”

19



The note resource can be used to sound a pitch at a given velocity with a predefined

duration, as well as a more MIDI-like on/off interface. The tuning of a particular pitch is

both obtained and set as an offset of equal temperament, either in cents or as a frequency

when using the note resource.

Specifying pure, just intervals by using offsets of equal temperament may seem like

an odd choice. From the perspective of a composer that uses just intonation, equal tem-

perament introduces complexity that does not otherwise exist. Calculating scales using

just intervals, although unfamiliar to most, is rather simple. Given a base frequency, all

other frequencies can be derived by multiplication of their ratio and the base. Calculating

offsets of equal temperament is considerably more convoluted, as illustrated by the ruby

example in Figure 4.1:
def midi_to_et_frequency(pitch)

pitch_class = pitch % 12
440 * (2**((pitch - 69) / 12.0))

end

def ratio_to_cents_offset(pitch, ratio,
base_pitch_class = 0, tones_per_octave = 12)

pitch_class = pitch.to_i % tones_per_octave

f = ratio[0].to_f / ratio[1].to_f
et_frequency = midi_to_et_frequency pitch
ji_frequency = f * et_frequency
pitch_cents_offset = (3986.3 *

((Math.log(ji_frequency) / Math.log(10)) -
(Math.log(et_frequency) / Math.log(10))))

if pitch_cents_offset != 0
pitch_cents_offset = pitch_cents_offset -

(((pitch_class - base_pitch_class) % tones_per_octave) * 100)
end

pitch_cents_offset
end

Figure 4.1. MIDI note numbers to frequency offset.

Regardless of how a composer may feel about equal temperament, it is considered

a standard. Many musicians are accustomed to thinking about tuning in cents, so this

20



can provide a familiar interface when appropriate. Also, this calculation can be easily

abstracted at the API level, so that the composer would never have to think in terms of

equal temperament offset, as this would be the responsibility of the API client application.

The pitch class resource however, does provide a way to set a particular pitch class

to a ratio, and then set a base pitch class from which to derive each ratio. For example, to

setup a typical five-limit just intonation tuning based on G, you would send the messages

in Figure 4.2.

/inst/0/pitch-class/tuning-base 7
/inst/0/pitch-class/1/tuning/ratio 25:24
/inst/0/pitch-class/2/tuning/ratio 9:8
/inst/0/pitch-class/3/tuning/ratio 6:5
/inst/0/pitch-class/6/tuning/ratio 45:32
/inst/0/pitch-class/7/tuning/ratio 3:2
/inst/0/pitch-class/8/tuning/ratio 8:5
/inst/0/pitch-class/9/tuning/ratio 5:3
/inst/0/pitch-class/10/tuning/ratio 9:5
/inst/0/pitch-class/11/tuning/ratio 15:8

Figure 4.2. Five-limit API example.

Software Instrument

For simplicity and easy availability, the software implementation is developed using

a number of open source tools. Due to the asynchronous nature of musical events, I also

needed something that would provide non-blocking I/O so that one OSC message would

not be delayed by another which had not yet responded. Given these requirements, I

chose to build this using javascript and HTML, with a server-side component in ruby. The

browser is an ideal tool to build user interfaces using just HTML, CSS, and javascript.

However, to receive OSC messages, they must be passed through a separate server

since the browser doesn’t have direct access to the TCP/IP layer, but it does support a

new protocol called WebSockets, which allows persistent connections to remote servers.

21



EventMachine16 is a ruby library that provides event-driven I/O using the reactor de-

sign pattern,17 which allows for network communication in ruby that doesn’t block the main

thread while waiting for a response. To be able to send OSC messages to the browser,

a small OSC server is needed that can take incoming messages and relay them to the

browser via WebSockets. I implemented this server using two EventMachine-based li-

braries, em-websockets and em_server from the osc-ruby package. Both the WebSock-

ets and OSC servers run in their own thread and forward messages as they are received

18.

When a user opens the web page that contains the software instrument, a Web-

Socket connection is made to the EventMachine server. The server can then send the

translated OSC messages to the browser to turn notes on or off, or alter the tuning of a

particular pitch.

I chose to use a piano keyboard for the user interface, and although the keyboard

is an inherently limited interface, in that it implies twelve tones to the octave, I don’t neces-

sarily consider this a disadvantage. With the decoupling of the interface, a key’s response

is no longer fixed. This provides tuning flexibility while still retaining a familiar interface.

In cases where many small intervals are needed that cannot be represented by offsets of

equal temperament, the base pitches of each key can be completely remapped, similar to

Partch’s Chromelodeon 19.

To build the user interface, I used a lightweight JavaScript MVC framework called

16Cianfrocca and Gupta, eventmachine (0.12.10).
17Schmidt, Reactor – An Object Behavioral Pattern for Concurrent Event Demultiplexing and Event Handler
Dispatching.
18See Appendix
19The Chromelodeon is a standard reed organ that Partch modified to use his 43-tone scale.

22



Spine.20 This allowed me to easily decouple user interface elements from sound produc-

tion while still allowing communication between these layers using event messages. The

interface consists of HTML elements that are styled using CSS to resemble a piano key-

board. The piano keys can be triggered by clicking on them, pressing a particular key on

the computer keyboard, or by messages sent through WebSockets.

Figure 4.3. Software instrument user interface

For generating sound in a web browser, there are a few options. This has pre-

viously been done using java applets, midi files, flash, or the more recent HTML audio

element21 which can play wav files. Of these options, the HTML audio element is the best

choice, considering that web development is moving away from plugins and towards na-

tive APIs. However, implementing an instrument using this technique would require either

loading individual audio files for each pitch and tuning offset, or using one file per pitch

and controlling the tuning with playback speed. Neither of these options are ideal, as the
20MacCaw, Spine (1.0.5).
21The audio element — HTML5.

23



former would require generating a prohibitively large number of files while the latter would

have an undesirable affect on the quality of the sound.

A newer development in web browser technologies is the Web Audio API, “a high-

level JavaScript API for processing and synthesizing audio in web applications.”22 While

the quality of sound achieved with synthesis in a web browser is currently limited by avail-

able CPU and the efficiency of the APIs themselves, this option provides the most flexibility

for building an instrument with variable tunings.

Using this API, I built a simple synthesizer that encapsulates the sound production

in a “Synth” object, which has a settable frequency. These objects receive messages from

“Note” objects, where both the pitch and the tuning offset can be set and the pitch/tuning

to frequency calculation is abstracted within this object’s methods.

class Note extends Spine.Model
# @param {Number} pitch A midi note number.
constructor: (@pitch) ->

@etfreq = 440 * Math.pow(2, ((@pitch - 69)/12))
@freq = @etfreq
@state = off

on: ->
@off() if @state
@state = on
# Use etfreq to prevent hanging notes who�s frequency has changed.
Spine.trigger ”synth:on”, @etfreq

off: ->
@state = off
Spine.trigger ”synth:off”, @etfreq

# Apply a tuning offset.
#
# @param {Number} offset An offset value in cents.
offsetCents: (offset) ->

@freq = @etfreq * Math.pow((Math.pow(2, 1/1200)), offset)
Spine.trigger ”synth:setfrequency”, @etfreq, @freq

Figure 4.4. Note class

This allows for a more modular design as the Synth object’s only responsibility is to
22Web Audio API.

24



generate a waveform at a given frequency. Changes to how Notes objects are used within

the application or how tuning offsets are communicated should not require changes to the

Synth class. The Note class is also decoupled from any interface elements or methods of

sound production, making it similarly flexible within the design.

While this software instrument is rather basic, it is an example of how the API can

be used to quickly test client software. This is useful for both educational purposes as

well as aiding in the development of a piece where the performance will interface with a

hardware instrument.

Hardware Instrument

The design and craftsmanship of acoustic instruments is a complex topic that is

beyond the scope of this project. Because of this, I chose to identify areas that could be

simplified without compromising the overall goals of the project: namely, pitch accuracy

and flexibility. Since the piano is one of the best examples of pitch accuracy, I chose to

start with it’s design, and then remove or alter components to make it simpler and less

expensive to build.

Fortunately, the quality of the sound produced acoustically, which would ordinarily

be one of the most difficult goals to achieve in the building of an instrument, is not a high

priority with the current project. Because of this, I decided to borrow from the design of the

electric guitar and use a solid hardwood body, relying on magnetic pickups for amplification.

Also, since guitar strings come in many different sizes and lengths, it is possible to use

common and inexpensive guitar parts, such as tuning keys.

I decided to build this prototype in two pieces. The body consists of two one-inch-

by-three-inch pieces of oak held together by two large bolts, both at the opposite end

25



of the bridge. This allowed me to adjust the distance of the two pieces as necessary to

accommodate changes in the design of the tuning mechanism. Although it would have

provided more support for the body, I avoided placing the second bolt on the side of the

tuning bar in order to keep the area clear until the design was finalized.

