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In ab initio calculations of surfaces or nonperiodic systems, one frequently relies on the supercell approxi-
mation, where the periodic replicas of the system are separated by enough empty space to avoid spurious
interactions between the successive images. However, a vacuum separation is not sufficient to screen the
dipolar interaction that appears in asymmetrically charged or polar systems. The dipole correction and Cou-
lomb cutoff methods are often used to eliminate such interactions between the periodic replicas. In this work,
these methods are compared under the same conditions in the framework of plane-wave based density-
functional theory. The dipole correction method is shown to be equivalent to the rigorous Coulomb cutoff
formalism in the calculations of total energy, force, charge density, and self-consistent potential. We demon-
strate that the band structures obtained by these methods coincide for the localized bound states and that the
corrections have essentially no influence on the occupied energy bands, only substantially affecting the unoc-
cupied bands. By comparing the results of the two methods, the localized bound states of interest can be easily
distinguished from the highly delocalized unoccupied states using a relatively small supercell. This comparison
offers substantial savings in the computational time when ascertaining convergence with supercell size. The
accuracy of the dipole correction method is also confirmed by comparing the results for a model ferroelectric

BaTiOj5 slab with a Berry-phase calculation of polarization for the bulk system.
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I. INTRODUCTION

The plane-wave method with Born—von Kdrman periodic
boundary conditions (PBCs) is one of the most important
state-of-the art techniques in electronic structure calculations
for systems ranging from bulk solids to molecules and
surfaces.! The systems are considered to be repeated periodi-
cally in three dimensional space and the supercell approxi-
mation is commonly adopted when nonperiodic systems such
as surfaces, nanostructures, or molecules are investigated.
When necessary, e.g., for modeling surfaces, a vacuum re-
gion is inserted into the supercell to separate the periodic
replicas along the aperiodic direction(s). However, the super-
cell approximation artificially introduces spurious dipole in-
teractions between the periodic images when there is a net
dipole moment or charge in the cell.? The dipole interactions
lead to results that display strong dependence on cell size
and shape, possibly introducing artifacts into the calcula-
tions.

The issue of eliminating the undesired interactions be-
tween the periodic images has been extensively discussed in
the literature. Several different methods have been
proposed:*~!7 Makov and Payne® corrected the electrostatic
energy functional (but not the potential) for an aperiodic sys-
tem by adding a dipole dependent term in a cubic supercell.
Kantorovich'® generalized this method to cells of arbitrary
shape. Another kind of method obtains the electrostatic po-
tential by subtracting out the countercharge matching mul-
tiple moment of the charge distribution and solving for that
part using boundary conditions of an isolated system.!l16 A
different approach is to introduce a modified Coulomb po-
tential with a spatial cutoff.”#!415> This Coulomb cutoff for-
malism can remove all spurious image interactions intro-
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duced by the long-range part of the Coulomb potential,
including dipole and all higher order multipole interactions.
It has been demonstrated to be exact and rigorous for
clusters,”? slabs,'” and even wires.'* For polar slabs, a
simple to implement dipole-correction method, which intro-
duces a correcting dipole in the vacuum region, has been
widely used in calculations.!'®!? It was originally proposed
by Neugebauer and Scheffler,’ and later corrected by
Bengtsson.’

Unfortunately, the above methods have never been con-
sistently compared to each other. It is therefore difficult to
know which one is the most suitable for the system at hand.
In particular, it is not yet clear whether the simple dipole
correction®? is sufficiently effective in cancelling the spuri-
ous interactions due to the PBCs in planar polar slabs.

