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CHAPTER 1

INTRODUCTION

1.1. Discussion of the Problem

Consider the porous medium equation(PME),

(1) ut = ∆(um), m > 1,m ∈ R.

where, u = u(x, t) > 0, x ∈ Rn, n is the space dimension and t ∈ R the time.

This parabolic equation has been extensively studied in the literature due to its important

physical applications. The function u = u(x, t) models the density of an ideal gas flowing

in a homogeneous porous medium [1], [3] n ≤ 3, the diffusion of strong thermal waves [2]

n ≤ 3, and the spreading of viscous gravity currents [6] with n = 2.

When n = 2 and m = 4 the porous medium equation models the spreading of a film of

fluid on a horizontal surface under the action of gravity. In particular, if the free surface of

the fluid is described by the graph z = h(x, y, t), then it has been shown using lubrication

theory [6] that h satisfies

(2)
∂h

∂t
=

g

3ν
∇ ·
(
h3∇h

)
=

g

12ν
∆(h4),

where g is the acceleration due to gravity and ν the kinematic viscosity of the fluid. After a

change of scale Eq. (2) becomes Eq. (1) with m = 4.

To derive this equation, we neglect capillary, molecular and inertial forces and we assume

the flow has a lateral extension which is much larger than the typical thickness. Several

experimental studies (see for instance [8, 5] and references therein) show that this equation

is a good approximation provided that the lateral extension of the spreading is much larger

Contents in section 1.1 and section 1.4 of this chapter have been reproduced, either in part or in full,

from [7] J. Iaia and S. Betelu, European Journal of Applied Mathematics [doi:10.1017/S0956792512000423]

with permission from Cambridge University Press.
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than the capillary length
√
γ/ρg, where γ is the surface tension, and provided that the fluid

wets the surface i.e. the contact angle with the substrate at equilibrium is zero. In order

to get a simpler, quadratic equation easier for analysis, we write the PME in terms of the

pressure v where

v =
m

m− 1
um−1.

Equation (1) then becomes

(3) vt = (m− 1)v∆v + |∇v|2.

1.2. Problem in Space Dimension n = 2

In the paper [7], it has been shown that in n = 2 dimensions, there are traveling wave

solutions of (3) in the form

(4) v(x, y, t) = r(x, y, t)F (θ(x, y, t)),

where

r =
√

(x− ct)2 + y2, c > 0,

θ = tan−1
(

y

x− ct

)
,

and

x− ct = r cos θ,

y = r sin θ.

Then the function F (θ) satisfies

(5) F ′2 − cF ′ sin θ + F 2 + cF cos θ + (m− 1)F (F ′′ + F ) = 0.

In that paper it has also been shown that if c > 0 and

F (π) = a > 0, F ′(π) = 0,

then there is a positive solution of

F ′2 − cF ′ sin θ + F 2 + cF cos θ + (m− 1)F (F ′′ + F ) = 0 on (0, π)
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such that

F (0) = 0, F ′(0) = 0

if and only if c > a.

In addition, when c > a then F is 2π-periodic and there are solutions of (3) in the form (4).

1.3. Problem in Space Dimension n = 3

In this work, we attempt to prove a similar theorem in n = 3 dimensions. In particular,

we attempt to find traveling wave solutions of (3) in n = 3 dimensions. We assume

(6) v(x, y, z, t) = r(x, y, z, t)F (φ(x, y, z, t)),

where

(7) r =
√
x2 + y2 + (z − ct)2, c > 0,

(8) θ = tan−1
(y
x

)
,

(9) φ = tan−1

(√
x2 + y2

z − ct

)
,

and:

x = r cos θ sinφ,

y = r sin θ sinφ,

z − ct = r cosφ.

We will then show that F (φ) satisfies

F ′2 − cF ′ sinφ+ F 2 + cF cosφ+ (m− 1)F

(
F ′′ +

cosφ

sinφ
F ′ + 2F

)
= 0.

Problem in section 1.3 and its solution which is virtually the most part of my dissertation have been

reproduced in elaborated form from my published article [9] L. Paudel and J. Iaia, Nonlinear Analysis(2012),

Elsevier, doi:10.1016/j.na.2012.10.016 that I co-authored with my advisor J. Iaia.
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Note that this equation has more terms than (5) and therefore requires a separate analysis

than that contained in [7]. In this paper we will prove the following theorem:

Main Theorem: Let c > 0 . Consider the differential equation

(10) F ′2 − cF ′ sinφ+ F 2 + cF cosφ+ (m− 1)F

(
F ′′ +

cosφ

sinφ
F ′ + 2F

)
= 0

with

(11) F (π) = a > 0, F ′(π) = 0.

There is a positive solution of (10)-(11) with

F (0) = 0, F ′(0) = 0

if and only if c > a.

In addition, when c > a then F is 2π-periodic and there are solutions of (3) in the form of

(6).

If c = a then F (φ) = −a cos(φ) is an explicit solution of (10)-(11), and so there is not a

positive solutions of (3) with F (0) = 0 and F ′(0) = 0.

If c < a and F is a solution of the equations (10)-(11), then F has a zero, z, with π
2
< z < π

and

lim
φ→z+

F (φ)

(φ− z)
m−1
m

> 0.

1.4. Some Properties of the Porous Medium Equation Relevant to Our Work

Numerous interesting properties of the solutions of the PME have been studied, and they

are nicely summarized in [11]. Some of those properties relevant to our work are summarized

as follows:

• If the initial condition u(x, 0) is non-negative, then the solution remains non-negative

for all times.
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• The boundary of the set S = {x : u(x, t) = 0} is called the interface. In the PME

with m > 1 the interface can be static or move forward in the direction where u = 0,

but never backwards.

• The function u is smooth in the regions where u > 0 and t > 0. At the interface,

where u = 0, u is continuous but its derivative may be discontinuous.

• The solutions satisfy the maximum principle for parabolic equations: if u1(x, 0) ≤

u2(x, 0) then u1(x, t) ≤ u2(x, t) for t > 0.

In this paper, the interface is a half line that terminates abruptly, and since only the

end point moves, we call this interface degenerate. As in all the applications of the porous

medium equation, in this paper too, the propagating half line can be interpreted as a region

empty of fluid.
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CHAPTER 2

DERIVATION OF THE DIFFERENTIAL EQUATIONS

2.1. Differential Equation in Terms of the Pressure v

We assume

(12) u = c vk,

where, c > 0, u > 0, v > 0, k ∈ R.

Then

(13) ut = ck vk−1vt.

Since

um = cm vkm,

differentiating with respect to ’x’, we get

(14) (um)x = (cm vkm)x = cm km vkm−1vx.

Again, differentiating with respect to ’x’, we get

(15) (um)xx = (cm km vkm−1vx)x = cm km
(
(km− 1)vkm−2v2x + vkm−1vxx

)
.

Proceeding similary,

(16) (um)yy = (cm km vkm−1vy)y = cm km
(
(km− 1)vkm−2v2y + vkm−1vyy

)
.

(17) (um)zz = (cm km vkm−1vz)z = cm km
(
(km− 1)vkm−2v2z + vkm−1vzz

)
.

Adding (15), (16) and (17), we get

(18) ∆(um) = cm km
(
(km− 1)vkm−2|∇v|2 + vkm−1∆v

)
.
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Using (13) and (18) in (1), we get

ck vk−1vt = cm km
(
(km− 1)vkm−2|∇v|2 + vkm−1∆v

)
.

Thus

c vk−1vt = cm m
(
(km− 1)vkm−2|∇v|2 + vkm−1∆v

)
.

Hence

vt = cm−1 m
(
(km− 1)vkm−2−k+1|∇v|2 + vkm−1−k+1∆v

)
= m cm−1

(
(km− 1)vkm−k−1|∇v|2 + vkm−k∆v

)
.

Choosing k so that km− k − 1 = 0 i.e. k = 1
m−1

then we get

vt = mcm−1
(
|∇v|2

m− 1
+ v ∆v

)
=

mcm−1

(m− 1)

(
(m− 1)v∆v + |∇v|2

)
.

Choosing c so that

m

m− 1
cm−1 = 1,

then

(19) vt = (m− 1) v ∆v + |∇v|2,

where

cm−1 =
m− 1

m
,

i.e.

c =

(
m− 1

m

) 1
m−1

,

and

u = c vk

7



=

(
m− 1

m

) 1
m−1

v
1

m−1 ,

equivalently,

v =
m

m− 1
um−1.