Figure 4.5. Prototype body

Given that guitar tuning keys are designed to be turned by hand, they have a very

low gear ratio. Using this as the means to alter the tuning is not ideal because it would

require a too much physical motion to get to the desired tuning, which would be a very

demanding requirement for a servo. Instead, I designed a simplified version of the pedal

steel bridge and changer, consisting of a rectangular brass bar with a slot filed out at the

top for the string to rest on, a hole just below the top so that a rod can hold it in place while

allowing it to freely rotate, and a hole at the bottom of the bar so that it can be moved back

and forth to change the tuning.

For the method of sound production, I experimented with several different designs

that combined the hammer and damper into one mechanism. The benefit of having the

two functions in one is that it only required one physical action to operate, similar to a

piano key. If the hammer was separated from the damper, it would have required multiple

26



servos or solenoids, with code to keep them synchronized.

Figure 4.6. Hammer/damper diagram

However, this turned out to be more difficult than I had planned. The best version

of this mechanism that I had built still had the problem of limited dynamics and speed.

Because the method of sound production is not the focus of this project and due to

the difficulties descibed previously, I chose to simplify this area of the prototype. Instead

of a hammer-type motion, I replaced it with a plucking mechanism using a guitar pick

attached to the arm of a servo. This design does not have the ability to dampen the sound

gracefully, but can stop the string from vibrating rather abruptly by moving the servo’s arm

to where the pick is touching the string, but not far enough for it to move past, causing the

string to sound. Dynamics are also limited with this design, but can still be controlled by

the speed of the servo’s arm and the starting distance from the string before the arm is

moved. Given these comprimises, the sound produced is more than adequate for testing

the tuning mechanism, and could even be appropriate in some cases for performance.

27



CHAPTER 5

TESTING

Hardware Testing

As simple and effective as the tuning bar design was, I discovered several flaws

that introduced unwanted variance into the tuning.

The servo arm is connected to the tuning bar using a rod with a ball link end, usually

found on remote control helicopters, to connect the arm to the bar (Figure 5.1). This

allowed for easier prototyping since the tuning bar and the servo arm don’t have to be

perfectly aligned to function, and hobby servos don’t typically mount on their sides.

Figure 5.1. Ball link end attached to tuning bar

While this could potentially work well enough on it’s own, there was too much space

28



where the bar could move on either side of where the string is held. This caused the servo

to pull the bar back and then slightly to the side, so that at higher tensions, the bar moving

side to side would cause the tuning to fluctuate. To minimize this behavior, I removed

enough space on either side of the bar so that the bar could be held tightly in place with

two washers on either side (Figure 5.2).

Figure 5.2. Tuning bridge

Although the two-piece body was very convienient to prototype with, as the servo

pushed the tuning bar forward and increased the string tension, the top half of the body

would bend slightly downward, which introduced small variations in the tuning. To remedy

this issue quickly, I added an aluminum bar to one side of the end needing support. Another

issue I found was that when making small tuning changes, the string could not move as

freely as necessary across the wooden bridge. This issue is much more prominent when

29



using a wrapped string, like the sixth, fifth, and fourth string of a guitar. To fix this problem, I

replaced the wooden bridge with a small brass wheel, similar to a “roller bridge” commonly

found on electric guitars with tremolo systems (Figure 5.3). This allowed the string to move

freely as the tension changes.

Figure 5.3. Roller bridge

After finishing these improvements, I decided to run a test to measure the accu-

racy and consistency of pitch when moving the tuning bar with the servo. The test script

starts at a central location, and then moves 500 steps in both directions (in 10-step incre-

ments), plucking the strings after each change. While testing the instrument beforehand,

I observed that small tuning changes were often very accurate, but inconsistencies would

be introduced after making larger leaps. For example, if I brought the tuning bar from the

center to the top of it’s range, then from the top of the range to the bottom, and back to the

30



center, the tuning of the center point could be slightly off from the original starting point.

This is likely because the large change in string tension caused parts of the body to shift

slightly. To take this flaw into account, I had the test script return to the center point after

each tuning change.

#!/usr/bin/env ruby

require ”logger”
require ”./tuner”
require ”./plucker”

tuner = Tuner.new
plucker = Plucker.new
logger = Logger.new(”logfile.log”)
middle = 6800

def tuning_bar_test(servo_step)
tuner.send middle
sleep 0.5

plucker.pluck
sleep 1

tuner.send servo_step
plucker.pluck
sleep 2

logger.info servo_step
end

tuner.send middle
sleep 1

# Test upper range
(0..500).step(10).each do |n|

n = middle - n
tuning_bar_test n

end

# Test lower range
(0..500).step(10).each do |n|

n += middle
tuning_bar_test n

end

Figure 5.4. Tuning bar test script

While running the test, I recorded the output of the pickup so that I could run a pitch

analysis and compare the results against the log file from the script. To perform the pitch

31



analysis, I used an audio processing library called Marsyas.23 This gave me a file with the

fundamental frequency of the string for every 1024 samples. I then plotted each log entry

against these pitches to produce the plot in 5.5.

Figure 5.5. Tuning bar test pitch analysis

There is too much inconsistency in pitch changes, although this is clearly related to

string tension. As the pitches go up and the tension increases, it is causing components

to shift slightly, which unfortunately has a strong impact on the pitch. However, in the run

where the pitch is lowered, it is considerably more consistent.
23Tzanetakis, Marsyas (0.2).

32



The amount each step is off from the expected pitch in the descending run is mostly

below 0.5Hz. While it may be difficult to perceive these inconsistencies, considering that a

syntonic comma in this range is between 1.75-1.97Hz, it still requires some improvement

before it becomes reliable enough for performance.

Client Software Application

One example of how this API could be used is to analyze a stream of pitches being

sent and dynamically send tuning changes based on the analysis. If we wanted to solve

the problem of not being able to modulate when using a basic five-limit just intonation, we

would need to store the current key, identify potential key changes, and then send out

tuning offsets based on those key changes. It would be difficult to implement this in a way

that would work in all styles of music, considering rapid key changes and tonicizations

would need to be accounted for, but we can use a much simpler algorithm for the sake of

this example.

If we have a client application that is sending out pitch messages, we can have it

hold a buffer of the last n notes that it sent out for analysis. It would then call a “detect_key”

method as each new note is received to see if a key change can be detected. A very simple

way to do this is to compare the buffered notes with each major scale, and then consider

the scale with the highest intersection to be the current key. The example in Figure 5.6

shows how this could be done in a ruby client.

This is also an example of how tuning changes can be handled by “middleware,”

which can be inserted between the interface that is sending out pitch messages and the

OSC listener producing sound. It would be ideal to design client software where middle-

ware could be plugged-in, as changes to the tuning algorithm can be made independently

33



of the rest of the application.

def initialize
# Start with a major scale based on pitch class 0.
@scales = [[0, 2, 4, 5, 7, 9, 11]]
# Iterate on this scale to generate the rest of the keys.
10.times {|i| @scales << @scales[0].map {|n| (n + i) % 12} }
@base = 0 # Start with a tuning base of 0.

end

def detect_key(notes)
results = {}
# Convert the notes to pitch classes
pclasses = notes.map {|n| n % 12}
# Compare our array of pitch classes against each major scale, and
# record the size of the resulting intersection.
@scales.each_with_index do |scale, i|

results[i] = (pclasses & scale).size
end
# Determine the nearest key by taking the scale with the
# largest intersection.
closest_matches = results.max_by {|k,v| v}
# Take the first result and ignore keys tied for a match.
change_base closest_matches[0]

end

Figure 5.6. Key detection example.

34



CHAPTER 6

FURTHER IDEAS AND POTENTIAL IMPROVEMENTS

Hardware

The ideas and designs of the hardware instrument prototype could be expanded

and improved to build larger, more versatile instruments. A multi-string version is the nat-

ural next step, either a large instrument that resembled a small piano in range or multiple

one-to-three octave instruments. Smaller multi-string instruments would be more practical

considering that the space needed for the tuning servo makes the distance between each

string greater than would be afforded on a piano or a guitar.

One challenge that would arise with multi-string instruments is calibration. Both

the string gauge and the scale length would introduce variance in the degree the servo

has to move to tune the string to a particular offset. The application controlling the servos

would then need to be aware of these positions for each string. Since this process would

likely become laborious given more than a few strings, it could be greatly simplified with au-

tomation. One could write a calibration program to move the servo’s tuning arm by a small

number of steps incrementally, striking the string at each step, while analyzing the audio

signal and recording the frequency. The program could then generate a configuration file

to be used during a performance that is tuned specifically for that environment.

