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In this thesis we study descriptive-set-theoretic and measure-theoretic properties 

of Polish groups, with a thematic emphasis on the contrast between groups which are 

locally compact and those which are not. The work is divided into three major sections. 

In the first, working jointly with Robert Kallman, we resolve a conjecture of Gleason 

regarding the Polish topologization of abstract groups of homeomorphisms. We show 

that Gleason's conjecture is false, and its conclusion is only true when the hypotheses 

are considerably strengthened. Along the way we discover a new automatic continuity 

result for a class of functions which behave like but are distinct from functions of Baire 

class 1. In the second section we consider the descriptive complexity of those subsets of 

the permutation group S∞ which arise naturally from the classical Levy-Steinitz series 

rearrangement theorem. We show that for any conditionally convergent series of vectors 

in Euclidean space, the sets of permutations which make the series diverge, and diverge 

properly, are ∑0
3-complete.  In the last section we study the phenomenon of Haar null 

sets a la Christensen, and the closely related notion of openly Haar null sets.  We 

identify and correct a minor error in the proof of Mycielski that a countable union of 

Haar null sets in a Polish group is Haar null.  We show the openly Haar null ideal may 

be distinct from the Haar null ideal, which resolves an uncertainty of Solecki.  We show 

that compact sets are always Haar null in S∞ and in any countable product of locally 

compact non-compact groups, which extends the domain of a result of Dougherty.  We 

show that any countable product of locally compact non-compact groups decomposes 



into the disjoint union of a meager set and a Haar null set, which gives a partial positive 

answer to a question of Darji.  We display a translation property in the homeomorphism 

group Homeo+[0,1] which is impossible in any non-trivial locally compact group.  Other 

related results are peppered throughout. 
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CHAPTER 1

INTRODUCTION

In this work we investigate several topics which lay at the crossroads between the fields

of descriptive set theory, measure theory, and topological group theory. Especially we are

interested in the contrast between the structural properties of the so-called “large” Polish

groups, i.e., the non-locally compact, separable, completely metrizable groups, with their

“small” locally compact counterparts. The characteristics of locally compact groups were

thoroughly explored in the mid-twentieth century by von Neumann, Pontryagin, Mackey,

Weil, Gleason, Montgomery, Zippin, Yamabe, and others in the search for a solution to

Hilbert’s fifth problem. Among their famous and deep results are that every locally compact

group carries translation-invariant Haar measures, and that every locally compact group

which is connected is the projective limit of a sequence of Lie groups.

In recent decades, however, researchers in descriptive set theory, functional analysis,

and dynamics have provided a mounting body of evidence that depicts the non-locally com-

pact groups as wildly varying in nature. For instance, among the large groups there exist

extremely amenable groups, i.e. groups whose every continuous action on a compact space

admits a fixed point, lying in stark contrast to the locally compact groups, which always

admit free group actions. Many non-locally compact groups have also been shown to have

a constructible universal minimal flow, whereas each non-compact locally compact group is

known to have a somewhat pathological, non-metrizable universal minimal flow. Non-locally

compact groups also do not admit reasonable translation-invariant or even quasi-invariant

measures, so developing an adequate measure theory is much more difficult in the large group

setting. We aim in this thesis to contribute to our collective understanding of these less well-

behaved groups, especially by studying their descriptive-set-theoretic and measure-theoretic

properties.

In Chapter 2 we recall the major definitions and facts that we need for the later results.

The results of Chapter 2 are all well-known, except for the characterization of the point-
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stability groups of S∞ presented in Section 2.2.3, which is apparently a new observation.

We also provide details on some of the results mentioned in the previous two paragraphs

regarding the difference between locally compact and non-locally compact groups. After

these introductory facts are established, the remainder of the thesis may be organized into

three major topics which may be read and understood largely independently of one another.

The first topic is the assignment of Polish topologies to abstract (un-topologized) symmetry

groups, and embodies Chapter 3. Chapter 4 examines the Borel complexity of some natural

subsets of the permutation group S∞, a non-locally compact Polish group when endowed

with its topology of pointwise convergence. Chapter 5 deals primarily with the σ-ideal of

Haar null sets a la Christensen, which represents a generalization of the ideal of Haar measure

zero sets to the non-locally compact Polish group setting. We also study the closely related

ideal of openly Haar null sets. The theorems in these latter three chapters are new unless

otherwise stated.

1.1. Polish Topologization of Abstract Symmetry Groups

In Chapter 3, in joint work with Robert R. Kallman, we address an old problem of

Gleason on the topologization of abstract symmetry groups. We ask, following Gleason, if G

is an abstract group of homeomorphisms of a topological space M , under what circumstances

can G be given a topology such that the pair (G,M) is a topological transformation group?

That is, when can G be given a topological group topology such that the mapping (g,m) 7→

g(m), G×M →M , is continuous? If G acts by homeomorphisms on a topological space M ,

define a frame for the action to be any finite n-tuple (m1, ...,mn) ∈Mn for which the action

of G restricted to the orbit G · (m1, ...,mn) is a free action. Gleason [22] posed the following

very general conjecture on topologizing symmetry groups:

Gleason’s Conjecture. Suppose that G is an abstract group acting by homeomorphisms

on a Polish topological space M , and suppose a frame m = (m1, ...,mn) exists for the action

of G on M . Further suppose that for every q ∈ M , the orbit G · (m, q) is an analytic set in

Mn+1. Then G may be endowed with a natural topology τ for which (G, τ) forms a Polish
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topological group, and G acts as a topological transformation group on M .

Remarkably, Gleason proved his own conjecture in the special case where n = 1. If

n = 1 then the action of G on M admits a unary frame, i.e. G acts simply transitively

on M . In this case G may be topologized in such a way that it is homeomorphic to M .

The “analytic orbit” condition above is a bit puzzling, as it is now a well-known application

of the Lusin-Souslin theorem that if G and M are in fact Polish, then every such G-orbit

is actually a Borel set and not just analytic. Since Gleason’s paper is quite old, it seems

possible that he was unaware of this at the time. In the modern context, we reformulate the

analytic orbit condition to the following: for every q ∈ X, the G-orbit of (m, q) is Borel in

Mn+1. A priori this condition is stronger and so the reformulated conjecture is weaker.

We show that the stronger conjecture, and hence Gleason’s original conjecture, is

false for all n ≥ 2. Our constructed counterexample group G is a certain Kσ subgroup of

the classical ax + b group, which acts on the Polish space R by affine transformations, and

whose action admits frames of size n for all n ≥ 2. The orbits of the group action are each

Kσ, hence Borel, but the group cannot admit a Polish topology by an automatic continuity

theorem of Dudley [13]. So the conjecture fails.

Now suppose the hypotheses of Gleason’s conjecture are substantially strengthened

as follows: for each q ∈ M , the orbit G · (m, q) is Borel, and in addition the orbit G · m

is a Gδ set. In this case we are able to show that the conclusion of Gleason’s conjecture

holds. Unfortunately the result is not sharp, as we provide an example of a Polish group G

acting transitively by homeomorphisms on a Polish space M , with an n-ary frame for each

n ≥ 2, but with the property that G ·m is not Gδ for any frame m ∈ Mn. So a complete

characterization of which actions (G,M) admit a desirable topologization will require some

additional hypotheses.

During our investigation of Gleason’s conjecture we discover an apparently new au-

tomatic continuity result. Recall that if X is a topological space and A ⊆ X has the Baire

property, then D(A) is the smallest closed set in X for which A\D(A) is meager in X.

Suppose that Y is a metric space and ϕ : X → Y is a Baire-measurable function with the
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property that ϕ−1(V ) ⊆ D(ϕ−1(V )) for every open set V ⊆ Y . Then the set of points of

continuity of ϕ is comeager in X.

1.2. Borel Complexity of Series Rearrangements in S∞

Let X be a Polish space, and let B(X) be the family of Borel sets in X, which

is the smallest family of subsets of X which includes the open sets and which is closed

under countable unions and complements. The Borel sets may be stratified by their relative

definable complexity into a Borel hierarchy indexed by the countable ordinals. We denote

the open sets by Σ0
1 and the closed sets by Π0

1. The class Σ0
2 consists of all countable unions

of closed sets, while Π0
2 is comprised of countable intersections of open sets. Σ0

3 is the class

of all countable unions of Π0
2 sets, and so on.

If Γ is the first level where a set A appears in the Borel hierarchy, then we will say that

A is Γ-complete. It is an empirical phenomenon that a great bulk of those Borel sets which

present themselves in the everyday study of mathematics will fall into the very bottom few

levels of the Borel hierarchy. Thus there has been some industry for descriptive set theorists

in finding “natural” examples of Borel sets which are “more complex than usual.” Here we

will take more complex than usual to mean at least on the third level of the Borel hierarchy.

Natural here can only be defined sociologically rather than mathematically, but we take it

to mean that the set in question appears commonly in everyday mathematical practice, and

is not constructed in an ad hoc way or for a contrived purpose.

In Chapter 4 we seek to compute the exact descriptive complexity of some subsets of

the group S∞, which arise naturally from the following theorem of classical real analysis:

Levy-Steinitz Theorem. Let
∞∑
k=0

vk be a conditionally convergent series of vectors in

Rd. Then there exists a non-trivial affine subspace A ⊆ Rd (that is, a space of the form

A = v + M where v ∈ Rd and M ⊆ Rd is a linear subspace with dimM ≥ 1) such that

whenever a ∈ A, there is π ∈ S∞ with
∞∑
k=0

vπ(k) = a.

Say that a series of d-dimensional vectors diverges properly if the series diverges, but

does not diverge to ∞, where ∞ is the point at infinity in the one-point compactification of
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Rd. Fix any conditionally convergent series
∞∑
k=0

vk. Let D denote the set of all permutations

π ∈ S∞ for which
∞∑
k=0

vπ(k) diverges, and let DP be the set of all π ∈ S∞ for which
∞∑
k=0

vπ(k)

diverges properly. We show that both D and DP are Σ0
3-complete in S∞.

The proof is primarily geometric in nature, and relies on the existence of a particular

bounded rearrangement constant, now called the Steinitz constant, which was discovered

and employed by Steinitz himself in his original proof of the Levy-Steinitz Theorem.

1.3. Haar Null Sets and Openly Haar Null Sets

In Chapter 5 we investigate the general theory of Haar null sets as defined by Chris-

tensen, as well as the newer notion of openly Haar null sets as defined briefly by Solecki.

It is a famous result of Haar/Weil/Cartan that every locally compact topological group

admits a left Haar measure, i.e. a regular Borel measure which is invariant under left trans-

lations. Of course every locally compact group also admits a right Haar measure, which is

defined analogously. The left and right Haar measures need not agree, but they are always

absolutely continuous with respect to one another, i.e. they define the same σ-ideal of mea-

sure zero sets. In this way the algebraic and topological structure of each locally compact

group uniquely defines a measure-theoretic σ-ideal which is invariant under left, right, and

two-sided translations: the Haar measure zero sets.

Unfortunately the situation is quite different for non-locally compact groups. Every

locally compact Polish group is σ-compact, hence “small.” Conversely, if a Polish group

is non-locally compact, then its compact subsets are meager, and hence the Baire category

theorem implies that it cannot be σ-compact; so the non-locally compact groups are “large.”

This turns out to be a fundamental problem with respect to regular measures: it is well-

known that if a Polish group G admits a regular σ-finite non-zero Borel measure whose

family of measure zero sets is invariant under translations, then G must be σ-compact, and

hence locally compact. In other words if G is not locally compact, then no single measure

on G can generate a translation-invariant zero-ideal of subsets of G.
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In the absence of a single canonical measure generating a translation-invariant ideal

on a non-locally compact group, Christensen [7] has defined the following alternative notion.

If G is a Polish group and A ⊆ G is universally measurable, we say A is a Haar null set (or

according to some authors a shy set) if there exists a Borel probability measure µ on G with

the property that µ(gAh) = 0 for every g, h ∈ G. Denote the class of subsets of G which are

contained in a Haar null set by HN (G) or just HN . It can be shown that HN (G) forms a

σ-ideal in any Polish group which is invariant under translations, and that HN (G) is exactly

the class of Haar measure zero sets whenever G is locally compact. So the notion is a novel

generalization of the Haar zero ideal to the non-locally compact setting.

The fact that HN (G) is closed under countable unions is non-trivial. The most

commonly cited source for this fact is the 1992 paper of Mycielski [40], which establishes

many of the fundamental facts about Haar null sets. We have identified a small but significant

error in the proof presented in [40], which we describe and correct in Section 5.2.

A closely related family of sets was defined briefly by Solecki [51]. If A ⊆ G is

universally measurable, then A is called openly Haar null if there exists a Borel probability

measure µ on G such that for every ε > 0, there is an open superset U ⊇ A with the

property that µ(gUh) < ε for every g, h ∈ G. Denote the class of openly Haar null sets in G

by OHN (G), or just OHN . Then OHN (G) forms a sub-σ-ideal of HN (G).

The family OHN has the following interesting application. If G is a group with the

property that every singleton subset of G is openly Haar null, then G admits a decomposition

G = A∪B, where A is a comeager Haar null set and B is meager and co-Haar null. This gives

a large group analogue to the classical dichotomy theorem regarding meager/Haar measure

zero sets in locally compact groups (See Theorem 2.30). Of course in any uncountable group

the singletons are Haar null, but it turns out they need not be openly Haar null in every

group. We show that in many groups (both locally compact and non-locally compact) there

are Haar null sets which are not openly Haar null, and so the containment of OHN in HN

is sometimes proper. This resolves an uncertainty of Solecki. In fact we exhibit groups G

(both locally compact and non-locally compact) where OHN (G) = {∅} is the trivial σ-ideal.
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We are able to get positive results in some other groups. If G =
∏
k∈ω

Gk is a countably

infinite product of locally compact, non-compact groups Gk, we show that every compact

subset of G is openly Haar null. Thus the compact sets are small in both the topological and

measure-theoretic senses. On the other hand, it follows that G decomposes into the union

of a Haar null set and a meager set, so the topological and measure-theoretic ideals always

differ drastically in such groups. This gives a partial positive answer to a question of Darji.

In S∞ we show that the compact subsets are Haar null, which extends the domain of a result

of Dougherty [11] for groups which admit a two-sided-invariant metric.

Using a dynamical argument, we show that the group Homeo+[0, 1] of increasing

homeomorphisms of the interval has the following curious property: if K is a compact

subset and U is a nonempty open subset, then there exist some g, h ∈ Homeo+[0, 1] for

which gKh ⊆ U . An immediate corollary is that there are no non-empty openly Haar

null sets in Homeo+[0, 1]. We observe that such a property cannot hold in any non-locally

compact group, and hence it may be fairly called a “large group property.”
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CHAPTER 2

PRELIMINARIES

The content of this chapter consists primarily of well-known definitions and facts

from descriptive set theory, measure theory, and topological group theory, which are given

excellent and detailed treatments in many standard references (see for instance [8], [17], [18],

[28], [33], [35], [36], and [41]). For this reason we aim not to give a comprehensive development

of the ideas described, but rather to develop just enough technology to facilitate the proofs

of the later chapters. With this in mind, we avoid giving definitions and facts in their fullest

generality, and instead restrict our attention mainly to the specific setting of Polish spaces

and Polish groups. We assume the reader already has familiarity with the basics of sets,

groups, and topological spaces.

2.1. Definitions and Facts

In the next two subsections we briefly recall what major facts we need to know from

descriptive set theory, topological group theory, and measure theory.

2.1.1. Descriptive Set Theory and Baire Category

Definition 2.1. Let X be a set. A family A of subsets of X is called a σ-algebra of subsets

of X if ∅, X ∈ A and it is

(1) closed under countable unions, i.e. if (Ai)i∈ω is a sequence of subsets in A, then⋃
i∈ω

Ai ∈ A, and

(2) closed under complementation, i.e. if A ∈ A then X\A ∈ A.

Any σ-algebra of subsets of X is also closed under countable intersections. Since any inter-

section of σ-algebras is again a σ-algebra, for any family F of subsets of X there is a smallest

σ-algebra containing F as a subset. This is the σ-algebra generated by F , denoted σ(F).

Definition 2.2. A nonempty family I of subsets of X is called a σ-ideal of subsets of X if

X /∈ I and it is
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(1) closed under countable unions, i.e. if (Ai)i∈ω is a sequence of subsets in I, then⋃
i∈ω

Ai ∈ I, and

(2) closed under taking subsets, i.e. if A ⊆ B, B ∈ I, then A ∈ I.

Intuitively, we think of the members of a σ-ideal as the “small subsets” of X.

Definition 2.3. If X is a topological space and τ the topology on X, then the family

B(X) = σ(τ) is the family of Borel subsets of X. If Y is another topological space and

f : X → Y is a function, then f is called Borel-measurable if f−1(V ) ∈ B(X) for every open

set V ⊆ Y . If f is Borel-measurable and also has a Borel-measurable inverse f−1, we say

that f is a Borel isomorphism.

Definition 2.4. A topological space X is called Polish if it is completely metrizable and

separable.

Polish spaces are the natural setting for descriptive set theory. The following facts

are well-known and may be used to build many new Polish spaces from old ones.

Theorem 2.5. (1) The disjoint union of a finite or infinite sequence of Polish spaces

is Polish.

(2) The product of a finite or infinite sequence of Polish spaces is Polish.

(3) (Alexandrov-Mazurkiewicz) If X is Polish and Y ⊆ X, then Y is Polish if and only

if Y is Gδ.

(4) (Sierpinski) If X is Polish and f : X → Y is a continuous open surjection, then Y

is Polish.

Definition 2.6. Let X be a Polish space. A subset A ⊆ X is called analytic if there is

a Polish space Z and a continuous function f : Z → X for which f(Z) = A. Denote the

family of analytic subsets of X by Σ1
1(X) or just Σ1

1.

Theorem 2.7 ([33] Theorem 14.12). Let X, Y be Polish spaces and f : X → Y a function.

The following statements are equivalent:

9



(1) f is Borel-measurable;

(2) The graph of f is a Borel subset of X × Y ;

(3) The graph of f is an analytic subset of X × Y .

Theorem 2.8 ([33] Lusin-Souslin’s Theorem 15.1 and Corollary 15.2). Let X, Y be Polish

spaces and f : X → Y a continuous function. If A ⊆ X is Borel and f � A is injective, then

f(A) is Borel in Y , and f � A : A→ f(A) is a Borel isomorphism.

The following theorem is fundamental in descriptive set theory and asserts that the

continuum hypothesis is “true for analytic sets.” We use this fact to construct our main

counterexample in Chapter 3.

Theorem 2.9 ([33] Exercise 14.13). Let X be a Polish space and A ∈ Σ1
1(X). Then either

A is countable or A contains a compact perfect set.

Definition 2.10. Let X be a Polish space. A subset F ⊆ X is said to be nowhere dense

if IntX clX F = ∅. A subset A ⊆ X is said to be meager or first category if A is contained

in any countable union of nowhere dense sets. Intuitively, we think of the meager sets as

“small in the topological sense.” A subset B ⊆ X is called comeager or residual if X\B is

meager. Equivalently, B is comeager if B contains a dense Gδ subset of X.

A set A ⊆ X is said to have the Baire property if there is an open set U ⊆ X such

that A∆U is meager. Denote the class of all sets with the Baire property by BP(X). If Y is

another topological space and f : X → Y is a function, then f is called BP(X)-measurable

if f−1(V ) ∈ BP(X) for every open V ⊆ Y .

The next fact motivates some of the above definitions.

Theorem 2.11 ([33] Proposition 8.22). Let X be a Polish space. The collection BP(X)

forms a σ-algebra of subsets of X, and the collection of all meager subsets of X forms a

σ-ideal of subsets of X.

Theorem 2.12 ([33] Theorem 13.7 and Corollary 29.14). Every Borel set is analytic, and
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every analytic set has the Baire property. If a function is continuous then it is Borel-

measurable, and if a function is Borel-measurable then it is BP(X)-measurable.

2.1.2. Topological Groups and Measures

Definition 2.13. A topological group is a group G endowed with a topology for which the

group multiplication map · : G × G → G and the group inversion map −1 : G → G are

both continuous. Of course it follows that for each fixed g ∈ G, the map x 7→ gx, G→ G is

a continuous bijection with a continuous inverse given by x 7→ g−1x, G → G, and hence a

homeomorphism. The inversion map g 7→ g−1, G → G is also a homeomorphism since it is

its own inverse. For any g, h ∈ G and any subset A ⊆ G, we can define the following sets:

gA = {ga : a ∈ A}

Ah = {ah : a ∈ A}

gAh = {gah : a ∈ A}

The sets above are called a left translation of A, a right translation of A, and a

two-sided translation of A respectively.

Note that since a left, right, or two-sided translation is a homeomorphism, the family

B(G) of Borel subsets of G, the family Σ1
1(G) of analytic subsets of G, the family BP(G) of

subsets of G with the Baire property, and the family of meager subsets of G are all invariant

under such translations.

If G,H are topological groups and there exists a group isomorphism φ : G → H

which is both continuous and has a continuous inverse, then G and H are called topologically

isomorphic.

A metric d on G is called left-invariant if d(x, y) = d(gx, gy) for every g, x, y ∈ G.

A metric d is called two-sided-invariant if d(x, y) = d(gxh, gyh) for every g, h, x, y ∈ G. A

group G is called TSI if G admits a two-sided-invariant metric.

Theorem 2.14. Let G and H be topological groups, and f : G→ H a group homomorphism.

Then f is continuous if and only if f is continuous at the identity element e ∈ G.
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Proof. If f is continuous then f is continuous at e. Conversely, suppose f is continuous at

e. Let g ∈ G be arbitrary and let V ⊆ Y be an open neighborhood of f(g). Then [f(g)]−1V

is an open neighborhood of f(e), and so there is an open set U ⊆ G containing e for which

f(U) ⊆ [f(g)]−1(V ). Then gU is an open neighborhood of g and f(gU) = f(g)f(U) ⊆

f(g)[f(g)]−1V = v, so f is continuous at g and hence everywhere. �

The following theorem is fundamental for the theory of topological groups and the

reader may consult [18] Theorem 2.2.1 for a proof.

Theorem 2.15 (Birkhoff-Kakutani). Let G be a Hausdorff topological group. Then G is

metrizable if and only if G admits a countable basis of open sets at the identity. If G is

metrizable then G admits a left-invariant metric.

Definition 2.16. A topological group is Polish if its underlying topology is Polish.

Theorem 2.17. (1) ([18] Proposition 2.2.3) A product of a finite or infinite sequence

of Polish groups is a Polish group.

(2) ([31] Proposition 4.2) If G,H are Polish groups and θ : H → Aut G is a group

homomorphism for which (g, h) 7→ [θ(h)](g), G × H → G is continuous, then the

semidirect product Goθ H is a Polish group.

(3) ([18] Proposition 2.2.1) If H is a subgroup of a Polish group G, then H is Polish if

and only if H is Gδ if and only if H is closed.

(4) ([18] Proposition 2.2.10) If H is a closed normal subgroup of a Polish group G, then

G/H is a Polish group.

Theorem 2.18 (Montgomery [39]). Let G be a group endowed with a completely metrizable

topology. If the mappings x 7→ gx, G → G and x 7→ xh, G → G are continuous for every

g, h ∈ G, then G is a completely metrizable topological group.

Definition 2.19. Let G be a Polish group and H a closed subgroup of G. A coset selector

for G/H is a function φ : G/H → G such that φ(gH) ∈ gH for every g ∈ G.
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Theorem 2.20 ([33] Theorem 12.17). Let G be a Polish group and H a closed subgroup of

G. Then there exists a Borel-measurable coset selector for G/H.

Definition 2.21. A topological group is called locally compact if it admits a base of topology

consisting of compact sets.

Theorem 2.22. Every second countable locally compact Hausdorff topological group is Pol-

ish.

Definition 2.23. Let X be a set, and A a σ-algebra of subsets of X. A function µ : A →

[0,∞] is called a (countably additive) measure on A if µ(∅) = 0 and µ

(⋃
i∈ω

Ai

)
=
∑
i∈ω

µ(Ai)

whenever (Ai)i∈ω is a sequence of pairwise disjoint Borel subsets of X. The measure µ is

called finite if µ(X) <∞. The measure µ is called a probability measure if µ(X) = 1.

If X is a topological space and A = B(X) is the family of Borel subsets of X, then µ

is called a Borel measure on X.

A Borel measure µ on X is called regular if the following three properties hold.

(1) µ(K) <∞ whenever K ⊆ X is compact and Borel;

(2) µ(U) = sup{µ(K) : K ⊆ U,K is compact and Borel} for each open set U ⊆ X; and

(3) µ(A) = inf{µ(V ) : V ⊇ A, V is open} for each Borel set A ⊆ X.

Lemma 2.24 ([8] Proposition 8.1.10). Every finite Borel measure on a Polish space is regular.

Definition 2.25. Let X be a set, A a σ-algebra of subsets of X, and µ a finite measure on

A. The completion Aµ of A with respect to µ is the set

Aµ = {A ⊆ X : ∃ E,F ∈ A, E ⊆ A ⊆ F, µ(F\E) = 0}.

It is easy to check that the completion Aµ is a σ-algebra of subsets of X. The measure

µ may be naturally extended to a measure on Aµ by requiring that µ(A) = µ(E) = µ(F ) for

every such triple (A,E, F ) as above.
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Now suppose X is a topological space. A set A is called universally measurable if A

is in the completion of B(X) with respect to every finite Borel measure µ. Since the class of

universally measurable sets is an intersection of σ-algebras (across all possible µ) it is again

a σ-algebra of subsets of X.

Theorem 2.26 ([8] Corollary 8.4.3). Every analytic subset of a Polish space is universally

measurable.

Definition 2.27. If G is a topological group, then a Borel probability measure µ on G is

called a left Haar measure on G if it is both regular and invariant under left translations,

i.e. µ(gA) = µ(A) for every g ∈ G and Borel set A ⊆ G. Likewise, a right Haar measure on

G is a regular Borel probability measure which is invariant under right translations.

