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Computational modeling is of fundamental significance in mapping possible 

disease spread, and designing strategies for its mitigation. Conventional contact 

networks implement the simulation of interactions as random occurrences, presenting 

public health bodies with a difficult trade-off between a realistic model granularity and 

robust design of intervention strategies.    

Recently, researchers have been investigating the use of agent-based models 

(ABMs) to embrace the complexity of real world interactions. At the same time, 

theoretical approaches provide epidemiologists with general optimization models in 

which demographics are intrinsically simplified. The emerging study of affiliation 

networks and co-affiliation networks provide an alternative to such trade off. Co-

affiliation networks maintain the realism innate to ABMs while reducing the complexity 

of contact networks into distinctively smaller k-partite graphs, were each partition 

represents a dimension of the social model.   

This dissertation studies the optimization of intervention strategies for infectious 

diseases, mainly distributed in school systems. First, concepts of synthetic populations 

and affiliation networks are extended to propose a modified algorithm for the synthetic 

reconstruction of populations. Second, the definition of multi-coaffiliation networks is 

presented as the main social model in which risk is quantified and evaluated, thereby 

obtaining vulnerability indications for each school in the system. Finally, maximization 



of the mitigation coverage and minimization of the overall cost of intervention strategies 

are proposed and compared based on centrality measures.  
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CHAPTER 1

INTRODUCTION

Computational epidemiology is the formal study of how technological tools can be

applied to analyze, visualize, and understand the dynamics of disease. Its mathematical

origin connects the elegance of differential equations, graph theory, and related areas with the

reality of our world. Like all new fields pertaining to the area of modern computer science, it

has flourished through the use of high performance computing and parallelization techniques.

While this field shows great potential for public health applications, the formulation of models

which, represent human societies accurately is still an open question.

Through years of research, computational epidemiologists have focused their efforts

on two central problems. First, establishing models that represent networks of social rela-

tionships, as close to reality as possible. Second, constructing frameworks that allow the

study of what-if scenarios to simulate the spread of disease and to analyze feasible ways to

respond to threats. A key challenge in developing computational models is the validation

of their correspondence with human behavior. In order to disperse, human diseases are

constrained to people or vectors (i.e. mosquitoes) therefore, the more accurate the social

network, the better understanding of disease dynamics. Partly in response to the challenge

of validation, data collections coming from online communities have become the norm for

sources of information. On the other hand, public health is a global concern. Furthermore,

because globalization and air travel are becoming ever more frequent, preparing for pan-

demics and world-traveling infectious agents is a reality confronted through simulation of

different scenarios and attainable responses.

The next section outlines the challenge of cost-efficient non-pharmaceutical interven-

tions, including the difficulties of designing social models. Section 1.2 describes the state-

of-the-art regarding mathematical and simulation models for optimization methodologies.

Section 1.3 presents a novel algorithm to construct and validate networks of communities.

Finally, the main contributions of this dissertation are detailed in Section 1.4, and disserta-
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tion’s structure is presented in Section 1.5.

1.1. The Problem of Optimizing Intervention Strategies

A fundamental reason for studying disease epidemic models is to improve implemen-

tation of disease control. As an interdisciplinary endeavor, mathematical and computational

models have been fundamental tools applied to the evaluation of different intervention strate-

gies. On one hand, mathematical approaches based on strong assumptions (i.e. homoge-

neous, closed populations) formulate the models in terms of exactly solvable problems to

establish epidemic thresholds and the probability of a large outbreak. On the other hand,

computational models rely highly on incorporating realism by the power of parallization

and super-computing. This research is an effort to leverage the use of theoretical tools in

combination with highly parameterized simulations to find an effective combination of these

two approaches oriented to the optimization of disease intervention strategies.

Allocation and deployment of antiviral treatment and prophylaxis are inherently com-

plex and highly technical problems because they require identifying groups of the popula-

tion that should be prioritized. Public health bodies attempt to optimize the distribution

of scarce or costly control mechanisms to maximize their impact on the outbreak dynamics.

Risk identification has focused on schools and child-care centers mainly because they rep-

resent dense masses of highly immunologically naive hosts for the pathogens. It is believed

that “interventions targeted at school-aged children, should be most effective in the early

stages of an outbreak” [15]. Measures are significantly more valuable at the start of the

pandemic when the incidence becomes comparable among children and adults [157]. For

seasonal viruses like influenza, the U.S. Centers for Disease Control and Prevention (CDC)

use a short nomenclature describing the type and subtype of the virus. Likewise, as a result

of the SARS epidemic, the European Union created the European Centre for Disease Pre-

vention and Control (ECDC) making their mandate to control communicable diseases[141].

Globally, the existent three types of influenza viruses are classified as: A, B, and C. Sub-

types only exist for influenza A viruses and are further divided “on the basis of the two main

surface glycoproteins hemagglutinin (HA) and neuraminidase (NA)” [60]. For example, an

2



“H1N1 virus” designates the influenza A subtype that has an HA 1 protein and an NA 1

protein.

Fig. 1.1 shows the estimated number of annual influenza-associated deaths from

1976 to 2010, by age range. In Europe H1N1 attack rates showed a substantial variation

that depended on the socio-demographic structure, school calendars, mobility patterns and

sociodemographic structures [110]. Schools closures have been found to be an important

mitigation tool for infectious diseases. During the 2009 H1N1 pandemic, the CDC left the

decision of school closings to local officials. Initially, the CDC recommended that schools

should close for confirmed or suspected cases, but as the pandemic progressed, there was not

a clear perspective on the effectiveness that the measure had on mitigating the spread of the

disease. The decision to close schools varied considerably from community to community;

as a result, school closings and the delivery of targeted vaccines were the most frequent

mitigation response [139]. The global response to H1N1 shows the necessity of a decision

support tool for targeted interventions. To facilitate the design of policies to mitigate regional

epidemics, some models have considered schools as isolated entities, focusing on specific

student populations to estimate the impact of an outbreak. Closing schools is a controversial

decision mainly due to the hidden costs associated to epidemiological benefits.

Lowering the epidemic severity through reducing school-age contacts is an important

component of the U.S. mitigation strategy [101] and it involves two types of costs. First,

absenteeism of workers who stay at home while children are out of school; and second, the

fraction of those workers that are health care providers themselves. These two aspects have

a negative impact on the contingency tasks and their cost could be substantial [101]. In

a pioneer study, the economic impact of closing schools in the United Kingdom has been

estimated in terms of loss income of working parents.

From information taken in 2008, under a global threat, the cost of closing all schools
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Fig. 1.1. Estimated number of annual influenza-associated deaths (1976-2010) [61]

for four weeks in the United Kingdom would be between 0.1% and 0.4% gross domestic

product (GDP) [137]. By the time statistics were retrieved from the data source, 38% of the

workforce had dependent children. According to Census 2010, American family households

account for 66.4% of all households, and 49.6% of family households have children under

18 years, a percentage that has slowly but undoubtedly increased over the last 50 years, as

shown in Fig. 1.3. The Center on Social and Economic Dynamics (CSED) estimated that

closing all schools in the U.S. for four weeks could cost between $10 and $47 billion (0.1%-

0.3% of GDP) and would lead to a reduction of 6% to 19% in key health care personnel (Fig.

1.2).
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Fig. 1.2. Potential cost of the closure of all U.S. schools for four weeks [101]

The World Health Organization (WHO) declared the H1N1 pandemic officially over

in August 10, 2010. Despite the measures taken, H1N1 reached pandemic status, showing

that uncertainty is always present in epidemics. Dr. Margaret Chan, WHO Director-General

at her Opening Intervention at the International Health Regulations Review Committee in

Geneva, Switzerland 2010, stated that “the world was better prepared for a pandemic than

at any time in history, but it was prepared for a different kind of event than what actually

occurred” [33].

1.2. Current Approaches to Optimization

To achieve maximum effectiveness at minimal cost, when using one additional unit of

prophylaxis or vaccine, key aspects of the structure of the community need to be considered.

Since experimental investigation of disease dynamics is for the most part unfeasible, and

mostly not considered ethical, researchers have turned their efforts to building simulated

scenarios to study outbreak dynamics. Analysis of epidemic models is crucial and is mainly

based on information reported after an outbreak has occurred. Because of the scarcity of

complete information, results have a sensitive dependence on assumptions. The ultimate

target of the analysis is to recognize which components of models have the most effect on
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Fig. 1.3. Household size change in time 1970 - 2010, source [30]

the dynamics of the spread of disease [114].

On one hand, advancements on graph theory have incorporated a significant corpus of quan-

titative tools and mechanisms for describing networks that have epidemiological applications

[92]. Diseases that are transmitted by person-to-person contact rely on the social contacts of

the initial host to propagate. In graph theory and social network analysis (SNA), individuals

are represented as nodes or vertices and connections among them are edges of a graph that

depicts the social model. The nature of the connections has driven a great deal of atten-

tion because they are a key component of the construction of the network. Properties like

symmetry, transitivity, and weight of the edges can be interpreted as social cohesion and are

evaluated before defining what an edge really represent [92].

Determining the mixing network in full extend, requires complete knowledge of every individ-
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ual in a population. In addition, complete recall of the person’s relationships are needed to

construct the network. These tasks seem unattainable and impractical even for small groups.

To establish a workable framework, researchers initially applied known datasets from social

networks based on random graphs with arbitrary degree distribution that have exactly solv-

able models [120], random graphs with tunable clustering [26], and stochastic process with

global [54] and local contacts [10], [154], [111]. Exactly solvable models can only exist under

the assumption that the vertices are homogeneous. In these models, stochastic or determin-

istic processes govern the creation of edges. From the theoretical point of view, homogeneity

is a simplification that reduces the complexity of a problem where geography, demography,

environment, and migration patterns cannot be accommodated. To address the problem of

modeling realistic networks, one can gather field information by sampling a selected popula-

tion and then by extrapolating the results into families of graphs calibrated to resemble the

parameters found on the sample.

Most of the initial work on epidemic graphs have focused on the influence that topology of the

social networks has on the dynamics of the disease. The social model is mapped into a graph

or families of graphs where the interactions or contacts are represented as links. Random

graph models consider each individual as member of a number of social structures or sub-

graphs Gi of a complete graph G, where a link exists with probability pGi [77]. Nevertheless,

it is crucial to find realistic models for the social structure of the population.

Human networks and specifically contact networks have been proposed to exhibit a

“strong community structure” [138]. Several algorithms have been designed to computation-

ally generate networks with such property [40] and others like hierarchical structures [39].

Researchers have also looked at the corpora gathered by online communities and empirical

networks. For instance, the “Facebook dataset” [150], a corpus that contains the friendship

network of US universities on the social network website, has been used to generate the

social contact networks with epidemiological applications [138]. The dataset also contains

information about gender of the individual, the dormitory residence, and major. Advantages

of using online communities to model face-to-face interactions include the accessibility of the
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datasets, intermediate readiness for computational processing, and the general intuition that

such interconnection networks are similar to real social networks, to some degree.

On the other hand, disease outbreaks studied on artificially built societies have been

a milestone for epidemiology due to the realism that can be achieved through these models.

Agent-based models (ABM) embrace the complexity of capturing large-scale social networks

and the direct contacts of individuals in which a change in behavior can be modeled as

well. ABMs massive simulation approaches, demonstrated a strong correlation between

local demographic characteristics and pandemic severity. The methodology accounted for

the simulation of the daily trips and activities of nearly 20 million synthetic individuals on

their everyday movements, activities, and social interactions [143]. The algorithmic and

structural properties of the contact network dataset produced by the massive simulation

constitute a bipartite graph of people and places. Eubank et al. and Riley proposed to

generate families of graphs with the same properties in near-linear time [56], [134]. More

recently, Zhang et al. expanded the model to include community structures with intra-

community hierarchy [168]. The magnitude of the contact networks is usually in the order of

million of nodes, making the algorithms applied to the networks computationally expensive

and in most cases, impractical without parallization techniques. Nevertheless, flexibility

comes at a cost. To build a robust statistical portrait comparable to epidemic data, valuable

for policy makers, models need to be executed thousands of times. Thereby, avoiding biases

caused by a particular run of the model. In addition, limited tractability is innate to these

more complex models, hence for the most part, general conclusions are elusive and difficult

to draw [162].

1.3. School Affiliation Network Discovery (SAND) Algorithm

This research uses synthetic populations, a essential constituent of ABMs, to build

a hierarchical affiliation network of households and schools. The hierarchical structure of

school districts and the corresponding association to households depicts affiliation networks

that could potentially host the propagation of infectious diseases. The characteristics of

such networks are highly dependent on regional demographics and are persistent for rela-
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tively long periods of time, compared to other relationships. In this sense, the affiliation of

households to schools can be considered “cohesive” as families that have members attending

the same school would seem more likely to share connections among themselves rather than

with households outside this group. The resulting network is a weighted network for which

generalized centrality algorithms are used in order to identify the most “relevant” node in

the network. Generalized centrality measures are employed in order to accommodate the

weights for nodes and edges. The relevance of the nodes is evaluated by the impact its

removal causes on the overall outbreak, at a defined point in time. Final outbreak sizes and

overall costs are compared in order to establish the most efficient mode of selection.

1.4. Contributions of the Dissertation

The most important contributions of this dissertation, can be stated as follow:

• This research proposes a characterization of the properties of co-affiliation networks

constructed in the k-dimensional space using k−partite graphs. Research on social

networks, particularly affiliation networks, has been focused on the binary nature

of relationships. By extending this concept to accommodate k non-overlapping

relationships, the concept is generalized, allowing utilization of the algorithm for a

k-dimensional space.

• This work proposes optimization of intervention strategies oriented to mitigate the

spread of disease on the school system. Optimization of public health resources

is a very active field of research. A cost optimization methodology is proposed

and measured in terms of fixed and variable costs. Degree centrality of the graph

and vertex cover are evaluated against the naive approach by comparing the general

output of the epidemic in terms of duration, total number of infectious and maximum

peak of the epidemic curve.

• Finally, this research extends the synthetic reconstruction model to address school

attendance zones as intrinsic part of the generation process. The association of

households and schools is analyzed. Previous algorithms have chosen a distance

metric as the first and preferred way to associate households and schools (or other

9



gathering points). While this approximation is fast and computationally inexpen-

sive, for some study areas, information with the actual mapping of attendance zones

is available.

1.5. Dissertation Structure

This dissertation is composed by three parts: first, background on computational

epidemiology, graph theory and the present challenges for the design and evaluation of inter-

vention strategies; second, the proposal for modeling and constructing a new social network

based on communities of households and third the proposal for measuring the impact, the

cost, and the overall performance of intervention strategies based on the SAND algorithm.

An overview of computational epidemiology is described in Chapter 2. Chapter 3 discusses

the evolution and current trends on population reconstruction. Extension rules of the syn-

thetic population construction are stated in order to accommodate school attendance zones.

An example simulation is described and the standard error is calculated. Graph theoretical

approaches to epidemiology are summarized and MCA generation algorithm are defined by

Chapter 4, additionally analysis on connectivity of the MCA graphs and additional results

are presented. Chapter 5 describes the generalization for centrality measures applied to the

MCA graph and evaluation of the centrality measures (degree, closeness and betweenness)

as minimization parameters. Chapter 6 evaluates the cost-efficiency og mitigation strategies

based on the centrality measures and proposed two evaluation function based on different

optimization objectives. Finally, conclusions and a summary for the proposed solutions are

stated on Chapter 7, opinions on future opportunities and challenges for the computational

design of intervention strategies are mentioned.
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CHAPTER 2

BACKGROUND

I simply wish that, in a matter which so closely concerns the well-being of the

human race, no decision shall be made without all the knowledge which a

little analysis and calculation can provide

Daniel Bernoulli, 1760

This chapter gives an overview of the theoretical fields that serve as foundations

for this research work. Rather than providing a tutorial on the diverse topics, the intent

of this chapter is to give a framework, background, and terminology for the rest of this

dissertation. Computational epidemiology is founded on the interdisciplinary collaboration

of social and exact sciences. The theory applied in this dissertation comes from three main

fields of science: epidemic models, agent-based simulations and graph theory (Fig. 2.1).

First, approaches based on compartmental models to study disease spread are described in

Section 2.1. Section 2.2 describes the methodology known as synthetic reconstruction in

order to model populations and interactions. Section 2.3 describes graph theoretic models

in computational epidemiology. Finally the outline of the problem in proposed in Section

2.4 and a brief summary closes the chapter.

The effect that voluntary inoculation has on the dynamics of diseases has raised

controversy for centuries. During 1760, the famous mathematician Daniel Bernoulli (1700-

1782) formulated the question of whether it would be beneficial for the general population

to be vaccinated against smallpox. In his path to demonstrate that the benefits of volun-

tary vaccination outweighed the risks for the general population, he intrinsically connected

mathematical models with health policy [19]. This chapter discusses mathematical models

used to model disease spread as well as the new developments made to represent human

contact networks. Additionally, different methods that have addressed the optimization of

intervention strategies are reviewed.
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Fig. 2.1. Related fields

2.1. Models of the Spread of Disease

Understanding how diseases spread through the populations is complicated due to all

the biology systems involved at the individual and social group level. In practice, approaches

are based on simplified models that provide insights and guide the understanding of disease

behavior under controlled conditions. Contact networks drive the spread of diseases that are

communicated through the air, by touch or intercourse.

