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CHAPTER 1

NONNEUTRAL PLASMA CONFINEMENT IN SIMPLE PENNING TRAPS

In this chapter, a review of the confinement physics of nonneutral plasmas in

Penning traps is presented. The nature of radial and axial confinement of nonneutral

plasmas in such traps is explained, and the motions of particles in the trap are

analyzed.

Penning traps have traditionally been used for the confinement of plasmas con-

sisting of particles of a single sign charge as in pure electron or pure ionic plasmas.

Although technically the term plasma refers to an ionized gas with overall neu-

trality, it has been applied to these nonneutral collections of charges because they

share many features of neutral plasmas, e.g. Debye shielding. Debye shielding is

characterized by a scale length λD. Macroscopic electric fields in a plasma do not

normally exist over distances larger than λD in a direction parallel to a magnetic

field. It should also be noted that the term plasma should only apply to a collection

of charges if its Debye length λD is smaller than its spatial dimensions rp so that

the collection of charges is in the regime where collective effects are important. For

simplicity the term plasma is used throughout this work regardless of the relative

size of λD and rp.

In its simplest form, a Penning trap consists of three cylindrical electrodes aligned

end to end immersed in a constant axial magnetic field. Although other configura-

tions are possible, as will be seen below, to assure radial confinement of the plasma,

the configuration will need to be azimuthally symmetric. For the simple cylindrical
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configuration, the center electrode is typically grounded while a positive voltage is

applied to the end electrodes to confine a positive plasma (or a negative voltage is

applied to confine a negative plasma).

Confinement of a plasma along the axis of this trap can be achieved simply by

manipulating the voltage difference between the center and end electrodes. For a

thermal plasma, as the change in potential energy a particle experiences as it leaves

the central well region becomes much greater than its thermal energy, good axial

confinement is ensured.

Radial confinement is achieved via the axial magnetic field. As presented else-

where,1 the effect of the magnetic field on the trapped particles can be seen by

considering the total canonical angular momentum of the system

Pθ =
N∑

i=1

mvθiri + qAθri

where N is the number of particles, and Aθ is the azimuthal component of the vector

potential. For a low plasma density the vector potential is approximately equal to

that which arises solely from the applied axial magnetic field, Aθ = Br/2. For a

large enough magnetic field the canonical angular momentum is dominated by the

vector potential term

Pθ ≈ B

2

N∑
i=1

qir
2
i .

For a cylindrically symmetric system, Pθ is a constant of the motion. Thus,

for a collection of like charged particles the mean squared radius of the particles is

constant. Only a small fraction of the particles in such a collection can escape to a

large radial position; the rest will always remain confined.

There are some additional issues with the radial confinement of a plasma within

a Penning trap. The most important of these is the effect of neutral collisions.
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Because the Penning trap contains an unneutralized plasma, a radial electric field

necessarily exists inside the trap. The combined effect of the radial electric field and

the axial magnetic field causes the charged particles of the plasma to undergo a net

E × B rotation. Neutral particles present in the trap do not undergo this rotation,

and the collisions between neutrals and the charged plasma column applies a torque

which can alter the mean squared radius of the charged particles and allow the

plasma to expand. This causes even a collection of like charged particles to have a

finite confinement time.

An additional problem is field errors. Perfect azimuthal symmetry of the trap

and magnetic field cannot be produced. This means that Pθ is, for any realizable

trap, only approximately a constant of the motion. Expansion of the plasma and

a finite confinement time also results. However, by minimizing field errors and

maintaining a good vacuum to minimize the effect of neutrals, confinement times of

several days have been achieved for pure nonneutral plasmas.

Rotation of a Nonneutral Plasma Column in a Penning Trap

The interior of an idealized Penning trap is filled with a uniform axial magnetic

field. If no radial electric field exists, which will only occur in a neutral region, the

orbit of particles would be along a helix with a radius equal to the Larmor radius,

rL = mv⊥/(|q|B), where v⊥ is the velocity component perpendicular to the magnetic

field.

However, within the region of the trap where an unneutralized plasma exists,

there will necessarily be a radial electric field. The magnitude of the radial electric

field for a single component plasma column of constant density n can be determined

by applying Gauss’ Law. The result is that for radial locations inside the radius of
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a long plasma column r < rp,

Er =
1

2

rnq

ε0
. (1.1)

If we consider particles in this column to move along circular orbits centered on

the trap axis, a balance must exist between the electric, magnetic and centrifugal

forces. An expression of this balance takes the form

qvθB = qEr +
mv2

θ

r

where vθ is the particle’s azimuthal velocity. Substituting the angular velocity,

ω = vθ/r, and the result for the electric field from Eq. (1.1) yields

ω2 − qB

m
ω +

q2n

2ε0m
= 0.

This may be solved to give the two possible rotation frequencies for the plasma

column2

ω =
qB

2m
± qB

2m

√
1 − 2nm

B2ε0
.

This may be written in terms of the cyclotron frequency, ωc = qB/m, and plasma

frequency, ωp =
√

nq2/(ε0m), yielding

ω =
ωc

2
(1 ±

√√√√1 − 2ω2
p

ω2
c

). (1.2)

Because it necessarily creates a radial electric field, a nonneutral plasma column in

a Penning trap rotates. A neutral plasma column will not undergo this rotation.

Single Particle Orbits

Moving away from the assumption that each particle travels on a circular orbit

centered on the trap axis, we may examine the motion of individual particles of
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the plasma. The force on a particle is F = q(E + v × B) where B = B0ẑ, and

E = rnq/(2ε0)r̂ if we are far away from the confining electrodes.

In this region, the axial force on a particle is zero. Switching to Cartesian

coordinates and evaluating the other force components we may write

mẍ =
nq

2ε0
x + qB0ẏ

mÿ =
nq

2ε0
y − qB0ẋ.

These equations may be rewritten in terms of the cyclotron and plasma frequencies

ẍ =
ω2

p

2
x + ωcẏ (1.3)

ÿ =
ω2

p

2
y − ωcẋ. (1.4)

The analysis will be greatly simplified by making a transformation to a frame with

new variables (x′, y′) which rotates at the average plasma rotation frequency ω

x′ = x cos ωt − y sin ωt

y′ = y cos ωt + x sin ωt.

After making this substitution Eqs. (1.3) and (1.4) become

ẍ′ = ẏ′(−2ω + ωc) + x′(ω2 +
ω2

p

2
− ωcω)

ÿ′ = ẋ′(2ω − ωc) + y′(ω2 +
ω2

p

2
− ωcω)

However, from Eq. (1.2) we see that ω2 +
ω2

p

2
− ωcω is zero. Thus, in the rotating

frame the equations of motion are

ẍ′ = ẏ′(−2ω + ωc) (1.5)

ÿ′ = ẋ′(2ω − ωc). (1.6)
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FIG. 1.1. The trajectory of a particle in a Penning trap containing a completely
nonneutralized plasma.

Consequently, in the frame of reference which rotates with the plasma column, the

motion of a particle is circular with period T = 2π/(2ω − ωc). An example of the

particle orbit in the laboratory frame is shown in Fig. 1.1.

The solution of Eqs. (1.5-1.6) can be written

x′ = x′

0 −
v′

y0

ω′
+

v′

y0

ω′
cos(ω′t) +

v′

x0

ω′
sin(ω′t) (1.7)

y′ = y′

0 +
v′

x0

ω′
+

v′

y0

ω′
sin(ω′t) − v′

x0

ω′
cos(ω′t) (1.8)

where (x′

0, y
′

0) is the initial location of the particle in the rotating frame of reference,

(v′

x0, v
′

y0) is the initial velocity, and ω′ = 2ω−ωc = ±q/m
√

(B2 − (2nm)/ε0). In the

rotating frame the circular orbits have a radius rorbit = v⊥/ω′ = v⊥/(±q/m
√

(B2 −
(2nm)/ε0). In the laboratory frame the radial position of the particle varies from

r = rc − rorbit to r = rc + rorbit, where rc is the radial location of the particle’s

guiding center. This illustrates the nature of magnetic confinement. As B becomes

large, rorbit becomes small, and the particles never move far from r = rc.
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When 2ω = ωc, ω′ = 0 and the solution to Eqs. (1.5-1.6) becomes straight lines

in the rotating reference frame. Substituting in the definitions of ωc and ω we find

that this occurs when n = ε0B2

2m
. This is known as the Brillouin density limit, and

confinement of a nonneutral plasma at a density greater than this in a Penning trap

with an axial magnetic field is not possible.
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CHAPTER 2

CONFINEMENT OF PLASMAS WITH A NEUTRAL OR PARTIALLY

NEUTRALIZED REGION IN NESTED WELL PENNING TRAPS

Malmberg/Penning plasma traps (i.e., Penning traps that employ cylindrical

electrodes) have long been used to confine plasmas consisting of particles that have

a single sign of charge.1 Traps of this type often consist of three cylindrical electrodes

that are aligned end to end along the axis of the trap. As described in Chapter 1, this

series of electrodes creates a static potential well capable of confining the plasma

axially. Radial confinement is achieved by placing the electrodes in a solenoidal

magnetic field.

Another possibility is the use of Malmberg/Penning traps with nested electric

potential wells for confining two overlapping plasma components with opposite sign

charge.2–4 In the present chapter different scenarios which may result in confine-

ment of two oppositely charged plasma components with overlap are presented. A

numerical method which is used for self-consistently calculating the potential and

charge distributions is detailed. Methods for calculating other properties of nested

well traps are analyzed.

Confinement of Two Oppositely Signed Plasmas with a Region of Overlap

To create a trap suitable for confining two oppositely charged plasmas the series

of electrodes illustrated in Fig. 2.1 is considered. For simplicity, it is assumed that

the positive plasma species is confined in the inner well and the negative species

is confined in the outer well, although the sign of the electrode potential may be
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reversed and the role of the plasmas switched.

The nested well trap is composed of a series of five hollow cylindrical electrodes

with inner radius rw centered upon the z axis of the trap which are used to create a

nested well potential profile. The center electrode is of length L0 and is typically held

at zero volts. The pair of electrodes to either side of the center electrode, hereafter

referred to as the inner electrodes, are of length L1 and are held at voltage V1. The

outer set of electrodes are of length L2 and are held at voltage V2. The entire set of

electrodes is placed in a constant axial magnetic field. By careful choice of the values

for V1 and V2 and other parameters it is possible to create a situation wherein the

potential step caused by the inner electrodes will keep a positively charged plasma

adequately confined axially in the region of the central electrode while a negatively

charged plasma is similarly confined by the outer electrodes with a significant degree

of overlap of the positive plasma.

Criteria for Confinement with Overlap

For a plasma at thermal equilibrium in an electric potential well, a criterion for

good confinement may be expressed as q∆φw/T À 1 where ∆φw is the depth of

the electric potential well, q is the magnitude of the charge on a particle of the

plasma, and T is the temperature of the plasma in energy units. Within the nested

well the criterion for having the outer well species overlap the inner well species

significantly is q∆φiw/T <
∼

1 where ∆φiw is the depth of the inner well. To achieve

overlap between plasma components, the thermal energy of the particles confined

by the outer well must be at least comparable to the change in its potential energy

between the inner and outer well. To achieve good confinement of a plasma, the

change in its potential energy to leave the well must be much larger than its thermal
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FIG. 2.1. (a) The applied electrode potential for a nested well plasma trap. (b) The
electrode configuration required to produce the nested well potential illustrating
various trap parameters.
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energy.

There are several situations in which the confinement criteria for both the inner

well and outer well plasma species can be satisfied simultaneously with the condition

for overlap between the plasma species.4 For two equal but opposite charge state

thermal plasmas, e.g., a hydrogen plasma, this is possible only if the temperature of

the inner well component is significantly smaller than the temperature of the outer

well component. For a plasma consisting of two equal temperature Maxwellian

components, confinement of both species with a significant degree of overlap is only

possible if the inner well species has a higher charge state than the outer well species.

Additionally, it is possible to confine equal charge state, equal temperature plasma

components with a region of overlap if one of those plasma components is in a

nonequilibrium state.

For the nonequilibrium approach, a suitable plasma state can be created by al-

lowing a plasma at equilibrium to flow into an initially empty well5–7. The plasma

will move through the regions of low potential energy quickly and will consequently

have a lower density there than in some regions of higher potential energy. This is

known as an “antishielding” state because a plasma in this state will tend to exag-

gerate the depth of a potential well instead of diminishing or “shielding” it as an

equilibrium plasma state would. Because one plasma component is in a nonequilib-

rium state there will be a relaxation to a Maxwellian distribution due to collisions

or microinstabilities, and the components will separate. It will be necessary to use

a time-dependent potential to re-establish the nonequilibrium distribution.