The following theorem was proven in the special case of second countable groups by

Haar in 1933 [25], and then in total generality by Weil in 1940 [57], using the axiom of choice.

Cartan [6] later furnished an independent proof which avoids the use of choice.

Theorem 2.28 (Haar/Weil/Cartan). Let G be a locally compact topological group. Then

there exists a left Haar measure on G. Moreover this measure is unique up to scalar multi-

plication, that is, if µ and ν are both left Haar measures on G then µ = cν for some constant

c ∈ R.

Of course an immediate corollary is that every locally compact group admits a right

Haar measure which is also unique up to scalar multiplication. In general the left and right

Haar measures on a group need not be the same, but the following is true.

Theorem 2.29 ([8] Corollary 9.3.7). Let G be a topological group. Let µL be any left Haar

measure on G and µR be any right Haar measure on G. Then µL and µR are absolutely

continuous with respect to one another, i.e., for every Borel set A ⊆ G, we have µL(A) = 0

if and only if µR(A) = 0.

It is easy to see that for any Borel measure µ on a topological space X, the family

of measure zero sets I = {A ⊆ X : ∃B ⊇ A,B ∈ B(X), µ(B) = 0} forms a σ-ideal. Then
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the previous two theorems imply that each locally compact group admits a canonical family

of measures (left and right Haar measures) which all generate the same σ-ideal of measure

zero sets in G. Since it is generated by left and right Haar measures, this σ-ideal is invariant

under left, right, and therefore two-sided translations. So the locally compact groups admit

a canonical measure-theoretic analogue to the topological translation-invariant σ-ideal of

meager sets.

On the other hand, the two σ-ideals always differ substantially, as the next theorem

indicates.

Theorem 2.30 ([41] Theorem 16.5). Let G be an uncountable locally compact topological

group. Then G may be written as a disjoint union G = A∪B, where A is a comeager Haar

measure zero set and B is a meager set of full Haar measure.

Definition 2.31. Let G be a locally compact topological group and let µ be a left Haar

measure on G. For each g ∈ G define a new measure µg on X by the rule µg(A) = µ(Ag),

for each A ∈ B(G). It is easy to check that µg is another left Haar measure, and hence

it is a positive scalar multiple of µ; say µg = ∆(g)µ for some ∆(g) ∈ R+. The function

∆ : G→ R+ defined this way is called the modular function of G.

The definition of ∆ does not depend on the choice of left Haar measure µ. ∆ is a

continuous homomorphism from G into R.

If ∆ is the constant function ∆ = 1, then G is called unimodular. Evidently a group

is unimodular if and only if its left and right Haar measures coincide.

2.2. Some Groups of Interest

In this section we seek to clarify our domain of discourse by mentioning many exam-

ples of groups both large and small, and developing some facts about those most important to

our present purposes. First, we provide lists of some famous locally compact and non-locally

compact (Polish) groups.

15



Examples of Locally Compact Polish Groups.

• The additive group Z with the discrete topology.

• More generally, any countable group G with the discrete topology.

• The additive groups R and C with the usual Euclidean topology.

• The multiplicative group R+ with the usual Euclidean topology.

• The circle group T.

• The ax+ b group.

• The matrix groups GL(n,R), GL(n,C), SL(n,R), SL(n,C), O(n,C), SO(n,C),

etc.

• More generally, any finite-dimensional Lie group.

• Any finite product of locally compact Polish groups.

Examples of Non-Locally Compact Polish Groups.

• Any infinite-dimensional separable Banach space with its norm topology.

• The unitary group U(H) of an infinite-dimensional separable Hilbert space, with

the strong operator topology.

• Any countably infinite product of non-compact locally compact second countable

groups.

• Many continuous function spaces, e.g. C([0, 1]), C(2ω,R), etc., with the compact-

open topology.

• Many homeomorphism groups, e.g. Homeo[0, 1], HomeoR, Homeo 2ω, HomeoT,

etc., with the compact-open topology.

• S∞, the group of permutations of a countable set, with the topology of pointwise

convergence.

• Aut Q, the group of order-preserving self-bijections of the rationals, and Aut R,

the group of edge-relation-preserving self-bijections of the random graph, with the

topology of pointwise convergence.

• IsoU, the group of isometries of the universal Urysohn space, with the compact-open
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topology.

• Aut (X,µ), the group of measure-preserving transformations of a standard Lebesgue

measure space, with the weak topology.

In the next three subsections we develop just a few of these groups in greater detail.

The structure of the ax+ b group and its subgroups prove useful in Chapters 3 and 5, while

the properties of S∞ and Homeo+[0, 1] are especially relevant in Chapters 4 and 5.

2.2.1. The Homeomorphism Groups Homeo+R and Homeo+[0, 1]

Let Homeo+R denote the group of all increasing self-homeomorphisms of R, with

function composition as group operation. Equip Homeo+R with the compact-open topol-

ogy, which has for a topological subbase all sets of the form

UK,V = {f ∈ R : f(K) ⊆ V },

where K ⊆ R is a compact set and U ⊆ R is open. Then Homeo+R forms a Polish group.

Similarly, let Homeo+[0, 1] be the group of all increasing self-homeomorphisms of

the interval [0, 1], with function composition as group operation, and equipped with the

compact-open topology. Then Homeo+[0, 1] is also a Polish group, and we have:

Theorem 2.32. Homeo+R is topologically isomorphic to Homeo+[0, 1].

Proof. Fix a homeomorphism φ : (0, 1)→ R. Define a map ψ : Homeo+R→ Homeo+[0, 1]

by

[ψ(f)](x) =

 φ−1 ◦ f ◦ φ(x) : x ∈ (0, 1)

x : x = 0, 1
.

Since every increasing self-homeomorphism of [0, 1] fixes endpoints, it is easy to check

that ψ is a group isomorphism. To see that ψ is continuous, let f ∈ Homeo+[0, 1] and let

W ⊆ Homeo+[0, 1] be basic open about ψ(f). Then

W = {g ∈ Homeo+[0, 1] : g(K1) ⊆ V1, ..., g(Kn) ⊆ Vn}
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for some compact sets K1, ..., Kn and open sets V1, ..., Vn in [0, 1]. Define U ⊆ Homeo+R by

U = {h ∈ Homeo+R : h(φ(K1)) ⊆ φ(V1), ..., h(φ(Kn)) ⊆ φ(Vn)}.

So U is basic open in Homeo+R, and since ψ(f) ∈ W we have f ∈ U . Clearly

ψ(U) ⊆ W , so ψ is continuous at f and hence continuous everywhere. A similar argument

shows ψ−1 is continuous, so ψ is a topological isomorphism. �

Definition 2.33. Define a metric ρ on Homeo+[0, 1] by ρ(f, g) = sup
x∈[0,1]

|f(x)−g(x)|, the uni-

form metric. The uniform metric ρ generates a topological group topology on Homeo+[0, 1].

We desire the following characterization of the compact-open topology, which we use

in Chapter 5.

Theorem 2.34. Let τ1 be the compact-open topology on Homeo+[0, 1], and let τ2 be the

topology generated by the uniform metric ρ. Then τ1 = τ2.

Proof. Let Bρ(id, ε) be the basic open ε-ball about the identity id : [0, 1] → [0, 1] in

Homeo+[0, 1]. Let d be the standard Euclidean metric on [0, 1]. Let {Bd(xk,
ε
4
)}1≤k≤n be a

finite covering of [0, 1] by ε
4
-balls. Define a set U ⊆ Homeo+[0, 1] by

U = {f ∈ Homeo+[0, 1] : f(cl(Bd(xk,
ε
4
)) ⊆ Bd(xk,

ε
2
), 1 ≤ k ≤ n}.

U is a τ1-open neighborhood of id. Let f ∈ U and x ∈ [0, 1]. We have x ∈ Bd(xk,
e
4
) for

some xk, and hence f(x) ∈ Bd(xk,
ε
2
). Then d(f(x), x) ≤ d(f(x), xk) + d(x, xk) <

ε
4

+ ε
2

= 3ε
4

.

Since x was arbitrary, ρ(f, id) ≤ 3ε
4
< ε, and hence f ∈ Bρ(id, ε). So U ⊆ Bρ(id, ε). Since τ1

and τ2 are group topologies, this implies that τ1 ⊆ τ2.

On the other hand, suppose K1, ..., Kn ⊆ [0, 1] are compact and V1, ..., Vn ⊆ [0, 1] are

open, and Kk ⊆ Vk for each k ∈ {1, ..., n}. Consider the τ1-basic open neighborhood of the

identity given by

U = {f ∈ Homeo+[0, 1] : f(Kk) ⊆ Vk, 1 ≤ k ≤ n}.
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Let ε = min
1≤k≤n

d(Kk, [0, 1]\Vk), and consider the τ2-open neighborhood of identity

Bρ(id, ε) ⊆ Homeo+[0, 1]. Let f ∈ Bρ(id, ε) and let x ∈ Kk for k ∈ {1, ..., n}. If f(x) /∈

Vk, then we would have f(x) ∈ [0, 1]\Vk and hence d(Kk, [0, 1]\Vk) ≤ d(x, f(x)) < ε ≤

d(Kk, [0, 1]), a contradiction. So f(x) ∈ Vk and Kk ⊆ Vk for each k. This shows f ∈ U , and

therefore Bρ(id, ε) ⊆ U . Again since τ1 and τ2 are group topologies, we have shown τ2 ⊆ τ1.

So τ1 = τ2.

�

2.2.2. The ax+ b Group

There are two natural ways to realize the ax+ b group.

(1) Let G be the group of all affine transformations of R, i.e. the group of all functions

f ∈ Homeo+R of the form f(x) = ax + b for some a, b ∈ R, with function compo-

sition as the group operation. Endow G with the subspace topology inherited from

Homeo+R with its compact-open topology, and G becomes a Polish group.

(2) Let G′ be the natural semidirect product group G′ = R+ n R = R+ nφ R, where

φ : R → Aut R is given by [φ(c)](x) = cx for each x ∈ R, for each c ∈ R. The

mapping (a, b) 7→ ab, R+ × R→ R is continuous and hence G′ is a Polish group by

Theorem 2.17 (2). As a topological space G′ = R+ × R (so G′ is locally compact),

and the group operation on G′ is given by (a1, b1) · (a2, b2) = (a1a2, a1b2 + b1) for

each (a1, b1), (a2, b2) ∈ G′.

Theorem 2.35. G and G′, as defined above, are topologically isomorphic.

Proof. Define φ : G′ → G by [φ(a, b)](x) = ax+ b for x ∈ R, for each (a, b) ∈ G′. Again it

is easy to check that φ is a group isomorphism, so we need only verify that φ and φ−1 are

both continuous at the identity (1, 0) ∈ G′.

Let U ⊆ G be a basic open neighborhood of φ(1, 0) = idR : R→ R in G, so

U = {f ∈ G : f(Kk) ⊆ Vk, 1 ≤ k ≤ n}
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for some compact sets K1, ..., Kn ⊆ R and some open sets V1, ..., Vn ⊆ R with Kk ⊆ Vk

(1 ≤ k ≤ n). Let d be the standard Euclidean metric on R, and let δ = min
1≤k≤n

d(Kn,R\Vn}.

Choose an M so large that
n⋃
k=1

Kk ⊆ (−M,M). Define an open neighborhood W of identity

in G by

W = (1− δ
2M
, 1 + δ

2M
)× (− δ

2
, δ
2
).

Suppose (a, b) ∈ W and let f(x) = [φ(a, b)](x) = ax+ b. Let x ∈ Kk be arbitrary. If

0 ≤ x < M , we have f(x)−x = ax+ b−x = (a−1)x+ b < δ
2M
·x+ δ

2
< δ

2M
·M + δ

2
= δ, and

f(x)−x = ax+ b−x = (a−1)x+ b > − δ
2M
·x− δ

2
> − δ

2M
·M − δ

2
= −δ. On the other hand

if −M < x < 0, then we have f(x)−x = (a− 1)x+ b < − δ
2M
·x+ δ

2
< − δ

2M
· (−M) + δ

2
= δ,

and f(x)− x = (a− 1)x+ b > δ
2M
· x− δ

2
> δ

2M
· (−M)− δ

2
= −δ. So f(x)− x ∈ (−δ, δ), i.e.

d(x, f(x)) < δ. If we had f(x) ∈ R\Vk, then we would have d(Kk,R\Vk) ≤ d(x, f(x)) < δ ≤

d(Kk,R\Vk), a contradiction. So f(x) ∈ Vk and hence f(Kk) ⊆ Vk for each k. This shows

φ(W ) ⊆ U and hence φ is continuous at the identity.

To see φ−1 is also continuous, let U = (1− ε, 1 + ε)× (−δ, δ) be a basic open neigh-

borhood of identity (1, 0) = φ−1(idR). Without loss of generality shrink δ so that δ < ε. Let

K1 = {0} and K2 = {1}, so K1 and K2 are compact subsets of R. Let V1 = (−δ, δ) and

V2 = (1 − (ε − δ), 1 + (ε − δ)), so V1, V2 are open intervals in R. Define a basic open set of

identity W ⊆ G by

W = {f ∈ G : f(K1) ⊆ V1, f(K2) ⊆ V2}.

Let f ∈ W , and write f(x) = ax + b for some a ∈ R+, b ∈ R. We have b = f(0) ∈

(−δ, δ). Then since f(1) = a + b ∈ (1 − (ε − δ), 1 + (ε − δ)), we have a = (a + b) − b <

1 + ε− δ + δ = 1 + ε, and a = (a+ b)− b > 1− ε+ δ − δ = 1− ε. So a ∈ (1− ε, 1 + ε) and

hence (a, b) = φ−1(f) ∈ W . This shows φ−1(W ) ⊆ U and φ−1 is continuous at the identity.

So φ and φ−1 are both continuous everywhere and φ is a homeomorphism. �
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2.2.3. The Permutation Group S∞ and Its Closed Subgroups

Let S∞ be the group of all permutations π : ω → ω, with function composition as

group operation. For a finite sequence of integers s = (s(0), ..., s(n−1)) ∈ ω<ω, let lh(s) = n

denote the length of the sequence s. Endow S∞ with the topology generated by basic open

sets {Ns}s∈ω<ω of the form

Ns = {π ∈ S∞ : π � lh(s) = s}.

Then S∞ becomes a Polish group. The set of all finitely-supported permutations is

dense in S∞. S∞ famously has the following automatic continuity property.

Theorem 2.36 (Kallman [32]). Let G be a Polish group and let φ : G→ S∞ be an abstract

group isomorphism. Then φ is a topological isomorphism.

Corollary 2.37 (Kallman [32]). The standard topology on S∞ is the unique topology which

makes S∞ into a Polish group.

The previous corollary confirms our intuition that the topology of S∞ is closely tied

to its combinatorial structure. For instance, it is helpful to view S∞ topologically as a

subspace of the Baire space ωω. The following definitions and lemmas will prove to be of

use in Chapter 5.

Definition 2.38. A tree on ω is a subset T ⊆ ω<ω which is closed under initial segments,

i.e. if t ∈ T then t � n ∈ T for all integers n ≤ lh(t). The elements of T are called nodes. If

s, t ∈ T with lh(t) = lh(s) + 1 and t � lh(s) = s, then t is called a child of s and s is called

a parent of t. A tree is called pruned if every node in T has a child. A tree is called finitely

branching if each node in T has only finitely many children. A branch of T is an infinite

sequence x ∈ ωω such that x � n ∈ T for every integer n. Denote the set of all branches

through T by [T ].

Lemma 2.39. Let F ⊆ ωω. Then F is closed if and only if F = [T ] for some pruned tree T

on ω. F is compact if and only if the tree T is finitely branching.
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Proof. Suppose F is closed. Define T = {π � n : π ∈ F, n ∈ ω}. T is a pruned tree on

ω. If π ∈ F , then clearly π ∈ [T ] by the definition of T , so F ⊆ [T ]. Conversely, suppose

π ∈ [T ]. Then for each n ∈ ω, π � n ∈ T , so there exists a permutation πn ∈ F such that

πn � n = π � n. Then the sequence (πn)n∈ω of elements of F converges to π ∈ ωω, and hence

π ∈ F since F is closed. So F = [T ].

Suppose T is not finitely branching. Then there is a node s ∈ T with infinitely many

children t1, t2, .... Then {Nt1 , Nt1 , ...} ∪ {ωω\
⋃
i∈ω

Nti} forms an open cover of F by pairwise

disjoint sets. For each ti there is πi ∈ F with πi ∈ Nti by the definition of T ; so this cover

admits no finite subcover. Therefore F is not compact.

On the other hand, suppose T is finitely branching, but for the sake of contradiction

that F is not compact. Then F has an open cover {Ui}i∈ω which cannot be finitely subcov-

ered. Since T is finitely branching, there are only finitely many t1, ..., tn ∈ T of length 1.

Since {Ntk}1≤k≤n is an open cover of [T ] = F , there must be one particular tk such that Ntk

cannot be covered by only finitely many elements of {Ui}i∈ω (since otherwise F = [T ] would

be finitely subcoverable). Set x(0) = tk(0) for this tk.

Now suppose by way of induction that we have constructed a finite sequence (x(0), ..., x(n−

1)) ∈ T with the property that N(x(0),...,x(n−1)) cannot be covered by only finitely many el-

ements of {Ui}i∈ω. Since T is finitely branching, this node has only finitely many children

t1, ..., tk in T . Again one of these nodes tk must have the property that Ntk cannot be covered

by finitely many elements of {Ui}i∈ω, since otherwise N(x(0),...,x(n−1)) would be finitely cover-

able by elements of {Ui}i∈ω, which it is not. Set x(n) = tk(n) and continue the induction.

In this way we construct a sequence x = (x(0), x(1), ...) ∈ ωω with the property that

Nx�n is not finitely subcoverable by elements of {Ui}i∈ω, for any n ∈ ω. But x ∈ Ui for some

i ∈ ω, and since Ui is open there is some basic neighborhood Nx�n with x ∈ Nx�n ⊆ Ui.

So this basic neighborhood was finitely coverable after all, a contradiction. Therefore F is

compact and the theorem is proved. �

Corollary 2.40. Let F ⊆ S∞. Then F is closed if and only if F = [T ] ∩ S∞ for some

pruned tree T on ω. F is compact if and only if T is finitely branching and [T ] ⊆ S∞.
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Proof. The first statement above is just the definition of the subspace topology. If F is

compact in S∞, then F is compact in ωω and hence F = [T ] for a finitely branching tree T .

Then [T ] = F ⊆ S∞. �

Corollary 2.41. S∞ is not locally compact.

Proof. Any basic clopen neighborhood Ns ⊆ S∞, s ∈ ω<ω is equal to [T ] ∩ S∞ for some

infinitely branching tree T , so no such neighborhood has compact closure. �

Next we mention and make use of a powerful structural theorem of Dixon, Neumann,

and Thomas. First let us set up a little notation.

Definition 2.42. For F ⊆ ω let S(F ) = {π ∈ S∞ : π(n) = n for all n ∈ F} and S{F} =

{π ∈ S∞ : π(n) ∈ F for all n ∈ F}. Let Sf be the set of all finitely-supported permuations.

Theorem 2.43 (Dixon-Neumann-Thomas [10]). Let H be a subgroup of S∞. If H is of

countable index in S∞, then there exists a finite set F ⊆ ω such that

S(F ) ≤ H ≤ S{F}.

The above may be applied to prove the following theorem, which gives a purely

algebraic characterization of the stability groups for the natural action of S∞ on ω.

Proposition 2.44. If X is a set and x ∈ X, then H = Sx has exactly two double cosets

in S(X) and the only subgroup of H that is normal in S(X) is {e}. Conversely, if X is

countable and H is a subgroup of S(X) with exactly two double cosets and such that the

only subgroup of H that is normal in S(X) is {e}, then there is a unique x ∈ X such that

H = Sx.

Proposition 2.44 should be compared with the results of William G. Wright [59],

who gave a similar complete characterization in the class of closed subgroups of the point

stabilizers of the homeomorphism groups of connected manifolds. It would be interesting if

the closed subgroup hypothesis in Wright’s results can be dispensed with.

Before turning to the proof, we need the following lemma.
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Lemma 2.45. Let H ⊆ S∞ be a subgroup with exactly two double cosets and such that the

only normal subgroup of H that is normal in S∞ is {e}. Then there is a finite subset F ⊆ ω

such that S(F ) ⊆ H ⊆ S{F}. In particular S∞/H is countable and H is open.

Proof. Sf 6⊆ H since Sf is normal in S∞. Hence, there is some transposition (a, b) /∈ H.

Therefore the double coset not equal to H must be H(a, b)H. Let B = {a, b}. S(B) is

open in S∞, S∞/S(B) is countable and therefore H/(H ∩ S(B)) is countable. Let {h`}`≥1 ⊆

H be distinct coset representatives for H/(H ∩ S(B)). Therefore H(a, b)H = ∪`≥1h`(H ∩

S(B))(a, b)H = ∪`≥1h`(a, b)(H ∩ S(B))H = ∪`≥1h`(a, b)H. The lemma now follows from

Theorem 2.43. �

Proof of Proposition 2.44. If x ∈ X and H = Sx, then H has exactly two orbits on

X since Sx fixes x and acts transitively on X − {x}. Since there is an equivariant bijection

between S(X)/Sx and X as S(X)-spaces, there are exactly two H double cosets in S(X). If

N is a normal subgroup of H, then N ⊆ ∩a∈S(X)aSxa
−1 = ∩a∈S(X)Sax = {e}.

To prove the converse, we may assume that X = ω and S(X) = S∞. Suppose H

is a subgroup of S∞ that has exactly two double cosets and has the property that the only

subgroup of H that is normal in S∞ is {e}. Therefore there is F ⊆ ω with |F | < +∞ such

that S(F ) ⊆ H ⊆ S{F} by Lemma 2.45. We will be done if |F | = 1. Suppose that |F | > 1.

This will lead to a contradiction if S{F} and therefore H has more than two double cosets. To

see this, choose distinct elements a, b ∈ F and distinct elements x, y ∈ ω−F . The two finite

permutations (a, x)(b, y) and (a, x) are in distinct S{F} double cosets, for suppose that π,

ρ ∈ S{F} and (a, x)(b, y) = π(a, x)ρ. If ρ(a) = a, then ρ(b) ∈ F − {a} and (π(a, x)ρ)(b) ∈ F

but ((a, x)(b, y))(b) = y /∈ F , a contradiction. If ρ(a) ∈ F − {a}, then (π(a, x)ρ)(a) ∈ F

but ((a, x)(b, y))(a) = x /∈ F , again a contradiction. Thus |F | = 1 and Proposition 2.44 is

proved. �

As a corollary we have the well-known result of Schreier and Ulam [49] that every

automorphism of S∞ is inner.

Corollary 2.46. Let X and Y be countably infinite sets and let ϕ : S(X) → S(Y ) be an
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algebraic isomorphism. Then there is a bijection ψ : X → Y such that ϕ(π) = ψπψ−1 for

every π ∈ S(X).

Proof. If x ∈ X, then Sx has exactly two double cosets and the only subgroup of it normal

in S(X) is {e}. Since ϕ(Sx) has exactly the same algebraic properties, there is a unique

y ∈ Y such that ϕ(Sx) = Sy. Let ψ(x) = y. ψ is one-to-one and ψ is onto by applying the

same reasoning using ϕ−1, so ψ : X 7→ Y is a bijection. Sψ(π(x)) = ϕ(Sπ(x)) = ϕ(πSxπ
−1) =

ϕ(π)ϕ(Sx)ϕ(π−1) = ϕ(π)Sψ(x)ϕ(π−1) = Sϕ(π)(ψ(x)) and therefore ψπ = ϕ(π)ψ. �

S∞ interests many mathematicians because it and and its closed subgroups play the

role of the automorphism groups of countable structures. The remainder of this section will

rigorize the preceding comment. We generally follow the presentation and definitions given

in Section 4.5 of [44].

Definition 2.47. A signature L is a countable family of symbols Ri, i ∈ I, which represent

relations, and symbols fj, j ∈ J , which represent functions. To each symbol we associate

a particular arity, i.e. a positive integer n(i) for relation symbols, or a nonnegative integer

m(j) for function symbols.

A structure A in the signature L is a set A together with a family of relations RA
i ⊆

An(i), one for each i ∈ I, and a family of functions fA
j : Am(j) → A, one for each j ∈ J .

The set A is called the universe of A and the relations RA
i and functions fA

j are called

interpretations of the relation and function symbols in L. Note that relation symbols of

arity 1 may be interpreted as constants, or distinguished subsets, of A. If L has no function

symbols, then we call A a relational structure.

Example 2.48. (1) If L = ∅, then the structures in L are just sets.

(2) Suppose L = {<}, where < is a relation symbol of arity 2. Then linearly ordered

sets are examples of structures in L. So are partially ordered sets.

(3) Suppose L again contains just one relation symbol of arity 2. A graph (V,E) is a

structure in L, where the universe is the set V of vertices, and the relation symbol
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is the irreflexive, symmetric relation E of edges. If E is instead irreflexive and

antisymmetric, then the directed graph (V,E) is also a structure in L.

(4) Let S ⊆ [0,∞) be a countable set. Let L = {Ds : s ∈ S}, where each Ds is a

binary relation symbol. An S-valued metric space (X, d) is a structure in L, where

we understand that DX
s (x, y)↔ d(x, y) = s for all x, y ∈ X. For instance, a discrete

space is a {0, 1}-valued metric space, and Q is a Q ∩ [0,∞)-valued metric space.

(5) Let F be a countable field. A vector space V over F can be regarded as a structure

in a signature which includes a constant symbol 0, a binary function symbol +,

which represents addition in V , and a unary function symbol for each λ ∈ F, which

represents multiplication by the scalar λ.