2.2. Differential Equation in Terms of F

Using spherical coordinates, for ~x = (x, y, z) ∈ R3

x = r cos θ sinφ, y = r sin θ sinφ, z − ct = r cosφ,

we have

(20) r =
√
x2 + y2 + (z − ct)2,

tan θ =
y

x
,

(21) θ = tan−1
(y
x

)
,

tanφ =

√
x2 + y2

z − ct
,

(22) φ = tan−1

(√
x2 + y2

z − ct

)
.

For a function u(r, θ, φ), from [10] by Strauss,

(23) ∆u = urr +
2

r
ur +

1

r2

(
uφφ +

cosφ

sinφ
uφ +

1

sin2 φ
uθθ

)
Hence,

(24) ∆φ =
cosφ

r2 sinφ
,

Let

(25) v(x, y, z, t) = r(x, y, z, t) F (φ(x, y, z, t)).

Then

(26) vt = rt F (φ) + r F ′(φ) φt,
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(27) vx = rx F (φ) + r F ′(φ) φx,

(28) vy = ry F (φ) + r F ′(φ) φy,

(29) vz = rz F (φ) + r F ′(φ) φz,

Differentiating (27) with respect to ‘x’, we get

vxx = rxxF + rxF
′φx + rxF

′φx + rF ′′φ2
x + rF ′φxx

Hence

(30) vxx = rxxF + 2rxF
′φx + rF ′′φ2

x + rF ′φxx.

Similarly, differentiating (28) with respect to ‘y’ and (29) with respect to ‘z’ , we get

(31) vyy = ryyF + 2rxF
′φy + rF ′′φ2

y + rF ′φyy.

(32) vzz = rzzF + 2rzF
′φz + rF ′′φ2

z + rF ′φzz.

We have

(33) r2 = x2 + y2 + (z − ct)2.

Differentiating (33) with respect to ‘t’, we get

2rrt = 2(z − ct)(−c),

(34) rrt = −c(z − ct),

(35) rt =
−c(z − ct)

r
= −c cosφ.

Differentiating (33) with respect to ‘x’, we get

(36) rrx = x,

(37) rx =
x

r
.
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Differentiating (33) with respect to ‘y’, we get

(38) rry = y,

(39) ry =
y

r
.

Differentiating (33) with respect to ‘z’, we get

(40) rrz = z − ct,

(41) rz =
z − ct
r

.

Differentiating (36) with respect to x, we get

(42) r2x + rrxx = 1.

Differentiating (38) with respect to y, we get

(43) r2y + rryy = 1.

Differentiating (40) with respect to z, we get

(44) r2z + rrzz = 1.

Squaring and adding the equations (36), (38) and (40), we get

r2(r2x + r2y + r2z) = x2 + y2 + (z − ct)2 = r2,

So

r2x + r2y + r2z = 1,

i.e.

(45) |∇r|2 = 1.

Adding (42), (43) and (44), we get

|∇r|2 + ∆r r = 3.
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Using (45), we get

∆r r = 2,

and

(46) ∆r =
2

r
.

We have

(47) φ = tan−1

(√
x2 + y2

z − ct

)
.

Differentiating (47) with respect to ‘t’, we get

φt =
1

1 + x2+y2

(z−ct)2
(−1)

√
x2 + y2

(z − ct)2
(−c)

=
c
√
x2 + y2

x2 + y2 + (z − ct)2

=
c
√
x2 + y2

r2
.

Thus

(48) φt =
c
√
x2 + y2

r2
=
c sinφ

r
.

Differentiating (47) with respect to ‘x’, we get

φx =
1

1 + x2+y2

(z−ct)2

2x

2
√
x2 + y2(z − ct)

=
x(z − ct)

((z − ct)2 + x2 + y2)
√
x2 + y2

=
x(z − ct)
r2
√
x2 + y2

.

Hence

(49) φx =
x(z − ct)
r2
√
x2 + y2

.

Similarly,

(50) φy =
y(z − ct)
r2
√
x2 + y2

.

11



Differentiating (47) with respect to ‘z’, we get

φz =
1

1 + x2+y2

(z−ct)2
(−1)

√
x2 + y2

(z − ct)2

=
−
√
x2 + y2

x2 + y2 + (z − ct)2

=
−
√
x2 + y2

r2
.

Hence

(51) φz =
−
√
x2 + y2

r2
.

Then

|∇φ|2 = φ2
x + φ2

y + φ2
z

=
x2(z − ct)2

r4(x2 + y2)
+
y2(z − ct)2

r4(x2 + y2)
+

(x2 + y2)

r4

=
(z − ct)2

r4
+

(x2 + y2)

r4

=
1

r2
.

So,

(52) |∇φ|2 =
1

r2
.

Since

∇r · ∇φ = rxφx + ryφy + rzφz.

Using equations (36), (38), (40),(49),(50) and (51), we have

∇r · ∇φ =
x

r

x(z − ct)
r2
√
x2 + y2

+
y

r

y(z − ct)
r2
√
x2 + y2

+
(z − ct)

r

(−1)
√
x2 + y2

r2

=
(x2 + y2)(z − ct)
r3
√
x2 + y2

− (z − ct)
√
x2 + y2

r3

=
(z − ct)

√
x2 + y2

r3
− (z − ct)

√
x2 + y2

r3

= 0.
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So

(53) ∇r · ∇φ = 0.

|∇v|2 = v2x + v2y + v2z

= (r2x + r2y + r2z)F
2 + 2r(rxφx + ryφy + rzφz)FF

′ + (φ2
x + φ2

y + φ2
z)r

2F ′2

= |∇r|2F 2 + 2r(∇r · ∇φ)FF ′ + |∇φ|2r2F ′2

= F 2 + F ′2.

Hence

(54) |∇v|2 = F 2 + F ′2.

∆v = vxx + vyy + vzz

= (∆r)F + 2(∇r · ∇φ)F ′ + |∇φ|2rF ′′ + (∆φ)rF ′

=
2

r
F +

1

r
F ′′ +

cosφ

r sinφ
F ′.

Hence

(55) ∆v =
2

r
F +

1

r
F ′′ +

cosφ

r sinφ
F ′.

Now, from the equations (25) and (55), we have

v ∆v = rF

(
2

r
F +

1

r
F ′′ +

cosφ

r sinφ
F ′
)

= 2F 2 + FF ′′ +
cosφ

sinφ
FF ′.

Thus

(56) v ∆v = 2F 2 + FF ′′ +
cosφ

sinφ
FF ′.

From equation (26), we have

vt = rt F (φ) + r F ′(φ) φt.

13



Using (35) and (48), we get

vt = −c cosφF + rF ′
c sinφ

r

= −c cosφ F + c sinφ F ′.

Hence

(57) vt = −c cosφ F + c sinφ F ′.

Using equations (54), (56) and (57) in

vt = (m− 1) v ∆v + |∇v|2.

we get

−c cosφ F + c sinφ F ′ = (m− 1)

(
2F 2 + FF ′′ +

cosφ

sinφ
FF ′

)
+ F 2 + F ′2.

Finally,

(58) F ′2 − c sinφ F ′ + F 2 + c cosφ F + (m− 1)F

(
F ′′ +

cosφ

sinφ
F ′ + 2F

)
= 0.
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CHAPTER 3

SOLUTIONS OF THE DIFFERENTIAL EQUATION

We consider the differential equation

(59) F ′2 − c sinφ F ′ + F 2 + c cosφ F + (m− 1)F

(
F ′′ +

cosφ

sinφ
F ′ + 2F

)
= 0.

By restricting ourselves to symmetric solutions about the z− axis, we assign the boundary

conditions as

(60) F (π) = a,

(61) F ′(π) = 0.

3.1. Existence of the Solution F

Let H =
(
m−1
m

)
F

m
m−1 , then the differential equation (59) is reduced to

(62) H ′′ sinφ+ H ′ cosφ− c

(m− 1)

(
m− 1

m

)m−1
m

H
1
m
−1H ′ sin2 φ+

m(2m− 1)

(m− 1)2
H sinφ

+
c

(m− 1)

(
m

m− 1

) 1
m

H
1
m cosφ sinφ = 0

and satisfies

(63) H(π) =

(
m− 1

m

)
a

m
m−1

(64) H ′(π) = 0.

Rewriting the equation (62),

(H ′ sinφ)
′ − c

(m− 1)

(
m− 1

m

)m−1
m (

mH
1
m

)′
sin2 φ+

m(2m− 1)

(m− 1)2
H sinφ
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+
c

(m− 1)

(
m

m− 1

) 1
m

H
1
m cosφ sinφ = 0

and integrating over φ to π, we get

−H ′ sinφ+
cm

m− 1

(
m− 1

m

)m−1
m

H
1
m sin2 φ+

m(2m− 1)

(m− 1)2

∫ π

φ

H sin θ dθ

+
c

(m− 1)

[
2m

(
m− 1

m

)m−1
m

+

(
m

m− 1

) 1
m

]∫ π

φ

H
1
2 sin θ cos θ dθ = 0.

Dividing by sinφ and integrating once again over φ to π, we get

H(π)−H(φ) =

∫ π

φ

cm

m− 1

(
m− 1

m

)m−1
m

H
1
m sin θ dθ+

∫ π

φ

(
m(2m− 1)

(m− 1)2 sin t

∫ π

t

H sin θ dθ

)
dt

+

∫ π

φ

[
c

(m− 1) sin t

(
2m

(
m− 1

m

)m−1
m

+

(
m

m− 1

) 1
m

)∫ π

t

H
1
2 sin θ cos θ dθ

]
dt.

So,

(65)

H(φ) = H(π)−
∫ π

φ

PH
1
m sin θ dθ−

∫ π

φ

(
Q

sin t

∫ π

t

H sin θ dθ

)
dt−

∫ π

φ

(
R

sin t

∫ π

t

H
1
2 sin θ cos θ dθ

)
dt.

where,

P = cm
(m−1)

(
m−1
m

)m−1
m ,

Q = m(2m−1)
(m−1)2 , and

R = c
(m−1)

[
2m
(
m−1
m

)m−1
m +

(
m
m−1

) 1
m

]
.

From (65), it can be shown that the map T defined by T (H) = right hand side of (65)

is a contraction mapping , provided φ is sufficiently close to π. Hence by the contraction

mapping principle, T has a fixed point H such that T (H) = H for φ sufficiently close to

π. Hence the solution H of equations (62)-(64) exists in the neighborhood of φ = π. This

proves the existence of the solution F of (59)-(61) in the neighborhood of φ = π.
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3.2. Preliminary Observation

Let us suppose

(66) W = F ′2 − c sinφ F ′ + F 2 + c cosφ F.

Then

W ′ = 2 F ′F ′′ − c sinφ F ′′ − c cosφ F ′ + 2FF ′ + c cosφ F ′ − c sinφF

= 2F ′(F ′′ + F )− c sinφ(F ′′ + F )

= (2F ′ − c sinφ)(F ′′ + F ).

Hence

(67) W ′ = (2F ′ − c sinφ)(F ′′ + F ).

From equations (59) and (66), we have

(68) W + (m− 1)F

(
F ′′ + F +

cosφ F ′ + sinφ F

sinφ

)
= 0.

So

F ′′ + F = − W

(m− 1)F
− cosφ

sinφ
F ′ − F.

Then

W ′ = (2F ′ − c sinφ)

(
− W

(m− 1)F
− cosφ

sinφ
F ′ − F

)
.

(69) W ′ +
(2F ′ − c sinφ)

(m− 1)F
W = (2F ′ − c sinφ)

(
−cosφ

sinφ
F ′ − F

)
.

Note that by using (60) and (61) in (66), we get

(70) W (π) = a2 − ac

Taking the limit as φ→ π− in equation (59), we get

a2 − ac+ (m− 1) a

(
F ′′(π) + lim

φ→π−

cosφ

sinφ
F ′(φ) + 2F (π)

)
= 0.
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Using L’Hospital’s rule to calculate, we get

a2 − ac+ (m− 1) 2 a (F ′′(π) + F (π)) = 0.

(a− c) + 2(m− 1) (F ′′(π) + F (π)) = 0.

And thus

(71) F ′′(π) + F (π) =
c− a

2(m− 1)
.

Hence,

(72) F ′′(π) + F (π) < 0 for a > c,

(73) F ′′(π) + F (π) = 0 for a = c,

and

(74) F ′′(π) + F (π) > 0 for a < c.

If we let

(75) D = cosφ F ′ + sinφ F,

Then

(76) D′ = (F ′′ + F ) cosφ.

From (82)

W + (m− 1)F

(
F ′′ + F +

cosφ F ′ + sinφ F

sinφ

)
= 0.

Using (75) and (76), we get

W + (m− 1)F

(
D′

cosφ
+

D

sinφ

)
= 0.

Therefore

(77) W + (m− 1)
F

cosφ
D′ + (m− 1)

F

sinφ
D = 0.

18



From equation (67)

W ′ = (2F ′ − c sinφ)(F ′′ + F ).

Using (76), we get

(78) W ′ = (2F ′ − c sinφ)
D′

cosφ
.

Lemma 3.1. The function F is symmetric about the line φ = π, i.e. F (π + φ) = F (π − φ).

Proof. Let F (π + φ) = G1(φ) and F (π − φ) = G2(φ), then

G′1(φ) = F ′(π + φ), G′2(φ) = −F ′(π − φ),

G′′1(φ) = F ′′(π + φ), G′′2(φ) = F ′′(π − φ).

So

(79) G1(0) = a = G2(0) and G′1(0) = 0 = G′2(0).

Replacing φ by π + φ in equation (59), we get

G′21 − c sin(π+φ) G′1 +G2
1 + c cos(π+φ) G1 + (m− 1)G1

(
G′′1 +

cos(π + φ)

sin(π + φ)
G′1 + 2G1

)
= 0.

Thus

(80) G′21 + c sinφ G′1 +G2
1 − c cosφ G1 + (m− 1)G1

(
G′′1 +

cosφ

sinφ
G′1 + 2G1

)
= 0.

Replacing φ by π − φ in equation (59), we get

G′22 + c sin(π−φ) G′2 +G2
2 + c cos(π−φ) G2 + (m− 1)G2

(
G′′2 −

cos(π − φ)

sin(π − φ)
G′2 + 2G2

)
= 0.

Thus

(81) G′22 + c sinφ G′2 +G2
2 − c cosφ G2 + (m− 1)G2

(
G′′2 +

cosφ

sinφ
G′2 + 2G2

)
= 0.

From equations (80) and (81), we see that G1 and G2 satisfy the same differential equation.
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From (79), they also satisfy the same initial conditions. Hence by the uniqueness theorem

[4],

G1(φ) = G2(φ).

So

F (π + φ) = F (π − φ).

This completes the proof of lemma 3.1. �
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CHAPTER 4

THE CASE 0 < c = a

Lemma 4.1. For c = a, F = −a cosφ is a solution for the system of equations (59)-(61).

Proof. Let

W = F ′2 − c sinφ F ′ + F 2 + c cosφ F.

Then equation (59) is reduced to

W + (m− 1)F

(
F ′′ +

cosφ

sinφ
F ′ + 2F

)
= 0.

(82)
W

(m− 1)F
+ F ′′ +

cosφ

sinφ
F ′ + 2F = 0.

Consider the equation

(83) F ′′ +
cosφ

sinφ
F ′ + 2F = 0.

Note that for

F = cosφ,

F ′ = − sinφ,

F ′′ = − cosφ,

Using in equation (83), we get

− cosφ+
cosφ

sinφ
(− sinφ) + 2 cosφ = 0.

Then, F = cosφ is a solution for equation (83). Besides, equation (83) is a linear homoge-

neous differential equation. So, F = k cosφ is a solution of equation (83) for any k.

Also, consider the equation

(84) W = F ′2 − c sinφ F ′ + F 2 + c cosφ F = 0.
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Let

F = −a cosφ,

then

F ′ = a sinφ,

F ′′ = a cosφ.

Since c = a,

W = a2 sin2 φ− c sinφ a sinφ+ a2 cos2 φ− ac cos2 φ

= (a2 − ac) sin2 φ+ (a2 − ac) cos2 φ

= (a2 − ac)

= 0

Combining this with the fact that F = −a cosφ satisfies equation (83), we see that F =

−a cosφ satisfies the equation (82). Hence, whenever c = a, F = −a cosφ is a solution for

the system of equations (59)-(61). This completes the proof of lemma 4.1. �
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CHAPTER 5

THE CASE 0 < c < a

Lemma 5.1. Let 0 < c < a. Then F has a zero on (π
2
, π).

Proof. By (60) we have F (π) = a > 0. Contrary to the lemma let us assume that F > 0

on (π
2
, π). Then from (60)-(61) and (75)-(76) we have

D(π) = 0, D
(π

2

)
= F

(π
2

)
≥ 0,

D′(π) = [F ′′(π) + F (π)] cosπ = (−1)[F ′′(π) + F (π)].

Using this and (71) we see

D′(π) > 0.

Therefore D is negative to the immediate left of π and D(π
2
) ≥ 0 so it follows that D has a

negative local minimum on (π
2
, π). So there is a p ∈ (π

2
, π) such that D′(p) = 0, D′ > 0 on

(p, π] and D(p) < 0. Then it follows that

(85) D(φ) < 0 on [p, π).

In addition, it follows from calculus that

(86) D′′(p) ≥ 0.

Since D′(p) = 0 and p ∈ (π
2
, π), then from (78) it follows that W ′(p) = 0. Next, we

differentiate (77) and see that we obtain

(87)
W ′

m− 1
+

(
F

cosφ

)′
D′ +

(
F

cosφ

)
D′′ +

(
F

sinφ

)′
D +

(
F

sinφ

)
D′ = 0.

Evaluating at φ = p (where W ′(p) = D′(p) = 0), this reduces to

F (p)

cos p
D′′(p) +

(
F ′(p) sin p− F (p) cos p

sin2 p

)
D(p) = 0.
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Since p ∈
(
π
2
, π
)
, then cos p < 0 and along with (86), we obtain(

F ′(p) sin p− F (p) cos p

sin2 p

)
D(p) ≥ 0.

Since D(p) < 0, we then have

F ′(p) sin p− F (p) cos p ≤ 0.

Thus since p ∈ (π
2
, π) we have

F ′(p) sin p ≤ F (p) cos p < 0.

Hence

(88) F ′(p) < 0.

Also from (60)-(61) and (71) we see that F has a local maximum at π. Then for some ε > 0

(89) F ′ > 0

on (π − ε, π). From (88) we see that F is decreasing near p and from (89) we see that F is

increasing to the immediate left of π. Therefore there exists q ∈ (p, π) where F has a local

minimum and thus F ′(q) = 0. Since q ∈ (p, π), using (75) and (85) we see that

0 > D(q) = F ′(q) cos q + F (q) sin q = F (q) sin q

which contradicts the assumption F > 0. This completes the proof of lemma 5.1. �

Due to the preceding lemma, we will now assume that there is a z with π
2
< z < π such

that F (z) = 0 and

(90) F > 0 on (z, π].

Lemma 5.2. Let 0 < c < a. Then D′ > 0 on (z, π].

Proof. We assume by the way of contradiction that there exists w ∈ (z, π] ⊂ (π
2
, π] such

that D′(w) ≤ 0. Now recall from the beginning of the proof of lemma 5.1 that D′(π) > 0
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and D(π) = 0. Hence there exists some p ∈ [w, π) such that D′(p) = 0 and D′ > 0 on (p, π].

Then

(91) D′′(p) ≥ 0 and D(p) < 0.

Also, from (78) we have

W ′(p) = 0.

Using these facts in (87), we obtain

(92)
F (p)

cos p
D′′(p) +

(
F ′(p) sin p− F (p) cos p

sin2 p

)
D(p) = 0.

Since p ∈ (z, π) ⊂ (π
2
, π),

cos p < 0 and F (p) > 0,

and thus from (91) we obtain

(F ′(p) sin p− F (p) cos p)D(p) ≥ 0.

Since D(p) < 0 (by 91) we then have

F ′(p) sin p− F (p) cos p ≤ 0

and so

F ′(p) sin p ≤ F (p) cos p < 0.

Thus:

F ′(p) < 0.

So F is decreasing near p and since F has a local maximum at π, F is increasing to the

immediate left of π. Thus, there exists q ∈ (p, π) such that F ′(q) = 0. Then from (75) we

have

(93) D(q) = F (q) sin q > 0.

Now from (91) and the comments immediately preceding this lemma, D(p) < 0, D(π) = 0,

and D′ > 0 on (p, π]. Thus D(q) < 0 which is a contradiction to (93). Thus D′ > 0 on (z, π].

This completes the proof of lemma 5.2. �
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Note: It follows from lemma 5.2 thatD′ = (F ′′+F )(cosφ) > 0 on (z, π). Thus F ′′+F < 0

on (z, π). Since F > 0 on (z, π) then it follows that F ′′ < 0 on (z, π]. Thus, F ′ is strictly

decreasing on (z, π). Since F ′(π) = 0 this implies F ′ > 0 on (z, π). Also, since F ′ is strictly

decreasing on (z, π), we see that lim
φ→z+

F ′(φ) exists (but may be infinite). Thus lim
φ→z+

F ′(φ) = A

where 0 < A ≤ ∞.

Lemma 5.3. Let 0 < c < a. Then lim
φ→z+

F ′ =∞.

Proof. We assume by the way of contradiction that lim
φ→z+

F ′(φ) = A, where 0 < A < ∞.

Now let

E =
1

2

(
F ′2 + F 2

)
.

From the note after lemma 5.2 we have

F ′′ + F < 0 and F ′ > 0 on (z, π).

Thus we see that

(94) E ′ =
1

2

(
F ′2 + F 2

)′
= F ′ (F ′′ + F ) < 0 on (z, π).

Therefore E is decreasing on (z, π) and thus:

a2

2
= E(π) ≤ lim

φ→z+
E(φ) =

A2

2
.

Therefore

a ≤ A,

and since 0 < c < a, we see that

(95) 0 < c < a ≤ A.

Then using (95) and the fact that | sin(z)| ≤ 1, we see that

(96) lim
φ→z+

W (φ) = lim
φ→z+

[F ′2−cF ′ sinφ+F 2+cF cosφ] = A2−cA sin z = A(A−c sin z) > 0.
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Next, dividing (69) by W and taking the limit as φ→ z+, we see (using z ∈ (π
2
, π) and (95))

that

(97) lim
φ→z+

[
W ′

W
+

2

m− 1

F ′

F
− c

m− 1

sinφ

F

]
= −cos z

sin z

(
2A− c sin z

A− c sin z

)
> 0.

Next we let

(98) G = WF
2

m−1 exp

(
c

m− 1

∫ π

φ

sin t

F (t)
dt

)
.

Taking logs and differentiating we obtain

G′

G
= (lnG)′ =

W ′

W
+

2

m− 1

F ′

F
− c

m− 1

sinφ

F

Hence from (97),

(99) lim
φ→z+

G′

G
= −cos z

sin z

(
2A− c sin z

A− c sin z

)
≡ B > 0.

From (90) and (96) observe that G > 0 to the immediate right of z. So, from (99), G′ > 0

near φ = z. Thus, G is increasing near φ = z and therefore

(100) lim
φ→z+

G = L ≥ 0.

Now from (99) we have

G′

G
≤ 2B on (z, z + ε).

Thus integrating on (φ, φ1) ⊂ (z, z + ε) we obtain

G(φ1)e
2B(φ−φ1) ≤ G(φ)

and therefore

0 < G(φ1)e
2B(z−φ1) ≤ lim

φ→z+
G(φ) = L.

Thus

(101) lim
φ→z+

G = L > 0.
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We already know from (96) that lim
φ→z+

W (φ) = A(A − c sin z) > 0. So, from (98) and (101)

we see

lim
φ→z+

[
F

2
m−1 (φ) exp

(
c

m− 1

∫ π

φ

sin t

F (t)
dt

)]
is positive and finite.

Taking natural logs implies

lim
φ→z+

[
2 lnF + c

∫ π

φ

sin t

F (t)
dt

]
exists and is finite.

Rewriting, we see that

(102) lim
φ→z+

2 lnF

[
1 +

c
∫ π
φ

sin t
F (t)

dt

2 lnF

]
exists and is finite.

Since lim
φ→z+

F ′(φ) = A it follows from L’Hopital’s rule that

lim
φ→z+

F (φ)

φ− z
= lim

φ→z+
F ′(φ) = A.

Using this and the fact that π
2
< z < π we see that the integral in (102) becomes unbounded

as φ→ z+. Hence applying L’Hopital’s rule we see that

(103) lim
φ→z+

c
∫ π
φ

sin t
F (t)

dt

2 lnF
= − lim

φ→z+

c sinφ
F
2F ′

F

= −c sin z

2A
.

Now, from (95) we have A ≥ a > c > c
2

sin z and so

(104) 1 + lim
φ→z+

c
∫ π
φ

sin t
F (t)

dt

2 lnF
= 1− c sin z

2A
> 0.

However, since

(105) lim
φ→z+

2 lnF = −∞

we see that (104) and (105) contradict (102). Therefore it must be the case that A = ∞.

This completes the proof of lemma 5.3. �

Lemma 5.4. Let 0 < c < a. Then

lim
φ→z+

FF ′′

F ′2
= − 1

m− 1
.

28



Proof. Dividing (59) by F ′2 gives

(106) 1− c sinφ

F ′
+

(2m− 1)F 2

F ′2
+
cF cosφ

F ′2
+

(m− 1)FF ′′

F ′2
+

(m− 1)F cosφ

F ′ sinφ
= 0.

Since F (z) = lim
φ→z+

F (φ) = 0 and lim
φ→z+

F ′(φ) =∞ (by lemma 5.3), it follows then that

(107) lim
φ→z+

c sinφ

F ′
= lim

φ→z+

(2m− 1)F 2

F ′2
= lim

φ→z+

cF cosφ

F ′2
=

(m− 1)F cosφ

F ′ sinφ
= 0.

Taking the limit as φ→ z+ in (106) and using (107) we see that

1 + lim
φ→z+

(m− 1)FF ′′

F ′2
= 0.

Thus,

lim
φ→z+

FF ′′

F ′2
= − 1

m− 1
.

This completes the proof of lemma 5.4. �

Lemma 5.5. Let 0 < c < a. Then

lim
φ→z+

(φ− z)F ′

F
=
m− 1

m
.

Proof. From lemma 5.4, it follows that given ε > 0 there exists some δ > 0 such that

−1

m− 1
− ε < FF ′′

F ′2
<
−1

m− 1
+ ε for z < φ < z + δ.

Since FF ′′

F ′2
= 1−

(
F
F ′

)′
, we may rewrite the above as

m

m− 1
− ε <

(
F

F ′

)′
<

m

m− 1
+ ε for z < φ < z + δ.

Integrating on (φ1, φ) gives(
m

m− 1
− ε
)

(φ− φ1) <
F

F ′
− F (φ1)

F ′(φ1)
<

(
m

m− 1
+ ε

)
(φ− φ1) for z < φ1 < φ < z + δ.

Using the facts lim
φ1→z+

F (φ1) = F (z) = 0 and lim
φ→z+

F ′(φ) = ∞ (by lemma 5.3), we see when

taking the limit as φ1 → z+ that(
m

m− 1
− ε
)

(φ− z) ≤ F

F ′
≤
(

m

m− 1
+ ε

)
(φ− z) for z < φ < z + δ.
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Thus

m

m− 1
− ε ≤ F

(φ− z)F ′
≤ m

m− 1
+ ε for z < φ < z + δ.

Therefore

lim
φ→z+

F

(φ− z)F ′
=

m

m− 1
.

Thus

lim
φ→z+

(φ− z)F ′

F
=
m− 1

m
.

This completes the proof of lemma 5.5. �

Lemma 5.6. Let 0 < c < a. Then

lim
φ→z+

F ′F
1

m−1 exists and is positive.

Proof. Dividing (69) by W and then dividing the numerator and denominator of the right

hand side of this expression by F ′2 and rewriting we see that

W ′

W
+

2

m− 1

F ′

F
− c

m− 1

sinφ

F
= −

(2− c sinφ)
F ′

)
(

cosφ
sinφ

+ F
F ′

)
1− c sin(φ)

F ′
+ F 2

F ′2
− cF cos(φ)

F ′2

.

Then using lemma 5.2, we have

lim
φ→z+

G′

G
= lim

φ→z+
[
W ′

W
+

2

m− 1

F ′

F
− c

m− 1

sinφ

F
] =

2 cos(z)

sin(z)
≡ −C < 0.

Therefore G is decreasing near z and so for some L with 0 < L ≤ ∞

lim
φ→z+

G = L.

Then integrating on (φ, φ1) ⊂ (z, z + ε) we have

ln

(
G(φ1)

G(φ)

)
=

∫ φ1

φ

G′

G
dt >

∫ φ1

φ

−2C dt = −2C(φ1 − φ).

Thus

L = lim
φ→z+

G(φ) ≤ G(φ1)e
2C(φ1−z).

30



Thus the limit of G is a positive, finite number.

Next, choosing 0 < ε < 1
m

then by lemma 5.5 we have for some δ > 0 that:

(φ− z)F ′

F
< 1− 1

m
+ ε for z < φ < z + δ.

Dividing by φ− z, and integrating on (φ, z + δ) where z < φ < z + δ gives

ln

(
F (z + δ)

F (φ)

)
≤
(

1− 1

m
+ ε

)
ln

(
δ

φ− z

)
.

Therefore

F (z + δ)

F
≤ δ1−

1
m
+ε

(φ− z)1−
1
m
+ε

for z < φ < z + δ.

Thus, we have

1

F
≤ C(δ)

(φ− z)1−
1
m
+ε

for z < φ < z + δ,

where C(δ) = δ1−
1
m+ε

F (z+δ)
. Since 0 < ε < 1

m
we see that∫ φ

z

1

F (t)
dt ≤

∫ φ

z

C(δ)

(t− z)1−
1
m
+ε
dt =

C(δ)
1
m
− ε

(φ− z)
1
m
−ε <∞ on (z, z + δ).

Hence 1
F

is integrable on (z, z + δ) for some δ > 0. Also, on [z + δ, π] we know that F is

bounded from below by a strictly positive constant and therefore we see that 1
F

is integrable

on (z, π]. Also, since (
∫ π
φ

sin t
F (t)

dt)′ = − sinφ
F (φ)

< 0 on (z, π) we see that

(108) lim
φ→z+

exp

(
c

m− 1

∫ π

φ

sin t

F (t)
dt

)
exists and is finite and positive.

Since a > c > 0 we see from (108) and (98) that the limit of G is positive and finite so that

lim
φ→z+

W (φ)F
2

m−1 (φ) exists and is positive.

Rewriting this using (66) we see therefore that there exists T > 0 such that

(109) lim
φ→z+

F ′2F
2

m−1

[
1− c sinφ

F ′
+
F 2

F ′2
+
cF cosφ

F ′2

]
= T > 0.

Again, since F (z) = lim
φ→z+

F = 0 and lim
φ→z+

F ′ =∞ (by lemma 5.3) it follows from (107) and

(109) that

(110) lim
φ→z+

F ′2F
2

m−1 = T > 0.
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From the note between lemma 5.2 and lemma 5.3 we know that F ′ > 0 on (z, π) and therefore

it follows from (110) that

(111) lim
φ→z+

F ′F
1

m−1 =
√
T > 0.

This completes the proof of the lemma 5.6. �

Lemma 5.7. Let 0 < c < a. Then

lim
φ→z+

F

(φ− z)
m−1
m

=

(
m
√
T

m− 1

)m−1
m

.

Proof. Letting,

K = F
m
m−1 ,

then we see that

K ′ =
m

m− 1
F

1
m−1F ′,

and so by (111)

lim
φ→z+

K ′ =
m
√
T

m− 1
.

Thus from L’Hopital’s rule we see that

lim
φ→z+

F
m
m−1

φ− z
= lim

φ→z+

K

φ− z
= lim

φ→z+
K ′ =

m
√
T

m− 1
> 0.

This completes the proof of lemma 5.7 and the proof of the main theorem in the case

0 < c < a. �

Note: We have assumed throughout chapter 5 that F is defined and positive on (z, π).

However, if F is defined and positive only on (x0, π) where z < x0 < π, it is easy to show

that D does not have a negative local minimum on (x0, π). A similar proof as in Lemma 5.2

shows D′ > 0 on (x0, π).

If x0 ≤ π
2
, we have shown earlier in the chapter that F has a zero on

(
π
2
, π
)

which contradicts

that F > 0 on (x0, π).

If x0 >
π
2
, then by lemma 5.2 F ′′ + F < 0 on (x0, π). Also F > 0 on (x0, π). So, F ′′ < 0

on (x0, π). Hence F ′ is decreasing on (x0, π). So, limφ→x+0
F ′(φ) exists (possibly ∞). Since
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F ′(π) = 0 and F ′′ < 0 on (x0, π) then F ′(φ) ≥ 0 on (x0, π) and thus limφ→x+0
F (φ) exists.

Next we show that if limφ→x+0
F (φ) 6= 0 then limφ→x+0

F ′(φ) 6=∞.

Suppose limφ→x+0
F (φ) = L > 0 and limφ→x+0

F ′(φ) =∞. We have from (10),

(112) (m− 1)FF ′′ + F ′2 = F ′
(
c sinφ− (m− 1) cosφ

sinφ
F

)
− c cosφ F − 2(m− 1)F 2.