Of the three possible methods for achieving confinement with overlap, the only

direct experimental evidence available appears to have established that the simulta-
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neous confinement of two overlapping equal magnitude opposite charge plasmas with

disparate temperatures is possible.2 These experimental results have shown simulta-

neous confinement of electrons and hotter protons within a nested well. Overlap was

achieved such that sympathetic cooling occurred between the two species. These

results do not appear to show the existence of a neutral overlap region, but theo-

retically it should be possible to confine even a plasma with a neutral region using

a solenoidal magnetic field and axial electric field.

Confinement with overlap is possible in the case of plasma components with

disparate charge states using static electric potential wells. The use of a two-

temperature approach will require a time-dependent alteration of electrode voltages

to counteract the temperature equilibrating effect of interparticle collisions. The use

of a nonequilibrium distribution will require a time dependent voltage to counteract

the distribution’s relaxation to equilibrium through collisions or microinstabilities.

Computational Methods

A two dimensional self-consistent calculation of the electric potential and par-

ticle distributions is now described. For the purposes of this computation, gaps

between the electrodes are neglected to allow for quicker numerical computation, or

alternately, one may assume the size of the gaps between electrodes are smaller than

the computational grid size. This is a commonly used approximation for numerical

computation of plasma properties.8–11 An actual experimental setup would likely

feature larger gaps between electrodes. Additionally, for computational ease the

open electrode configuration is capped at both ends by a circular electrode of volt-

age V2. This computational model should give results applicable to an open ended

trap having L2 À rw.
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Two dimensional self-consistent calculations of the electric potential and particle

distributions within a nested well trap were performed for several different sets of

parameters via a finite difference numerical method.8 The results generated are

useful in determining what trap parameters are required to create a suitable well

depth and plasma overlap. This method is used to demonstrate sets of parameters

which result in a well confined plasma for various applications, typically with a

neutral overlap region.

The particular finite difference method used is a sequential-over-relaxation (SOR)

method. Its derivation follows. Due to the geometry of the traps it will be conve-

nient to begin with Poisson’s equation in cylindrical coordinates. With azimuthal

symmetry assumed, Poisson’s equation is

∂2φ

∂r2
+

1

r

∂φ

∂r
+

∂2φ

∂z2
= f(r, z)

where f(r, z) = −ρ(r, z)/ε0. The particular ρ which is used is discussed in the

section below. An analogous finite difference equation for a lattice is obtained by

making the following replacements:

∂2φ

∂r2
→ φi+1,j − 2φi,j + φi−1,j

∆r2

∂φ

∂r
→ φi+1,j − φi−1,j

2∆r
∂2φ

∂z2
→ φi,j+1 − 2φi,j + φi,j−1

∆z2

f(r, z) → fi,j

r → ri = ∆r(i − 1)

where ∆r and ∆z are the grid sizes, and i and j are the grid indices for the r and

z axes respectively. This particular finite difference scheme is spatially centered. It

14



should be noted that it is necessary for accuracy to choose the grid spacings ∆r and

∆z on the order of one half the Debye length or smaller.8 The computational region

and grid variables are demonstrated in Fig. 2.2.

FIG. 2.2. The computation area and grid variables used in the SOR calculation of
electric potential.

The resulting simple relaxation method algorithm is obtained when the finite

difference version of Poisson’s equation is solved for φi,j ,

φn+1
i,j = − ∆z2∆r2

2(∆z2 + ∆r2)




(
1 + ∆r

2ri

)
φn

i+1,j +
(
1 − ∆r

2ri

)
φn

i−1,j

∆r2
+

φn
i,j+1 + φn

i,j−1

∆z2
− fi,j


 .
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The superscript of φ refers to the computational time step. The algorithm is changed

from simultaneous to sequential by doing the averaging “in place.” As soon as φ is

calculated for one grid point , the new value is used in all proceeding calculations

in that time step. In other words, if the program begins calculating at grid point

(i, j) = (1, 1) and proceeds to loop over i and j the previous equation could be

rewritten as

φn+1
i,j = − ∆z2∆r2

2(∆z2 + ∆r2)




(
1 + ∆r

2ri

)
φn

i+1,j +
(
1 − ∆r

2ri

)
φn+1

i−1,j

∆r2
+

φn
i,j+1 + φn+1

i,j−1

∆z2
− fi,j


 ,

so that the new values for φ are used as soon as they become available. This can

speed up convergence over the first few time steps and is easy to implement as it

obviates the need to store both an old and new value for φi,j.

A further improvement to the convergence can be made by changing from a

simple relaxation to an over-relaxation algorithm. This algorithm over corrects for

φ at each time step in the following way,

φn+1
(SOR)i,j = ωφn+1

i,j + (1 − ω)φn
i,j (2.1)

where φn+1
i,j is the result for φ given by the sequential simple relaxation algorithm,

and ω is the “acceleration” factor, a number between 1 and 2. The optimal value

for ω is given by12

ω =
2

1 +
√

1 − χ2

where

χ =
∆z2 cos(π/imax) + ∆r2 cos(π/jmax)

∆z2 + ∆r2
.

Boundary conditions are implemented by surrounding the computational grid

with a series of boundary grid points. The boundary points either carry a fixed
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potential or are updated to equal the value of the potential of the nearest com-

putational grid point in the z or r direction after each computational step. This

implements a Dirichlet or Neumann boundary condition respectively. See Appendix

A for a discussion of alternate methods of setting boundary conditions and the ef-

fect on the accuracy of the solution. The boundary potential values are used in the

calculation of neighboring computational grid points. An example of the SOR code

used in the following chapters is presented in Appendix B.

The SOR method is typically marked by a lack of convergence for many com-

putational timesteps followed by a rapid convergence. Testing for convergence can

be done many ways. A common convergence test is to sum up over all grid points

the square of the difference between the value of φ at the current and previous time

step. This sum is known as the residual. The code may be iterated until the residual

per grid point reaches a specified accuracy goal.

Derivation of Plasma Density Distributions within the Nested Well

To implement the SOR calculation of the trap potential requires the charge

density ρ. A charge density could be fixed, or a self consistent determination of the

particle density distributions within the trap could be carried out for each plasma

species. Several possible assumptions can be made about the density distribution

of a plasma species.

Local Thermal Equilibrium Density Distribution

A situation in which a plasma component obeys a Maxwell-Boltzmann distri-

bution along each magnetic field line is known as local thermal equilibrium. This

should not be confused with the local thermal equilibrium charge state distribution,

which is an equilibrium between three body recombination and collisional ionization.
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If local thermal equilibrium may be assumed, then a radial profile may be specified

for the plasma, and the density distribution takes the form4

n(r, φ) = −n0

ε0
h(r) exp

(
− q

kT
(φ(r, z) − φ(r, 0))

)

where h(r) is the specified radial profile which is defined to have a value of 1 at the

origin of the trap. The form h(r) = 1 − (r/rw)α where α = −2.3/ ln(1 − λD/rw)

may be used to give the plasma a radial profile which is radially flat until within

about one Debye length of the wall where it decreases rapidly to zero.4 In general

this expression for n will be used for computational ease.

Cut-off Maxwellian Density Distribution

A further alternative is to assume a cutoff Maxwellian distribution which will

exclude particles that will leave the trap in the r or z direction. Breaking down the

distribution function f(r,v) into a part dependent on vz , denoted fz, and a part

dependent on v⊥, denoted f⊥, we can include step functions to remove any particles

which would not be confined in the well. The distribution of velocities parallel to z

becomes

fz(r, z, vz) = C1 exp
(
−βv2

z − ψ(r, z)
)

Θ (vz max − |vz|) .

Here C1 is a normalization factor, β = m/(2T ), vz max =
√

(ψm(r) − ψ(r, z)) /β,

ψ = Zeφ(r, z)/T, and ψm(r) is the maximum value of the normalized potential

energy which occurs along a magnetic field line at r.

In a similar way, the distribution of velocities in the directions perpendicular

to z is given a cutoff. Assuming the plasma component is in a neutral region, and

therefore the particle motion is about a helix with radius equal to the Larmor radius,

rL = mv⊥
qB

,

f⊥(rc, v⊥) = C2v⊥e−βv2
⊥Θ (v⊥max − v⊥) (2.2)
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where v⊥max = qB(rw − rc)/m, B is the magnetic field, rc is the radial location

of the center of the particle’s gyro-orbit. This removes from the distribution those

particles whose gyro-orbits intersect the electrode walls.

For particles which have a small Larmor (cyclotron) radius the assumption may

be made that rc ≈ r. Using this assumption, the particle distribution function

f = f⊥(r, v⊥)fz(r, z, vz) may be integrated over velocity space to obtain a particle

density distribution

n(r, z) =
∫

∞

−∞

∫
∞

0
fz(r, z, vz)f⊥(r, v⊥)dv⊥dvz

=
n0e

−ψ(r,z)+ψ(0,0)
(
1 − e−β(qB(r−rw)/2)2

)
(1 − e−β(qBrw/2)2)

(2.3)

× erfc (ψm(r) − ψ(r, z)) Θ(zm − z)

erfc(ψm(0) − ψ(0, 0))
.

Antishielding Density Distribution

If a plasma is initially confined in a square potential well at a potential φext

with a Maxwellian distribution and density n then allowed to flow into a well with a

potential of φ(x), a particle which had a speed in the x direction of v0x in the first well

will have a speed in the x direction of vx =
√

v2
0x + 2q

m
(φext − φ(x)) within the second

well, neglecting the effect of collisions. Assuming q is positive, if φext > φ(x) no

particles will exist at x with vx between −va and va, where va =
√

2q(φext − φ(x))/m.

Therefore, the distribution of particles at x will be

f(x, v) = n(
β

π
)3/2e−β(v2−

2q

m
(φext−φ(x))[Θ(−vx − va) + Θ(va − vx)]

if φext > φ(x) and

f(x, v) = n(
β

π
)3/2e−β(v2−

2q

m
(φext−φ(x))

otherwise. Note that if φ(x) = φext a Maxwellian distribution function if recovered.

From this distribution function the density distribution within the second well may
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be determined by integration over v. The result is

n(x) = neq(φext−φ(x))/T erfc(
√

q(φext − φ(x))/T ) (2.4)

for φext > φ(x) and

n(x) = neq(φext−φ(x))/T (2.5)

otherwise.

Equations (2.4) and (2.5) may together be written as

n(x) = neq(φext−φ(x))/T erfc(Re(
√

q(φext − φ(x))/T )).

This is the “antishielding” density distribution. This density distribution is shown

for a T = 1 eV plasma in a parabolic test well for various values of φext in Fig 2.3.

Note that the density reaches a maximum value at the location where φ = φext, and

the density at φ = 0 is decreased with increasing φext.

For the purposes of the self-consistent calculation, it is convenient to write the

“antishielding” distribution in terms of the potential at the origin φ0 and density at

the origin n0. The result is

n(x) = n0e
q(φ0−φ(x))/T

erfc(Re(
√

q(φext − φ(x))/T ))

erfc(Re(
√

q(φext − φ0)/T ))
,

or if φext is set equal to φ0,

n(x) = n0e
q(φ0−φ(x))/T erfc(Re(

√
q(φ0 − φ(x))/T )).

Procedures for Establishing and Maintaining an Antishielding Distribution

Figure 2.4a shows an initial trap potential profile used to set up a nested well

with one component in an antishielding distribution. Additional electrodes besides

the five required to produce the nested well are needed to set-up or re-establish an
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FIG. 2.3. An example of the density distributions associated with a T = 1 eV
positive plasma in an antishielding state. The top panel shows the potential well
used for this example. The bottom panel shows the density distributions resulting
from a plasma in an antishielding distribution with φext = 0,2,4,6 V in curves 1,2,3,4
respectively.
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antishielding distribution. In this example a positively charged plasma species is

confined within the inner well with an equilibrium distribution, and a negatively

charged plasma component is confined outside of the nested well. Both species

are at the same temperature. The barrier separating the negative species from the

nested well can be dropped, allowing that species to flow into the nested well without

compromising the confinement of the positive species, as indicated in Fig. 2.4b.