2.1.1. The SIR Model

To construct a mathematical representation, disease dynamics are reduced to changes

between disease states. Individuals are assigned states and the changes between them are

monitored following a timeline. The SI model stands for the simplest version in which

just two states exist susceptible (S) and infected (I). A person in the susceptible state is

someone who does not have the disease and is labeled as “S.” Susceptible individuals can

catch the disease if in contact with infected (I) individuals. The SI model can not be used

for diseases that confer lifelong immunity such measles and chicken pox [5], [156], [10].

To study such diseases, mathematical models applied to explain and to predict outbreaks

are based on the interaction principles between groups of susceptible (S), infective (I), and

12



recovered/removed (R) individuals [5]. The three possible stages: susceptible, infected and

recovered are represented as an array of the differential equations shown in (1).

(1)

dS
dt

= bN − βIS − dS
dI
dt

= βIS − γI − dI
dR
dt

= γI − dR

Birth rate b and a death rate d are considered in the model as well. Disease specific

parameters in the model are: γ that represents the rate of recovery and β the force of

infection, or in other words the rate at which one susceptible individuals becomes infected.

The interactions among individuals are implicitly accounted for in this model. S, I, and R

stand for the number of people in each state which is equal to N , the population size (2)

(2) S + I +R = N

Equation (1) can be expressed in terms of fractions s, i, r and assuming a close system

where birth and death rate are not considered. The new set of equations is presented next:

(3)

ds
dt

= −βsi
di
dt

= βsi− γi
dr
dt

= γi

(4) s+ i+ r = 1

From (3) the mean time of infection can be derived. The variable τ stands for the

length of time an individual is likely to remain at stage I before moving to stage R and δτ

represents any time interval. Given γ, the probability p of recovering in any time interval δτ

is shown in (5).
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(5) p(δτ) = gammaδτ

Conversely the probability of remaining in stage I is 1− γδτ . Equation (6) expresses

the probability that an individual stays at stage I after a total time τ .

(6) lim
δτ→0

(1− γδτ)
τ
δτ = e−γτ

The probability p(τ)dτ that the individual remains at stage I and then recovers in

the interval between τ and τ + dτ is (6) multiplied by γdτ :

(7) p(τ)dτ = γe−γτdτ

The basic reproduction number denoted as R0 is defined as the average number of

additional people that an infectious person passes the disease onto in a complete susceptible

population. R0 is an important quantity in epidemics and can be derived from (3). If the

infectious period is denoted by τ then the expected number of contacts during that time is

βτ , and the average number R0 from (7):

(8) R0 = βτ
∫∞
0
γeγτdτ = β

γ

[121]

Then one can conclude that the epidemic transition or transition from an epidemic

to a non-epidemic event happens when β = γ. Therefore, when R0 < 0 the incident is

considered a non-epidemic event, R0 > 1 is considered an epidemic and R0 = 1 is defined as

an endemic.
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2.1.2. Homogeneous Mixing

Homogeneous mixing is probably the strongest and most questionable assumption

of the model. As initially stated in (1), individuals mix at a fix rate and become infected

under a general parameter β. Demographic and geographic details such family size, geo-

graphic location, incomes are omitted and all social processes are averaged out to represent

the epidemiological process only in terms of rate of susceptibles, infectives, and recovered.

Recent studies consider homogeneous mixing as a starting point that has given rise to several

theoretic studies that highlight the relevance of disease disparities relevant to age, gender,

contact rates, geographical placement, etc.

2.1.3. Random Mixing

Transmission matrices are tables that represent mixing patterns among different

groups. The groups can be based on demographic characteristics as age, gender, sexual

orientation, etc. In random mixing models the number of contacts effective per unit of time

is continually changing as opposed to models based on networks for which the number of

contacts is fixed. The basic model has been extended to accommodate heterogeneous pop-

ulations, composed by subgroups with different mixing rates among themselves. These sub-

groups may represent demographic characteristics such age [78],[79], gender or partnership

[2], [164], global and local contacts [154], [111]. Other studies analyzed sexually transmitted

diseases (STD) and transmission on networks [14], [97]. Fig. 2.2b shows the population

divided into five groups with different mixing patters.

The role of non-homogeneous mixing in population with geographical and social struc-

ture has provided the stage for the rise of metapopulation models where “homogeneous mix-

ing holds within local contexts, and that these contexts are embedded in a nested hierarchy of

successively larger domains” [162], models characterized by heterogeneous connectivity and

mobility patterns [45] and urban networks [55]. Fig. 2.2c exemplifies a model that considers

two populations. Finally, contact networks estimate mixing patterns through the construc-

tion of social networks where the contacts are analyzed based on mobility and simulated

interactions [136]. Fig.2.2d presents a schema of contact networks.
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(a) Homogeneous Mixing (b) Random Mixing

(c) Meta-population (d) Contact Networks

Fig. 2.2. Schematized mixing patterns used in computational and mathemat-

ical models

2.2. ABMs - Synthetic Reconstruction

As computational power grows, models have shifted from a simplification of real

processes that emphasize first principles or “strategic models” to models that represent real

situation as close as possible or “tactical models”[43]. Artificially built societies or agent-

based micro-simulation models are snapshots of the entire population of a selected study area.

Synthetic populations initially were created to estimate traffic needs and development [16]

but were quickly adopted by epidemiology researches to demonstrate a “strong correlation

between local demographic characteristics and pandemic severity” [143]. At the most general

level, the methodology involves two steps: taking data from the census and adjusting multi-

way tables with joint totals to their up-to-date equivalents and selecting households to fit

those totals, optionally assigning them to geographic areas [116] and multi-level controls

among household and person-levels [7]. Other approaches have used random graph models

and link probability models [108]. For validation, a sample from the generated households
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is taken and compared with the original values of the joint totals.

The primary tool used to complete the multi-way table for each census tract is it-

erative proportional fitting (IPF). The next step is to to use the probabilities obtained by

the IPF technique to select households from the sample in order to construct the synthetic

population. The number of households of each type used in the population is determined by

each census track.

In addition to the synthesizer, it is important to select a physical place to bind

the generated population to a geographical location. Spatial patters may reveal high risk

communities, problem areas, or even possible causality that can overlooked using other

approaches[100].Complex spatial simulations require a variety of modules, for example Epi-

grass [43] is a tool used in the construction, simulation and analysis of disease-spread scenar-

ios using standard GIS file formats and requires the interconnection of multiple databases

and application tools.The methodology has been applied to diverse sources of information

for different geographies: the city of Portland, Oregon [56], New York [107], 50 states and

the District of Columbia [166], Switzerland [67], Belgium [32], Singapore [168]. Comparisons

among methodologies has also been done by [116], and [146]. The use of meta population

models and virtual populations has been extensive during the past years for the exploration

on theoretical models applied to epidemiology [102] as well as risk assessment for differ-

ent communicable [44], non-communicable [102] diseases, and computational frameworks for

data modeling over large scale networks [59].

Human mobility networks are an intrinsic part of agent-based models. Meta-population

models assume stochastic movements of agents that can be either local or global. A step fur-

ther for these models is the discovery of individual mobility networks, made possible through

the collection of mobility data [130] and census information [8]. It has been proposed that

when individual mobility is included in the construction of the meta-population model, if the

flux of individuals between populations is sufficiently high, outbreaks are not only unavoid-

able but global [17]. While countless applications for meta-population models have been

suggested, this research focuses on the contributions made to capture the dynamic behavior
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between families and schools, and the social interactions among school-age children. Using

standard concepts and techniques from physical systems acquaintances in a social environ-

ment can be reproduced. Gonzales et al. proposed a system based on colliding particles

to reproduce intra-school interactions and friendships. Such system comprehends N parti-

cles (or individuals) of radius r, moving continuously in a bi-dimensional space shaped as

a square of size L. Collisions of the particles are interpreted as interactions, allowing this

model to reproduce empirical data from school friendship networks [74] and reported sexual

interaction networks [75] with a higher accuracy than previous models.

2.3. Graph Theory and Social Networks

A social network is a diagram that describes a social structure of units or “actors” and

their relationships through interactions. “Actors and their actions are viewed as interdepen-

dent rather than independent” and the relationship linkages between actors are channels that

allow the transfer of resources or “flow” [160]. Network model’s structure is considered to be

the lasting patterns that are meaningful in some context and subject to study. Different com-

putational frameworks have been proposed to model social networks [47]. Even though the

most disease models use compartmentalization of individuals following their disease status

[92], other modifications center on biological observations have been accommodated in this

basic framework to address heterogeneous mixing, core groups, communities [138] and both

unclustered [133], clustered networks [145] and tunable clustered networks [26]. The graphs

representing real-world phenomena are generally large, sparse and complex [9]. Spatial lo-

cation and spatial dependence are important on social and contact networks since topology

alone may not contain all the information relevant to the model [95]. How spatial constraints

may have an effect on the structure and properties of networks and disease dynamics has

been studied through empirical observations [12]. Spatial constraints can also be recognized

on the diffusion processes that take place on secluded spaces [41].

Research has also been focused on multi-layered random graphs, [99] proposed an

algorithm for modeling the World Wide Web (WWW) graph as an ensemble of slices gen-

erated by independent stochastic processes. Another type of networks are those that allow

18



multiple type of edges or multiplex networks[27].

Moreover, the study of networks has been developed from two main knowledge fields:

social sciences and graph theory. In recent years SNA has received the attention from

behavioral and social science disciplines [159], in particular epidemiology [114] because SNA

studies regular patterns of relations connecting a set of entities built into a macro-social

context. SNA is based mainly on the quantitative mapping of networks and aims to measure

their formal properties [81]. Network analysis measure and represent structural relations

among entities and attempts to explain both why they occur and what their consequences

are [81]. Although the major criticism has been that SNA is “merely descriptive” as opposed

to being a theoretical tool, social phenomena in a variety of disciplines has been explained

in terms of this field [25]. Some events, like a disease outbreaks, occur due to the existence

of a wider network that individuals are not well aware of. In addition, social networks are

not static entities but they have been found to change and evolve in time. The Dynamic

Social Network Analysis (DSNA) is the study of the evolution of social networks. DSNA has

been used to identify facilitators on illegal social networks [90], cohesive reading groups [66],

biological networks [70], and the spread of obesity[37]. Observation of this behavior for a

period of time may also produce changes on the structure of the network and the community.

Communities in the environment of social networks and graph theory are an active

research field. Researchers have studied the impact that a change on the structure of the

social graph would have on the dynamics of the disease. Results from [157] suggest that

“the key risk factors for infection should be used to define a population structure”. The

community structure present in dynamic networks has also been studied. Dynamic networks

can maintain the stable community structure that has been observed in many social and

biological systems [28].

Clustering coefficient of a graph is defined as a the probability that two neighbors of a ran-

domly selected node are neighbors as well. It can be interpreted as a measure of connectivity.

In homogeneous networks with a given degree distribution and average transmissibility, clus-

tering is a dominant factor for controlling growth rate of an epidemic [113].
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Another theoretical tool in studying disease dynamics comes from control theory.

Control theory provides mathematical tools for modifying the dynamics of engineered and

natural systems towards a desired state. Models that describe the interactions that take

place on social networks give rise to complex network structures that have proven extremely

difficult to understand. Social processes can be described as dynamic systems, where key

properties determining the system outcome [142]. Scale-free degree distributions, frequently

used for modeling social processes, demonstrated to have better controllability properties

than uncorrelated networks [118].

Complex self-organized systems represent a completely different challenge. On ar-

bitrary networks, identifying the minimum number of driver nodes, can guide the system’s

dynamics. Yet driver nodes tend to avoid high-degree nodes [106]. This result can be trans-

lated to the study of disease dynamics. Although much work has tried to demonstrate the

correlation between “relevance of a node in the network” and it’s degree, new definitions of

“relevance” or centrality have appeared to focus not only on degree buy on different measures

to try to capture the set of nodes that have a grater impact on the final state of a network.

2.3.1. Modeling Contacts

Online social networks like Facebook and LiveJournal provide a corpus of relationships

that have been data-mined to extrapolate the dynamics of how real-life individual contacts

are created, evolve and disappear in time. Social networking sites seem to be ubiquitous

among the U.S. and everywhere where internet is available. Such potential has been used

to draw conclusions on how relationships among individuals in the population evolve in

time. The Facebook dataset [150] gave rise to epidemiological studies that made use of the

community structures discovered in the dataset to design intervention strategies.

Friendship relations created on Facebook and “pokes” (messages to attract atten-

tion of another user) were studied to devise contact patters and behavior at large scale.

School affiliation was found to be correlated with online friendship providing a partial ge-

ographic boundary [73] for online relationships. LiveJournal dataset has been data-mined
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in the search for methodologies to accurately predict and classify friendships. Self-reported

attributes (e.g., interests, communities) have been shown to be a reliable predictor for the

existence of edges representing relationships on such graphs [84]. Social networks have also

been used to study relationships that are neither fraternal nor friendly, but rather reflect

the process of influence. Given a network, each individual or agent formulates an opinion

and revises it gradually based on the surrounding environment. Therefore, a division of real

social networks into groups or communities of individuals with similar opinions is formed.

Whether individuals evolve to be alike minded or they develop more network connections

because they are like-minded is object of research. In an attempt to solve this question

physics-based models, namely assortative mixing or homophily have been used. After sim-

ulating the effect of both processes alone and together it has been suggested that opinion

formation is indeed a combination of the two [83]. Regarding groups’ conflicting interests, it

has been suggested that uninformed individuals have an important role achieving democratic

consensus [48].

The Ising model [20] examines the majority rule dynamics, where one agent may

change its state or “opinion” according to the majority opinion of the neighbors. It has been

shown that the difference on polarization between two loosely connected Barabasi-Albert

networks depends on density of internetwork links [144]. A similar phenomenon has been

observed on clustered epidemic networks, where once the threshold of inter-cluster connec-

tivity has been reached the system behaves as a single network [45]. It can be hypothesized

that the environmental triggers like events, or opinions in the proximity of an agent have a

measurable influence on its behavior. To test this hypothesis in humans, technology-based

approaches have been taken by surrounding test subjects with video cameras and sensors.

The analysis of visual attention and the probability of pedestrian adoption a certain be-

havior has been tracked in urban scenarios when confronted with weak stimuli. The results

revealed that visual interactions among pedestrians occur within a two-meter range. Addi-

tionally spatial features, social context, and sex of the stimulus affect the overall tendency
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to respond [68].

Modeling peer-to-peer relations between individuals helps to understand the role that

spatial heterogeneity has on disease dynamics without the need for large-scale computer

simulations. When the network is considered to be homogeneous, then its structure can be

mostly characterized in terms of the average number of neighbors and their interconnections

[91]. Random networks of interacting agents can then be modeled in a simpler fashion to

study dynamic behavior and cascades. Cascades are shocks that traverse the network on a

time-step fashion. They have been used to model spatial diffusion of diseases on geographi-

cally constraint area. Watts [161] proposed an experiment, in which the action of the agents

was only determined by the actions of their neighbors. Several simulations determined that

on highly connected networks cascade propagation is limited by local stability.

2.3.2. Communities in Networks

While the definition for communities is domain dependent, one can take the notion of

a collection of similar entities that interact with unusual frequency. Nevertheless, represen-

tation of human relationships is challenging because relationships change over time, people

appear and disappear and there are ever changing cycles occurring. By exploring network

communities one can:

• Define the network organization in order to be able to reproduce or modify it [98].

• Understand dynamic processes that may be affected by the modular structure of

the graph.

• Uncover relationships between the nodes that are not evident by inspection.

The first step to study the effect that community structure has on the diffusion pro-

cess, whether one focuses on diseases or information, is to obtain or generate the network.

Blogs and online communities have been subjects of study due to the availability of informa-

tion already in electronic format. It is this characteristic that makes online communities a

focus of interest for epidemiology [148]. If communities are identified in complex networks,

then it is possible to leverage this property to modify the dynamics of the network. The pur-
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pose of designing algorithms to generate networks with community structure is to facilitate

the study of real-world complex social structures. Some algorithms create static networks;

others focus on network models that evolve having a community structure. Notably, prefer-

ential attachment mechanisms both inner and intra-community would yield the construction

of an evolving network with community structure [104].

Once the information relevant to the network is at hand, either by generation, by

data-mining processes or by other method, the next issue to concentrate on is the iden-

tification of communities. A wealth of algorithms for identifying communities on a graph

have been proposed. The algorithm used to detect community structure in a network is

hierarchical clustering, but others methods based on betweenness centrality [70], combina-

torial optimization [158], and spectral clustering [132] have been developed in the last few

years. Girvan et al. [70] proposed a method for detecting communities, using edge be-

tweenness. Edge betweenness is defined as the number of shortest paths from any pair of

vertices that include a particular edge. The community bridge finder (CBF) [138] is an al-

gorithm that attempts to mitigate the spread of disease by identifying communities’ bridges

(or nodes that connect multiple group of clustered nodes). Nevertheless, for large networks

most community finding algorithms make heavy demands on computational resources, run-

ning in O(m2n) time for an arbitrary network of n nodes and m edges, or O(n3) time on a

sparse graph. A modification of the algorithm that runs in O(n log2 n) was proposed by [40]

for hierarchical-structured networks, making the observation communities may be found at

many scales. Later this approach was extended as a “general technique for inferring hier-

archical structure from network data and the existence of hierarchy” [39]. A comparative

analysis of community identification algorithms is presented by [98].