Since
(
c sinφ− (m−1) cosφ

sinφ
F
)

is positive, the right hand side of equation (112) converges to

∞ as φ approaches to x+0 . Then,(
F ′F

1
m−1

)′
= F ′′F

1
m−1 +

1

m− 1
F

1
m
−1F ′2

=
1

m
F

1
m−1

−1 ((m− 1)FF ′′ + F ′2
)
.

which converges to∞ by equation(112). This contradicts the lemma 5.6 that limφ→x+0

(
F ′F

1
m−1

)
exists and is finite. Thus if limφ→x+0

F (φ) > 0 then limφ→x+0
F ′(φ) is finite. Then we can find

an interval (x0 − ε, π), for some ε > 0, where F is defined contradicting the maximality of

the interval (x0, π). So x0 = z and F is defined on all of (z, π).
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CHAPTER 6

THE CASE c > a > 0

We first observe that if a = c
m

then F = c
2m

(1− cosφ) is a positive solution on (0, π) of

(58) such that

F (π) = a =
c

m
, F ′(π) = 0,

and

F (0) = 0, F ′(0) = 0.

We will now show that a similar result is true for all other values of a where 0 < a < c.

Lemma 6.1. Let c > a > 0. Then

D′ < 0 on
(π

2
, π
)

and F ′′ + F > 0 on
(π

2
, π
)
.

Proof. We have from (71)-(76) that D(π) = 0 and D′(π) < 0. Thus D is decreasing near

π and if the lemma were not true then there would exist a q ∈ (π
2
, π) with

(113) D′(q) = 0, D′′(q) ≤ 0, D′ < 0 on (q, π), and D > 0 on [q, π).

Thus from (75)

F ′ cosφ+ F sinφ > 0 on [q, π),

and therefore we see that (
F

cosφ

)′
> 0 on [q, π).

Integrating on (φ, π) gives

a

cos π
− F

cosφ
> 0 on [q, π),

and thus

(114) F > −a cosφ > 0 on [q, π).
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Next, from (77) we have

W + (m− 1)
F

cosφ
D′ + (m− 1)

F

sinφ
D = 0,

and therefore from (113) and (114)

(115) W (q) = −(m− 1)
F (q)

sin q
D(q) < 0.

From (113) we have D′(q) = 0 and so by (78) W ′(q) = 0. Also, from (113)-(114) and the

fact that q ∈
(
π
2
, π
)
, we see

(116)
F (q)

cos q
D′′(q) ≥ 0.

Using these facts in (87), we then see

(117)

(
F ′(q) sin(q)− F (q) cos(q)

sin2(q)

)
D(q) ≤ 0.

Since D(q) > 0 then (117) implies

(118) F ′(q) sin q − F (q) cos q ≤ 0.

In addition, from (115)

F ′2(q)− cF ′(q) sin q + F 2(q) + cF (q) cos q = W (q) < 0.

Then, using (118), we obtain

(119) 0 ≤ F ′2(q) + F 2(q) < cF ′(q) sin q − cF (q) cos q ≤ 0.

This forces F (q) = F ′(q) = 0 which implies D(q) = 0 but this contradicts (113). This

completes the proof of the first part of the lemma. The second part of the lemma follows

from (76) and the fact that φ ∈ (π
2
, π). This completes the proof of lemma 6.1. �

Lemma 6.2. Let c > a > 0. Then F > 0 on (π
2
, π].

Proof. By the previous lemma, D′ < 0 on
(
π
2
, π
]
. Also since D(π) = 0 we then have that

D > 0 on
(
π
2
, π
)
. Thus from (75)

F ′ cosφ + F sinφ > 0 on
(π

2
, π
)
,
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and therefore (
F

cosφ

)′
> 0 on

(π
2
, π
)
.

Integrating over (φ, π), we get

−a ≥ F

cosφ
for φ ∈

(π
2
, π
)
,

and thus

F ≥ −a cosφ > 0 for φ ∈
(π

2
, π
)
.

As F (π) = a > 0, we see that

F > 0 on
(π

2
, π
]
.

This completes the proof of lemma 6.2. �

Lemma 6.3. Let c > a > 0. Then W < 0 on (π
2
, π].

Proof. From lemmas 6.1 and 6.2 we have

F > 0 and D′ < 0 on
(π

2
, π
]
.

Thus

(120)
F

cosφ
D′ > 0 on

(π
2
, π
]
.

Also since:

D(π) = 0 and D′ < 0 on
(π

2
, π
]
,

then

D ≥ 0 on
(π

2
, π
]
.

Thus

(121)
F

sinφ
D ≥ 0 on

(π
2
, π
]
.

Hence using (120) and (121) in (77), we have

W < 0 on
(π

2
, π
]
.

This completes the proof of the lemma. �
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Figure 6.1. The function F (φ) for a = 0.1, m = 4 and for dimensionless

speed values c = 4.0, 2.0, 1.0, 0.50, 0.25, 0.15, 0.12 and 0.11 (in lexicographical

order)

Note: Let c > a > 0 . Since D(π) = 0 and D′ < 0 on (π
2
, π), it follows from (75) that

F (π
2
) = D(π

2
) > 0.

Lemma 6.4. Let c > a > 0. Then F ′
(
π
2

)
> 0.
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Proof. From lemma 6.2, we have

F > 0 on (
π

2
, π].

From lemma 6.3, we have W < 0 on (π
2
, π]. Then by continuity,

W
(π

2

)
≤ 0,

and so from (66) we have

(122) F ′2
(π

2

)
+ F 2

(π
2

)
≤ c F ′

(π
2

)
.

By the note before this lemma, F
(
π
2

)
> 0. Then from (122) we see that

F ′
(π

2

)
> 0.

This completes the proof of the lemma. �

Lemma 6.5. Let c > a > 0. Then F ′′(π
2
) + F (π

2
) > 0.

Proof. From lemma 6.1, we have

F ′′ + F > 0 on
(π

2
, π
]
.

And so by continuity

F ′′ + F ≥ 0 on
[π

2
, π
]
.

Now let us assume by way of contradiction that

(123) (F ′′ + F )
(π

2

)
= 0.

Since F ′′ + F > 0 on (π
2
, π] it follows from (123) that

(124) (F ′′ + F )′
(π

2

)
≥ 0.

From equations (76)-(77), we have

(125) W + (m− 1)F (F ′′ + F ) + (m− 1)
F

sinφ
D = 0.
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Differentiating (125) we obtain

(126)
W ′

m− 1
+ F ′(F ′′ + F ) + F (F ′′ + F )′ +

(
F

sinφ

)′
D +

(
F

sinφ

)
D′ = 0

Also note from (67), (76), and (123) that

W ′(
π

2
) = D′(

π

2
) = 0.

Therefore using this and (124) in (126), we obtain

(127) F ′(
π

2
)D(

π

2
) ≤ 0.

From the note before lemma 6.4, we have

(128) F
(π

2

)
= D

(π
2

)
> 0

and thus by (127)

(129) F ′
(π

2

)
≤ 0.

Evaluating (66) and (125) at φ = π
2

and using (123), (128), and (129) gives

0 < F ′2
(π

2

)
− cF ′

(π
2

)
+ F 2

(π
2

)
= W (

π

2
) = −(m− 1)F 2

(π
2

)
< 0,

which is impossible. Thus the lemma must hold. This completes the proof of lemma 6.5 �

Lemma 6.6. Let c > a > 0. Then D has a local maximum at π
2
.

Proof. From (76) we have

D′(
π

2
) = (F ′′ + F )(

π

2
) cos(

π

2
) = 0.

Differentiating (76) we have

D′′ = (F ′′′ + F ′) cosφ− (F ′′ + F ) sinφ.

Thus by lemma 6.5 we have

D′′
(π

2

)
= −(F ′′ + F )

(π
2

)
< 0.

Hence D has a local maximum at π
2
. �
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Lemma 6.7. Let c > a > 0. If b ≥ 0 and F > 0 on
(
b, π

2

)
, then F ′ ≥ 0 on

(
b, π

2

)
.

Proof. Contrary to the lemma, let us assume

F ′(p) < 0 for some p ∈
(
b,
π

2

)
.

By lemma 6.4,

F ′
(π

2

)
> 0.

Thus F is decreasing near p, increasing near π
2
, and so there exists a local minimum q ∈

(
p, π

2

)
such that

(130) F ′(q) = 0 and F ′′(q) ≥ 0.

From equations (59) and (66) we have

(131) W + (m− 1)F

(
F ′′ +

cosφ

sinφ
F ′ + 2F

)
= 0.