The plasma will only be in the antishielding state, as shown in Fig. 2.4c, imme-

diately after entering the nested well. Collisions and possibly microinstabilities will

begin to cause the plasma to relax to an equilibrium distribution and separate from

the inner well plasma component.

To counteract this relaxation to equilibrium and maintain an antishielding dis-

tribution it will be necessary to have some time dependent manipulation of the

potential. This can be accomplished by altering the potential in the manner demon-

strated in Fig. 2.5. After the negative species has relaxed toward equilibrium and

the two plasma components have begun to separate, as shown in Fig. 2.5a, the end

wells and external electrodes can be set at some voltage that will allow the negative

plasma to flow out of the nested well, as in Fig. 2.5b. It can then be trapped in a

pair of potential wells external to the nested well, returned to the required starting

potential, and cooled back to the starting temperature, Fig. 2.5c. The antishielding

state may then be re-established by allowing the positive plasma to flow back into

the nested well.

Plasma Confinement Properties

It will often be important to determine a timescale for a plasma’s confinement

within the nested well. The timescales determined may be compared to other
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FIG. 2.4. The procedure for establishing a negatively charged plasma component
in an antishielding state. (a) Initially the plasma components are separated and
have thermal velocity distributions. (b) The barrier which prevents the negatively
charged plasma from entering the nested well is removed and the negative plasma
flows into the nested well. (c) The potential profile is reverted to the typical nested
well profile leaving the negative plasma in an antishielding state which significantly
overlaps the positive plasma. Eventually this plasma would relax to an equilibrium
distribution and become trapped in the end wells.
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FIG. 2.5. A possible procedure for re-establishing an antishielding distribution. (a)
The negative component has begun to relax and become trapped in the end wells.
(b) Electrodes external to the nested well on either side are set at some voltage
higher than the end well voltage. The negative plasma is allowed to equilibrate with
this new well and become trapped in it. (c) The electrode voltages are altered so
that the negative plasma is confined in a well at the same potential as the inner
well. The plasma may then be cooled by various means so that the situation shown
in Fig. 2.4(a) is recovered.
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timescales relevant to the specific application to determine if the confinement volt-

ages and axial magnetic field of the trap are adequate. Two different methods are

used to evaluate axial and radial confinement properties.

Axial Confinement

The method used to determine an axial confinement timescale involves assuming

a source of Maxwellian-distributed particles at a specified location in the trap. A

phase space distribution consistent with this source is determined, and a particle

flux escaping the trap can be calculated.13–20 In this section it is assumed that the

nested well trap is established such that the positive plasma species is confined in

the inner well, and the negative species is confined by the outer well. However, this

choice is only made for convenience, and the results apply equally to an inverted well

with the plasma signs exchanged. The analysis in this section is carried out in one

dimension (along a magnetic field line) so no r dependence is explicitly considered.

For the negative species a particle source is assumed to be at the location of

the maximum trap potential (z = zm) along the magnetic field line considered.

Maxwellian-distributed particles are emitted from this source in the positive z di-

rection. Between zm and zw, the location of the end of the trap, the phase-space

distribution of these particles is,

f−(z,v) = n0−

(
β−

π

)3/2

exp
(
−β−v2 − ψ−(z) + ψ−(0)

)
Θ(vm + vz),

where vm = [(ψ−(z) − ψ−(zw)) /β−]1/2 is the minimum speed in the positive z

direction that allows a particle to reach zw, β− = m−/(2T−), m− is the mass

of a particle of the negative plasma, T− is its temperature in energy units, and

ψ−(z) = q−φ(z)/T−. The Heaviside step function is included because any particle
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with a velocity in the z direction greater than vm will escape axially. For simplicity

it is assumed that the negatively charged particles are Maxwellian in the region

0 < z < zm. In the limit that φ(zw) → −∞, vm → ∞ and perfect axial confinement

is achieved. In this limit the phase space distribution becomes a Maxwell-Boltzmann

distribution.

A density distribution can be obtained by integrating f− over velocity space. For

zm < z < zw the result is

n− =
1

2
n0− exp(−ψ−(z) + ψ−(0))erfc

(
−

√
ψ−(z) − ψ−(zw)

)
.

Integrating vzfe over velocity space and evaluating at z = zw gives the net flux of

particles escaping confinement in the axial direction,

F− =
n0− exp(−ψ−(z) + ψ−(0))

2
√

πβ−

.

Using the expressions for n− and F− an axial confinement time scale can be defined

as

τ− =
1

F−

∫ zw

0
n−(z)dz

=
1

F−

[∫ zm

0
n0−e−ψ−(z)+ψ−(0)dz

+
∫ zw

zm

1

2
n0−e−ψ−(z)+ψ−(0)erfc

(
−

√
−ψ−(z) + ψ−(zw)

)
dz

]

=
√

πβ−eψ−(zw)
[
2

∫ zm

0
e−ψ−(z)dz +

∫ zw

zm

e−ψ−(z)erfc
(
−

√
−ψ−(z) + ψ−(zw)

)
dz

]
.

This confinement time can be considered a lower bound. In reality a plasma will

lose particles from the tails of the velocity distribution as this method considers.

However, the tails will not be instantaneously replenished, as in this model, but will

be replenished at a finite rate by collisions or microinstabilities.
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To determine the axial confinement properties of the inner well plasma species

an analogous method is used. For the inner well species a source located at z = 0 is

considered. Inner well particles are lost from the distribution if they reach z = zm.

The phase-space distribution of inner well particles is

f+ = n0+

(
β+

π

)3/2

e−β+v2−ψ+(z)+ψ+(0)Θ (vm + vz) .

In this case vm = [(ψ+(zm) − ψ+(z)) /βz]
1/2 is the minimum velocity required to

reach zm and ψ+(z) = q+φ(z)/T+ . The density of the positive species is obtained

by integration as before, giving the result

n+(z) =
1

2
n0+e−ψ+(z)+ψ+(0)erfc

[
−

√
ψ+(zm) − ψ+(z)

]
.

The flux obtained is

F+ =
n0+e−ψ+(zm)+ψ+(0)

w
√

πβ+
.

From these quantities the confinement time is

τ+ =
1

F+

∫ zm

0
nz(z)dz

=
√

πβ+eψ+(zm)
∫ zm

0
e−ψ+(z)erfc

[
−

√
ψ(zm) − ψ(z)

]
dz.

It should be noted that for a series of cylindrical electrodes with no plasma present,

any electric potential step created will be largest at the electrode surface. Due to

geometrical effects the potential step along the r = 0 line will be smallest. If an

equilibrium plasma is introduced, it will shield the center of the cylinder, further

decreasing any potential step. For these reasons, the potential step along the r = 0

line may be considered as providing the least effective axial confinement. If a plasma

has adequate axial confinement along the r = 0 line, good axial confinement along

all magnetic field lines may be assumed.
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Radial Confinement

An additional concern is the loss of particles in the radial direction. Throughout

the volume of the trap a constant magnetic field exists. This field serves to keep

both positive and negative plasma particles from intersecting the electrode walls.

In the absence of any electrical fields the motion of both positive and negative

particles would be a helix about a magnetic field line with radius equal to the Larmor

radius, rL = mv⊥/(|q|B). In a trap with a radial component to the electric field, the

trajectory of a particle becomes a superposition of E × B drift and helical motion.

Given an electrical field proportional to r, an exact solution can be obtained. See

Chap. 1. However, within a nested well trap the self-consistent potential will not be

this simple, and numerical methods must be used to evaluate confinement properties.

This method makes no attempt to model interactions between particles. Instead,

classical single particle trajectories are calculated for particles in the self consistently

determined electric field, resulting from both electrode and plasma contributions.

Radial confinement is a much more important issue for heavier plasma compo-

nents because they have a larger Larmor radius. Generally, the numerical method

described in this section will be applied to heavy ionic plasma components, although

it could be used for lighter plasma components. This method involves Monte Carlo

sampling of Maxwellian velocities using the following equations for particle i :

vzi =
erf−1(R1i)√

βi

and

v⊥i =

√
− ln(R2i)

βi
,

where Rni is a uniformly distributed random number between 0 and 1. The equation

for vz samples from a half-Maxwellian distribution so that vz will always be given
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a positive value initially. The particular azimuthal direction for v⊥ is chosen with

a uniform distribution of angles from 0 to 2π. The particle is initially located in

the z = 0 plane. An initial radial position is sampled from ri = rw

√
R3i, which

provides for an evenly distributed starting point within a circle of radius rw. The

code then calculates the Larmor radius, rL, for the particle and the location of the

guiding center of the particle rc. If the sampled values are such that rL + rc ≥ rw,

the particle will intersect the electrode wall without the effect of any radial electric

field. To reduce computational time, these particles are discarded before any further

computation occurs.

For each set of initial conditions which are not discarded, a trajectory is solved

for numerically, assuming a uniform magnetic field and an electric potential which

was previously calculated with an SOR code. This trajectory is followed until the

particle either returns to the z = 0 plane after one or more passes through the

trap or escapes confinement radially or axially. Additionally, a few particles may

be selected with very low vz and take a long time to traverse the trap. To keep

the computation time manageable, no particle is followed for more than a specified

maximum number of computation time steps. The code maintains lists of which

initial conditions result in confinement and which result in escape. This code is

given in Appendix C. By carrying out calculations for a large number of particles,

radial confinement statistics may be generated, and regions of phase space from

which losses occur can be identified. These may be compared with the phase space

distribution assumed for the purposes of the self-consistent calculation.
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CHAPTER 3

USE OF A NESTED WELL TRAP AS A SOURCE OF HIGH-Z IONS

A possible application of a nested well plasma trap is as a source of high charge

state ions. This device would in many ways be similar to existing electron beam ion

sources (EBIS).1 An EBIS uses a high energy electron beam which makes a single

pass through a region containing ions. The ions are axially confined in an electric

potential well and radially confined by the space charge of the electron beam. The

electron beam is responsible for stripping the ions, and extremely high charge states

can be produced.2

The charge states capable of being created by the nested well approach are

limited by the temperature of the electrons which can be confined. However, the

high charge state plasma produced by a nested well trap may have a thermal velocity

distribution, and the plasma within the inner well of the trap may be neutral.

Along with potentially serving as an ion source, a well confined, thermal, neutral,

high charge state plasma would allow for the study of plasma recombination and

transport processes.

The ions will be confined axially within the inner well by positively biasing the

inner electrodes with respect to the central electrode. The electrons will be axially

confined within the end wells by the negatively biased outer electrodes. If the

electrode voltages are correctly selected, the electrons will significantly overlap the

inner well. To allow for this overlap, the magnitude of the potential step between

the center and inner electrode must be significantly smaller than the magnitude of
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the potential step between the inner and outer electrode. Confinement of the ions

within the inner well will still be possible in this case.

Initially, the trap will be loaded with very high temperature electrons and cold

low charge state ions, and the ions will not have enough thermal energy to escape the

inner well. As the electrons exchange energy with the ions and the ion temperature

increases, the ions will also become more highly ionized. Therefore, the ions will

feel a larger potential step between the region of the center and inner electrodes and

will remain adequately confined even though their temperature has increased.

Details of the Self-Consistent Calculation

A series of calculations of a nested well trap operating with a high charge state

argon plasma has been carried out. The base parameters used for most calculations

are described below and listed in Table 3.1. Some computational experiments have

also been performed in which one or more of the values of the parameters have been

changed from those given in the table. Estimates of the charge spectrum of argon

at various temperatures have been obtained using the corona model.3 The corona

model assumes that the opposing processes of collisional ionization and radiative

recombination are dominant. The equilibrium charge state ratios predicted by this

model are given by

NZ

NZ+1
= 7.87 × 10−9

(
UZ

e

)2 (
UZ

T

)3/4

eUZ/T .

Fig. 3.1 shows the average charge state predicted versus temperature for both argon

and neon. Notice that it is energetically easier to achieve a given charge state with

argon as opposed to neon. In general, the greater the atomic number the easier it

is to achieve a given charge state because the outer electrons of the higher atomic
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FIG. 3.1. The average charge state predicted by the corona model for both argon
and neon plasmas versus temperature.
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FIG. 3.2. The self-consistently calculated potential for a nested well trap using the
parameters given in Table 3.1.

number species are typically less strongly bound. According to the corona model,

to obtain an argon plasma with the largest percentage of the ions fully-stripped

(charge state +18), it is necessary to use a temperature of approximately 3 keV. At

this temperature the corona model charge spectrum of argon is 39.9% charge state

+18, 36.0% charge state +17, and 24.1% charge state +16. All other charge states

amount to less than 0.1% of the total and will be neglected in the computation. The

average charge state is +17.2.