The identification of community bridges in networks yields several strategic opportu-

nities. Under the assumption of homogeneity, people who act as intermediaries or bridges

between distinct groups may have access not only to more diverse information but to posi-

tional advantage [94]. Furthermore, if the network is one that describes disease spreading,
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bridges may represent the opportunity for its expansion, making bridge identification an

interesting endeavor to accomplish when planning intervention strategies.

Online communities also provide helpful insights for early detection. Monitoring

health-seeking behavior as online queries has been used to predict ILI percentages during

influenza season [69], when large populations of web search users inhabit the study area.

Nevertheless the challenge is even greater for emerging diseases, where information may not

be available or even exist. Using visual pattern-recognition, epidemiological surveillance has

moved into the technological era by using well trained “epidemiology watchers.” The goal is

to develop unsupervised methods to monitor and rise alert when unexpected events happen

[103].

Identifying at-risk communities is a key aspect when developing containment strate-

gies. During 1997-1998, the state of California implemented a strategy designed to contain

syphilis cases coming from Mexico. Prevention not only played a key factor but also averted

reestablishment of ongoing transmission. Containment procedures were implemented once

clusters were identified. In addition, surveillance caused near-elimination of syphilis in the

area [76].

2.3.3. Affiliation Networks

Affiliation networks represent binary relations between members of two sets of items.

[22] On this context, the term affiliation is used to acknowledge participation or membership

of people in events, projects, or groups. Affiliation networks are traditionally represented

as bipartite graphs [121]. Complex evolving networks can be studied using the results and

methodologies developed by using affiliation networks [11]. A result that can be derived from

of affiliation networks are co-affiliation networks. Co-affiliation is defined as a tie between two

members that belong to the same set of nodes and have in common a member of another set

of nodes. There are several techniques to measure and normalize the weight of co-affiliation,

depending on whether they represent opportunity or are taken as indicators [22].

It has been stated that affiliation networks tend to model the social structures more

exactly than simple networks [120]. Food-web networks represented as graphs, have a de-
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(a) Simple Graph (b) Bipartite Graph

Fig. 2.3. Graph comparison

gree distributions that do not display a universal functional form, although their topology

is consistent with patterns resembling small-world and scale-free graphs [51]. For complex

ecosystems, bipartite networks represent structures that allow depicting mutualistic inter-

actions accurately. Mutualistic networks are the combination of two classes of networks

biologically different. To characterize these networks is compulsory to describe the degree

distribution. It has been found that by maximum entropy could potentially be used as a

model for the degree distributions in bipartite ecological networks [167].

Affiliation networks and co-affiliation networks are depicted as simple graphs where

the existence of an edge is representative of an ongoing relation among nodes. Other networks

represent edges and nodes including a value or weight that can be contextualized according

to the problem being schematized. Weighted graphs have been used to represent individual

popularity within groups of students [85]. Students become nodes of the network and edge

weights represent the depth of favor or disfavor between them. The evolution of friendships

can then be analyzed through the evolution of the system for which the change of weights

is guided by random encounters. In this model, the final edge weights are mostly influenced

by “the first impression” ( initial weight assigned to the relationship when setting up the

initial adjacency matrix) between any two nodes [85].

2.4. Optimization of Intervention Strategies

Measuring and targeting intervention strategies is a highly complex problem. Re-

search on novel infections showed that targeting intervention measures is more effective if
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the group with the highest risk can be identified [157]. Disease control measures comprehend

vaccine, antiviral treatment, prophylaxis, and non-pharmaceutical interventions (NPI) such

quarantine, isolation, school closure, and social distancing [78]. Timing is a key factor for

interventions, scheduled vaccination is a part of almost any nation’s public health policy

while social distancing occur once cases of a particular disease have been identified.

Intervention strategies and their optimization depend on finding the right people to

target. It has been hypothesized that in the social network context, disease traverses through

targets that belong to shortest paths of the network in order to propagate. Finding the

shortest paths is directly related to the type of network. To identify shortest paths, search

algorithms benefit form local information about the target more than the naive approach

based on high degree [1]. While some of the network characteristics may always remain

unknown for the modeler, information of the network structure in combination with real-life

heuristics represents the best actual knowledge when designing disease mitigation strategies.

In reality, when it comes to evaluate risk of real-life scenarios, primary schools constitute an

important risk group [46] even when their social patterns may remain unknown.

For many infections diseases, vaccinations are the most effective means of control and

their objective is to immunize a sufficiently high proportion of the individuals in the com-

munity to prevent epidemics [15]. After a transversal comparison of several interventions for

influenza, it was discovered that early detection and initiation of measures and school closure

play important roles in reducing influenza transmission [78]. Through the identification of

communities and community bridges in the social model, targeted immunizations could be

more effective [138]. This concept has also been studied at the granularity of households

and transmission within and between households the household for isolation, quarantine,

vaccination or prophylactic treatment [65]. At the household level, social distancing limits

the transmission that happens between households.

Given a social network represented as a graph, finding a set of relevant nodes is an

optimization problem. Depending on the type of network and the problem at hand the opti-
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mization could potentially be formulated as a minimization or maximization. Maximization

of influence is an NP-hard problem but several approximations have been proposed [93].

Domingos and Richarson [50] proposed modeling markets as social networks where spread

of influence is maximized. The overall objective was to asses the net value of customers in

the network through data-mining. In most recent studies, Even-Dar and Shapira [57] used

the same methodology to study how to identify the most influential individuals to maximize

the adoption of a new technology using the voter model. They found that as a special case,

the naive solution of targeting the nodes with highest degree first yield the optimal solution.

Intervention strategies depend on the social contact networks and the how people interact

within them. Through surveys, the dynamic behavior of children and teenagers has been

model to try to quantify local transmission of influenza. Although students, their groups an

activities in public places represent a great challenge to model their importance regarding the

next pandemic is utterly considerable. It is believed that high-schools may play a potential

backbone for disease transmission in the next pandemic [71]. Early detection and contain-

ment are the most desirable scenarios for well known as well of emergent diseases. Disease

spread in rural areas has different dynamics due to population density and transportation

than cities. It has been suggested that a highly effective strategy for rural areas is to target

vaccination campaigns at popular location is more effective that random vaccination at the

same places [140].

2.4.1. Discovering Relevance

Developing a feasible method to identify the most important set of nodes in a network

is an open question. The evaluation of relevance in a network is in direct connection with

how the network is constructed. Only on complete networks all nodes are connected with

their peers, otherwise either a random or well defined criterion is used to create links among

nodes. The concept of proximity considers the characteristics of the individuals pairwise in

order to create a link among them. A widely used methodology for real-life network data is

to define a measure of proximity also called “social distance.” The existence of links between

two individuals is both cause and consequence of similarities shared in certain respects of
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their intrinsic characteristics or personal choices. Although there exist different basis on how

to define social distance, loyalty and affiliation are considered appropriate measures for the

existence of links and are based on the overlap of interpersonal environments [3].

When the underlying network is unknown, identifying well-connected, central nodes

has become a research question for different domains. Spreading of disease, emergence of fads

or even diffusion of memes have been proven to shown a similar behavior as they all make use

of a social structure to disseminate. For example, the size of the fad is in direct proportion

to the degree of the first adopter, regardless of the underlying network [6]. Likewise, the

degree of an index case or initial patient of a population is positively correlated with the

probability of an outbreak [88].

Centrality and how to measure it, is one of the most researched concepts in SNA

particularly for continuously growing networks. Several measures to determine the most

central nodes of a network have been proposed and developed, including degree, closeness,

information and betweenness centrality. In order to understand centrality, one must first

define the flow of a network. Flow can be conceptualized as the paths that exist among

nodes. In general, centrality measures can be regarded as measures that generate expected

values for some sets of nodes given implicit models of how traffic flows in the network [23].

Centrality measures have been used to study the structure of online communities to identify

hate groups [34], in combination with game theory, to find optimization of bounded budgets

[35], and to calculate risk of infection [38], [88] among others. Centrality measures have also

demonstrated a high correlation with self-assessed relationship strength among HIV-positive

patients and their role in the HIV diffusion network [135].

Betweeness centrality has been used in the study of ego networks. Ego networks

consist of actors or “egos” as a focal point and the nodes that egos are connected to, referred

as “alters.” Betweeness centrality is used as a measure of the density of the ego network as

well as the centrality of each actor in the network [58].

Information centrality is a similar to betweenness centrality in that is a network

connectivity metric as well. This method accounts for indirect as well as shortest or geodesic
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paths among actors considering their degrees. Information centrality of the complex social

networks of long-tailed manakin (Chiroxiphia linearis) has been used to calculate the odds

of males that will socially rise to be alpha-males [109].

2.4.2. Optimal Mitigation Strategies

Finding optimal vaccination strategies has been a very prolific field of research during

the last decade. Vaccination is an important disease control method not only for human

diseases but also in natural resources management. Optimization can be defined in two

ways: the social cost of disease and the monetary cost related to vaccination programs.

Regardless of the disease model used or the disease itself, the optimization problem is defined

as either finding the strategy with the minimal cost provided an public health aim or given

a restriction in the cost find the most effective strategy [115].

Disease modeling is the first challenge one faces in the search for optimal vaccination

strategies. The mathematical or computational representation of the disease plays the most

important role in the optimization process along with the parameters used by the model. In

the most general form, the optimization function is a minimization of the number of vaccines,

with the additional component of the structure of the population.

However uncertainty of conditions, disease or population parameters have also been

studied. Under the stochastic programming framework, [147] presented the optimal vacci-

nation policy for disease epidemics with parameter uncertainty. The objective function is

defined in terms of vaccine coverage, two additional restriction functions balance the propor-

tions of the vaccination among diverse population and bring the reproduction number below

zero.

Voluntary vaccination presents the general population with a decision-making chal-

lenge, particularly for parents. Two main risks should be considered: the probability of

becoming infected and morbidity from vaccination. When the portion of the population

that is immune prevents the spread of disease and gives a protection level for the individuals

unvaccinated then herd immunity has been reached. If a population reaches herd immu-

nity then the risk associated with vaccination outweighs the risk of infection. Under these
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assumptions, the decision of getting vaccinated can be modeled from the game theoretic per-

spective. If the perceived risk associated with vaccination increases, vaccine uptake declines.

In addition, if a vaccination scare happens, after it has ended and perception of risk is re-

duced, levels of coverage are more difficult to restore [13]. Indeed, for some initial conditions

of the system, minimizing the prevalence of a disease for the entire population disagrees

with the individual evaluation of the risk [117]. When considering vaccination strategies, it

is important to include not only high-risk groups of individuals but those groups that are

likely to provide paths for disease spread. Under certain conditions increasing vaccination

resources to high-activity groups instead of high-risk increases herd immunity for the entire

population [149].

2.5. Summary

Computational epidemiology can be considered a “young” field of science where re-

searchers are faced with the challenge of handling interdisciplinary knowledge. Mathematical

and computational models in combination with physic and modern biology theories are com-

bined to give rise to modern epidemiology. Diseases are ubiquitous in the animal kingdom

and while their understanding and consequent control could potentially represent a wealth of

improvements for the quality of life, this endeavor has proven to be one of the most complex

problems. If the problem was completely stripped out of the social and economical com-

plications, the interaction between the biological systems involved at the the macroscopic

level such communities and contacts, intra-person level, such the immune system, and the

microscopic level like to the biology of pathogen itself, do not reduce the complexity of the

problem. For this reason, models tend to take a simplification of the reality in order to

better understand the effects that small changes in a particular set of parameters have in the

system behavior. Compartmental models simplify disease dynamics allowing only a finite

set of states. In the model, the particular stages of the disease become states and differential

equations for which the assumption of homogeneous or heterogeneous mixing drive the out-

come and the general result. Models that come from computational expensive methodologies

such ABMs model populations as close to reality as possible, whereas theoretic approaches
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provide robust solutions to simplified models. Finally, to optimize mitigation methodolo-

gies, researchers look into both methodologies to identify what constitute high-risk targets

bounded by the structure of the social model.
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CHAPTER 3

POPULATION RECONSTRUCTION

Maps answer the question: where? They can reveal spatial patterns not

previously recognized or suspected from the examination of a table of statistics

Lawson, A., 2001

In this chapter the concept of synthetic population is introduced as the methodology

for the recreation of the population of Denton County. Three questions are addressed: (1)

how to reconstruct the records of an entire population, for which demographic characteristics

and exact locations of people and households are available, (2) how to build the affiliation

network among households and schools, and (3) the relevance that affiliation networks have

when designing intervention strategies. The last question will help to determine the relevance

of this research in the field of computational epidemiology (Chapter 6), whereas the answer

of the first two questions will define the methodology proposed by this research on how to

construct multi co-affiliation networks (Chapter 4 and Chapter 5). In the next section, the

infrastructure and methodology used for synthetic reconstruction is described and the sources

of information are listed. Section 3.2 defines the probabilistic function used in the selection

of households from the general sample and exemplifies the general procedure using multi-

control levels. Section 3.3 describes the quantitative evaluation of the synthetic population

compared with the initial information and forecast year. The chapter is closed in Section

3.4 with a discussion on the methodology presented and compared with the most dominant

developments in the field of Agent-Based Models (ABMs).

3.1. Experimental Infrastructure and Methodology

In order to predict the future state of a system, micro-simulation models are applied

to emulate the behavior and movement of people and their actions in their physical environ-

ment through agents. Initially, the model requires the creation of a set of agents and their

relationships, hereafter called “synthetic population.” Additionally, the process includes the

creation of establishments that associates agents together such as households, schools, work-
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ing or shopping places, and other gathering locations where interactions occur. The base

methodology was proposed by Beckman et al. [16] as a technique for the reconstruction of

populations to estimate traffic demand. While the granularity of the model allows a wide

range of semantic meanings for agent (i.e. vehicles [16], individuals [7], [131]) this research

has focused on the creation of synthetic populations composed by persons, households, and

schools. Synthetic reconstruction is used in this research as a methodology to simulate in-

teractions that take place in the school system. The main challenge to be addressed is how

to design intervention strategies oriented to pinpoint critical locations in the school sys-

tem. In order to approach the problem, a three-layer methodology was proposed composed

by: en epidemic simulation layer, a reformulated affiliation networks layer, and a synthetic

reconstruction layer. Fig. 3.1 presents an overview of the structure of model.

Fig. 3.1. The model has three different layers: epidemic simulation, affiliation

networks, and synthetic reconstruction.The epidemic simulation contains the

whole model and all the objects representing the synthetic population and the

affiliation networks.

3.1.1. Population Generation Architecture

ABMs use detailed information describing characteristics and behavior of agents. On

one hand, due to privacy and feasibility issues, such detailed records pertaining to individuals

and housing are not available for public use. On the other hand, aggregated information

of population demographic descriptors is almost ubiquitous among nations and geographies.

The synthetic generation algorithm requires both types of information, detailed individual
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records and general counts. Demand for synthetic populations emerges from the necessity

of having the micro-information (also called micro-data) about agents, their characteristics,

and interactions at an atomic level. The synthetic reconstruction methodology is essentially

composed by:

• Input: datasets from the information available through public databases.

• Generation process: synthetic reconstruction.

• Output: synthetic population distributed over a geographical space with the corre-

sponding schools.

Fig. 3.2. Architecture of the synthetic population generator POPSYN

Fig. 3.2 depicts the architecture used by the population synthesizer (POPSYN). The

major components are the input database, the Iterative Proportional Fitting (IPF) engine,

and the synthetic reconstruction module.

3.1.2. Input Database

Collecting the input database is a data intensive exercise because of the size and diver-

sity of the information required. Two main types of datasets are needed: counts (i.e. people,
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households, schools) and maps to locate these objects. The main sources of information in

order to perform a synthetic reconstruction are:

• US Census Bureau Website (http://www.census.gov/)

(1) Summary Files (SFs) 1,2,3,4

(2) Public Use Micro data Sample (PUMS)

• National Center for Education Statistics (NCES) (http://nces.ed.gov/)

• School District (SD) Review Program (http://www.census.gov/geo/www/schdist/

sch_dist.html)

Table 3.1 is an example of an aggregate dataset representing the counts of people according

to gender and age that can be found in the SF1 and SF3. Table 3.2 exemplifies information

found on an individual record of the PUMS.

3.2. Synthetic Reconstruction

3.2.1. Creating Synthetic Households and Household Members

Synthetic reconstruction is a process that creates data records describing socio-demographic

features of households (HH) and household’s members (P) residing in the area of study. The

generation process requires an aggregate dataset that contains the marginal distribution of

the variables estimated for the year of study and a disaggregate dataset or a sample of records

with complete information about Ps and HHs in the population. The aggregate datasets are

a set of cross tabulations that describe one, two, or multiple way counts of socio-demographic

attributes or control variables, at different spatial resolutions i.e. the smallest component

for all census geography is the block [31].