Software

The example algorithm for making live tuning changes based on pitch analysis

could be improved in several ways depending on the needs of the composer. The simplest

change that would result in a higher degree of accuracy would be to limit the number

35



of scales that the algorithm can test for. In the case where a piece does not modulate

into all twelve keys, simply removing those it does not use would result in fewer false

positives. The available scales could also change dynamically based on the current key, if

the key transition patterns are known. This could provide enough information to correctly

identify the modulations in a piece while retaining enough flexibility to not require explicit

key changes or score following.

If common practice tonality can be assumed, the algorithm could be greatly im-

proved by applying a weight to each available key based on the current key. Consider the

example in Figure 6.1:

Figure 6.1. Tonality example

When the last five notes are being analyzed, there are only two potential candidates

for the key change: G and D. When the F#4 is viewed as a leading-tone to G, which would

be harmonized with V/V, this would indicate a modulation to G that is prepared with a

secondary dominant. If this were a modulation to D, it would be abrupt, which is certainly

possible, but less likely. We could also apply a slightly higher weight to G based on key

proximity, as it is more common to modulate to closely related keys.

Each of these examples of how the algorithm can be improved can also be viewed

as evidence that the tuning API is designed at the appropriate level of abstraction. The

requirements of a dynamically tunable application will vary considerably based on the

needs of the piece and the composer, so the API is limited in the assumptions it can make.

36



The previous examples show a wide range of needs that can all be easily accommodated

with the current design. An argument could be made that because so few parameters are

assumed, the usefulness of the API is limited. While not entirely untrue, the same can be

said about most low-level APIs, which provide a base to build higher level abstractions

that can make decisions and assumptions appropriate for a specific use case.

Composers who build software are often required to work at both high and very

low levels to implement their ideas. Because many are not trained software engineers

and are not familiar with object oriented design principles such as the Single responsibility

principle,24 the resulting applications are tightly coupled and often contain areas that work

at distant levels of abstraction. This severely limits code reuse, which leads to composers

wasting time solving problems that have been solved many times before, as well as fewer

composers who are able to implement their ideas in software.

It is my intention that the API and the implementation of ideas presented here can

serve as an example of how we can create reusable components for music composition

software. Designing for OSC APIs will allow us to write single purpose, language agnostic

software that can be shared among composers working in similar areas. The more we

as composers embrace the design principles and development practices that have been

established in the world of traditional software engineering, the easier it will be for new

composers to realize their musical ideas. In an environment where we are already limited

by the skills and willingness of performers, it is increasingly important that with technology

we are able to extend and build upon each other’s work, so that we can continue to push

the bounds of new music.

24Martin, Clean code: a handbook of agile software craftsmanship.

37



APPENDIX CODE 

SAMPLES

38



osc2websockets.rb
#!/usr/bin/env ruby

require �em-websocket�
require �osc-ruby�
require �osc-ruby/em_server�
require �json�

@sockets = []

Thread.abort_on_exception=true

Thread.new do
EventMachine.run do

EventMachine::WebSocket.start(:host => �0.0.0.0�, :port => 8081) do |ws|
ws.onopen { @sockets << ws }
ws.onclose { puts ”Connection closed” }
ws.onclose { @sockets.delete ws }

end
end

end

Thread.new do
@server = OSC::EMServer.new(3333)
@server.add_method �/**� do |mess|

message = { �args� => mess.to_a, �route� => mess.address}
@sockets.each {|s| s.send(message.to_json)}

end

@server.run
end

sleep

39



plot_pitches.R
library(ggplot2)
library(scales)
library(zoo)

# Add since it was removed from scales
to_time <- function(x) structure(x, class = c(”POSIXt”, ”POSIXct”))

parse.log4r.log <- function(logfile) {
logstrings <- sapply(readLines(logfile)[-1:-2], function (line) {

regex <- ”I, \\[([^\\s]+) [^\\]]+\\]\\s+INFO -- : (\\w+)”
str <- gsub(regex, ”\\1,\\2”, line, perl = TRUE)

}, USE.NAMES = FALSE)

logfile.df <- as.data.frame(
do.call(”rbind”, strsplit(logstrings, ”,”)

), stringsAsFactors = FALSE)
names(logfile.df) <- c(”log.timestamp”, ”servo.degree”)

# Remove the ”T” from the timestamp to make it easier to parse
regex <- ”(.*\\d{4}-\\d{2}-\\d{2})(T)(\\d{2}:\\d{2}.*)”
logfile.df$log.timestamp <- gsub(regex, ”\\1 \\3”, logfile.df$log.timestamp)
logfile.df$log.timestamp <- as.POSIXct(logfile.df$log.timestamp)
logfile.df