With plasmas at a temperature of 3 keV, the voltages V1 and V2 are set at 6.7

kV and -82 kV respectively to provide adequate confinement. The axial magnetic

field B is set to 10 T. The electrode lengths are set at L0 = 5 cm, L1 = 2 cm, and
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FIG. 3.3. The self-consistently calculated ion density distribution showing that the
ions are trapped within the inner well.

L2 = 0.5 cm. The electrode separation is neglected (set at a distance smaller than

the grid spacing). The radius of the trap is set at rw = 0.5 cm. The central density

of the ion plasma component,
∑

z nz(0, 0), is set at 1014 m−3; the central electron

density is set at 1.72× 1015, which will result in neutrality along z = 0. It should

be noted that by using such high voltages and small gaps between electrodes, large

electric fields are produced. In an actual experiment it will be necessary to increase

the electrode separation to prevent surface breakdown.

The ions are assigned the density distribution given by Eq.(2.3) within the inner

well. Outside of the inner well they are unconfined, and their density is set to

zero. It has been noted that including this type of artificial cutoff in a plasma
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component’s density is always necessary to prevent the occurrence of the plasma

beyond the confining electrode.4 As the axial position approaches the potential step

created by the inner well electrode, the ion density becomes very small without the

cutoff. In fact, because Eq. (2.3) is used, the ion density will be zero at the top

of the potential step where φ(r, z) = φm(r). However, without the cutoff, the ion

density in the region beyond the inner well electrode, |z| > 4.5 cm, would be non-

zero. Several methods for implementing this cutoff are possible. Among these are

finding the grid point along each radial line at which the maximal potential occurs

and setting the ion density equal to zero for axial positions beyond that or simply

setting a fixed cutoff position, e.g., the start of the inner well electrode, z = 2.5 cm.

As the ion density is very nearly equal to zero before reaching the region of the

inner well electrode, the exact method of cutoff chosen makes little difference in the

solution. Therefore, for simplicity a fixed cutoff at |z| = 2.5 cm is chosen. Equation

(2.3) excludes from the distribution those particles which have gyro-orbits which

will intersect the electrode walls as well as those particles which will not be axially

confined.

The electron density profile is given by ne(r, z) = ne(r, 0) exp(e(φ(r, z)−φ(r, 0))/T ).

The electrons follow the Boltzmann relation in the axial direction for each radius.

The boundary condition ne(r, 0) must be specified. If any charge separation occurs

within the inner well, the radial field produced can be expected to cause a radial

diffusion of the electrons. In a trap with L0 À L1 the effect is that the plasma will

be highly neutral along the z = 0 plane. Because of this, ne(r, 0) is set equal to

the radial profile of the ion plasma so that a neutral plasma results along the z = 0

plane. In the example calculation L0/L1 = 2.5; however, the results generated are
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Table 3.1. Parameter values used for the calculation of the electric potential and
plasma density distributions in a nested well plasma trap confining electrons and
high charge state argon.

Parameter Value

rw 0.5 cm
L0 5 cm
L1 2 cm
L2 0.5 cm
V1 6.7 kV
V2 -82 kV
ΣZnZ(0, 0) 1014 m−3

ne(0, 0) 1.72×1015 m−3

B 10 T
T 3000 eV
Average Ion Charge State +17.2

expected to be even more representative of a trap with L0/L1 > 2.5.

The self-consistently calculated results for the parameters shown in Table 3.1

are shown in Figs. 3.2-3.5. Figure 3.2 shows the electric potential within the trap.

Along the electrode wall the potential is equal to the applied electrode potential.

At smaller radii the potential is much smoother and the magnitude of the potential

wells are lessened, which occurs both from geometrical effects and plasma shielding

Figure 3.3 shows the self-consistently determined ion density distribution. The

10 T magnetic field which was used allows the ion density to be radially flat out to

very near the radial electrode wall. Although a step function was included to set

the ion density to zero outside of the inner well, at z > 2.5 cm, the ion density falls

to near zero well before that. The step function has no effect other than to prevent

the appearance of an ion plasma in the region near the end electrode (z > 4.5 cm).

Figure 3.4 shows the electron density distribution. The electrons have a much

greater density within the end wells; however, their density is non-zero within the
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FIG. 3.4. The self-consistently determined electron density. The electrons are largely
trapped in the end well, but they significantly overlap the inner well.
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FIG. 3.5. The magnitude of the charge density demonstrating that the inner well
region is neutral.

inner well. In fact, they overlap the ions significantly enough to neutralize the ion

space charge within the inner well almost completely. This is shown in Fig. 3.5, a

plot of the magnitude of the charge density throughout the trap.

Because the end well region is nonneutral, Debye shielding is responsible for

reducing the depth of the end well. The larger the electron density, the more the

end well depth is reduced. This is demonstrated in Fig. 3.6.

Axial Confinement of Ions and Electrons

Using the planar source method for calculating ion and electron confinement

times that was discussed in the previous chapter, minimum confinement times for

ions and electrons may be calculated. These times are estimated using the self-
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FIG. 3.6. The electric potential on the trap axis for a trap with no plasma (the top
curve) and plasma densities of n0e =

∑
z n0z = 2.5 × 1014 , 5.0 × 1014 , 7.5 × 1014

m−3. This demonstrates the Debye shielding of the end well.

consistently calculated potential along the r = 0 magnetic field line which is least

confining. For the parameters listed in Table 3.1 a confinement time for both elec-

trons and +18 charge state ions is estimated to be approximately 2 hours. This value

is large enough that each plasma component may be considered perfectly confined

axially.

Radial Ion Confinement

The confinement of both ions and electrons in the radial direction is achieved via

the 10 T magnetic field. At a temperature of 3 keV, the Larmor radius of an electron

in a 10 T field is 1.85× 10−5 m, and the Larmor radius of an argon ion with charge

state +17 is 2.95×10−4 m. By comparing with the trap radius of .05 m, it is easy to

see that the effect of the intersection of Larmor orbits with the wall is only important

for particles very near the wall. A further concern is the effect the radial electric

field present in the trap will have on radial confinement. The radial component to
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FIG. 3.7. Two single particle trajectories for +17 charge state ions calculated by the
ion orbit code. The initial conditions are identical except that the escaping particle
has twice the axial velocity of the confined particle and consequently it spends more
time in the high radial field region of the trap.

the electric field is particularly important near the boundaries between electrodes,

but it should be reiterated that because the gaps between electrodes were neglected

in the SOR calculation the magnitude of the electric fields is exaggerated.

A calculation of the orbits of ions with the ion orbit code described in Appendix C

has been implemented. Single particle trajectories for ions starting at the midplane

of the trap with velocities sampled from a half-Maxwellian velocity distribution are

calculated. Note that particles whose initial velocities would result in gyro-orbits

that would intersect the electrode walls are excluded by the code before the orbit

is calculated. This results in a distribution of particles that is approximately the

same as that used for the self-consistent calculation of the potential, only differing

in that the distribution used for the self-consistent calculation, Eq.(2.2), used the

guiding center approximation. That is, in calculating the potential the approxima-

tion that r = rc was made. Figure 3.7 shows sample orbits calculated from two

initial conditions that differ only by having a different axial velocity.

The single particle trajectories of 10,000 +17 charge state ions have been cal-
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FIG. 3.8. The fraction of orbits which remain confined during one pass in the trap,
Xconf , versus initial radial position of the particle.

culated. The fraction of particles which remain confined for one pass through the

trap versus the initial radial position of the particle are shown in Fig. 3.8. Overall,

the calculations show 94% of the initial conditions lead to confinement for one pass.

Essentially, all trajectories that lead to loss come from initial conditions within one

millimeter of the wall. If larger electrode gaps are used the magnitude of the electric

field, particularly near the electrode wall and near the gaps, can be expected to be

much smaller. This calculation is expected to overestimate the number of single

particle trajectories that lead to loss, particularly near the walls.

Concluding Remarks

Between the inner and outer well regions of the trap there is a transition between

a neutral plasma region and a nonneutral one. Because of this transition there will

be a shear in the E × B flow. A collisional torque between the electron plasma in

the end well and the neutral plasma in the inner well will occur. This torque can be

expected to primarily effect the electrons and cause radial diffusion within the end
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wells.

However, it should be possible to achieve near perfect axial confinement of both

species. “Rotating” field techniques have been developed which may make near

perfect radial confinement possible.1 Such a field could be applied to one end well

region and would tend to radially compress the electron plasma. Within the inner

well this will set up a radial electric field that tends to provide enhanced radial

confinement of the ions.
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CHAPTER 4

THREE-DIMENSIONAL ELECTRIC CONFINEMENT OF HIGH-CHARGE

STATE PLASMAS

In Chapter 3 an analysis was presented of the use of a Penning trap with nested

electric potential wells as a source of high-Z ions. Radial confinement of both species

was achieved with an axial magnetic field, and the overlap region considered was

neutral. In this chapter, an extension to that work is presented in which a more

dense overlapping electron plasma is considered. Consequently, the overlap region

considered is filled with a negative space charge, and a three-dimensional electric

potential well results. This well provides confinement for the ions in both the axial

and radial directions. In the scenario considered in this chapter the magnetic field

is only responsible for the radial confinement of the electrons.

It should be noted that radial confinement with a magnetic field is possible in

a situation where the particle cyclotron radius is smaller than the plasma radius.

The less massive electrons have a smaller cyclotron radius and consequently may

be confinable with a much smaller magnetic field. In Chap. 3 a 10 T magnetic field

was considered to provide confinement for both ions and electrons. In this chapter

a magnetic field of only 0.2 T is considered.

Consider a nested well Penning trap with an electrode configuration as shown

in Fig. 2.1 with voltages selected so as to confine ions within the inner well and to

confine electrons primarily within the end wells but allow the electrons to overlap

the inner well. As has been discussed in Chap. 2 there are two scenarios in which a
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significant overlap of two thermal components occurs within the inner well. Either

the inner well component must be more highly charged than the outer well compo-

nent or the outer well component must be significantly hotter than the inner well

plasma.

With the proper choice of parameters the overlap may be significant enough so

that the inner well region is neutral or even has a negative space charge. If the inner

well region carries enough of a negative charge, the ions can be confined axially by

the externally applied potential and confined radially by a radial electric potential

well created by the electrons.

In the scenario with two different temperature components, if the two compo-

nents are allowed to thermalize, they will separate, and a time dependent procedure

will be necessary to maintain overlap. With the case of disparate charge state a

region of overlap may be maintained with static fields.

Self-Consistent Calculation of Three Dimensional Electric Confinement

An example of a plasma in a nested well Penning trap confined in three dimen-

sions by an electric potential well is shown in Figs. 4.1 to 4.3. This solution was

created by the simultaneous over-relaxation numerical method described in Chap. 2

that self-consistently solves for the trap potential and particle distributions. The

particular solution shown is for a high charge state argon plasma overlapped by

equal temperature electrons. The plasma temperature used is 3 keV. The corona

model argon charge state distribution at this temperature is given in Chap. 3. For

convenience the solution in the present chapter was generated with a single ion

species having the average charge state of +17.2.

The ion density at the geometric center of the trap is chosen to be 1× 1014 m−3.
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The electron density is set at 2 × 1016 m−3 at the center of the trap. The radial

profile of the electrons is assumed to be h(r) = 1 − (r/rw)α at the midplane, where

α = −2.3ln(1− λD/rw). This profile holds the electron density fairly constant until

within a few Debye lengths of the wall where it falls rapidly to zero. The ions are

assumed to be in global thermal equilibrium; that is, they follow the Boltzmann

relation both axially and radially within the inner well. The electrodes all have a

radius of 5 mm. The central electrode is 5 cm long and grounded. The electrodes

on either side of the central electrode are each 2 cm long and are held at 6.7 kV.

The outermost electrodes are each 1 cm long and held at -82 kV.

The potential which results from this choice of parameters is shown in Fig. 4.1.

The space charge of the electrons provides an electric potential well capable of

providing radial confinement. The self-consistently determined ion density is shown

in Fig. 4.2. The electron density is shown in Fig. 4.3.

For the parameters chosen, the ion cyclotron radius is 1 cm within the 5 mm

radius trap. Thus, radial magnetic confinement of the ions is not possible. The

electrons, however, have a cyclotron radius of .653 mm and may be radially confined

by the magnetic field.