The spatial units called target areas are units for which the aggregate distribution

information is available. Disaggregate distribution information is available for areas (seed

areas) typically larger than the target areas. Once the aggregate and disaggregate datasets

are obtained, the next step is to generate population records, which is dobe by selecting

sample records from the disaggregate dataset and matching the aggregate dataset’s marginal

distribution. The process outputs data records with the selected demographic descriptors
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Table 3.1. Two-way table corresponding to gender and age for two census

tracks of Denton County, Texas [30]

Denton County, Texas

Census Tract 201.03 Census Tract 208

Age Range Male Female Male Female

Under 5 years 261 415 61 105

5 to 9 years 500 299 0 38

10 to 14 years 527 285 90 32

15 to 17 years 173 239 165 0

18 and 19 years 51 111 81 338

20 years 73 48 201 349

21 years 34 48 454 509

22 to 24 years 140 71 489 375

25 to 29 years 361 240 146 175

30 to 34 years 426 385 86 60

35 to 39 years 401 236 28 15

40 to 44 years 352 429 83 126

45 to 49 years 410 357 65 17

50 to 54 years 293 321 172 214

55 to 59 years 158 287 18 95

60 and 61 years 87 121 33 70

62 to 64 years 115 104 7 17

65 and 66 years 85 91 18 0

67 to 69 years 133 126 59 43

70 to 74 years 80 132 19 39

75 to 79 years 106 206 0 7

80 to 84 years 123 32 12 12

85 years and over 29 58 20 10
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Table 3.2. Micro data sample depicting housing and personal records

(9)

RecType1︷︸︸︷
H

Serial2−8︷ ︸︸ ︷
0002599 5483700100

PUMS19−23︷ ︸︸ ︷
48090 9999799979 . . . 000950 . . . 9600︸ ︷︷ ︸

267

(10)

RecType1︷︸︸︷
P

Serial2−8︷ ︸︸ ︷
0002599

Num.Person9−10︷︸︸︷
01 . . .

Sex23︷︸︸︷
2 0

Age25−26︷︸︸︷
15 00000000000022324200 . . . 0000︸ ︷︷ ︸

316

updated to the corresponding year of study. Fig. 3.3 shows a simplified flow chart for the

process.

Fig. 3.3. Methodology schematic overview

The methodology presented in [16] and [131] requires US Census Bureau summary files 1

and 3 [30] and PUMS at 5%. Information is publicly available and accessible though the

US Census Bureau Website [30] for Census 2000, and partially available for Census 2010. In

both cases, the SFs contain aggregated population and housing characteristics collected from

a 1 in 6 household sample and weighted to represent the total population. The micro data
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sample contains disaggregated data records representing a sample of 5% of the occupied

and vacant housing units in the United States, and the attributes of people living in the

occupied units. PUMS files for 2010 Census are scheduled for release on December 2012

through April 2013, making Census 2000 the latest complete information available at the

time data collection for this work was conducted. This research focused on information

relative to Denton County demarcated by the Public Use of Microdata Area (PUMA) code

48090, as shown in Fig. 3.4.

Fig. 3.4. Denton County PUMA code and delimitation [29]

Super PUMA Code PUMA Code Area Name

48090 02202 Denton city (part)

3.2.2. List of Control Variables

Table 3.3 shows the number of categories for selected demographics corresponding to

the aggregate datasets. Table 3.4 contains a list of control variables used for the synthetic

reconstruction of P s and HHs. Table 3.11 contains the list of control variables used for the

allocation of the resulting population P into schools through school enrollment.

38



Table 3.3. Features and subcategories selected at the person-level

Feature Subcategories Examples T. # of Subcat.

Age 5 to 9 years, 85 years and over 18

Gender Female, Male 2

Race White, Black 7

Ethnicity Hispanic, Non Hispanic 2

Table 3.4. Variables and correspondent columns in SF1

Control Description SF1

P-Age Age of the individual P12

P-Race Race of the individual P7

P-Gender Gender of the individual P12

HH-Fam Family or non-family household P26

HH-Size Size of the household P26

HH-Type Type of the household P20

HH-Child Households by presence of people under 18 years old P19

3.2.3. Forecasting Population

Beckman et al. initially proposed the calculation of the selection probability of HHs

using a simple ratio:

(11) Pri,L =
HHi∑
j,i6=j HHj

Where Pri,L is the probability of selecting household i of type L, HHi is the weight

for household i and HHj represent the remaining households in the subregion L [16]. In

order to select HHs with and additional control level this work considered the extension
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methodology proposed by Auld and Mohammadian [7] and presented in (12). The new

probability function is derived using Bayes theorem based on conditional probability, in

order to select households of the sample using multi-level control.

(12) Pri,L =
HHi

∏HHi(size)
j

MWAY ∗
P×(pi,j(1),pi,j(2),...,pi,j(n))

Nremain∑NL
k (HHi

∏N
j

MWAY ∗
P×(pi,j(1),pi,j(2),...,pi,j(n)

Nremain
)

Where:

• Pri,L is the probability of selecting household i of type L

• HHi is the weight for household i

• HHi(size) represents the size of household i

• pi,j(k) index of control variable k of person j of household i

• Nremain represents the number of remaining persons in the sub-region

• NL represents the remaining households in the sub-region L

• MWAY ∗P × (pi,j(1), pi,j(2), . . . , pi,j(n)) represents the remaining cell frequency in

zonal personal-level joint distribution

The following example (Tables 3.5 - 3.10) illustrates how multi-level control is used

in the recreation of the synthetic population.

Table 3.5 shows the initial information found in the public micro-sample data and

Tables 3.6, and 3.7 show the household-level joint distribution and person-level joint dis-

tribution, respectively. The probability for each type of house calculated using (11) is

Pr(HHi) = 0.25, since in the sample number of houses containing individuals with the

desired characteristics is one per type of house HHi. Therefore, in order to fulfill the re-

quired number of households HH = 50, 12.5 of each type of HHi should be selected. On the

other hand by using multi-level controls (12), the selection changes to better reflect person-

level distribution. Table 3.9 shows the reformulated probability, using (12) and new number

per HHi. Tables 3.8 and 3.10 show that both joint distributions are preserved.
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Table 3.5. Example of calculation of multi-level control selection of HHs

Micro-data Sample

Type of HHs Sample (HHi) Demographics pi,j Pr(HHi)[16]

HH1 1 1 male 5 to 9 years, 1 female 5 to 9 years 0.25

HH2 1 1 male 10 to 14 years, 1 female 10 to 14 years 0.25

HH3 1 1 male 5 to 9 years, 1 female 10 to 14 years 0.25

HH1 1 1 male 10 to 14 years, 1 female 5 to 9 years 0.25

Table 3.6. HHs

joint distribution

HH size(2) 50

Table 3.7. P-Level joint distribution

Gender pi,j(1)-Agepi,j(2) 5-9 10-14 Total Rows

Male 20 30 50

Female 25 25 50

Columns Total 45 55 100

From (12), the probability of selecting a HH from PUMS is calculated for each HHi:

(13) PrHH1 =
(1)× 20/100

25/100

(1)× 20/100
25/100

+ (1)× 30/100
25/100

+ (1)× 20/100
25/100

+ (1)× 30/100
25/100

= 0.2

(14) PrHH2 =
(1)× 30/100

25/100

(1)× 20/100
25/100

+ (1)× 30/100
25/100

+ (1)× 20/100
25/100

+ (1)× 30/100
25/100

= 0.3

(15) PrHH3 =
(1)× 20/100

25/100

(1)× 20/100
25/100

+ (1)× 30/100
25/100

+ (1)× 20/100
25/100

+ (1)× 30/100
25/100

= 0.2

(16) PrHH4 =
(1)× 30/100

25/100

(1)× 20/100
25/100

+ (1)× 30/100
25/100

+ (1)× 20/100
25/100

+ (1)× 30/100
25/100

= 0.3
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Table 3.8. HHs

HHs Pr(HHi)[7] Total

HH1 0.2 10

HH2 0.3 15

HH3 0.2 10

HH4 0.3 15

Table 3.9. Final selection of HHs

Type of HHs Demographics pi,j

HH1 10 males 5 to 9 years, 10 females 5 to 9 years

HH2 15 males 10 to 14 years, 15 females 10 to 14 years

HH3 10 males 5 to 9 years, 10 females 10 to 14 years

HH1 15 males 10 to 14 years, 15 females 5 to 9 years

Table 3.10. Synthetic Ps

Gender -Age 5-9 years 10-14 years Total Rows

Male 20 30 50

Female 25 25 50

Total Columns 45 55 100

3.2.4. Assigning Children to Schools

The National Center for Education Statistics (NCES) and the Core Common Data

(CCD) have made available information regarding total school enrollment, grades, and lo-

cation for SDs and their schools through their website [122]. Total enrollment, number of

schools and additional demographic counts by state and by SD are also available. Complete

information with several multi-way tables is available at the NCES website [63] from 1986

to present.

School Attendance Zones (SAZ) are areas that surround public schools defining the set of

HHs eligible to attend each school. The U.S. Census Bureau provides information regarding

the School District Review Program that includes SDs boundaries and registers their changes

over time. Nevertheless, SDs and Independent School Districts (ISDs) are not required to

report information regarding SAZs boundaries. SDs make SAZs information available for
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Table 3.11. School information used

Control Description

S-Type School type

S-Enrollment Student enrollment of school

S-LocationX Location of the school longitude component

S-LocationY Location of the school latitude component

S-HighLevel Highest level of the school

S-LowLever Lowest level of the school

the public on their websites using different formats such PDFs and interactive maps. Since

information of attendance zones is essential not only for research studies but for other com-

mercial uses, independent companies offer such information and additional services. Partial

information on school boundaries can be found at SABINS (School Attendance Boundary

Information System) [123]. Non-public nation-wide information on SAZs is available through

Maponics (www.maponics.com/). Fig. 3.5 exemplifies the SAZ map for middle schools in

the Denton ISD. The datasets listed above were, to the best of our knowledge, the only data

sources available at the time this research was conducted.

In order to extend the synthetic reconstruction methodology, is necessary to include

schools associated to households through the use of total school enrollment, and attendance

zones. The second part of the process is to create the households-schools affiliations when

appropriate. The procedure shown in Fig. 3.6 explains how the association works. At

this step only households with eligible school children (persons from age 3-18 and enrolled

in public schools) are taken into account. Once a household with an eligible individual is

encountered, the algorithm searches for the nearest school with the appropriate level. If the

school has not reached its enrollment level then the household is assigned to that school;
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Fig. 3.5. SAZ coding showing the correspondence street to middle-school for

the Denton ISD. The different colored area corresponds to the catchment area

assigned to each school, retrieved from the Denton ISD website [86]

otherwise, the selection procedure goes to the next closest school.

3.3. Results

To validate the simulator POPSYN, the joined distribution at the person-level of the

synthetic population generated is compared with the census person-joint distribution for

the entire area and the forecast joint distributions for the target year (2009). The selected

44



Fig. 3.6. Second part of the methodology, used to assign households to school

attendance zones.

categories for comparison are age (Fig 3.7), gender (Fig. 3.8) and race (Fig. 3.9).

The largest difference between the expected and observed person-marginal distribu-

tion totals is found at the age feature. The difference of sub category “60-64 years” is equal

to 1.18%, Fig. 3.7. In this case, the synthetic reconstruction is compared with the base year

distributions. For the gender category, the largest difference is 0.51% and also occurs with

the difference between the base year and the synthetic population Fig. 3.8. In the case of

the feature “Race”, the largest difference is 6.7% found at the “White” subcategory, com-

paring the synthetic reconstruction with the forecast year. The actual plot for the synthetic

population mapped into Denton County’s map is shown in Figs. 3.11 and 3.10.
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(a) Expected and generated marginal distributions for person-level base year

(b) Expected and generated marginal distributions for person-level forecast year

Fig. 3.7. Individual-level control variable “Age”

3.3.1. Standard Deviation and Standard Error

In order to estimate an accurate size for the synthetic population, the standard error

and standard deviation were calculated for selected categories. Populations of sizes of a

46



(a) Expected and generated marginal distributions for person-level base year

(b) Expected and generated marginal distributions for person-level forecast year

Fig. 3.8. Individual-level control variable “Gender”

thousand, ten thousand, and one hundred thousand were simulated fifty times in order to

calculate both standard error and standard deviation. Standard deviation is calculated using
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(a) Expected and generated marginal distributions for person-level base year

(b) Expected and generated marginal distributions for person-level forecast year

Fig. 3.9. Individual-level control variable “Race”

(17) and the standard error is calculated using (18). The results are presented in Table 3.12.
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Fig. 3.10. Plot of households distributed over the Denton County map

(17) STD = σ =

√√√√ 1

N

N∑
i=1

(xi − x)2

(18) STDERROR2 = var(x̄) =
σ2

n
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Fig. 3.11. Plot of households distributed a geographic region. Tables at the

household and personal-level are shown for a selected household

3.4. Discussion

There has been a notable theoretical interest in synthetic reconstruction as the base

methodology used to obtain records at personal and household level oriented towards various

objectives. Synthetic reconstructions are needed in order to map the interactions that may

occur in the schools system. Although the methodology was designed initially to estimate

traffic demand, it has been widely employed in the field of computational epidemiology as

a framework for the study of disease dynamics. The extension of the methodology using

multi-control levels [7] allows a more accurate selection of the sample households included

in the PUMA. In the case of this study, Denton County’s area was entirely enclosed in the
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Table 3.12. Standard deviation and standard error for different synthetic

population sizes

Table 3.13. STD h

Synthetic Population Size

1000 10000 100000

Age 6.829h 1.967h 0.670h

Gender 19.200h 3.644 1.15h

Race 2.478h 0.725h 0.2373h

Ethnicity 11.778h 5.453h 1.178h

Table 3.14. STDERROR h

Synthetic Population Size

1000 10000 100000

Age 1.247h 0.743h 0.335h

Gender 3.505h 1.377h 0.576h

Race 0.452h 0.274 h0.119h

Ethnicity 2.150h 2.061h 0.589h

super PUMA 48090, but for other geographies this is not the case. Other counties may

belong to one or more super PUMAs and the process for the household selection changes.

Wheaton et al. addressed modifications that were made in the case the target area includes

more than one super-PUMA [166]. The extension of the algorithm to allocate children

attending schools was initially proposed by [166], but as more information is made available

regarding SAZs, the approximation function for enrollment of students could potentially be

made more accurate. Nevertheless, the allocation of households in any methodology still

follows a random pattern.

3.5. Summary

The synthetic reconstruction methodology with multiple control levels is presented

as the methodology used in order to reconstruct the population of Denton County and the

school population of the Denton ISD. First, the general methodology has been described,

including the list of control variables used in this research. Next, the modification to include

multi-control levels has been presented with an illustrative example. Finally, the results of

the reconstruction are presented, compared and contrasted with the initial distribution and

the distribution estimated for the forecast year.

51



CHAPTER 4

DEFINITION OF MULTI-COAFFILIATION NETWORKS (MCN)

[124]

Perhaps even more than to the contact between mankind and nature, graph

theory owes to the contact of human beings between each other

Dénes König,1936

In this chapter the concept of Multi Co-affiliation Networks (MCNs) [124] is formal-

ized. MCNs are the result of the execution of the School Affiliation Network Discovery

(SAND) algorithm [125] over a synthetic reconstruction. The chapter starts with the for-

mal definition of graphs and continues revising concepts used to characterize the structure of

MCNs. Graph theory is the area of the mathematics that studies graphs and their properties.

In the next section, the mathematical background for bi- and k-partite graphs is addressed.

Section 4.2 defines the methodology for construction of MCNs based in the synthetic re-

construction discussed in Chapter 3. MCNs are weighted graphs that depict the strength

of affiliation between a community formed by households and schools. Weighted networks

are seldom used to represent social graphs, although recent studies have found them to be

of special interest in order to represent hierarchical organization and connectivity of nodes

[169]. Section 4.3 exposes the result of constructing the MCN from the synthetic population

of Denton County and the Denton Independent School District (ISD). The chapter concludes

with a discussion of the result and the implications the methodology proposed to generate

MCNs.

Definition 4.1. Definition of Graph [165] A graph is a tuple G = (V, L), V represents the

set of vertices and L represents the set of edges.

A graph with undirected edges and free of self-loops is called a simple graph. In

epidemiology, graphs have become an instrumental representation of the underlying social

structure that diseases use to propagate. Graphs that depict biological processes or associa-
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tions are generally sparse, complex, large, and have global topological properties in common

[9]. Nodes are not isolated, on the contrary, they are reachable within a small number of

connections one from another. Disease, influence, and information propagation in such net-

works, are a combination of the internal state of a node and the state of the immediate

environment [83]. Extensive analysis of online networks’ structures has found a strong corre-

lation between the attributes of a node and the preferential attachment to other nodes. The

likelihood of the existence of a link between nodes is driven by the sharing of a particular set

of attributes. Attributes of nodes that belong to online communities have been found to have

corresponding demographics based in real life characteristics [84]. In the search of a network

that strongly resembles real life connections and acquaintances, this research has focused on

the communities that are conformed by schools and household. In this chapter, the concept

of contact networks is addressed from a new perspective. Long-term affiliations formed in

localized communities are studied to analyze their structure. Households are represent as

nodes while links are defined as the association between households and schools.