}

# processes pitch.txt files generated with
# pitchextract -t 1 -v -l 48 -u 52 -p audiofile.wav
marsyas.pitchextract.to.data.frame <- function (pitch.file) {

pitch.data <- read.csv(pitch.file)
names(pitch.data) <- c(”frequency”)
pitch.data$id <- seq(1, length(pitch.data[[1]]))

sample.rate <- 44100
buffer.size <- 1024
samples <- length(pitch.data[[1]]) * buffer.size
samples.in.ms <- buffer.size / (sample.rate / 1000)

max.bin <- samples.in.ms * length(pitch.data[[1]])
bin.range <- seq(samples.in.ms, max.bin, by=samples.in.ms)
pitch.data$ms <- as.POSIXct(bin.range/1000, origin=”1970-01-01”)
pitch.data

}

plot_pitches <- function(skip.seconds) {
logfile.df <- parse.log4r.log(”logfile.log”)

# Convert the timestamps to start at 0 to match our data below
logfile.df$log.timestamp <- as.POSIXct(

as.numeric(logfile.df$log.timestamp - min(logfile.df$log.timestamp)),
origin=”1970-01-01”)

pitch.data <- marsyas.pitchextract.to.data.frame(
”./pitch_limited_noterange.txt”

)

# Need to add 21600 because that�s what as.numeric returns for
# 1970-01-01 00:00:00 in seconds.

40



ms.numeric <- as.numeric(pitch.data$ms)
pitch.data <- pitch.data[ms.numeric > (21600.02 + skip.seconds),]
pitch.data$ms <- pitch.data$ms - seconds(skip.seconds)

# Throw out frequencies below C3 and above E4
pitch.data <-

pitch.data[pitch.data$frequency > 130 & pitch.data$frequency < 164,]

# Join the two data frames by date
pitch.data.zoo <- zoo(pitch.data$frequency, pitch.data$ms)

pitch.data.zoo.agg <- aggregate(
pitch.data.zoo,
time(pitch.data.zoo) - as.numeric(time(pitch.data.zoo)) %% 0.3,
mean

)

logfile.df.zoo <- zoo(logfile.df, logfile.df$log.timestamp)
merged <- merge(pitch.data.zoo.agg, logfile.df.zoo)
# Change column name back from pitch.data.zoo.agg
names(merged)[1] <- ”frequency”
merged$log.entry <- !is.na(merged$servo.degree)

merged.df <- data.frame(timestamp=index(merged), coredata(merged))
merged.df$log.timestamp <- NULL
merged.df$ms <- NULL
merged.df$id <- NULL
merged.df$frequency <- as.numeric(na.locf(merged$frequency))
merged.df <- merged.df[!is.na(merged.df$servo.degree), ]
merged.df$run <- sapply(

as.numeric(as.character(merged.df$servo.degree)),
function (degree) {

ifelse(degree > 6800, ”down”, ”up”)
}

)

merged.df
}

df <- plot_pitches(6.5)
pitches.up <- df[df$run == ”up”,]
pitches.down <- df[df$run == ”down”,]
lm.up <- lm(pitches.up$frequency ~ pitches.up$timestamp)
lm.down <- lm(pitches.down$frequency ~ pitches.down$timestamp)

# Reverse the order of the run factor so facet_wrap outputs in the right order.
df$run <- factor(df$run, levels = c(”up”, ”down”))

ggplot(df[df$frequency > 0, ], aes(timestamp, frequency, colour=frequency)) +
geom_point() +
scale_y_continuous(breaks=seq(130, 167)) +
scale_x_datetime(breaks=date_breaks(”20 secs”), labels=date_format(”%M:%S”)) +
facet_wrap(~run, scale=”free”, ncol=1) +
theme(axis.text.x=element_text(size=12)) +
theme(axis.text.y=element_text(size=12))

41



api_client.rb
#!/usr/bin/env ruby

require �osc-ruby�
require ”json”
require �yaml�
require �tuning_tools�
require �thread�

class Replay
attr_accessor :tempo_multiplier
def initialize (midifile = nil)

@midifile = midifile
@last_event = []
@last_time = []
@events = {}
@running_tracks = {}
@tempo_multiplier = 1

end

def load_from_json (file)
data = File.read file
@midi_data = JSON.parse data
curtime = (Time.now.to_f * 1000).to_i
@midi_data[�tracks�].each do |i|

@last_event.push 0
@last_time.push curtime

end
end

def register_event(event, &callback)
@events[event] = callback

end

def send_notes(note)
@events[note[�event�]].call note

end

def check_notes
curtime = (Time.now.to_f * 1000).to_i
elapsed = curtime - @start_time