At φ = q, we have

F ′(q) = 0, F (q)F ′′(q) ≥ 0, and F 2(q) > 0.

Using this in (131) we obtain

W (q) < 0.

On the other hand, from (66) and (130) we have

W (q) = F 2(q) + cF (q) cos q > 0

which is a contradiction. This completes the proof of the lemma. �

Lemma 6.8. Let c > a > 0. If b ≥ 0 and F > 0 on
(
b, π

2

)
, then D does not have a positive

local minimum on
(
b, π

2

)
.

Proof. On the contrary, let us assume that D has a positive local minimum on
(
b, π

2

)
.

Then there is a p ∈
(
b, π

2

)
with the following properties

(132) D(p) > 0, D′(p) = 0, D′(φ) > 0 on
(
p,
π

2

)
, and D′′(p) ≥ 0.
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From (78), we see that

W ′(p) = 0.

Using (132) and (87) at φ = p, we see(
F ′(p) sin(p)− F (p) cos(p)

sin2 p

)
D(p) ≤ 0.

Since D(p) > 0 we then have

(133) F ′(p) sin p− F (p) cos p ≤ 0.

Also note from (77) and (132) that

W (p) = −(m− 1)
F (p)

sin p
D(p) < 0.

Using this in (66) we see

W (p) = F ′2(p)− cF ′(p) sin p+ F 2(p) + cF (p) cos p < 0.

Thus using (133) and rewriting this implies

(134) 0 < F ′2(p) + F 2(p) ≤ c [F ′(p) sin p− F (p) cos p] ≤ 0

which is impossible. Hence the lemma must be true. This completes the proof of the

lemma. �

Lemma 6.9. Let c > a > 0. If there exists z ∈
[
0, π

2

)
such that F (z) = 0 and F > 0 on(

z, π
2

)
then

D′ ≥ 0 and F ′′ + F ≥ 0 on
(
z,
π

2

)
.

Proof. By lemma 6.8, we see that D does not have a positive local minimum on
(
z, π

2

)
.

Since F > 0 on
(
z, π

2

)
, by lemma 6.5 we have F ′ ≥ 0 on

(
z, π

2

)
. This implies

(135) D = F ′ cosφ + F sinφ > 0 on (z,
π

2
).

By lemma 6.6, D has a local maximum at π
2
. Therefore if there were a q ∈ (z, π

2
) with

D′(q) < 0 then these facts along with (135) imply that D has a positive local minimum in
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(z, π
2
) contradicting lemma 6.8.

Hence, we see that

D′ ≥ 0 on
(
z,
π

2

)
.

This proves the first part of the lemma. The second part of the lemma follows from (76) and

the fact that cosφ > 0 on
(
z, π

2

)
⊂
(
0, π

2

)
. This completes the proof of the lemma. �

Lemma 6.10. Let c > a > 0. Then F has a zero on
[
0, π

2

)
.

Proof. Contrary to the lemma, let us assume

F > 0 on
[
0,
π

2

)
.

By lemma 6.7,

F ′ ≥ 0 on
(

0,
π

2

)
,

and by lemma 6.9,

F ′′ + F ≥ 0 on
(

0,
π

2

)
.

Therefore

(136) F

(
F ′′ +

cosφ

sinφ
F ′ + 2F

)
> 0 on

(
0,
π

2

)
.

Now, from (59) and (66) we have

W + (m− 1)F

(
F ′′ +

cosφ

sinφ
F ′ + 2F

)
= 0,

and therefore by (136)

W = −(m− 1)F

(
F ′′ +

cosφ

sinφ
F ′ + 2F

)
< 0 on

(
0,
π

2

)
.

By continuity

W = F ′2 − cF ′ sinφ+ F 2 + cF cosφ ≤ 0 on
[
0,
π

2

)
.

Evaluating at φ = 0, we obtain

F ′2(0) + F 2(0) + cF (0) ≤ 0
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which is impossible since we are assuming F (0) > 0. Thus the lemma must be true. This

completes the proof of the lemma. �

So now we assume that there exists z ∈ [0, π
2
) such that F (z) = 0 and F > 0 on (z, π

2
).

Lemma 6.11. Let c > a > 0. If z ∈
[
0, π

2

)
such that F (z) = 0 and F > 0 on

(
z, π

2

)
then

W < 0 on
(
z, π

2

)
.

Proof. By assumption

F > 0 on
(
z,
π

2

)
,

and by lemma 6.7 we see that

F ′ ≥ 0 on
(
z,
π

2

)
,

and by lemma 6.9 we see that

F ′′ + F ≥ 0 on
(
z,
π

2

)
.

So

F

(
F ′′ +

cosφ

sinφ
F ′ + 2F

)
> 0 on

(
z,
π

2

)
.

Using this inequality along with (59) and (66), we see

W = −(m− 1)F

(
F ′′ +

cosφ

sinφ
F ′ + 2F

)
< 0 on

(
z,
π

2

)
.

This completes the proof of the lemma. �

Lemma 6.12. Let c > a > 0. If z is a zero of F on
[
0, π

2

)
and F > 0 on

(
z, π

2

)
then

0 < F ′ < c sinφ on
(
z, π

2

)
.

Proof. We have

F > 0 on
(
z,
π

2

)
.

By lemma 6.7

F ′ ≥ 0 on
(
z,
π

2

)
,

and by lemma 6.11

W = F ′2 − cF ′ sinφ+ F 2 + cF cosφ < 0 on
(
z,
π

2

)
.
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Thus

F ′2 − cF ′ sinφ < −F 2 − cF cosφ < 0 on
(
z,
π

2

)
.

This yields

(137) F ′ (F ′ − c sinφ) < 0 on (z,
π

2
).

Since F ′ ≥ 0 then (137) implies

F ′ > 0 and F ′ − c sinφ < 0.

Thus we conclude that

0 < F ′ < c sinφ on
(
z,
π

2

)
.

This completes the proof of the lemma. �

Lemma 6.13. Let c > a > 0. Then there exists an A with 0 ≤ A ≤ c sin z such that

lim
φ→z+

F ′(φ) = A.

Proof. Let

E =
1

2

[
F ′2 + F 2

]
.

Then

E ′ = F ′ [F ′′ + F ] .

By lemma 6.7, we know that

F ′ ≥ 0 on
(
z,
π

2

)
.

Also, by lemma 6.9, we know that

F ′′ + F ≥ 0 on
(
z,
π

2

)
and thus

E ′ ≥ 0 on
(
z,
π

2

)
.
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Thus lim
φ→z+

E exists. As lim
φ→z+

F = 0, we see that lim
φ→z+

F ′2 exists. Again from lemma 6.7 we

have that F ′ ≥ 0 on
(
z, π

2

)
and so we see that there exists an A such that

lim
φ→z+

F ′ = A ≥ 0.

We also know by lemma 6.11 that

W = F ′2 − cF ′ sinφ+ F 2 + cF cosφ < 0 on
(
z,
π

2

)
.

Taking the limit as φ→ z+, we obtain

A2 − cA sin z = A(A− c sin z) ≤ 0.

Hence

0 ≤ A ≤ c sin z.

This completes the proof of the lemma. �

Notes: By lemma 6.3, lemma 6.11, and continuity we have

W = F ′2 − cF ′ sinφ+ F 2 + cF cosφ ≤ 0 on (z, π].

Therefore completing the square, we have

(F ′ − c

2
sinφ)2 + (F +

c

2
cosφ)2 ≤ c2

2
,

and therefore

(138) |F | ≤ |F +
c

2
cosφ|+ | c

2
cosφ| ≤ c

2
+
c

2
= c

and

(139) |F ′| ≤ |F ′ − c

2
sinφ|+ | c

2
sinφ| ≤ c

2
+
c

2
= c.

Hence F and F ′ are uniformly bounded on (z, π].

Lemma 6.14. lim
φ→z+

F ′ = 0.
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Proof. From lemma 6.13 we know that lim
φ→z+

F ′ = A where 0 ≤ A ≤ c sin z. Note that if

z = 0 then A = 0 and the lemma is proved. So now let us suppose z > 0 and also that

0 < A < c sin z.

Multiplying (59) by F ′

F
and rewriting gives:

F ′

F
[F ′2 − cF ′ sinφ] + (2m− 1)FF ′ + cF ′ cosφ+ (m− 1)F ′F ′′ +

(m− 1) cosφ

sinφ
F ′2 = 0.

