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O„N… real-space method forab initio quantum transport calculations:
Application to carbon nanotube–metal contacts
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We present anab initio O(N) method that combines an accurate optimized-orbital solution of the electronic
structure problem with an efficient Green’s function technique for evaluating the quantum conductance. As an
important illustrative example, we investigate carbon nanotube–metal contacts and explain the anomalously
large contact resistance observed in nanotube devices as due to the spatial separation of their conductance
eigenchannels. The results for various contact geometries and strategies for improving device performance are
discussed.
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I. INTRODUCTION

The study of the electrical properties of nanostructu
has seen intense activity in the last decade, due to the p
ise of novel technological applications for nanoscale qu
tum electronic devices. The theoretical study of quant
conductance in such structures has thus become of prim
interest and has been addressed by a variety of techniq1

Due to the complexity of describing an ‘‘open’’ system of
nanoscale device in contact with effectively infinite lead
most of the current approaches rely on phenomenolog
tight binding models, which for many systems may not p
vide a sufficiently reliable and accurate description.

There are only few examples ofab initio calculations of
quantum conductance and the field is still in a critical ph
of development. The existing methods are based on the
lution of the quantum scattering problem for the electro
wave functions through the conductor using a number
related techniques: Lippman-Schwinger and perturba
Green’s function methods have been used to study con
tance in metallic nanowires and recently in small molecu
nanocontacts;2,3 conduction in nanowires, junctions, an
nanotube systems has been addressed using loca4 or
nonlocal5,6 pseudopotential methods and through the solut
of the coupled-channel equations in a scattering-theor
approach.7–9 These methods are based on a plane wave
resentation of the electronic wave functions, which impo
severe restrictions on the size of the system because o
large number of basis functions necessary for an accu
description of the electron transmission process. Theref
structureless jellium leads, which do not provide a mic
scopic description of the conductor-metal contact, had to
assumed in most cases for computational reasons. Only
cently have real-space approaches been considered
more efficient solution of the electronic transport proble
They are based on the use of linear combination of ato
orbitals10 ~LCAO! or Gaussian11 orbital bases. These ar
combined with either a scattering state solution for
transmission10 or Green’s function–based techniques.11

In this paper we present an approach based on a
space optimized-orbital solution of the electronic struct
0163-1829/2001/64~24!/245423~5!/$20.00 64 2454
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problem, combined with an efficient Green’s function–bas
technique for the evaluation of the electron transmiss
probability. Both theab initio and the transport algorithm
scale essentially linearly with the size of the system, th
extending greatly the range of applicability of our metho
This method has been already successfully applied to
scribe quantum conductance in ideal and defective car
nanotubes.12 Following a brief overview of the methodology
we address the problem of contacts in a metal-carbon na
tube assembly, which is very important in the design of e
cient nanotube-based devices. Contact resistances of th
der of MV are typically observed in most of the prototypic
nanotube-based devices realized so far,13–16 whereas from
simple band structure arguments one would expect re
tances of the order of a few tenths of kV,17 because the
fundamental resistance of a single ballistic channel is 1
kV. The results of our calculations provide an explanat
for this pathologically high contact resistance and sugg
strategies to improve the performance of nanotube-m
contacts. It is important to stress that this problem requ
self-consistentab initio methodology, in order to accuratel
describe the highly inhomogeneous environment of
nanowire-metal junction and to account for the charge tra
fer occurring at the interface between the two dissimilar m
terials.

II. METHODOLOGY

Our ab initio calculations of quantum conductance utiliz
an expansion of the Hamiltonian, the Green’s functions, a
related quantities in a basis of localized orbitals.18 It is then
possible to efficiently evaluate the quantum conductance
lead-conductor-lead system inO(N) steps, by dividing the
system into principal layers that interact only with their ne
est neighbors. In order to perform theab initio electronic
structure calculation, we use a real-space, optimized-orb
method that attains essentially linear scaling by utilizi
atom-centered localized functions, while optimizing the
shape.19 Real-space grids are used throughout, which allo
for straightforward application of localization constraints a
for multigrid convergence acceleration on all length scal
The variational optimization of the orbitals leads to high a
©2001 The American Physical Society23-1
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curacy while using only a minimal basis~see below!. The
relatively low cost of the method allows forab initio treat-
ment of the infinite leads in full atomistic detail, and for
complete and consistent description of the coupling of
conductor with the leads.

The conductanceG of the full open system~infinite left
lead, conductor, infinite right lead! is evaluated via the trans
mission function as1,20,21

G5
2e2

h
T5

2e2

h
Tr ~GLGCGRGC!, ~1!

where GC is Green’s function of the conductor~C! and
G$L,R% are functions that describe the coupling of the cond
tor to the left~L! and right~R! leads. Equation~1! is valid in
both the Landauer approach and in the noninteracting l
of the Keldysh nonequilibrium Green’s functio
formulation.21 In a general nonorthogonal localized orbit
scheme, the Green’s function of the whole system can
explicitly written as1

GC5~eSC2HC2SL2SR!21, ~2!

whereSL andSR are the self-energy terms due to the sem
infinite leads, andHC andSC are the Hamiltonian and over
lap matrices for the localized orbitals in the conductor. T
coupling functionsG$L,R% can be easily obtained once th
self-energy functions are known:1,18,22,23

G$L,R%5 i @S$L,R%
r 2S$L,R%

a #.

The expression of the self-energies can be deduced a
the lines of Ref. 18 using the formalism of principal layers
the framework of the surface Green’s function-match
theory.22 We obtain

SL5~eSLC2HLC!†@eS 00
L 2H00

L 1~eS 01
L 2H01

L !†T̄L#21

3~eSLC2HLC!,

SR5~eSCR2HCR!@eS 00
R 2H00

R 1~eS 01
R 2H01

R !TR#21

3~eSCR2HCR!†, ~3!

whereHnm
L,R are the matrix elements of the Hamiltonian b

tween layer orbitals of the left and right leads, respective
S nm

L,R are the corresponding overlap matrices andTL,R and

T̄L,R are the appropriate transfer matrices. The latter are
ily computed from the Hamiltonian and overlap matrix e
ments via an iterative procedure.18,23 Correspondingly,HLC ,
HCR , SLC , andSCR are the coupling and overlap matrice
for the conductor-lead assembly.

The procedure above requires the knowledge of
Hamiltonian and overlap matrix elements between layer
bitals of the left and right leads, together with the mat
elements describing the coupling in the conductor-lead
sembly. To compute these matrices,24ab initio density-
functional calculations are carried out using theO(N)-like
algorithm described in Ref. 19. Briefly, given an atomic co
figuration and the corresponding Kohn-Sham Hamiltonia
24542
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H52
1

2
¹21Vion1VH~r!1mxc~r!, ~4!

whereVion , VH , and mxc represent the ionic pseudopote
tials, the Hartree potential, and the exchange-correlation
tential, respectively, we minimize the total energy function

E@$f i% i 51
N #52 Tr~H (f)r̄ (f)!2

1

2E r~r !r~r 8!

ur2r 8u
dr dr 8

2E mxc~r!r~r !dr1Exc@r# ~5!

for a set of nonorthogonal orbitals$f i% i 51
N . Herer̄ (f) is the

density matrix in the basis$f%. The electronic density is then
given by

r~r !52 (
j ,k51

N

~ r̄~f!! jkf j~r !fk~r !. ~6!

The N3N matrix H (f) is defined byHi j
(f)5^f i uHf j&. We

also define the overlap matrixSi j
(f)5^f i uf j&.

The calculations use numerical orbitals defined on a u
form grid in real space. They are centered on atoms
localized in spherical regions of radiusRL around the respec
tive atoms. The orbitals are variationally optimized usi
multigrid preconditioning techniques until they accurate
describe the ground state of the system. This procedure
lows us to use a small number of orbitals per atom, mu
smaller than in LCAO or Gaussian-based calculations,
cause the orbitals are optimized on the grid according to t
environment. The size of the matrices that enter in the qu
tum conductance calculation and the computational cos
the whole procedure are thus minimized. In order to ens
fast convergence and accuracy—even for meta
systems—we use both occupied and unoccupied orbi
The scaling of the most expensive parts of the calculation
still O(N) due to localization, but there is a smallO(N3)
part, which is dealt with by effective parallelization.19

The matrices that enter in the electronic transport cal
lation are computed in two steps. In the first calculation,
compute the ground state of the bare leads in a supercell
periodic boundary conditions. From this calculation we e
tract the real-space Hamiltonian and overlap matrices
quired for the computation of the self-energy operators.
then perform a second calculation in a supercell contain
the conductor and one principal layer of the leads. In t
calculation, the orbitals in the leads are kept the same a
the bare lead calculation, in order to extract the matrix e
ments and overlaps needed in the definition of the condu
region and to describe the coupling between the condu
and the leads. This procedure accounts fully for the el
tronic structure of the conductor and the interaction betw
the conductor and the leads, provided that the lead regio
large enough to avoid spurious interactions between perio
images of the contacts. In order to have interactions betw
the nearest-neighbor principal layers only, the width of t
layers has to be sufficiently large compared to the locali
tion regions. On the other hand, the localization regions h
3-2
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to be large enough to ensure an accurate solution of
density-functional equations. Moreover, in the Gree
function–matching procedure one has to carefully align
Fermi levels of both systems in order to avoid spurious b
effects. ~In this paper we will limit the discussion to th
linear response regime and thus to zero bias across
conductor-lead junctions.! Provided that in the conductor
lead calculation the lead region is large enough to reco
bulklike behavior far from the interfaces, we align the ma
roscopic average of the electrostatic potentials in the b
lead and in the conductor-lead geometry. This ensure
seamless conductor-lead geometry and prevents the spu
bias. An equivalent procedure is often used to extract b
offsets in superlattice calculations.25,26

III. RESULTS

The methodology above has been used to study electr
transport in carbon nanotube–metal contacts. The metal
tacts are modeled as Al crystals oriented in the@111# direc-
tion. A ~5,5! carbon nanotube~diameter'7 Å) is deposited
on a metal surface, establishing an electrical contact on
side. In both the bare-lead and lead-nanotube calculation
simulation cells were chosen large enough~14.7 and 29.5 Å,
respectively! to be consistent with a relatively large localiz
tion radius (RL'5 Å) for the orbitals, needed for an accu
rate description of the metallic system. We use two op
mized orbitals per Al atom, and three per C atom. The to
numbers of atoms in the two simulation cells are 220 a
340, respectively,. These configurations have been ex
sively tested to ensure full convergence of the electro
structure. A grid spacing of 0.18 Å, corresponding to a 45
cutoff, is employed throughout. We use the local dens
exchange-correlation functional and Hamann nonlo
pseudopotentials.27 All atomic geometries are fully relaxed
The resulting equilibrium distance between the nanotube
the Al surface is 3.4 Å and we observe an outward relaxa
of the ~111! Al surface of'1.6%, in agreement with othe
local-density calculations.28 The interaction between the tw
systems is quite weak~90 meV/atom!, and no major
relaxation/reconstruction of the nanotube-metal complex
observed. Moreover, the choice of relatively long cont
regions in the bare lead geometry ensures a minimal la
mismatch between the nanotube and the Al surface. G
the weak interaction between the two, a small ('1%) re-
sidual mismatch does not affect the electronic or transp
properties of the system.