Evaluation of Limiting Ion Density

Note that, due to the Brillouin limit, it would require a 1.2 T magnetic field to

confine argon ions at a density of 1×1014 m−3 in a nonneutral plasma trap. Because

the inner well of the nested well trap considered in this Chapter has a negative

charge density, the Brillouin density limit does not apply to the ions. Within the end

wells the electron plasma is completely unneutralized and, consequently, is Brillouin

limited. This limit on the electron density sets a limit on the maximum ion density
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FIG. 4.1. The self-consistent potential with argon ions confined at a density above
their Brillouin density limit in a nested well Penning trap.
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FIG. 4.2. The self-consistent density of argon ions in the trap.

FIG. 4.3. The self-consistent density of electrons in the trap.
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which may be confined within the inner well. An expression for the maximum

ion density which may be confined, ni,max, can be obtained. First, consider the

electron density within the end well, ne,ew, to be equal to the electron Brillouin limit,

ne,ew = nBe = ε0B
2/(2me). As the electrons are considered to be in local thermal

equilibrium the maximum electron density in the inner well is ne,iw = ne,ewe−e∆φ/Te .

We are considering a situation in which the inner well has a negative charge density

so that the ions are confined by the resulting potential depression. However, we can

consider as an upper limit the ion density which would result in neutrality within

the inner well, ni,max = ne,iw/Z. In terms of the Brillouin ion density limit, nBi, the

maximum ion density which may be confined is

ni,max =
mi

Zme
e−e∆φ/TenBi.

For the parameters considered in the self consistent computation, this evaluates to

a maximum ion density of 1700 times the Brillouin limit. For the self-consistent

calculation, the electron density in each end well is only approximately one fourth

of the Brillouin electron density limit. The maximum ion density in the inner well is

less than one tenth of the density that would result in a neutral plasma. As a result,

the maximum ion density in the self-consistent calculation is only approximately 38

times the ion Brillouin limit.
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CHAPTER 5

A PENNING TRAP WITH A RADIAL MAGNETIC FIELD

Typically a Penning trap consists of an electric potential well applied along a

solenoidal magnetic field which is aligned with the trap axis. A trap in many ways

similar to typical Penning traps can be created by aligning an electric potential well

along a radial magnetic field. In fact, there is no reason why, in principle, a set of

nested wells cannot be created along a radial magnetic field.

A region of radial magnetic field exists in a magnetic cusp configuration.1 The

Andreoletti-Furth configuration is a modification of the magnetic cusp in which a

local magnetic minimum exists within the radial field region.1,2 Such a trap is being

considered for use in the problem of recombining and trapping antihydrogen atoms.3

In Fig. 5.1 the trap system is shown. Azimuthal symmetry is assumed. There are six

washer shaped electrodes separated by a distance 2zw. Between the two electrode

surfaces a region of radial magnetic field exists. Consider an ion plasma of charge

state Z to be confined between the electrodes. This plasma will be of width 2zp and

extend from r = rpi to r = rpo.

In this chapter this radial magnetic field configuration is considered as a method

in which a nonneutral plasma in “local thermal equilibrium,” that is a plasma which

follows the Boltzmann relation along each magnetic field line, may be confined with

a density in excess of the Brillouin limit. A plasma confined at a density exceeding

the Brillouin limit may serve as the outer well plasma in a nested configuration. Pre-

vious experimental work has demonstrated ion confinement at the Brillouin limit.4
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FIG. 5.1. The configuration considered for plasma trapping in a magnetic field
given by B = B(r)r̂. (a) The plasma confined in a washer-shaped region of width
zp extending from r = rpi to r = rpo. (b) The electrode configuration considered.
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Electron confinement with local densities higher than the Brillouin limit using non-

thermal electron distributions has also been reported.5

The Brillouin Density Limit

Penning traps generally have very good confinement properties. Near perfect

axial confinement can be achieved and long term radial confinement is possible

in solenoidal fields if the effects of neutral collisions and field imperfections are

minimized. However, a nonneutral plasma confined in a Penning trap employing

an axial magnetic field has its density limited by the Brillouin density limit.6 This

limit expresses a balance of magnetic, self-electric and centrifugal forces. The electric

field on the outer radius of a plasma column is E(rp, z) = qnrp/(2ε0) where rp is the

plasma radius and n is its density. For radial confinement to occur the outwardly

directed self-electric and centrifugal forces must be balanced by the magnetic force,

q2nrp/(2ε0) + mv2
θ/rp = qvθB. Solving for the plasma density it is found that

n = ε0B
2(2χ−χ2)/(2m) where χ = 2mvθ/(qBrp). This density reaches a maximum

when χ = 1 which gives the Brillouin limit

nB =
ε0B

2

2m
.

This limit can be quite severe in typical magnetic fields. For example the Brillouin

limit for a xenon ion plasma in a .2 T magnetic field is 8.1 × 1011m−3.

Studies currently planned involving antihydrogen production or fusion with Pen-

ning traps will have reaction rates which strongly depend upon the plasma density.

Techniques which allow for confinement in excess of the Brillouin limit could be of

substantial interest.7,8
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Exceeding the Brillouin Limit in a Penning Trap with a Radial Magnetic Field

From Gauss’ law an approximation for the axial electric field at any location far

from the radial edges of the plasma in the radial configuration can be obtained. The

axial component of the electric field within the plasma in this region is Ez = qnz/ε0.

The force on a particle due to this electric field, FE must be balanced by the axially

inward magnetic force FB = qvθB. From this balance arises a requirement on the

azimuthal velocity, vθ = qnz/(ε0B). For a plasma in this configuration, the Brillouin

limit does not apply because the centrifugal force does not appear in the axial force

balance, but a plasma in this radial field configuration necessarily has a sheared

rotation. Because of this rotational shear, nearby collections of particles which have

different axial locations will exert a torque on each other. This torque will result in

axial expansion of the plasma and a finite axial confinement time. However, it may

be possible to develop some technique, perhaps similar to a rotating field technique,9

to keep the plasma from expanding axially. An upper limit on the density which

replaces the Brillouin limit for this configuration may be found by examining the

axial force balance at z = zp. Setting vθ equal to the speed of light c, we get the

largest possible density in this type of trap

nmax =
εocB

qzp
. (5.1)

Considering a 0.2 T magnetic field as before, with a plasma width of 1 cm, we find

that nmax = 6.6 × 1017 m−3.

It should be pointed out that this limiting density is probably considerably larger

than that which could easily be produced. However, as this density is several orders

of magnitude above the corresponding Brillouin limit, it is possible that a nonneutral

plasma could be confined in this form of trap at a density higher than the Brillouin
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limit.

In the radial direction, the applied radial electric field must overcome the cen-

trifugal force, the magnetic gradient force, and also the force from the self-electric

field of the plasma. The magnetic gradient force on a particle can be evaluated from

FM = −µ∇B with µ equal to the magnetic moment of the cyclotron orbit of the

particle.10 The magnetic field may be approximated as only having a radial compo-

nent in the region of the trap containing the plasma so that the condition ∇·B = 0

implies Br = C/r. The magnetic moment may be approximated as T⊥/B where T⊥

is the temperature associated with the motion perpendicular to the magnetic field.

Hence, FM = T⊥/r.

The largest value of the centrifugal force which must be overcome by the applied

electric field occurs at z = zp. At this location the azimuthal velocity reaches its

maximum value of vθ = Zenzp/(ε0B).

A self-consistent computation demonstrating an ion plasma confined at a density

above the Brillouin limit is shown in Figs. 5.2 and 5.3. The results are generated

for singly charged xenon ions with a maximal density of 1.5 × 1013 m−3 (at z = 0,

r = 25 cm) and a temperature of 300 K confined in a trap which extends from

r = 24.5 cm to r = 25.5 cm and from z = −0.5 cm to z = 0.5 cm. Considering

the magnitude of the magnetic field to be approximately 0.2 T throughout the

region of the trap containing the plasma, the electric field required to balance the

maximum centrifugal force evaluates to 250 V/m. The electric field strength required

to balance the magnetic gradient force is 0.1 V/m.

For the purpose of the self-consistent calculation, the electrode configuration

which is illustrated in Fig. 5.1 is replaced by a series of electrodes which provide
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FIG. 5.2. The potential along three different axial lines. The applied potential,
along the z = zw line, is shown along with the self-consistently determined potential
along z = zw/2 and z = 0.

a triangular potential well. The applied potential linearly decreases from 5 V to

0 V from r = 24.5 cm to r = 25 cm and then it increases linearly back to 5 V at

r = 25.5 cm. This produces an applied electric field of 1000 V/m. The plasma is

assumed to follow the Boltzmann relation along each radial magnetic field line and

follow an axial profile along r = 25 cm given by h(z) = 1 − (z/zw)α. The resulting

potential is shown in Fig. 5.2. The resulting density is shown in Fig. 5.3.

Because in this configuration the centrifugal force acting on the plasma can be

opposed by the force due to an applied electric field instead of a magnetic field, the

Brillouin density limit is not applicable. For the 0.2 T magnetic field considered,

the ion density considered, 1.5 × 1013 m−3 is much greater than the Brillouin limit

of 8.1 × 1011 m−3.
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FIG. 5.3. The ion density.
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CHAPTER 6

ANTIHYDROGEN PRODUCTION USING A NESTED WELL PLASMA TRAP

An area of current research interest is the production of well-confined low tem-

perature antimatter in the form of antihydrogen. In 1996 the production of a small

number of antihydrogen atoms was reported.1 This was accomplished via a reac-

tion of an antiproton with an atomic nucleus in which a positron is produced and

captured by the antiproton. However, only on the order of 10 antihydrogen atoms

were produced and these were produced at a high kinetic energy.

The CERN AD (Antiproton Decelerator) facility will allow for a variety of ex-

periments aimed at producing and confining antihydrogen atoms. Of particular

interest will be studies of the spectrum of antihydrogen and comparison to that of

hydrogen.2 Experiments of this type will make possible very precise tests of CPT

invariance.3 Additionally, there is interest in measuring the gravitational accelera-

tion of antimatter, thereby testing the weak equivalence principle. Such tests are

extremely difficult to perform for charged particles due to the difficulty of shielding

out electromagnetic forces. The production of cold antihydrogen should make these

experiments feasible.2

One method of low temperature antihydrogen production which has been pro-

posed is to confine both antiproton and positron plasmas in a nested well Penning

trap so that they have a significant region of overlap.4–6 As has been discussed in

Chap. 2 there are two methods by which two plasmas of equal charge magnitude

but opposite sign may be confined together in such a trap with a region of signifi-
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cant overlap. One method requires that the two plasmas have a large temperature

difference. The hotter component would reside primarily within the end wells but

have a high enough temperature that it can overcome the potential hill between the

outer and inner well and will overlap the inner well significantly.

Alternately, an overlap of the two plasmas may be achieved by keeping the outer

well plasma in a nonequilibrium state. In particular, the nonequilibrium state used

is the “antishielding state” in which the outer well plasma particles pass through

the outer wells with enough momentum to carry them into the inner well. The

antishielding state can be prepared such that within the inner well this compo-

nent will approximately have a Maxwellian velocity distribution with a low (<1 K)

temperature. Collisions, or possibly microinstabillities, will cause this distribution

to relax towards equilibrium. As this relaxation occurs the two components will

separate. To ensure that a significant amount of antihydrogen can be produced

before the two components separate it is necessary to select the trap parameters

such that the timescale for antihydrogen recombination is much smaller than the

timescale for relaxation of the plasmas. Alternately, a time-dependent procedure

may be implemented that re-establishes the antishielding state many times.

Regardless of the method used to achieve overlap, the overlap region may be

prepared such that it is either neutral or nonneutral. Use of a nonneutral over-

lap would create an electric field within the inner well region. Depending on the

magnitude of the charge imbalance, this field could cause the re-ionization of newly

created antihydrogen atoms which would initially be in highly excited states. Within

this chapter, several methods of achieving overlap, antihydrogen recombination and

trapping are considered. A neutral overlap region achieved with equal temperature

64



positron and antiproton plasmas is identified as the most favorable for antihydrogen

recombination and trapping. Effects which may occur in a nonneutral overlap region

are also considered, and parameter ranges in which the effects may be important

are predicted.