Integrating this on (φ, φ2) where z < φ < z + ε = φ2 and ε > 0 gives

(140) −
∫ φ2

φ

F ′

F
[F ′2 − cF ′ sin t] dt =

2m− 1

2
[F 2(φ2)− F 2] +

m− 1

2
[F ′(φ2)

2 − F ′2]

+c[F (φ2) cosφ2 − F cosφ] + c

∫ φ2

φ

F sin t dt+ (m− 1)

∫ φ2

φ

cos t

sin t
F ′2 dt.

From (138) and (139) we have that F and F ′ are bounded and thus we see that the right-hand

side of (140) is bounded. Thus we see there exists an M > 0 such that

(141)

∣∣∣∣−∫ z2

φ

F ′

F
[F ′2 − cF ′ sin t] dt

∣∣∣∣ ≤M.

Also, by assumption we have 0 < A < c sin(z) and therefore it follows from (66) that

(142)

lim
φ→z+

W (φ) = lim
φ→z+

[
F ′2 − cF ′ sinφ+ F 2 + cF cosφ

]
= lim

φ→z+
F ′[F ′ − c sinφ] = A[A− c sin z].

Thus if φ is sufficiently close to z and φ > z then we see that

−[F ′2 − cF ′ sinφ] ≥ A|A− c sin z|
2

> 0.

However using (141) we see that for ε sufficiently small we have

(143)

M ≥ −
∫ φ2

φ

F ′

F
[F ′2 − cF ′ sin t] dt ≥ A|A− c sin z|

2

∫ φ2

φ

F ′

F
=
A|A− c sin z|

2
ln

[
F (φ2)

F (φ)

]
.

Since we have assumed 0 < A < c sin z, we see that the right-hand side of (143) goes to +∞

as φ→ z+ since lim
φ→z+

F (φ) = F (z) = 0 whereas the left-hand side of (143) is bounded. This

is a contradiction and thus we see that either A = 0 or A = c sin z.
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So now we suppose z > 0 and A = c sin z > 0. Then we see from (142) that lim
φ→z+

W (φ) = 0.

Also

(144) lim
φ→z+

[2F ′ − c sin(φ)] = 2A− c sin(z) = 2c sin(z)− c sin(z) = c sin(z) > 0.

And from (67)

W ′ = (2F ′ − c sinφ)(F ′′ + F ).

By lemma 6.9 and (144), we see that W ′ ≥ 0 on (z, z + ε) and since lim
φ→z+

W (φ) = 0, we see

that W is nonnegative to the immediate right of z contradicting lemma 6.11. Thus A = 0

and this completes the proof of the lemma. �

Lemma 6.15. z = 0.

Proof. By lemma 6.10, we have z ∈
[
0, π

2

)
. So, z ≥ 0. Let us assume that z > 0. By

lemma 6.11, W < 0 on
(
z, π

2

)
. Then

(145) −cF ′ sinφ + cF cosφ ≤ F ′2 − cF ′ sinφ + F 2 + cF cosφ < 0 on
(
z,
π

2

)
.

Since F > 0 then by lemma 6.12, F ′ > 0 on
(
z, π

2

)
, and so by (145)

0 <
F

F ′
≤ sinφ

cosφ
on

(
z,
π

2

)
,

and so F
F ′

is bounded near z. Then there exists some finite positive number M such that

(146)
F

F ′
≤M on (z, z + ε),

where ε > 0 and z + ε < π
2
.

Since F ′ > 0 on (z, z + ε) we may divide (59) by F ′ and after rewriting we obtain

F ′ + (2m− 1)
F

F ′
F + c

F

F ′
cosφ+ (m− 1)

F

F ′
F ′′ + (m− 1)

cosφ

sinφ
F = c sinφ.

Taking the limit as φ→ z+ and using (146) and lemma 6.14 we obtain

lim
φ→z+

(
c
F

F ′
cosφ+ (m− 1)

FF ′′

F ′

)
= c sin z > 0.
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Thus there is an ε1 > 0 with 0 < ε1 < ε such that

c
F

F ′
cosφ+ (m− 1)

FF ′′

F ′
>
c

2
sin z on (z, z + ε1).

Thus

(m− 1)
FF ′′

F ′
>
c

2
sin z − c F

F ′
cosφ on (z, z + ε1).

Therefore

(147) F ′′ >
c sin z

2(m− 1)

F ′

F
− c

m− 1
cosφ for z < φ < z + ε1.

Now we let δ > 0 and integrate (147) on (z + δ, φ) where z + δ < φ < z + ε1 and we obtain

(148) F ′ − F ′(z + δ) ≥ c sin z

2(m− 1)
ln

[
F

F (z + δ)

]
− c

m− 1
[sinφ− sin(z + δ)] .

Now as δ → 0 the left hand side of (148) goes to F ′(φ) (by lemma 6.14) while the right hand

side goes to +∞ (since lim
φ→z+

F (φ) = F (z) = 0) yielding a contradiction. Thus we see that

z = 0. This completes the proof of the lemma. �

It then follows from lemma 6.14 that

lim
φ→0+

F ′(φ) = 0.

We also saw earlier in lemma 3.1 that F (π − φ) = F (π + φ) and therefore we see that F is

defined on [0, 2π]. And also we know from lemma 6.15 that F (0) = F (2π) = 0. Thus we can

extend F to be 2π-periodic on all of R and so F satisfies (59) on all of R. Thus it follows

that:

Lemma 6.16. F is 2π−periodic on R.

This completes the proof of the main theorem in the case c > a > 0.

Note: Throughout chapter 6 we assumed that F is defined on (0, π). However, if we

suppose F is defined only on (x0, π) for some x0 > 0. Then by the similar argument as in

the note after lemma 6.13, we can show that F and F ′ are uniformly bounded on (x0, π)

by c. Then from equation (10), it follows that |F ′′| ≤ M on (x0, π − ε) for some ε > 0 and

some finite M > 0. So, F , F ′ and F ′′ are bounded on (x0, π − ε). So limφ→x+0
F (φ) and
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limφ→x+0
F ′(φ) exist. Then we can extend F to a larger interval, contradicting maximality of

(x0, π). This gives x0 ≤ 0. Hence F exists on all of (0, π).
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CHAPTER 7

FINAL COMMENTS

One can also look for solutions of (3) in spherical coordinates in Rn where n ≥ 3. Suppose

v(x1, x2, . . . , xn, t) = r(x1, x2, . . . , xn, t)F (φ(x1, x2, . . . , xn, t))

where

r(x1, x2, . . . , xn, t) =
√
x21 + · · ·+ x2n−1 + (xn − ct)2,

and

φ(x1, x2, . . . , xn, t) = tan−1

(√
x21 + · · ·+ x2n−1
xn − ct

)
.

One can then show that F will satisfy

F ′2 − cF ′ sinφ+ F 2 + cF cosφ+ (m− 1)F

(
F ′′ + (n− 2)

cosφ

sinφ
F ′ + (n− 1)F

)
= 0.

Note that this reduces in the n = 2 and n = 3 cases to the equations obtained in the

introduction. We conjecture that a theorem similar to the Main Theorem is true in this case

as well.

In ([7]), the authors considered the behavior of solutions when a → ∞ and also when

a→ 0+. Preliminary investigations indicate that a result similar to the result in ([7]) is also

true. In fact, we conjecture that if we denote the solution of (59)-(61) as Fa then

lim
a→∞

(
Fa
a

)
= H

where H satisfies

H ′2 +H2 + (m− 1)H

(
H ′′ +

cosφ

sinφ
H ′ + 2H

)
= 0,
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and

lim
a→0+

(
Fa

maxFa

)
= C sin(φ)

for some C > 0.

51



BIBLIOGRAPHY

[1] D.G. Aronson, The porous medium equation, Nonlinear Diffusion Problems, Lecture

Notes in Mathematics 1224 (1986), 1.

[2] G. Barenblatt, Scaling, self-similarity, and intermediate asymptotics, Cambridge Uni-

versity Press (1996).

[3] G.I. Barenblatt, On some unsteady fluid and gas motions in a porous medium, Prikl.

Mat. Mekh. 16 (1952), 67.

[4] G. Birkhoff and G. C. Rota, Ordinary differential equations, Ginn and Company (1962).

[5] J. Diez, L. Thomas, S. Betelú, R. Gratton, B. Marino, J. Gratton, D. Aronson, and

S. Angenent, Noncircular converging flows in viscous gravity currents, Phys. Rev. E. 58

(1998), 6182.

[6] H. Huppert, The propagation of two-dimensional and axisymmetric viscoucs gravity

currents over a rigid horizontal surface, J. Fluid Mech. 121 (1982), 43.
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