In this paper, we compare the dipole correction method’
with the exact Coulomb cutoff formalism'?!# that we imple-
mented in the plane-wave based density-functional code
PWSCF,? in which the dipole correction method was already
coded as an option. We studied the convergence of these two
techniques via computation of the total energy, force, charge
density, potential, and electron band structure. Our results
demonstrate that the dipole correction method is equivalent
to the Coulomb cutoff formalism. As such, both methods can
completely cancel the spurious interactions between the pe-
riodic images in a polar slab system. As already noted in Ref.
14, we find that the corrections to the band structure substan-
tially affect the unoccupied electronic states but have negli-
gible influence on the occupied ones. This finding is impor-
tant when studying optical or excited state properties of polar
slabs. In fact, as will be described below, comparisons be-
tween the two methods provide a cost-effective avenue for
confirming the convergence of the results with respect to the
supercell size.
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The rest of the paper is organized as follows: Sec. II out-
lines the Coulomb cutoff and dipole correction methods, and
discusses our methodological details; Sec. III describes the
results and demonstrates the equivalence of the two methods;
while Sec. IV provides the conclusions and the summary of
the paper.

II. COULOMB CUTOFF FORMALISM AND DIPOLE
CORRECTION TECHNIQUE

In the supercell approach, the periodic images of the sys-
tem interact with each other through the long-range Coulomb
potential, i.e., the electrostatic potential V(r) that satisfies the
Poisson equation with PBCs. It has the form of a convolu-
tion,

V(r) = &),d%’ :fn(r’)v(|r—r’|)dr’. (1)
all space |r -r |

In reciprocal space for a 3D periodic system with reciprocal
lattice vectors G, Eq. (1) can be written using the convolu-
tion theorem as

V(G) =n(G)v(G), (2)

where n(G) and v(G) are the Fourier transforms of the
charge density n(r) and long-range Coulomb potential v(r).

To remove all undesired interactions between the periodic
replicas in the Coulomb cutoff formalism,”!>!# one replaces
Eq. (2) with a modified one

V(G) =(G)3(G), 3)

where the Fourier integral

7(G) = o(r)e ¢Td’r (4)

all space

corresponds to a modified Coulomb interaction

B —— for [z-Z/|<L
o(r-r')=1r-r'| S)

0 otherwise.

The modified charge density 7(r) is still 3D periodic but the
range of the cutoff parameter L must be equal to the super-
cell dimension in the aperiodic direction and at least twice
the slab thickness.!# Here, the slab thickness is defined as the
distance between the two surfaces outside the slab where
charge densities are essentially zero, and not the distance
between the top and bottom atomic surfaces of the slab. By
choosing L and the slab thickness in this way, the densities
belonging to the different slab images will not overlap and
cannot interact through o(r).

In plane wave based density-functional theory (DFT) cal-
culations, the electrostatic energy is decomposed into three
terms: Hartree, ion-electron, and ion—ion interactions.
Within the Coulomb cutoff formalism, each term has an ana-
lytic form in reciprocal space for a 2D slab system (refer to
Refs. 12 and 14 for the exact expressions). The divergent
terms at G=0 are shown to cancel exactly when the cutoff is
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applied to both the ionic and Hartree potentials. The regular
spherical energy cutoff can still be applied after separating
the surface terms that need a higher cutoff G. and special
care (see discussion in Appendix B of Ref. 12).

The dipole correction method” is based on the observation
that the electrostatic potentials on the two sides of an isolated
slab with a nonzero net dipole moment m are different and
the use of PBCs introduces an artificial uniform electric field
in the supercell that cancels the potential jump across the
slab. To eliminate the unwanted electric field, one introduces
a dipole layer in the midvacuum region of the supercell.
Furthermore, a true external electric field E,,, can also be
applied to the slab in the same way by adjusting the strength
of the additional sawtoothlike potential,'®-2!22

dam

Vdip(z) =- e( - Eexl>z’

C C
<< . 6
5 <=3 (6)

The dipole corrected potential V(r), total energy E,y, and
Hellmann—Feynman forces F; become,

V(r) = ViP(z) + VO(r), (7)
(27Tm )
Etot = E?ot + - Eexl Am, (8)
c
0 4mm )\ |
FI:FI +€ZI<EeXt_ c )Z, (9)

where VO(r), EY, and F} are the calculated electrostatic po-
tential, total energy, and force without dipole correction, Z; is
the ionic charge of the /-th atom, and A is the area of the
surface unit cell.