Antihydrogen Production From Components With Disparate Temperatures

To use a Penning trap for antihydrogen recombination requires confining two

oppositely charged plasma components in the same spatial region. For the case in

which both plasma components are in thermal equilibrium two conditions on the

voltage difference between the inner well and outer well apply. Assuming antiprotons

are the inner well species, the condition for them to have adequate axial confinement

is e∆φm/T− À 1 where ∆φm is the difference in potential from the z = 0 to the axial

location where the potential reaches its minimum value along a magnetic field line.

In other words, ∆φm is the inner well depth along a magnetic field line. The second

condition is e∆φm/T+ <
∼

1. This condition is necessary to allow the positrons, which

are primarily confined within the outer well, to have a significant overlap of the inner

well. Both of these conditions may be met with thermally relaxed plasmas only if

T− ¿ T+.

To confine the antihydrogen produced in a superimposed magnetic minimum

requires that the antihydrogen be produced at temperatures of no more than 1 K

so that the antihydrogen atoms can be confined as a result of their permanent mag-

netic dipole moment. Trapping of 1 K antihydrogen in a Ioffe-Pritchard magnetic

field configuration may be possible.2 Such a system is azimuthally asymmetric, and

experimental studies are now underway to study the effect of this asymmetry on a

superimposed Penning trap.7 The possibility of using a magnetic cusp configuration
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which has azimuthal symmetry also exists. An Andreoletti-Furth configuration is

symmetric about the axis8 and is being investigated for antihydrogen confinement.

The magnetic minimum in either the Ioffe-Pritchard or Andreoletti-Furth configu-

ration could be arranged to occur in the overlap region of a nested well trap and

allow for the trapping and de-excitation of newly-formed antihydrogen.

Because of the requirement that the antihydrogen be produced at no more than

approximately 1 K, the antiproton component, must have a temperature of less than

1 K. If the antiprotons are the inner well species, as is assumed here, the positrons

must have a temperature much higher than 1 K. If the role of the two plasma

components is reversed and the positrons are held in the inner well, the positron

temperature must be significantly less than 1 K. For this reason the situation where

the antiprotons are the inner well species is much more feasible. However, there is

an additional difficulty with using the two-temperature approach to achieve antihy-

drogen recombination. The recombination rate decreases significantly as positron

temperature increases.4 So a very low positron temperature is also desirable.

Antihydrogen Production Using a Nonequilibrium Plasma

Establishment of a nonequilibrium “antishielding” distribution in one dimension

is discussed in Chap 2. Essentially the antishielding state is established by initially

confining a plasma component outside of the nested well trap at a potential equal

to that inside the inner well. Because the nonequilibrium state is predicted to have

a longer persistence for a higher mass component (see below), we will assume that

the positrons are the species confined within the inner well and that antiprotons are

the outer well species, although the roles of the two plasma components could be

reversed.
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While the two components are separated, the positron plasma is allowed to cool

via synchrotron radiation to the temperature of the surrounding structure. This

occurs with a timescale of less than a second for large magnetic fields (B > 2 T).6

To cool the antiprotons, electrons may be confined in the same well. After cooling

has occurred, the electrons may be selectively removed.9

After both positron and antiproton plasmas are prepared in a 1 K thermal equi-

librium state, the potential barriers keeping the antiproton plasma out of the nested

well are removed, allowing this component to flow into the nested well as demon-

strated in Fig. 2.4. After the antiprotons flow into the nested well, their axial density

profile is given by

n− = n0−eψ−erfc
[
Re(

√
ψ−)

]
(6.1)

where n0− is the density at z = 0, ψ− = e [φ(z) − φ0] /T− is the electric potential

normalized to the antiproton temperature, and φ0 is the potential at z = 0. This

density profile applies to a collisonless Maxwellian plasma that is allowed to flow into

an initially empty well so that it flows through the well without becoming trapped.

Because the axial speed of the plasma is greater within the well, the plasma will,

by conservation of flux, have a smaller density within the well than outside of it.

Therefore, a nonneutral plasma which follows Eq. 6.1 will increase the depth of,

or “antishield,” the well. Because φ(z) in the inner well region is chosen to be

equal to φ0, the velocity distribution of the antiprotons in the inner well just after

they have been allowed to enter the nested well is Maxwellian with an associated

temperature equal to the plasma’s temperature before it enters the nested well. By

this method, both plasmas may have temperatures less than 1 K within the inner

well. The average relative speed between positrons and antiprotons can be low, and
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consequently their recombination rate can be high.

CERN AD will be capable of producing only a limited number of antiprotons, and

the density of the plasmas considered for these experiments will be low. Experiments

have been reported in which around 105 antiprotons have been accumulated.10,11

The facilities at CERN produce on the order of 107 antiprotons per pulse.12 For the

trap considered in this section, an antiproton density of around 109 to 1010 m−3 is

expected. For plasmas of this density, the magnitude of the change in potential from

r = 0 to r = rw will be only on the order of a few millivolts. However, in comparison

to the thermal energy of the 1 K (8.7×10−5 eV) antiprotons, this change in potential

can be very important.

In consideration of the form of the two-dimensional potential, it becomes evident

that some modification to the procedure for establishing the antishielding state is

necessary. As the potential of neither the initial antiproton well or positron well will

be radially flat, the one dimensional scheme for achieving overlap that is depicted

in Fig. 2.4 can be achieved exactly at only one radial position at best. The effect

of having an unneutralized plasma within each initial well is that the positron well

will have a higher potential at r = 0 than at r = rw; the antiproton well will have a

lower potential at r = 0 than at r = rw. But by manipulating the applied voltages,

the potential difference between the two wells can be arranged to be exactly equal

at some radius. For all other radii, the antiprotons will either lose or gain kinetic

energy upon moving from their initial well into the inner well if they remain at the

same radial position. Depending on the parameters chosen, antiprotons may lack

energy to enter the inner well at many radial positions.

Alternate procedures for establishing a nonequilibrium distribution could be de-
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vised. Consider the procedure shown in Fig. 6.1. This procedure is implemented

using a series of seven cylindrical electrodes. In essence these electrodes create a

set of three nested electric potential wells. As shown in Fig. 6.1(a) the innermost

well initially confines a 1 K antiproton plasma, and the intermediate well initially

confines 1 K positrons. The outermost well is biased positive and initially is empty.

Because the two plasmas are at the same temperature, the initial amount of overlap

will be negligible.

Once the configuration in Fig. 6.1(a) is achieved, the innermost well potential can

be dropped as shown in Fig. 6.1(b), creating the typical nested well profile. Within

the new inner well, the positron plasma will adjust to the change in potential before

the antiproton plasma moves appreciably. The positrons will spread throughout

the inner well and recombination may begin. In this procedure, as before, neither

the initial antiproton or positron region will have a radially flat potential. It is

expected, therefore, that for many radial positions a significant amount of energy

will be gained by the positrons.

Once the antiprotons begin to flow out of the inner well, they will reflect within

the end wells and return to the inner well with the same kinetic energy with which

they left, provided they do not move radially very far from their starting point. The

antiprotons will very precisely match a 1 K Maxwellian velocity distribution within

the inner well at all radial values. Because the positrons should thermalize and cool

rapidly, this procedure is expected to be more favorable for recombination than the

procedure in Fig. 2.4, which will set up two opposing antiproton beams in the inner

well at most radial positions.
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FIG. 6.1. Illustration of an alternate process for loading an antiproton plasma
into nested electric potential wells such that the antiproton plasma will overlap a
positron plasma. This procedure allows the antiprotons to enter into the desired
nonequilibrium state at all radial locations. The initial profile (a) has three nested
electric potential wells. The innermost contains an antiproton plasma. The inter-
mediate well contains a positron plasma which does not overlap the inner well. The
outer-most well is empty. By quickly adjusting the applied potential of the center
electrode, a typical nested well potential profile is generated (b). The positrons
diffuse into the new inner well rapidly. The antiprotons enter the end wells.
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Calculation of the Timescale for Antiproton Recombination

The evolution of the plasmas within the nested well trap can be characterized

by two timescales: τr, the timescale for recombination of positrons and antiprotons

to form antihydrogen, and τs, the separation timescale which is characteristic of the

rate at which the antiproton and positron plasmas separate due to the relaxation of

the antiproton plasma.

Two mechanisms by which antihydrogen can be produced are considered: three-

body recombination and radiative recombination.4,13 Holzscheiter gives the spon-

taneous radiative recombination reaction rate as αSRR = 9 × 10−17m3 s−1 for 0.1

meV(≈ 1K) positron and antiproton plasmas.2 From this reaction rate the recom-

bination timescale can be calculated as τSRR = 1/(αSRRn+). Typically, we will be

considering plasmas with n+ ≈ 1010 m−3. For such a plasma, τSRR ≈ 106 s.

Three-body recombination is a process by which a positron and antiproton re-

combine and a second positron nearby carries off excess energy and momentum.

This reaction becomes more important as the positron density increases. The three-

body recombination reaction rate for antihydrogen in the absence of a magnetic field

is4

αTBR = 6 × 10−24(4.2/T )9/2n+.

Magnetic fields will have a detrimental effect on the recombination rate. However,

even in an infinitely large magnetic field the rate will only be less by an order of

magnitude.14 The timescale for this reaction, including the effect of a large magnetic

field τTBR = 10/(αTBRn+). For a 1K mixture of positrons and antiprotons with

n+ = 1010 m−3, τTBR = 30 s. Clearly for the plasmas considered in this section

three-body recombination is expected to be the dominant recombination process.
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Calculation of the Timescale for Relaxation of the Antishielding Distribution to

Equilibrium

Another timescale relevant to the use of a nested well trap for production of

antihydrogen is the timescale for the process by which antiprotons in the antishield-

ing state leave the inner well region and become trapped in the end wells. This

process must occur at a much slower rate than the antihydrogen recombination pro-

cess for a significant amount of antihydrogen to be produced without requiring a

time dependent manipulation of the electrode potentials to reset the antishielding

distribution.

The timescale for the relaxation of the antishielding distribution, τs, can be

calculated by τs = Ni/Ṅo, where Ni is the number of antiprotons in the inner well

and Ṅo is the rate at which the antiprotons become trapped in the outer well.

Rewriting in terms of the antiproton density in the inner well, ni, the cross sectional

area of the trap, A, the length of the inner well, L, and the flux into each end well,

F, we obtain

τs = niL/(2FPt) (6.2)

where Pt is the probability that an antiproton which enters the inner well will become

trapped there.

Within the inner well (where ψ = 0) the antiprotons will have a Maxwellian

velocity distribution. The flux associated with particles with a Maxwellian velocity

distribution is

F =
ne−ψ√
2πm/T

.

Evaluating this flux at the edge of the inner well (ψ = 0, n = ni) and substituting
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into Eq.6.2 yields

τs =
L

√
πm/(2T )

Pt
.

If there are no collisions, all the antiprotons that enter the end well will be

reflected at the ends of the trap, and re-enter the inner well with the same energy

with which they left; Pt will equal zero and the antishielding state will persist forever.

However, collisions do occur, and a model for the trapping probability is15

Pt = erf
(√

〈∆εx〉/T
)

where

〈∆εx〉 =
Lme4n+

[
eψmerfc

(√
ψm

)]3
λ

128ε2
0T

,

and

λ =
1

2
ln


1 +

256mε2
0T

3

e6B2
[
eψmerfc

(√
ψm

)]4




is the Coulomb logarithm. Here ψm = e∆φm/T− and Lm is the length of the end

well plasma. The equation for the timescale of the persistence of the antishielding

state, τs, is of the same form regardless of whether positrons or antiprotons are the

outer well species. However, antiprotons will have the longer timescale because of

their larger mass.

For the parameters given in Table 6.1, the self-consistently calculated depth of

the end well is ∆φm = 1.4 V. Using this value and the other parameters given in

Table 6.1 results in τr = 0.6 s and τs = 38 s. Because τs is so much larger than τr

most of the antiprotons are expected to recombine before their distribution relaxes

towards equilibrium, and they become trapped in the end wells.
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Recombination and Trapping Considerations

In principle the system may be prepared such that the inner well region is neutral

or nonneutral. Within a nonneutral region, the radial electric field may cause the

re-ionization of newly created antihydrogen. Additionally, in a nonneutral region

both of the plasma components will rotate, and due to the mass difference between

the components, each species will have a different rotation rate. Assuming this does

not cause an instability to occur, collisions will cause a torque to be applied between

the components, and radial separation may occur.

A large disparity in rotation rates may also result in an average relative speed

between the plasma species larger than that associated with the thermal motion of

the particles. If this occurs, the recombination rate may be reduced.