4.1. Bipartite and K−partite Graphs

Definition 4.2. Bipartite Networks [165] A graph G is bipartite if V (G) is the union of

two disjoint (possibly empty) independent sets called partite sets of G.

G = (V,E) is bipartite when:

(19)

V = V1 ∪ V2

V1 ∩ V2 = ∅

E = V1 × V2

A contact network model is a graph G = (V,E) in which the nodes represent individuals (V )

and edges (E) represent possible contacts between nodes. In [56] the network construction

is motivated by simulated contacts and their estimated positions and activities on a step-

by-step basis. In the general model, the social contact network is represented as a bipartite

graph, GPL, of people (P ) and location (L) that can be in the order of the millions of nodes
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[55]. Edges represent possible contacts of two people attending the same location L, at over-

lapping times. To draw an edge, the duration of contact needs to be greater or equal to a

set minimum threshold i.e. two hours. Two projections of GPL can be obtained by drawing

an edge between all pairs of vertices at a distance of two from each other. A graph: GP ,

containing only people vertices, and GL, containing only locations. This approach considers

all the locations to be of a similar category.

More recent models have extended the concept by including three or more categories

such as workplaces and shopping places [107], and hierarchy inside the locations [168] (i.e.

grades inside a school). These models focus on the personal level and in all cases require

either supercomputing or parallelization techniques. Contact networks are instrumental tools

because they allow studying how the structure of the network impacts the spread of the

pathogen. By focusing not necessarily on the “who” (i.e. a particular individual) but rather

on the “where” and “how”, general conclusions can be drawn with respect to intervention

strategies. Affiliation networks go one step forward, by modifying the selection of random

contacts into long-term affiliations. For communicable diseases like influenza, the frequency

and length of the contact period between a susceptible individual and an infectious one, is

a determinant factor for the spread of the disease. Furthermore, the presence of a child

in the household has been linked with the increase of individual-risk level for 2009 AH1N1

[134]. Finally, the spatial distribution of H1N1 in Mexico has been linked with the school

cycles in the country, suggesting that school closures and similar mitigation measures have

a remarkable potential to control future epidemics.

The proposed model focuses on the long-term affiliations that schools and households

form during an academic year. In order to study the school system as the main strategic

point for intervention measures, each school is considered to be a community of households.

School districts demarcate the set of houses that are assigned to the schools. A school

attendance zone is the area surrounding a particular school that defines the houses that are

assigned to such school.
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4.2. School Affiliation Network Discovery (SAND) Algorithm [125]

The School Affiliation Network Discovery (SAND) algorithm generates MCNs based

on the synthetic reconstruction discussed in the previous chapter. The model is based on

the following observations.

• Schools districts pre-designate attendance zones. There exists a one-to-one corre-

spondence of schools and households for every School Attendance Zone (SAZ).

• The affiliation relation “child-school” is persistent for long periods of time (i.e.

duration of a school year).

• Small children are highly limited in self-movement. Therefore, their location is

constrained to their houses and childcare or school locations.

• SDs are composed by hierarchies of by elementary (E), middle (M) and high schools

(H).

4.2.1. Model Assumptions

The SAND algorithm makes the following assumptions regarding people attending

schools.

• Each household with school-age children is affiliated with the closest school by cal-

culating the Euclidean distance from hhi, sj.

• If the household has more than one member attending a specific school type (i.e.

elementary school si), then those members are grouped and assigned to the same

school si. Therefore, each household has assigned only one school for each type.

The euclidean distance has been used in previous research papers to assign agents

to schools and workplaces [166]. The second assumption of the model, although restrictive,

reflects the reality of the majority of U.S. households, where SAZs are predefined by the

school districts.

4.2.2. Generation Algorithm for Affiliation Networks, Graph A

Affiliation networks describe a binary relationship between members of two distinct

set of items. A classic example of this type of networks is the data-set collected by Davis et
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al. in which the attendance of women to social events on a small southern town was recorded

[49]. The dataset of women and events has become an example of affiliation network [22] and

subject to analysis for clustering and centrality algorithms [21], [24]. Similarly, this research

constructs affiliation networks of households and schools. First, a study area is selected; in

this research the study area is Denton ISD. Utilizing the synthetic reconstruction algorithm

defined in Chapter 3, the synthetic households are distributed over the study area. The set

of nodes is formed by the set of schools of corresponding to the SD. The resulting network,

renamed as graph A, is defined as the affiliation network of households and schools.

Definition 4.3. Affiliation Network [125] A simple undirected bipartite graph A = (V, L),

V = (S ∪HH) is constructed to represent the affiliation network formed by schools S and

households HH, an edge (hhi, sj) ∈ L represents a child belonging to household hhi ∈ H

attending school sj ∈ S.

The indicator function A(hhi, sj) is a function that identifies the membership of a

hhi to sj.

(20) A(hhi, sj) =

 1 if (hhi, sj) ∈ L

0 otherwise

The definition of indicator function A could potentially vary from region to region.

In the United States, SDs are responsible for delimiting the school attendance zones and

making the information available to the public. Maps can be publicly accessed in diverse

formats, regularly through SDs websites. The attendance zones may also be updated as the

population changes and new establishments are created. Although there is not a defined

standard for how the information is presented to the public, in the United States, it can be

obtained in PDF format, interactive maps or a listing of streets.

Nevertheless, lack of information in other geographic regions may become an addi-

tional constraint for the model depending on the availability of data. For other geographies,

the selection process for attending public schools may be mainly driven by density of the

population, religion preference or purchasing power. By defining the preferential attachment
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of schools and households as a function, the model is open to allocate other definitions for

“affiliations.”

Following, the algorithm that generated affiliations is described. Initially, a geograph-

ical unit L for which the synthetic reconstructions has been generated is selected, where:

(21) L =


HH = {hh1, h2, . . . , hhi, . . . , hhn}

P = {pi1, pi2, pi3, . . .}

S = {s1, s2, . . . , sk, . . . , sm}

HH = {hh1, hh2, . . . , hhi, . . . , hhn} is the set of households hhi located within the

area of L. Each household is defined as a set of attributes: hhj(k) = {[serial], [number people], ...}

characteristics extracted from the of the synthetic reconstruction.

P = {pi1, pi2, . . . , pij, . . .} is the set of j people pij that belongs to household i. The largest

household size max(|hhj|) registered in Texas at five percent sample file SF1, is thirteen.

Each person also represents a set of attributes:

pi,j(k) = {[age],[gender],[attends school],[household serial],...} .

S = {s1, s2, . . . , sk, . . . , sm}, is the set of schools sk, that belong to the SD located in the

area of L sk = {[type], [lower level], [higher level], [locationX], [locationY ], ...}

Detailed attributes for P , HHs and S come directly from those used in the synthetic

reconstruction and were discussed in the previous chapter. The following algorithm is used

to link schools and households.

57



Algorithm 1: Affiliation Network: Generation of Graph A 1

Require: HH,P, S

1: for i = 1 TO |HH| do

2: for j = 1 TO hhi[num people in HH] do

3: if p(i,j).attends schl is TRUE then

4: for k = 1 TO |S| do

5: if p(i,j).level ≥ sk.lower level AND p(i,j).level ≤ sk.upper level then

6: psbl schls(i,k) ← dist(hhi.loc, sk.loc)

7: end if

8: end for

9: sschl← min(psbl schls)

10: lnk schlsHH(i, sschl)← crt lnk(i, sschl)

11: end if

12: end for

13: end for

Algorithm 1 generates Graph A as follows. Lines 1-7 review all households and select

the ones with students, calculate the distance between each eligible household and all the

schools with appropriate level. Lines 9 and 10 select the minimum distance among all schools

and create the link school-household. Lines 1,2, and 4 show that the algorithm is executed

in O(S × P ) and constructs all HH − S affiliations.

Lemma 4.4. Graph A is a bipartite graph with partitions HH and S

Proof. Suffices to observe that function A as defined in (20), can only generate edges

1This figure is reproduced from [124], with permission from Global Science and Technology Forum http:

//www.globalstf.org
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joining one element of HH and one element of S. Since edges are only created joining one

element of HH to an element form S the graph A is bipartite with partitions HH and S �

4.2.3. Multi Co-affiliation Networks (MCNs), Graph B [124]

As mentioned in the previous section, affiliation networks demarcate the relation of

two different set of objects. In some cases the purpose of construction affiliation data is not to

understand the links between two disjoint sets but to understand the patterns within only one

set [22]. The term co-affiliation refers to the relation that arises form joint affiliations shared

among two similar objects. Co-affiliation networks can be understood as the realization of a

relation that may not be discernible at first sight.

In this research, the school system is the main focus of analysis. The main purpose

is to set a methodology that allows to quantify the relevance of each school in the system of

a particular location L. Starting from the affiliation network represented by graph A, this

research proposes the construction of the Multi Co-affiliation Network (MCN) or graph B

of schools based on the affiliations that schools share through common households.

Definition 4.5. Definition k−partite Graph [165]

By generalization of definition 4.2, if G = (V,E) is k-partite, then:

(22)

V = ∪n1Vi, i = 1, 2, 3 . . . n

∩(i,j),i 6=jVi, Vj = ∅

E = Vi × Vj, {∀(i, j), i 6= j, i = 1, 2, 3 . . . n}

Graph A is transformed into a weighted graph B = (S,EE), S = (E,M,H):

(23) ek = (si, sj) ∈ EE = ∀hhk∈HHA(hhk, si)×A(hhk, sj)

The function W (ek) ≥ 0 represents the weight of the edge ek and is defined as follows:

(24) W (ek) =
∑

hhk∈HH

{(hhk, si), (hhk, sj)} ∈ A

The construction of graph B is schematized in Fig. 4.1.
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Fig. 4.1. Construction of the k-partite graph. Starting from the affiliation

network represented by graph A, edges and nodes of graph B are derived. 2

The graphic on the left side corresponds to graph A, the affiliation network between

schools and households constructed using the synthetic reconstruction. Each household

represent a group of people that live at location (x, y). The graphic on the right side demon-

strates how links between schools are formed by stretching common households between

schools into links. Each plane corresponds to a specific type of school and is denoted by its

initial (i.e. “Elementary” = E). In the multidimensional space, the first plane corresponds

to the map in which all households are located.

Algorithm 2 constructs graph B as follows. Lines 1-7 describe the loop that reviews

2This figure is reproduced from [124], with permission from Global Science and Technology Forum http:

//www.globalstf.org
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Algorithm 2: Graph B: Generation of MCNs 3

Require: S, lnk schlsHH

1: for k = 1 TO |S| do

2: list HH[k] ← select(k, lnk schlsHH)

3: lnk schls[k] ← select(list HH[k], lnk schlsHH)

4: for i = 1 to |lnk schls[k]| do

5: if (lnk schls[i] 6= s[k]) then

6: lnk schls schls← crt lnk[(k, lnk schls[i])]

7: end if

8: end for

9: end for

all households linked to schools and links schools together when a common household is

found. Lines 1 and 4 are executed |S| and |HH| times respectively, therefore the run-time of

the algorithm in the worst case scenario is O(|S|×|HH|) to construct all S−S co-affiliations.

Theorem 4.6. Graph B = (S,EE) is a k − partite graph, with k = 3, S = E,M,H.

Proof. If B is not k = partite then there must be an edge ek = (si, sj) ,such si, sj ∈ E or

si, sj ∈M or si, sj ∈ H.

By (23) if ek = (si, sj) ∈ EE = A(hhk, si)×A(hhk, sj).

Then hhk has two members that have the same corresponding school type either E,M,H

attending different schools, which is a contradiction to the initial assumptions of the model.

Therefore, for each ek = (si, sj) if si ∈ (E|M |H) then sj ∈ (Ē|M̄ |H̄)

�

Finally, it can be concluded that MCNs are k-partite, with k = 3.

3This figure is reproduced from [124], with permission from Global Science and Technology Forum http:

//www.globalstf.org
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4.2.4. Selection of Affiliation Function A

In the United States, SDs are responsible for delimiting SAZs and making the infor-

mation available to the public. The selection of A may be described by one of following the

cases:

• Utilization of maps or SAZs.

• A proximity function by measuring household-school distance.

• School information regarding the list of students attending schools.

Table 4.1. Selection of A

A Sources of Information Format

Street location SABINS

MAPONICS

Shapefiles, digital informa-

tion available

Distance function Voronoi Diagrams Automatically generated

Attendance list Schools in the system Diverse

The SDs’ areas can be conceptualized as planes in space. A useful definition on how

to partition the plane is the concept of Voronoi diagrams. A Voronoi diagram is a “partition

of the plane with n points into convex polygons such that each polygon contains exactly

one point and every point in a given polygon is closer to its generating point than to any

other” [163]. Each school type divides the area in a similar fashion than a Voronoi diagram

although in the actual SAZs the polygons are neither convex nor continuous. Therefore, the

entire school system would be represented by as many planes as school types, in this case

three. Fig. 4.2 exemplifies the intersection that is produced by overlapping divisions of two

Voronoi diagrams.

Function A may change for environments for which information is not available or

when the catchment area is defined by other measures. The function D(A) can be modified

to accommodate appropriately the corresponding sources of information. In this research, D

is defined as Euclidean distance (25) which was used to draw the links between S and HHs.
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(a) Voronoi diagram 1 (b) Voronoi diagram 2 (c) Intersection

Fig. 4.2. Intersection of two Voronoi Diagrams 1 and 2, showing how one cell

from diagram 1 intersects multiple cells from diagram 2

(25) D =
√

(x(hi)− x(sj))2 + (y(hi)− y(sj))2

In (25) the functions x(p), and y(p) retrieve the latitude and longitude of a given

point p.

The resulting division of the plane will be equivalent to a Voronoi diagram for which

centroids are the locations of a schools. Each school type corresponds to a plane, in which

the number of Voronoi cells are equal to the number of schools. The function A defines the

division of the plane corresponding to each type of school. A different way of constructing

MCNs is to look into the intersections caused by the overlap of the planes representing each

type of school.

4.3. Experimental Results

4.3.1. Application Example

Maps identifying the attendance zones for the Denton ISD are available on their

website. Herein codes defined in Table 4.2 are used.

By the time the present research was carried on, the NCES [62] had a record of thirty

eight schools corresponding to the Denton ISD. Although, the school attendance zone maps

for each type of school posted on the ISD website identify thirty SAZs. Coding, name and
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Table 4.2. Denton ISD application coding

Type Assigned Code Total Number of Schools

Elementary A 21

Middle B 6

High C 3

High Schools Middle Schools Elementary Schools

High Schools Middle Schools Elementary Schools

Fig. 4.3. Voronoi tessellation of Denton ISD attendance zones
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corresponding streets for each school are described on Appendix A. The accuracy could

potentially be estimated by comparing known SAZs maps and the Voronoi diagram. A

comparison based on Denton ISD is shown in Fig. 4.3. The network of schools or MCN is

the weighted graph represented in Fig. 4.4

Fig. 4.4. Denton ISD, school type: A(Elementary), B(Middle), and C(High)

An example of the general output the algorithm is shown in Fig. 4.5. The left image

depicts location of households, schools and their affiliation. The image on the right exposes

the resulting school network. The output of the SAND algorithm is a graph weighted on
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Fig. 4.5. An example of the synthetic reconstruction and the MCN derived

from it through the SAND algorithm 4

the vertices and edges. The weight of the vertices can be considered as an intra-community

measure, whereas the weight of the outgoing edges could be considered as an inter-community

measure. Graphs with a small number of nodes such those representing school districts are

in the order of hundreds or even few thousands nodes (table 4.3). The run-time of standard

algorithms such the shortest path calculation and other more complex such the vertex cover

are reduced on MCNs.

4.3.2. Reduction of Complexity

It is important to notice the scale difference between a contact network and a resulting

MCN. While the general population of a study area could reach the order of millions of agents,

the cardinality of the graphs that are produced by the algorithm presented in this chapter

is in the order of hundreds. The complexity reduction yields on the potential application of

NP −hard algorithms to analyze the structure of the resulting graph. Table 4.3 shows some

3This figure is reproduced from [124], with permission from Global Science and Technology Forum http:

//www.globalstf.org
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examples of such reduction.

The reduction in complexity of the final graph representing the school network has

a direct impact on the execution time of the algorithms applied to optimize mitigation

strategies. Smaller graphs not only imply a shorter processing time, but also allow the

application of approximation algorithms of NP-hard problems such as the vertex cover of a

graph. The reduction in size of the social model for the state of Texas is shown in Table 4.4.

Denton County and Denton ISD are shown in Table 4.5 and Fig. 4.4.