We should stress that the Coulomb cutoff and dipole cor-
rection methods correspond to two different physical proce-
dures rather than mathematical transformations of the same
expression. The former is considered to be exact, rigorous,
and able to remove all spurious interactions between the pe-
riodic images. However, it is more complex to implement
and needs modifications for including nonzero electric field.
In contrast, the dipole correction can simultaneously cancel
the undesired artificial electric field due to the PBCs and
include an external electric field applied to a slab but it is
difficult to ascertain whether the artificial electric field com-
pletely cancels all interactions between the periodic replicas.
The two methods may also differ in their convergence prop-
erties with respect to the supercell size. In order to investi-
gate these issues, it is necessary and fruitful to compare these
methods under the same conditions and for the same physical
system.

To accomplish this, we implement the Coulomb cutoff
formalism in the PWSCF?® code, where the dipole correction
method was already programmed.”> We are thus able to
perform calculations with no correction, dipole correction,
and Coulomb cutoff, in the same supercell and with the
same inputs (such as cutoff energy, k points, pseudopoten-
tials, etc.). The slab was centered in the middle of the
supercell along the z direction and the supercell size was
chosen to be large enough so that the Coulomb cutoff for-
malism exactly removes all the undesired interactions. Our
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FIG. 1. (Color online) Band structures of Na sheet with and
without the Coulomb cutoff correction in supercell thicknesses of
(a)19 and (b)76 a.u. The Fermi energies in the two supercells have
been aligned.

calculations use the cutoff energy of 30 Ry, Vanderbilt ultra-
soft pseudopotentials®* with Perdew—Zunger (LDA) param-
etrization of the exchange correlation functional,? and an
in-plane Monkhorst—Pack k-point grid of 8 X 8.2

III. RESULTS AND DISCUSSION

As a first test of the implementation of the Coulomb cut-
off formalism in the PWSCF code, we computed the total
energy and the electronic band structure of a nonpolar Na
sheet in a supercell of size 7.6 X7.6 X 19 a.u. As expected,
the total energy from the calculations with and without the
Coulomb cutoff are the same, i.e., —0.651 110 Ry, because
the sheet is nonpolar. The electronic band structure, which
agrees very well with that in Ref. 14, shows that the occu-
pied band states obtained with the Coulomb cutoff correction
applied are essentially the same as the ones obtained without
the correction while the unoccupied bands start to differ as
their energies increase [see Fig. 1(a)]. In Ref. 14, the authors
also found the same effect for a Si chain and stated it is due
to greater delocalization of states at higher energies.

To understand this effect more explicitly, we plot in Fig.
2(a) the planar average of the total potential and squares of
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FIG. 2. (Color online) Plane averaged total potential (thick
black curves) along the normal direction of the Na-layer slab with
no correction in supercells with thicknesses of (a) 19 and (b) 76 a.u.
The three lowest energy bands at the I' point and their correspond-
ing electron densities without the correction and with the Coulomb
cutoff correction are also shown.
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TABLE 1. Calculated total energy, force on the oxygen atom,
and dipole moment per unit area for a water-molecule sheet in a
supercell of size 5.67X5.67X23 a.u.’ See text.

Total Energy F,(O) Dipole moment
(Ry) (Ry/a.u.) (e/a.u.)
No correction -34.335063  0.014020 0.018996
Dipole correction —34.329478  0.014475 0.016516
Coulomb cutoff -34.329477  0.014497 0.016518
Double cell -34.329482  0.014355

the wave functions of the three lowest band states at I'. Tt
shows that the supercell of 19 a.u. thickness is too small for
the potential to become flat in the vacuum region. In this
small cell, the third lowest I" state does not decay to zero in
a vacuum, which inevitably leads to overlap interactions be-
tween the states belonging to neighbor slab images. This
state then behaves like a bulk one and the Coulomb cutoff
correction is no longer valid. It changes both the bulklike
wave function and its band energy. When calculations are
performed in a larger supercell (76 a.u.) with more vacuum,
the flat vacuum potential around the slab is recovered [see
Fig. 2(b)] and the band structure difference between the re-
sults with and without the Coulomb cutoff correction disap-
pears [see Fig. 1(b)]. In this large supercell, the third lowest
I" state is well localized within about 25 a.u. from the slab
and the Coulomb correction does not affect it.