For overlapping antiproton and positron plasmas of constant densities n− and

n+, the rotation rates will be

ωr+ =
ωc+

2


1 ±

√√√√1 − 2ω2
p+

ω2
c+




for the positrons, and

ωr− =
ωc−

2


1 ±

√√√√1 +
2ω2

p−

ω2
c−




for the antiprotons, where ωc± = qB/m±, ωp± =
√

(q2∆n)/(ε0m±), ∆n = n+ −
n− and m± is the positron (antiproton) mass. Choosing the negative sign in the

expression for the antiproton rotation rate gives a rotation in the same direction

as the positrons. Choosing the slow rotation rate for the positrons will give the

smallest difference in rotation rates. Figure 6.2 shows the difference in azimuthal

velocity that occurs at r = rw in comparison to each plasma component’s thermal

speed, vT =
√

T/m (considering a temperature of 1 K) for various values of ∆n =
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FIG. 6.2. The difference in rotational velocity, ∆vθ at r = rw = 5 cm for positrons
and antiprotons in various magnetic fields versus ∆n. Also shown are the thermal
velocities of the positrons, vT+, and antiprotons, vT−. As ∆vθ becomes appreciable
compared to the thermal velocities, the recombination rate may be affected.
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FIG. 6.3. The kinetic energy associated with the azimuthal velocity of the antipro-
tons at r = rw and r = rw/2.

n+ − n−. For a magnetic field of 2 T which is considered in this chapter, the effects

on the recombination rate associated with a disparate rotation rate will only become

important when ∆vθ approaches the speed of the positrons.

Additionally, for a nonneutral overlap region, the kinetic energy associated with

the antiproton rotation can be larger than the antiproton thermal energy. Even if

recombination occurs, the rotational kinetic energy of the antiprotons may make

trapping of the antihydrogen atoms impossible. The kinetic energy associated with

antiproton rotation at both r = rw and r = rw/2 is shown versus ∆n in Fig. 6.3. It

can be seen that the antiproton rotational kinetic energy becomes appreciable for

∆n ≈ 2 × 1012m−3 or larger.

Self-Consistent Calculation of Trap Properties

A self-consistent calculation has been performed using the SOR code described

in Chap. 2 and presented in Appendix B. The simulation determines the particle

distributions and potential self-consistently immediately after the antishielding state
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Table 6.1. Parameter values used for the calculation of the electric potential and
plasma density distributions in a nested well plasma trap confining positrons and
antiprotons for the purpose of producing cold antihydrogen.

Parameter Value

rw 1 cm
L0 24 cm
L1 2 cm
L2 1 cm
V1 1.5 V
V2 -0.4 V
n+(0, 0) 3×109 m−3

n−(0, 0) 3×109 m−3

B 2 T
T−/k .25 K
T+/k .25 K

is established.

For the purposes of the calculation, the density distribution of the antiprotons

is described by Eq. 6.1 along each magnetic field line, while the positrons follow the

Boltzmann relation within the inner well along each field line. The radial profile of

each component is selected to be parabolic in form and drops to zero at r = rw/2.

Other values used in the computation are given in Table 6.1. The outer electrode

is given a length equal to the trap radius, L2 = rw. Additionally, the trap is closed

by an electrode cap at the end of the outer electrode that is held at voltage V2 for

the purposes of the computation. This is done for computational ease. The results

generated are expected to apply to a corresponding open-ended trap with a much

larger value of L2. The voltages chosen will be large enough compared to the plasma

temperature to provide very good confinement of both plasma species. The results of

the calculation are shown in Fig. 6.4. The on-axis potential is shown in Fig. 6.4(a).

The on-axis antiproton and positron densities are shown in Fig. 6.4(b)-(c). The
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peaks in the antiproton density occur at axial locations where φ(z) exactly equals

φ0. The results show neutrality throughout the inner well region, which should allow

recombination to occur without the possibility of ionization by electric fields.

Summary

In this chapter an analysis of the use of a nested well Penning trap for anti-

hydrogen recombination is presented. The possibility of using plasma components

with different temperatures is discussed, but a scenario in which equal temperature

antiproton and positron plasmas are made to overlap such that a neutral inner well

region is obtained is identified as most favorable for antihydrogen recombination and

trapping. Obtaining this overlap requires the use of a nonequilibrium distribution

for one plasma component. A method which should allow the nonequilibrium “an-

tishielding” state to approximately be achieved at all radial locations is presented.

Additionally, expressions for the timescales for both antihydrogen production and

relaxation of the antishielding state to equilibrium are developed.
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FIG. 6.4. The self-consistent electric potential (a), antiproton density (b), and
positron density (c) along the axis of a nested Penning trap under conditions suitable
for antihydrogen recombination and trapping. The profiles are symmetric about the
midplane (at z = 0), and only the profiles for z > 0 are computed. A uniform
magnetic field parallel to the z axis is assumed.

79



REFERENCES

1G. Baur, “Production of antihydrogen,” Phys. Lett. B 368, 251 (1996).

2M. H. Holzscheiter and M. Charlton, “Ultra-low energy antihydrogen,” Rep.

Prog. Phys. 62, 1 (1999).

3R. Bluhm, V. A. Kostelecky, and N. Russell, “CPT and Lorentz tests in hydrogen

and antihydrogen,” Phys. Rev. Lett. 82, 2254 (1999).

4G. Gabrielse, S. l. Rolston, L. Haarsma, and W. Kells, “Antihydrogen production

using trapped plasmas,” Phys. Lett. A 129, 38 (1988).

5J. Eades and F. J. Hartmann, “Forty years of antiprotons,” Rev. Mod. Phys.

71, 373 (1999).

6R. G. Greaves and C. M. Surko, “Antimatter plasmas and antihydrogen,” Phys.

Plasmas 4, 1528 (1997).

7E. Gilson and J. Fajans, “Quadrupole induced resonant particle transport in

a pure electron plasma,” , in Non-Neutral Plasma Physics III, edited by J. L.

Bollinger, R. L. Spencer, and R. C. Davidson, Melville, New York, 1999, Amer-

ican Institute of Physics.

8R. F. Post, “The magnetic mirror approach to fusion,” Nucl. Fusion 27, 1579

(1987).

9G. Gabrielse et al., “The ingredients of cold antihydrogen simultaneous confine-

ment of antiprotons and positrons at 4 K,” Phys. Lett. B 455, 311 (1999).

80



10P. O. Fedichev, “Formation of antihydrogen atoms in an ultra-cold positron-

antiproton plasma,” Phys. Lett. A 226, 289 (1997).

11G.Gabrielse et al., “First capture of antiprotons in a Penning trap: A kiloelec-

tronvolt source,” Phys. Rev. Lett. 57, 2504 (1986).
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APPENDIX A

SOR CONVERGENCE TESTING AND ACCURACY
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The use of a relaxation method technique requires that some testing be done to

determine if the solution has been approached to the desired precision. The method

by which this is achieved involves calculating the change in φ at each grid point

during each computational step,

ζi,j = φn+1
i,j − φn

i,j.

Then by summing up |ζ|, or alternately ζ2, over all grid points, a sum known as

the residual is generated. Typically the SOR method is characterized by an initial

divergence or slow convergence for several timesteps, depending on the initial choice

used for φ. During this time the residual grows. After this initial divergence,

however, the solution rapidly and steadily converges for most problems if a solution

may be found. Typical behavior of the residual is shown in Fig. A.1 both when a

solution is reached (a) and when a solution is not found (b).

For comparison, a graph of the residual per time step is shown in Fig. A.2 for a

simple relaxation method solution (setting ω = 1 in Eq. 2.1). The same parameters

where used in the calculation of both Fig. A.1(a) and Fig. A.2.

Accuracy of the SOR solutions

The accuracy of the SOR calculation depends upon the number of grid points

used as well as the ratio of plasma Debye length and grid spacing. As the Debye

length is the scale length over which the plasma and the potential change appre-

ciably, the computational grid spacing needs to be smaller than this to accurately

represent the plasma. Spencer gives a requirement of two grid points per Debye

length for accuracy within 1%.1

As a test of the method’s accuracy, consider a long trap filled with a plasma that

follows a fixed, parabolic radial profile, h(r) = 1− (r/rw)2. If the plasma column is
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FIG. A.1. The residual versus timestep for a typical SOR solution (a). This demon-
strates convergence down to the precision available. Also shown is the residual
versus timestep for a non-convergent problem (b). In this case the plasma density
used was to great for the applied voltages, and no solution was found

84



FIG. A.2. The residual generated by solving the same problem used in Fig. A.1(a)
by a simple relaxation method. While the SOR calculation had converged to the
precision available (≈ 10−14) by timestep 450, the simple relaxation method has
only achieved a change of around 10−8 per timestep by the end of the run.

long enough that fringing fields from the confining electrode are not important then

the potential at the midplane may be compared to the exact result for an infinite

length plasma column with that radial profile,

φ(r) = −n0q

ε0

(
r2

4
− r4

16r2
w

)
+ φ0

where n0 is the plasma density at the origin, q is its charge, and rw is the trap

radius, and φ0 is a constant used to match the boundary condition at r = rw.

The computational trap used for these accuracy tests had a length twenty times its

radius. Therefore, the infinite length expression should be an adequate test.

The results of this accuracy test show a strong dependence on the number of

grid points used. Results with 20, 10, and 5 radial grid points were run. Each was

allowed to fully converge. The potential for the 5 grid point run was off by 10.9%

at r = 0. The 10 grid point run was off by 2.8% at r = 0 while the 20 grid point
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FIG. A.3. The percentage error at each radial location for 5, 10, and 20 grid point
solutions.

trial was only off by 0.7%. These results are shown in Fig. A.3. Note that all results

were most in error at r = 0. A large portion of this error, particularly for the small

grid sizes, is a systematic error. Furthermore, this error is not inherent within the

SOR method itself but rather is dependent on the way computational boundary

conditions are enforced.

In particular, this error comes about by enforcing the symmetry condition at

r = 0. At r = 0, the condition ∂φ
∂r

= 0 applies. A simple way to enforce this is to

finite difference the symmetry condition and therefore set

φ1,j = φ2,j (A.1)

where φi,j is the potential at radial grid point i, axial grid point j. However, in

doing so we have made a condition which should apply at only one point r = 0,
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apply throughout the entire first radial cell. For fine enough grids this distinction

is unimportant. While all results in previous chapters set the r = 0 boundary in

this manner, all grids used to produce the results throughout this work used more

than twenty grid points, so the error from this source should be less than 1% at

all grid points. It should also be noted that within a neutral region, the condition

φ1,j = φ2,j is exact. However, more accurate determinations of the potential along

r = 0 could be devised and should lead to greater accuracy for the first few radial

grid points for solutions calculated with few grid points.