(6) A Boolean algebra is a structure in a signature which includes binary function

symbols ∨ and ∧, a unary function symbol ¬, and constant symbols 0 and 1.

Definition 2.49. Given two structures A and B in the same signature L, with universes

A and B respectively, a map π : A→ B is called a homomorphism if for every Ri ∈ L, and

every n(i)-tuple (a1, ..., an(i)), we have

(a1, ..., an(i)) ∈ RA
i ↔ (π(a1), ..., π(an(i))) ∈ RB

i

and for every fj ∈ L, and every m(j)-tuple (a1, ..., am(j)), we have

fB
j (π(a1), ..., π(am(j))) = π(fA

j (a1, ..., am(j))).

If π is also an injection, we call π a monomorphism or an embedding, and we say A is

a substructure of B, denoted A ≤ B. We also write π : A ↪→ B if we wish to draw attention

to the fact that π is our distinguished embedding. If A ⊆ B and idA : A ↪→ B, then we write

A v B (this notation may not be standard). If π is bijective then we call π an isomorphism.

A structure F is called ultrahomogenous if every isomorphism between finite substruc-

tures A v F and B v F extends to an automorphism of F.

A structure F is called locally finite if every finite subset D ⊆ F is contained in some

finite substructure D v F.
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Remark 2.50. All relational structures are locally finite. Every example listed above is

locally finite, except for the vector space V over F, which is locally finite if and only if F is

a finite field.

Definition 2.51. If A is a structure, then the age of A, denoted Age(A), is the class of all

finite structures which are isomorphic to a substructure of A.

The following two theorems are achieved using a “back-and-forth” or “shuttle” argu-

ment.

Theorem 2.52. Let F be a countable locally finite structure. Then the following are equiv-

alent:

(1) F is ultrahomogeneous.

(2) F has the finite extension property, i.e., whenever A,B ∈ Age(F), and A v B, then

every embedding of A into F extends to an embedding of B into F.

Theorem 2.53. Every two countable ultrahomogenous structures in the same language, hav-

ing the same age, are isomorphic.

Definition 2.54. A structure F is called a Fräıssé structure if it is countably infinite, locally

finite, and ultrahomogeneous.

Theorem 2.55 (Fräıssé [16]). A nonempty class C of finite structures in a signature L is

the age of a Fräıssé structure if and only if it satisfies the following conditions:

(1) C is closed under isomorphisms;

(2) C is closed under taking substructures;

(3) C contains structures of arbitrarily high finite cardinality;

(4) C satisfies the joint embedding property, i.e., whenever A,B ≤ C, then there is

D ∈ C containing both A and B as substructures; and

(5) C satisfies the amalgamation property, i.e. whenever f1 : A ↪→ B1 and f2 : A ↪→ B2

are monomorphisms of structures in C, then there is D ∈ C and embeddings g1 :
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B1 ↪→ D and g2 : B2 ↪→ D such that g1 ◦ f1 = g2 ◦ f2.

If this is the case then C is the age of a unique up to isomorphism Fräıssé structure

F = Flim(C), called the Fräıssé limit of C.

Fräıssé’s theorem gives us a class of “universal countable objects” which have a large

degree of symmetry and therefore a rich automorphism group:

Example 2.56. (1) The class of all finite sets is a Fräıssé class, whose Fräıssé limit is

ω.

(2) The class of all finite linear orders is a Fräıssé class, whose Fräıssé limit is order

isomorphic to the rationals Q.

(3) The class of all finite graphs is a Fräıssé class, whose limit is the random graph R.

(4) The finite dimensional vector spaces over a finite field F form a Fräıssé class, whose

limit is the infinite dimensional vector space V over F.

(5) Finite Boolean algebras form a Fräıssé class, and their limit is the countable atomless

Boolean algebra B∞, which can be realized as the space of all clopen subsets of the

Cantor space 2ω.

(6) The finite Q-valued metric spaces form a Fräıssé class, and their limit is the rational

Urysohn space UQ.

Definition 2.57. Let F be a structure with countable universe F . Let Aut F denote the

group of all automorphisms of F, endowed with the topology of pointwise convergence on F ,

where F is viewed as a discrete space. This topology makes Aut F into a Polish group.

Theorem 2.58. Let F be a structure with universe ω. Then Aut F is a closed subgroup of

S∞.

Proof. Aut F is obviously a subgroup, so it suffices to show that Aut F is closed in S∞.

We will show that the complement X = S∞ − Aut F is open. Let L be the signature for

which F is a structure. If π ∈ X, then either there exists an n-ary relation symbol R ∈ L

and a tuple (x1, ..., xn) ∈ ωn such that
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(x1, ..., xn) ∈ RF and (π(x1), ..., π(xn)) /∈ RF, or (x1, ..., xn) /∈ RF and

(π(x1), ..., π(xn)) ∈ RF,

or else there exists an n-ary function symbol f ∈ L and a tuple (x1, ..., xn) ∈ ωn such that

fF(π(x1), ..., π(xn)) 6= π(fF(x1, ..., xn)).

In either case, the open set U = {σ ∈ S∞ : σ(x1) = π(x1), ..., σ(xn) = π(xn)} is a

neighborhood of π which is disjoint from Aut F. �

Definition 2.59. Let G be a subgroup of S∞. We associate a structure FG to G as fol-

lows: For each n ∈ ω, let ωn/G denote the set of all distinct G-orbits in ωn. Let LG be

a signature consisting of relation symbols Rn,o, where n ∈ ω and o ∈ ωn/G, where the ar-

ity of each Rn,o is n. The universe of the structure FG is ω, and we define each RFG
n,o by the rule

(x1, ..., xn) ∈ RFG
n,o ↔ (x1, ..., xn) ∈ o.

In other words, we set RFG
n,o = o. We call FG the canonical structure associated to G.

Remark 2.60. It is obvious that every g ∈ G will induce an automorphism of FG. Thus we

have G ≤ Aut F.

Theorem 2.61. Aut FG is the closure of G in S∞.

Proof. Since we already know Aut FG is closed, it suffices to show thatG is dense in Aut FG.

So let π ∈ Aut FG, let x = (x1, ..., xn) ∈ ωn, and consider the basic open neighborhood U of

π defined by

U = {σ ∈ S∞ : σ(xi) = π(xi), i = 1, ..., n}.
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Let o ∈ ωn/G be the unique orbit for which x ∈ o. Then since π ∈ Aut FG, we have

πx ∈ o. But by definition we have o = G · x, and hence there exists a g ∈ G for which

gx = πx. Hence g ∈ U , and the proof is finished. �

Proposition 2.62. FG is a Fräıssé structure.

Proof. FG is obviously countably infinite, and since it is a relational structure, it is also

locally finite. So we need only verify that FG is ultrahomogeneous.

So suppose A,B v FG are finite and p : A ↪→ B is an isomorphism. Let A =

{x1, ..., xn} ⊆ ω and B = {y1, ..., yn} ⊆ ω be the universes of A and B respectively, enumer-

ated in such a way that p(xi) = yi for all i = 1, .., n. Let o ∈ ωn/G be arbitrary. Since we

have RA
n,o = RFG

n,o ∩ An = o ∩ An and RB
n,o = RFG

n,o ∩Bn = o ∩Bn, it follows that

(x1, ..., xn) ∈ o↔ (x1, ..., xn) ∈ o ∩ An

↔ (x1, ..., xn) ∈ RA
o,n

↔ (y1, ..., yn) ∈ RB
o,n

↔ (y1, ..., yn) ∈ o ∩Bn

↔ (y1, ..., yn) ∈ o.

So (x1, ..., xn) and (y1, ..., yn) belong to the same G-orbit, i.e. there exists a g ∈ G

with (g(x1), ..., g(xn)) = (y1, ..., yn) = (p(x1), ..., p(xn)). So g ∈ Aut FG and g extends p; thus

FG is ultrahomogeneous. �

Corollary 2.63. The automorphism groups of Fräıssé structures on ω are exactly the closed

subgroups of S∞.
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Corollary 2.64. Every automorphism group of a Fräıssé structure is topologically isomor-

phic to a closed subgroup of S∞. In particular, Aut Q, Aut R, Aut F∞, Aut B∞, and

Aut UQ may all be regarded as closed subgroups of S∞.

2.3. Locally Compact vs. Non-Locally Compact Groups

In this section we seek to highlight the contrast between the deep and well-developed

theory of locally compact groups, and the somewhat more mysterious theory of non-locally

compact groups. We open with what are arguably the most significant results in the history

of the theory of topological groups, which most mathematicians agree comprise the solution

to Hilbert’s fifth problem, i.e. the question of what are the minimal hypotheses one can put

on a topological group G to conclude that G is a Lie group.

Theorem 2.65 (Gleason-Montgomery-Zippin). Let G be a topological group. Then G is

locally Euclidean if and only if G is a finite-dimensional Lie group.

Definition 2.66. A group G is said to have the no-small-subgroup property if there exists

an open neighborhood of identity U ⊆ G which does not contain any non-trivial subgroup

of G.

Theorem 2.67 (Yamabe). Any locally compact connected topological group G is the inverse

limit of a sequence of finite-dimensional Lie groups. If G is locally compact and has the

no-small-subgroup property, then G is a finite-dimensional Lie group.

Of course, every finite-dimensional Lie group is locally Euclidean and hence locally

compact. These theorems imply that the locally compact groups are “not far” from Lie

groups, which a priori have considerably more structure. So we might expect the behavior of

locally compact groups to be more homogeneous than their non-locally compact counterparts.

Let us consider the dynamical properties of topological groups.

Definition 2.68. A topological transformation group is a triple (G,X, φ) where G is a

topological group, X is a topological space, and φ is an abstract homomorphism from G
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into the homeomorphism group of X with the property that the mapping (g, x) 7→ [φ(g)](x),

G×X → X is continuous. The point [φ(g)](x) is usually abbreviated g · x or gx.

The space X above is typically called a G-space, and we say G acts on X. If X is

compact, X is called a G-flow.

If Y is another G-space, and f : X → Y is a function, we say that f is G-equivariant

if f(gx) = gf(x) for every g ∈ G, x ∈ X.

If x ∈ X the set G · x = {gx : g ∈ G} is called the G-orbit of x. The action of G on

X is called transitive if G · x = X for any point x ∈ X (and hence all points x ∈ X). If for

every x ∈ X and every non-identity element g ∈ G, we have gx 6= x, then the action of G on

X is called free. If the action is both transitive and free, we call the action simply transitive.

Notice that if G is a compact topological group, then G may act on itself by left

translation, and hence G admits a free action on a compact space, namely itself. This fact

was extended to include locally compact spaces by Veech in 1977.

Theorem 2.69 (Veech [54]). Every locally compact group admits a free action on a compact

space.

Let us define a property which, according to the theorem above, is impossible for

locally compact groups.

Definition 2.70. A group G is called extremely amenable if every action of G on a compact

space X has a common fixed point, i.e. a point x for which g · x = x for every x.

The idea of extreme amenability first appeared in the mid-1960’s as a property of

topological semigroups rather than groups. It was known even before Veech’s theorem that

no locally compact group could be extremely amenable, and for a while it was an open

question whether extremely amenable groups existed at all. The first example was given by

Herer and Christensen in 1975 [27] in an ad hoc construction. A few years later it was shown

by Gromov and Milman that the unitary group U(`2) is extremely amenable. In the last few

decades there have been a flurry of papers proving that various non-locally compact groups
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are extremely amenable:

Theorem 2.71. The following groups are extremely amenable.

(1) (Gromov and Milman [24]) The unitary group U(H) of a separable infinite-dimensional

Hilbert space.

(2) (Pestov [42]) Homeo+[0, 1] and Homeo+R.

(3) (Pestov [42]) Aut Q.

(4) (Pestov [43]) IsoU.

(5) (Kechris, Pestov, and Todorcevic [34]) The automorphism group Aut F for many

Fräıssé structures F.

(6) (Giordano and Pestov [19]) Aut (X,µ).

Definition 2.72. Let G be a topological group and X a compact G-flow. X is called

minimal if clX(G · x) = X for every x ∈ X. X is called a universal minimal flow if X is

minimal and for every other minimal G-flow Y there is a continuous G-equivariant surjection

π : X → Y .

It is known that each group G admits a universal minimal flow X, and moreover that

this flow is unique up to topological conjugacy. For locally compact groups which are not

compact, the universal minimal flow can be quite complicated or pathological. At least we

have the following.

Theorem 2.73. Let G be a locally compact non-compact topological group and let X be a

universal minimal G-flow. Then X is not metrizable.

Conversely, for extremely amenable non-locally compact groups the universal minimal

flow is the simplest compact set possible: a singleton set. In addition, for many non-locally

compact groups which are not extremely amenable, the universal minimal flow has actually

been explicitly computed, and turns out to be metrizable. Just a few examples are listed

below.

Theorem 2.74. (1) (Pestov [42]) The universal minimal flow of Homeo+ T is T, with
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the evaluation action.

(2) (Glasner and Weiss [20]) The universal minimal flow of S∞ is the space LO of all

linear orders of ω, viewed topologically as a closed subset of 2ω×ω, with the natural

action.

(3) (Glasner and Weiss [21]) The universal minimal flow of Homeo 2ω is the space X

of all maximal chains of compact subsets of 2ω.

For our present purposes, we are mostly concerned with the measure-theoretic gap

between locally compact and non-locally compact groups. Recall that every locally compact

group G admits both left and right Haar measures, and that these measures together generate

a translation-invariant measure zero σ-ideal in G. The following argument, attributed to Weil

but presented here as in [46], indicates that no such σ-ideal can be generated by any single

(reasonable) measure µ if G is not locally compact.

Theorem 2.75. Suppose µ is a non-zero σ-finite regular measure µ on G whose zero sets

comprise a translation-invariant σ-ideal. Then G must be locally compact.

Proof. (Weil) Since µ is regular, there is a σ-compact set F for which F has full µ-measure

in G. Let g ∈ G be arbitrary; since the zero-sets are preserved under translations, µ(gF ) > 0.

But then gF ∩ F 6= ∅ and hence g ∈ FF−1. So G = FF−1 is σ-compact, and hence locally

compact. �

In Chapter 5 we study the phenomenon of Haar null sets, defined by Christensen [7] to

address the aforementioned shortcoming of non-locally compact groups. Under this lens we

see that different classes of groups may exhibit very different measure-theoretic properties.
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CHAPTER 3

POLISH TOPOLOGIZATION OF ABSTRACT SYMMETRY GROUPS

3.1. Introduction

Felix Klein emphasized the intrinsic connection between symmetry groups and ge-

ometries in his Erlangen Program. Perhaps motivated by Klein, Gleason ([22]) posed a very

general conjecture on topologizing symmetry groups that he regarded as fundamental for a

general study of geometries. Gleason in fact proved his conjecture in a very special case.

In this chapter, working jointly with Robert R. Kallman, we show that Gleason’s general

conjecture is false as originally stated and that it is true only under very strong hypothe-

ses. Along the way new general results in descriptive set theory are proved about a class of

functions that behave like but are distinct from functions of Baire class 1.

Paraphrasing Gleason, we ask: if G is an abstract group of homeomorphisms of a

topological space M , under what circumstances can G be given a topology such that the

pair (G,M) is a topological transformation group? That is, when can G be given a (rea-

sonable) topological group topology such that the mapping (g,m) 7→ g(m), G ×M 7→ M ,

is continuous? Gleason gives a plausibility argument relating this question to very general

geometries. Define a (topological) geometry as a topological space in which certain lines

(subsets homeomorphic to R) are distinguished. Let G be the group of automorphisms of

a geometry M , i.e., the group of homeomorphisms of M that induce a permutation of the

lines of M . It is reasonable to assume that M is homogeneous, i.e., that G acts transitively

on M . It is also reasonable to assume some local uniqueness for lines which in turn im-

plies that G is not “too big.” Gleason’s hope was that every topological geometry of finite

dimension that satisfies some weak geometrical axioms must be the homogeneous space of

some Lie group. In this context Gleason defined a frame for the action of G on M to be an

element (m1, . . . ,mn) ∈Mn such that the mapping g 7→ (g(m1), . . . , g(mn)), G→Mn is an

injection. In this paper such a frame will be called a finite frame and n will be called the

size of the finite frame. It is convenient to define a countably infinite frame to be an element
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(m1,m2, . . . ) ∈ MN such that the mapping g → (g(m1), g(m2), . . . ), G 7→ MN is an injec-

tion. Guided by this very general geometric model, Gleason considered the following axioms:

Axiom 1.

M is a Polish space and G is a group of homeomorphisms of M that acts transitively on M ;

Axiom 2(a).

There is a finite frame (m1, . . . ,mn) ∈Mn for the action of G on M such that

{(g(m1), . . . , g(mn), g(q)) : g ∈ G} ⊆Mn+1

is an analytic set for each q ∈M .

Gleason’s Conjecture. If G and M satisfy Axiom 1 and Axiom 2(a), then G can be

given a Polish group topology such that the pair (G,M) is a topological transformation

group.

The assumption in Axiom 1 that M is a Polish space and that G is a group of

homeomorphisms of G is a very mild condition. The assumption that G acts transitively

on M is a very restrictive and powerful assumption. The existence of a finite frame for

the action of G on M in Axiom 2(a) corresponds to the assumption that lines are locally

unique and that G is not too big. The analyticity condition in Axiom 2(a) is a smoothness

assumption and is somewhat problematic in that it does not correspond to any obvious

geometric assumption. However, Gleason pointed out that some assumption like Axiom 2(a)

is needed. Specifically, if M = C2 − {(0, 0)} and G is the group of nonzero quaternion

matrices, then there is even a simply transitive action of G by homeomorphisms on M that

violates Axiom 2(a) and such that the pair (G,M) is not a topological transformation group.

Gleason ([22]) proved his conjecture in the very special case of size one frames, i.e.,

Gleason proved his conjecture if G acts simply transitively on M . However, in this case no-

tice that the analytic set {(g(m), g(q)) : g ∈ G} ⊆M2 is the graph of a function on M for
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each q ∈M . Hence, by Theorem 2.7 {(g(m), g(q)) : g ∈ G} is actually a Borel set and not

merely an analytic set. On the other hand, if Gleason’s conjecture is true, then the mapping

g 7→ (g(m1), . . . , g(mn), g(q))), G→Mn+1 is a continuous injection for each q ∈M . Hence,

Lusin-Souslin’s theorem implies that {(g(m1), . . . , g(mn), g(q))) : g ∈ G} ⊆Mn+1 is in fact

a Borel set. This suggests that Axiom 2(a) should be replaced by the stronger

Axiom 2(b).

There is a finite frame (m1, . . . ,mn) ∈Mn for the action of G on M such that

{(g(m1), . . . , g(mn), g(q)) : g ∈ G} ⊆Mn+1

is a Borel set for each q ∈M .

However, Axiom 2(b) still will not be sufficient to guarantee that the conclusion

of Gleason’s conjecture is true. This situation is further clarified in Section 3.2, where it

is shown that there is a G and an M that satisfy Axiom 1 and Axiom 2(a) such that

{(g(m1), . . . , g(mn), g(q)) : g ∈ G} is a Kσ for every q ∈ M , but there is no way to make

G into a Polish group let alone have (G,M) be a Polish transformation group. Notice that

in this counterexample the G-orbit of any frame is also a Kσ since the continuous image of

any Kσ is again a Kσ. This example suggest a further strengthening of Axiom 2(b).

Axiom 2(c).

There is a finite frame F = (m1, . . . ,mn) ∈ Mn for the action of G on M such that the

G-orbit of the frame

{(g(m1), . . . , g(mn)) : g ∈ G} ⊆Mn

is a Gδ in Mn and

{(g(m1), . . . , g(mn), g(q)) : g ∈ G} ⊆Mn+1

is a Borel subset of Mn+1 for each q ∈M .
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Axiom 2(c) is consistent with the size one frame case proved by Gleason since in

that simply transitive case the G-orbit of a frame, i.e., a single point, is M itself, trivially

a Gδ subset of M . We also consider two weaker variants of this axiom. To motivate the

next axiom note that there exist transitive Polish transformation groups (G,M) with no

finite frame. For example, take M to be the unit sphere of a separable infinite dimensional

complex Hilbert space H and let G be the full unitary group of H. Any orthonormal basis

is then a frame for the action of G on M .

Axiom 2(d).

There is a countably infinite frame F = (m1,m2, . . . ) ∈ MN for G such that the G-orbit of

the frame

{(g(m1), g(m2), . . . ) : g ∈ G} ⊆MN

is a Gδ-subset of MN and

{(g(m1), g(m2) . . . , g(q)) : g ∈ G} ⊆MN ×M

is a Borel set for each q ∈M .

and

Axiom 2(e).

There is a dense sequence {m`}`≥1 in M such that the G-orbit

{(g(m1), g(m2), . . . ) : g ∈ G} ⊆MN

is a Gδ-subset of MN and

{(g(m1), g(m2) . . . , g(q)) : g ∈ G} ⊆MN ×M

is a Borel set for each q ∈M .
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Of course if {m`}`≥1 is dense in M , then (m1,m2, . . . ) is a countably infinite frame

for G. It will be proved that if there is a frame that satisfies Axiom 2(c) then there is a

frame that satisfies Axiom 2(e) and therefore a frame that satisfies 2(d). The purpose of this

chapter is to prove that the conclusion of Gleason’s conjecture is indeed true if Axiom 1 and

Axiom 2(c) or Axiom 2(d) or Axiom 2(e) hold.

An example is given in Section 3.2 plausibly showing that the Gδ condition in the

axioms is needed. A new general result in descriptive set theory is given in Section 3.3.

Gleason’s results for the simply transitive case (frames of size one) are recalled and gener-

alized for the convenience of the reader in Section 3.4. The relations among Axiom 2(c),

Axiom 2(d) and Axiom 2(e) are proved in Section 3.5 together with the proof of the fact that

Axiom 1 and Axiom 2(e) imply that G can be made into a Polish group so that (G,M) is

a topological transformation group. An application of this general result is given in Section

3.6.

3.2. A Counterexample to Gleason’s Conjecture

The purpose of this section is to show that Axiom 1 and Axiom 2(b) can hold even

though the conclusion to Gleason’s conjecture is false.

Lemma 3.1. Let K ⊆ R be an uncountable compact set whose elements are linearly inde-

pendent over Q. Such a K exists. Let H be the additive subgroup of (R,+) algebraically

generated by K. Then H is σ-compact and there is no algebraic isomorphism of H with any

Polish group.

Proof. Von Neumann [55] proved that there is a injection f : (0,+∞) → R whose range

consists of numbers that are algebraically independent over Q. A simple inspection of von

Neumann’s construction shows that f is a Borel mapping. Thus the range of f is an un-

countable Borel set by Lusin-Souslin’s theorem and therefore contains a compact perfect set

by Theorem 2.9. Thus such a K exists. It is simple to check that H is σ-compact. As

an abstract group H = ⊕x∈KZx. Suppose that G is a Polish group and ϕ : G 7→ H is an

algebraic isomorphism. Then Lemma 2 and Theorem 1 of Dudley [13] imply that ϕ is con-
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tinuous if H is given the discrete topology. In particular eG = ϕ−1(eH) is open and therefore

G is a discrete Polish group. This implies that G is countable, a contradiction, since G is

algebraically isomorphic to H, an uncountable group. �

Proposition 3.2. There exist a σ-compact subgroup G of a Polish group K and a Polish

space M such that (G,M) is a transitive topological transformation group with a frame of

every size n ≥ 2 such that there is no algebraic isomorphism of G with any Polish group.

Proof. Notice that under the assumptions of the proposition if there is a frame of size n

for the action of G on M , then there is a frame of size n + 1 for the action of G on M by

merely adding any element of M as the n + 1-st entry to the original frame. It therefore

suffices to prove the proposition to show the existence of a frame of size 2.

Let A be the exponentiation of the additive subgroup H of the reals given in Lemma

3.1, so that A is a subgroup of the multiplicative group of positive reals. There is no algebraic

isomorphism of A with any Polish group since A is algebraically and topologically isomorphic

to H. Let B be the additive group of the reals and let G = BoA be the natural semidirect

product. G is a σ-compact subgroup of the classical ax+b group, a Polish group. If X is the

real numbers, then (G,X) is a transitive topological transformation group and (1,−1) ∈ X2

is a frame for (G,X). Suppose that L is a Polish group and ϕ : L 7→ G is an algebraic

isomorphism. It is simple to check that A is maximal abelian in G. AL = ϕ−1(A) is maximal

abelian in L and therefore is closed in L and is itself a Polish group. This is a contradiction

since ϕ � AL : AL → A is an algebraic isomorphism of A with a Polish group AL. �

Though unrelated to the other results of this section, it should be noted that the

elements of a frame for a transitive group action are not at all analogous to a basis for a vector

space, even after extraneous elements of the frame are omitted. This is the case even for finite

groups. For example, let G be the symmetric group on a set of size six X = {1, 2, 3, 4, 5, 6}. If

∅ 6= S ⊆ X, let GS = {g ∈ G : g(s) = s for all s ∈ S} and let M = G/G{1,2,3}, a transitive

G-space. Choose g1, g2 and g3 ∈ G such that g1G{1,2,3}g
−1
1 = G{4,5,6}, g2G{1,2,3}g

−1
2 = G{1,2,4}

and g3G{1,2,3}g
−1
3 = G{1,2,5}. Then (G{1,2,3}, g1G{1,2,3}) and (G{1,2,3}, g2G{1,2,3}, g3G{1,2,3}) are
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two frames for the action of G on M of different sizes that cannot be reduced in size by

omitting judiciously chosen elements.

3.3. An Automatic Continuity Result

We start with a trivial observation. If X and Y are Polish spaces, ϕ : X → Y is

continuous, V ⊆ Y is open, U ⊆ X is open, and U ∩ ϕ−1(V ) 6= ∅, then U ∩ ϕ−1(V ) is a

nonempty open subset of X and therefore is nonmeager in X. What about the converse?