From Figs. 1 and 2, we conclude that the differences be-
tween the results obtained with and without the Coulomb
cutoff only occur for those unoccupied states that overlap
with their periodic images due to the limited size of the
vacuum region. These differences disappear in a very large
supercell, as they should, since there are no dipole interac-
tions between nonpolar repeated slab images.

For a more meaningful comparison between the two tech-
niques, we now turn to a highly polar slab: a layer of water
molecules in a supercell geometry, which is for direct com-
parison with a previous investigation.”?

Table I shows the total energies, forces, and dipole mo-
ments for a water-molecule sheet in a supercell of size
5.67 X5.67X23 a.u., for the cases of no correction, Cou-
lomb cutoff, and dipole correction, respectively. The dipole
moment is calculated from the electron charge density and
the point charges of ions. As a reference, we also performed
the same calculation in a nonpolar double cell, where we
positioned two water slabs with dipoles in the opposite di-
rections so that no net dipole moment exists in the simulation
cell. The results show that both the Coulomb cutoff and the
dipole correction give essentially the same total energy,
forces, and dipole moment, which also agree very well with
the results of the double cell calculation where no correction
is needed.

Figure 3 shows the convergence of the total energy with
respect to the supercell size ¢ (a is fixed at 5.67 a.u.) with
and without the corrections. At supercell sizes ¢c/a=3, the
Coulomb cutoff and the dipole corrections are essentially
converged while without a correction, the convergence is
much slower. This behavior agrees well with what is reported
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FIG. 3. (Color online) Variation of the total energy of a water-
sheet slab with various supercell sizes, calculated with no correc-
tion, dipole correction, and Coulomb cutoff. The inset shows the
plane averaged charge density of the water-molecule sheet. Its ef-
fective thickness d is 1.3a. See text.

for the Coulomb cutoff formalism in Refs. 7 and 14. In su-
percells with sizes c/a <3, the Coulomb cutoff correction is
not converged while the dipole correction is essentially con-
verged at c/a=2. As mentioned in Sec. II, the supercell size
for the Coulomb cutoff method should be at least twice the
slab thickness. The thickness of the water sheet is about
1.3a; therefore, the Coulomb cutoff cannot eliminate all spu-
rious interactions between the replicas for supercells smaller
than ¢=2.6a.

In Fig. 4, we plot the planar average of the electrostatic
potential in the z direction for a water sheet in a supercell of
size 5.67X5.67X23 au. Except in the midregion of the
vacuum, the dipole correction and Coulomb cutoff methods
give essentially the same electrostatic potential. Both poten-
tials introduce characteristic dipole layers in the vacuum,
which allows for the proper extraction of work functions of
the two inequivalent slab surfaces. As evident from the fig-
ure, the dipole potential in the Coulomb cutoff method has a
shape that is similar to the electrostatic potential of the slab
but with an opposite sign. This is why the size of the super-
cell has to be at least twice the slab thickness. In contrast, the
simple steplike potential in the dipole correction method al-
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FIG. 4. (Color online) Planar average of the electrostatic poten-
tial (V,,) for the water sheet with Coulomb cutoff, dipole, and no
corrections. The positions of the periodic images of the water slab
are shown as vertical gray lines. The vertical dotted line shows the
position of the cell boundary in the middle of the vacuum region.
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FIG. 5. (Color online) Band structures of the water sheet with
Coulomb cutoff, dipole, or no corrections, in supercells with thick-
nesses of (a) 23 and (b) 113 a.u. The dashed line separates the
occupied states from the unoccupied ones. All band structures have
been aligned so that the lowest occupied states coincide.

lows for a significantly smaller vacuum region and, thus, a
smaller supercell. The dipole method should thus be pre-
ferred for large slab systems.