Table 4.3. U.S. general population and information on student population

and number of schools on the independent districts [64], [128], [31]

Location Population Num. of HHs Num. of Students Num. of Schools

New York, NY 8175133 3047249 148980 305

Los Angeles, CA 3792621 1314198 667273 932

Chicago, IL 2695598 1033022 405644 642

Houston, TX 2099451 764758 204245 307

Philadelphia, PA 1526006 574488 166233 274

Phoenix, AZ 1445632 515701 34144 39

San Antonio, TX 1327407 461139 55116 101

San Diego, CA 1307402 474906 131785 225

Dallas, TX 1197816 449597 157162 242

Denton, TX 113383 39060 23994 38

Baltimore, MD 620961 238392 83800 196

4.4. Summary

MCNs constitute a notion of social networks and differ from other biology inspired

networks in that they are not sparse. Additionally, dimension of MCNs is severely reduced
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Table 4.4. State of Texas housing information, data source: US Census

Bureau and Texas Public School Directory

Variable Description Value

P Total Population 25,145,561

HH Number of Households 8,922,933

S Number of Public Schools 8,317

Table 4.5. Denton County Statistics, data source: US Census Bureau and

Texas Public School Directory

Variable Description Value

P Total Population 662,614

HH Number of Households 240,289

S Number of Public Schools 30

Total Students 22,825

S Number of Nodes Graph B 30

EE Number of Edges Graph B 60

Is Graph B Connected? True

compared to contact networks. MCNs depict long-term relationships rather than probabilis-

tic associations as opposed to large scale-semantic associations or food-networks. In the next

chapter, the structure of MCNs is discussed.
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CHAPTER 5

STRUCTURE AND CHARACTERISTICS OF MCNS

However, not everything that can be counted counts, and not everything that

counts can be counted

William Bruce Cameron, 1963

In this chapter, the structure of Multi Co-affiliation Networks (MCNs) is analyzed.

Additionally, the definition of centrality measures is stated and extended for weighted net-

works. The centrality measures of the MCN of Denton Independent School District (ISD)

are calculated for betweenness, closeness and degree in Section 5.2. Section 5.3 states the

known theorems for k-partite graphs as a framework for MCNs. The chapter concludes with

a summary of the experimental results obtained.

5.1. Structure of MNCs

5.1.1. Number of Edges

In the most general form, the relationship between the number of edges and the

number of vertices of a simple graph G = (V,E) can be stated as follows:

(26) |E| ≤ |V |×(|V |−1)
2

Equation (26) bounds the maximum number of edges that can be contained in a

simple graph. If equality occurs, the graph is called a complete graph.

In the case of bipartite graphs such as G = ((V1 ∪ V2), E), the maximum number of

edges is represented by the relationship in (27)

(27) |E| = |V1| × |V2|
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Fig. 5.1. Realization of a MCN

The generalization of (27) for complete k−partite graphsG = (∪n1Vi, i = 1, 2, 3 . . . k, E)

is stated in (28). Where Vi represents the ith partition of vertices, all partitions are of the

same size |Vi|, and value of k represents the number of partitions

(28) |E| = |Vi|2×(k)(k−1)
2

The maximum number of edges in a graph B = ((E ∪M ∪ H), EE) ∈ MNCs can

then be directly derived from (28). Considering |E| > |M | > |S|.
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(29) |EE| ≤ |E|2×(k)(k−1)
2

; k = 3

It is necessary to observe that in real-life examples equality does not occur.

Theorem 5.1. For any graph B = ((E ∪ M ∪ H), EE) generated following Algorithm 2

|EE| < |E|2 × 3, with |E| > |M | > |H|.

Proof. The School Attendance Zones (SAZs) are defined in the two-dimensional space that

represents the map associated with location L discussed in Chapter 3. Let ei be the area

representing the SAZ of an elementary school. ei must intersect with at least one mj ∈ M

and at least one hk ∈ H since the sets E,M,H are defined inside the same physical area.

In these intersections, edges between schools are formed due to the existence of at least one

hhl that is affiliated to both SAZs. Indeed, the equality |EE| = |E| × |M | × |H| holds if

and only if each ej ∈ E intersects all mk ∈ M and all hl ∈ H. Such intersection can only

take place in a three-dimensional space if |E| > 1, |M | > 1, |H| > 1. Therefore, if |H| = 1,

then maximum number of intersections can be represented as a bi-dimensional matrix with

|E| × |M |. �

5.1.2. Maximum and Minimum Degree

The adjacency matrix X of a graph G = (V,E) is defined as a |X| × |X| matrix

where the value of cell xij is defined as 1 if node vi is connected to node vj, and 0 otherwise.

Weighted networks are denoted by W where wij represents the weight of the link between

nodes vi and vj. If wij 6= 0 then node vi is connected to node vj, and the value represents

the weight of the tie [126].

Definition 5.2. The degree of a vertex vi ∈ V , denoted by D(vi), represents the number

of incident edges to vi.

(30) D(vi) =

|V |∑
j,j 6=i

xij

71



(a) Average over a 1000 simulations

(b) STD over a 1000 simulations

Fig. 5.2. Number of households in sample and number of distinct edges of

graph B.

Likewise, on weighted networks the degree of a vertex is defined in (31).

(31) Dw(vi) =

|V |∑
j,j 6=i

wij

The maximum degree denoted by ∆ stands for the vertex with the highest number of

incident edges. On simple graphs ∆ is bounded by (|V | − 1). Likewise, the minimum degree

on simple graphs, denoted by δ stands for the vertex with the lowest (possibly 0) number

of incident edges. In order to study the influence of population size over the properties of

graph B, Algorithm 2 was executed varying the total number of households starting from

500 and ending in 20,000; with increasing steps of 500. At each step, 1000 simulations were

conducted, making a total number of 40,000 executions. The number of edges, maximum
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(a) Average over 1000 simulations

(b) STD over a 1000 simulations

Fig. 5.3. Number of households in sample and maximum degree of graph B.

and minimum degrees were recorded. Fig. 5.2 shows the average and standard deviation

(STD) of the results obtained for the number of distinct edges of graph B, changing the

size of the population. Fig. 5.3 shows the average and standard deviation of the results for

the maximum degree of graph B. Fig. 5.4 shows the average and standard deviation of the

results obtained for the minimum degree of graph B, changing the size of the population.

5.2. Generalization of Centrality Measures for Weighted Networks

Centrality measures have interested the social network research community for its in-

trinsic linkage with quantifying relevance of nodes in a network. When first stated, three key

characteristics were identified in order to consider a node important: number of edges, short-

est paths traversing the node, and a small number of steps to reach other nodes. Freeman
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(a) Average over a 1000 simulations

(b) STD over a 1000 simulations

Fig. 5.4. Number of households in sample and minimum degree of graph B.

[66] presented key characteristics of centrality and defined three different measures: degree,

closeness and betweenness, defined for simple undirected unweighted graphs. Furthermore,

numerous attempts have been made to extend the centrality definitions to a broader family

of graphs. In [151], [152], and [126] new definitions for degree, closeness, and betweenness

centrality were proposed. Centrality measures have a natural relevance for social network

analysis. They have been used to identify and classify risk behaviors relevant to AIDS [135],

to identify epidemic potential and vaccination effectiveness [88], traffic flows [23], strate-

gic network formation [35], and even species extinction [4]. The applicability of centrality
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measures to biology questions seems limitless.

5.2.1. Degree Centrality

Definition 5.3. Degree centrality, denoted by CD is the number of nodes to which a node

is connected to. On the graph G = (V, L) the degree centrality of a node vi is calculated by

(32).

(32) CD(vi) = D(vi) =
∑|V |

j;j 6=i xij

In the case of weighted network, several definitions have been proposed to calculate

CD. In (33) a straight forward definition is proposed by using W instead of X [151].

(33) CDw(vi) = Dw(vi) =
∑|V |

j;j 6=iwij

Opsahl [126], proposed a new definition to accommodate the strength of a node given

by the diversity of its neighbors. Equation (34) states the new definition for CDw.

(34)
Cα
Dw(vi) = CDw(vi)× ( CD(vi)

CDw(vi)
)α

= CDw(vi)
(1−α) × Cα

D

The value α is a non negative tuning parameter (0 − 1). It is important to notice

that when α = 0, Cα
Dw is equal to CD, the degree centrality of the unweighted version

of the graph. Simplicity and straight forward calculation are advantages of this centrality

measure. Additionally, only local information relative to the node is required, which makes

this measure specially usable when only partial information of the network is known.

5.2.2. Betweenness Centrality

A path in a graph G = (V, L) between two vertices vi, vj is a sequence of pairwise

vertices such (vi, vh) . . . (vk, vj). For a simple graph G = (V, L) the shortest path between

two vertices vi, vj is known as the geodesic path (GP ). Let P(§〉〈) represents a path between

nodes (i, h). Therefore, GP (vi, vj) = min(P(§〉〈)) + . . . + min(P(§‖|)), where h, k stand for
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Table 5.1. Comparison of degree centrality values evaluated for graph B

presented in Fig. 5.5

Num α = 0 α = 0.25 α = 0.5 α = 0.75 α = 1.0

0 B24=337.0 B24=139.869 C29=66.332 C29=36.423 C29=20.0

1 C29=220.0 C29=120.802 B24=58.052 B24=24.094 B26=11.0

2 A6=108.0 A6=47.379 B26=25.259 B26=16.669 B24=10.0

3 A20=104.0 A20=42.86 B25=22.913 B25=12.665 C28=8.0

4 A19=80.0 B25=41.454 A6=20.785 C28=11.887 B25=7.0

5 B25=75.0 B26=38.275 A19=17.889 A6=9.118 C27=5.0

6 A0=60.0 A19=37.83 C28=17.664 A19=8.459 A3=4.0

7 B26=58.0 C28=26.246 A20=17.664 C27=8.014 A6=4.0

8 B21=51.0 A0=25.637 A3=13.115 A20=7.279 A19=4.0

9 A3=43.0 A3=23.747 C27=12.845 A3=7.243 A4=3.0

10 C28=39.0 B21=22.695 A0=10.954 A17=5.244 A8=3.0

11 C27=33.0 C27=20.589 B21=10.1 A4=4.695 A7=3.0

12 A17=28.0 A17=16.019 A17=9.165 A0=4.681 A20=3.0

13 A9=27.0 A9=14.086 A4=7.348 A7=4.559 A10=3.0

14 A16=25.0 A16=13.296 A9=7.348 B21=4.494 A17=3.0

15 A18=23.0 A18=12.49 A16=7.071 A8=4.054 A2=2.0

16 A14=23.0 A14=12.49 A7=6.928 A10=3.948 A1=2.0

17 A12=19.0 A4=11.501 A18=6.782 A9=3.834 A9=2.0

18 A4=18.0 A12=10.822 A14=6.782 A16=3.761 B22=2.0

19 A7=16.0 A7=10.529 A12=6.164 A18=3.683 B21=2.0

20 A1=14.0 A1=8.607 A8=5.477 A14=3.683 A0=2.0

21 B22=12.0 B22=7.667 A1=5.292 A12=3.511 A18=2.0

22 A8=10.0 A8=7.401 A10=5.196 A1=3.253 A11=2.0

possible intermediate nodes (i.e. h = k, GP (vi, vj) = 2 ). GPi(vj, vk) denotes all the geodesic

paths from vj to vk that have vi as intermediate node.
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Table 5.2. Comparison of betweenness centrality values obtained from graph

B presented in Fig. 5.5

Num Summatory α = 0 α = 1

0 C29=279.0 C29=0.649 C29=0.642

1 B26=55.0 B26=0.131 B24=0.624

2 C27=54.0 C28=0.127 B26=0.364

3 C28=54.0 C27=0.126 B25=0.134

4 A3=52.0 A3=0.12 C28=0.127

5 A19=50.0 A19=0.12 C27=0.126

6 B24=29.0 B24=0.069 A0=0.067

7 A2=28.0 A2=0.064 A1=0.065

8 A4=3.0 A4=0.007 A2=0.064

9 A1=0.0 A1=0.0 A4=0.0

10 A6=0.0 A6=0.0 A3=0.0

11 A5=0.0 A5=0.0 A6=0.0

12 A8=0.0 A8=0.0 A5=0.0

13 A7=0.0 A7=0.0 A8=0.0

14 A9=0.0 A9=0.0 A7=0.0

15 B23=0.0 B23=0.0 A9=0.0

16 B22=0.0 B22=0.0 B23=0.0

17 B21=0.0 B21=0.0 B22=0.0

18 B25=0.0 B25=0.0 B21=0.0

19 A0=0.0 A0=0.0 A20=0.0

20 A20=0.0 A20=0.0 A19=0.0

Definition 5.4. Simple graph betweenness centrality, denoted by CB is the number of

geodesic paths a node is part of. On the graph G = (V, L), the betweenness centrality of a

node vi is calculated by (35).
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(35) CB(vi) =
GPi(vj ,vk)

GP (vj ,vk)
;∀j,∀k

For weighted networks, [119], and [151] have proposed a modified geodesic definition,

expressed on (36).

(36) GPw(vi) = min( 1
W (vi,vh)

+ . . .+ 1
W (vk,vi)

)

Therefore, the length of the shortest path between two nodes is expressed on (37).

(37) GPα
w (vi, vj) = min( 1

(W (vi,vh))α
+ . . .+ 1

(W (vk,vi)α
)

The value α is a non negative tuning parameter (0− 1).

Definition 5.5. Betweeness centrality of a weighted network can be defined in terms of

GPw, based on the combination of the number of intermediate nodes in geodesic paths and

the edges weights, as described in (38).

(38) CBw(vi) =
GPαw i(vj ,vk)

GPαw (vj ,vk)

5.2.3. Closeness Centrality

Definition 5.6. Simple graph closeness centrality, denoted by CC , is the length of the paths

from a node to all other nodes in the network. For simple graphs, (39) defines the Cc of vi.

(39) CC(vi) = (
∑|V |

j;j 6=iGP (vi, vj))
−1

For weighted networks, the definition proposed by [126] is described in (40).

(40) CCw(vi) = (
∑|V |

j;j 6=iGP
α
w (vi, vj))

−1
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Table 5.3. Comparison of closeness centrality values calculated for graph B

presented in Fig. 5.5

Num α = 0 α = 1

0 C29=0.141 C29=0.024

1 B24=0.14 B24=0.02

2 A6=0.135 A3=0.018

3 A20=0.133 A6=0.018

4 A19=0.131 B26=0.018

5 A3=0.124 A19=0.018

6 B26=0.122 A7=0.017

7 B25=0.117 A20=0.017

8 A18=0.114 A17=0.017

9 A17=0.114 A4=0.016

10 A7=0.103 B25=0.016

11 C28=0.102 A18=0.016

12 A9=0.102 A2=0.015

13 A14=0.102 A8=0.015

14 A16=0.102 C28=0.015

15 C27=0.095 A11=0.015

16 A4=0.094 A10=0.015

17 A12=0.093 A15=0.015

18 A0=0.081 A16=0.015

19 A8=0.08 C27=0.014

20 B21=0.077 A9=0.014

5.3. Connectivity on Graphs

Connectivity of a graph G = (V, L) is defined as having a path among any two vertices

vi, vj ∈ L [165]. There are two types of connectivity, vertex and edge. Vertex connectivity,

represented by κ, and edge connectivity represented by λ stand for the minimum number of
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vertices or edges whose removal produces a disconnected graph.

Fig. 5.5. Realization of a MCN, arranged as a k − Partite graph

Theorem 5.7 (Edge-Connectivity Version of Menger’s Theorem). [165] Let G = V, L be a

simple graph and vi and vj two distinct vertices. Then the minimum number of edges whose

removal disconnects vi and vj is equal to the maximum number of pairwise edge-independent

paths from vi and vj.

Lemma 5.8. The maximum number of edges |EE| that graph B can have without being

connected is |EE| = |E − 1| × |M | × |H|
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Theorem 5.9. (Edge)Connectivity λ(G)

The maximum (edge) connectivity of G [80] is defined as:

λ(G) =

 0 when |E(G)| < |V (G)| − 1

( 2—E(G)— ) /V(G) when |E(G)| ≥ |V (G)| − 1

Nevertheless, for graph B, |EE| >>> |S|, and for highly populated zones δ >>> |S|,

δ(G) being the minimum degree of graph B.

Theorem 5.10 (Edge-connectivity for k-partite Graphs). [155] The edge connectivity λ(G)

of a k − partite graphs is

λ(G) =

 δ(G) If |V | ≤ (2kδ)
(k−1) − 2

or in special cases|V | ≤ (2kδ)
(k−1) − 1

It is evident that when δ ≤ |S| then number of components for graph B is exactly

|H|. This case exemplifies an interesting structure for the school system. Under a realistic

environment, it implies that every attendance zone for a lower lever school is completely

contained in the corresponding next level school attending zone. Hence, while this case

may exist under some circumstances, the sampling has shown that the contrary is the rule.

Attendance zones for elementary schools are rarely completely contained in middle school

attendance zones, and middle schools attendance zones are rarely contained in those of high

schools. In particular, the set of households that belong to the intersections of the SAZs

seem more interesting for the analysis as they provide bridges among different school levels.