That is, suppose that X and Y are Polish spaces and ϕ : X → Y satisfies the property that if

V ⊆ Y is open and if U ⊆ X is open and if U∩ϕ−1(V ) 6= ∅, then U∩ϕ−1(V ) is nonmeager in

X. Does this imply that ϕ satisfies some sort of nontrivial continuity property? In general,

the answer is no. For example, let X = R, Y = {0, 1}, B ⊆ R a Bernstein set ([41], pp. 32 –

33) and let ϕ = χB, the characteristic function of B. The construction of B = χ−1B (1) shows

that Bc = χ−1B (0) is also a Bernstein set, i.e., neither B nor Bc contains a compact perfect set

by Theorem 2.9. If A ⊆ R is an uncountable analytic set, then ϕ � A cannot be continuous.

This follows since A contains a compact perfect set K. If x ∈ K ∩ B, then every relative

neighborhood of x in K contains a compact perfect set and therefore contains of point of Bc,

showing that χB � K cannot be continuous. So some a priori weak smoothness assumption is

needed on ϕ to in order to conclude that ϕ has some sort of reasonable continuity property.

Before proceeding further, we set up some notation and recall some very general

results about Baire category. Let X be a topological space, A ⊆ X, and M(A) the union

of all open sets V ⊆ X such that V ∩ A is meager in X. Then M(A) is open in X and

A ∩ clX(M(A)) is meager in X ([35], p. 201). Define D(A) = M(A)c, a closed subset of

X, and define ID(A) = Int(D(A)), an open subset of X. D(A) is the set of points in X at

which A is not locally of the first category in X and ID(A) is the interior of the set of points

in X at which A is not locally of the first category in X. The following lemma consists of

well-known results, most of which can be extracted from Kuratowski [36].

Lemma 3.3. Let X be a topological space and A, B, An, Aι ⊆ X. Then:

(1) if A ⊆ B, then M(B) ⊆M(A) and therefore D(A) ⊆ D(B);
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(2) M(A ∪B) = M(A) ∩M(B) and therefore D(A ∪B) = D(A) ∪D(B);

(3) clX(A)c ⊆M(A) and therefore D(A) ⊆ clX(A);

(4) ID(A) = X − clX(M(A));

(5) if U ⊆ X is open, then D(U)− U is meager;

(6) D(A) = ∅ if and only if A is meager;

(7) A−D(A) is meager and D(A−D(A)) = ∅;

(8) A− ID(A) is meager and D(A− ID(A)) = ∅;

(9) D(A)−D(B) ⊆ D(A−B);

(10) D(∩ιAι) ⊆ ∩ιD(Aι);

(11) ∪ιD(Aι) ⊆ D(∪ιAι);

(12) if U ⊆ X is open, then U ∩D(A) = U ∩D(U ∩ A);

(13) D(D(A)) = D(A);

(14) D(A) = clX(ID(A));

(15) ID(A) = Int(clX(ID(A)));

(16) ID(A) = ∅ if and only if A is meager;

(17) D(∪n≥1An)− ∪n≥1D(An) is nowhere dense;

(18) if A is nonmeager, then A ∩ ID(A) is nonempty;

(19) if A ⊆ U , where U is open and A is nonmeager, then U ∩ ID(A) 6= ∅;

Lemma 3.4. Let X be a topological space and let A ⊆ X be any set. Then A ⊆ D(A) if and

only if the following property holds: whenever U ⊆ X is open and U ∩A 6= ∅, then U ∩A is

nonmeager in X.

Proof. Suppose A ⊆ D(A) and let U ⊆ X be open such that U ∩ A 6= ∅. Let x ∈ U ∩ A.

Then x ∈ D(A) and hence x /∈M(A). Since U is an open neighborhood of x, it follows that

U ∩ A is nonmeager.

Conversely, suppose whenever U ⊆ X is open and U∩A 6= ∅, then U∩A is nonmeager.

Let x ∈ A be arbitrary. If U is any open neighborhood of x, we have that x ∈ U ∩ A 6= ∅,
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and hence U ∩ A is nonmeager by hypothesis. This implies x /∈ M(A), i.e., x ∈ D(A). So

A ⊆ D(A). �

Corollary 3.5. Let X and Y be topological spaces and let ϕ : X → Y . Then the following

are equivalent:

(1) ϕ−1(V ) ⊆ D(ϕ−1(V )) for every open V ⊆ Y ;

(2) if V ⊆ Y is open, U ⊆ X is open and U ∩ ϕ−1(V ) 6= ∅, then U ∩ ϕ−1(V ) is nonmeager

in X.

Recall that if X be a topological space, then a set A ⊆ X is said to be a set with

the Baire property in X if there exists an open set U ⊆ X such that A4U is meager in X.

Let BP(X) be the collection subsets of X with the Baire property. BP(X) is the smallest

σ-algebra of subsets of X generated by the open sets and the first category sets and therefore

contains the Borel subsets of X. It is a nontrivial fact that if X is a Polish space then BP(X)

contains the analytic subsets of X. Again, the following lemma consists of well-known facts

that can be gleaned from various places in Kuratowski [36].

Lemma 3.6. Let X be a topological space and let A ⊆ X. Then the following statements are

equivalent:

(0) A ∈ BP(X);

(1) A = G ∪M , where G is a Gδ and M is meager in X;

(2) A = F −M , where F is an Fσ and M is meager in X;

(3) A = (U −B) ∪ C, where U is open and B and C are meager in X;

(4) A = (F −B) ∪ C, where F is closed and B and C are meager in X;

(5) there is a set M meager in X such that A−M is both open and closed relative to M c;

(6) D(A)∩D(Ac) is nowhere dense in X and therefore every nonempty open set contains a

point at which either A or Ac is of the first category in X;

(7) D(A)− A is meager in X;

(8) A4D(A) is meager in X;

(9) A4 ID(A) is meager in X.
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Corollary 3.7 (Gleason). Let X be a Baire space and let A, B ∈ BP(X). Then ID(A)∩

ID(B) 6= ∅ =⇒ A ∩B 6= ∅.

Proof. Suppose that A ∩ B = ∅ and that the open set ID(A) ∩ ID(B) 6= ∅. But then an

elementary computation shows that ∅ 6= ID(A)∩ ID(B) ⊆ ((ID(A)−A)∪A)∩ ((ID(B)−

B) ∪ B) ⊆ (ID(A)− A) ∪ (ID(B)− B) is meager by Lemma 3.6 (9). But ID(A) ∩ ID(B)

is not meager since X is a Baire space, a contradiction. Hence, A ∩B 6= ∅. �

Proposition 3.8. Let X be a topological space, let (Y, d) be a metric space and let ϕ : X →

Y be a function that satisfies:

(1) ϕ−1(B) ∈ BP(X) for every ball B ⊆ Y ; and

(2) ϕ−1(V ) ⊆ D(ϕ−1(V )) if V ⊆ Y is open.

Then the set of points of continuity of ϕ is comeager in X.

Proof. Fix n ≥ 1. We will show that there is an open dense set Un in X for which ϕ has

oscillation less than or equal to 1
n

at each point in Un.

For each x ∈ X, let Vx ⊆ Y be the open ball of d-radius 1
2n

about ϕ(x). Let

Ux = ID(ϕ−1(Vx)), and set Un =
⋃
x∈X Ux. Un is open in X and we claim that Un is

dense in Y . To see this, let W ⊆ X be any nonempty open set and choose x ∈ W .

Then x ∈ ϕ−1(Vx) ⊆ D(ϕ−1(Vx)), so W ∩ D(ϕ−1(Vx)) is nonempty and relatively open in

D(ϕ−1(Vx)). Since Ux is dense in D(ϕ−1(Vx)) by Lemma 3.3 (14), it follows that W ∩ Ux is

nonempty. Thus W ∩ Un is nonempty and Un is dense as required.

Next we show that ϕ has oscillation less than or equal to 1
n

at w for every w ∈ Un.

To accomplish this, we will first show that if V ⊆ Y is open and x ∈ ID(ϕ−1(V )), then

ϕ(x) ∈ clY (V ). If not then there is some open neighborhood V ′ of ϕ(x) which misses V .

Since x ∈ ϕ−1(V ′) ⊆ D(ϕ−1(V ′)), we have ID(ϕ−1(V ))∩D(ϕ−1(V ′)) 6= ∅. But ID(ϕ−1(V ′))

is dense in D(ϕ−1(V ′)) by Lemma 3.3 (14), so in fact ID(ϕ−1(V ))∩ ID(ϕ−1(V ′)) 6= ∅. Since

ϕ−1(V ) and ϕ−1(V ′) have the Baire property, it follows from Corollary 3.7 that ϕ−1(V ) ∩

ϕ−1(V ′) 6= ∅. This contradicts our assumption that V misses V ′, so ϕ(x) ∈ clY (V ).

Now suppose w ∈ Un. Let z ∈ X be such that w ∈ Uz. It follows from the above
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paragraph that for every x ∈ Uz we have ϕ(x) ∈ clY (Vz), where Vz is the ball of radius 1
2n

about ϕ(z). So d(ϕ(w), ϕ(x)) ≤ d(ϕ(w), ϕ(z)) + d(ϕ(x), ϕ(z)) ≤ 1
2n

+ 1
2n

= 1
n
. Since w was

arbitrary, ϕ has oscillation less than or equal to 1
n

at every point in Un.

Set U =
⋂
n≥1 Un. Then U is a countable intersection of dense open sets in X and ϕ

has oscillation 0 at every point in U . So ϕ is continuous on a comeager set. �

Though Gleason did not formulate Proposition 3.8, a glance at [22] shows that he

had most of the technology in hand to prove it. A word of caution perhaps is in order for

readers of [22]: the notation D(A) used here is consistent with that defined in Kuratowski

[36], whereas Gleason’s notation of D(A) coincides with the ID(A) used here in spite of the

fact that he refers to Kuratowski [36] for the properties of his D(A).

The conclusion of Theorem 3.8 is reminiscent of a property of Baire class 1 functions (a

theorem of Baire, [33], Theorem 24.14). However, in general, there is no connection between

the functions that satisfy the hypotheses of Theorem 3.8 and functions of Baire class 1.

For example, the function ϕ = δ0 is a Baire class 1 function, but ϕ−1((1/2, 3/2)) = {0} is

certainly meager in R and therefore does not satisfy the hypotheses of Theorem 3.8. On the

other hand, let B = {(x, y) : y > 0} ∪Q and let ϕ = χB, the characteristic function of B.

Then ϕ is Borel measurable and hence is in BP(R2) and if U ⊆ R is open, then ϕ−1(U) is

either empty or contains a nonempty open subset of R2 and therefore is second category. But

ϕ is not a Baire class 1 function since ϕ−1((−1/2, 1/2))∩R is the set of irrational numbers,

which is not an Fσ.

3.4. A Strengthening of Gleason’s Results

Most, but not all, of the results given in this section are due to Gleason in less

general form. They are given here because of their importance in what follows and for the

convenience of the reader since Gleason’s paper is somewhat obscure. The statements of the

results are more general than Gleason’s statements and the proofs are somewhat different.

We start with a result on descriptive set theory. It illustrates the power of a transitive

group assumption.
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Theorem 3.9 (Gleason). Let X be a Polish space, Y a separable metric space, G a group

that acts as a group of homeomorphisms on X and Y and that is transitive on X, and let

ϕ : X → Y be BP(X)-measurable and G-equivariant. Then ϕ is continuous.

Proof. Let U ⊆ X and V ⊆ Y be open and satisfy U ∩ϕ−1(V ) 6= ∅. Let x ∈ Uf ∩ϕ−1(V )

so (x, ϕ(x)) ∈ U × V . If x′ ∈ X choose g ∈ G such that g(x) = x′. Then (x′, ϕ(x′)) =

(g(x), ϕ(g(x)) = (g(x), g(ϕ(x))) ∈ g(U) × g(V ). Therefore graph(ϕ) ⊆ ∪g∈G(g(U) × g(V )).

Since graph(ϕ)) ⊆ X × Y is separable metrizable and therefore Lindelöf there exists a

sequence {gn}n≥1 ⊆ G such that graph(ϕ) ⊆ ∪n≥1(gn(U) × gn(V )). Let Xn = {x ∈

X | (x, ϕ(x)) ∈ gn(U) × gn(V )} = gn(U ∩ ϕ−1(V )). Since ∪n≥1Xn = X, some Xn is second

category and therefore U ∩ϕ−1(V ) is nonmeager in X. Corollary 3.5 plus Theorem 3.8 imply

that the set of points of continuity of ϕ in X is comeager in X and therefore nonempty. Since

G is transitive and ϕ is G-equivariant, ϕ is continuous everywhere. �

Gleason did not point out the following corollary (c.f. [15]).

Corollary 3.10. Let X be a Polish space, x ∈ X, and G a Polish group that acts as an

abstract transitive group of homeomorphisms of X such that g 7→ g(x), G→ X, is continu-

ous. Let Gx = {x ∈ X : g ·x = x}, a closed subgroup of G. Then the natural G-equivariant

mapping ϕ : gGx 7→ g(x), G/Gx → X, is a homeomorphism and (G,X) is a topological

transformation group that is naturally homeomorphic to the topological transformation group

(G,G/Gx).

Proof. The quotient space G/Gx is a Polish space by a theorem of Hausdorff [26] and

the natural G-equivariant mapping ϕ : gGx → g(x), G/Gx 7→ X is a continuous bijection.

G acts transitively on both X and G/Gx and ϕ−1 : X → G/Gx is a G-equivariant Borel

mapping by Lusin-Souslin’s theorem. Proposition 3.9 now implies that ϕ−1 is continuous

and therefore ϕ is a homeomorphism. �

Corollary 3.11 (Gleason). Let G be an abstract group and also a Polish space such that,

for each fixed g ∈ G, the mapping h 7→ gh, G→ G, is continuous and for each fixed h ∈ G,
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the mapping g 7→ gh, G→ G, is BP(G)-measurable. Then G is a Polish group.

Proof. Fix h0 ∈ G and let ϕ(g) = gh0, a BP(G)-measurable mapping. Left translations

are continuous by assumption and therefore homeomorphisms since they are invertible. Left

translations also act transitively on G. Proposition 3.9 implies that ϕ is continuous since

kϕ(g) = ϕ(kg) for all k, g ∈ G. Therefore both left and right translations of G are continu-

ous. The corollary now follows from Theorem 2.18. �

Corollary 3.12. Let G be an abstract group and also a Polish space such that, for each

fixed g ∈ G, the mapping h 7→ hg, G → G, is continuous and for each fixed h ∈ G, the

mapping g 7→ hg, G→ G, is BP(G)-measurable. Then G is a Polish group.

Proof. Let G∗ be the group whose underlying set is G with the topology of G but with the

multiplication a ∗ b = ba. Then G∗ is a Polish group and this corollary follows by applying

Corollary 3.12 to G∗. �

Corollary 3.13 (Gleason). Let G and M satisfy Axiom 1 and Axiom 2(a) for a frame of

size one. Then the conclusion to Gleason’s Conjecture is true.

Proof. G acts simply transitively on M since n = 1. Fix m0 ∈ M and topologize G

by requiring that the bijection g 7→ g(m0), G → M be a homeomorphism. G is then an

abstract group and a Polish space. hn → h if and only if hn(m0) → h(m0) which implies

that ghn(m0) = g(hn(m0)) → g(h(m0)) = gh(m0) which in turn implies that ghn → gh for

each g ∈ G, i.e., the mapping h 7→ gh, G→ G, is continuous for each g ∈ G.

On the other hand, fix h ∈ G. The graph of the mapping g 7→ gh, G → G, is

homeomorphic to {(g(m0), g(h(m0))) : g ∈ G}, an analytic set. From this it easily follows

that the mapping g 7→ gh, G→ G, is BP(G)-measurable. The present corollary now follows

from Corollary 3.12. �

3.5. The General Case

We first start with some basic properties of frames.
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Lemma 3.14. Let M be a Polish space, G an abstract group of homeomorphisms of M ,

I and J nonempty finite or countably infinite disjoint index sets, (pi)i∈I a frame for G

acting on M and (qj)j∈J a tuple of elements of M . Let A = {(g(pi))i∈I : g ∈ G},

C(r) = {(g(pi))i∈I ⊕ (g(r)) : g ∈ G} (r ∈ M) and B = {(g(pi))i∈I ⊕ (g(qj))j∈J : g ∈ G}

and suppose that C(r) is an analytic set for every r ∈ M . Then A is analytic set and B is

an analytic set Borel isomorphic to A. If A is a Borel set, then B is a Borel set. If A is a

Gδ-set, then B is a Gδ-set homeomorphic to A.

Proof. A is an analytic set since it is the continuous image of any C(r). If j0 ∈ J then

Cj0 = {(g(pi))i∈I ⊕ (g(qj0)) : g ∈ G} ⊕
∏

j∈J−{j0}M is an analytic subset of M I∪J and

therefore B = ∩j∈JCqj is an analytic set since the intersection of a sequence of analytic sets

is analytic. The natural projection of B onto A is a continuous bijection since (pi)i∈I is a

frame for G acting on M and therefore is a Borel isomorphism by [38], Theorem 4.2. Let

ϕ : A → B be given by ϕ : (g(pi))i∈I 7→ (g(pi))i∈I ⊕ (g(qj))j∈J , the inverse of projection of

B onto A and therefore a Borel mapping. We are now done in the analytic and Borel cases.

Finally, suppose A is a Gδ. Then A is a Polish space, B is a separable metric space and

ϕ is a G-equivariant mapping. Proposition 3.9 implies that ϕ is continuous. Since we have

already noted that the natural projection of B onto A, viz. ϕ−1, is continuous, we have that

ϕ is a homeomorphism. Hence, B is homeomorphic to a Gδ and therefore itself is a Gδ. �

Corollary 3.15. If Axiom 2(c) holds, then Axiom 2(d) holds, and if Axiom 2(d) holds,

then Axiom 2(e) holds.

Proof. Any augmentation of a finite or countably infinite frame for the action of G on M

which has a Gδ-orbit by a finite or countably infinite number of elements of M is again a

frame for the action of G on M with a Gδ-orbit by Lemma 3.14. �

Proposition 3.16. Let G and M satisfy Axiom 1 and Axiom 2(c) or Axiom 2(d) or Axiom

2(e). Then the conclusion of Gleason’s Conjecture is true.

Proof. Corollary 3.15 implies that it suffices to give the proof under the assumption that
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Axiom 2(e) holds.

Suppose that {m`}`≥1 is a dense sequence in M such that O = {(g(m1), g(m2), . . . ) :

g ∈ G} ⊆MN is a Gδ subset of MN and that {(g(m1), g(m2), . . . , g(q)) : g ∈ G} ⊆MN×M

is a Borel subset of MN×M set for each q ∈M . The natural diagonal action of G on MN is

an abstract group of homeomorphisms of MN. If F = (m1,m2, . . . ) ∈ MN is the frame and

Q = (q1, q2, . . . ) ∈ O, then, with obvious notation, the set {(g(F ), g(Q)) : g ∈ G} ⊆ O×O

is a Borel set by Lemma 3.14. O is a Polish space since it is a Gδ-subset of a Polish space

and G acts as a simply transitive group of homeomorphisms of O. Then the pair G and

O satisfy Axiom 1 and Axiom 2(a). Therefore the pair (G,O) can be made into a Polish

topological transformation group by Corollary 3.13.

If x ∈M choose h ∈ G such that x = h(m1). Now the mapping g 7→ gh 7→ gh(F ) 7→

gh(m1) = g(x) is continuous for every x ∈M and G-equivariant. Corollary 3.10 now implies

that the pair (G,M) is a transitive Polish topological transformation group. �

The next result implies that the topology on G determined by Theorem 3.16 is unique.

Proposition 3.17. Let M be a Polish space and let G be an abstract group of homeomor-

phisms of M . If T1 and T2 are two Polish group topologies on G such that both ((G, T1),M)

and ((G, T2),M) are topological transformation groups, then T1 = T2.

Proof. Let F be a frame whose coordinates are dense in M . The mapping g 7→ g · F ,

G→ G · F ⊂ MN is a bijection. Hence, the mappings g 7→ g · F , (G, T`)→ G · F (` = 1, 2)

are Borel isomorphisms since they are continuous. Therefore, the group isomorphism g 7→ g,

(G, T1)→ (G, T2) is a Borel mapping and therefore a topological isomorphism. �

The counterexample given in Section 3.2 strongly suggests that the sufficient Gδ

G-orbit of a frame condition in Proposition 3.16 cannot be omitted. Unfortunately this

condition is not necessary, as the following proposition demonstrates.

Proposition 3.18. There exist a Polish group G and a Polish space X such that (G,X)

is a transitive topological transformation group with a frame such that the following propery
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holds: the orbit G · x is not a Gδ set in Xn for every frame x ∈ Xn (n ∈ N ∪ {∞}).

Proof. Let X be the reals, let A be the multiplicative group of positive rationals with the

discrete topology, let B be the additive group of the reals and let G = B o A, the natural

semidirect product of B and A. (G,X) is a transitive topological transformation group and

(1,−1) is a frame for G in X2. Let n ∈ N and let x ∈ Xn be a frame for G. Then x 6= 0 ∈ Xn.

Suppose that G · x is a Gδ subset of Xn. Then G · x is a Polish space and the mapping

g 7→ gx is a homeomorphism by Corollary 3.10. In follows that A · x is a Gδ in Xn since A

closed in G implies A · x is closed in G · x. But A · x = {qx | q ∈ Q, q > 0} is therefore a Gδ

in {qx : q ∈ R, q > 0}, a contradiction since the positive rationals are not a Gδ-subset of

the positive reals. �

Recall the following theorem of Becker-Kechris.

Theorem 3.19 ([4] Theorem 5.1.5). Let G be a Polish group, let X be a Polish G-space, and

let E ⊆ X be a G-invariant Borel set. There exists a Polish topology finer than the original

topology of X (and thus having the same Borel structure) in which E is now open and the

action of G on X is still continuous.

The following proposition shows in a rather strong manner that the assumption that

G is a Polish group cannot be omitted from the Becker-Kechris Theorem 3.19.

Proposition 3.20. There exists a separable metrizable topological group G, a Polish G-

space X and a G-invariant Kσ-subset E ⊆ X such that there is no finer Polish topology on

X which makes E a Gδ and such that the action of G on E is still continuous.

Proof. Let G be as in Proposition 3.2, let M = R and let X = M2. G is a separable

metrizable Kσ group and the pair (G,M) is a topological transformation group. The orbit

of any frame for G in Mn and therefore in Xn is a Kσ. (1,−1) ∈ X is a frame for G,

E = G · (1,−1) ⊆ X is a Kσ, G acts simply transitively on E and G · (x, q) ⊆ X2 is Kσ

for every x, q ∈ X. Suppose that there is a Polish topology on X that makes E into a

Gδ and such that the action of G on X is still continuous. This new topology and the
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original topology on X generate the same Borel sets and therefore G · (x, q) is still a Borel

set for every x, q ∈ X. Then the hypotheses of Corollary 3.13 are satisfied and the abstract

group G can be made into a Polish group such that the pair (G,X) is a Polish topological

transformation group. But G cannot be given any Polish group topology by Proposition 3.2,

a contradiction. �

3.6. A Corollary on Lie Groups and Manifolds

The following corollary is obviously motivated by Gleason [22], Corollary 2, who gave

a terse indication of its proof. Perhaps this is the result desired by Gleason.

Corollary 3.21. Let G and M satisfy Axiom 1 and Axiom 2(c). In addition assume that

M is of finite dimension and the G-orbit G ·F is locally connected at one point. Then (G,M)

can be made into a Polish topological transformation group such that G is a Lie group and

M is a manifold homeomorphic with a quotient group of G.

Proof. (G,M) can be made into a Polish topological transformation group by Theorem

3.16. Mn is of finite dimension ([30], Theorem III 4, The Product Theorem, p. 33) and

therefore the G-orbit G · F ⊆ Mn is of finite dimension ([30], Theorem III 1, p. 26). Since

the G-orbit is locally connected at one point, it is locally connected since G acts transitively

on the orbit. Therefore G is a finite-dimensional locally connected Polish group since it

is homeomorphic to the G-orbit G · F . If U is a connected open subset of G, then U is a

connected, locally connected complete metrizable space and therefore U is arcwise connected

([28], Theorem 3-17). Hence, G is a finite dimensional locally arcwise connected Polish group

and therefore is a Polish Lie group ([23], Theorem 7.2). Finally, if x ∈ M and Gx is the

G-stability group at x, then Gx is a closed subgroup of G, G/Gx is a manifold ([56], Theorem

3.58) and M is homeomorphic to G/Gx by Corollary 3.10. �

As a final comment, Gleason proved the following corollary.

Corollary 3.22 (Gleason [22], Corollary 3). Let G be a topological group acting continu-

ously and effectively on a complete separable metric space M . Let T be an analytic subgroup
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of G which is simply transitive on M . Then T is closed.

As Gleason notes in his proof, we have G = GxT , where Gx is the stability group at

x ∈ M , a closed subgroup of G, and Gx ∩ T = {e}. Therefore Proposition 5 and Corollary

6 of [2] provide more general results, at least in the case for which (G,M) is a Polish

transformation group. The proofs of this proposition and corollary appear to have nothing

in common with the techniques employed by Gleason.
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CHAPTER 4

BOREL COMPLEXITY OF SERIES REARRANGEMENTS IN S∞

4.1. Introduction

The goal of this chapter is to establish the exact descriptive complexity of some

interesting subsets of the Polish group S∞ of permutations of ω, endowed with the topology

of pointwise convergence on ω, considered as a discrete set. Our methods involve a blending

of the techniques of classical real analysis and geometry, with the descriptive set theoretic

notion of continuous reducibility between Polish spaces.