The calculated band structures of the H,O sheet are
shown in Fig. 5 for the cases of (i) Coulomb cutoff, (ii)
dipole correction, and (iii) no correction. Similar to the case
of the nonpolar Na sheet (Fig. 1), we observed differences
only in the unoccupied states. In Fig. 5(a) for a small super-
cell, the Coulomb cutoff and dipole corrections agree for all
occupied bands and the lowest unoccupied band within the
whole Brillouin zone, and for the second lowest unoccupied
band at k points between X and M, while disagreeing for all
other states. For convenience, we call the former coincident
and the latter noncoincident states. By examining their wave
functions, we find that all coincident states are well-localized
bound states that decay to zero in the vacuum of the super-
cell [see the i=1 curve in Fig. 6(a) for an example] while all
noncoincident states are delocalized and spread over the
whole supercell [see the i=3 curve in Fig. 6(a) for an ex-
ample]. As a result, the two methods here do not work accu-
rately for the overlapping noncoincident states and behave
differently. In a larger supercell (c=113 a.u), the noncoin-
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FIG. 6. (Color online) Plane averaged electron densities associ-
ated with the first and third lowest unoccupied states at I' of the
water sheet along the aperiodic z direction in supercells of thick-
nesses (a) 23 and (b) 113 a.u. with the dipole correction. The dif-
ferent vacuum potentials on the two sides of the polar slab result in
a series of potential wells in the total potential of the periodically
repeated supercell (see the dot-dashed blue curve). The third lowest
conduction states in (b) are confined to the lower potential well in
the vacuum region.
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cident states in Fig. 5(a) become coincident states and both
correction techniques coincide again.

The comparison between Figs. 5(a) and 5(b) shows that
the noncoincident states in the small supercell (¢c=23 a.u.)
are far from convergence and cannot be taken as correct band
states. It follows that to obtain a converged band structure,
especially for the unoccupied states, one needs a huge super-
cell even with the Coulomb cutoff or dipole correction.
Moreover, there also exist unbound noncoincident continuum
states (not shown in the figure), which have higher energies
and, in principle, need an infinitely large supercell to repre-
sent them. Strictly speaking, it is therefore impractical to
calculate the high-energy band structure for an isolated polar
slab using the supercell technique. However, in this work, we
are interested in low-energy unoccupied noncoincident
states, which are well localized near the slab. The corrections
made to the coincident states by both techniques are substan-
tial in the small supercell but become much smaller as the
supercell size increases. For instance, the difference between
the direct band gaps at I" calculated with (2.23 eV) and with-
out (2.73 eV) the correction is about 0.5 eV in the small
supercell [Fig. 5(a)] but it is about 0.14 €V in the large su-
percell [Fig. 5(b)]. This difference occurs because the empty
coincident states are still spread out in the vacuum and are
therefore substantially affected by the electric field in the
vacuum region, which is due to the periodic boundary con-
ditions. The electric field obviously decreases as the length
of the supercell is increased. After removing this field by
either the Coulomb cutoff or the dipole correction, it is
amazing to find that the corrected coincident bands in this
small supercell [c=23 a.u., see Fig. 5(a)] are almost identi-
cal to the ones calculated in a much larger supercell [c
=113 a.u., see Fig. 5(b)] and thus can be taken as converged
results.

The above results show that the convergent results for
well-localized bound states can be obtained with either the
Coulomb cutoff or the dipole correction in a relatively small
supercell. To distinguish these states from highly delocalized
or unbound continuum empty states, one can simply perform
calculations with both techniques and compare the respective
results. In this way, one can confirm the convergence for the
states of interest without having to carry out calculations for
several supercell sizes, thereby saving large amounts of com-
puter time.

To assess the computational cost of the two corrections,
we show in Table II the average CPU time needed to run a
single self-consistent iteration for a test system. The correc-
tions increase only slightly the computational time compared
to the “no correction” case and they both cost about the
same.

In general, our tests have shown that the dipole correction
and the Coulomb cutoff techniques produce almost identical
results for the total energy, force, charge density, electrostatic
potential, and the band structure. Therefore, we can conclude
that the addition of a self-consistent dipole to screen the in-
teraction between the periodic replicas of a polar supercell
leads to very accurate results. Actually, the additional exter-
nal dipole layer in the vacuum can be seen as an effective
capacitor. The charge on the plates of the capacitor produces
an electric field that compensates the artificial electric field
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TABLE II. Average CPU time in seconds for one self-consistent
iteration with and without the corrections for a molecular sheet of
water in a supercell of size 5.67X5.67X 113 a.u.? (25 bands and
16 X 16X 2 k points are used for this test). All calculations are
carried out on an IBM SP4, using from 1 to 8 CPUs.