5.4. Summary

MCNs are described in terms of number of different edges, maximum, and minimum

degree. Additionally, centrality measures for MCNs are defined, following the definition for

centrality measures on weighted graphs. Finally, the connectivity of MCNs is described.
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CHAPTER 6

OPTIMIZATION OF INTERVENTION STRATEGIES

In retrospect, it appears obvious that social network theory is a natural

paradigm for understanding infectious disease transmission

Richard B. Rothenberg, 1995

Mathematical and Computational Models (MCM) have been widely acknowledged

in epidemiology. In the absence of data or when information is not reliable, MCMs have

provided public health officials with insights and decision support scenarios impossible to

obtain otherwise. MCMs construct a rational framework for the analysis of the economic

impact of infectious diseases control measures [82]. Influenza pandemics have been widely

studied through the use of MCMs [153], in communities [105], and schools [78]. In this

chapter the efficiency of different intervention strategies applied to control the spread of

disease in a school system is studied. The rational behind the evaluation of risk is based

on centrality and network measures of the multi co-affiliation network of households and

schools.

In the next section a detailed explanation of the implementation of the framework is

addressed. The main sources of information for the disease parameters are also mentioned.

Section 6.2 describes the baseline used for comparison of the strategies; additionally, the

optimization considerations are listed. Section 6.3 describes the methodology used to com-

pare the efficiency of the strategies proposed by this research. The chapter concludes with a

summary of the results and the conclusion.

6.1. Implementation

The implementation of simulation scenarios requires the interconnection of three mod-

ules. First, a module that simulates disease spreading over a sample of the synthetic popula-

tion of Denton County generated using the synthetic reconstruction. Second, an intervention

module that allows the application of different strategies over the precise same population

to obtain comparable outputs. Finally, a classification module that classifies the output of
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the simulation module.

In order to establish the efficacy of intervention strategies the initial step is to define an

outbreak or epidemic. One can define the concept of epidemic as a form of a self-sustainable

disease contagion among a population. For public health officials, an outbreak is an incident

that is significantly above a baseline or above a specific threshold [79]. To mathematically

define an epidemic, the concept of R0 discussed in previous chapters becomes crucial. By

allowing the simulation parameters to be probability distributions as opposed to fixed val-

ues, computational models become a powerful tool in the estimation of R0. Under these

assumptions, identical initial parameters previously used to define R0 may yield different

results (i.e. an incident resulting in an epidemic vs no outbreak) caused by the stochasticity

of the process. Therefore, R0 is calculated as an average of several executions of a particular

algorithm to ensure consistency of the results.

6.1.1. Simulation Parameters

The SIRS compartmental model discussed in Chapter 2 was used to simulate the

spread of disease. The simulation parameters are described next. The assumption that ini-

tial parameters are fixed values is expanded; and therefore, a subset of the parameters are

described in terms of a probability distribution. This extension of mathematical program-

ming is refereed to as stochastic programming [147].

• Transmission rate (T ) is a value between [ 0 - 1 ] that represents the probability that

given a contact, the disease is passed on from an household (HH) currently infectious

(HH with status=“I”) to an HH in susceptible state (HH with status=“S”).

• Radius (∇) or neighborhood size is the ratio between the size of the area of action of

a household (HH) compared to the total size of the study area. To build the social

network, the neighbors of a selected HH are chosen based on the radius of action of

a HH.

• Duration of I (DI) in days. DI is a discrete distribution of period lengths and

probability related to the duration of a HH in I state
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• Duration of R (DR) in days. DR) is a discrete distribution of period lengths and

probability related to the duration of a HH in R state

• Intervention size (ι) is the percentage of HHs removed at the beginning of the

simulation as part of the mitigation strategy.

• P value is a value between [ 0 - 1 ] that represents the proportion of neighbors of

each HH selected from the same school system.

• α is a non-negative tuning parameter (0 − 1) for centrality measures in weighted

graphs.

The simulation parameters are provided as a flat file representing the pair [parameter, value].

Table 6.1. Baseline disease parameters

Variable Value

Trans. rate (T ) 0.2

Radius (∇) 1.18%

(I) Period (τ) [53] (R) Period (γ)

Number of day 3 4 5 6 224 225 226

Probability (all HHs) 0.3 0.4 0.2 0.1 0.2 0.3 0.5

Mean days 4.1 225.3

The simulator uses a SIRS model. During the simulation process, individuals may

return to the susceptible state after a recovery period. It is possible to model different

disease models (i.e. SI, SIR) using the architecture and implementation of the simulator.

Each incident may be executed for up to 5000 timesteps, which allows endemic events to be

identified. Additionally, a recovery period of 225.3 timesteps in average, allows the case of

seasonal diseases in which an individual may become ill the next year.

6.1.2. Simulation Output

The Java implementation of the simulation module includes two possible outputs; a

graphical representation of the possible outbreak, and a text file that contains the statistics

of the incident. A sample of the graphical interface is shown in Fig. 6.1.
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(a) Simulation module graphical output

Fig. 6.1. Simulation module output

6.1.3. Outbreak Classification Algorithm (OCA)

The infection process in the SIR model may not always produce an outbreak. There-

fore, scenarios for which outbreaks occur have to be identified, in order to compare the

efficiency of intervention strategies. The outbreak classification algorithm (OCA) is an un-

supervised classification algorithm for the output of the simulation module. Its objective is

to identify epidemic events from incidents in which the epidemic threshold was not reached.

The execution of the algorithm produces the immediate and unsupervised classification of

the results of multiple different simulation scenarios.

The parameters for the classification are set at the beginning of an scenario and then

several hundred runs are executed for the same parameters. Scenarios that are classified as

outbreaks are then evaluated to estimate the efficacy of the different intervention strategies.

The OCA requires the definition of an outbreak. The threshold could be set to zero but

in general the threshold is defined to match the public health goal of intervention. The

attack rate of H1N1 influenza during 2009 was calculated to be between 5% and 15% [127]
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therefore, an outbreak might be expected if community attack rate of 15-25% is reached[79].

The evaluation of all intervention measures are sensitive to this definition and consequent

classification of what constitutes an epidemic. Algorithm 3 is used in order to classify each

output of the simulation scenario. To set the parameters for the OCA, a disease similar to

influenza is considered. The CDC has used 10% as an informal marker for the beginning

and end of the flu season [60], and therefore, the threshold is set to 10%. Reported cases of

Influenza Like Illness (ILI) are monitored throughout year around, but in the United States

the flu season typically begins to increase in late December or early January and peaks in

February most commonly [60]. The algorithm takes timesteps that are equivalent to one day

and therefore, the window of time for monitoring is the entire year or 365 days.

Algorithm 3: Outbreak Classification Algorithm (OCA)

Data: SIR DUR, TOT I, TOTAL POPULATION

Result: OutbreakClassification = [Epidemic, Endemic, NoOutbreak]

initialization;

read input;

OutbreakClassification = Epidemic;

if DUR > 365 ∧ TOT I < 0.15 then

OutbreakClassification = Endemic;

else

if TOT I < 0.1× TOT POPULATION then

OutbreakClassification = NoOutbreak;

else

OutbreakClassification = Epidemic;

;

Events are represented as plots of the total count for individuals in states S, I, and

R. Classification of these curves are used to illustrate how the algorithm identifies epidemic

events. Incidents classified as endemic are shown in Fig. 6.2, epidemic events Fig. 6.3, and
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no outbreak Fig. 6.4.

(a) T = 0.04, ∇ = 1/20, DR = {24(0.2), 26(0.6), 27(0.2)}, SimID = -951589224

(b) T = 0.1, ∇ = 1/8, DR = {24(0.2), 26(0.6), 27(0.2)}, SimID = -1638067850

(c) T = 0.07, ∇ = 7/80, DR = {24(0.2), 26(0.6), 27(0.2)}, SimID = 2092624704

Fig. 6.2. Outbreaks classified as epidemic
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(a) T = 0.07, ∇ = 7/80, DR = {24(0.2), 26(0.6), 27(0.2)}, SimID = 2092624704

(b) T = 0.04, ∇ = 1/8, DR = {24(0.2), 26(0.6), 27(0.2)}, ι = 0.02, SimID = -1193959466

(c) T = 0.04, ∇ = 1/8, DR = {4(0.2), 6(0.6), 7(0.2), }, SimID = -951589224

Fig. 6.3. Outbreaks classified as endemic
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(a) T = 0.03, ∇ = 1/20, DR = {24(0.2), 26(0.6), 27(0.2), }, SimID = 2134557307

(b) T = 0.025, ∇ = 1/20, DR = {24(0.2), 26(0.6), 27(0.2), }, SimID = 2134557307

(c) T = 0.04, ∇ = 1/20, DR = {24(0.2), 26(0.6), 27(0.2)}, SimID = -1429538713

Fig. 6.4. Outbreaks classified as noOutbreak
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Table 6.2 lists output variables calculated for each simulation in the scenario. Rexp
0

and Rexp
∗ are defined as follows:

(41) Rexp
0 = It=2 − It=1

Rexp
0 represents the average number of secondary infections caused by a initial infec-

tious household in a totally susceptible population.

(42) Rexp
∗ =

∑n
t=1(It+1 − It)

n
; iffIn+1 ≤ It

Rexp
∗ represents the average number of secondary infections per time-step caused by

the infectious population of households of the previous time-step during the exponential

phase of the incident.

Table 6.2. SIR Output Parameters

Acronym Variable Description

DUR Duration (days) Number of timesteps with |I| > 0

TOT I Total I (number) Total number of “I” in the incident

MAX I Maximum I (number) Max. number of “I” per timestep over the entire incident

AVG I Average I (number) Avg. number of “I” per timestep over the entire outbreak

THR I Threshold I (percentage) Min. % of “I” population to be classified epidemic

Rexp
0 Basic reproduction number Equation (41)

Rexp
∗ Reproduction number Equation (42)

6.2. Baseline Analysis

Before executing any simulation, tuning of the simulator is required in order to per-

form a basic mapping of the search space produced by the combination of the simulation
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parameters. For the simulation module, the parameters that determine the type of incident

are transmission rate (T ) and radius (∇). Initially, β represented the average rate of contacts

between individuals. In the proposed model ∇× |HH| is the average number of neighbors

of one household or contact rate, approach similar to [88]. Fig. 6.5 depicts the combination

of contact rate and T for which incidents classified as epidemic occur.

Fig. 6.5. Transmission and contact rate combination and incident classifica-

tion type

In order to maximize the probability of producing an outbreak, the simulator is tuned

for the ranges ∇ = [0.20%− 1.77%] and T = [0.2− 0.6]. This range coincides with infection

attack rates estimated from age-structured population models and the 1957 pandemic [72].

6.2.1. Intervention Strategies

Mitigation strategies can be implemented following different assumptions of how a

specific disease propagates. For instance, ring vaccination was used to eradicate smallpox

[96]. Ring vaccination effectiveness was based on the fact that in close contact rings of the

population the probability of transmission is five times higher than casual contact ring. In
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the case of most infectious diseases, physical proximity is necessary for propagation. Ini-

tial interventions have a different impact on the disease dynamics than later measures. On

a completely susceptible population, a disease may grow exponentially if it survives early

extinction [96]. Intervention strategies are studied in order to estimate their potential to

reduce infectious diseases’ morbidity and mortality. With the use of synthetic populations,

pharmaceutical interventions consisting of antiviral treatment and prophylaxis can be stud-

ied and experimented with. Non-pharmaceutical interventions such as household isolation,

quarantining of household contacts, closure of schools, and social distancing in the workplace

and the community may be explored without any risk for the actual population [78]. School

closures have been an effective method for ILI-like diseases containment [112], [36], and [52].

This research studies school closure optimization based on the cost associated with closing

schools and its epidemic prevention potential (EPP) [78]. The EPP is defined in (43):

(43) EPP = 1− Pr(e)A
Pr(e)B

Pr(e)A represents the probability of an epidemic utilizing strategy A (i.e. centrality-

based selection) and Pr(e)B is the baseline scenario (i.e. random vaccination). One quan-

titative way to compare intervention strategies is to calculate their EPP values compared

to the baseline of complete absence of intervention measures. A different approach is to

evaluate the impact that the intervention strategy has on the dynamics of the disease. To

quantify the effect that a particular mitigation has on the disease dynamics, the total number

of infections and duration of the outbreak are compared.

6.2.2. Optimization Considerations

State Departments of Health and other organizations define policies and control guide-

lines in order to assist school district staff members in their efforts to preserve and protect

the health of both students and employees. Local health officers are encouraged to take

whatever action deemed necessary to control or eliminate the spread of the disease. Those

actions include the following [18]:
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• Close the affected school(s).

• Close other schools in the local health officers jurisdiction.

• Cause the cessation of selected school activities or functions.

• Exclude from school attendance any students, staff, and volunteers who are infected

with or at higher risk to contract the disease

Schools are not isolated entities, but rather form a network and a community in

conjunction with households. If an event that can be considered an emergency occurs,

several paths of actions can be taken with respect to closing schools:

• Close all the schools at the beginning of the event, which represents minimal risk,

but at the same time is the most cost-effective measure.

• Close schools when suspected or confirmed case is found.

• Close schools following some other heuristic approach.

• Close schools by proximity with those with confirmed cases.

To provide a decision support tool, it is imperative to compare different scenarios and

their estimated result in a quantitatively way. Additionally, the optimization methodology

parameters should be measurable and based on real world restrictions such cost.

Optimization of intervention strategies in contact networks may come from two main

scientific fields. SNA methodologies involve defining and applying centrality measures of

contact networks in order to identify high-risk individuals [36], [92], [135] or groups [38], [46],

[140] in the network. The most central nodes or nodes with the highest centrality measure

are discovered through the use of algorithms that can be executed for networks with millions

or tens of millions of nodes. Complete graph theoretical approaches to optimization with

respect to the graph structure have been almost non-existent. Instead, graph theoretical

models are used to mathematically derive the final number of infections, total duration

of an outbreak for different types of graphs [87], [91], clustered networks [113], and the

reproduction number [77], [129].

MCNs represent an interesting hybrid approach because they allow to leverage op-

timization methods found in both fields. Whereas the disease simulation may account for
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all eligible households in a particular region, the MCN representing the risk network can be

considered small; for example, in the order of tens of nodes in the case of Denton County,

only few thousands in the case of New York city. The problem is to try to identify the

minimum number of schools to close in order to stop or at least delay the spread of disease.

In terms of graph theory, this problem can be stated as given a graph G = (V, L), find the

minimum number of vertices C ∈ V such that the disease can not traverse the network. One

possible solution to the problem could be to identify a subset vertices, C ⊆ V , such that

each edge e ∈ L has at least one endpoint in C and remove those from the network. The

set of nodes or vertices such that each edge of the graph is incident to at least one vertex in

the set is known as a Vertex Cover (VC) of the graph. The problem of finding the minimum

vertex cover is a classical optimization problem and its complexity has been shown to be

NP-complete [89]. Approximation algorithms are used to find near-optimal solutions. To

addressed the problem one strategy used in this research work is based on the vertex cover

of the MCN.

6.3. Methodology

The SIRS simulation takes place over a household sample of size N = 5000 taken

from synthetic reconstruction of Denton County.

(a) p = 1 (b) p = 0.5 (c) p = 0

Fig. 6.6. Values of parameter p and neighbourhood assignment

Households are assigned a neighborhood of a predetermined radius and corresponding

schools when eligible. Each household is assigned an initial state of S. The contact network

is formed by houses in the neighborhood (NEI) of each household and households that are
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assigned to the same school (SCH). The value p represents the percentage of neighbors

selected from SCH and 1− p represents of neighbors selected form NEI. Fig. 6.6 exemplifies

the selection process for the neighborhood of a HH, the green circle of radius ∇ represents

the houses in the set NEI, the black rectangle demarcates the SAZ and houses assigned to

the same school SCH. Houses that belong to NEI and SCH have an increased probability of

being selected. The neighborhood relation is considered to be reciprocal.

6.4. Results

6.4.1. Proactive Approach

A proactive approach is defined as the estimation of the optimal locations to intervene

before an event has occurred. Once the initial case is identified at t = 1 set of households is

removed and set to state R. The possible selection scenarios are detailed in Table 6.3.

Table 6.3. SIR Output Parameters

Strategy Description

Complete System All schools are closed and households moved to state R

Betweenness Centrality Only a set of schools are closed, based on their betweenness centrality value

Closeness Centrality Only a set of schools are closed, based on their closeness centrality value

Degree Centrality Only a set of schools are closed, based on their degree centrality value

Set Cover Only the schools belonging to the set cover are closed

Naive Select households randomly and set their state to R

None No household is ever moved to state R

The null strategy or “None” provides a baseline for comparison. The naive approach

as a baseline allows to understand the difference between having a targeted intervention

versus random selection of households for removal. Fig. 6.7 summarizes the overall results
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of all strategies preventing incidents (Fig. 6.7a) and modifying disease dynamics (Fig. 6.7b).

The following results are obtained by analyzing a scenario in which the disease primarily

disperses over the school system and not outside of it. The complete system intervention,

the closure of all schools at the beginning of an incident, achieves 100% of efficacy but this

is the most expensive intervention.

Fig. 6.7b compares the potential of each strategy to reduce duration of the epidemic

and the average number of infectious per day.

Fig. 6.8 shows the strategies based on MCNs compared to different baselines, in Fig. 6.8a

the baseline is the null intervention and in Fig. 6.8b the baseline is the average of random

interventions.

Note that in a network all nodes are assigned a centrality value. For all centrality-

based interventions, the selection of schools varies with the particular realization of the

MCN. Therefore, to make mitigation-efficacy comparable, the same number of schools is

intervened in each scenario. The size of the vertex cover is used to establish the number of

selected nodes considered for each intervention to make possible the comparison between all

strategies.

Fig. 6.9 shows the results of applying the strategy based on a vertex cover of the

MCNs. In addition to modifying the parameter p, the change in the parameter α is also

studied. Fig. 6.10 depicts the results obtained by applying betweenness centrality, and the

application of closeness centrality is shown in Fig. 6.11. Degree centrality is shown in Fig.

6.12.

Weighted betweenness centrality is tuned by the non-negative factor α. For α = 0

the definition of betweenness is the same as the unweighted version. Note that when α > 0,

the sorted classification on nodes is the same as the one obtained when α = 1. Similarly,

weighted closeness centrality is tuned by the non-negative factor α. For α = 0 the definition

of closeness centrality is the same as the unweighted version. As defined by [126], when α > 0

the sorted classification on nodes is the same as the one obtained when α = 1. Finally, in

the case of degree centrality, the selection of nodes varies depending on the value of α. The
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(a) Comparison of strategy type and its effect in the percentage of incidences

(b) Average duration and average number of infectious per day across all strategies

Fig. 6.7. Overall performance of centrality measure-based interventions
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(a) Comparison of strategy type and EPP having as baseline incidents occurring in completely

susceptible communities with no intervention strategies

(b) Comparison of strategy type and EPP having as baseline incidents occurring in communities

for which interventions are done by selecting households randomly

Fig. 6.8. Strategy type vs. EPP comparison for different baselines

value of α changes in steps of 0.25 to evaluate the impact of α in the percentages of incidents.

6.5. Cost and Efficiency Evaluation

At the beginning of this chapter two challenges were proposed: first, to find the op-

timal cost-effective strategy to minimize the possibility of an outbreak when there exists
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Fig. 6.9. Performance of vertex cover for different values of p

an efficacy threshold, and second, provided a level of immunization based on external con-

straints, find the strategy that would be most effective. The cost function related to the

overall cost of the application of one or another intervention strategy is divided into two

components, fixed costs and variable costs. Fixed costs include those incurred when closing

any size of school. Variable costs depend on the size of the intervention. Then the total cost

of strategy i (Yi) can be calculated by (44). Note that by employing the naive approach the

fixed costs equal to zero and variable costs depend solely on the size of the intervention.

(44) Y〉 = InterventionSize+ V C × SingleSchoolCost

Fig. 6.13 exemplifies the evaluation of cost function of intervention strategies based

on centrality measures. It can be observed that the overall cost is directly influenced by the

cost of a single school closure. The cost of closing a single school may vary greatly among
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(a) Performance of betweenness centrality for different values of tuning parameter α

(b) Performance of betweenness centrality for different values of p

Fig. 6.10. Overall performance of betweenness centrality for different values

of p and α compared to the percentage of incidents

geographies. Three main decision zones can be identified:

Z1 Complete intervention. The cost of a complete closure of the school system is not

significantly different from that of a partial closure.
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(a) Performance of closeness centrality for different values of tuning parameter α

(b) Performance of closeness centrality for different values of p

Fig. 6.11. Overall performance of closeness centrality for different values of

p and α compared to the percentage of incidents

Z2 Centrality-based intervention. The cost of a partial closure is significantly different

from a complete closure and less than the naive approach.

Z3 Any strategy. The overall cost difference between centrality-based interventions and

the naive approach is not significant, therefore the selection of a strategy does not
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(a) Performance of degree centrality for different values of tuning parameter α

(b) Performance of degree centrality for different values of p

Fig. 6.12. Overall performance of degree centrality for different values of p

and α compared to the percentage of incidents

influence the overall result.

Fig. 6.14 shows the analysis of cost-constraint strategies. The efficacy can then be

stated as the relationship of the cost compared to the epidemic prevention potential. For

example, when the percentage of interventions is equal to 50%, then the most cost-effective
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(a) Cost evaluation of centrality-based intervention strategies

Fig. 6.13. Generic cost function for the application of interventions based on

centrality measures

strategy is the rightmost point under the shadow rectangle, in this case a strategy based on

SC, the naive approach may also satisfy the constraint but in terms of EPP, VC is more

effective because it achieves a higher prevention potential. The most cost-effective measure

is the complete system strategy.

6.6. Conclusion

This research underscores the importance of MCNS in order to meet the increasing

public health challenges in the U.S. Two optimization problems have been considered: to

find the strategy with minimal costs provided a required efficacy threshold and to find a

strategy that maximizes EPP when an intervention cost restriction exists. The literature
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Fig. 6.14. Comparison of EPP and intervention size

about strategies for controlling the spread of disease widely focuses on how to identify high-

risk individuals or groups. Previous research has identified households and schools as groups

with high potential for the transmission of infectious disease and particularly influenza, as

opposed to individual public activity events [71]. The description of the high-risk individuals

normally includes demographic characteristics, super-spreaders [71], and groups classified

as “high-activity group” [149]. However, by simply counting the number of contacts or

the measure of the length of paths joining a pair of individuals the social aspects of their

network context is not completely described. In order to characterize individuals, a holistic

approach needs to be taken and affiliation networks respond to that challenge by addressing

relations that last in time. Recent research has found that high-school students may play

an important role in the next pandemic, acting like a “local transmission backbone” for

disease [71]. This work has a possible explanation of this phenomenon in terms of the school

system. Centrality measures for high schools make them high-risk points in all evaluation

for centrality and vertex cover. Closing high-schools and keeping students at home during a
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pandemic would reduce the possibility of an outbreak more than any other type of school.

In addition, all centrality-based intervention outperformed the random intervention by at

least 12.20%. The results presented suggest a new implementation of a highly effective

strategy for targeted interventions through the use of MCNs. In addition, as other studies

suggest, degree centrality outperforms betweenness centrality in assessing at-risk individuals

[38]. Predicting the likely success of an strategy is vitally important in public health and

particularly for schools. By modeling the correlations between schools, the risk of each

school can be estimated without the need for large-scale computer simulations. This work

presents a natural methodology for modeling communities of households and schools in a

fixed network. This formulation is applied to the estimation of risk through the structure

of the network to determine optimal intervention strategies. In addition to these results,

MCNs may represent an appropriate tool for decision-makers in rural places. Targeted

interventions of frequently visited locations have been found to be relevant when designing

different mitigation strategies in rural places [140]. Under the most natural mechanism for

identifying high-risk individuals, when the population is divided into categories, the resulting

selection is based on these categories and not individuals in particular. In the case of MCNs,

due to the realism of the model, not only high-risk school types are identified, but also

specific schools may be pin pointed. Finally, previous research has suggested that in order

to effectively combat pandemics in the future, resource-rich countries will be called upon to

share vaccines and antivirals with other countries constrained in resources [42]. This research

provides an alternative that can be used in any geography for which information is available,

optimize schools closures.

6.7. Summary

This research investigates the relation of multiple measures of network centrality to

the risk of infection after a emergence of an infectious disease in the school system. The

methodology presented in this chapter utilizes a reconstruction of the population of Denton

county for the year 2009. MCNs are used as the networks that the diseases use to propagate,

in which schools are linked to each other through the households they have in common. Most
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network-based studies analyze the impact that variations in network degree and clustering

have on the dynamics of disease. In this chapter weighted centrality measures are used as

the main strategic proposition to stop the spread of a disease.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

The time has come, it would seem, to stop, take stock and try to make some

sense of the concept of centrality and the range and limits of its potential for

application

Linton Freeman, 1978

In this chapter, dissertation results are summarized first in Section 7.1. Then di-

rections for further research and reflections on computational epidemiology are outlined in

Section 7.2.

7.1. Dissertation Summary

7.1.1. Synthetic Reconstruction

Is it possible to design a model with a compromise between parsimony and realism that

would intrinsically incorporate various aspects of demographics and the interaction structure

among individuals?

This research started by outlining a synthetic reconstruction methodology extended

to accommodate school attendance zones information. Denton County and Denton ISD

statistics were used as input information for the simulator that generated the synthetic

population reconstruction of the county. The methodology utilized a multi-level control

algorithm to better reflect household and person joint distributions. Allocation of children

in schools was performed next, and was leveraged to define the affiliations between households

and schools. The problem of computational feasibility for ABMs was addressed from a novel

perspective. On one hand this research attempted to preserve the synthetic populations as

close to reality as possible by utilizing census information instead of datasets from online

communities. On the other hand, a theoretic approach that raised from formulating the

problem in terms of a newly defined graph to utilize a more theoretic approach as opposed

to simulation of stochastic contacts.
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7.1.2. Affiliation Networks

Can the concept of affiliation networks be extended by the use of k-partite networks

to accommodate the school system’s hierarchical structure?

The school affiliation network discovery (SAND) algorithm is used to associate chil-

dren and schools. The input for the algorithms is a synthetic reconstruction and the output is

a bipartite graph A that represents the affiliation network of schools and households. In the

methodology, the function A reflects what represents an affiliation for the particular study

area. From graph A the co-affiliation network is formulated by stretching nodes representing

households into links. The resulting k−partite graph only contains schools and it is defined

as multi co-affiliation networks or MCNs.

MCNs represent the initial social network and differ from other biology inspired net-

works in that they are not sparse. MCNs are simple, undirected, weighted, k-partite graphs

that represent the hierarchical structure of the school system. Compared to the initial syn-

thetic reconstruction, dimension of MCNs is drastically reduced. MCNs depict long-term

relationships rather than random encounters that are the basic metric for contact networks.

7.1.3. Optimization of Intervention Strategies

Can a nested hierarchy of successively larger domains be used to quantify the effec-

tiveness of an intervention method to either prevent transmission of an infectious disease or

at least to keep it below a pre-defined limit in the school system?

This research seeks to identify how MCNs could constitute a tool for the design of

intervention strategies. In order to meet the increasing public health challenges in the U.S.,

two optimization problems are considered: finding a strategy with minimal costs provided a

required efficacy threshold and finding a strategy that maximizes EPP provided that a cost

restriction exists for interventions.

Through the comparison of simulated scenarios, the cost-efficacy of different interven-

tion strategies is established. To find the strategy at minimal cost given a efficacy thresholds

depends directly of what constitutes fixed and variable cost of the intervention. In the

case of school closures, the variable costs are directly associated with the size of the school.
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Compared with the null strategy and the naive strategy, all centrality-based intervention

outperformed the random intervention by at least 12.20%. In cases for which the efficacy

threshold is less that 100%, the best strategy is based on closeness-centrality for the school

system.

The second question is answered by comparing the EPP of each strategy and the

percentage of the population accounted for in the intervention, which represents the costs.

Note that at some cost levels, no strategy would accomplish prevention. Although at some

intervention levels, more than one strategy could be applied and the most effective would

be the strategy with rightmost point in Fig. 6.14. Finally, it can be concluded that by

modeling the correlations between schools, the risk of each school can be estimated without

the need for large-scale computer simulations. This work presents a natural methodology

for modeling communities of households and schools in a fixed network.

7.2. Future Work

Intervention strategies focused on school children may have substantial benefits to

society. Seasonality, which characterizes many infectious diseases, presents an opportunity

for strategies specifically designed for school systems because it allows to estimate risks

before an event occurs. To design strategies this research proposes the use of long-term

affiliation networks in lieu of large-scale simulations. The constructions of MCNs is not

restricted to schools, but the model is capable to accommodate other dimensions without

increasing computation complexity. Places such as shopping centers, houses of worship, and

other locations, which are defined by affiliations can be included in order to study different

diseases.

The primary challenge of optimization is supporting what-if scenarios in order to

evaluate and contrast different strategies. There is a compelling argument for the implemen-

tation of large-scale simulations to accomplish this objective. However, new methodologies

formulated from hybrid approaches, such as MCNs, may represent a truly useful new set of

paradigms. This dissertation has aimed to take steps in that direction, but the challenge

extends far beyond the problem of evaluating centrality-based intervention strategies.
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This research has focused on the proactive approach for mitigation strategies. Future

work should include reactive approaches that are closer, in reality, how public health bodies

address the problem of disease mitigation. The constructions of MCNs is not restricted to

schools, but the model is capable to accommodate other dimensions. Different long-term

affiliations could potentially be modeled to study infectious diseases that have a different

contact network such as sexually transmitted diseases. Finally, pharmaceutical interventions

such as prophylaxis and antiviral treatment can be optimized by including in the model the

efficiency of the treatment and probability of contracting the disease through the vaccination

itself.
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APPENDIX A

DENTON ISD SCHOOL ATTENDANCE ZONE MAPS
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A.1. Denton ISD SAZ Maps

(a) Denton ISD High School Attendance Zones

Fig. A.1.1. High School Codes for Denton ISD
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(a) Denton ISD Middle School Attendance Zones

Fig. A.1.2. Middle Schools Codes for Denton ISD
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(a) Denton ISD Elementary School Attendance Zones

Fig. A.1.3. Elementary School Codes for Denton ISD
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Transporttechnik, Strassen- und Eisenbahnbau (IVT), 2010.

[117] Johannes Mller, Optimal vaccination strategiesfor whom?, Mathematical Biosciences

139 (1997), no. 2, 133 – 154.

[118] Tamás Nepusz and Tamás Vicsek, Controlling edge dynamics in complex networks,

Nature Physics 8 (2012), 568—-573.

[119] M. E. J. Newman, Scientific collaboration networks. ii. shortest paths, weighted net-

works, and centrality, Physical Review 64 (2001), 016132.

[120] M E J Newman, D J Watts, S H Strogatz, and Empirical Data, Random graph models

of social networks, Fortune 99 (2002).

[121] M.E.J. Newman, Networks: an introduction, Oxford University Press, 2010.

[122] NCES Common Core of Data, School districts information, February 2012.

[123] The College of William, Mary, and the Minnesota Population Center, School attendance

boundary information system (sabins) version 1.0. minneapolis, mn: University of

minnesota 2011., November 2010.

[124] Iris Gomez-Lopez Olivia Loza and Armin Mikler, Multi-coaffiliation networks and pub-

lic health applications, GSTF Journal of BioSciences 2 (2012), no. 1.

[125] Iris Gomez-Lopez Olivia Loza and Armin R. Mikler, Sand: School affiliation network

125



discovery algorithm for public health advancement, Annual Global Healthcare Confer-

ence Proceedings, GHC 2012, 2012, pp. 99 – 105.

[126] Tore Opsahl, Filip Agneessens, and John Skvoretz, Node centrality in weighted net-

works: Generalizing degree and shortest paths, Social Networks 32 (2010), no. 3, 245–

251.

[127] World Health Organization, Assessing the severity of an influenza pandemic, May

2009.

[128] Inc. Pearson Education, Top 50 cities in the u.s. by population and rank, June 2010.

[129] L. Pellis, N. M. Ferguson, and C. Fraser, Threshold parameters for a model of epidemic

spread among households and workplaces, Journal of The Royal Society Interface 6

(2009), no. 40, 979–987.

[130] S. Phithakkitnukoon, Z. Smoreda, and P. Olivier, Socio-geography of human mobility:

A study using longitudinal mobile phone data, PLoS ONE 7 (2012), no. 6, e39253.

[131] A. R. Pinjari, N. Eluru, R. B. Copperman, I. N. Sener, J. Y. Guo, S. Srinivasan,

and C. R. Bhat, Activity-based travel-demand analysis for metropolitan areas in texas:

Cemdap models, framework, software architecture and application results, Research Re-

port, 40808, Texas Department of Transportation, Department of Civil, Architectural

and Environmental Engineering, University of Texas Austin, Austin, 2006.

[132] Delgado J. Pujol J.M., Bjar J., Clustering algorithm for determining community struc-

ture in large networks., Physical review. E, Statistical, nonlinear, and soft matter

physics 74 (1 Pt 2) (2006), 016107.

[133] Jonathan M Read and Matt J Keeling, Disease evolution on networks: the role of

contact structure., Proceedings. Biological sciences / The Royal Society 270 (2003),

no. 1516, 699–708.

[134] Steven Riley, Large-scale spatial-transmission models of infectious disease., Science

(New York, N.Y.) 316 (2007), no. 5829, 1298–301.

[135] Richard B. Rothenberg, John J. Potterat, Donald E. Woodhouse, William W. Dar-

row, Stephen Q. Muth, and Alden S. Klovdahl, Choosing a centrality measure: Epi-

126



demiologic correlates in the colorado springs study of social networks, Social Net-

works 17 (1995), no. 34, 273 – 297, ¡ce:title¿Social networks and infectious disease:

HIV/AIDS¡/ce:title¿.

[136] Del Valle S., J. Hyman, H. Hethcote, and S. Eubank, Mixing patterns between age

groups in social networks, Social Networks 29 (2007), no. 4, 539–554.

[137] Z Sadique, Elisabeth J Adams, and William J Edmunds, Estimating the costs of school

closure for mitigating an influenza pandemic, BMC Public Health 7 (2008), 1–7.
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