First we recall Bernhard Riemann’s celebrated rearrangement theorem of 1876 [45],

now a staple of every graduate course in real analysis, which states the following remarkable

fact (presented here as in [48]): given a conditionally convergent series of real numbers
∞∑
k=0

ak, and two extended real numbers α, β ∈ [−∞,∞] with α ≤ β, it is possible to find

an infinite permutation π ∈ S∞ for which lim inf
n→∞

n∑
k=0

aπ(k) = α and lim sup
n→∞

n∑
k=0

aπ(k) = β. In

other words, by varying one’s choice of α and β, it is possible to rearrange the terms of a

conditionally convergent infinite series so that the partial sums converge to any particular

real number, or diverge to plus or minus infinity, or even diverge properly.

Almost as famous as Riemann’s original theorem is the following d-dimensional ana-

logue:

Levy-Steinitz Theorem. Let
∞∑
k=0

vk be a conditionally convergent series of vectors in Rd.

Then there exists a non-trivial affine subspace A(vk) ⊆ Rd (that is, a space of the form

A(vk) = w +M where w ∈ Rd and M ⊆ Rd is a linear subspace with dimM ≥ 1) such that

whenever a ∈ A(vk), there is π ∈ S∞ with
∞∑
k=0

vπ(k) = a.

The statement above implies that the set of all possible sums of rearrangements

of a conditionally convergent series of d-dimensional vectors is at least as rich as in the 1-

dimensional case. An incomplete proof was first given by Levy in 1905 [37], and the complete
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proof was furnished by Steinitz in 1913 [53]. Steinitz’s proof relied on a particular geometric

constant for Euclidean spaces which is now referred to as the Steinitz constant. The proof

is nontrivial, and an excellent concise version of it may be found in the paper [47] by P.

Rosenthal. Our proofs also rely heavily on the existence of a Steinitz constant.

The Levy-Steinitz theorem gives rise to a natural partition of S∞, into the set D of

all permutations π for which
∞∑
k=0

vπ(k) diverges (either properly or to ∞, where ∞ denotes

the point at infinity in the one-point compactification of Rd), and the complement set S∞\D

of permutations π for which
∞∑
k=0

vπ(k) converges to some vector in Rd. Both D and its

complement are interesting nontrivial sets. For instance, it is easy to observe, as we do

briefly in Section 4, that both D and S∞\D are uncountable and dense in S∞, and also that

D is a comeager set.

We wish to examine these collections from the vantage point of descriptive set theory,

or, loosely speaking, the study of the definable subsets of Polish spaces. Definable here

may refer to Borel, analytic, projective, or any other class of “well-behaved” sets, which are

typically closed under continuous preimages. Of course the Borel sets may be stratified by

their relative complexity into a Borel hierarchy indexed by the countable ordinals, whose

exact definition we recall for the reader in Section 2. It is an empirical phenomenon that a

great bulk of those Borel sets which present themselves in the everyday study of mathematics

will fall into the very bottom few levels of the Borel hierarchy. Thus there has been some

industry for descriptive set theorists in finding “natural” examples of Borel sets which are

“more complex” than usual. For some instances of such sets, the reader may consult the

well-known references [3] and Sections 23, 27, 33, and 37 of [33], or the paper [1], which

produces many examples in the field of ordinary differential equations.

Our objective here will be to establish the exact descriptive complexity of our set D

and its complement. In classical terminology, we show that D is Gδσ but not Fσδ (and hence

not Fσ, Gδ, open, nor closed). Using the more modern notation, we prove:

Proposition 4.1. Let
∞∑
k=0

vk be any conditionally convergent series of vectors in Rd, and let
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D ⊆ S∞ be the set of all permutations π for which
∞∑
k=0

vπ(k) diverges. Then D is Σ0
3-complete.

Of course, it follows immediately that S∞\D is Π0
3-complete. Now, for π ∈ S∞, say

that the rearrangement
∞∑
k=0

vπ(k) diverges properly if the series diverges, but does not diverge

to infinity. Our methods also give the following result:

Proposition 4.2. Let
∞∑
k=0

vk be any conditionally convergent series of vectors in Rd, and

let DP ⊆ S∞ be the set of all permutations π for which
∞∑
k=0

vπ(k) diverges properly. Then

DP is Σ0
3-complete.

It follows that the set S∞\DP of series rearrangements which either converge to a

vector in Rd, or which diverge to∞, is also a Π0
3-complete set in S∞. Notice that, remarkably,

none of the above statements depend on the nature of the particular conditionally convergent

series
∞∑
k=0

vk that we choose! Thus, for each conditionally convergent series, we exhibit a

naturally defined subset of S∞ which lies no lower on the Borel hierarchy than the third

level.

4.2. The Borel Hierarchy

First we recall the definition of the Borel hierarchy. Given a Polish space X, we let

Σ0
1(X) be the family of all open subsets of X, and Π0

1(X) the family of all closed subsets of

X. We set ∆0
1(X) = Σ0

1(X) ∩Π0
1(X), so ∆0

1(X) consists of the clopen sets in X. The rest

of the levels of the hierarchy are defined recursively as follows: Suppose for some countable

ordinal β, we have defined the classes Σ0
α(X) and Π0

α(X) for all α < β. Then we set

Σ0
β(X) = {

⋃
n∈ω An : An ∈ Π0

αn
for some αn < β},

Π0
β(X) = {Ac : A ∈ Σ0

β(X)}, and

∆0
β(X) = Σ0

β(X) ∩Π0
α(X).
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It is well known that ∆0
β(X) ⊆ Σ0

β(X),Π0
β(X) ⊆ ∆0

β+1 for each β, and that the

inclusions are all proper.

Let X, Y be Polish spaces and A ⊆ X, B ⊆ Y . If there exists a continuous function

f : X → Y such that f−1(B) = A, then we say that A is Wadge reducible or continuously

reducible to B, and we write A ≤W B. Intuitively, we think that A is “no more complex”

than B.

Let Γ be any of the pointclasses Σ0
β, Π0

β, or ∆0
β. A standard inductive argument

through the hierarchy shows that Γ is closed under continuous preimages, i.e., whenever X

and Y are Polish, A ⊆ X, B ∈ Γ(Y ), and A is continuously reducible to B, then we have

A ∈ Γ(X).

The above comment provides a useful tool for determining the complexity of a set.

We say that a subset B of a Polish space Y is Γ-hard if for every Polish space X and every

A ∈ Γ(X) we have A ≤W B. It follows from the above comments that if B is Γ-hard, then

Γ is a lower bound for the descriptive complexity of B. If in addition we have B ∈ Γ(Y ),

then we say that B is Γ-complete, and we have determined its exact complexity in the Borel

hierarchy.

The most common method for showing that a set B is Γ-hard is to find a set A which

is already known to be Γ-complete, and prove that A ≤W B by constructing an explicit

continuous reduction. This is the method of our proof in Section 4, and we make use of the

following subset C of the Baire space ωω:

C = {x ∈ ωω : lim
n→∞

x(n) =∞}.

Exercise 23.2 of [33] asks the reader to show that C is in fact Π0
3-complete. It neces-

sarily follows that the complement ωω\C is Σ0
3-complete. Our proof continuously reduces this

complement ωω\C, simultaneously, to both D and DP , and thus establishes the Σ0
3-hardness

of the latter two sets.

We regard each nonnegative integer n as a von Neumann ordinal, i.e. we think of each

n as the set {0, ..., n− 1}. If a function π : n→ ω is injective, then we call π a finite partial
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permutation. We use the notation dom(π) to refer to the map’s domain n = {0, ..., n − 1}

and ran(π) to refer to its range {π(0), ..., π(n − 1)}. If σ ∈ S∞ or if σ is a finite partial

permutation, then we say σ extends π if σ � dom(π) = π.

4.3. The Bounded Walk Lemma

In this section we develop the main technical lemma on which our proof is built. An

intuitive explanation for the Bounded Walk lemma is as follows: Consider a conditionally

convergent series as an abstract infinite collection (vk)k∈ω of vectors in Rd from which we

may build finite paths. Let α and β be two points in Rd. Suppose we have already chosen

some finite subcollection {vπ(0), vπ(1), ..., vπ(J)}, J ∈ ω, of vectors from (vk)k∈ω whose sum
J∑
k=0

vπ(k) (here visualized as a path of vectors laid end-to-end) is very close to α. We wish to

extend the path we have already built by choosing finitely many more vectors, from among

those we have not already chosen, in such a way that the extended path will terminate very

close to β, i.e. we wish to “walk from α to β.”

We will show that if all the remaining vectors to choose from are sufficiently small

(say less than 1
3Cd
||β − α|| where Cd is some constant to be determined later), then it is

possible to build a finite path which (1) extends the path we have already walked; (2) uses

up all except arbitrarily small remaining vectors; (3) takes us arbitrarily close to β; and (4)

does not wander arbitrarily far from the straight-line path connecting α and β. In addition

we may (5) use up any particular vector we wish. (Note that conditions (1) and (2) allow

us to repeat this “bounded walk” process between as many points as we like, as often as we

like.)

Now we aim to establish such a lemma. Before we do so, we first recall the follow-

ing classical result as stated in [47], which is attributed to Steinitz, and which asserts the

existence of a very useful “bounded rearrangement constant” Cd in Euclidean space, now

referred to as the Steinitz constant:

Lemma 4.3 (Polygonal Confinement Theorem). Let d ≥ 1 be any integer. Then there exists

a constant Cd which satisfies the following statement: Whenever v0, v1, ..., vm are vectors in
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Rd which sum to 0 and satisfy ||vi|| ≤ 1 for each i ≤ m, then there is a finite permutation

P ∈ Sm with the property that

∣∣∣∣∣
∣∣∣∣∣v0 +

j∑
i=1

vP (i)

∣∣∣∣∣
∣∣∣∣∣ ≤ Cd

for every j.

The Polygonal Confinement Theorem is the basis for the remaining lemmas in this

section.

Lemma 4.4. Let α, v1, ..., vm be vectors in Rd which sum to β ∈ Rd, and let Cd be as in

the Polygonal Confinement Theorem. Further suppose we have ||vi|| ≤ 1
Cd
||β − α|| for each

i ≤ m. Then there is a finite permutation P ∈ Sm with the property that

∣∣∣∣∣
∣∣∣∣∣
j∑
i=1

vP (i)

∣∣∣∣∣
∣∣∣∣∣ ≤ 2||β − α||

for every j.

Proof. Without loss of generality we may assume α = 0, for if not, replace α with 0 and

β with β − α. We may also without loss of generality take ||β|| = Cd, for if not, replace β

with β · Cd
||β||

and vi with vi ·
Cd
||β||

. In this case we have ||vi|| ≤ 1 for each i.

Now let s be an integer sufficiently large so that ||β||
s
≤ 1, and set vm+1 = vm+2 = ... =

vm+s = −β/s. Then α, v1, ..., vm, vm+1, ..., vm+s are a collection of vectors which satisfy the

hypotheses of the Polygonal Confinement Theorem, and hence there exists a permutation

P ′ ∈ Sm+s for which ∣∣∣∣∣
∣∣∣∣∣α +

j′∑
i=1

vP ′(i)

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
j′∑
i=1

vP ′(i)

∣∣∣∣∣
∣∣∣∣∣ ≤ Cd

for every j′ ≤ m+ s. Let P ∈ Sm be the unique permutation which arranges 1, ...,m in the

same order as P ′.

Now let j ≤ m be arbitrary. Let j′ ≥ j be the least integer for which {P (1), ..., P (j)} ⊆

{P ′(1), ..., P ′(j′)}. Note that since P and P ′ arrange 1, ..., j in the same order, then for any
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i ≤ j′, we must have either (P ′)−1(i) ∈ {1, ..., j} or (P ′)−1(i) ∈ {m + 1, ...,m + s}. Let

I = {i ≤ j′ : P−1(i) ∈ {m+ 1, ...,m+ s}}. Then we have:

∣∣∣∣∣
∣∣∣∣∣
j∑
i=1

vP (i)

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
j′∑
i=1

vP ′(i) −
∑
i∈I

vi

∣∣∣∣∣
∣∣∣∣∣

≤

∣∣∣∣∣
∣∣∣∣∣
j′∑
i=1

vP ′(j)

∣∣∣∣∣
∣∣∣∣∣+
∑
i∈I

||vi||

≤ Cd +
∑
i∈I

||β||
s

≤ ||β||+ s · ||β||
s

= 2||β||

as required. �

Lemma 4.5. Let σ be any finite partial permutation, and let
∞∑
k=0

vk be a series of vectors. If

π ∈ S∞ is any permutation for which
∞∑
k=0

vπ(k) converges, then there exists another permuta-

tion π′ ∈ S∞ for which

(1) π′ extends σ, and

(2)
∞∑
k=0

vπ′(k) =
∞∑
k=0

vπ(k).

Proof. This may be accomplished by simply finding a finitely supported permutation τ ∈

S∞ for which τ ◦ π � dom(σ) = σ, and setting π′ = τ ◦ π. �

For the remainder of the chapter, given a conditionally convergent series
∞∑
k=0

vk in Rd,

let A(vk) ⊆ Rd denote the affine subspace promised in the statement of the Levy-Steinitz

Theorem.
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Lemma 4.6 (Bounded Walk Lemma). Let
∞∑
k=0

vk be a conditionally convergent series of vec-

tors in Rd. Let ε > 0 and n ∈ ω be arbitrary. Let α ∈ Rd, β ∈ A(vk), and let Cd be

as in the Polygonal Confinement Theorem. Suppose π is a finite partial permutation with

dom(π) = J+1 ∈ ω, for which

∣∣∣∣∣
∣∣∣∣∣α−

J∑
k=0

vπ(k)

∣∣∣∣∣
∣∣∣∣∣ < 1

3
||β−α||, and such that ||vk|| ≤ 1

3Cd
||β−α||

whenever k /∈ ran(π).

Then there exists a finite partial permutation σ with dom(σ) = I + 1 ∈ ω which sat-

isfies the following properties:

(1) σ extends π;

(2) ||vk|| ≤ 1
Cd
· ε whenever k /∈ ran(σ);

(3)

∣∣∣∣∣
∣∣∣∣∣β −

I∑
k=0

vσ(k)

∣∣∣∣∣
∣∣∣∣∣ < ε;

(4)

∣∣∣∣∣
∣∣∣∣∣

i∑
k=J+1

vσ(k)

∣∣∣∣∣
∣∣∣∣∣ ≤ 6||β − α|| whenever J + 1 ≤ i ≤ I; and

(5) n ∈ ran(σ).

Proof. Since β ∈ A(vk), there is τ ∈ S∞ for which
∞∑
k=0

vτ(k) = β. By applying Lemma 4.5,

we may assume without loss of generality that τ extends π. Choose I ∈ ω to be so large

that τ−1(n) ≤ I,

∣∣∣∣∣
∣∣∣∣∣β −

I∑
k=0

vτ(k)

∣∣∣∣∣
∣∣∣∣∣ < min(ε, 1

3
||β−α||), and that ||vτ(k)|| ≤ 1

Cd
· ε for all k > I.

Set α1 =
J∑
k=0

vτ(k) =
J∑
k=0

vπ(k) and set β1 =
I∑

k=0

vτ(k). Now notice that the images

τ(J+1), ..., τ(I) do not lie in the range of π, since τ is a bijection extending π and dom(π) =

{0, ..., J}. It follows that for each i ∈ {J + 1, ..., I} we have
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1

Cd
||β1 − α1|| =

1

Cd
||β − α− (β − β1) + (α− α1)||

≥ 1

Cd
||||β − α|| − ||β − β1|| − ||α− α1||||

≥ 1

Cd
||||β − α|| − 1

3
||β − α|| − 1

3
||β − α||||

=
1

3Cd
||β − α||

≥ ||vi||.

Hence we may apply Lemma 4.4 to find a bijection P : {τ(J + 1), ..., τ(I)} →

{τ(J + 1), ..., τ(I)} which satisfies

∣∣∣∣∣
∣∣∣∣∣

i∑
k=J+1

vP (τ(k))

∣∣∣∣∣
∣∣∣∣∣ ≤ 2||β1 − α1||

whenever J + 1 ≤ i ≤ I. If we define σ : I + 1 → ω by σ(k) = τ(k) for k ≤ J and

σ(k) = P (τ(k)) for J < k ≤ I, then σ is a finite partial permutation with domain I + 1

which clearly satisfies (1) above.

Note that if k /∈ ran(σ), then k /∈ {σ(0), ..., σ(J), σ(J+1), ..., σ(I)} = {τ(0), ..., τ(J), P (τ(J+

1)), ..., P (τ(I)} = {τ(0), ..., τ(I)}. So τ−1(k) > I, and hence by our choice of I, we have

||vk|| = ||vτ(τ−1(k))|| ≤ 1
Cd
· ε. Thus (2) is also satisfied.

Since P is a bijection, we have

∣∣∣∣∣
∣∣∣∣∣β −

I∑
k=0

vσ(k)

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣β −

(
J∑
k=0

vτ(k) +
I∑

k=J+1

vP (τ(k)

)∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣β −

I∑
k=0

vτ(k)

∣∣∣∣∣
∣∣∣∣∣ < ε,

so (3) is satisfied.

61



Lastly note that ||β1−α1|| ≤ ||β−β1||+||β−α||+||α−α1|| ≤ 3||β−α||. Hence, we have

∣∣∣∣∣
∣∣∣∣∣

i∑
k=J+1

vσ(k)

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣

i∑
k=J+1

vP (τ(k))

∣∣∣∣∣
∣∣∣∣∣

≤ 2||β1 − α1||

≤ 6||β − α||

whenever J + 1 ≤ i ≤ I. So (4) is also satisfied. (5) holds simply because τ−1(n) ≤ I =

dom(τ), and hence n ∈ ran(τ) = ran(σ). So the lemma is proved. �

Remark 4.7. For simplicity, from now on when we apply the Bounded Walk lemma, we

will say that we use it to walk from α to β, where α and β are as in the statement of the

theorem.

4.4. Proof of Propositions 4.1 and 4.2

First let us make a few introductory observations. We describe our sets of interest

using logical notation, with the assumption in place that all quantified variables range over

ω. Notice that by Cauchy’s criterion for convergence, the following equivalence holds:

π ∈ D ↔ ∃m ∀n ∃i ∃j

[
i, j ≥ n ∧

∣∣∣∣∣
∣∣∣∣∣
j∑
k=i

vπ(k)

∣∣∣∣∣
∣∣∣∣∣ ≥ 1

m

]
.

Since the latter predicate is an open condition in S∞, a count of quantifiers verifies

that D indeed lies in Σ0
3(S∞). Now fix any m ≥ 1, and consider the set Dm defined by the

following rule:

π ∈ Dm ↔ ∀n ∃i ∃j

[
i, j ≥ n ∧

∣∣∣∣∣
∣∣∣∣∣
j∑
k=i

vπ(k)

∣∣∣∣∣
∣∣∣∣∣ ≥ 1

m

]
.

Then Dm is a nonempty Π0
2 (Gδ)-subset of D which is invariant under multiplication

by finitely supported permutations, and hence dense in S∞. This shows that D is a comea-
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ger set. The complement S∞\D is also nonempty and invariant under finitely supported

permutations, and hence dense as well.

Define a map φ : 2ω → S∞ by the rule

[φ(x)](2k) = 2k and [φ(x)](2k + 1) = 2k + 1 if x(k) = 0; and

[φ(x)](2k) = 2k + 1 and [φ(x)](2k + 1) = 2k if x(k) = 1;

for x ∈ 2ω and k ∈ ω. Let T = ran(φ) ⊆ S∞. The map φ is injective and hence T is

uncountable. The permutations in T act only by transposing consecutive integers, and as a

consequence it is simple to check that both D and S∞\D are invariant under multiplication

on the left by elements of T . Thus both sets D and S∞\D are uncountable dense, i.e. in

some sense they are “large” nontrivial sets in S∞, as promised in the introduction. The

reader may consult [5] for similar observations about some other sets in S∞ which are closely

related to our D and DP .

Next define a set I ⊆ S∞ by the rule

π ∈ I ↔ ∃m ∀n ∃i

[
i ≥ n ∧

∣∣∣∣∣
∣∣∣∣∣

i∑
k=0

vπ(k)

∣∣∣∣∣
∣∣∣∣∣ ≤ m

]
.

Then I is a Σ0
3 set, which consists exactly of those permutations whose corresponding

series rearrangements
∞∑
k=0

vπ(k) do not diverge to infinity. Since DP = D∩I, so too we have

DP ∈ Σ0
3(S∞).

Proof of Propositions 4.1 and 4.2. In light of our comments above, it suffices to show

that D and DP are Σ0
3-hard. Recall that the set C = {x ∈ ωω : lim

n→∞
x(n) = ∞} is

known to be Π0
3-complete, and the complement ωω\C is Σ0

3-complete. We will build a

function f : ωω → S∞ that will be a continuous reduction from ωω\C to both D and DP

simultaneously. That is, both of the following will hold:

x ∈ ωω\C ↔ f(x) ∈ D,

x ∈ ωω\C ↔ f(x) ∈ DP .

Fix an arbitrary x ∈ ωω. Let v =
∞∑
k=0

vk. We will recursively construct a sequence of
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integers (Jn)n≥−1 and a sequence of finite partial permutations (πn)n≥−1, each with domain

{0, ..., Jn}, which satisfy the following seven conditions whenever n ≥ 0:

(I) πn extends πn−1;

(II) n ∈ {πn(0), ..., πn(Jn)};

(III) the definitions of πn(Jn−1+1), ..., πn(Jn) depend only on the values of x(n) and x(n+1);

(IV)

∣∣∣∣∣
∣∣∣∣∣v −

Jn∑
k=0

vπn(k)

∣∣∣∣∣
∣∣∣∣∣ < 1

x(n+ 1) + 1
;

(V)

∣∣∣∣∣∣
∣∣∣∣∣∣

j∑
k=Jn−1+1

vπn(k)

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ 36 · 1

x(n) + 1
for every j ∈ {Jn−1 + 1, ..., Jn};

(VI) there exist i, j ∈ {Jn−1, ..., Jn} for which

∣∣∣∣∣
∣∣∣∣∣
j∑
k=i

vπn(k)

∣∣∣∣∣
∣∣∣∣∣ > 1

x(n)+1
; and

(VII) ||vk|| ≤ 1
Cd
· 1
x(n+1)+1

for all k /∈ ran(πn).

After this construction is finished, we will let π be the unique permutation which

extends all the πn’s, and set f(x) = π. Conditions (I) and (II) will guarantee that π is

indeed a permutation, while (III) will guarantee that the map f is continuous. Conditions

(IV) and (V) will ensure that if x ∈ C, then
∞∑
k=0

vπ(k) will converge to v, while condition (VI)

will guarantee that if x /∈ C, then
∞∑
k=0

vπ(k) will diverge properly. (Condition (VII) is just a

technical requirement to facilitate our recursive definition.)

We will now proceed with our construction. Here for the sake of convenience our

base case will be n = −1. Let J−1 ≥ 0 be so large that ||v −
J−1∑
k=0

vk|| < 1
x(0)+1

, and that

||vk|| ≤ 1
Cd
· 1
x(0)+1

for all k > J−1. Let π−1 : J0 + 1 → J0 + 1 be the identity permutation.

Note that π−1 and J−1 trivially satisfy (IV) and (VII) above; this will be enough to facilitate

our induction.
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Now we assume that Ji and πi are defined for all i < n, and satisfy at least (IV) and

(VII), and we proceed with the inductive step of defining Jn and πn. As we go we will verify

that Jn and πn really do satisfy all of conditions (I)-(VII).

By the Levy-Steinitz theorem, there is a non-trivial affine subspace A(vk) ⊆ Rd of

points β such that some rearrangement of
∞∑
k=0

vk converges to β. In particular, there is at

least a line of such points. So we may choose some β ∈ A(vk) for which ||β−v|| = 3 · 1
x(n)+1

.

Now we will define πn and Jn by applying the Bounded Walk lemma twice: first, we will use

the lemma to “walk out” to a point near β, and then we will use the lemma to “walk back

in” to a point near v.

To “walk out”: observe that by condition (VII) of our inductive hypothesis, we have

||vk|| ≤ 1
Cd
· 1
x(n)+1

≤ 1
3Cd
||β − v|| for all k /∈ ran(πn−1), and by condition (IV) of our

inductive hypothesis, we have

∣∣∣∣∣
∣∣∣∣∣v −

Jn−1∑
k=0

vπn−1(k)

∣∣∣∣∣
∣∣∣∣∣ < 1

x(n)+1
= 1

3
||β − v||. So we may apply

the Bounded Walk lemma to walk from v to β, extending the finite partial permutation πn−1

and with ε = 1
x(n)+1

. Thus we obtain an index I > Jn−1 and a finite partial permutation

σ : I + 1 → I + 1 which satisfies properties (1)–(5) of the lemma. In particular, condition

(3) ensures that we have

∣∣∣∣∣∣
∣∣∣∣∣∣

I∑
k=Jn−1+1

vσ(k)

∣∣∣∣∣∣
∣∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣β − v − β +

I∑
k=0

vσ(k) + v −
Jn−1∑
k=0

vσ(k)

∣∣∣∣∣
∣∣∣∣∣

≥ ||β − v|| −

∣∣∣∣∣
∣∣∣∣∣β −

I∑
k=0

vσ(k)

∣∣∣∣∣
∣∣∣∣∣−
∣∣∣∣∣
∣∣∣∣∣v −

Jn−1∑
k=0

vσ(k)

∣∣∣∣∣
∣∣∣∣∣

> 3 · 1

x(n) + 1
− 1

x(n) + 1
− 1

x(n) + 1

=
1

x(n) + 1

while condition (4) guarantees that

∣∣∣∣∣∣
∣∣∣∣∣∣

i∑
k=Jn−1+1

vσ(k)

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ 6 ||β − v|| = 18 · 1

x(n)+1
whenever

J + 1 ≤ i ≤ I.
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Next we “walk back in.” By property (2) in our previous application of the Bounded

Walk lemma, we have ||vk|| ≤ 1
Cd
· 1
x(n)+1

= 1
3Cd
||v−β|| whenever k /∈ ran(σ), and by property

(3) we have

∣∣∣∣∣
∣∣∣∣∣β −

I∑
k=0

vσ(k)

∣∣∣∣∣
∣∣∣∣∣ < 1

x(n)+1
= 1

3
||v−β||. So we may apply the Bounded Walk lemma

to walk from β to v, extending the finite partial permutation σ, with ε = 1
x(n+1)+1

. Then we

obtain an index Jn > I and a finite partial permutation πn : Jn + 1 → Jn + 1 which again

satisfies properties (1)–(5). By the previous inequality, and applying condition (4) for πn,

we see that

∣∣∣∣∣∣
∣∣∣∣∣∣

i∑
k=Jn−1+1

vπn(k)

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
∣∣∣∣∣∣

I∑
k=Jn−1+1

vπn(k)

∣∣∣∣∣∣
∣∣∣∣∣∣+

∣∣∣∣∣
∣∣∣∣∣

i∑
k=I+1

vπn(k)

∣∣∣∣∣
∣∣∣∣∣

≤

∣∣∣∣∣∣
∣∣∣∣∣∣

I∑
k=Jn−1+1

vσ(k)

∣∣∣∣∣∣
∣∣∣∣∣∣+ 6 ||β − v||

≤ 18 · 1

x(n) + 1
+ 18 · 1

x(n) + 1

= 36 · 1

x(n) + 1

whenever I + 1 ≤ i ≤ Jn. Thus we have shown that (V) holds for πn. (I), (III), and (IV)

obviously hold from our definition of πn, and (II) holds if we utilize condition (5) in either

of our two applications of the Bounded Walk lemma to ensure that n ∈ ran(πn). We have

shown that (VI) holds if we take i = Jn−1 and j = I, and (VII) follows from condition (2)

in our second application of the Bounded Walk lemma. So our construction is complete and

we may let π ∈ S∞ be the unique permutation which extends all of the πn’s.

Define the map f : ωω → S∞ by f(x) = π, where π is as we have constructed

above. The function f , as a map between the Polish space ωω and its Polish subspace S∞, is

continuous by condition (III). We claim that f is in fact the continuous reduction we desire.

To see this, suppose x ∈ C, so lim
n→∞

x(n) = ∞ and hence lim
n→∞

1
x(n)+1

= 0. For any

i ∈ ω, let ni be the greatest integer for which Jni−1 < i ≤ Jni
. Then by (IV) and (V) we
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have

∣∣∣∣∣
∣∣∣∣∣v −

i∑
k=0

vπ(k)

∣∣∣∣∣
∣∣∣∣∣ ≤

∣∣∣∣∣
∣∣∣∣∣v −

Jn−1∑
k=0

vπn−1(k)

∣∣∣∣∣
∣∣∣∣∣+

∣∣∣∣∣∣
∣∣∣∣∣∣

i∑
k=Jn−1+1

vπn(k)

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ 1

x(ni) + 1
+ 36 · 1

x(ni) + 1

= 37 · 1

x(ni) + 1
.

Now taking the limit as i → ∞ (and as ni → ∞) we see that
∞∑
k=0

vπ(k) converges to

v. Hence f(x) ∈ S∞\D and f(x) ∈ S∞\DP .

On the other hand, suppose x ∈ ωω\C. Then the sequence (x(n)) is cofinally bounded,

i.e. there is an M < ∞ such that x(n) < M infinitely often. Hence 1
x(n)+1

> 1
M+1

infinitely

often. It follows from (VI) that there are infinitely many blocks i, ..., j of integers for which∣∣∣∣∣
∣∣∣∣∣
j∑
k=i

vπ(k)

∣∣∣∣∣
∣∣∣∣∣ > 1

x(n)+1
> 1

M+1
, and hence

∞∑
k=0

vπ(k) diverges by the Cauchy criterion. In

addition, we have already demonstrated that for any ni depending on i as above, we have∣∣∣∣∣
∣∣∣∣∣v −

i∑
k=0

vπ(k)

∣∣∣∣∣
∣∣∣∣∣ ≤ 37 · 1

x(ni)+1
≤ 37.

This implies that all partial sums of the rearranged series are bounded, and so the

series must diverge properly. Thus in this case we have f(x) ∈ D and f(x) ∈ DP . So f is

the reduction we seek, and D and DP are Σ0
3-complete. �
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CHAPTER 5

HAAR NULL SETS AND OPENLY HAAR NULL SETS

5.1. Introduction

Let G be a Polish group. When should a subset of G be considered “small”? If we

wish to define a suitable family F of subsets of G which are to be considered small, then,

emulating Hunt, Sauer, and Yorke in [29], we ask that F satisfy the following collection of

test properties:

(I) If A ∈ F and B ⊆ A, then B ∈ F , i.e. a subset of a small set is small.

(II) If (An)n∈ω is a sequence of sets, where An ∈ F , then
⋃
n∈ω An ∈ F , i.e. a countable

union of small sets is small.

(III) If A ∈ F , then G\A is dense in G, i.e. a large set is dense.

(IV) If A ∈ F , then gAh ∈ F , i.e., a translate of a small set is small.

Conditions (I), (II), and (III) above will guarantee that F is a σ-ideal of subsets of

G, while (IV) demands that F in addition be translation-invariant. Every group admits a

natural translation-invariant σ-ideal: the family of meager subsets of G, which are defined

purely topologically.

The astounding classical Theorem 2.28 of Haar/Weil/Cartan asserts that every locally

compact group G carries a left Haar measure µ, that is, a regular Borel measure which is

invariant under left translations. Moreover this measure is unique up to scalar multiplication,

so any other left-translation-invariant regular Borel measure on G is simply a multiple of µ.

Of course G also admits a unique-up-to-scalars right Haar measure as well. The left and

right Haar measures need not in general be the same, but they do share the same family

of measure zero sets in G. This family comprises a translation-invariant σ-ideal. Thus the

algebraic and topological structure of G uniquely determine a measure-theoretic analogue to

the meager sets: the family of Haar measure zero sets.
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Now we pose the question for groups G which are not locally compact. Can we find a

suitable measure-theoretic smallness notion in G, which satisfies properties (I) through (IV)?

If µ is any nonzero Borel measure on G, then the collection of µ-measure zero sets certainly

satisfies conditions (I)-(III), so the difficult property to achieve is (IV). Unfortunately, if G

is not locally compact, then its topological nature precludes us from finding a single measure

on G which induces a translation-invariant zero-ideal.

A Polish locally compact group is “small” in the (unrelated) sense that it is σ-compact.

On the other hand if G is not locally compact, then the compact sets are meager in G, and

hence the Baire category theorem implies that G cannot be written as a countable union

of compact sets, so G is “large.” The following argument, attributed to Weil but presented

here as in [47], indicates that this is precisely the distinction which prevents us from finding

a measure µ on a large group G which meets our desires.

Theorem 5.1. Suppose µ is a non-zero σ-finite regular measure µ on G whose zero sets

comprise a translation-invariant σ-ideal. Then G must be locally compact.

Proof. (Weil) Since µ is regular, there is a σ-compact set F for which F has full µ-measure

in G. Let g ∈ G be arbitrary; since the zero-sets are preserved under translations, µ(gF ) > 0.

But then gF ∩ F 6= ∅ and hence g ∈ FF−1. So G = FF−1 is σ-compact, and hence locally

compact. �

In the absence of a single canonical measure generating a translation-invariant σ-ideal

in a non-locally compact group, Christensen has defined the following measure-theoretic

smallness notion as a potential substitute.

Definition 5.2 (Christensen 1972 [7]). Let G be a Polish group and let A be a universally

measurable subset of G. Say that A is Haar null if there exists a Borel probability measure

µ on G (not unique) such that µ(gAh) = 0 for all g, h ∈ G.

If we extend the definition of Haar null sets to include all subsets of such a univer-

sally measurable set, then the resulting family, which we may call HN (G) or just HN if
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no confusion may arise, constitutes a translation-invariant σ-ideal in any Polish group G.

Moreover, if G is locally compact, then HN (G) is exactly the Haar measure zero sets, so

the notion is a true generalization of this well-studied phenomenon.

Notice that in case G is an abelian group, we may write that a universally measurable

subset A in G is Haar null if there is an appropriate measure µ such that µ(g + A) = 0 for

all g ∈ G (where we denote the group operation additively instead of multiplicatively). This

is how Christensen first formulated the notion in [7], and also Hunt, Sauer, and Yorke, who

rediscovered it in [29]. For abelian groups the situation seems greatly simplified, and most

positive results in the literature have come in regard to such groups. The definition of Haar

null sets was extended to the non-abelian case by Tøpsoe and Hoffman-Jørgenson in [14]

and, independently, by Mycielski in [40]. Haar null sets are frequently called shy sets in the

literature. Following Hunt, Sauer, and Yorke, we will call a set A ⊆ G prevalent if G\A is

Haar null.

The phenomenon of Haar null sets is well-understood in abelian groups, even in non-

locally compact ones. In large non-abelian groups, however, the nature of the ideal remains

somewhat mysterious. Any mathematician who has studied Baire category or Haar measure

may easily call to mind a slew of natural questions to ask about the family of Haar null sets

in this general setting. Here I will mention just a few that we will try to address:

Questions.

(1) Is every compact set in a non-locally compact group Haar null?

(2) May every uncountable group be written as the disjoint union of a Haar null set

and a meager set? (Darji 2011 [9])

(3) Is every Haar null set contained in a Haar null Gδ set? (Mycielski 1994 [40])

Question (2) is motivated by the classical fact that every uncountable Polish locally

compact group may be written as the disjoint union of a Haar measure zero set and a

meager set (see Theorem 2.30). Note that since countable dense sets are easily Haar null in
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an uncountable group, a positive answer to (3) would imply a positive answer to (2).

Solecki has also defined the following closely related family of sets in [51]:

Definition 5.3 (Solecki 2001 [51]). Let G be a Polish group and let A be a universally

measurable subset of G. Say that A is openly Haar null if there exists a Borel probability

measure µ on G such that for all ε > 0, there is an open set U containing A with µ(gUh) < ε

for all g, h ∈ G.

The openly Haar null sets form a translation-invariant σ-ideal which is contained in

the family of Haar null sets. In abelian locally compact groups, the Haar measures guarantee

that every Haar null set is openly Haar null, so the ideals coincide in what is perhaps the

simplest class of groups under our consideration. Can this fact be true in general?

Questions. (4) Is every Haar null set also openly Haar null?

In this chapter we show that the answer to (4) is no in general, and that there exist

groups both locally compact and non-locally compact where the ideals differ. We show that

the answer to (1) is yes in the permutation group S∞ and in any countable product group

G =
∏
i∈ω

Gi where the groups Gi are locally compact non-compact Polish groups, which

extends the domain of a result of Dougherty for TSI groups (Proposition 12 in [11]). In

fact we show that the compact sets are openly Haar null in the latter group, and hence

each σ-compact set is contained in a Haar null Gδ. An immediate consequence is that such

groups always decompose into the disjoint union of a Haar null set and a meager set, which

provides a partial positive answer to (2). In start contrast, however, we use a dynamical

argument to show that even singleton sets are not openly Haar null in the homeomorphism

group Homeo+[0, 1].

5.2. Known Facts About Haar Null Sets

The purpose of this section is to establish the fundamental facts which justify our

interest in the family of Haar null sets HN (G), namely that: (1) HN (G) is an ideal in any
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metric group G; (2) HN (G) is a σ-ideal if G is Polish; and (3) HN (G) is the class of Haar

measure zero sets if G is locally compact.

First we recall the definition of convolution of measures.

Definition 5.4. Let G be a group and µ and ν two Borel probability measures on G. Define

the convolution µ ∗ ν of µ and ν by the rule

µ ∗ ν(A) = µ× ν({(x, y) ∈ G2 : xy ∈ A})

for every Borel set A ⊆ G.

It is not hard to check that µ ∗ ν is a countably additive Borel probability measure

on G. We also wish to define a notion of an infinite convolution of measures.

Definition 5.5. Let G be a group and (µi)i∈ω a sequence of Borel probability measures on

G. Then we define their convolution
∞∗
i=0

µi by the rule

∞∗
i=0

µi(A) =

(
∞∏
i=0

µi

)
({(xi) ∈ Gω : x0x1... converges and x0x1... ∈ A})

for every Borel set A ⊆ G.

It is once again not hard to check that
∞∗
i=0

µi is a countably additive Borel measure.

The potential difficulty with this notion is that
∞∗
i=0

µi need not in general be a probability

measure nor even non-zero. For instance, if G is the multiplicative group R+ of positive reals

and µi is Lebesgue measure restricted to R+, then

(
∞∏
i=0

µi

)
-almost every infinite product

diverges and hence
∞∗
i=0

µi(G) = 0.

Now we are ready to establish that finite unions of Haar null sets are Haar null.

Lemma 5.6. Let G be a metric group. Let A ⊆ G be a Haar null set as witnessed by

a probability measure µ. Let ν be an arbitrary probability measure. Then µ ∗ ν(gAh) =

ν ∗ µ(gAh) = 0 for every g, h ∈ G.
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Proof. Let g, h ∈ G be arbitrary. Note that for any fixed y ∈ G we have {(x, y) ∈ G2 :

xy ∈ gAh} = gAhy−1, and for any fixed x ∈ G we have {(x, y) ∈ G2 : xy ∈ gAh} = x−1gAh.

Hence by Fubini’s theorem, we have

µ ∗ ν(gAh) = µ× ν({(x, y) ∈ G2 : xy ∈ gAh}) =
∫
G
µ(gAhy−1)dν(y)

and

ν ∗ µ(gAh) = ν × µ({(x, y) ∈ G2 : xy ∈ gAh}) =
∫
G
µ(x−1gAh)dν(y).

Since both integrands above are constantly 0, we have µ ∗ ν(gAh) = ν ∗ µ(gAh) =

0. �

Corollary 5.7. Let G be a metric group. Then HN (G) is closed under finite unions.

Proof. If A and B are Haar null sets in G as witnessed by µ and ν respectively, then the

convolution µ ∗ ν gives µ ∗ ν(g(A ∪ B)h) ≤ µ ∗ ν(gAh) + µ ∗ ν(gBh) = 0 for every g, h ∈ G

by Lemma 5.6. �

Now we wish to establish that if G is in addition separable, that is, if G is a Polish

group, then HN (G) is actually closed under countable unions as well as finite ones. This

result is not new. Christensen gives a proof in the case where G is abelian in [7], and

Hunt, Sauer, and Yorke prove it for topological vector spaces in [29]. Proofs of this fact for

general Polish groups appear in the papers [14] by Topsøe and Hoffman-Jørgenson and [40]

by Mycielski. We wish to point out that in the latter paper, there appears to be an error

in the proof of this fact (Theorem 3 in [40]). The error can be corrected to yield the same

conclusion, but it is substantive enough to warrant a change in the proof’s main construction.

For the sake of clarity we seek to describe and correct the mistake here, especially because

[40] is so frequently cited as a fundamental paper in the general theory of Haar null sets.

We paraphrase the argument of [40] as follows: Let G be a Polish group with compat-

ible metric d. Let (Ai)i∈ω be a sequence of Haar null sets in G. For each i, find a measure µi
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which witnesses that Ai is a Haar null set, and which is supported on a compact set Ki con-

taining the identity e with d-diameter less than 2−i (Lemma 5.9 below guarantees that this

is possible). Then
∞∏
i=0

µi-almost every sequence (gi)i∈ω has gi ∈ Ki and hence d(e, gi) < 2−i

for every i. Then the sequence of partial products (g0...gi)i∈ω forms a Cauchy sequence, in

which case the infinite product g0g1... converges. Then the infinite convolution
∞∗
i=0

µi gives

measure 1 to G, and hence becomes a probability measure witnessing that
∞⋃
i=0

Ai is Haar

null.

The problem with the above argument lies in the conclusion that if d(e, gi) < 2−i

for every i, then d(g0...gi−1, g0...gi−1gi) < 2−i for every i, and hence the sequence of partial

products (g0...gi) forms a Cauchy sequence. This conclusion would be true if the metric d

in question were both complete and left-invariant. (Groups which admit such a metric are

known as CLI groups.) Although every Polish group admits a complete metric by definition

and a left-invariant metric by the Birkhoff-Kakutani Theorem 2.15, there are many well-

known groups which do not admit a simultaneously complete and left-invariant metric. If

the metric d is left-invariant then the sequence of partial products (g0...gi)i∈ω will indeed be

Cauchy, but need not converge; and if d is complete but not left-invariant then there is no

reason to think that the partial products (g0, ..., gi) form a Cauchy sequence at all.

For a simple concrete example, take G = S∞, which admits no compatible complete

left-invariant metric. Let d be any metric generating the topology on S∞ (complete or

left-invariant or otherwise). Let (δi)i∈ω be a sequence of positive reals converging to 0 (for

instance we could take δi = 2−i as in the above comments). For each i ∈ ω, let ki be so

large that the basic open set Ui = {π ∈ S∞ : π � (ki − 1) = e � (ki − 1)} is a subset of the

open ball Bd(e, δi). Assume without loss of generality that the sequence (ki) is increasing.

Now for each i ∈ ω let gi be the transposition (ki, ki+1). By definition gi ∈ Ui ⊆ Bd(e, δi) for

each i, so d(e, gi) < δi. But g0g1...gi is the cyclic permutation (k0, k1, ..., ki, ki+1), and hence

(g0g1...gi)
−1(k0) = ki+1 for each i. Since (δi) converges to 0, (ki+1) diverges to infinity and

hence the sequence of partial products (g0g1...gi)i∈ω diverges.

Such an example of a divergent product in fact exists for every sequence (δi) in every
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group which is not CLI, as the next proposition establishes.

Proposition 5.8. Let G be a topological group. Then the following are equivalent.

(1) There exists a metric d compatible with the topology of G, and a sequence (δi)i∈ω,

with the property that if (xi) ∈ Gω is a sequence such that d(e, xi) < δi for every

i ∈ ω, then the infinite product x0x1... converges.

(2) G is a CLI group.

Proof. From our previous comments, (2) implies (1) by taking d to be a complete left-

invariant metric and (δi) = (2−i). To see that (1) implies (2), suppose that G has such a

metric d and such a sequence (δi). By the Birkhoff-Kakutani Theorem 2.15, there is also a

left-invariant metric ρ compatible with the topology of G. We will show ρ is complete.

Let (yi)i∈ω be a ρ-Cauchy sequence. For each i let εi > 0 be so small that Bρ(e, εi) ⊆

Bd(e, δi). Since (yi) is ρ-Cauchy, we may pass to a subsequence (yik) with the property that

ρ(yik , yik+1
) < εk for each k ∈ ω. Set xk = y−1ik yik+1

for each k ∈ ω. Then by the left-

invariance of ρ, we have ρ(e, xk) = ρ(e, y−1ik yik+1
) = ρ(yik , yik+1

) < εk for each k, and hence

d(e, xk) < δk for k by our choice of εk. Thus the infinite product x0x1... converges by our

hypothesis. But then y0x0x1... = lim
k→∞

y0x0x1...xk−1 = lim
k→∞

yik , so (yik) converges and hence

(yi) converges. This shows ρ is a complete left-invariant metric on G. �

We should comment that the original proof given by Topsøe and Hoffman-Jørgenson

in [14] that a countable union of Haar null sets is Haar null in any Polish group is to the

best of our knowledge sound. Their proof invokes the topological and algebraic properties

of the space M(G) of Borel probability measures on G endowed with the topology of weak

convergence. This topology may be metrized by the Levy-Prokhorov metric, which is com-

plete and generates a separable topology if G is Polish. Moreover the convolution operation

∗ on M(G) is associative with identity element δe, the Dirac measure at e ∈ G, as well

as separately continuous with respect to the topology on M(G). So M(G) forms a Polish

topologized semigroup. Topsøe and Hoffman-Jørgenson then note that given a sequence

(Ai) of Haar null sets, it is possible to choose a sequence of witnessing measures (µi) which

75



converge to δe so quickly that the finite convolutions (µ0 ∗ ...∗µi)i∈ω form a Cauchy sequence

in M(G); then the limit of this sequence is the desired probability measure µ =
∞∗
i=0

µi, for

which µ

(
g

(
∞⋃
i=0

Ai

)
h

)
= 0 for all g, h ∈ G.

The proof outlined above is “technological” in the sense that it relies upon the Polish

semigroup structure of M(G). Given that the definition of Haar null sets is so elementary,

we believe there is merit in presenting a direct proof that HN (G) is closed under countable

unions when G is Polish, which does not rely upon the metrizability ofM(G). We give such

an argument in Proposition 5.11, which is modeled after Mycielski’s argument in [40], but

with the necessary repair provided by Lemma 5.10.

Lemma 5.9. Let G be a Polish group and A ⊆ G a universally measurable set. Let δ > 0

be arbitrary. Then A is Haar null if and only if there exists a compactly supported Borel

probability measure µ on G such that µ(gAh) = 0 for every g, h ∈ G, e ∈ suppµ, and

diam suppµ < δ.

Proof. If such a compactly supported measure exists, then A is Haar null. Conversely,

suppose A is Haar null as witnessed by a measure Borel probability measure µ on G. Let

x ∈ suppµ be arbitrary. Define a Borel probability measure µ′ on G by setting µ′(A) =

µ(x−1A) for each Borel set A ⊆ G. Then µ′(gAh) = µ(x−1gAh) = 0 for every g, h ∈ G and

e ∈ suppµ′.

Let U be the open ball about e of radius δ
3
. Since e ∈ suppU , µ′(U) > 0. Since G

is Polish, µ′ is regular by Lemma 2.24. Hence there exists a compact subset K ⊆ U with

µ(K) > 0. Define a Borel measure ν on G by setting ν(A) =
µ′(A ∩K)

µ′(K)
for every Borel set

A. Then ν is a probability measure for which ν(gAh) = 0 for every g, h ∈ G, e ∈ supp ν,

and diam supp ν = diamK ≤ diamU < δ.

�

Lemma 5.10. Let (G, d) be a metric group and let β > 0 be arbitrary. For each g ∈ G define

αg = sup{α : gBd(e, α) ⊆ Bd(g, β)}.
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If K is any compact subset of G, then inf{αg : g ∈ K} > 0.

Proof. Note that since multiplication on the left by g is continuous, αg > 0 for every g ∈ G.

So if K ⊆ G is compact, we have inf{αg : g ∈ K} ≥ 0. Thus we need only show that the

infimum is not exactly 0.

Suppose toward a contradiction that inf{αg : g ∈ K} = 0. Then there exists a

sequence (gn)n∈ω of points in K for which (αgn)n∈ω converges to 0. Since K is compact, we

may assume by passing to a subsequence that (gn) converges to some point g ∈ K.

Now for each n, we have gBd(e, αgn + 1
n
) 6⊆ Bd(gn, β) since αgn + 1

n
> αgn . So we may

find some xn ∈ Bd(e, αgn + 1
n
) for which gnxn /∈ Bd(gn, β). So d(gn, gnxn) ≥ β for all n. Note

that the sequence (xn) converges to e since (αgn + 1
n
) converges to 0.

Choose N so large that for all n ≥ N , we have d(g, gn) < β
2
. Then for all n ≥ N ,

we have d(gn, gnxn) ≤ d(g, gn) + d(g, gnxn) and hence d(g, gnxn) ≥ d(gn, gnxn) − d(g, gn) >

β − β
2

= β
2
. This means that the sequence (gnxn) does not converge to g = ge, despite the

fact that gn → g and xn → e, contradicting the continuity of group multiplication in G. �

Proposition 5.11. Let G be a Polish group and (Ai)i∈ω a sequence of Haar null sets in G.

Then
⋃
i∈ω

Ai is a Haar null set.

Proof. Let d be a compatible complete metric for G. We will construct a sequence of Borel

probability measures (µi)i∈ω such that

(1) µi(gAih) = 0 for every g, h ∈ G and i ∈ ω;

(2) Ki = supp(µi) is compact for each i ∈ ω; and

(3) if x ∈ K0K1...Ki−1 and xi ∈ Ki, then d(x, xxi) < 2−i for each i ≥ 1.

To start the construction, by Lemma 5.9 let µ0 be an arbitrary compactly-supported

measure with µ(gA0h) = 0 for all g, h ∈ G, and let K0 = suppµ0. Now by way of induction

suppose that we have found (µ0, ..., µi−1) and (K0, ..., Ki−1) with our desired three properties

above. For each g ∈ G, define

αg = sup{α : gBd(e, α) ⊆ Bd(g, 2
−i)}.
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Since K0K1...Ki−1 is compact, by Lemma 5.10 we may find some fixed δi > 0 such

that δi < αx for all x ∈ K0K1...Ki−1. By Lemma 5.9, there is a probability measure µi

on G for which µi(gAih) = 0 for all g, h ∈ G, and Ki = suppµi is compact with e ∈ Ki

and diamKi < δi. Note that if x ∈ K0K1...Ki−1 and x ∈ Ki+1, then d(e, xi) < δi, and

hence xxi ∈ xBd(e, δi) ⊆ xBd(e, δx) ⊆ Bd(x, 2
−i); so d(x, xxi) < 2−i. This completes the

construction.

Finally, define µ =
∞∗
k=0

µk as in Definition 5.5. Then µ is a measure on G. We wish

to check that µ is a probability measure, i.e. that µ(G) = 1. To that end, notice that(
∞∏
i=0

µk

)
-almost every sequence (g0, g1, ...) ∈ Gω is an element of

∞∏
k=0

Ki since Ki = suppµi

for each i. Thus for a full-measure set of sequence (gi) we have that each partial product

g0g1...gi lies in K0K1...Ki, whence if n < m we have

d(g0g1...gn, g0g1...gm) ≤ d(g0g1...gn, g0g1...gn+1) + ...+ d(g0g1...gm−1, g0g1...gm)

< 2−(n+1) + ...+ 2−m

< 2−n

by our construction of the sets (Ki). Thus, for

(
∞∏
i=0

µk

)
-almost every sequence (gi)i∈ω, the

partial products (g0g1...gi) form a Cauchy sequence and hence the infinite product g0g1...

converges since d is a complete metric. It follows that µ(G) =

(
∞∏
i=0

µk

)
({(gi) ∈ Gω : g0g1...

converges}) = 1 and µ is a probability measure.

For any i ∈ ω and any g, h ∈ G, we have

µ(gAih) =

(
i−1∗
j=0

µj

)
∗ µi ∗

( ∞∗
k=i+1

µk

)
(gAih) = 0

by Lemma 5.6. Therefore for any g, h ∈ G we have µ

(
g

(⋃
i∈ω

Ai

)
h

)
= µ

(⋃
i∈ω

gAih

)
≤

∞∑
i=0

µ(gAih) = 0 and thus
⋃
i∈ω

Ai is a Haar null set. �
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Corollary 5.12. Let G be any Polish group. Then HN (G) is a σ-ideal of subsets of G.

The following corollary follows not from the statements but from the proofs of Corol-

lary 5.7, Lemma 5.9 and Proposition 5.11. We sketch the necessary arguments.

Corollary 5.13. Let G be a metric group.

(1) If A and B are openly Haar null subsets of G, then A ∪B is openly Haar null.

(2) If G is Polish and (Ai)i∈ω is a sequence of openly Haar null subsets of G, then
∞⋃
i=0

Ai

is openly Haar null. Hence OHN (G) is a σ-ideal of subsets of G.

Proof. (Proof of (1).) Let A and B be openly Haar null sets as witnessed by µ and ν

respectively. Let ε > 0. Let U ⊇ A and V ⊇ B be open sets for which µ(gUh) < ε
2

and

ν(gV h) < ε
2

for every g, h ∈ G. By Fubini’s theorem again, for every g, h ∈ G we have

µ ∗ ν(gUh) =
∫
G
µ(gUhy−1)dν(y) <

∫
G
ε
2
dν(y) = ε

2

and

µ ∗ ν(gV h) =
∫
G
ν(x−1gV h)dµ(x) <

∫
G
ε
2
dν(y) = ε

2
.

Then U ∪ V is open about A ∪ B and µ ∗ ν(g(U ∪ V )h) = µ ∗ ν(gUh ∪ gV h) ≤

µ ∗ ν(gUh) + µ ∗ ν(gV h) < ε for every g, h ∈ G. Hence A ∪B is openly Haar null.

(Proof of (2).) Let (Ai)i∈ω be a sequence of openly Haar null sets in G and let ε > 0.

By an argument exactly analogous to the proof of Lemma 5.9, for any δ < 0 it is possible to

find for each i a measure µi witnessing that Ai is openly Haar null, which is supported on a

compact set Ki containing the identity e and for which diamKi < δ for a suitable complete

metric. Then by the same inductive construction employed in the proof of Proposition 5.11,

we may build a probability measure µ of the form

µ =
∞∗
i=0

µi.
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For each i find an open set Ui ⊇ Ai such that µi(gUih) < ε2−(i+1). Since µ =(
i−1∗
j=0

µj

)
∗ µi ∗

( ∞∗
k=i+1

µk

)
, by Fubini’s theorem we have

µ(gAih) =
∫
G

∫
G
µi(x

−1gAihy
−1)d

(
i−1∗
j=0

µj

)
(x)d

( ∞∗
k=i+1

µk

)
(y).

Since the integrand above is bounded above by ε2−(i+1) we have µ(gAih) < ε2−(i+1).

Hence for any g, h ∈ G we have µ

(
g

(
∞⋃
i=0

Ai

)
h

)
≤

∞∑
i=0

µ(gAih) <
∞∑
i=0

ε2−(i+1) = ε. So

∞⋃
i=0

Ai is openly Haar null. �

The following theorem establishes that HN (G) is the Haar measure zero sets when

G is locally compact.

Theorem 5.14 (Mycielski [40]). Let G be a Polish locally compact group and A ⊆ G a

universally measurable set. Then the following are equivalent.

(1) A is a Haar null set.

(2) A is a Haar measure zero set.

(3) There exists a Borel probability measure µ on G such that µ(gA) = 0 for every

g ∈ G.

Part (3) in the theorem above may motivate the following question: May the two-

sided translations involved in the definition of Haar null sets be dispensed with? That is, do

we get a reasonable or useful σ-ideal if we consider the family of left Haar null sets, i.e. the

class of all universally measurable sets A ⊆ G such that there is a Borel probability measure

µ on G, with µ(gA) = 0 for every g ∈ g? If G is locally compact or abelian, then evidently

the left Haar null sets are exactly the Haar null sets. Solecki has shown, however, that there

is a severe difference for an important class of non-locally compact non-abelian groups.

Definition 5.15. A Polish group G is said to have a free subgroup at the identity if it has

a non-discrete free subgroup whose all finitely-generated subgroups are discrete.
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Solecki shows that the class of Polish groups which have a free subgroup at the identity

includes: S∞, Aut Q, Homeo 2ω, Homeo[0, 1]n (n ∈ N), and many others. For these groups,

the family of left Haar null sets badly fails to comprise a σ-ideal, as the next theorem shows.

Theorem 5.16 (Solecki [52]). Let G be a Polish group which has a free subgroup at the

identity. Then there exists a Borel set B ⊆ G such that B is left Haar null and G = B ∪Bg

for some g ∈ G.

Since a right translation of a left Haar null set is left Haar null, the left Haar null sets

are not even closed under finite unions, let alone countably infinite ones.

Now we turn to what is known about questions (1)-(4) above. The most general

known result regarding the Haar-null-ness of compacta belongs to Dougherty. Recall that a

TSI group is a group which admits a two-sided invariant metric.

Theorem 5.17 (Dougherty [11]). Let G be a non-locally compact TSI Polish group. Then

the compact subsets of G are Haar null.

We are also interested in extending the following classical theorem to the non-locally

compact setting.

Theorem 5.18 ([41] Theorem 16.5). Let G be an uncountable locally compact topological

group. Then G may be written as a disjoint union G = A∪B, where A is a comeager Haar

measure zero set and B is a meager set of full Haar measure.

Mycielski and Dougherty have made the following classification in S∞.

Theorem 5.19 (Dougherty and Mycielski [12]). Let A ⊆ S∞ be the set of all permutations

which have infinitely many infinite cycles and only finitely many finite cycles. Then A is

prevalent in S∞.

On the other hand, it is easy to prove the following.

Proposition 5.20. Let B ⊆ S∞ be the set of all permutations which have only finite cycles.

Then B is comeager in S∞.

Proof. Using the logical notation and allowing the variables m,n to range over ω, we write
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π ∈ B ↔ ∀m ∃n [πn(m) = m].

This displays B as a Gδ set, and since B contains the finitely-supported permutations,

B is dense. �

So Dougherty and Mycielski have shown by explicit construction that S∞ decomposes

into the union of a Haar null comeager set and a prevalent meager set. As far as we are

aware, this is the only previously existing example of this phenomenon in the literature.

Lastly we turn to questions (3) and (4). Note that every openly Haar null set is

contained in a Haar null Gδ set. So a positive answer to (4) would imply a positive answer

to (3) (and in turn a positive answer to (2)). The following result shows that it is consistent

with ZFC that the answer to (3) (and hence (4)) is no.

Theorem 5.21 (Dougherty [11]). Assume the continuum hypothesis. Let G be a non-locally

compact TSI Polish group. Then there exists a Haar null set S ⊆ G such that if B ⊆ G is a

Borel set with S ⊆ B, then B is prevalent.

5.3. Haar Null Sets in Products and Inverse Limits of Locally Compact Groups

Definition 5.22. Let G be a topological group, µ a Borel measure on G, and A ⊆ G a

Borel set. We will say that µ is openly (δ-)bounded at A if there exists some real number δ

with 0 < δ < µ(G), and some open set U ⊇ A, such that µ(gUh) < δ for all g, h ∈ G.

Obviously if µ is openly δ-bounded at A then µ(gAh) < δ for all g, h ∈ G as well.

For any unimodular group G, the two-sided Haar measures on G are all openly

bounded at every Borel set. But in general the left and right Haar measures on a non-

unimodular group cannot be openly bounded at any Borel set A, for every open set in a

non-unimodular group has two-sided translates of unbounded measure.

Lemma 5.23. Let G be a non-unimodular locally compact topological group. Let N = ker(∆)

denote the kernel of the modular function ∆ of G, so G/N is also a locally compact group,

and let π : G→ G/N be the canonical projection. Let 0 < δ < 1. If A is any subset of G for
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which π(A) has finite Haar measure in G/N , then there exists a probability measure µ on G

such that µ is openly δ-bounded at A.

Proof. Since ∆ : G→ R+ is a continuous group homomorphism, the map ∆∗ : G/N → R+

defined by ∆∗(gN) = ∆(g) is a well-defined, continuous, injective group homomorphism from

G/N into R. In particular, G/N is an abelian locally compact group, and hence unimodular.

So G/N admits two-sided Haar measures. Let λ be any two-sided Haar measure on G/N

for which λ(π(A)) ≤ δ
2
. Observe that G/N is not compact; for if it were, then the image

∆∗(G/N) would be compact in R, but unbounded in R, a contradiction. So λ(G/N) =∞.

Now let φ : G/N → G be a Borel selector for the cosets of H, i.e. let φ be a Borel

measurable function which satisfies φ(gH) ∈ gH for each g ∈ G (See Theorem 2.20). Note

that φ is a right inverse for the projection map π, i.e. π ◦ φ is the identity on G/N .

Now let ν be the measure on G defined by ν(X) = λ(φ−1(X)) for every Borel set

X ⊆ G. Since λ(G/N) = ∞, we have ν(G) = ∞; so find any compact set K for which

ν(K) = 1, and set µ = ν � K. We claim that µ is our desired probability measure.

To see this, note that since δ > δ
2

= λ(π(A)), the regularity of λ implies that there is

some open set V ⊆ G/N with V ⊇ π(A) and λ(V ) < δ. Set U = π−1(V ), so U is an open

superset of A in G. Then

µ(gUh) ≤ ν(gUh)

≤ λ(π(gUh))

= λ(π(g)V π(h))

= λ(V )

< δ

as required. �
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Corollary 5.24. Let G be a non-compact, locally compact topological group. Let 0 < δ < 1.

If K is a compact subset of G, then there exists a regular probability measure µ on G such

that µ is openly δ-bounded at K.

Proof. If G is unimodular, then find the unique two-sided Haar measure λ on G for which

λ(K) < δ, and set µ = λ � F , where F is any compact set with λ(F ) = 1. The translation-

invariance of λ implies the open δ-boundedness of µ at K. Otherwise if G is not unimodular,

then let N be the kernel of the modular function ∆ of G and let π : G → G/N be the

canonical projection. Since π(K) is a compact subset of G/N , it has finite Haar measure in

G/N , and now Lemma 5.23 applies to finish the proof. �

Proposition 5.25. Let (Gn)n∈ω be a sequence of topological groups such that infinitely many

of the Gn are locally compact but not compact. Let G =
∏
n∈ω

Gn. Suppose A ⊆ G has

the property that for infinitely many n, Gn is locally compact non-compact and πn(A) is

precompact in Gn. Then A is openly Haar null in G.

Proof. For each n, let An denote the topological closure of πn(A) in Gn. By hypothesis

there is some subsequence (nk)k∈ω of ω for which Ank
is compact and Gnk

is locally compact

but not compact, for all k. For each such coordinate nk, use Corollary 5.24 to find a

probability measure µnk
on Gnk

which is openly 1
2
-bounded at Ank

. For every coordinate n

which does not appear in the sequence (nk)k∈ω, let µn be an arbitrary probability measure,

and set µ =
∏
n∈ω

µn.

Let ε > 0. Choose N large enough so that 2−(N+1) < ε. For each 0 ≤ k ≤ N ,

use the open 1
2
-boundedness of µnk

to find an open set Unk
containing Ank

, such that

µnk
(gnk

Unk
hnk

) < 1
2
, for all gnk

, hnk
∈ Gnk

. For all coordinates n which are not in {n0, ..., nN},

set Un = Gn, and set U =
∏
n∈ω

Un. So U is an open subset of G containing A, and for all

g, h ∈ G we have

µ(gUh) =
∏
n∈ω

µn(πn(g)Unπn(h))
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=

[
N∏
k=0

µnk
(πnk

(g)Unk
πnk

(h))

]
·

 ∏
n/∈{n0,...,nN}

µn(Gn)


<

N∏
k=0

1

2

= 2−(N+1)

< ε.

So A is openly Haar null. �

Corollary 5.26. If G =
∏
n∈ω

Gn where infinitely many of the groups Gn are locally compact

but not compact, then the compact subsets of G are openly Haar null.

Since products of locally compact groups need not in general admit two-sided invariant

metrics, Corollary 5.26 significantly extends the domain of Theorem 5.17 of Dougherty. We

can also pass the conclusion of Theorem 5.17 between groups and their subgroups of small

index, via the next proposition.

Proposition 5.27. Let G be a Polish group. Let H be an open subgroup of G. Then the

compact sets in H are Haar null in H if and only if the compact sets in G are Haar null in

G.

Proof. First suppose the compact sets in H are Haar null in H. Since H is open, it is also

closed in G and hence Polish. Since [G : H] is countable, we may enumerate all the right

cosets of H by Hg0, Hg1, ... for some g0, g1, ... ∈ G and all the left cosets of H by h0H, h1H, ...

for some h0, h1, ... ∈ G.

Let K ⊆ G be compact. Set F =
⋃
i,j∈ω

giKhj ∩H. F is a σ-compact subset of H and

hence a Haar null set in H by our hypothesis. So find a probability measure µ, which has

support in H, and for which µ(k0Fk1) = 0 for all k0, k1 ∈ H.

Then µ is also a measure on G, and we claim that µ also witnesses that K is Haar
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null in G. For if g, h ∈ G are arbitrary, we may find some gi and some hj for which g ∈ Hgi

and h ∈ hjH. Then there exist k0, k1 ∈ H for which g = k0gi and h = hjk1, and hence we

have

gKh ∩H = k0giKhjk1 ∩H

= k0[giKhj ∩ k−10 Hk−11 ]k1

= k0[giKhj ∩H]k1

⊆ k0Fk1.

Since the support of µ is a subset of H, it follows that we have µ(gKh) = µ(gKh ∩

H) ≤ µ(k0Fk1) = 0. So K is indeed Haar null in G.

Conversely, suppose the compact sets in G are Haar null in G, and let K ⊆ H ⊆ G

be compact. Since K is Haar null in G, let µ be a measure on G witnessing it. Since µ is

countably additive and there are only countably many cosets Hgi in G, there must be some

particular i ∈ ω for which µ(Hgi) > 0; fix this i. Let c = 1/µ(Hgi) and define ν on H

by ν(A) = cµ(Agi). Then ν is a probability measure on H, and for all g, h ∈ H we have

ν(gKh) = cµ(gKhgi) = 0, so K is Haar null in H. �

The next corollary gives the first positive answer to Question (2) of Darji for a large

class of Polish groups.

Corollary 5.28. Let G =
∏
n∈ω

Gn where infinitely many of the groups Gn are locally compact

but not compact. If G is Polish, then G may be represented as the disjoint union G = A∪B,

where A is a comeager Haar null set and B is a meager prevalent set.

Proof. Let D be a countable dense set in G. Since D is σ-compact, D is an openly Haar

null set by Corollary 5.26. It follows that D is contained in a Haar null Gδ set A. Since A is

dense, A is comeager, and hence its complement B = G\A is meager as well as prevalent. �

86



The next result is a slight modification of the forward direction of Proposition 8 in

[11], and is achieved by essentially the same proof.

Lemma 5.29. Let G and H be Polish groups and φ : G→ H a continuous surjective homo-

morphism, and A ⊆ H a universally measurable set. If A is openly Haar null in H, then

φ−1(A) is openly Haar null in G.

Proof. First suppose A is openly Haar null in H, as witnessed by the probability measure

ν on H. Define a map θ : G/ ker(φ) → H by θ(g ker(φ)) = φ(g). The map θ is a well-

defined continuous bijection and hence a Borel isomorphism by Lusin-Souslin’s theorem. By

Theorem 2.20, let ψ : G/ ker(φ)→ G be a Borel-measurable coset selector. Set κ = ψ ◦ θ−1 :

H → G. Then κ is Borel-measurable and κ(h) ∈ φ−1(h) for every h ∈ H; in other words

φ ◦ κ : H → H is the identity map.

Define µ on G by µ(B) = ν(κ−1(B)) for all Borel sets B ⊆ G, so µ is a probability

measure. Let ε > 0 and let V ⊆ H be an open superset of A, for which ν(h1V h2) < ε for all

h1, h2 ∈ H. Set U = φ−1(V ), so U is open in G and φ−1(A) ⊆ U . Then for any g1, g2 ∈ G we

have µ(g1Ug2) = ν(κ−1(g1Ug2)) ≤ ν(φ(g1Ug2)) = ν(φ(g1)φ(U)φ(g2)) = ν(φ(g1)V φ(g2)) < ε.

So φ−1(A) is openly Haar null in H. �

Corollary 5.30. Let G be Polish group. If there exists a continuous surjective homomor-

phism φ : G→ H where H is an uncountable locally compact unimodular Polish group, then

the singleton sets in G are openly Haar null, and hence G may be written as the disjoint

union of a Haar null set and a meager set.

Proof. If g ∈ G, then the singleton set {ψ(g)} is openly Haar null in H as witnessed by any

two-sided Haar measure on H. So by our lemma above, {g} ⊆ ψ−1({ψ(g)}) is a subset of an

openly Haar null set and hence openly Haar null. The decomposition now follows exactly as

in the proof of Corollary 5.28. �

For instance, if G = lim
←
Gn is an inverse limit of Polish groups Gn, and at least one Gn

is an uncountable locally compact unimodular group, then G admits such a decomposition.
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5.4. Groups Where OHN 6= HN

The next few propositions establish the existence of several groups, both locally com-

pact and non-locally compact, where the family of openly Haar null sets is a proper subcol-

lection of the family of Haar null sets. This provides a negative answer to question (4) and

resolves an uncertainty of Solecki in [51].

Proposition 5.31. Let G be the ax + b group as defined in Subsection 2.2.2. Then there

exist closed subsets of G which are Haar null but not openly Haar null.

Proof. For instance, let F = R+ × {0} ⊆ G. F is obviously Haar measure zero, i.e. Haar

null in G. But we will show that F is not openly Haar null.

To that end, let µ be an arbitrary compactly-supported measure on G; say that the

support of µ is a subset of the closed bounded box [i, j]× [−k, k], where i, j ∈ R+ and k ∈ R.

Let U be an arbitrary open set containing F . Since U may be written as a countable union

of basic open boxes, and the line segment [i, j] × {0} is a compact subset of F , by passing

to a finite subcover and taking appropriate minimums, we may find some ε > 0 for which

[i, j]× {0} ⊆ (i− ε, j + ε)× (−ε, ε) ⊆ U .

Set V = (i − ε, j + ε) × (−ε, ε). Now let N ∈ R+ be so large that Nε > k. Let us

compute membership in the set ( 1
N
, 0) · V · (N, 0):

(a, b) ∈ (N, 0) · V ·
(

1

N
, 0

)
↔
(

1

N
, 0

)
· (a, b) · (N, 0) ∈ V

↔
(

1

N
, 0

)
· (aN, b) ∈ V

↔
(
a,

b

N

)
∈ V

↔ a ∈ (i− ε, j + ε) ∧ b

N
∈ (−ε, ε)

↔ a ∈ (i− ε, j + ε) ∧ b ∈ (−Nε,Nε)

↔ (a, b) ∈ (i− ε, j + ε)× (−Nε,Nε).
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So by the equivalence above, we have [i, j] × [−k, k] ⊆ (i − ε, i + ε) × (−Nε,Nε) ⊆

(N, 0) · V · ( 1
N
, 0). Since the support of µ is contained in [i, j] × [−k, k], we have µ((N, 0) ·

U · ( 1
N
, 0)) ≥ µ((N, 0) · V · ( 1

N
, 0)) = 1. So U has a two-sided translate of full measure. Since

µ and U were taken arbitrarily, F cannot possibly be openly Haar null. �

So OHN (G) ( HN (G) in G the ax + b group. However, there are certainly many

openly Haar null sets in G, as the next theorem shows.

Proposition 5.32. Let G be a non-unimodular locally compact topological group. Let N =

ker(∆) denote the kernel of the modular function ∆ of G, so G/N is also a locally compact

group, and let π : G → G/N be the canonical projection. If A is any subset of G for which

π(A) is Haar measure zero in G/N , then A is openly Haar null in G.

Proof. This proof is almost identically the proof of Lemma 5.23, so we will move through

the details a bit more quickly. Since G/N is abelian, it admits a two-sided Haar measure

λ. By Theorem 2.20, let φ : G/N → G be a Borel selector for the cosets of N and define a

measure ν on G by the rule ν(A) = λ(φ−1(A)). Let K be any subset of G with ν(K) = 1

and let µ = ν � K, so µ is a probability measure on G. For any ε > 0, use the regularity of λ

to find V ⊆ G/N such that V contains π(A) and λ(V ) < ε, and let U = π−1(V ). Then U is

open in G, U contains A, and for any g, h ∈ G we have µ(gUh) ≤ ν(gUh) = λ(π(g)V π(h)) =

λ(V ) < ε. Hence A is openly Haar null as required. �

Now we will mention that the openly Haar null sets may differ from the Haar null sets

in non-locally compact groups as well as locally compact ones, by looking at an “infinite-

dimensional ax+ b group.” The construction is somewhat ad hoc and was actually the first

example discovered by the author of a group where OHN 6= HN . The proof of Proposition

5.34 is in spirit extremely similar to that of Proposition 5.31.

Definition 5.33. Let φ : R+ → Aut(Rω) be defined by the rule [φ(a)](b) = a · b =

(ab(0), ab(1), ...) for every a ∈ R+ and b = (b(n))n∈ω ∈ Rω. Define G to be the semidi-
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rect product group

G = R+ nφ Rω.

Stated otherwise, G is the group of all tuples (a, b) = (a, b(0), b(1), ...) ∈ R+ × Rω,

with the group multiplication defined by

(a, b) · (c, d) = (ac, a · d+ b) = (ac, ad(0) + b(0), ad(1) + b(1), ...).

Theorem 2.17 (2) implies that G is a Polish group. An easy computation shows that

in general, if (a, b) ∈ G, then (a, b)−1 = ( 1
a
, 1
a
· (−b)).

Proposition 5.34. Let G be as in Definition 5.33. Then there exist closed subsets of G

which are Haar null but not openly Haar null.

Proof. For instance, set

F = R+ × [−1, 1]ω.

First let us show that F is a Haar null set in G. We must find a measure µ on G which

is transverse to F . Let ν be an arbitrary probability measure on R+. For each n ∈ ω, let µn

be the uniform probability measure on the interval [−n, n]. Define µ on G by µ = ν×
∏
n∈ω

µn.

Now let (a, b) and (c, d) be arbitrary elements of G. We compute the members of the

set (a, b)−1 · F · (c, d)−1 below:

(e, f) ∈ (a, b)−1 · F · (c, d)−1 ↔ (a, b) · (e, f) · (c, d) ∈ F

↔ (aec, a · f + ae · d+ b) ∈ F

↔ ∀n ∈ ω (af(n) + aed(n) + b(n) ∈ [−1, 1])

↔ ∀n ∈ ω
(
f(n) ∈

[
−1− aed(n)− b(n)

a
,
1− aed(n)− b(n)

a

])
.
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Let In =
[
−1−aed(n)−b(n)

a
, 1−aed(n)−b(n)

a

]
. Then the above computation reveals that,

setwise, we have

(a, b)−1 · F · (c, d)−1 = R+ ×
∏
n∈ω

In.

Thus we have µ((a, b)−1 · F · (c, d)−1) = ν(R+) ·
∏
n∈ω

µn(In). But the length of each

interval In is just 2
a
, and our measures µn are uniformly distributed on [−n, n] for each n. It

follows that for all n > 4
a
, we have µn(In) ≤ 2/a

n
< 1

2
. Hence µ((a, b)−1 ·F · (c, d)−1) = 0, and

F is a Haar null set in G.

However, F cannot be openly Haar null. For let µ be an arbitrary probability measure

with compact support on G and let U ⊆ G be an open set which contains F . Let ψ : G→ R+

be the obvious projection map, and for each n ∈ ω let πn : G → R be the n-th projection

map. Let L = ψ(supp(µ)) and let Kn = πn(supp(µ)), so L ×
∏
n∈ω

Kn is compact in G and

supp(µ) ⊆ L×
∏
n∈ω

Kn.

Now since L× [0, 1]ω is compact by Tychonoff’s theorem, we may find finitely many

basic open sets U1, ..., Up such that L×[0, 1]ω ⊆
p⋃
i=1

Ui ⊆ U . We may write each Ui, 1 ≤ i ≤ p,

as a product

Ui = Vi ×
mi∏
j=0

U j
i ×

∏
k>mi

R,

where mi is an integer depending on i, Vi is open in R+, and U j
i is open in R for each

0 ≤ j ≤ mi.

Let now M = max{mi : 1 ≤ i ≤ p}. Notice that each Kj, 0 ≤ j ≤ M , is a compact

and hence bounded subset of the real line. Hence we may choose some N so large that

L×
M∏
j=0

Kj ×
∏
k>M

R ⊆ L×
M∏
j=0

[−N,N ]×
∏
k>M

R.

We claim that the set (N, 0) ·

[
p⋃
i=1

Ui

]
· ( 1
N
, 0) contains L×

∏
n∈ω

Kn, and hence contains

supp(µ) and has full µ-measure.
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Equivalently, we may show that ( 1
N
, 0) ·

[
L×

∏
n∈ω

Kn

]
· (N, 0) ⊆

p⋃
i=1

Ui. To see this,

take an arbitrary (e, f) ∈ ( 1
N
, 0) ·

[
L×

∏
n∈ω

Kn

]
· (N, 0). Then the following implications

hold:

(e, f) ∈
(

1

N
, 0

)
·

[
L×

∏
n∈ω

Kn

]
· (N, 0)→ (N, 0) · (e, f) ·

(
1

N
, 0

)
∈ L×

∏
n∈ω

Kn

↔ (e,N · f) ∈ L×
∏
n∈ω

Kn

→ (e,N · f) ∈ L×
M∏
j=0

Kj ×
∏
k>M

R

→ (e,N · f) ∈ L×
M∏
j=0

[−N,N ]×
∏
k>M

R

↔ e ∈ L ∧Nf(0) ∈ [−N,N ] ∧ ... ∧Nf(M) ∈ [−N,N ]

↔ e ∈ L ∧ f(0) ∈ [−1, 1] ∧ ... ∧ f(M) ∈ [−1, 1]

↔ (e, f) ∈ L×
M∏
j=0

[−1, 1]×
∏
k>M

R.

Now define a point f ′ ∈ Rω by f ′(j) = f(j) for all 0 ≤ j ≤ M and f(k) = 0 for

all k > M . It follows from the last statement above that (e, f ′) ∈ L × [−1, 1]ω and hence

(e, f ′) ∈ Ui for some i ∈ {1, ..., p}. This implies f(j) = f ′(j) ∈ U j
i for all j ∈ {1, ...,M} ⊇

{1, ...,mi}. So in fact we also have (e, f) ∈ Ui and the claim is proved.

It follows that the two-sided translate (N, 0) ·U · ( 1
N
, 0) contains the support of µ and

hence µ((N, 0) · U · ( 1
N
, 0)) = 1. Since µ and U were chosen arbitrarily, we see that our set

F cannot be openly Haar null. �

Remark 5.35. Let Q+
d denote the multiplicative group of positive rationals with the discrete

topology. Let φ : Q+
d → Aut R be the natural mapping defined by [φ(q)](x) = qx for every
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q ∈ Q+
d and x ∈ R, and let φω : Q+

d → Aut Rω be the analogous natural mapping.

Define two semidirect product groups by G1 = Q+
d nφ R and G2 = Q+ nφω Rω. Then

G1 is a locally compact Polish group and G2 is a non-locally compact Polish group. We

may think informally of G1 as a “qx + b group” where q is rational, and G2 as the infinite-

dimensional version of G1. By arguments very similar to those in the proofs of Propositions

5.31 and 5.34, it may be shown that G1 and G2 also have no nonempty openly Haar null

sets. That is, OHN (G1) = OHN (G2) = {∅}. So the family OHN may degenerate in a

multitude of Polish groups, even locally compact ones.

5.5. Haar Null Sets in S∞

In this section we define a useful class of measures in S∞, and use such a measure to

give a sufficient criterion for a set to be Haar null in this group. A corollary is that every

compact set is Haar null, which extends the result of Theorem 5.17 to another group which

does not admit a two-sided invariant metric.

Definition 5.36. Let S∞ denote the group of permutations of ω, endowed with the topology

of pointwise convergence.

For each s ∈ ω<ω, let Ns = {π ∈ S∞ : π � lh(s) = s} ⊆ S∞, so the family of all such

Ns is the standard basis for the topology of S∞.

Suppose K is some compact subset of S∞, so by Corollary 2.40 K is the set of branches

of some finitely branching tree T ⊆ ω<ω, i.e. K = [T ]. For any σ, τ ∈ S∞, let σTτ denote

the unique pruned tree for which σKτ = [σTτ ]. For every s ∈ ω<ω and tree S ⊆ ω<ω, let

C(S, s) denote the set

C(S, s) = {t ∈ S : lh(t) = lh(s) + 1 and t � lh(s) = s},

so C(S, s) is the set of all children of s which lie in S. This set is finite if [S] is compact.

We will say that µ is a uniform probability measure on M = [S] if µ is a probability

measure on S∞ which satisfies the following properties:
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(1) supp(µ) = M , and

(2) µ(Ns) =

lh(s)−1∏
k=0

1

|C(S, s � k)|
whenever s ∈ S.

Lemma 5.37. Every compact set M ⊆ S∞ admits a unique uniform probability measure µ

on M .

Proof. This is a routine application of Kolmogorov’s extension theorem. �

Definition 5.38. Let Im (T, j) ⊆ ω denote the set

Im (T, j) = {n ∈ ω : ∃π ∈ [T ] (π(j) = n)},

so Im (T, j) is a set of all integers which appear at the j-th level of T . Let N (T, j) ⊆ ω<ω

denote the set

N (T, j) = {s ∈ T : lh(s) = j + 1},

so N (T, j) is the set of all nodes of T at the j-th level. It is clear that |Im (T, j)| ≤ |N (T, j)|,

and that if σ, τ ∈ S∞, then |Im (σTτ, τ−1(j))| = |Im (T, j)|.

Suppose {I, ..., J} are consecutive integers (with I < J) and s ∈ ω<ω with lh(s) > J .

We will say that s is a cycle on {I, ..., J} if whenever i ∈ {I, ..., J} we have

s(i) = [(i− I + n) mod (J − I)] + I

for some integer n. Note that if s is a cycle on {I, ..., J} then s is a cyclic permutation of

{I, ..., J}. If 0 = I0 < I1 < ... < Ik and s ∈ ω<ω with lh(s) = Ik, then we will say that s

consists of cycles on I0, ..., Ik if s is a cycle on {Ii, ..., Ii+1 − 1} for every i ∈ {0, ..., k − 1}.

Note that if s consists of cycles on I0, ..., Ik then s is a bijective function from Ik → Ik.

Moreover, there are exactly
k∏
i=1

(Ii − Ii−1) many distinct s ∈ ω<ω which consist of cycles on

I0, ..., Ik.

Proposition 5.39. Let F be a subset of S∞, and let T ⊆ ω<ω be pruned tree on ω for which

F = [T ] ∩ S∞. If Im (T, j) = F · j is finite for infinitely many j ∈ ω, then F is a Haar null
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set.

Proof. We recursively define increasing sequences (`k)k∈ω and (nk)k∈ω of integers as follows:

Let `0 = 0. Let n0 be the least integer for which |Im (T, j)| = n0, for some j ∈ ω.

Now fix k and suppose `i and ni are defined for all i < k. Set `k = 2 ·
k−1∑
i=0

ni. Finally,

let nk be large enough so that there are at least `k + 1 distinct integer levels j for which

|Im (T, j)| ≤ nk. This completes our recursive definition.

Now we will define a new tree S on ω<ω whose branches will form a subset of S∞ and

which splits “at least twice as much” as any translate of T at infinitely many levels. Define

S as follows:

s ∈ S ↔ ∃k ∈ ω ∃t ∈ ω<ω (lh(t) = `k)∧

(t � lh(s) = s)∧

(t consists of cycles on `0, ..., `k).

The first few levels of the tree S are pictured below:
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Now set M = [S]. If π ∈ M , then clearly π � `k consists of cycles on `0, ..., `k for

every k, and hence π is really a permutation. Thus M ⊆ S∞. Then let µ be the uniform

probability measure generated by M .

We claim that µ will witness the Haar null-ness of K. In order to show this, we first

wish to make the following five technical claims about S and µ.

(1) For any j ∈ ω with `k ≤ j < `k+1, we have

|Im (S, j)| = |Im (S, `k)| = 2nk,

and

|N (S, j)| = |N (S, `k)| =
k∏
i=0

|Im (S, `i)| =
k∏
i=0

(2ni).

(2) For any j ∈ ω with `k ≤ j < `k+1, if s ∈ N (S, j), then

µ(Ns) =
1

|N (S, j)|
=

k∏
i=0

1

2ni
.

(3) For any j ∈ ω with `k ≤ j < `k+1, and for any tree U on ω<ω with [U ] ⊆ S∞, we

have
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|N (U ∩ S, j)| ≤ |N (U ∩ S, `k−1)| · |Im (U, j)|

(Here we take |N (U ∩ S, `k−1)| to be 1 if k = 0.)

(4) For any j, j′ ∈ ω with j ≤ j′ and any tree U on ω<ω with [U ] ⊆ S∞, we have

|N (U ∩ S, j′)|
|N (S, j′)|

≤ |N (U ∩ S, j)|
|N (S, j)|

.

(5) For any j ∈ ω and any tree U on ω<ω with [U ] ⊆ S∞, we have

µ([U ]) ≤ |N (U ∩ S, j)|
|N (S, j)|

.

Proof of (1). Notice that s appears on the j-th level of T if and only if s is extended by some

π ∈ [S] for which π � `k+1 is a cycle on {`k, ..., `k+1−1}. Hence s(j) = π(j) ∈ {`k, ..., `k+1−1},

and we have |Im (S, j)| ≤ `k+1− `k = 2nk. On the other hand if m is one of the 2nk integers

in the set {`k, ..., `k+1 − 1} then it is clear that π(j) = m for some π ∈ [S]. So in fact we

have |Im (S, j)| = 2nk for all j satisfying `k ≤ j < `k+1.

We will show the second statement of the claim by induction on k. We have shown

the base case k = 0 in the above paragraph. So suppose that, for some k ≥ 1, we have

|N (S, j′)| = |N (S, `k)| =
k∏
i=0

|Im (S, `k)| = ·
k∏
i=0

(2ni) whenever j satisfies `k−1 ≤ j′ < `k.

Now suppose we have j ∈ ω with `k ≤ j < `k+1. If s ∈ S has lh(s) = `k+1, then s extends

s � `k, which is one of the nodes in N (S, `k − 1). Also, s is a cycle on {`k, ..., `k+1 − 1} by

our definition of S. Since there are exactly `k+1− `k = 2nk many ways to build such a cycle

extending any node in N (S, `k − 1), and each of these cycles takes a distinct value at j,

we must have |N (S, j)| = |N (S, `k − 1)| · 2nk = |N (S, `k)| · |Im (S, `k)|. Now our inductive

hypothesis proves the claim.

Proof of (2). We again proceed by induction on k. If k = 0, simply observe that N (S, `k) =

N (S, 0) = C(S, ∅), and that by our construction we have |C(S, s � i)| = 1 for every 1 ≤ i < j.

Then by claim (1) and the fact that µ is a uniform measure on [U ], we get

µ(Ns) =

j−1∏
i=0

1

|C(S, s � i)|

97



=
1

|C(S, ∅)|
·
j−1∏
i=1

1

|C(S, s � i)|

=
1

|N (S, 0)|

=
1

|N (S, j)|
,

as claimed.

Now by way of induction, suppose the claim holds for all integers below `k, and

let j satisfy `k ≤ j < `k+1. Notice that since s � `k lies in N (S, `k − 1), then as we

pointed out in our proof of claim (1), s � `k has exactly one child in S for every integer

in Im (S, `k) = {`k, ..., `k+1 − 1}. So |C(S, s � `k)| = |Im (S, `k)|. On the other hand if

`k < i < j, then s � i has only one child in S, i.e. |C(S, s � i)| = 1. Then applying our

inductive hypothesis, claim (1), and the fact that µ is a uniform measure on S, we get

µ(Ns) =

j−1∏
i=0

1

|C(S, s � i)|

=

`k−1∏
i=0

1

|C(S, s � i)|
· 1

|C(S, s � `k)|
·

j−1∏
i=`k+1

1

|C(S, s � i)|

=
1

|N (S, `k − 1)|
· 1

|Im (S, `k)|

=
1

|N (S, `k)|

=
1

|N (S, j)|
.

This completes the induction and proves the claim.

Proof of (3). If k = 0 then |N (U ∩ S, j)| = |Im (U ∩ S, j)| ≤ |Im (U, j)|. Otherwise suppose

k ≥ 1 and s ∈ U ∩ S with lh(s) = j + 1. Then s � `k−1 ∈ N (U ∩ S, `k−1), and by definition

the number of possible values for s(j) is bounded above by |Im (U, j)|. Thus the number
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of ways to get such an s is no more than |N (U ∩ S, `k−1)| · |Im (U, j)|, i.e. we must have

|N (U ∩ S, j)| ≤ |N (U ∩ S, `k−1)| · |Im (U, j)|.

Proof of (4). Let k, k′ be the unique integers for which `k ≤ j < `k+1 and `k′ ≤ j′ < `k′+1.

Since j ≤ j′, we have k ≤ k′. We will prove the claim by induction on k′. Suppose k = k′.

Notice that in this case every node s in N (U∩S, j′) restricts to a unique node in N (U∩S, j),

and hence we have |N (U ∩ S, j′)| ≤ |N (U ∩ S, j)|. Thus we have

|N (U ∩ S, j′)|
|N (S, j′)|

≤ |N (U ∩ S, j)|
|N (S, `k)|

=
|N (U ∩ S, j)|
|N (S, j)|

.

Then suppose the claim holds for some k′− 1 and consider k′. Then by the base case

above, the inductive hypothesis, and claim (1), we obtain the following:

|N (U ∩ S, j′)|
|N (S, j′)|

≤ |N (U ∩ S, `k′)|
|N (S, `k′)|

≤ |N (U ∩ S, `k′−1)| · |Im (U ∩ S, `k′)|
|N (S, `k′−1)| · |Im (S, `k′)|

≤ |N (U ∩ S, `k′−1)|
|N (S, `k′−1)|

· 1

≤ |N (U ∩ S, j)|
|N (S, j)|

.

This completes the induction and proves the claim.

Proof of (5). Observe that the collection {Ns : s ∈ N (U ∩ S, j)} is an open cover of [U ∩ S].

Hence, using claim (2) and the fact that supp(µ) = M = [S], we have

µ([U ]) = µ([U ] ∩ [S])

= µ([U ∩ S])

≤
∑

s∈N (U∩S,j)

µ(Ns)
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=
∑

s∈N (U∩S,j)

1

|N (S, j)|

=
|N (U ∩ S, j)|
|N (S, j)|

,

as desired. This last claim gives us an easy computational method for estimating the mea-

sures of sets given by trees on ω<ω.

Now we are ready to show that µ gives measure 0 to every two-sided translate of F .

To see this, first fix any σ, τ ∈ S∞, and consider the tree σTτ . We claim that there

exists a sequence (jk)k∈ω of integers such that (τ−1(jk))k∈ω is increasing, and such that

|N (σTτ ∩ S, τ−1(jk))|
|N (S, τ−1(jk))|

≤ 1

2k

for each k. We will construct this sequence recursively.

To begin, by our choice of n0, there exists some j0 ∈ ω for which |Im (T, j0)| =

|Im (σTτ, τ−1(j0))| = n0. Let k0 be the unique integer for which `k0 ≤ τ−1(j0) < `k0+1. If

k0 = 0, then by claims (1) and (3) above we have

|N (σTτ ∩ S, τ−1(j0))|
|N (S, τ−1(j0))|

≤ |Im (σTτ, τ−1(j0))|
|N (S, `0)|

≤ n0

2n0

=
1

2
.

Otherwise if k0 > 1, then again by claims (1) and (3), we have

|N (σTτ ∩ S, τ−1(j0))|
|N (S, τ−1(j0))|

≤ |N (σTτ ∩ S, `k0−1)| · |Im (σTτ, τ−1(j0))|
k0∏
i=0

(2ni)
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≤ |N (S, `k0−1)|
|N (S, `k0−1)|

· n0

2nk0

≤ n0

2n0

=
1

2
.

Now suppose we have constructed the necessary jk−1 for some k ≥ 1; we will con-

struct jk. First let k0 be the unique integer which puts `k0 ≤ τ−1(jk−1) < `k0+1. By our

choice of nk0+1, there are at least `k0+1 + 1 distinct integers j for which |Im (σTτ, τ−1(j)| =

|Im (T, j)| ≤ nk0+1. Hence at least one of these integers, which we will now call jk, is such

that τ−1(jk) ≥ `k0+1 (since τ−1 is an injection!). Let k1 be the unique integer for which

`k1 ≤ τ−1(jk) < `k1+1, so `k1−1 ≥ `k0 > τ−1(jk−1). Now by claims (1), (3), and (4), and our

inductive hypothesis, we get

|N (σTτ ∩ S, τ−1(jk))|
|N (S, τ−1(jk))|

≤ |N (σTτ ∩ S, `k1−1)| · |Im (σTτ, τ−1(jk))|
k1∏
i=0

(2ni)

=
|N (σTτ ∩ S, `k1−1)|
|N (S, `k1−1)|

· nk0
2nk1

≤ |N (σTτ ∩ S, τ−1(jk−1))|
|N (S, τ−1(jk−1))|

· nk0
2nk0

≤ 1

2k−1
· 1

2

=
1

2k
.

This completes the construction. It now follows from claim (5) that

µ(σFτ) = µ(σFτ ∩M)
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≤ µ([σTτ ∩ S])

≤ |N (σTτ ∩ S, τ−1(jk))|
|N (S, τ−1(jk))|

≤ 1

2k

for every integer k. So µ(σFτ) = 0, and F is Haar null. �

Corollary 5.40. Every compact subset of S∞ is Haar null.

Proof. Every compact subsetK of S∞ is the set of branches through some finitely branching

tree T ⊆ ω<ω by Corollary 2.40. So Im (T, j) is finite for every j ∈ ω, and Proposition 5.39

applies. �

5.6. A Large Group Property in Homeo+[0, 1]

In this section we observe a somewhat bizarre property of the homeomorphism group

Homeo+[0, 1] which cannot exist in any (non-trivial) locally compact group. The definition

given below is certainly not standard.

Definition 5.41. Let G be topological group. We will say G is amorphous if it has the

following property: whenever K ⊆ G is compact and U ⊆ G is open and nonempty, there

exist g, h ∈ G such that gKh ⊆ U .

Lemma 5.42. Let G be a Hausdorff locally compact group consisting of at least two points,

and let µ be a left Haar measure on G. Then there is a compact set K ⊆ G and a nonempty

open set U ⊆ G such that µ(K) > µ(U).

Proof. Since G is Hausdorff and has at least two points, let U, V be disjoint nonempty

open sets in G with compact closure. Set K = clG(U) ∪ clG(V ). Since V is nonempty open,

µ(V ) > 0, and hence we have µ(U) < µ(U) + µ(V ) ≤ µ(U ∪ V ) ≤ µ(clG(U) ∪ clG(V )) =

µ(K). �
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Proposition 5.43. Let G be a Hausdorff locally compact topological group consisting of at

least two points. Then G is not amorphous.

Proof. First suppose G is unimodular, and let µ be a two-sided Haar measure on G. Use

5.42 to find a compact set K ⊆ G and a nonempty open set U ⊆ G for which µ(K) > µ(U).

If there were g, h ∈ G for which gKh ⊆ U , we would have µ(K) = µ(gKh) ≤ µ(U), a

contradition; so no such g and h exist.

If G is not unimodular, then let ∆ be the modular function of G and let N = ker ∆.

G/N is a Hausdorff locally compact group, and it must contain at least two points, for if

it were a singleton then G would have been unimodular in the first place. G/N is group

isomorphic to a subgroup of R+ and hence abelian, so let µ be a two-sided Haar measure

on G/N . Use Lemma 5.42 to find a compact subset L ⊆ G/N and a nonempty open set

V ⊆ G/N such that µ(L) > µ(V ).

Let π : G → G/N be the natural projection. Let K ⊆ G be a compact set for

which π(K) = L (see [58] Exercise 18E (4)) and let U = π−1(V ) ⊆ G, so U is open and

nonempty. If there were g, h ∈ G for which gKh ⊆ U , then we would have π(g)Lπ(h) =

π(g)π(K)π(h) = π(gKh) ⊆ π(U) = V , and hence µ(L) = µ(π(g)Lπ(h)) ≤ µ(V ), again a

contradiction. So no such g and h exist. �

The following lemma is presented here as in [50]. We make use of it here to prove

Proposition 5.45. A corollary of Proposition 5.45 is that Homeo+[0, 1] contains no non-empty

openly Haar null sets- so OHN (Homeo+[0, 1]) is the trivial σ-ideal.

Lemma 5.44 (Shi/Thomson). A set K ⊆ Homeo+[0, 1] is compact iff K is closed, equicontin-

uous, and for every closed nonempty set K0 ⊆ K, the functions f1(x) = inf{k(x) : k ∈ K0}

and f2(x) = sup{k(x) : k ∈ K0}, x ∈ [0, 1], are homeomorphisms of [0, 1].

Proposition 5.45. Let K ⊆ Homeo+[0, 1] be compact, and let U be the ε-ball about the

identity in Homeo+[0, 1] (with the uniform metric), for some ε > 0. Then there exist some

g, h ∈ Homeo+[0, 1] for which gKh ⊆ U .
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Proof. Define f1(x) = inf{k(x) : k ∈ K} and j(x) = sup{k(x) : k ∈ K} for x ∈ [0, 1]; by

Lemma 5.44, f1, j ∈ Homeo+[0, 1]. Clearly we have f1(x) ≤ k(x) ≤ j(x) for all x ∈ [0, 1]

and all k ∈ K. Set f2(x) =
√
j(x), so f2 ∈ Homeo+[0, 1] and f2(x) > j(x) for all x ∈ (0, 1).

Thus we have f1(x) ≤ k(x) ≤ f2(x) for all x ∈ [0, 1], and f1(x) < f2(x) for all x ∈ (0, 1).

Let x0 ∈ (0, 1) be arbitrary, and for each n ∈ Z, set xn = (f−11 f2)
n(x0). Set y0 = f2(x),

and for each n ∈ Z, set yn = (f2f
−1
1 )n(y0). Thus we obtain two bi-infinite sequences (xn)n∈Z

and (yn)n∈Z. Notice that yn = f2(xn) and f1(xn) = yn−1 for all n ∈ Z.

Notice also that for all n ∈ Z, we have f1(xn) < f2(xn) and hence xn < f−11 f2(xn) =

xn+1, so the sequence (xn)∞n=0 is increasing and bounded above by 1, and the sequence

(x−n)∞n=0 is decreasing and bounded below by 0. In addition, the inverses f−11 and f−12 are

homeomorphisms which satisfy f−12 < f−11 on (0, 1), so for each n ∈ Z we have f−12 (yn) <

f−11 (yn) and hence yn < f2f
−1
1 (yn) = yn+1. So (yn)∞n=0 is increasing and bounded by 1, and

(y−n)∞n=0 is decreasing and bounded by 0. So all four sequences converge to some respective

limits.

We claim that lim
n→∞

xn = lim
n→∞

yn = 1 and lim
n→−∞

xn = lim
n→−∞

yn = 0. To see this for the

first sequence, suppose for a contradiction that lim
n→∞

xn = L for some L < 1. Then by the

continuity of f−11 f2, we have f−11 f2(L) = lim
n→∞

f−11 f2(xn) = lim
n→∞

xn+1 = L, i.e. f1(L) = f2(L).

This contradicts the fact that f1 < f2 on (0, 1). So we must have lim
n→∞

xn = 1. Analogous

arguments, repeated three times, will show that the other sequences also converge to the

endpoints of the interval in the way we intend.

Now let (zn)n∈Z be an arbitrary bi-infinite sequence in [0, 1] which satisfies the fol-

lowing properties:

(1) zn+1 > zn for all n ∈ Z;

(2) zn+1 − zn <
ε

4
for all n ∈ Z;

(3) lim
n→∞

zn = 1; and

(4) lim
n→−∞

zn = 0.

Now, using the fact that each of our bi-infinite sequences (xn), (yn), (zn) accumulates

104



only at the endpoints of [0, 1], we let h be any increasing homeomorphism of the interval for

which

h([z2n−1, z2n+1]) = [xn, xn+1] for all n ∈ Z,

and we let g be any homeomorphism for which

g([yn, yn+1]) = [z2n, z2n+2] for all n ∈ Z.

(For instance, we could take both g and h to be piece-wise linear.)

Let k ∈ K be arbitrary. We claim that gkh ∈ U . Let x ∈ (0, 1). Find the unique

n ∈ Z for which x ∈ [z2n−1, z2n+1]. Then h(x) ∈ [xn, xn+1], and since f1 ≤ k ≤ f2, and all

functions involved are increasing, we have

yn−1 = f1(xn)

≤ f1(h(x))

≤ k(h(x))

≤ f2(h(x))

≤ f2(xn+1)

= yn+1.

So kh(x) ∈ [yn−1, yn+1] and hence gkh(x) ∈ [z2n−2, z2n+2]. Since we also have x ∈

[z2n−1, z2n+1] ⊆ [z2n−2, z2n+2], and the latter set has diameter < ε, we have |gkh(x)− x| < ε.

Since x was taken arbitrarily, we have shown gkh ∈ U and hence gKh ⊆ U . �

Corollary 5.46. Homeo+[0, 1] is amorphous.

Proof. Let K ⊆ Homeo+[0, 1] be compact and U ⊆ Homeo+[0, 1] open nonempty. Let

u ∈ U . Then u−1U is a neighborhood of identity and hence contains an ε-ball about the
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identity in the uniform metric by Theorem 2.34. By Proposition 5.45 there are g, h for which

gKh ⊆ u−1U , whence ugKh ⊆ U . This proves the corollary. �

Corollary 5.47. There are no nonempty openly Haar null sets in Homeo+[0, 1].

Proof. Let A be any nonempty set in Homeo+[0, 1]. Let µ be any measure on G which

is supported on a compact set K ⊆ G, and let V ⊇ A be open. Let v ∈ V , so v−1V is a

nonempty neighborhood of the identity. Then there exist homeomorphisms g and h such

that gKh ⊆ v−1V , and hence (vg)−1V h−1 ⊇ K. Thus µ((vg)−1V h−1) = 1, and V has

a two-sided translate with full measure. Since V was arbitrary, A cannot be openly Haar

null. �
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