No. procs  No correction  Coulomb cutoff Dipole correction
1 400 410 427
2 234 239 247
4 127 130 133
8 74 78 79

due to the PBCs imposed on the polar slab. The external field
introduces a potential drop in the vacuum region where the
wave functions are essentially zero and, thus, are not af-
fected. Consequently, the whole supercell has a zero net di-
pole moment and all periodic interactions are effectively
screened.

In order to confirm even more strongly the validity of the
two techniques, we decided to follow an approach similar to
that of Fu er al.,”” who carried out a Hartree—Fock (HF)
calculation for genuinely isolated slabs with a localized basis
set. They calculated the bulk spontaneous polarization P, of
ferroelectric BaTiO; from a bulk truncated slab with ideal
ferroelectric distortions. Their HF result of 0.245 C/m?
agrees well with the bulk value of 0.240 C/m? obtained in-
dependently with a Berry-phase calculation,”® demonstrating
that indeed one can recover the theoretical bulk value of
polarization using genuinely isolated slabs.

However, a similar isolated slab calculation in the
density-functional theory is hampered by the fact that the
DFT-LDA gap in BaTiO; is much too small. Due to the small
band gap and the high value of polarization in the bulk-
truncated BaTiO; slab, Zener (interband) tunneling
occurs.??3Y This results in metallicity for polar slabs thicker
than three atomic layers and, thus in charge, transfer from
one side to the other. This transfer reduces the depolarization
field and eventually leads to zero polarization as the thick-
ness of the slab increases. Hence, the bulk spontaneous po-
larization derived from a planar metallic slab is zero. This
behavior is in contrast with the HF result where the calcu-
lated band gap is much larger.?! To circumvent this problem,
we created fictitious bulk and slab structures of BaTiO; in
which the ferroelectric distortions are artificially reduced to
1/10 of the physical ones. In this fictitious system, the corre-
sponding polarization and depolarization fields are also re-
duced and, thus, the slabs used in our DFT-LDA calculation
for deriving bulk polarization are still insulators. We have
performed polarization calculations with the reduced distor-
tions using DFT-LDA with dipole correction. From the slab
geometry, we obtain P,=0.0230 C/m?, which is in excellent
agreement with the value of 0.0238 C/m? derived from the
Berry-phase calculations. Therefore, we can conclude that
the dipole correction (or equivalently, the Coulomb cutoff
formalism) yield results that are equivalent to the ones ac-
quired for isolated slabs in a localized basis scheme.?’

IV. CONCLUSIONS

This work shows that the dipole correction and the Cou-
lomb cutoff formalism techniques are equally effective in
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eliminating the spurious interactions between the periodic
images of polar supercells. The results of either technique are
equivalent to the ones that would be obtained for isolated
slabs, as previously demonstrated in HF calculations with a
localized orbital basis. In general, we conclude that both
techniques have different relative strengths, which can be
exploited in different contexts: The Coulomb cutoff formal-
ism can be applied not only to slab geometries but also for
arbitrary shape nanostructures. However, for slab geometries,
the dipole correction is preferred because a smaller supercell
is sufficient for achieving convergence. Moreover, electric
fields can be trivially included in the dipole correction
method.

Finally, it is found that both corrections have no influence
on the occupied band states and affect only unoccupied
bands. Moreover, by comparing the results of the dipole and
Coulomb cutoff corrections, the highly delocalized unoccu-
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pied states can be easily distinguished from localized bound
states in a relatively small supercell calculation. This identi-
fication is important when determining excited states and
optical properties from the slab calculations. In general, care-
ful convergence studies should be performed when calculat-
ing the properties involving unoccupied electronic states. Ju-
dicious comparisons between the results of the two
corrections make this task much easier and less costly.
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