Finding Meaning in Context Using Graph Algorithms in Mono- and Cross-lingual Settings

PDF Version Also Available for Download.

Description

Making computers automatically find the appropriate meaning of words in context is an interesting problem that has proven to be one of the most challenging tasks in natural language processing (NLP). Widespread potential applications of a possible solution to the problem could be envisaged in several NLP tasks such as text simplification, language learning, machine translation, query expansion, information retrieval and text summarization. Ambiguity of words has always been a challenge in these applications, and the traditional endeavor to solve the problem of this ambiguity, namely doing word sense disambiguation using resources like WordNet, has been fraught with debate about ... continued below

Creation Information

Sinha, Ravi Som May 2013.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 243 times , with 5 in the last month . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Sinha, Ravi Som

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Making computers automatically find the appropriate meaning of words in context is an interesting problem that has proven to be one of the most challenging tasks in natural language processing (NLP). Widespread potential applications of a possible solution to the problem could be envisaged in several NLP tasks such as text simplification, language learning, machine translation, query expansion, information retrieval and text summarization. Ambiguity of words has always been a challenge in these applications, and the traditional endeavor to solve the problem of this ambiguity, namely doing word sense disambiguation using resources like WordNet, has been fraught with debate about the feasibility of the granularity that exists in WordNet senses. The recent trend has therefore been to move away from enforcing any given lexical resource upon automated systems from which to pick potential candidate senses,and to instead encourage them to pick and choose their own resources. Given a sentence with a target ambiguous word, an alternative solution consists of picking potential candidate substitutes for the target, filtering the list of the candidates to a much shorter list using various heuristics, and trying to match these system predictions against a human generated gold standard, with a view to ensuring that the meaning of the sentence does not change after the substitutions. This solution has manifested itself in the SemEval 2007 task of lexical substitution and the more recent SemEval 2010 task of cross-lingual lexical substitution (which I helped organize), where given an English context and a target word within that context, the systems are required to provide between one and ten appropriate substitutes (in English) or translations (in Spanish) for the target word. In this dissertation, I present a comprehensive overview of state-of-the-art research and describe new experiments to tackle the tasks of lexical substitution and cross-lingual lexical substitution. In particular I attempt to answer some research questions pertinent to the tasks, mostly focusing on completely unsupervised approaches. I present a new framework for unsupervised lexical substitution using graphs and centrality algorithms. An additional novelty in this approach is the use of directional similarity rather than the traditional, symmetric word similarity. Additionally, the thesis also explores the extension of the monolingual framework into a cross-lingual one, and examines how well this cross-lingual framework can work for the monolingual lexical substitution and cross-lingual lexical substitution tasks. A comprehensive set of comparative investigations are presented amongst supervised and unsupervised methods, several graph based methods, and the use of monolingual and multilingual information.

Language

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • May 2013

Added to The UNT Digital Library

  • Feb. 1, 2014, 6:14 p.m.

Description Last Updated

  • Nov. 16, 2016, 11:52 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 5
Total Uses: 243

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Sinha, Ravi Som. Finding Meaning in Context Using Graph Algorithms in Mono- and Cross-lingual Settings, dissertation, May 2013; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc271899/: accessed April 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .