DRAWING BOUNDARIES AND REVEALING LANGUAGE ATTITUDES: MAPPING PERCEPTIONS

OF DIALECTS IN KOREA

Lisa Jeon, B.A.

Thesis Prepared for the Degree of

MASTER OF ARTS

UNIVERSITY OF NORTH TEXAS

May 2013

APPROVED:

Patricia Cukor-Avila, Major Professor
Dennis Preston, Committee Member
Haj Ross, Committee Member
Chetan Tiwari, Committee Member
Brenda Sims, Chair of the Department of
Linguistics and Technical
Communication
Mark Wardell, Dean of the Toulouse Graduate
School

Perceptual dialectology studies have shown that people have strong opinions about the number and placement of dialect regions. There has been relatively little research conducted in this area on Korean, however, with early studies using only short language attitude surveys. To address this gap in research, in the present study, I use the ‘draw-a-map’ task to examine perceptions of language variation in Korea. I ask respondents to draw a line around places in Korea where people speak differently and provide names, examples, and comments about the language spoken in those areas. With the resulting data, I use ArcGIS 10.0 software to quantitatively identify, aggregate, and map the most salient dialect areas and categories for subjects’ perceptions. I also perform a content analysis of the qualitative data provided by respondents using ‘keywords.’ During this process, I categorize comments and labels given by respondents to find emerging themes. Finally, I stratify perceptions of respondents by demographic factors, e.g., age, sex, and urbanicity, that have often been found to be important in language variation and change. An analysis of these data suggests that Koreans’ perceptions of dialect regions are not necessarily limited by administrative boundaries. In fact, the data reveal not only perceptions of dialect variation unassociated with geographic borders, but they also tap into the way people connect ideas about language and place. Results from this study have implications for language attitudes research, perceptual dialectology methodology, and the relationship between language and place in Korea.
Copyright 2013

by

Lisa Jeon
ACKNOWLEDGEMENTS

It is a pleasure to thank the many people who made this thesis possible.

My deep gratitude goes to Dr. Patricia Cukor-Avila, who expertly guided me through my graduate education and who shared the excitement of two years of discovery. Her unwavering enthusiasm for linguistics kept me constantly engaged with research and her advice, support, and friendship helped me make my time at the University of North Texas enjoyable. Besides my advisor, I sincerely thank the other members of my esteemed thesis committee: Dr. Dennis Preston, Dr. John (Haj) Ross, and Dr. Chetan Tiwari, for their encouragement, insightful comments, and hard questions.

My appreciation extends to the following people who helped with data collection in Korea: Dr. Patricia Cukor-Avila, Patricia C. Rector, Dr. Kigap Yi, Dr. Edmundo Luna, Dr. Young-lim Ko, Dr. Young-taek Yoon, Dr. Bae-kyun, Dr. Sang-yong Ohm, Brenda Paik Sunoo, Shine Kang, Sung-yong Go, Hyun-sook Park, Sarah and Eugene Lee, Eunjoo Kim, Ji-myeong Son, Yong-soo Ahn, and Krissi Routledge.

Additionally I owe a tremendous thanks to the Greater Dallas Korean Chamber of Commerce (GDKACC) for providing financial support for my research. I also acknowledge my boyfriend, Evan Oxenhandler, my friends, and my linguistic colleagues who blessed me with a life of joy in the hours when the desk light was off.

Lastly and most importantly, I wish to thank my parents, Lee Soon and Sung Ho Su. They raised, supported, taught, inspired, and loved me. To them I dedicate this thesis.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>ROMANIZATION NOTE</td>
<td>xi</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Statement of Problem</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Purpose of This Study</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Research Questions</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Organization of the Thesis</td>
<td>6</td>
</tr>
<tr>
<td>CHAPTER 2 BACKGROUND</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Historical Background: Korean Language, Culture and Society</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Personal Background</td>
<td>11</td>
</tr>
<tr>
<td>CHAPTER 3 LITERATURE REVIEW</td>
<td>14</td>
</tr>
<tr>
<td>3.1 Research in Dialect and Place: Approaches to Language Data</td>
<td>14</td>
</tr>
<tr>
<td>3.2 Research in Dialect and Place: The Production Approach</td>
<td>15</td>
</tr>
<tr>
<td>3.3 Research in Dialect and Place: The Perception Approach</td>
<td>16</td>
</tr>
<tr>
<td>3.4 Language Attitude Research</td>
<td>20</td>
</tr>
<tr>
<td>3.5 Contemporary Perceptual Dialectology</td>
<td>21</td>
</tr>
<tr>
<td>3.6 Perceptual Dialectology Research on Korean</td>
<td>26</td>
</tr>
<tr>
<td>CHAPTER 4 METHODOLOGY AND DATA</td>
<td>30</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Type of Preference (Based on Ryan et al. 1982, p. 9)</td>
<td>25</td>
</tr>
<tr>
<td>4.1</td>
<td>Total Respondents by Year of Birth</td>
<td>41</td>
</tr>
<tr>
<td>4.2</td>
<td>Total Respondents by Education Level</td>
<td>41</td>
</tr>
<tr>
<td>4.3</td>
<td>Total Respondents by Time Lived in Korea</td>
<td>42</td>
</tr>
<tr>
<td>4.4</td>
<td>Total Respondents by Urbanicity</td>
<td>42</td>
</tr>
<tr>
<td>4.5</td>
<td>Total Respondents by Ability to Speak an L2</td>
<td>42</td>
</tr>
<tr>
<td>4.6</td>
<td>Total Respondents by Place Longest Lived and Self-identified With</td>
<td>43</td>
</tr>
<tr>
<td>4.7</td>
<td>Most Numerous Categories of Labels Associated with Areas</td>
<td>63</td>
</tr>
<tr>
<td>5.1</td>
<td>Most Frequent Place Names Associated with Areas</td>
<td>70</td>
</tr>
<tr>
<td>5.2</td>
<td>Most Frequent Variety Descriptors for Place Names</td>
<td>71</td>
</tr>
<tr>
<td>5.3</td>
<td>Most Numerous Categories of Labels Associated with Areas</td>
<td>82</td>
</tr>
<tr>
<td>5.4</td>
<td>Perceptions of Places by Urbanicity</td>
<td>110</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Korean dialect division maps</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>Three approaches to language data</td>
<td>14</td>
</tr>
<tr>
<td>3.2</td>
<td>Map of similarity of dialects in the North Brabant area using the 'little-arrow' method (based on Weijnen, 1946)</td>
<td>17</td>
</tr>
<tr>
<td>3.3</td>
<td>Map of perceived dialect areas in the Netherlands based on the 'little-arrow' method</td>
<td>18</td>
</tr>
<tr>
<td>3.4</td>
<td>Map showing distinct perceived dialect areas in Itoigawa</td>
<td>19</td>
</tr>
<tr>
<td>3.5</td>
<td>Map of perceived dialect areas in Alpine Japanese</td>
<td>20</td>
</tr>
<tr>
<td>3.6</td>
<td>A hand-drawn map from a Michigan respondent</td>
<td>23</td>
</tr>
<tr>
<td>3.7</td>
<td>Computer-generated map of salient U.S. dialect areas based on southeastern Michigan respondents’ hand-drawn maps</td>
<td>24</td>
</tr>
<tr>
<td>4.1</td>
<td>Outline (left) and province (right) maps used as survey instruments</td>
<td>32</td>
</tr>
<tr>
<td>4.2</td>
<td>Demographic questions used on the survey instruments</td>
<td>33</td>
</tr>
<tr>
<td>4.3</td>
<td>Data collection sites</td>
<td>34</td>
</tr>
<tr>
<td>4.4</td>
<td>Example hand-drawn map from a male born in 1988 in Seoul</td>
<td>35</td>
</tr>
<tr>
<td>4.5</td>
<td>Example hand-drawn map from a female born in 1978 in Daegu</td>
<td>36</td>
</tr>
<tr>
<td>4.6</td>
<td>Example hand-drawn map from a male born in 1989 in Jeju</td>
<td>37</td>
</tr>
<tr>
<td>4.7</td>
<td>Example hand-drawn map from a female born in 1984 in Seoul</td>
<td>38</td>
</tr>
<tr>
<td>4.8</td>
<td>Example hand-drawn map from a female born in 1988 in Jeonju</td>
<td>39</td>
</tr>
<tr>
<td>4.9</td>
<td>Example hand-drawn map collected from a male born in 1983 in Mokpo</td>
<td>40</td>
</tr>
<tr>
<td>4.10</td>
<td>Perceptual regions table containing data from digitized polygons</td>
<td>45</td>
</tr>
<tr>
<td>4.11</td>
<td>Perception table</td>
<td>45</td>
</tr>
<tr>
<td>4.12</td>
<td>Demographics table</td>
<td>46</td>
</tr>
<tr>
<td>4.13</td>
<td>Process of aggregating perception, demographic, and polygon attribute data</td>
<td>46</td>
</tr>
</tbody>
</table>
4.14 Multi-layering of data types in a GIS.. 47
4.15 The GIS solution.. 48
4.16 GIS vector and raster data that can be linked with real world spatial entities 49
4.17 Basic steps of the data analysis process .. 50
4.18 Georeferencing a scanned map to a geographical coordinate system 51
4.19 Base map of Korea aligned with georeferenced scanned map ... 52
4.20 Digitizing polygons drawn by respondents.. 53
4.21 Polygon attribute table... 53
4.22 Digitized polygons from all maps in QGIS ... 54
4.23 Query to calculate a count of overlapping polygons in the aggregate data 55
4.24 Count of overlapping polygons visually represented as areas of agreement 55
4.25 Union analysis of data in GIS.. 56
4.26 Dissolve of data in GIS... 56
4.27 Generalizing the study area into a series of rectangular grids (centroids) 57
4.28 Generalizing the study area to the scale of the grid... 58
4.29 Creating a composite map of perceptual areas classified into equal intervals 59
4.30 Composite map based on areas of agreement for the Seoul dialect area 60
5.1 Perceived dialect of the most salient dialect areas for all respondents 64
5.2 Composite map of the most salient dialect areas for all respondents....................................... 65
5.3 Comparison of established (Yi 1995) and perceptual dialect boundaries................................. 66
5.4 Hand-drawn map indentifying province names for perceived dialect areas 68
5.5 Hand-drawn map indentifying province names for perceived dialect areas 69
5.6 Frequency of areas identified as Gyeongsang... 73
5.7 Frequency of areas identified as Jeolla... 74
5.8 Frequency of areas identified as Jeju ... 75
5.9 Frequency of areas identified as Chungcheong .. 76
5.10 Frequency of areas identified as Seoul/Gyeonggi ... 77
5.11 Frequency of areas identified as Gangwon ... 79
5.12 Frequency of areas identified as North Korea .. 81
5.13 Hand-drawn maps showing non-standard forms (left) or dialect areas (right) 83
5.14 Hand-drawn maps showing standard forms (left) or labeled as standard language (right) 84
5.15 Non-standard (left) vs. standard (right) ... 85
5.16 Positive (left) and negative manner/personality (right) 87
5.17 Areas labeled as positive (left) and negative manner/personality (right) by Seoul respondents ... 88
5.18 Areas labeled as positive (left) and negative manner/personality (right) by Gyeongsang respondents ... 89
5.19 Areas labeled as positive (left) and negative manner/personality (right) by Jeolla respondents ... 90
5.20 Areas labeled as positive (left) and negative manner/personality (right) by Jeju respondents ... 91
5.21 Hand-drawn maps showing indications of intonation and/or tone patterns 92
5.22 Strong intonation/tone (left) and strong accent (right) ... 93
5.23 Slow (left) and fast (right) speed .. 94
5.24 Hand-drawn map showing indications of aegyo speech 96
5.25 Hand-drawn map showing characterizations of masculine speech as tough and blunt and feminine speech as cute and attractive .. 97
5.26 Aegyo (left) and feminine (right) ... 98
5.27 Masculine .. 99
5.28 Unintelligible .. 100
5.29 Frequency of areas identified by older respondents born 1930-1962 102
5.30 Frequency of areas identified by middle-aged respondents born 1963-1982 103
5.31 Frequency of areas identified by younger respondents born 1983-1994 104
5.32 Frequency of areas identified by male respondents .. 105
5.33 Frequency of areas identified by female respondents .. 106
5.34 Frequency of areas identified by urban respondents .. 107
5.35 Frequency of areas identified by suburban respondents .. 108
5.36 Frequency of areas identified by rural respondents ... 109
In this thesis, I romanize all Korean words following the McCune-Reischauer rules and formatting for romanized Korean. The McCune-Reischauer romanization system is widely used by academics for the Korean language used outside of South Korea. I make two exceptions to the use of this system in this thesis. First, all names of authors and historical figures follow the romanization style designated by the individual. Secondly, names of places in South Korea follow the romanization given by the South Korean government to that place. Therefore, all names of places are romanized according to the Revised Romanization of Korean, the official Korean language romanization system used by the South Korean government.
CHAPTER 1

INTRODUCTION

1.1 Statement of Problem

Every time we meet a person, we use our perceptions to make evaluations of and judgments about that person. Our perceptions are influenced by a variety of overt factors that may include a person’s physical appearance, dress, posture, and hygiene. Spoken language is another less obvious but rich source of information. We may use any one or all of these perceptual clues combined together to make conclusions about a person’s background and character, for good or bad. We may or may not arrive at the correct assessments of others based on our perceptions; however, we nonetheless often base actions on these assessments.

Studies about people’s views of language are therefore important because linguistic perceptions are a major factor in how people evaluate and judge others. These studies are called language attitude studies, and through them researchers have gathered a great deal of information about people’s reactions to spoken language and deeper attitudes and ideologies associated with certain language varieties. Language attitude studies fall within a category of linguistic research called ‘folk linguistics’ (cf. Niedzielski & Preston, 2003). Folk knowledge of language warrants much more study because language is, in fact, a major topic of discussion and general concern of the folk. Folk beliefs of language can include ideas about lexical items, grammar, pronunciation, gender and language, dialects, and many other topics. Such beliefs are an important key to examining how speech community members react to spoken language, how changes in progress occur, and the kind of information variants convey (Labov, 1973, p. 283). We can use this knowledge along with other resources to better understand how
language is maintained, changes, and works as a whole (Montgomery & Beal, 2011).

One aspect of spoken language that affects speakers and listeners of all languages is accent. Accents are varieties of a language that have shared characteristics of pronunciation, often associated with a particular group of people. Rosina Lippi-Green (1997) defines accents as “loose bundles of prosodic and segmental features distributed over geographic and/or social space” (p. 42). Regional accents, varieties of a language with shared characteristics of pronunciation spoken in a particular geographic area within a country, are the focus of this study.

1.2 Purpose of This Study

My thesis explores nonlinguists’ evaluations of language variation using a perceptual dialectology approach. Perceptual dialectology is concerned with perceptions of dialects rather than actual production of dialects; it explores where people believe dialect areas to exist, the geographical extent of those areas, and how people react to spoken language (Preston, 1999c).

Perceptual dialectology has a long history in many countries including the Netherlands and Japan (Weijnen, 1946; Rensink, [1955] 1999; Sibata, [1959] 1999; and Mase, [1964] 1999). Since then, many linguists have further contributed to this body of research, notably Preston (1981, 1989, 1999a); Long (1999a, b); Long and Preston (2002); Long and Yim (2002); Inoue (1999); and Niedzielski and Preston (2003). Contemporary perceptual dialectology digs deeper into people’s ‘mental maps of regional speech areas’ (Preston, 1999b) and recognizes language attitudes and beliefs as important in the study of perception and dialect variation.

Previous studies in perceptual dialectology in the U.S. (cf. Preston, 1989) have proven
that people have strong opinions about the number and placement of dialect regions. Studies have corroborated these results at the local level in Boston (Hartley, 2010); California (Fought, 2003; Bucholtz, 2007); Washington (Evans, 2010); and Texas (Cukor-Avila, P., Jeon, L., Rector, P., Tiwari, C. & Shelton, Z., 2012). Studies conducted in other parts of the world have also corroborated these results at the national level, e.g., in Japan (Long, 1999a, b); the Netherlands (Rensink, 1955, 1999); and in the UK (Montgomery, 2007).

The present study focuses on perceptions of language variation in Korea. There has been relatively little perceptual dialectology research conducted in Korea with early studies using only short language attitude surveys. An exception is Long and Yim (2002), which has been the most extensive study to date incorporating the methods of perceptual dialectology and language attitude research. My research is an extension of Long and Yim (2002); however, it differs in its method of investigation in the following key ways:

1. Includes a larger geographical area and has a more diverse respondent pool

 The respondents in Long and Yim (2002) were limited to college-aged residents of Seoul. The respondent pool in the present study includes people from a wider range of ages and demographic backgrounds residing in all six provinces and four established dialect areas of Korea.

2. Uses GIS to arrive at a quantitative analysis of the data

 In Long and Yim (2002), composite maps of perceived dialect regions were created using PDQ (Perceptual Dialect Quantifier) for Windows 95 (Onishi & Long, 1997). This approach was limited both in its ability to examine layers of data and the quality of visual representation of results. In this study, as an improvement of the PDQ approach, I
carry out a quantitative analysis of the map-labeling task using GIS (Geographical Information System) technology. I use ArcGIS 10.0 software (cf. Evans, 2011; Montgomery, 2011) to aggregate the map data and several open-source programs that work with GIS to automate steps in the data analysis process and arrive at more precise results. During this process, the most salient dialect areas and categories for subjects’ perceptions were identified, aggregated, and mapped. The resulting composite maps not only provide better visual representations or ‘mental map’ of respondents’ views of language variation, but also allow for a multi-layered analysis of linguistic, perceptual, demographic, and geographic information.

3. Uses ‘keywords’ to arrive at a qualitative analysis of the data

I perform a content analysis of the qualitative data provided by respondents during the map-labeling task using ‘keywords’ (Garrett, P., Williams, A., & Evans, B., 2005; Evans, 2010). During this process, I categorize comments and labels given by respondents to find emerging themes. I also examine the resulting major themes to determine the beliefs and ideologies associated with perceived dialect areas.

4. Examines how demographics affect respondents’ perceptions of language

Using the demographic information collected during the ‘draw-a-map’ task, I stratify results by respondent demographics to test for correlations. In this analysis, I examine the relationship between three demographic factors that are have often been found to be important in language variation and change: age, sex, and urbanicity (identification as being urban, suburban, or rural).
1.3 Research Questions

In the present study, I address the gaps in the research outlined above and answer the following research questions:

• Research Question 1: Do Koreans perceive differences in the Korean spoken in Korea?

• Research Question 2: If Koreans perceive differences in speech, do they associate these differences with particular geographical areas, and if so, where (geographically) do they believe those areas to exist?

• Research Question 3: If Koreans perceive differences in speech, what do they call the dialect areas?

• Research Question 4: If Koreans perceive differences in speech, what features do they associate differences with?

• Research Question 5: How do demographic factors such as age, sex, and urbanicity affect Koreans’ perceptions of language variation?

An analysis of data in this study suggests that Koreans’ perceptions of dialect regions are not limited by province boundaries as suggested by Long and Yim (2002). In fact, the data reveal not only perceptions of dialect variation not associated with administrative borders, but they also tap into the way people connect ideas about language and place (Johnstone, 2011). Results from this study have implications for language attitude research, perceptual dialectology methodology, and understanding the relationship between language and place in Korea.
1. 4 Organization of the Thesis

In chapter 2, I discuss the historical background and social context for language variation in Korea as well as my personal background and involvement that has led to my interest in this topic.

In chapter 3, I present the theoretical background of this study: the history of research in language and place from early language attitudes to traditional and more contemporary perceptual dialectology studies. I also discuss the lack of research in Korea using a perceptual dialectology framework—with the exception of Long and Yim (2002)—and how my thesis work fills that gap in the research.

In chapter 4, I detail the methodology I used to collect and analyze the data. This includes a discussion of the survey instrument used, where and how fieldwork was conducted, and the how the data were analyzed, using both qualitative and quantitative approaches.

In chapter 5, I present the results of the data analysis with specific reference to the research questions outlined in the introduction. I discuss the perceived dialect areas and their names, and the most frequent categories of labels for those dialect areas (indicating what features are most salient in perception). Additionally, I discuss the results stratified by demographic factors. I use composite maps to visually represent the results of each analysis.

In chapter 6, I discuss my findings and how they correspond to earlier conclusions in the literature. Then, I examine the theoretical implications of the results from this study. I also discuss unexpected findings and what they may mean.

In chapter 7, I suggest future directions for perceptual dialectology research and provide a conclusion for chapters 2-6.
CHAPTER 2

BACKGROUND

2.1. Historical Background: Korean Language, Culture and Society

According to the widely accepted theory of Sapir (1921, 1961), language is a reflection of social behavior and cultural patterns. If this theory is applied to the case of Korea, we can see quite an evolution of the Korean language in relation to its culture and society.

For thousands of years, there has been a unique and dynamic relationship between the language, culture, and society in Korea. A tumultuous history of invasion and contact with people of other countries, notably China, Japan, and the United States, has helped to maintain this dynamism. Korean is widely classified by historical linguists as a language isolate (Song, 2005; Campbell & Mixco, 2007). However, some linguists argue that it is an Altaic language because of its grammatical structure, sound patterns, and basic vocabulary. This classification is problematic for historical linguists because many external influences have had a large impact on culture and society, and thus the language, of Korea.

We can see evidence of external influence in the massive number of borrowings in present-day Korean from other contact languages. These borrowings may have resulted from necessity or from a desire to speak prestigious forms. Borrowings include not only words and expressions, but also other important linguistic features for socio-cultural concepts, patterns, and systems (Sohn, 2006). For instance, according to Sohn (2006), in present-day Korean, approximately 30% of the vocabulary is native, 65% is Sino-Korean (Chinese-character based), and 5% are loanwords. Aspects of outside sociocultural influence on Korean are also apparent in many of its metaphorical expressions, e.g., maxims, proverbs, idioms, and slang (Kim, H.S.,
We can also see the sociocultural nature of Korean in its largely conventional communication patterns, especially in the use of honorifics. In contrast to many Western languages like English that make few power distinctions in speech, a Korean speaker can hardly utter a sentence without social stratification being encoded in the linguistic structure of the language. To correctly use honorifics in Korean, the speaker must have proper knowledge of their social relationship with the addressee and referent in regards to age group, social status, kinship, and in- and out-group status (Sohn, 2006).

Korean, like many other languages, has changed over time, not only because of outside influence from other groups of people, but also because of its internal dynamism and sociocultural shifts. According to C.-Y. Kim (1976), since the demise of the agrarian and aristocratic culture and society of the Three Kingdoms period in Korea (57 AD to 688), “all linguistic patterns, forms, and meanings related to that society have either fallen out of use or undergone semantic change in one way or another” (pp. 57-8). In the 15th century, Sejong the Great commissioned a national writing system for Korean called Hangul, which came into widespread use by the 20th century.

Since then, there has also been a gradual shift in Koreans’ values orientation from a strong traditional and collectivist society toward a more egalitarian and individualistic culture. The catalyst for this change was the end of Japanese colonization and feudal society and the beginning of democracy and openness to the West in Korea in 1945. This has led to greater language variation in Korean on the peninsula, not only between regional dialects but also between North and South Korea (Yeon, 2006).
Language variation has happened despite many language standardization efforts on the part of the Korean government. On January 23, 1991, the president of South Korea created the Seoul-based National Institute of the Korean Language (NIKL; 국립국어원; 國立國語院) to act as a regulatory body to promote and maintain a standard Korean based on the dialect spoken in Seoul. In North Korea, the Language Institute of the Academy of Social Sciences (사회과학원 어학연구소; 社會科學院語學研究所) performs the same function (Yeon, 2006). Since its creation, NIKL, with support from the South Korean government, and the National Language Research Institute (NLRI) have perpetuated the notion that Koreans must speak the standard form spoken in Seoul because it is not only correct, but prestigious (NLRI, 1992). This standard form is based on the speech of educated, middle-class natives of Seoul, located in Gyeonggi province.

Thus, despite the established language change in the last few thousand years within the peninsula, many Koreans still embrace the widespread conceptual myth of “one country, one language.” According to Yeon (2010), to many, “Korean people on the Korean peninsula have been homogeneous and have been using a homogeneous language at least since the Koryo dynasty.”

Contrary to this belief, in actuality, there is a lot of dialectal variation in Korea. Just as the classification of Korean into a language family is complicated, so is its classification into dialect regions. To date, most scholars seem to agree upon the following six major dialect areas that roughly approximate the present-day province boundaries:

1. Central dialects (Gyeonggi and most of Gangwon and Chungcheong provinces)
2. Northwest dialects (mostly P’yŏng’an and parts of Hwanghae province)
3. Northeast dialects (Hamgyŏng province)

4. Southwest dialects (Jeolla province)

5. Southeast dialects (Gyeongsang province)

6. Jeju dialect

Figure 2.1, a Korean dialect map adapted from S.-G. Yi (1995, p. 328) (left) based on P. Kim (1988, p. 209) and Ogura (1940) with province boundaries included (right), illustrates these dialect areas.

![Korean dialect map](image)

Figure 2.1. Korean dialect division maps
Source: S.-G. Yi (1995) (left); P. Kim (1998) and Ogura (1940) (right)

An in-depth discussion of the linguistic differences among Korean dialects is beyond the scope of this thesis; however, the following general characterizations can be made. First, although there is limited geographic phonetic variation in many consonants (though no
phonemic variation), there is complex variation among contrasting vowel phonemes (King, 2006). Originally, there was a phonemic contrast between long and short vowels in the standardized speech of South and North Korea. However, this contrast has begun to disappear among younger Seoul speakers (Nakamura, T., Kim, T.J., & Umeda, H., 1991) and has already disappeared altogether in some dialects like Hamgyông in North Korea and North Jeolla in South Korea.

In terms of contrasting vowel phonemes, the central dialect associated with the standard language has as many as nine vowel phonemes, though middle-aged and younger Seoul speakers tend to have eight, or even only seven (Umeda, 1957). In contrast, the Southeast dialect has as few as six vowel phonemes. There is also variation in pitch accent in several regions like Geyongsang, Hamgyông, South Jeolla, and some areas of Gangwon, but not in Seoul or the surrounding Gyeonggi area (Hayata, 1976; Kim, W.J., 1983; Yi, S.-O., 1983a).

Morphophonemic sound changes also vary between North and South Korea because of orthographic disparities (King, 2006). Finally, there is a lot of lexical and grammatical variation, especially for provinces in the Southern dialect regions like Gyeongsang (Yi, S.-G., 1998), Jeolla (Yi, K., 1998), and the dialect spoken on Jeju island. Jeju dialect is, in fact, the most divergent dialect in Korea, and many people from the mainland claim that it is unintelligible.

2.2 Personal Background

My interest in the perceptual dialectology of Korea stems from two experiences—hearing about language differences in Korea as an adolescent and studying linguistics as a graduate student. I am a second-generation Korean-American with family members and friends
from many different regions of South Korea. This has facilitated a lot of travel all around the South Korean peninsula since my early childhood. Due to my interactions with people from the different regions, I have grown up understanding that there were significant differences in the ways that people around the country spoke.

My father’s side of the family is from the central area of the peninsula. They reside in the Gangwon and Gyeonggi provinces. All, with the exception of one uncle, speak the Seoul dialect—the Korean dialect commonly associated with prestige. My mother’s side of the family, on the other hand, is scattered around the southern end of the peninsula and resides in the Jeolla and Gyeongsang provinces. My cousins from her side of the family use words and pronunciations that my father and I do not, and they always compliment me on having learned the “high-class accent” from my father as opposed to the “old-fashioned country accent” that they and my mother use (although since immigrating to the U.S., my mom has learned to code-switch to the Seoul dialect very effectively).

Thus, I learned from an early age that there was an undeniable link between language, place, and perception. I also quickly realized that I wasn’t the only one who noticed this. It seemed that wherever I traveled in Korea, I not only heard variation in speech, but I also heard people talking animatedly about those differences. People discussed the unusual or distinctive words and accents that they heard, and sometimes they even used these features to guess where the person was from. While discussions like these were normally light-hearted and innocent, some people were more than willing to use their linguistic perceptions to make judgments about who the person was, for good or bad.
Now that I study language variation as a graduate student, I continue to observe the relationship between language and place. I am interested in not only the actual differences in speech (the production approach), but also the everyday perceptions of how people talk (the perception approach). Sometimes these two perspectives give the same information. However, sometimes they differ in very intriguing ways. In this thesis, I present this interaction using the perception approach, although both approaches continue to be equally fascinating to me today as they were in my youth.
3.1 Research in Dialect and Place: Approaches to Language Data

According to Preston (1999b), there are three basic approaches to studying language data (see Figure 3.1).

(a) Production approach: what people say and the states and processes (a’) which govern (a)

(b) Language attitude research: how people react to what is said

(c) Perception approach: what people say about what is said (a) and how (a’) it is said; how they react to it (b); and why they say what they say (b’ and c’—the beliefs, attitudes and strategies which govern b and c)

Figure 3.1. Three approaches to language data. Source: Preston (1999b).
As Figure 3.1 illustrates, each corner of the triangle—the perception approach, language attitude studies, and the production approach can all yield different types of interesting results, but they are interconnected as well. In the next section, I provide a brief history of early studies in dialect and place conducted with each approach.

3.2 Research in Dialect and Place: The Production Approach

Research in dialect and place has almost reached a 150-year history. Traditionally, linguists have been preoccupied with the production approach of analyzing linguistic variation, represented in Figure 3.1 as corner a of the triangle. This approach elicits and examines linguistic features used regularly or historically among members of a speech community. The data are then analyzed to see if language varieties in these communities differ or are generally the same.

3.3 Research in Dialect and Place: The Perception Approach

More recent research, however, focuses on the perception approach, which examines nonlinguists’ views of language variation (represented in Figure 3.1 as corner c of the triangle). Although this is a more recent focus, a long history of research in traditional perceptual dialectology goes back many years. It is believed to have begun in the Netherlands and Japan (Weijnen, 1946; Rensink, [1955] 1999; Sibata, [1959] 1999; Mase, [1964] 1999). Early studies in these countries examined nonlinguists’ views based on similarities and/or differences of their own language varieties compared to the speech of surrounding communities. In these studies, a number of dialect mapping techniques were developed to visually represent the data that resulted.

For example, one of the earliest studies in the Netherlands (Rensink, 1999 [1955]) was based on the following 1939 survey question: “In which place(s) in your area does one speak a definitely different dialect than you do? Can you mention any specific differences?” Results for this question were visually represented for the North Brabant area of the Netherlands using a ‘little-arrow’ method by Weijnen in 1946 (see Figure 3.2). In this method, arrows are used to point from a respondent’s home dialect area to areas they identified as similar to their own. In Figure 3.2., established dialect boundaries (production isoglosses) are drawn in with a dark black line and perceived dialect areas—areas with several groups of little arrows indicating similarity—have been added as gray lines. In this study, Weijnen compared perceived speech communities to actual dialect boundaries and found a lack of agreement.
As shown in Figure 3.3., another early study by Rensink (1999 [1955]) used the same 1939 survey data and 'little arrow' method to create a national map of perceived Dutch dialect areas. According to Daan (1999 [1970]), early Dutch studies like these were motivated by desires to add further weight to results found for production data.
Figure 3.3. Map of perceived dialect areas in the Netherlands based on the ‘little-arrow’ method.

The focus of Dutch studies on perceived similarity of dialect areas marked a contrast in approaches to early Japanese studies that followed in the 1950s and 1960s, which instead focused on degree of differences. Sibata’s (1999 [1971]) survey of the Itoigawa region in western Japan, for instance, included questions partially inspired from the early body of work done in the Netherlands and also from earlier work done in Japan by Misao Tôjô. In Sabata’s study, he asked respondents to indicate the degree to which nearby speech communities were different from their home region on a 4-point continuum (not different; a little different; quite different; or very unintelligible). Based on this degree-of-difference approach, areas of perceived difference were grouped together to create the map in Figure 3.4, a visual
representation of two distinct perceived dialect areas found in the Itoigawa region. In addition, Sibata compared perceived speech communities to actual dialect boundaries and also found lack of agreement.

Figure 3.4. Map showing distinct perceived dialect areas in Itoigawa. Source: Sibata ([1971] 1999).

Mase (1999 [1964]) further contributed to the body of work in Japan with his study of Alpine Japanese. He asked respondents to identify dialect areas that sounded either the same or different (see Figure 3.5). Nomoto (1953) also contributed to this research in a study that found that perceived and actual Japanese dialect boundaries did correlate to school boundaries.
The two different approaches used by the Dutch and Japanese—the ‘little-arrow’ and the ‘degree-of-difference’ method—sparked a controversy in the 1950s and 1960s over why and how to study perceptual boundaries. According to Grootaers (1999 [1964]), for purposes beyond general dialect mapping, we should focus not on matching production data with perception data, but on using production data as a complement to the perceptual data in order to better understand language as a whole. This emphasis on the value of nonlinguists’ beliefs and attitudes about perceived language variation is often absent from traditional approaches to perceptual dialectology.

3.4 Language Attitude Research

The next wave of studies that paved the way for contemporary perceptual studies focused on language attitude research, represented in Figure 3.1 as corner b of the triangle.
Language attitude research investigates people’s attitudes about:

- Language in general, including motivations about the learning of first and second languages
- The status of a language or its speakers
- The use of non-standard language varieties in certain new or non-traditional domains
- A language shift, within a particular community, or in general
- Loyalty to one’s own language variety
- Minority groups and their own non-standard dialect or language

The first of these studies were social psychology studies. In Tucker and Lambert (1969), findings showed that people view speech as an indicator of group membership by examining attitudes towards different varieties of the same language. A subsequent study by Ryan and Giles (1982) corroborated these findings by showing that people found regional varieties inferior to standard varieties. Language and discrimination studies followed, notably Rosenthal (1974); Day (1980, 1982); and Giles, H., Harrison, C., Creber, Smith, P., and Freeman, N. (1983), which found that children could recognize negative associations for home and regional language varieties at early ages. Rubin and Smith (1990) also investigated student perceptions of teaching assistants and found that they also made evaluative judgments about non-standard or accented speech.

3.5 Contemporary Perceptual Dialectology

Preston (1989) pioneered the movement to study contemporary perceptual
dialectology, which incorporates methods of language attitude studies and folk linguistics. Perceptual dialectology investigates what non-linguists believe about the number and placement of language varieties in their own and surrounding speech communities. It also examines the attitudes and beliefs surrounding perceptions and how people react to spoken language. This type of research falls under the umbrella of folk linguistics, a branch of sociolinguistics concerned with what non-linguists, or ‘the folk’, believe about language in general.

Contemporary perceptual dialectology takes a step beyond traditional methods to dig deeper into people’s “mental maps of regional speech areas” (Preston, 1999a). These more recent studies recognize language attitudes as important in the study of perception and dialect variation (Clopper & Pisoni, 2006).

For instance, Preston (1999a) used a language attitude approach to the perception of regional varieties in the U.S. In this study, he used a ‘draw-a-map’ task (Preston & Howe, 1987), asking respondents to draw boundaries on a minimally detailed U.S. map around areas where they believed regional speech zones to exist. Figure 3.6 shows an example hand-drawn map from one of the 85 young European American Michigan respondents in that study.
First, Preston examined labels assigned to various regions provided by respondents on individual maps to determine language attitudes associated with those areas. The results seemed to correlate with social status and group solidarity, corroborating findings in Ryan, E.B., Giles, H., and Sebastian, R. J. (1982). Preston also drew generalizations from the hand-drawn maps by aggregating maps, using a digitizing pad to create computer-generated perceptual isoglosses (see Figure 3.7).
Figure 3.7. Computer-generated map of salient U.S. dialect areas based on southeastern Michigan respondents’ hand-drawn maps.

Source: Preston (1999a).

Preston’s study found that an examination of the two most salient perceptual areas, the high-prestige local area of the North and the stigmatized area of the South, yielded the most interesting results. For instance, he found that for pleasantness, ratings were the highest for the local area (North) and lowest for the stigmatized area (South), although the South still received some positive labels such as friendly, casual, and down-to-earth. He postulated (1999a, p. 371) that this could indicate a shift of Michigan speakers along the Ryan et al. (1982, p. 9) paradigm for evaluative possibilities for majority (Language Variety 1) and minority (Language Variety 2) speakers from Type B to D (see Table 3.1).
<table>
<thead>
<tr>
<th>Type of Preference (Based on Ryan et al. 1982, p. 9)</th>
<th>Judges</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LV1 Speakers</td>
</tr>
<tr>
<td>A. Majority group</td>
<td>Status</td>
</tr>
<tr>
<td></td>
<td>LV1</td>
</tr>
<tr>
<td>B. Majority group for status/in-group for solidarity</td>
<td>LV1</td>
</tr>
<tr>
<td>C. In-group</td>
<td>LV1</td>
</tr>
<tr>
<td>D. Majority group for status/Minority group for solidarity</td>
<td>LV1</td>
</tr>
</tbody>
</table>

Source: Preston (1999a).

Subsequent studies since then have refined Preston’s methodologies to suit other goals. These include folk commentary (Niedzielski & Preston, 2003); folk views on dialect regions (Hartley, 1999; Lance, 1999); and non-linguist attitudes to standard and non-standard dialects (Lippi-Green, 2012).

Recent work in perceptual dialectology has also explored people’s perceptions of speech at the local and national level. Studies conducted at the local level in cities and states include Oregon (Hartley, 1999); California (Fought, 2003; Bucholtz, 2007); Washington (Evans, 2011); and Texas (Cukor-Avila et al. 2012). Research on dialect and place using the Prestonian methodology has also expanded to regions outside of the U.S. Studies at the national level in entire countries include France (Kleiner, 1999); Germany (Daily O’Cain, 1999); and the UK (Inoue, 1999; Montgomery, 2011). Perceptual dialect studies have also been conducted on languages other than English: Japanese (Long, 1999); Turkish (Demirci & Kleiner, 1999); Hungarian (Kontra, 2002); and Korean (Long & Yim 2002). The present study adapts the methodology of the study done in Korea by Long and Yim (2002), which is discussed in greater detail in the last section of this chapter.
Recent perceptual dialectology studies also take advantage of GIS (Geographical Information Systems) technology, using ArcGIS 10.0 software to allow for improved aggregation and display of perceptual data than was possible in the past. In earlier perceptual dialectology studies, e.g., Onishi and Long (1997) and Long and Yim (2002), composite maps of perceived dialect regions were created using PDQ (Perceptual Dialect Qualifier) for Windows 95. This approach proved limited, both in the ability to examine layers of data and in the quality of visual representation. Analysis with GIS makes it possible to examine different layers and types of data without sacrificing the quality of the visual representation of the results. Studies in Washington (Evans, 2011); in Kentucky (Cramer, 2010); in Texas (Cukor-Avila et al. 2012); and in the UK (Montgomery, 2011) have used this method. The present study also uses recent GIS methods in order to aggregate and analyze results of the perceptual data.

3.6 Perceptual Dialectology Research on Korean

To date, the most extensive study conducted in Korea using a perceptual dialectology and language attitudes framework is Long and Yim (2002) with prior studies consisting largely of language attitude surveys. In Long and Yim (2002), the primary focus of the study was perceptions of the pleasantness of speech. The methodology used was based on previous studies in Japan (Long, 1999a, b), employing a ‘draw-a-map’ task, a ‘correctness and pleasantness task’ (where informants rank regions for correct and pleasant speech), and a language attitude study. In total, 471 Korean university students in Seoul participated in the study, but only 372 respondents completed the ‘correctness and pleasantness task,’ the main focus of the data analysis.
Long and Yim (2002) found that an overwhelming majority of the names provided by respondents for perceived dialect areas correlated with administrative province boundaries (286 for Gangwon; 287 for Chuncheong; 297 for Jeolla; 297 for Gyeongsang). They admitted, however, that this could have been an effect of the province boundaries provided in the survey instrument. A noteworthy exception was the identification of Seoul as a place name for a large number (254) of respondents.

In sum, six trends were found in Long and Yim (2002): (1) single-province dialect regions; (2) the overwhelmingly strong role of the North-South political border; (3) the absence of a geographical location for “standard”; (4) Seoul speech as “most pleasant”; (5) each home region’s speech as “pleasant”; and (6) Gyeongsang informants’ dialect inferiority complex.

As an extension of Long and Yim (2002), I conducted a pilot study in Spring 2011 largely based on the same methodology (cf. Jeon, 2011). I surveyed 50 Korean-American respondents from different regions in South Korea living in the Dallas-Forth Worth metroplex about their views of language variation in Korea. The respondent pool included 28 respondents from Seoul/Gyeonggi; 8 from Gyeongsang; 12 from Jeolla; and 2 from Jeju. Participants ranged from 21- to 63-years of age and were current residents of the U.S. who had moved here from South Korea when they were college-aged or older. Although informants were from a variety of professional backgrounds, the majority was either currently attending or had completed college and could be classified as middle-class or upper middle-class. There were 25 females and 25 males who participated in the study.

The methodology of this pilot study was largely based on Long & Yim (2002) and Long (1999a, b). It used a ‘draw-a-map task’, a ‘correctness and pleasantness task’, and a language
attitude survey. Respondents were given a blank map of the Korean peninsula (including areas in both the southern Republic of Korea and in the northern Democratic People’s Republic of Korea) and asked to draw a line around areas where they thought speech was different. Unlike Long & Yim (2002) and Long (1999a, b), however, the do (province) boundaries were not included in the survey instrument. This was done to counter the tendency in Long and Yim (2002) for the vast majority of respondents to follow provincial boundaries when drawing their perceived regions. One of the aims of the pilot study was to test the effect that geospatial information provided on the survey instrument might have on cultural beliefs.

Results for both tasks were fairly consistent with the previous study done by Long and Yim (2002). The speech region labeled Standard was overwhelmingly deemed as “most correct” by the majority of informants. The speech region labeled Seoul was also overwhelmingly deemed as “most pleasant” by most informants. Interestingly, however, most informants’ home dialect speech regions were also deemed “pleasant.” This demonstrated a degree of linguistic pride in the informants’ home dialects that has also been shown to hold in previous studies (Preston, 1989). One exception to this was the informants from the Gyeongsang region. As an indicator of possible linguistic insecurity, 58% of informants from the Gyeongsang region labeled the Seoul dialect as “most pleasant” whereas only 33% considered their home dialect as “most pleasant.”

Results from the language attitude survey were similar to Long and Yim (2002), suggesting that most informants want to speak “standard” Korean regardless of their home dialect variety. The language attitude surveys also revealed further evidence of linguistic insecurity by the informants from the Gyeongsang region. The majority of informants from this
region rated their home dialect fairly negatively across the board in terms of intelligibility, pride, and likeability. It was also notable that both respondents from the Jeju region felt that their dialect was not mutually intelligible to other Koreans. This corroborates the common stereotype about the speech of Jeju Island and could also be indicative of linguistic insecurity.

Unlike previous studies using the Prestonian ‘draw-a-map’ methodology conducted in the U.S., Japan, and Korea, the pilot study data suggested variation in the perceived dialect boundaries drawn by informants. Their perceived boundaries did not correlate with established dialect boundaries nor did they correlate with provincial boundaries; rather they seemed to indicate a greater salience of major urban areas and an “either/or” perceptual categorization between “standard/Seoul” and “non-standard/other.” This difference could be attributed to the omission of do province boundaries originally included in the Long and Yim (2002) study – informants may have drawn more from their own thoughts and beliefs to identify boundaries, rather than from given geographical and spatial components.

The present study extends the research done by Long and Yim (2002) and my pilot study (Jeon, 2011) in several key ways. It still incorporates the methods of language attitude studies and perceptual dialectology but it differs from both studies in (1) including a larger geographical area and more diverse respondent pool; (2) performing a quantitative analysis of the data using GIS; (3) performing a qualitative analysis of the data using ‘keywords’; and (4) examining how demographic factors affect respondents’ perceptions of language.
CHAPTER 4

METHODS AND DATA

4.1 Approach

There are many ways to study perceptual dialectology in a particular place. Preston’s five approaches for perceptual dialectology research as outlined in the *Handbook of Perceptual Dialectology* are listed below (1999b).

1. Draw-a-map: Language respondents draw boundaries on a blank (or minimally detailed) map around areas where they believe regional speech zones exist.

2. Degree of difference: Language respondents rank regions on a scale of one to four (1 = same to 4 = unintelligibly different)

3. Correct and pleasant: Language respondents rank regions for correct and pleasant speech.

4. Dialect identification: Language respondents listen to voices on a ‘dialect continuum’, voices are presented in random order, and informants assign voices to an area.

5. Qualitative data: Language respondents are questioned about the tasks they have completed and engage in open-ended conversations about language.

The present study uses the first approach, the ‘draw-a-map’ task. I asked respondents to draw a line around places on a map of Korea where they believe people speak differently. I then asked them to provide names for the speech zones they indicated. During and following the first task, I also collected qualitative data from conversations with respondents about the answers they provided and any other comments they had about language and dialects in Korea.
4.2 Survey Instruments

‘Draw-a-map’ tasks ask language respondents to draw perceived boundaries for dialect regions on blank or minimally detailed maps of the area of study. In previous perceptual dialectology research, respondents have been given blank maps and have been offered separate detailed maps of the area of study if they wish to reference them. Researchers have also used minimally detailed maps for ‘draw-a-map’ tasks that include reference information for the respondent on the survey instrument itself. Reference information can be geographical features, major cities and highways, cultural and historical markers, bordering areas, or a combination of all of these.

The survey instrument in Evans’s (2011) perceptual dialectology study of Washington, for example, includes major cities and highways. Whether or not this was as a result of the presence of major cities on the survey instrument, many respondents from the study made an urban versus rural distinction. On the other hand, Evans later added the Cascade mountain range—a very salient geographical landmark for those living in the region. Although it wasn’t included in the original survey instrument, results from Evans’s study also support the idea of a perceived cultural divide that separates eastern and western Washington along the Cascade Mountains.

In the case of Long and Yim (2002), the survey instrument used was a map of the Korean peninsula with province boundaries included as reference information. Results of their study seemed to correlate roughly with provincial boundaries, indicating that these boundaries were very salient for people living in South Korea.

To test the effect of geospatial reference information provided on survey instruments, I
used two different map types in this study to examine how information included in the map might affect respondents’ answers. Except for Lamelli, A., Purschke, C., and Kehrein, R. (2008) and Jeon (2011), map type differences have not been quantitatively analyzed in perceptual dialectology research. As shown in Figure 4.1, I used one map that was a blank (outline) map of the Korean peninsula, and another that was the same map with province boundaries included.

Figure 4.1. Outline (left) and province (right) maps used as survey instruments

After completing the ‘Draw-a-map’ task, I asked respondents to answer nine demographic questions (see Figure 4.2) on the backs of maps that included the following:

- Year born
- Sex
- Ethnicity
• Educational background
• Ability to speak a language other than their first
• Time lived in Korea
• Place lived in the longest
• Self-identification with a place
• Self-identification as urban, rural, or suburban

Figure 4.2. Demographic questions used on the survey instruments

4.3 Data Collection

In order to tap into the dialect perceptions of Koreans of various ages and backgrounds,
hand-drawn maps were collected in major urban areas and their surrounding rural communities in May and June of 2012.

As shown in Figure 4.3, data collection sites included 11 cities (Seoul, Cheonan, Daejeon, Jeonju, Mokpo, Yeosu, Boseong, Busan, Daegju, Yangyang, and Jeju), which are located in six province regions (Gyeonggi, Chungcheong, Jeolla, Gyeongsang, Gangwon, and Jeju provinces) and four established dialect regions (Central, Southeast, Southwest, and Jeju). Fieldwork locations were diverse; they included university campuses, bars and restaurants, coffee shops, malls, hotels, on the street, taxis, buses and bus terminals, trains and train stations, airplanes and airports, and even the World Expo.

Figure 4.3. Data collection sites
Figures 4.4-4.7 that follow are some examples of hand-drawn maps that were collected from respondents from different demographic backgrounds and regions of Korea. The blue star in these figures indicates the place the map was collected.

Figure 4.4. Example hand-drawn map from a male born in 1988 in Seoul
Female; b. 1978; Daegu

- Urban, feminine speech; soft; standard, refined language
- Country, slow speech style; light intonation
- Friendly/affectionate feeling; entertaining; feminine feeling
- Often can’t understand; words you’ll hear for the first time
- Don’t really know

Figure 4.5. Example hand-drawn map from a female born in 1978 in Daegu
Male; b. 1989; Jeju

Joseon language (top); ancient, army language (right); Pyeongyang + mix (center); lexical examples

standard language but presently getting mixed with basic + special words; cold
slow; laid-back

has not graduated from college
cute; blunt

heterogeneous; mixed; lots of emotion
honjaebseoye; friendly

Figure 4.6. Example hand-drawn map from a male born in 1989 in Jeju
Female; b. 1984; Seoul

Figure 4.7. Example hand-drawn map from a female born in 1984 in Seoul

Figures 4.8 and 4.9 illustrate the variation in the amount of information provided on maps by respondents. Some respondents included very little information and identified fewer places where people speak differently as in Figure 4.8. Others included a lot of detailed information and indicated a greater number of places where people speak differently as in Figure 4.9.
Figure 4.8. Example hand-drawn map from a female born in 1988 in Jeonju
4.4 Participants

In total, 488 maps were collected. However, 52 had ambiguous information or were not drawn on and had to be discarded. This left a total of 436 maps, from the 197 male (45%) and 239 female (55%) respondents that were included in the final analysis.

As Table 4.1 and 4.2 show, the majority of respondents were between 18-28 years old.
(68.1%) and well educated (78.3% reported some college or higher)\(^1\).

Table 4.1

Total Respondents by Year of Birth

<table>
<thead>
<tr>
<th>Year of Birth</th>
<th># of Respondents</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1930-1962</td>
<td>47</td>
<td>10.8%</td>
</tr>
<tr>
<td>1963-1982</td>
<td>92</td>
<td>21.1%</td>
</tr>
<tr>
<td>1983-1994</td>
<td>186</td>
<td>68.1%</td>
</tr>
<tr>
<td>Total</td>
<td>436</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.2.

Total Respondents by Education Level

<table>
<thead>
<tr>
<th>Education Level</th>
<th># of Respondents</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some high school</td>
<td>15</td>
<td>3.4%</td>
</tr>
<tr>
<td>Completed high school</td>
<td>35</td>
<td>8.0%</td>
</tr>
<tr>
<td>Some college</td>
<td>246</td>
<td>56.4%</td>
</tr>
<tr>
<td>Bachelor’s degree</td>
<td>96</td>
<td>22.0%</td>
</tr>
<tr>
<td>Graduate degree</td>
<td>43</td>
<td>9.9%</td>
</tr>
<tr>
<td>Unknown</td>
<td>1</td>
<td>0.2%</td>
</tr>
<tr>
<td>Total</td>
<td>436</td>
<td></td>
</tr>
</tbody>
</table>

As shown in Tables 4.3, 4.4, and 4.5, most respondents were born in Korea and had lived there all their lives (83.7%); most self-reported as urban (63.3%)\(^2\); and could speak a second language (86.2%).

\(^1\) This is representative of the Korean population. According to annual reports by the Organization for Economic Cooperation and Development (OECD) since 2005, South Korean people are among the most likely among industrialized countries to be literate (97.9%) and have university degrees.

\(^2\) This is also representative of the Korean population. According to the World Bank, most of the population of South Korea has been concentrated in urban areas since the country underwent industrialization in the 1960s. In 2002, over 77% of the population was concentrated in major urban areas and the country continues to see a growing number of people migrating from rural to urban areas.
Table 4.3

Total Respondents by Time Lived in Korea

<table>
<thead>
<tr>
<th>Time in Korea</th>
<th># of Respondents</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Born in Korea</td>
<td>365</td>
<td>83.7%</td>
</tr>
<tr>
<td><5 years</td>
<td>14</td>
<td>3.2%</td>
</tr>
<tr>
<td>5-10 years</td>
<td>5</td>
<td>1.1%</td>
</tr>
<tr>
<td>10-15 years</td>
<td>1</td>
<td>0.2%</td>
</tr>
<tr>
<td>>15 years</td>
<td>51</td>
<td>11.7%</td>
</tr>
<tr>
<td>Total</td>
<td>436</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.4

Total Respondents by Urbanicity

<table>
<thead>
<tr>
<th>Urbanicity</th>
<th># of Respondents</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>289</td>
<td>63.3%</td>
</tr>
<tr>
<td>Rural</td>
<td>99</td>
<td>23.7%</td>
</tr>
<tr>
<td>Suburban</td>
<td>26</td>
<td>6.0%</td>
</tr>
<tr>
<td>Other</td>
<td>2</td>
<td>5.0%</td>
</tr>
<tr>
<td>Total</td>
<td>436</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.5

Total Respondents by Ability to Speak an L2

<table>
<thead>
<tr>
<th>L2?</th>
<th># of Respondents</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>380</td>
<td>86.2%</td>
</tr>
<tr>
<td>No</td>
<td>54</td>
<td>12.4%</td>
</tr>
<tr>
<td>Unknown</td>
<td>2</td>
<td>0.5%</td>
</tr>
<tr>
<td>Total</td>
<td>436</td>
<td></td>
</tr>
</tbody>
</table>

Additionally, as shown in Table 4.6, most respondents had lived the longest in Gyeonggi-do, S. Jeolla-do, and Jeju-do (68.4%) and most also self-identified with these places (58.2%).

3 These results reflect that more data was collected in Gyeonggi, Jeolla, and Jeju provinces compared to other places in Korea.
Table 4.6

Total Respondents by Place Longest Lived and Self-Identified With

<table>
<thead>
<tr>
<th>Place</th>
<th># Longest Lived</th>
<th># Self-ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyeonggi</td>
<td>120 (27.5%)</td>
<td>96 (21.8%)</td>
</tr>
<tr>
<td>Gangwon</td>
<td>8 (1.8%)</td>
<td>8 (1.8%)</td>
</tr>
<tr>
<td>Chungcheong</td>
<td>2 (10.5%)</td>
<td>4 (0.9%)</td>
</tr>
<tr>
<td>N. Chungcheong</td>
<td>20 (4.6%)</td>
<td>17 (3.9%)</td>
</tr>
<tr>
<td>S. Chungcheong</td>
<td>21 (4.8%)</td>
<td>18 (4.1%)</td>
</tr>
<tr>
<td>Jeolla</td>
<td>8 (1.8%)</td>
<td>16 (3.6%)</td>
</tr>
<tr>
<td>N. Jeolla</td>
<td>7 (1.6%)</td>
<td>14 (3.2%)</td>
</tr>
<tr>
<td>S. Jeolla</td>
<td>99 (22.7%)</td>
<td>88 (20.0%)</td>
</tr>
<tr>
<td>Gyeongsang</td>
<td>3 (0.7%)</td>
<td>9 (2.0%)</td>
</tr>
<tr>
<td>N. Gyeongsang</td>
<td>27 (6.2%)</td>
<td>19 (4.3%)</td>
</tr>
<tr>
<td>S. Gyeongsang</td>
<td>40 (9.2%)</td>
<td>40 (9.1%)</td>
</tr>
<tr>
<td>Jeju</td>
<td>80 (18.3%)</td>
<td>72 (16.4%)</td>
</tr>
<tr>
<td>North Korea</td>
<td>0 (0.0%)</td>
<td>2 (0.5%)</td>
</tr>
<tr>
<td>Korea</td>
<td>0 (0.0%)</td>
<td>21 (4.8%)</td>
</tr>
<tr>
<td>Outside Korea</td>
<td>0 (0.0%)</td>
<td>8 (1.8%)</td>
</tr>
<tr>
<td>Other</td>
<td>1 (0.2%)</td>
<td>4 (0.9%)</td>
</tr>
<tr>
<td>Total</td>
<td>436</td>
<td>436</td>
</tr>
</tbody>
</table>

4.5 Categorization of Data

A major aim of the field of perceptual dialectology is to find general trends and patterns from ‘draw-a-map’ tasks (c.f. Preston & Howe, 1987). However, the ‘draw-a-map’ task presented challenges to this aim because respondents drew lines on paper maps with free choice about where they placed lines and how many areas were drawn. While this free choice allowed for respondents to provide a wealth of interesting information not only about where dialect boundaries exist in Korea, but also their geographical extent—in addition to many ethnographic comments about their beliefs of speakers with certain language varieties, which did not easily lend itself to data aggregation.
Thus, the hand-drawn maps collected in this study yielded many ‘layers’ or categories of data – including geographical data, including extent, placement, and names of dialect areas; attitudinal data, including freely given and qualitative comments; and examples of perceived features, both written and spoken. Therefore, digitizing the lines and aggregating the data was a necessary first step before the data could be analyzed.

Geographical Information Systems (GIS) provide computational tools for digitizing and compiling large amounts of data collected using such survey instruments. Spatial analysis methods can be applied to such geospatial data to provide additional insights into patterns and processes. Using a GIS, data can be aggregated, analyzed, and displayed according to different layers of data collected from respondent maps (cf. Evans, 2011; Montgomery, 2012). Following this approach, in this study I use a variety of GIS software packages, including spatial databases, Quantum GIS (QGIS), and ArcGIS 10.0 to analyze the different types of data provided by respondents in the 436 hand-drawn maps. The data were first separated into three categories: digitized polygons (representing perceptual regions) from hand-drawn maps, perceptual data, and demographic data. The perceptual and demographic data were compiled into Excel spreadsheets and later joined with the polygon regions using GIS.

Data from digitized polygons were first coded into a perceptual regions table in QGIS. Each polygon, hand-drawn map, and map type were given a unique identifier, e.g., polyid = 2, mapid = 1003, and mapseries = b (see Figure 4.10).
The perceptual data were entered into an Excel spreadsheet based on the labels and comments provided on respondents’ hand-drawn maps (see Figure 4.11).

![Figure 4.11. Perception table.](image)

The demographic data were entered into an Excel spreadsheet based on respondents’ answers to demographic questions on the back of each map (see Figure 4.12).
Perceptual data were joined to the polygon regions using an attribute join function in GIS. Note that the perceptual table contains data for every perceptual region, thus resulting in a 1:1 join with the digitized polygon table. Demographic data were collected for each map, resulting in a N:1 (many-to-one) join. Any queries done on demographic data were done at the “map-level” rather than the “polygon-level.” A Spatial Structured Query Language (SQL) was used for analyzing data at different spatial scales.

Figure 4.13 illustrates the process of joining the data. The resulting aggregated data were stored in a spatial database server running PostgreSQL and PostGIS.

Figure 4.13. Process of aggregating perception, demographic, and polygon attribute data.
4.6 Quantitative Data Analysis with GIS

I used ArcGIS 10.0 software to perform a quantitative analysis of the merged perception, demographic, and perceptual region data. A GIS is defined as a system that integrates the three basic elements of hardware, software, and data “for capturing, managing, analyzing, and displaying all forms of geographically referenced information” (ESRI, 2011b). An important function of a GIS for perceptual dialectology studies is ‘georeferencing,’ or linking different layers of data to the earth’s surface. This allows a GIS to “combine semantic and geometrical information” (Gomarasca, 2009, p. 481).

Using a GIS is beneficial for this type of multi-layered data analysis because it allows areas identified on respondent maps to be quantitatively aggregated and queried, permitting detailed analysis of the spatial information captured by the hand-drawn map data. Figure 4.14 shows how multiple layers of data can be aggregated and analyzed in a GIS. Figure 4.15 shows how using a GIS is a good solution for analyzing perceptual dialectology data.

![Multi-layering of data types in a GIS](image)

Figure 4.14. Multi-layering of data types in a GIS.

Source: ESRI (2011b).
A GIS can work with two different types of data: vector data and raster data. Generally, vector data provides a better spatial resolution, while raster data provides faster data processing. In this study, polygons representing regions drawn on respondents’ hand-drawn maps were captured in the vector format. All analysis of the data was done in vector format to maintain the spatial accuracy of the perceptual regions. For purposes of visual representation, the final analysis layers were later converted into a raster format.

Vector data store geospatial data using three basic geography data types: points, lines, and polygons, which can then be associated with objects in the real world. This approach of representing spatial data within a computer system is also known as the “Object View.” On the other hand, according to Montgomery and Stoeckle (Forthcoming, 2013), “raster data can be imagined by a grid, or as consisting of cells. Each of these cells has a certain value which is ‘mirrored by an equivalent row of numbers in the file structure’ (Heywood et al. 2006, p. 79).”
The raster representation is also known as the “Field View.” See Figure 4.16 for an illustration of the different data types that can be used with GIS.

![Image of raster representation]

Figure 4.16. GIS vector and raster data that can be linked with real world spatial entities. *Source:* Heywood, I., Cornelius, S., & Carver, S. (2006).

The data collection and storage strategy enabled a quantitative analysis of the data to answer the following question:

- **Research Question 2:** If Koreans perceive differences in speech, do they associate these differences with particular geographical areas, and if so, where (geographically) do they believe those areas to exist?

To make steps in the data analysis process more efficient, I used two open-source software packages: QGIS and PostgreSQL+PostGIS (QGIS, 2013; PostgreSQL, 2013; PostGIS, 2013). QGIS was used to digitize data into a PostgreSQL+PostGIS data server. For example, the
Spatial SQL was used to query the data to see how many respondents identified particular dialect areas. The Geospatial Data Abstraction Library (GDAL), a collection of command-line tools, were used to perform data conversions between the various data formats as well as to convert between vector and raster data structures. Finally, I used ArcGIS to produce composite maps resulting from the analysis. Figure 4.17 illustrates the basic steps of the data analysis process used.

Figure 4.17. Basic steps of the data analysis process.

Using this methodology, I first scanned all 436 hand-drawn maps from the “draw-a-map” task. Using QGIS, I next georeferenced the scanned maps with a geographic coordinate system.
of Korea. This was accomplished by linking several control points from scanned maps to matching points on a base map of Korea projected within a defined geographic coordinate reference system (see Figure 4.18 and Figure 4.19).

Figure 4.18. Georeferencing a scanned map to a geographical coordinate system.
Next, I digitized by hand each of the 2,227 polygons drawn by respondents on hand-drawn maps (see Figure 4.20). Each digitized polygon was associated with a polygon identification (PolyID) linking it to a georeferenced map. This data was saved into a polygon attribute table (see Figure 4.21) and merged with the perception and demographic data within the database (see Figure 4.13). As a result, demographic information about the respondent and the perceptual labels they provided for each shape were added to polygons as attributes, allowing data analysis across all three categories.
Figure 4.20. Digitizing polygons drawn by respondents.

Figure 4.21. Polygon attribute table.
Figure 4.22 shows a composite map of all 2,227 polygons drawn by respondents on hand-drawn maps and digitized using QGIS.

Figure 4.22. Digitized polygons from all maps in QGIS.

Using ArcGIS, I next performed a union analysis to create a table containing a count of overlapping polygons in the aggregated data (see Figure 4.23). A union analysis provides a geometric intersection of input features along with the attributes of the input table. This process was done to see which areas were the most salient perceptually, i.e., which areas respondents identified the most frequently.
Figure 4.23. Query to calculate a count of overlapping polygons in the aggregate data.

In the next step, a ‘dissolve’ aggregates features based on specific attributes (ESRI, 2011a). The dissolve analysis was done in PostGIS using the output from the union analysis. The resulting output was converted to raster using GDAL. The final output raster contains a series of grids representing a count of overlapping polygons, e.g., 0-3 as shown in Figure 4.24.

Figure 4.24. Count of overlapping polygons visually represented as areas of agreement. *Source: Adapted from Montgomery et al. (2012).*

A percentage of areas that were identified or “agreed upon” by respondents as dialect areas was then calculated and visually represented by different levels of shading. For example,
in Figure 4.24, areas where no respondents drew polygons received a count of 0 and resulted in no shading. By contrast, areas where the most respondents drew polygons received a count of 3 and resulted in the darkest level of shading. Figures 4.25 and 4.26 illustrate both of these steps.

Figure 4.25. Union analysis of data in GIS. Source: ESRI (2011a).

Figure 4.26. Dissolve of data in GIS. Source: ESRI (2011a).

While the union analysis provides high geographic resolution, it can be computationally intensive when a large number of data records need to be processed. For analyses involving a
large number of records, I used an alternate approach to identify areas that were the most salient perceptually. As shown in Figure 4.27, this alternate process involved generalizing the study area into a series of rectangular grids (centroids).

![Polygon centroids](image)

Figure 4.27. Generalizing the study area into a series of rectangular grids (centroids).

For each grid, a count of overlapping polygons for the selected feature was obtained by performing a spatial join operation in QGIS. While this reduces the computational complexity of processing this kind of data, it also generalizes the counts to the grid rather than at the scale of the actual polygons (see Figure 4.28).
Figure 4.28. Generalizing the study area to the scale of the grid.

A fine-resolution grid can be used to minimize potential error that can result from the generalization of counts to the grid and not the actual scale of polygons. For this study, I used a 5-mile grid. The grid was converted into a raster representation using an inverse distance weighted (IDW) interpolation.

Finally, a composite heat map (or graphical representation of data where individual values in a matrix are represented as colors) linked to real world spatial entities could then be created consisting of all the respondents’ maps in ArcGIS. The composite heat maps showing perceptual areas were classified using a quantiles method with 6 classes, i.e., each color category represented $1/6^{th}$ of the total number of respondents who identified a particular perceptual region (see Figure 4.29). All 436 maps were analyzed in this way. Figure 4.30 shows an example of a composite map created with six equal classes of quantiles based on areas of agreement for dialect area identified as Seoul.
Figure 4.29. Creating a composite map of perceptual areas classified into equal intervals.
4.7 Qualitative Data Analysis with ‘Keywords’

During and following the ‘draw-a-map’ task, respondents provided qualitative labels, examples, and comments about their perceptions of language variation. This qualitative data was analyzed to answer the following research questions:

- Research Question 3: If Koreans perceive differences in speech, what do they call
them?

• Research Question 4: If Koreans perceive differences in speech, with what features do they associate them?

First, the most frequent labels identified by respondents were analyzed and compiled. Next, a content analysis using the ‘keywords’ technique (Garrett et al. 2005; Evans, 2010) was carried out on the seven most frequent labels \(n=1,664 \). During this process, similar words and phrases were combined with others that were in the same semantic field to find emerging themes (see Table 4.7). For example, words and phrases like “cute” and “winsome” were combined with “affectedly sweet” to form one category called Aegyo\(^4\).

The top two categories of labels, *Lexical Items* and *Sentence Final Endings*, were not included in the analysis because they were identified in every region and thus were not as interesting perceptually. The next seven categories of labels by order of frequency were (1) *Manner/Personality*, which I further divided into *Positive Manner/Personality* and *Negative Manner/Personality*; (2) *Standardness*, which I further divided into *Non-Standard* and *Standard*; (3) *Strong Intonation/Tone*; (4) *Speed*, which I further divided into *Slow* and *Fast*; (5) *Strong Accent*; (6) *Gender Association*, which I further divided into Aegyo, Feminine, and Masculine; and (7) *Unintelligibility*.

\(^4\) Aegyo is a behavior and speech style typically used by younger females in Korea to appear cute, innocent, and child-like, sometimes for a manipulative purpose. It is characterized by a higher pitch voice and utterances with a melodic sweep over the vocal chords. Often, child-like dress, mannerisms, and facial expressions also characterize aegyo speakers.
Table 4.7

Most Numerous Categories of Labels Associated with Areas

<table>
<thead>
<tr>
<th>Category</th>
<th># of Comments (n=1,664)</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexical Items</td>
<td>533</td>
<td>NA</td>
</tr>
<tr>
<td>Sentence-Final Endings</td>
<td>444</td>
<td>NA</td>
</tr>
<tr>
<td>Standardness</td>
<td>420</td>
<td>25.2%</td>
</tr>
<tr>
<td>Non-Standard</td>
<td>(218)</td>
<td>(13.1%)</td>
</tr>
<tr>
<td>Standard</td>
<td>(202)</td>
<td>(12.1%)</td>
</tr>
<tr>
<td>Manner/Personality(^5)</td>
<td>298</td>
<td>18.0%</td>
</tr>
<tr>
<td>Positive</td>
<td>(154)</td>
<td>(9.3%)</td>
</tr>
<tr>
<td>Negative</td>
<td>(144)</td>
<td>(8.7%)</td>
</tr>
<tr>
<td>Strong Intonation/Tone</td>
<td>272</td>
<td>16.3%</td>
</tr>
<tr>
<td>Speed</td>
<td>261</td>
<td>15.7%</td>
</tr>
<tr>
<td>Slow</td>
<td>183</td>
<td>(11.0%)</td>
</tr>
<tr>
<td>Fast</td>
<td>78</td>
<td>(4.7%)</td>
</tr>
<tr>
<td>Strong Accent</td>
<td>171</td>
<td>10.3%</td>
</tr>
<tr>
<td>Gender Association</td>
<td>144</td>
<td>8.7%</td>
</tr>
<tr>
<td>Aegyo</td>
<td>(75)</td>
<td>(4.5%)</td>
</tr>
<tr>
<td>Feminine</td>
<td>(38)</td>
<td>(2.3%)</td>
</tr>
<tr>
<td>Masculine</td>
<td>(31)</td>
<td>(1.9%)</td>
</tr>
<tr>
<td>Unintelligibility</td>
<td>98</td>
<td>5.8%</td>
</tr>
</tbody>
</table>

In the next chapter, I present the results of the data analysis using these methods and data. I discuss the perceived dialect areas and their names, and the most frequent categories of labels for those dialect areas shown in Table 4.7 (indicating what features are most salient in perception). Additionally, I discuss the results stratified by three demographic factors. I use composite maps to visually represent the results of each analysis.

\(^5\) Neutral or ambiguous labels in the category of Manner/Personality, e.g., key words such as funny, talkative, shopping, and beachgoers, were not included in the analysis.
CHAPTER 5

RESULTS

5.1 Perceived Dialect Areas

An analysis of the data with ArcGIS and ‘keywords’ suggests that Koreans’ perceptions of dialect regions are not limited by province boundaries as had been suggested by Long and Yim (2002). In fact, the data suggest not only perceptions of dialect variation unassociated with administrative borders, but they provide insight on the way people connect ideas about language and place (Johnstone, 2011).

I created composite maps using ArcGIS, to visually represent the frequency of areas most identified by respondents, i.e., the most salient perceptual areas. The resulting composite maps answer the following research questions:

• Research Question 1: Do Koreans perceive differences in the Korean spoken in Korea?

• Research Question 2: If Koreans perceive differences in speech, do they associate these differences with particular geographical areas, and if so, where (geographically) do they believe those areas to exist?

The composite maps indicate that Koreans do indeed perceive language variation despite the popular conceptual myth that Korea has only one speech variety, the standard dialect, located in the Seoul and surrounding Gyeonggi-do region. Figure 5.1 is a composite map showing Koreans’ perceived dialect areas on the outline (left, n=196 respondents) and province map (right, n=206 respondents). As this figure suggests, perceptions of language differences may be influenced by information provided on the survey instrument. The province map
appears to include a greater number of most salient dialect regions (7) than the outline map (4) – one explanation for this difference is that respondents may have simply drawn their perceptual boundaries along the provincial lines provided in the survey instrument.\footnote{A quantitative analysis of the difference between map types is beyond the scope of this thesis; however, further exploration of the effect of geospatial information provided on the survey instrument will be the subject for future study.}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure51.png}
\caption{Perceived dialect areas for outline (left) and province (right) maps.}
\end{figure}

For the purposes of the present research, both map types were combined to produce a composite map of all respondents’ answers (see Figure 5.2). This composite map of both outline and province maps indicates the overlap of areas identified by all respondents as places where they “think people’s Korean sounds different.” The dark red areas show where the most overlap occurs, while the orange areas indicate where the least overlap occurs. In the map’s
legend, the overlap is calculated as the percent of all 436 respondents who identified an area.

For instance, the dark red locations on the map represent the overlap of areas identified by the most respondents (between 60.2%-75.2% of people surveyed).

Figure 5.2. Composite map of the most salient dialect areas for all respondents.
As Figure 5.2 shows, the composite map of perceptual dialect boundaries drawn by respondents somewhat correlates with the actual dialect divisions of Korea (see Figure 5.3) established in S.-G. Yi (1995, p. 328) based on P. Kim (1988, p. 209).

![Map of dialect boundaries]

Figure 5.3. Comparison of established and perceptual dialect boundaries.

The comparison in Figure 5.3 also suggests a number of differences as well. First, we see that the established Central dialect is divided in the perceptual map into three separate dialect areas: (1) Seoul/Gyeonggi and Chungcheong; (2) Chuncheon, the capital of Gangwon; and (3) a region of Gangwon closer to east coast. Another difference is that the perceptual map merges the established Northwest and Northeast dialect into one large dialect area for North Korea. Also, unlike the map of established dialect boundaries, respondents in the present study seem to perceive a distinct boundary at the 38th parallel north, a line of latitude used as the pre-
Korean War division line and current Military Demarcation Line separating North and South Korea.

5.2 Names Associated with Dialect Areas

Data analysis with GIS also enabled an examination of the place names most frequently associated with dialect areas by respondents as answers to the following research question:

- Research Question 3: If Koreans perceive differences in speech, what do they call them?

Results for South Korean place names suggest that most respondents associate names of either major cities or province names rather than established dialect region names for perceived dialect areas. For North Korean place names as well, respondents preferred using the region name *North Korea* rather than the established northern dialect region names. Some respondents also named some North Korean dialect areas using the capital city of Pyeongyang or province names. Figures 5.4 and 5.5 provide examples of hand-drawn maps that identify province names for perceived dialect areas.
Figure 5.4. Hand-drawn map identifying province names for perceived dialect areas.
Figure 5.5. Hand-drawn map identifying province names for perceived dialect areas.

No respondents used the actual names of established dialect boundaries for their perceived dialect areas. Instead, the most frequent place names identified by respondents included six province names, one capital city, and one geographical region name. As Table 5.1 shows, the most frequently identified place names were Gyeongsang (n=349) followed by Jeolla (n=321), Jeju Island (n=315), Chungcheong (n=284), Seoul or Gyeonggi (n=283), Gangwon (n=252), and then North Korea (n=103). This suggests that Gyeongsang is perceived by most respondents as a distinct dialect area (see Figure 5.6) and that North Korea is least perceived to
respondents as a distinct dialect area (see Figure 5.2).

Table 5.1

Most Frequent Place Names Associated with Areas

<table>
<thead>
<tr>
<th>Place Name</th>
<th># of Identifications (n=1,907)</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyeongsang</td>
<td>349</td>
<td>18.3%</td>
</tr>
<tr>
<td>Jeolla</td>
<td>321</td>
<td>16.8%</td>
</tr>
<tr>
<td>Jeju Island</td>
<td>315</td>
<td>16.6%</td>
</tr>
<tr>
<td>Chungcheong</td>
<td>284</td>
<td>14.9%</td>
</tr>
<tr>
<td>Seoul or Gyeonggi</td>
<td>283</td>
<td>14.8%</td>
</tr>
<tr>
<td>Gangwon</td>
<td>252</td>
<td>13.2%</td>
</tr>
<tr>
<td>North Korea</td>
<td>103</td>
<td>5.4%</td>
</tr>
</tbody>
</table>

Some terms for language varieties (variety descriptors) seemed to be used in combination with certain place names more than others. As Table 5.2 shows, the most commonly occurring variety descriptors were -mal (literally meaning ‘speech’), -bang’ŏn (‘dialect’), and -sat’uri (‘accent’). Interestingly, by contrast with the results found in Long and Yim (2002), the variety descriptor -mal seemed to occur most often not only with the place name Seoul, but also with the place name for North Korea and the local dialect. -Bang’ŏn occurred most often with the place names North Korea and Jeju and -sat’uri occurred most often with Gyeongsang, Jeolla, and Gangwon.
Table 5.2

Most Frequent Variety Descriptors for Place Names

<table>
<thead>
<tr>
<th>Variety descriptor</th>
<th>-mal (speech)</th>
<th>-sat’uri (accent)</th>
<th>bang’ön (dialect)</th>
<th>Place name only</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Place name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gyeongsang</td>
<td>61 (17.5%)</td>
<td>267 (76.5%)</td>
<td>15 (4.3%)</td>
<td>6 (1.7%)</td>
<td>349</td>
</tr>
<tr>
<td>Jeolla</td>
<td>59 (18.4%)</td>
<td>194 (60.4%)</td>
<td>48 (15.0%)</td>
<td>20 (6.2%)</td>
<td>321</td>
</tr>
<tr>
<td>Jeju Island</td>
<td>67 (21.3%)</td>
<td>33 (10.5%)</td>
<td>203 (64.6%)</td>
<td>12 (3.7%)</td>
<td>315</td>
</tr>
<tr>
<td>Chungcheong</td>
<td>64 (22.5%)</td>
<td>141 (49.6%)</td>
<td>50 (17.6%)</td>
<td>29 (10.2%)</td>
<td>284</td>
</tr>
<tr>
<td>Seoul/Gyeonggi</td>
<td>236 (83.4%)</td>
<td>0 (16.6%)</td>
<td></td>
<td>47 (0%)</td>
<td>283</td>
</tr>
<tr>
<td>Gangwon</td>
<td>37 (14.7%)</td>
<td>182 (71.9%)</td>
<td>12 (4.7%)</td>
<td>22 (8.7%)</td>
<td>253</td>
</tr>
<tr>
<td>North Korea</td>
<td>44 (42.7%)</td>
<td>0 (51.5%)</td>
<td>53 (10.2%)</td>
<td>6 (1.7%)</td>
<td>103</td>
</tr>
</tbody>
</table>

The most identified place name associated with a dialect area was Gyeongsang (see Figure 5.6). One reason for the greater perceptual salience of this region may be because of actual dialect differences (Yi, S. 1995, 1998). The many distinguishing features of the Gyeongsang dialect include (1) fewer contrasting vowel phonemes than anywhere else on the peninsula; (2) differences in vowel harmony and fronting; (3) differences in tense consonants; (4) variation in lexical items and sentence final endings; and (5) pitch accent.

7 Gyeongsang dialect has as few as six vowels: a (ㅏ), e (ㅓ), eo (ㅕ), a (ㅏ), u (ㅗ), i (ㅣ). Vowels in other dialects, ì (ae) and í (e), and í (eu) and í (eo), are typically merged.

8 The tense consonant ss (ㅆ) is absent in the Gyeongsang dialect. For instance, the word ssal (쌀) ‘rice’ is pronounced sol (쌀). Many other words have tense consonants where other dialects do not.

9 North and South Gyeongsang dialects have pitch accent that is realized differently in both areas. North Gyeongsang has high and low (short vowel) and low (long vowel) tone and South Gyeongsang has high, mid, and
Respondents may also find the Gyeongsang region more salient because it is a major economic and tourism center. The region contains Busan, South Korea’s second largest metropolis after Seoul and the largest port city and beach, as well as the longest river in Korea. The region also contains Korea’s fourth largest city, Daegu, which has become known for its successful textile, fashion, and high tech industries.

Additionally, Koreans from other parts of the peninsula have had a lot of exposure to the Gyeongsang dialect. It has been prominent in the Korea media from 1961-1997 because most of South Korea’s previous presidents (from the Park Chung-hee to the Kim Young-sam governments) were from the Gyeongsang region. Recently, however, former President Kim Young-sam has been criticized by the media and made fun of by the general public for making pronunciation mistakes during public speeches.

The next most identified place name for a dialect area was Jeolla (see Figure 5.7). The salience of this region may also be the result of significant dialect differences (Yi, K., 1998). The most distinguishing features of the Jeolla dialect include (1) verb endings; (2) lexical variation; sentence-final endings; and pronunciation of only the second diphthong vowel.

10 Instead of the verb endings -seumnida (슴니다 [sumnita]) or -sehyo (세요 [sejo]) endings used in most Korean dialects, a southern Jeolla person will use the verbal suffixes -rau (라우 [rau]) or -jirau (지라우 [tjirau]).

11 Speakers of the Jeolla dialect often end sentences with -ing, (잉) especially when asking a favor.

12 For instance, eopda 없다 is pronounced as upda (없다).
Figure 5.7. Frequency of areas identified as Jeolla.

The Jeju dialect area, identified as the third most salient place name (see Figure 5.8), is even more distinct because it has preserved many older lexical items no longer used in other Korean dialects. It has also borrowed words from Mongolian, Chinese, Japanese, and Manchu, and has derived unique words from the language of the ancient kingdom of Tamna (King, 2006).
Notably, another distinguishable feature of the Jeju dialect is the lack of formality and honorific deference used in speech to elders and strangers (King, 2006). For example, a speaker of the Seoul dialect would use *anyeonghaseyo* (“Hello”) to an older person or stranger. However, a speaker of the Jeju dialect would say *ban-gapsuda*, a word which translates to a meaning similar to “Howdy.” To Koreans living on the mainland, this kind of informal speech would be an appalling violation of social code, but it is the norm on Jeju Island. This illustrates the more egalitarian speech used there, which perhaps has historical and cultural roots with
having been subjugated under various other countries from the time of the Tamna kingdom until the early 1400s.

The next most salient place names for dialect areas were Chungcheong and Seoul, shown in Figures 5.9 and 5.10.

Figure 5.9. Frequency of areas identified as Chungcheong.
The distinction of Seoul/Gyeonggi and Chungcheong together as one perceived dialect area and as separate from Gangwon (while all three are areas included in the established Central dialect area of Korea) is notable. The dialect spoken in North Chungcheong can be differentiated from the variety spoken in South Chungcheong and is closer to the Seoul/Gyeonggi speech. South Chungcheong dialect has more features of the dialect spoken in Jeolla. Features of the Chungcheong dialect include (1) slower enunciation; (2) lexical variation; and (3) sentence-final endings.
The grouping of Chungcheong and Seoul/Gyeonggi as one dialect region suggests a growing perception among respondents that the dialects are becoming similar. This may have been influenced by widespread effects of the governments in the major cities of Chungcheong, such as Daejeon, to promote the use of standard Korean in schools and in the workplace. It could also reflect dialect leveling from the Seoul/Gyeonggi dialect area outwards into the Chungcheong dialect area. Perhaps facilitating that process, these two regions are now also connected by high-speed bullet trains that have reduced transportation time to less than one hour.

The least identified place names for perceived dialect areas were Gangwon and North Korea, shown in Figures 5.11 and 5.12.
For Gangwon, this could be attributed to many factors. First, there are many dialect differences in Gangwon speech including lexical and sentence-final ending variation. According to King (2006), Gangwon is more similar to the speech spoken in North Korea than it is to the speech in South Korea.

Gangwon’s geographical proximity to the North Korean border may also affect perception. Many respondents who identified Gangwon as a dialect area commented on its similarity and nearness to North Korea and used descriptions such as “North Korean
vocabulary”, “traditional Chosun language” and “ROK military.” In addition, significantly fewer Koreans live in Gangwon compared to the rest of the peninsula, though every year a large number of tourists visit its well-known ski resorts, mountains, and beaches. Limited high-speed transportation also currently provides access to the region, though this may change by the time of the 2018 Olympics in Pyeongchang, a city located in the Gangwon region.

North Korea was least identified (see Figure 5.12) as a place name for a perceived dialect region overall, indicating that Koreans may either 1) omit North Korea from their perceptual ‘mental maps’ of language or 2) identify North Korea but not know much about it. Many respondents’ comments support these findings. Several avoided North Korea altogether on their hand-drawn maps and labeled South Korea ‘Hanguk’ (which means ‘one country’). Of those that did identify North Korea as a dialect region, the vast majority either circled the capital city of North Korea, Pyeongyang, or the entire geographical region of North Korea and wrote descriptions such as “sad situation,” “mysterious,” and “I don’t know.”

13 Only one respondent from North Korea participated in this study, so this result primarily reflects perceptions of South Korean respondents.

14 Use of the term ‘Hanguk’ to refer to South Korea has been gaining popularity in the last decade in place of the former term ‘Nam Han’ (‘South Korea’) though people have continued to call North Korea ‘Buk Han’ (‘North Korea’). This could signify the growing preference for South Koreans to distinguish or separate themselves from North Korea.
Figure 5.12. Frequency of areas identified as North Korea.

5.3 Categories of Labels Associated with Dialect Areas

With the results of the ‘keyword’ analysis of data, I was able to answer the following the research question:

- Research Question 4: If Koreans perceive differences in speech, with what features do they associate these differences?

I created composite maps for the seven most salient categories of labels respondents identified: Standardness (Non-Standard and Standard); Manner/Personality (Positive and
Negative); Strong Intonation/Tone; Speed (Fast and Slow); Gender Association (Masculine, Feminine, and Aegyo); and Unintelligibility. Table 5.3 shows the most numerous categories of labels (n=1,664) associated with areas marked on maps by respondents. In this section, I discuss and compare each of these eight labels in further detail. The order of the discussion and comparison is not based on frequency of features identified, but rather on comparable major findings among the composite maps.

Table 5.3

Most Numerous Categories of Labels Associated with Areas

<table>
<thead>
<tr>
<th>Category</th>
<th># of Comments (n=1,664)</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardness</td>
<td>420</td>
<td>25.2%</td>
</tr>
<tr>
<td>Non-Standard</td>
<td>(218)</td>
<td>(13.1%)</td>
</tr>
<tr>
<td>Standard</td>
<td>(202)</td>
<td>(12.1%)</td>
</tr>
<tr>
<td>Manner/Personality</td>
<td>298</td>
<td>18.0%</td>
</tr>
<tr>
<td>Positive</td>
<td>(154)</td>
<td>(9.3%)</td>
</tr>
<tr>
<td>Negative</td>
<td>(144)</td>
<td>(8.7%)</td>
</tr>
<tr>
<td>Strong Intonation/Tone Speed</td>
<td>272</td>
<td>16.3%</td>
</tr>
<tr>
<td>Slow</td>
<td>261</td>
<td>15.7%</td>
</tr>
<tr>
<td>Fast</td>
<td>183</td>
<td>(11.0%)</td>
</tr>
<tr>
<td>Strong Accent</td>
<td>171</td>
<td>10.3%</td>
</tr>
<tr>
<td>Gender Association</td>
<td>144</td>
<td>8.7%</td>
</tr>
<tr>
<td>Aegyo</td>
<td>(75)</td>
<td>(4.5%)</td>
</tr>
<tr>
<td>Feminine</td>
<td>(38)</td>
<td>(2.3%)</td>
</tr>
<tr>
<td>Masculine</td>
<td>(31)</td>
<td>(1.9%)</td>
</tr>
<tr>
<td>Unintelligibility</td>
<td>98</td>
<td>5.8%</td>
</tr>
</tbody>
</table>

15 Neutral or ambiguous labels in the category of Manner/Personality, e.g., key words such as funny, talkative, shopping, and beachgoers, were not included in the analysis.
5.3.1 Non-Standard vs. Standard

Standardness was the most frequent category of perceptual labels assigned to polygons by respondents—25.2% (n=420) of all respondents identified an area with this category. Slightly more respondents used *Non-Standard* (n=218) rather than *Standard* (n=202) as a label to describe the speech of different speech varieties. Key words used to code features as *Non-Standard* included words and phrases such as *different from standard, substandard, illiterate, uneducated, and incorrect*. Many respondents wrote examples of non-standard forms or indicated areas that were different from the standard on maps and these were also coded as *Non-Standard* (see Figure 5.13).

![Figure 5.13. Hand-drawn maps showing non-standard forms (left) or dialect areas (right).](image)

Key words to code a feature *Standard*, on the other hand, included words and phrases
such as standard language, speech of popular media, mainstream, cultured, educated, academic, professional, official, and correct. Many respondents wrote examples of standard forms or labeled areas as standard language and these were also coded as Standard (see Figure 5.14).

Figure 5.14. Hand-drawn maps showing standard forms (left) or labeled as standard language (right).

An analysis of the maps in Figure 5.15 suggests that (1) Non-Standard is heavily associated with the Southeast dialect region, the dark brown area on the left map; (2) Non-Standard is not associated at all with the Chungcheong province in the Central dialect region nor with North Korea; (3) the majority of respondents believe that Standard is located primarily in the capital city of Seoul and the surrounding Gyeonggi province; and (4) some respondents also labeled
the same area, Seoul and the surrounding Gyeonggi province as Non-Standard. This result may suggest that there is not one absolute location perceived as Standard, as illustrated by the orange areas on the right map in Figure 5.15, where respondents also identified other parts of the peninsula with the label.

Figure 5.15. Non-Standard (left) vs. Standard (right).

5.3.2 Positive and Negative Manner/Personality

Positive and Negative Manner/Personality were the second most frequent perceptual labels assigned to polygons by respondents—18.0% (n=298) of all respondents identified an area with one or both of these labels. Slightly more respondents used Positive (n=154) rather than Negative (n=144) labels to describe the manner or personality of people with different
language varieties.

Key words used to code a feature *Positive Manner/Personality* included words with clear positive connotations such as *honest, high-class, friendly, attractive, popular, pleasant, impressive, and rich*. By contrast, key words to code a feature *Negative Manner/Personality* included words with clear negative connotations such as *unintelligent, lazy, clumsy, stingy, unfriendly, unattractive, rude, and annoying*.

A preliminary analysis of the maps in Figure 5.16 suggests that (1) there is only a slight difference between these maps; (2) positive and negative labels are both associated with the main urban centers—the dark areas on both maps indicating areas of the most overlap are the six largest cities in South Korea: the capital city of Seoul, Busan, Daegu, Incheon, and Gwangju (based on population data from the 2010 Census); and (3) North Korea is only associated with negative labels.
However, some interesting trends emerge when results for the perceptual labels *Positive* and *Negative Manner/Personality* are further stratified by place lived the longest by respondents. For example, an analysis of the maps in Figure 5.17 of areas labeled as *Positive* (left) and *Negative Manner/Personality* (right) by only Seoul respondents suggests that they are linguistically secure because they view (1) their own speech positively; (2) the speech of Gyeongsang even more positively; and (3) the speech of Jeolla and Gyeongsang negatively. The overlap of positive and negative perceptions by Seoul respondents of Gyeongsang speech suggests that there may be very complex factors contributing to the perceptual salience of the region\(^\text{16}\).

\(^{16}\) An analysis of all factors, e.g., age, sex, and urbanicity, which contribute to the salience of Gyeongsang is beyond the scope of this thesis and the topic of future study.
Maps of areas labeled as Positive (left) and Negative Manner/Personality (right) by Gyeongsang respondents in Figure 5.18 also reveal an interesting trend. An analysis of these maps suggests that respondents from Gyeongsang view the speech of Seoul and Jeolla positively, but their own speech negatively. This may indicate a high degree of linguistic insecurity among Gyeongsang respondents, a result that correlates with findings from Long and Yim (2002) and the pilot study (Jeon, 2011).
Figure 5.18. Areas labeled as Positive (left) and Negative Manner/Personality (right) by Gyeongsang respondents.

By contrast, in Figure 5.19, maps of areas labeled as Positive (left) and Negative Manner/Personality (right) by Jeolla respondents suggest a high degree of linguistic security. An analysis of these maps shows that respondents from Jeolla perceive their own speech—along with the speech of Gyeongsang—very positively and the speech of Seoul and Gyeongsang negatively. Here, again, the overlap of positive and negative perceptions by Jeolla respondents of Gyeongsang speech is further evidence of the complexity of factors contributing to the perceptual salience of the region.
Finally, Figure 5.20 shows maps of areas labeled as Positive (left) and Negative Manner/Personality (right) by Jeju respondents. An analysis of these maps indicates that respondents of Jeju perceive (1) their own speech neutrally; (2) Seoul and Gyeongsang speech positively; and (3) Jeolla speech negatively. Negative perceptions by respondents from Jeju of Jeolla speech may be connected to the proximity, and thus increased familiarity and/or exposure, of the language variety. These results corroborate findings in Montgomery (2012) that proximity may contribute to the perceptual salience of the speech of particular regions. Perceptions may also be connected to feelings of animosity towards Jeolla since it is the most common departure point for Koreans traveling from the mainland to Jeju. Many Jeju people dislike the growing tourism and presence of outside visitors on the island (cf. Labov, 1966).
Figure 5.20. Areas labeled as Positive (left) and Negative Manner/Personality (right) by Jeju respondents.

5.3.4 Strong Intonation/Tone and Strong Accent

Strong Intonation/Tone \((n=272)\) was the third most frequent perceptual label after Manner/Personality assigned to polygons by respondents. Key words used to code a feature *Strong Intonation/Tone* included the words intonation and tone as well as characterizations of speech sound patterns as being strong, severe, noticeable, wavy, high and low, and up and down. Several respondents also drew arrows or lines indicating the directionality and waviness of intonation and/or tone patterns (see Figure 5.21) or provided imitations of how certain words sounded with the intonation and/or tone patterns of certain dialects.
Figure 5.21. Hand-drawn maps showing indications of intonation and/or tone patterns.

Strong Accent was the fifth most salient category of perceptual labels identified by respondents (n=171). Here, it is compared with Strong Intonation/Tone in Figure 5.22 because of the similarity between the two maps. Key words used to code a feature Strong Accent included the word accent and dialect as well as characterizations of it as being strong, severe, or distinct. An analysis of the maps in Figure 5.22 suggests that (1) there is only a slight difference between these maps; (2) no respondents associated the capital city of Seoul with being strongly accented; (3) strong intonation/tone is heavily associated with the Southeast dialect that includes the major cities of Busan and Daegu; and (4) strong accent is heavily associated with the southernmost dialect regions including the Southeast, Southwest, and Jeju dialects.
Figure 5.22. Strong Intonation/Tone (left) and Strong Accent (right).

5.3.5 Slow vs. Fast Speed

Slow or Fast Speed (n=261) was the third most frequent perceptual label assigned to polygons by respondents. Slow Speed was used considerably more as a label for respondents (n=183) than Fast Speed (n=78) when describing the speed of speech for people with different language varieties.

Key words and phrases to code a feature Slow Speed included slow, drawl, drawn out, and takes a long time to speak, as well as tildes used to illustrate lengthened utterances of words. One respondent, for example, identified Chungcheong province as “the slowest place in the world” and described the speech there as having “slow, dragging syllables—the Texas of Korea.” Fast Speech, on the other hand, was coded using key words and phrases such as fast
(‘pali pali’), short, hurried, and like lightning. For instance, one respondent commented that people in the Gyeongsang region “spoke so fast that you have to suspect that they did something wrong and need to run away after they finish speaking.” An analysis of the maps in Figure 5.23 suggests that (1) respondents perceive slow speech to be associated with the Chungcheong province which lies within the Central dialect region—the dark red area on the left map; (2) respondents perceive fast speech to be associated with the Southeast dialect region and also with the Southwest dialect region—the dark red areas on the right map; and (3) there were no perceptions associated with Speed in North Korea.

![Koreans' Perceptions of Language Variation (All Respondents) Frequency of Areas Labeled Slow](image1)

![Koreans' Perceptions of Language Variation (All Respondents) Frequency of Areas Labeled Fast](image2)

Fig. 5.23. Slow (left) and Fast (right) Speed.
5.3.6 Gender Association

Gender Association ($n=144$) was the sixth most frequent category of perceptual labels assigned to polygons by respondents. *Aegyo* ($n=78$) was the most used label with a gender association, followed by Feminine ($n=38$) and then Masculine ($n=31$), to describe different language varieties. Keywords for the label *Aegyo* included *cute, winsome, baby talk, affected sweetness*, and *speech used for manipulation*. Some respondents also used the word ‘*oppa*’ (a word meaning ‘older brother’ often used by speakers of *aegyo* to address older males), onomatopoeic words, and tildes and emoticons to indicate intonation and pitch patterns of *aegyo* speech.

Figure 5.24 shows one respondent’s hand-drawn map with the word ‘*oppa~*’ and a tilde afterwards, illustrating the way an *aegyo* speaker might say the word with higher pitch and a melodic sweep over the vocal cords.
Keywords for the label *Masculine* and *Feminine* included words, phrases, or symbols indicating either gender. Many respondents associated the label *Feminine* with adjectives such as *cute, attractive, soft,* and *smooth*; alternatively, many respondents associated the label *Masculine* with adjectives such as *tough, loud, crude, aggressive,* and *blunt.* As the left map in Figure 5.25 exemplifies, respondents often wrote comments such as “*Men are tough and women are cute.*” Interestingly, in the map on the right in Figure 5.25, drawn by a male respondent born in 1956 in Mokpo in Jeolla (indicated by the blue star), he comments that the
speech in his own region is “more feminine” and thus “more comfortable” for him.

Figure 5.25. Hand-drawn map showing characterizations of Masculine speech as tough and blunt and Feminine speech as cute and attractive.

An analysis of the maps in Figure 5.26 suggests that (1) there is only a slight difference between these maps; (2) Aegyo and Feminine labels are perceived heavily in the Southeast dialect region and also in the Southwest and Central dialect regions, the dark pink areas; (3) Feminine is not perceived as a label for the Jeju dialect region; and (3) neither label is perceived for North Korea or parts of Gangwon province.
Figure 5.26. Aegyo (left) and Feminine (right).

An analysis of the composite map for the label of Masculine in Figure 5.27 also suggests that Masculine is heavily associated with the Southeast dialect region just as with Feminine; however, it is not associated at all with the Central nor Jeju dialect region nor with North Korea.
5.3.7 Unintelligibility

Unintelligibility (n=98) was the seventh most frequent category of perceptual labels assigned to polygons by respondents. Keywords for this label include _unintelligible_ as well as words and phrases such as ‘_mwo_?’ (‘what?’), _foreign, can’t/difficult to understand, doesn’t sound like Korean, words you don’t know or will hear for the first time, and like a different language/country_. One Seoul respondent who identified the speech on Jeju Island as _Unintelligible_ commented, “When I vacationed there, I thought the people were speaking Japanese but someone told me it was actually Korean! I couldn’t understand a single word they said. It was like another language.”
An analysis of map in Figure 5.28 suggests that (1) the Jeju dialect region is perceived by respondents as very hard to understand, even to the extent that many consider it to be another language and the people on Jeju to be very different from people on the peninsula; (2) dialect regions in the rest of mainland Korea—with the exception of the white spot on the map for Seoul and the surrounding Gyeonggi province—are also perceived as somewhat hard to understand; and (3) no respondents associated the capital city of Seoul and the surrounding Gyeonggi province as *Unintelligible* implying that it is perceived as being very easy to understand.

![Koreans' Perceptions of Language Variation (All Respondents) Frequency of Areas Labeled Unintelligible](image)

Figure 5.28. Unintelligible.
5.4 Demographic Factors and Perceptions of Language Variation

Results of the data analysis were also stratified by demographic information provided by respondents. In this thesis, I examine results stratified by three demographic factors: sex, age, and urbanicity (identification as being urban, suburban, or rural)17 to answer the following research question:

- Research Question 6: How do demographic factors such as age, sex, and urbanicity affect Koreans’ perceptions of language variation?

5.4.1 Age and Perceptions of Language Variation

Composite maps were created for three different age groups: older respondents born 1930-1962; middle-aged respondents born 1963-1982; and younger respondents born 1983-1994. An analysis of the maps in Figures 5.29, 5.30, and 5.31 suggest that respondent age also plays a role in perceptions of language variation.

The composite maps suggest that (1) salience of North Korea as a dialect area increases with respondent age as shown by the change from yellow (older respondents) to increasingly orange areas (middle-aged and younger respondents) on the maps; (2) older respondents identified significantly smaller, more differentiated dialect areas that roughly correlate to the established administrative province and dialect boundaries of Korea; (3) middle-aged and younger respondents identified fewer dialect areas consisting of several types of areas: major cities, provinces, and larger geographical regions. These results suggest that while many older

17 Other demographic information such as education level, occupation, ability to speak a second language, time lived in Korea, place longest lived, and identification with a particular place was also collected from respondents during the ‘draw-a-map’ task. This thesis focuses on only age, sex, and urbanicity, but further analysis of results stratified by other types of demographic data is the subject of future study.
respondents still perceive language variation according to administrative province and dialect boundaries, there could be a perceptual change in progress occurring for middle-aged and younger Koreans.

Figure 5.29. Frequency of areas identified by older respondents born 1930-1962.
Figure 5.30. Frequency of areas identified by middle-aged respondents born 1963-1982.
Figure 5.31. Frequency of areas identified by younger respondents born 1983-1994.

5.4.2 Sex and Perceptions of Language Variation

An analysis of composite maps stratified by male and female respondents suggests that sex also may play a role in perceptions of language variation. Figures 5.32 and 5.33 show that (1) males perceived fewer (five) salient dialect areas overall—the dark red spots shown in the maps—than females did (seven); (2) females differentiated smaller dialect areas within larger regions, e.g., they separated the Southwest dialect region into north and south and identified a smaller dialect area within North Korea centered around the capital city of Pyeongyang; (3) the
Gangwon and Chungcheong province areas were more salient dialect areas for females compared to males; and (3) Seoul and the Gyeonggi province were more salient dialect areas for males compared to females.

Figure 5.32. Frequency of areas identified by male respondents.
5.4.3 Urbanicity and Perceptions of Language Variation

Results of the data analysis stratified by identification as urban, suburban, or rural also indicate that urbanicity plays a large role in perception. An analysis of Figures 5.34, 5.35, and 5.36 suggests that (1) respondents from major urban areas perceive larger, more major urban areas of Korea as salient dialect areas; (2) suburban respondents perceive smaller suburban city areas as well as major urban areas as salient dialect areas; and (3) rural respondents perceive fewer dialect areas, most located in southern regions, compared to urban and suburban
Figure 5.34. Frequency of areas identified by urban respondents.
Figure 5.35. Frequency of areas identified by suburban respondents.
Figure 5.36. Frequency of areas identified by rural respondents.

Table 5.4 summarizes respondents’ perceptions of places by urbanicity according to areas that were perceived (dark circle), somewhat perceived (half circle) and not perceived (outline circle) in composite maps. As the table shows, Korea’s largest major urban areas (with population based on 2010 Census data) are perceptually salient, whether viewed positively or negatively. Seoul, Incheon, Busan, Daegu, and Daejeon, and Jeonju—the top six major urban areas in South Korea—were the most identified regions for both labels.
In the next chapter, I discuss these results and how they correspond to earlier conclusions in the literature. Then, I examine the theoretical implications of the results from this study. I also discuss unexpected findings and what they may mean.
CHAPTER 6

DISCUSSION

The results of this study are encouraging in their implications and contributions to the field of sociolinguistics. I will discuss the meaning of the results for each of the research questions addressed in this thesis to highlight the limitations and contributions.

Research Question 1: Do Koreans perceive differences in the Korean spoken in Korea?

Results of this study show that Koreans do perceive language variation despite the widespread belief that there is only one standard language—namely, the language spoken in the Seoul and surrounding Gyeonggi province. This finding suggests that Koreans do not view the peninsula as a homogenous speech community, but rather perceive differences in the Korean spoken in Korea based on a variety of different levels.

Research Question 2: If Koreans perceive differences in speech, do they associate these differences with particular geographical areas, and if so, where (geographically) do they believe those areas to exist?

Composite heat maps of the geographical locations of perceived dialect areas suggest that perceptions of language variation may be shifting away from established dialect areas. Interestingly, this shift does not necessarily follow province boundaries as
found in Long and Yim (2002). Instead, the data from the present study point towards new perceptual dialect areas: Gyeongsang, Jeolla, Jeju, the merging dialect area of Seoul/Gyeonggi and Chungcheong, Gangwon, and North Korea. Unsurprisingly, more salient dialect areas seem to be concentrated in major urban areas that are connected by high-speed transportation, while less salient dialect areas exist in less urbanized and connected regions, e.g., Gangwon, the coastlines, and the middle of the peninsula. Additionally, the North-South political border plays a large role in the perception of dialect areas as evidenced by the sharp dividing line at the 38 parallel north on composite heat maps separating the two into distinct dialect areas.

Research Question 3: If Koreans perceive differences in speech, what do they call them?

The most frequent place names provided by respondents for perceived dialect areas were Gyeongsang, Jeolla, Jeju, Chungcheong, Seoul/Gyeonggi, Gangwon, and North Korea. These place names do not necessarily correlate with established names of dialect areas of Korea. In fact, none of the 436 respondents used the place names Northeast, Northwest, Central, Southeast, or Southwest to identify the names of perceived dialect areas, even if they drew boundaries that roughly correlated with the established regions. Instead, respondents preferred to use either the names of provinces, major cities, or geographical regions.

Dialect areas with the most established linguistic differences, Gyeongsang, Jeolla, and Jeju were the most identified place names. These place names were identified much more than Seoul/Gyeonggi or Chungcheong, the areas most often associated with the standard variety. This suggests that nonlinguists are very good at picking up on linguistic cues to detect differences. It also suggests that perhaps the status, or the level of exposure—via media or the
growing interconnectedness of South Korea—of these dialect varieties is also growing.

Another interesting finding is that place names were often identified by the variety descriptors –mal ‘speech’, ban’ön ‘dialect’, and sat’uri ‘accent.’ The variety descriptor -mal seemed to occur most frequently with the place names Seoul and North Korea, but they also occurred frequently with the local dialect. Ban’ön occurred most often with North Korea and Jeju and sat’uri occurred most often with Gyeongsang, Jeolla, Chungcheong, and Gangwon. This may suggest that there is a perceived difference in the types of linguistic varieties these terms are used to describe. –Mal seems to be used to describe varieties associated with more legitimacy18 while ban’ön is used for varieties that are further from the standard and less legitimate, and sat’uri is used for varieties that are further from the standard but more legitimate.

Research Question 4: If Koreans perceive differences in speech, what features do they associate differences with?

In this study respondents associated the most differences in language with seven categories of labels: Standardness (Non-Standard and Standard); Manner/Personality (Positive and Negative); Strong Intonation/Tone and Accent; Speed (Fast and Slow); Gender Association (Masculine, Feminine, and Aegyo); and Unintelligibility.

Labels related to Standardness were the most salient of all. The overwhelming tendency for respondents to view language as either Standard or Non-Standard supports Preston’s

18 Preston (1996) suggests that nonlinguists view dialects as sub-varieties of a super variety. Long and Yim (2002) postulate that perhaps Koreans view the linguistic varieties spoken in North Korea or their local area in a parallel sense to the standard variety—different but equal.
suggestion that, “one of the dominating folk concerns in language is variety and pre- (and pro-) scription” (Preston, 1999a). *Non-Standard* was a more salient feature than *Standard* and heavily associated with Gyeongsang and Jeju. However, it was also associated with several other dialect areas with the exception of Chungcheong and North Korea. *Standard* was overwhelmingly identified as being located Seoul/Gyeonggi. These mixed results show that despite Koreans’ preoccupation with “standardness” of a language variety, there was not one absolute location perceived as *Standard*.

Labels related to *Manner/Personality* were also very salient features for respondents in describing language varieties. At first glance, labels for both *Positive Manner/Personality* and *Negative Manner/Personality* appear to be associated with the main urban centers of South Korea: Seoul, Busan, Daegu, Incheon, and Gwangju (the five largest cities in South Korea, respectively). The only substantial difference between results for the two labels was that North Korea was only associated with negative labels. A deeper analysis of positive and negative labels stratified by places where respondents had lived the longest revealed more interesting trends. Seoul and Jeolla respondents, for instance, have a high degree of linguistic security, and view their own speech positively. By contrast, Gyeongsang respondents have a high degree of linguistic insecurity, viewing their own speech negatively. Additionally, Jeju respondents have more neutral perceptions of their own speech, though they view Seoul and Gyeongsang speech positively and Jeolla speech negatively. To better understand these results, an even further analysis of the complex factors associated with different types of positive and negative labels for dialect areas must be conducted to get a better sense of attitudes and beliefs associated with the speech variety being evaluated and of the evaluator. For instance, positive descriptors
like rich and attractive were often used to describe the dialect area of Seoul, but Seoul received almost an equal amount of negative descriptions such as stingy and rude.

Results for the category of labels associated with Strong Intonation/Tone and Strong Accent showed that both features were heavily perceived in the southern dialects of Gyeongsang, Jeolla, and Jeju. This correlates with actual linguistic differences in pitch accent in Gyeongsang (Yi, S.-G. 1995, 1998). Findings for labels related to Gender Association were surprising, however, in that they seemed to be located primarily in the same place: Gyeongsang. Similarity of the composite heat maps for this label and Strong Intonation/Tone could suggest that pitch accent could play a role in perceiving a gender association with speech. Labels for Feminine, Aegyo, and Masculine were most identified in Gyeongsang and not perceived as much in Jeju, nor at all in North Korea and parts of Gangwon. The relationship between Strong Intonation/Tone and Gender Association in Gyeongsang was not analyzed in this thesis but should be further explored.

Findings for labels related to Speed identified by respondents revealed that Chungcheong is heavily associated with Slow speech and Gyeongsang is associated with speech that is Fast. These results also correlate with actual linguistic differences in the speed of enunciation in different varieties of Korean (King, 2006). They may also reveal Koreans’ paradoxical cultural preoccupation with speed (pali pali meaning ‘fast fast’ is often a term heard in Korea) but also with the appreciation and enjoyment of life. In other words, while modern Korea is country that values getting things done efficiently and expediently, Koreans still value more traditional notions of taking a slower and more easy-going approach to life. This paradox in cultural values was illustrated in many of the comments indicating frustration or dislike for the slow speech of
Chungcheong but also for the faster speech of Gyeongsang.

Lastly, findings for Unintelligibility overwhelming indicate that Koreans perceive southern dialects, especially Jeju to be hard to understand, even to the extent that many consider it unintelligible. By contrast, no respondents labeled the Seoul/Gyeonggi dialect area as Unintelligible, indicating that it is perceived as being very easy to understand. This finding also correlates with actual linguistic differences between the two dialect areas. The Jeju dialect is the most different from the Seoul/Gyeonggi speech in terms of lexical variation and formality (King, 2006). Its tumultuous history of invasions and the isolated geographical location of Jeju Island has also helped foster a culture and language that are distinct from mainland Korea.19

Research Question 5: How do demographic factors such as age, sex, and urbanity affect Koreans’ perceptions of language variation?

Stratification of results by age, sex, and urbancity suggest that demographic factors play an important role in perception. Differentiating results by the age of younger, middle-aged, and older respondent age groups show that the salience of North Korea as a dialect area increases with respondent age. Older respondents also identified smaller and more subdivided dialect areas that correlated more to the established province and dialect boundaries of Korea. On the other hand, middle-aged and younger respondents identified fewer and smaller dialect areas. Differentiating results by sex also revealed that males perceived fewer and more merged dialect areas than females. And although females identified more dialect areas, they subdivided them within larger regions. Finally, stratifying results by respondents’ identification as urban,

19 In 2005, Jeju was declared a Special Self-Governing Province, further establishing its separation and independence from mainland Korea.
suburban, or rural revealed the most significant finding of all: Koreans seemed to perceive
dialect areas according to their identification of urbanicity, i.e., urban subjects perceived more
large cities as dialect areas; suburban subjects perceived small cities areas as well as large cities
as dialect areas; and rural subjects generally perceived fewer dialect areas compared to urban
and suburban subjects, most located in southern regions. These results then, suggest that
Koreans’ perceptions of language variation may be linked to demographic factors such as age,
sex, and urbanicity that future studies should investigate.
CHAPTER 7
CONCLUSION

Perceptual studies allow us to get a complete understanding of the attitudes and beliefs associated with language variation in and across speech communities. As such, they provide a more comprehensive picture of speech communities on their own and in relationship to one another, and can even provide insight on the mechanisms of linguistic variation and change. The results from this thesis suggest that there are many different perceptual cues used to make evaluations of a linguistic variety. Data from this thesis also suggest that many factors, such as age, sex, and urbanicity, contribute to the perceptual salience of particular dialect areas.

To summarize, the following trends were found in the present study:

• Koreans do perceive language variation in Korea based on a variety of levels.

• More evidence for a connection of language to a particular place, but not necessarily one bound by administrative boundaries or established dialect areas.

• Perceived variation is associated most frequently with Standardness,

 Manner/Personality; Strong Intonation/Tone and Accent; Speed; Gender Association;

 and Unintelligibility.

• The North-South political border plays a large role in perception.

• The Southern dialects, especially the Jeju dialect, are the most stigmatized.

• Demographic factors such as age, sex, and urbanicity play a large role in perception.
Although much is left to explore, the present study is a step toward understanding Koreans’ perceptions of language variation. Future research will focus on topics not resolved in this thesis including:

- Quantitatively analyzing differences in results using the outline and province map as survey instruments
- Examining categories of labels in further detail to examine not only attitudes and beliefs associated with a speech variety or place but also of the evaluator
- Stratifying results by other demographic factors such as education level, time spent living in Korea, and identification with a particular place
- Comparing results of this study to previous data from the pilot study done in the U.S. on Korean Americans’ perceptions of language variation in Korea
- Working with other researchers to create improved and consistent methodology for using GIS and other geographic information software in perceptual dialectology research

Some of the findings in this thesis were not surprising, e.g., the prevalent perception of the speech spoken in the capital city of Seoul/Gyeonggi province area as the standard variety. However, other findings, such as a shift in the placement and names for perceived dialect areas; the features associated with evaluating language variation; and the difference in results stratified by demographic factors all warrant further investigation.
APPENDIX A

SURVEY INSTRUMENTS
1. 여기 한국 지도를 보시고, 한국어 소리가 다른 지역에 동그라미를 치세요.
2. 이제, 각 동그라미 안에 소리를, 무엇이라고 부르시는지 쓰세요. 만약에 다른 종류의 “예”가 있으면 적어주세요. (예, 사투리, 억양, 발음,말하는 스타일, 그리고 고유의 단어가 있으면, 자세히 적어주세요.)
1. 여기 한국 지도를 보시고, 한국어 소리가 다른 지역에 동그라미를 치세요.
2. 이제, 각 동그라미 안에 소리를, 무엇이라고 부르시는지 쓰세요. 만약에 다른 종류의 "예"가 있으면 적어주세요. (예, 사투리, 역량, 발음, 말하는 스타일, 그리고 고유의 단어가 있으면, 자세히 적어주세요.)
DEMOGRAPHIC QUESTIONS (ENGLISH)

Respondent #: (this will be filled in for each respondent) __________________________

1. Year you were born: 19_______________

2. Sex:
 - Male
 - Female

3. Highest level of education:
 - Attending high school
 - High school
 - Some college
 - Bachelor’s degree
 - Graduate degree

4. Major (if student)/Occupation: __________________________

5. Do you know any other language(s) besides Korean? __________________________

6. Total time spent living in Korea
 - <5 years
 - 5-10 years
 - 10-15 years
 - >15 years

7. What city/town in Korea have you lived in the longest? __________________________

8. What place do you self-identify with? __________________________

9. Do you consider yourself to be:
 - Urban
 - Rural
 - Suburan
 - None of the above
DEMOGRAPHIC QUESTIONS (KOREAN)

작성자: ______________________

아래, 문제를 솔직히 답변해주시고, 빈칸도 채워주세요.

1. 몇년도에 태어나셨나요? (예, 1985) 19___

2. 성별
 남자___ 여자___

3. 학력을 기입해 주세요
 □ 고등학교 및 이하 중퇴
 □ 고졸
 □ 대학교 (현재 학생 일때)
 □ 대졸
 □ 대학원 및 이상 졸업

4. 직업/ 혹은 전공 (학생일때)이 무엇인지 기입해 주세요

5. 한국어말고 다른 언어 (예; 영어, 중국어, 일어 등...)를 하실수 있다면 적어주세요

6. 한국에 얼마나 사셨는지 적어주세요
 □ 한국에서 태어나고 그 후로 계속 거주중 입니다
 □ 5년 이하로 한국에 거주중 입니다
 □ 5-10년 동안 한국에 거주중 입니다
 □ 10-15년 동안 한국에 거주중 입니다
 □ 15년 이상 한국에 거주중 입니다

7. 한국 어디에서 가장 오래 사셨나요? (지역) (예; 서울, 부산, 인천 등...)

8. (7번이랑 상관 없은 질문 입니다. 소신껏 적어주세요) 어디 출신 이라고 생각하세요?

9. (소신껏) 자신 출신지와 상관없이, 자기 자신이 어디 사람이라고 생각하세요?
 □ 도시 사람
 □ 시골 사람
 □ 교외 사람
 □ 없음
APPENDIX B

IRB CONSENT FORMS
University of North Texas Institutional Review Board
Informed Consent Form

Before agreeing to participate in this research study, it is important that you read and understand the following explanation of the purpose and benefits of the study and how it will be conducted.

My name is Patricia Cukor-Avila and I am an associate professor at the University of North Texas in Denton, Texas. My students, Lisa Jeon, Patricia C. Rector, and I are asking for your participation in research project that investigates regional dialects in Korea.

I will ask you to complete a task that involves indicating your perceptions of dialect regions on a map of the Korean peninsula. I will also ask you to complete a short questionnaire for background information. This should only take about 15 minutes of your time. I may ask to tape-record our conversation; however, I will not include any information on the recording that could identify you (e.g., name, address, phone number). The information I collect will in no way be used against you and will not be made available to the public unless required by law. The data will be permanently stored in my office at the University of North Texas and will not be made available to anyone else except the members of my research team. Any parts of the data used by people who aren’t a part of the research team will not include any identifying information about you, your family, or your community. Also, the confidentiality of your individual information will be maintained in any publications or presentations regarding this study. There are no foreseeable risks to your participation in this study; in fact, your participation may help us to better understand Korean dialect regions. If you would like, I can provide a copy of your recording and a written transcript to you free of charge.

I would also like to have your permission to include short clips of your recordings along with a transcription on research-related web pages. These web pages would either be maintained by me or by an academic publisher. As stated earlier, there would be no identifying information about you, your family, or your community included on these web pages or in the recordings.

Please understand that your participation is strictly voluntary and you may withdraw at anytime without penalty or prejudice. If at any time you have any questions concerning this form or the project, please feel free to contact me at the University of North Texas at (940) 565-4577. You will receive a copy of this consent form to keep in your records – a second copy will be kept in a locked file cabinet in my office in a separate location from any transcripts or written information about your recording.
Review for the Protection of Participants:

This research study has been reviewed and approved by the UNT Institutional Review Board (IRB). The UNT IRB can be contacted at (940) 565-3940 with any questions regarding the rights of research subjects.

Research Participants' Rights:

Your signature below indicates that you have read or have had read to you all of the above and that you confirm all of the following:

- Patricia Cukor-Avila has explained the study to you and answered all of your questions.
- You have been told the possible benefits and the potential risks and/or discomforts of the study.
- You understand that you do not have to take part in this study, and your refusal to participate or your decision to withdraw will involve no penalty or loss of rights or benefits. The study personnel may choose to stop your participation at any time.
- You understand why the study is being conducted and how it will be performed.
- You understand your rights as a research participant and you voluntarily consent to participate in this study.
- You have been told you will receive a copy of this form.
- You agree to allow audio clips with transcriptions of your recordings to be available on research-related web pages that are either maintained by Patricia Cukor-Avila or by an academic publisher.

By checking this box, I am agreeing to have my interview recorded for this research study.

Printed Name of Participant

____________________________________ __________________
Signature of Participant Date

For the Principal Investigator or Designee:

I certify that I have reviewed the contents of this form with the subject signing above. I have explained the possible benefits and the potential risks and/or discomforts of the study. It is my opinion that the participant understood the explanation.

____________________________________ __________________
Signature of Principal Investigator or Designee Date
저희가 시작할 리서치가 어떻게 이용될것이고 쓰일것인지 설명할 자료입니다.

안녕하세요? 제 이름은 페트리샤 수코-아빌라 입니다. 그리고 저는 미국대학, University of North Texas,의 교수 입니다. 그리고 저를 도와주는 대학원생,리사전,과 함께 몇가지 한국의 언어와 그에 관한된 질문을 할것입니다.

첫번째로, 저희가 먼저 한국어 지도를 보여드릴겁니다 그리고 각 지역을 작성자의 느낌 그대로 각기 다른 소리에 대해 동그라미 치게 할것입니다. 그리고 이 짧은 녹음과 작성지는 영원히 제 오피스에 있는 사람에 안전하게 소장 될것입니다.

그리고 저희가 작성자와 대화하는 동안, 녹음 할것입니다. 하지만 이 목소리 및 작성자는 저희 아님이 누구에게도 발설 되지 않을것이며, 오직 이 리서치에만 안전하게 사용할것입니다. 그리고 이 짧은 녹음과 작성자는 영원히 제 오피스에 있는 사람에 안전하게 소장 될것입니다.

그 어떠한 이유로든, 이것을 작성자 하시고 도움을 주시는 모든 분들은 안전하며, 이 리서치에 참여하는 모든 작성자의 정보는 저희가 한국어 연구하고, 그게 더 잘쓰이게 하는데 더욱 도움을 줄것이며, 더 나아가 긍정적인 영향을 미칠것 입니다.

작성자께서 요청하신다면, 당연히, 저희가 작성자께서 작성하시고 녹음하신 테잎의 원본의 카피를 보내드리겠습니다.

그리고 작성자께서 허락하신다면, 짧은 대화 녹음과 그 내용을 리서치 연구에 쓰이는 인터넷 사이트에 기제할것입니다. 저희와 저희 대학원생이 그 웹사이트를 항상 안전하게 만들것이며, 개인정보 및 작성자의 어떠한 정보도 그 누구에게도 발설하지 않을것을 약속합니다.

만약에, 이 리서치에 참여하시는게 꺄려하지한다면, 지금 참여하지 않으셔도 좋습니다. 만약 어떠한 질문이나 피드백이 있으시다면, 여기 아래 정보로 연락주시십시오.
미국. University of North Texas at (940) 565-4577.
Review for the Protection of Participants: (작성자의 안전 및 허가)
이 리서치는 저희 대학교 리뷰 보드에서 정식으로 허가를 받았으며, 만약
궁금하신 점이 있으시다면 아래 주소로 연락주십시오.
The UNT IRB 미국 (940) 565-3940.

Research Participants’ Rights: (작성자의 권리)
아래 빈칸에 사인해 주시는 것을 끝으로, 아래 저희가 작성한 모든 글에
동의한것으로 간주되어 잇습니다.
• 저 파트리샤 수코-
 아버리가 직접 이 리서치에 대해 충분히 설명하였고 모든 질문에 충분히
 답변하였습니다.
• 작성자께서 불편하신점이나 까리시는 점이 있으시다면, 언제든지 이
 리서치를 그만 두실 권리가 있습니다.
• 작성자께서 지금 왜 이 리서치가 행해지는지 충분히 이해하고 있습니다.
• 작성자께서 작성자의 권리에 대해 충분히 이해하셨고, 어떠한 외부의
 협이나 압력없이, 자신 스스로 이 리서치에 참여하는것을 분명히증명
 합니다.
• 작성자가 원하신다면, 녹음을 모든 원본을 보내드리겠습니다.
• 마지막으로, 저희가 이 정보를 소중히 저의 인터넷 웹사이트에
 이용할것입니다. 이때, 모든 자료는 안전하며, 실명 및 어떠한 정보도
 발표하지 안을것을 약속합니다.

이 박스를 체크 해주십시오, 작성자 채서 이 리서치 와 저와의 인터뷰가 녹음이
되는 것을 알고 충분히 이해 합니다.

작성자의 성함

작성자의 사인

날짜

For the Principal Investigator or Designee: (리서치의 사인 및 승인)
나, 자신이, 직접 이 작성자와 충분히 이 리서치 및 그에 대한 정보에 대해 대화를
나누었으며, 제가 생각할때 모든 작성자가 충분이 이 리서치가 어떠한 것이며
어떠한 용도로 쓰일것인지를 이해했습니다.
I certify that I have reviewed the contents of this form with the subject signing above. I have explained the possible benefits and the potential risks and/or discomforts of the study. It is my opinion that the participant understood the explanation.

____________________________________ __________________
리서처의 사인 날짜
REFERENCES

ngsun/Kim,%20Jungsun.pdf.