One possibility is to consider the entire first radial cell to be filled with a plasma

of constant density n1,j,the self-consistent plasma density at r = 0. If this approxi-

mation is made, we may treat the first cell as a cylinder of charge and apply Gauss’

Law to determine the field and change in potential. The relationship between the

potential at r = 0 and r = ∆r (i = 1 and i = 2) becomes

φ1,j = φ2,j +
qn1,j

4ε0
∆r2. (A.2)

This produces a significantly improved accuracy for a small grid size problem com-

pared with A.1. For a 5 grid point run, this produces an accuracy everywhere within

3%. For larger numbers of grid points, this method remains more accurate, but the

difference between the two methods becomes much less important.
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SOR CODE
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(*The Mathematica code used to self - consistently calculate potential and particle

distributions for nested well plasma traps*)

(*Initialization*)

(*note : MKS units unless otherwise noted.*)

(*physical constants*)

q0 = 1.60218*10ˆ -19;

ε0 = 8.85419*10ˆ -12;

(*trap parameters*)

(*radius of the cylindrical electrodes*)

rw = .010;

(*axial position of end of the last electrode (half length of trap)*)

zw = .15;

(*start of potential step*)

z1 = .12;

(*end of potential step*)

z3 = .14;

(*step electrode voltage*)

v2 = 1.5;

(*end voltage*)

v4 = -.4;

(*plasma parameters*)

(* central plasma densities (at (r, z) = (0, 0)*)

n0pos = 3*10ˆ 9;

n0neg = 3*10ˆ 9;
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(*temperature of each plasma component in K*)

tKneg = 1000;

tKpos = 1000;

(* starting potential for antishielding distribution*)

φ0 = 0;

(*convert to β in 1/joules*)

tneg = tKneg*8.696*10ˆ -5*q0;

tpos = tKpos*8.696*10ˆ -5*q0;

βpos = 1/tpos;

βneg = 1/tneg;

(*Determine Debye length and mimimum grid size needed for 1% accuracy*)

λD = ((ε0 tneg tpos)/(tpos n0neg q0ˆ 2 + tneg n0pos q0ˆ 2))ˆ (1/2)

imin = rw/λD*2

jmin = zw/λD*2

(*computational parameters*)

(*number of grid points in r*)

imax = 20;

(*number of grid point in z*)

jmax=100;

immo = imax - 1;

jmmo = jmax - 1;

(*grid spacing*)

∆r = rw/(imax - 1);

∆z = zw/(jmax - 1);
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(*number of computation steps to be run*)

tsteps = 800;

(*calculate ”acceleration” factor *)

ω =2/(1 +(1 -((∆zˆ 2Cos[π/imax] + ∆rˆ 2Cos[π/jmax])/(∆zˆ 2 + ∆rˆ 2 ))ˆ 2)ˆ (1/2));

(*calculation variables*)

(*SOR coefficient of f, the poisson eq source term*)

cf = ω/(2(1/∆rˆ 2 + 1/∆zˆ 2));

(*table of SOR coefficients for the potential at the i + 1 grid point*)

ciplus = Table[cf (1 + 1/(i - .5))/∆ rˆ 2, { i, 1,imax }];
(*table of SOR coefficients for the potential at the i - 1 grid point*)

ciminus = Table[cf (1 - 1/(i - .5))/∆rˆ 2, { i, 1,imax }];
(*SOR coefficient for potential at the j + 1 and j - 1 grid points*)

cj = cf/∆zˆ 2;

(*set up distribution functions for self consistent calculation*)

(* set radial profile of each component*)

α = -2.3 Log[1 - λD/rw];

h[i ] := (1 - ((i/imax)ˆ α ));

qβp = q0 βpos;

qβn = q0 βneg;

dpos[i , j ] := Exp[qβp( φ[[i, 1]] - φ[[i,j]])]h[i] ;

(*antishielding distribution*)

dneg[i , j ] := Exp[qβn(φ[[i, j]] - φ0)]Erfc[ Re[(qβn(φ[[i, j]] - φ0))ˆ (1/2)]]h[i];

kpos = q0/ε0 n0pos;

kneg = q0/ε0 n0neg;
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(*Poisson eq source term f*)

(*note the If statement cuts off innerwell species in outer well approximately*)

f[i , j ] := If[z1/zw*jmax - j > 0, -kpos dpos[i, j], 0] + kneg dneg[i, j]/dneg[1, 1];

(* Grid setup*)

φ = Table[0, { i, imax }, { j, jmax }];
(*setup boundary conditions*)

(*the voltages v2 and v4 are set in nested well profile at r = rw for the boundary

condition as well as all other r values as an initial guess for the potential*)

Do[φ[[i, j]] = v2, { j, Floor[z1/∆z + 1], Floor[z3/∆z + 1] }, { i, 1, imax }];
Do[φ[[i, j]] = v4, { j, Floor[z3/∆z + 1] + 1, jmax }, { i,1, imax }];
(*set the “end cap” voltage*)

Do[φ[[i, jmax]] = v4, { i, 1, imax }];
(*empty list to hold residual after each timestep to test convergence*)

reslist = { };
(*the SOR loop*)

Do[res = 0;

Do[

Do[

temp = ciplus[[i]]φ[[i + 1,j]] + ciminus[[i]]φ[[i - 1,j]] +

cj(φ[[i,j + 1]] +φ[[i,j - 1]]) - cf f[i, j] - ω φ[[i,j]];

res += Abs[temp];

φ[[i, j]] += temp

, { j, 2, jmmo }]
,{ i, 2, immo }];
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Do[φ[[1, j]] = φ[[2,j]], { j, 1, jmax }];
Do[φ[[i,1]] = φ[[i,2]], { i, 1, imax }];
AppendTo[reslist, res],

{ t, 1, tsteps }]
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ION ORBIT CODE
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(*This code calculates single particle trajectories classically for ions in a set

of nested electric potential wells with a superimposed constant magnetic field.

The potential φ which is used has been previously calculated by another program

which self - consistently determined the potential and particle distributions within

the trap. Given this potential and the magnetic field strength, this code follows

the trajectory of individual ions of a given charge state under the effects of both

the electric and magnetic forces. The ions are started in the z = 0 plane (the

trap’s midplane), they are given initial velocities sampled from a Maxwellian velocity

distribution (negative z velocities are interpreted as positive due to trap symmetry).

The code allows the particle to be tracked as they move through the trap and either

make contact with one of the electrode walls or return to the z = 0 plane. The

program may also be set to track the particle as it makes several passes through

the trap and returns to the z = 0 plane. Statistics are kept on the number of ion

escaping (contacting an electrode wall), whether the escaping ions left through a

radial or axial wall, and which initial conditions lead to escape and which lead to

confinement.*)

(*initialize parameters*)

(*trap parameters*)

(*inner radius of electrode wall*)

rw = .005;

(*1/2 trap length*)

zw = .05;

(*axial magnetic field in T*)

Bz = 10;

96



(*plasma parameters*)

(*charge state of ions*)

cS = 17;

q0 = 1.602*10 ˆ -19;

(*β in 1/joules*)

βp = 1/(3000*q0);

(*mass of Ar atom*)

m = 39.9 *1.67*10 ˆ -27;

(*computational parameters*)

(*maximum number of timesteps allowed for each particle*)

maxtime = 5000;

(*number of particles*)

maxparticles = 1000;

∆time = 5*10 ˆ -10;(*time per timestep*)

(*In this calculation it is necessary to calculate the rotation of the particle’s velocity

vector due to the magnetic field the following Sin and Cos terms are used often in

the loop, so they are given a numerical value now to speed computation.*)

cCos = Cos[-q0 cS Bz/m ∆time];

cSin = Sin[-q0 cS Bz/m ∆time];

(*Set up particle lists The following are empty lists which will be filled with the

initial conditions (x, y, z, vx, vy, vz) of particles which escape radially, escape

axially, and remain confined.*)

esRadvx = {}; esRadvy = {}; esRadvz = {}; esRadx = {}; esRady = {};
esRadz = {};
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esAxvx = {}; esAxvy = {}; esAxvz = {}; esAxx = {}; esAxy = {}; esAxz

= {};
confvx = {}; confvy = {}; confvz = {}; confx = {}; confy = {}; confz =

{};
(*The following are empty lists that will store the final positions and velocities of

particles that return to the z = 0 plane, so that these values may be used as initial

conditions in future runs.*)

finalvx = {}; finalvy = {}; finalvz = {}; finalx = {}; finaly = {}; finalz =

{};
(*Load φ The list of previously calculated φ values.This should be an array of size

imax*jmax.*)

φ =

imax = Length[φ];

jmax = Length[φ[[1]]];

(*distance between computation points in r*)

∆r = rw/(imax - 1);

(*distance between computation points in z*)

∆z = zw/(jmax - 1);

immo = imax - 1;

jmmo = jmax - 1;

(*Set up Electric field component tables Set up tables for electric field components

in r and z direction.*)

fieldr = Table[0, {i, 1, imax}, {j, 1, jmax}];
fieldz = Table[0, {i, 1, imax}, {j, 1, jmax}];
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(*Fill in electric field values from φ*)

Do[{fieldr[[i, j]] = φ[[i - 1, j]] - φ[[i + 1, j]]/2∆r,

fieldz[[i,j]] = φ[[i, j - 1]] - φ[[i, j + 1]]/ 2 ∆z}, {i, 2, immo}, {j, 2, jmmo}];
Do[{fieldz[[1,j]] = φ[[1, j - 1]] - φ[[1, j + 1]]/2 ∆z,

fieldz[[imax,j]] = φ[[imax, j - 1]] - φ[[imax, j + 1]]/ 2 ∆z}, {j, 2, jmmo}];
Do[{fieldr[[i, 1]] = φ[[i - 1, 1]] - φ[[i + 1, 1]]/2∆r,

fieldr[[i,jmax]] = φ[[i - 1, jmax]] - φ[[i + 1, jmax]]/ 2∆r}, {i, 2, immo}];
(*Main Program*)

Do[

(*This section of the code assigns initial conditions. From the initial conditions

chosen, the larmor radius of the particles gyromagnetic motion, rL , is calculated,

as well as the initial location of the center of the particle’s orbit*)

rw = 0;

rL = 0;

rc = 0;

While[rc + rL>=rw,

posx = Sqrt[Random[]]*rw;

posy = 0;

posz = 0;

posr = posx;

velperp = Sqrt[-2 Log[Random[]]/(βp m)];

velx = velperp Cos[θv];

vely = velperp Sin[θv];

velz = Abs[Sqrt[2/(βp m)]InverseErf[1 - 2 Random[]]];
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θv = 2π Random[];

initx = posx;

inity = posy

initz = posz;

initvx = velx

initvy = vely

initvz = velz;

rL = m velperp/(q0 cS Bz);

rc = Sqrt[posx ˆ 2 + m ˆ 2 velperp ˆ 2/(Bz cS q0) ˆ 2

- 2 m posx velperp Sin[θv]/Bz cS q0]];

Do[ (*Determine the nearest grid point above and below the ion in both r and

z*)

ipos = Max[{Min[{posr/∆r + 1, imax}], 1}];
jpos = Max[{Min[{posz/∆z + 1, jmax}], 1}];
ilesser = Floor[ipos];

jlesser = Floor[jpos];

igreater = Min[{ilesser + 1, imax}];
jgreater = Min[{jlesser + 1, jmax}];
(*extrapolate from grid values of E - field to value of E - field at the particle’s

location*)

efr = (jpos - jlesser)*

((ipos - ilesser)*fieldr[[igreater, jgreater]]

+ (ilesser + 1 - ipos)*fieldr[[ilesser, jgreater]])

+ (jlesser + 1 -jpos)*
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((ipos - ilesser)*fieldr[[igreater, jlesser]]

+ (ilesser + 1 - ipos)*fieldr[[ilesser, jlesser]]);

efz = (jpos - jlesser)*

((ipos - ilesser)*fieldz[[igreater, jgreater]]

+ (ilesser + 1 - ipos)*fieldz[[ilesser, jgreater]])

+ (jlesser + 1 - jpos)*

((ipos - ilesser)*fieldz[[igreater, jlesser]]

+ (ilesser + 1 - ipos)*fieldz[[ilesser, jlesser]]) ;

(*Convert field in radial coords to cartesian*)

If[posr = = 0, {efx = 0, efy = 0} , {efx = posx/posr efr, efy = posy/posr

efr}];
(*update velocities due to electric and magnetic forces*)

tempvx = velx cCos + vely cSin + cS efx ∆time q0/m;

vely = vely cCos - velx cSin + cS q0/m efy ∆time;

velx = tempvx;

velz = q0/m cS efz ∆time + velz;

(*update positions using new velocities*)

posx + = velx ∆time;

posy + = vely ∆time;

posz + = velz ∆time;

posr = Sqrt[posx ˆ 2 + posy ˆ 2];

AppendTo[poslist, {posx, posy, posz}];
(*Test for particle escape or return to z = 0 and append initial conditions to the

correct list*)
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If[posr > rw, {
AppendTo[esRadvx, initvx],

AppendTo[esRadvy, initvy],

AppendTo[esRadvz, initvz],

AppendTo[esRadx, initx],

AppendTo[esRady, inity],

AppendTo[esRadz, initz],

Break[]}];
If[posz > zw, {

AppendTo[esAxvx, initvx],

AppendTo[esAxvy, initvy],

AppendTo[esAxvz, initvz],

AppendTo[esAxx, initx],

AppendTo[esAxy, inity],

AppendTo[esAxz, initz],

Break[]}];
If[ posz < 0, {

AppendTo[confvx, initvx],

AppendTo[confvy, initvy],

AppendTo[confvz, initvz],

AppendTo[confx, initx],

AppendTo[confy, inity],

AppendTo[confz, initz],

AppendTo[finalvx, velx],
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AppendTo[finalvy, vely],

AppendTo[finalvz, velz],

AppendTo[finalx, posx],

AppendTo[finaly, posy],

AppendTo[finalz, posz],

Break[]}]
, {t, 1, maxtime}]
, {parnum, 1, maxparticles}]
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