@running_tracks.each do |track, track_state|
next unless track_state
notes = @midi_data[�tracks�][track]
last_event = @last_event[track]

note = notes[@last_event[track]]
begin

note[�elapsed�] = elapsed
if (note[�time_from_start�] * @tempo_multiplier) <= elapsed

@queue << note
@last_event[track] += 1

end
rescue NoMethodError

if @midi_data[�tracks�][track].length <= @last_event[track]
@running_tracks[track] = false

end

42



end
end

end

def play
@start_time = Time.now.to_f * 1000
@queue = Queue.new
checker = Thread.new do

@midi_data[�tracks�].each_index {|i| @running_tracks[i] = true }
loop do

check_notes
unless @running_tracks.values.include? true

# Add false to the queue so we can detect it in the other thread and
# know to stop.
@queue << false
break

end
sleep 0.001

end
end
sender = Thread.new do

loop do
note = @queue.pop
break if note == false
send_notes note

end
end
checker.join
sender.join

end
end

class TuningApiClient
include TuningTools

def initialize (opts)
@debug = opts[:debug] || false
@osc_client = OSC::Client.new(�localhost�, 3333)
@latest_notes = Queue.new
@notes_buffer = []

# Start with a major scale based on pitch class 0.
@scales = [[0, 2, 4, 5, 7, 9, 11]]

# Iterate on this scale to generate the rest of the keys.
10.times {|i| @scales << @scales[0].map {|n| (n + i) % 12} }

# Start with a tuning base of 0.
@base = 0

end

def publish (channel, mess)
@osc_client.send(OSC::Message.new(channel, mess.join(” ”)))

end

def init_messages
tuning_file = ARGV[0]
if not tuning_file.nil? and tuning_file[/ya?ml/]

tuning = YAML.load_file(�./partch_tuning.yml�)

43



send_tuning tuning[�base�], tuning[�ratios�]
else

send_five_limit
play_midi

end
end

def send_five_limit(base = 0)
five_limit = {

0 => [1,1],
1 => [25,24],
2 => [9,8],
3 => [6,5],
4 => [5,4],
5 => [4,3],
6 => [45,32],
7 => [3,2],
8 => [8,5],
9 => [5,3],
10 => [9,5],
11 => [15,8]

}

scale = Hash[five_limit.map {|k, v| [(k + base) % 12, v] }]

offsets = {}
scale.each do |pitch, ratio|

offsets[pitch] = ratio_to_cents_offset(pitch, ratio, base)
end

offsets.each do |pitch_class, cents_offset|
(1..12).each do |octave|

pitch_class = pitch_class.to_i
pitch = pitch_class + (12 * octave)
publish ”/inst/0/note/#{pitch}/tuning/offset/cents”, [cents_offset]
# Sleep for a bit so we don�t flood the queue.
sleep 0.01

end
end

end

def send_tuning(base = 0, ratios)
num_tones = ratios.size

# Add the base on to the scale
scale = Hash[ratios.map {|k, v| [(k + base) % num_tones, v] }]

# Find the key with the value [1,1] to get the new base
new_base = scale.invert[[1,1]]

offsets = {}

scale.each do |pitch, ratio|
offsets[pitch] = ratio_to_cents_offset(pitch, ratio, new_base, num_tones)

end

offsets.map do |pitch_class, cents_offset|
(0..8).each do |octave|

pitch_class = pitch_class.to_i

44



pitch = pitch_class + (num_tones * octave)

puts ”/inst/0/note/#{pitch}/tuning/offset/cents #{[cents_offset]}”
publish ”/inst/0/note/#{pitch}/tuning/offset/cents”, [cents_offset]
# Sleep for a bit so we don�t flood the queue.
sleep 0.01

end
end

end

def play_midi(file = nil)
file = ARGV[0] || file
puts ”Starting replay”
replay = Replay.new
replay.tempo_multiplier = 1
replay.load_from_json file

replay.register_event ”NoteOn” do |params|
@latest_notes << params[�note�]
note_on params[�note�], params[�velocity�]

end

replay.register_event ”NoteOff” do |params|
note_off params[�note�], params[�velocity�]

end

player = Thread.new { replay.play }
checker = Thread.new do

loop do
detect_key
sleep 0.001

end
end
player.join
checker.join

end

def note_on(pitch, velocity)
publish ”/inst/0/note/#{pitch}/on”, [velocity]

end

def note_off(pitch, velocity)
publish ”/inst/0/note/#{pitch}/off”, [velocity]

end

def detect_key(notes = nil)
@notes_buffer.unshift @latest_notes.pop
notes = @notes_buffer[0..15]

# Convert the notes to pitch classes
pclasses = notes.map {|n| n % 12}
results = {}
@scales.each_with_index do |scale, i|

results[i] = (pclasses & scale).size
end

closest_matches = results.max_by {|k,v| v}
# Take the first result and ignore keys tied for a match.

45



change_base closest_matches[0]
end

def change_base(pitch_class)
unless @base == pitch_class

puts ”CHANGING BASE #{pitch_class}”
send_five_limit pitch_class
@base = pitch_class

end
end

end

client = TuningApiClient.new({:debug => true})
client.init_messages

46



REFERENCES

Carlos, W. (2000). Beauty in the beast.

Cianfrocca, F. & Gupta, A. (n.d.). eventmachine (0.12.10). Retrieved from http : / /

rubyeventmachine.com/

Dan O’Sullivan, T. & Igoe, T. (2004). Physical computing: sensing and controlling the phys-

ical world with computers. Course Technology Ptr.

Daugherty, M., Partch, H., Johnson, S. [, & Hyla, L. (1996, June). Howl U.S.A. Nonesuch.

Duckworth, W. (1999). Talking music: conversations with john cage, philip glass, laurie

anderson, and 5 generations of american experimental composers. Da Capo Press.

Fielding, R. T. (2000). Architectural styles and the design of network-based software ar-

chitectures (Doctoral dissertation). AAI9980887.

Johnston, B. (1975). The Corporealism of Harry Partch. Perspectives of New Music, 13(2).

MacCaw, A. (n.d.). Spine (1.0.5). Retrieved from http://spinejs.com/

Martin, R. (2008). Clean code: a handbook of agile software craftsmanship. Prentice Hall.

Milano, D. (1986). A many-colored jungle of exotic tunings. Keyboard Magazine, Novem-

ber.

LEMUR: Purveyors of Fine Musical Robots Since 2000. (n.d.). Retrieved from http : / /

lemurbots.org/

The audio element — HTML5. (n.d.). Retrieved from http://dev.w3.org/html5/spec/the-

audio-element.html

Web Audio API. (n.d.). Retrieved from https://dvcs.w3.org/hg/audio/raw-file/tip/webaudio/

specification.html

47

http://rubyeventmachine.com/
http://rubyeventmachine.com/
http://spinejs.com/
http://lemurbots.org/
http://lemurbots.org/
http://dev.w3.org/html5/spec/the-audio-element.html
http://dev.w3.org/html5/spec/the-audio-element.html
https://dvcs.w3.org/hg/audio/raw-file/tip/webaudio/specification.html
https://dvcs.w3.org/hg/audio/raw-file/tip/webaudio/specification.html


Partch, H. (1979). Genesis of a music: an account of a creative work, its roots, and its

fulfillments, second edition. A Da Capo Paperback. Da Capo Press.

Schmidt, D. C. (1995). Reactor – an object behavioral pattern for concurrent event demul-

tiplexing and event handler dispatching.

Singer, E., Larke, K., & Bianciardi, D. (2005, July 15). Lemur guitarbot: midi robotic string

instrument. In F. Thibault (Ed.), Nime (pp. 188–191). Faculty of Music, McGill Univer-

sity. Retrieved from http://dblp.uni-trier.de/db/conf/nime/nime2003.html#SingerLB03

Tzanetakis, G. (2003). Marsyas (0.2).

Wessel, D. & Wright, M. (2002). Problems and prospects for intimate musical control of

computers. Computer Music Journal, 26, 11–22.

48

http://dblp.uni-trier.de/db/conf/nime/nime2003.html#SingerLB03

	LIST OF FIGURES
	CHAPTER 1. INTRODUCTION
	CHAPTER 2. JUST INTONATION PERFORMANCE
	CHAPTER 3. INSTRUMENT DESIGN
	Dynamically Tunable Bridge
	OSC as an Interface

	CHAPTER 4. IMPLEMENTATION
	API
	Software Instrument
	Hardware Instrument

	CHAPTER 5. TESTING
	Hardware Testing
	Client Software Application

	CHAPTER 6. FURTHER IDEAS AND POTENTIAL IMPROVEMENTS
	Hardware
	Software

	APPENDIX: CODE SAMPLES
	REFERENCES