Turning to the results, we first discuss an ideal, infinite
long nanotube deposited on a metal surface. The geom
considered here is shown in the inset of the left panel of F
1. The main characteristic of the electronic response
marked charge transfer from the nanotube to the metal
allows the valence band edge of the nanotube to align w
the Fermi level of the metal electrode.29 This charge transfer
which has already been observed for other systems
experiments13,31,15and calculations,29,30,39leads to enhanced
conductivity along the tube axis and gives rise to a we
ionic bonding between the tube and the metal. The cond
tance spectrum for the nanotube is displayed in the left pa
24542
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of Fig. 1, in units of 2e2/h. The main effect observable in th
spectrum is the short plateau around the Fermi level w
unit conductance. This is at variance with the ideal value
two, which comes from the two electron bands of an isola
armchair nanotube that are available for transmission.
though the metal contact increases the resistance by a fa
of 2 when compared to the ideal, isolated nanotube, it
pears that a sizable degree of electron transmission thro
the system should still occur.

In order to better understand the contrast between th
results and the anomalously high resistance observed
experiments,13,15,16we analyze the total conductance in term
of eigenchannelsfor the transmission,32 by exploiting the
localized orbital structure of our method to separate the
dividual ~nanotube and metal! contributions to conductance
The transmission eigenchannels are defined as the eigen
tors $U% that diagonalize the transmission matrix in Eq.~1!
in the Landauer-Buttiker form:33

UT U†5Utt†U†5diag$t i%, ~7!

wheret is the left-to-right transmission amplitude matrix an
t i are the eigenchannel transmissions.34 The eigenchannels
form a complete orthonormal basis of the subspace span
by the localized orbitals of the conductor. They have we
defined transmissions, i.e., without interchannel scatter
and their characteristics give direct information about
properties of the transmission process.

Among the conducting channels~those with nonvanishing
transmissiont i), we observe a clear distinction betwee
eigenchannels mainly localized in the metal region and th
on the nanotube. This result reflects the separation betw
individual electronic wave functions of the system.

In particular, the eigenchannel corresponding to the p
teau of conductance around the Fermi energy correspond
an individual wave function, reproduced in the right panel
Fig. 1, that is almost fully localized on the nanotube~93%!.
This implies that there is very little hybridization and inte
mixing between the nanotube and the metal in the chan
responsible for conduction at the Fermi level. Thus, the c
duction electron transfer between the tube and the meta

FIG. 1. Left panel: The geometry and conductance spectrum
an infinite ~5,5! nanotube deposited on Al~111!. Right panel: cross
section of the probability density of the electronic wave functi
corresponding to the only open eigenchannel at the Fermi level
has a sizable component on the nanotube. The other wave func
at the Fermi level are mostly localized on the metal.
3-3
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the idealized side-contact geometry considered here is
inefficient, which can explain the pathologically high conta
resistance observed in nanotube-metal contacts.13,15,16In par-
ticular, this example clearly demonstrates that the w
nanotube-metal coupling is mostly responsible for the w
electron transport in the combined system, while wave ve
conservation is not a significant factor.17,35The weak distrib-
uted coupling is also the reason for the measured con
resistance being inversely proportional to cont
length.14,36,37A conductance of one has also been observe
an experiment that measured electron transfer between a
uid metal and a multiwalled nanotube,36 but the conditions of
this experiment allow for several alternative explanations38

The real-space, principal-layer formalism and the ra
screening of charge disturbances allow us to carry out rel
calculations with modest additional effort. Using the resu
of the first calculation, two other contact geometries w
considered. The first is a periodic~infinite! array of narrow
metallic wires crossing an infinite nanotube, with both co
tacts and tube bridges being 1.5 nm wide. This configura
and the resulting conductance spectrum are shown in Fig
The main characteristic is an opening of a semiconduc
gap in the otherwise almost ideal nanotube spectrum.
induced by the breaking of the mirror symmetry of the nan
tube wave functions induced by the localized perturbation
the nanocontacts. The gap in the electronic band structu
the Fermi energy is clearly reflected in the local density
states computed from the Green’s functionGC . A similar
result was previously obtained for a copper chain in con
with a nanotube.39

Finally, we discuss the contact geometry shown in Fig
~inset!. It more closely resembles an experimental tw
terminal device, with two semi-infinite contacts connect
by a nanotube bridge, 1.5 nm long. In this geometry,
system recovers the ideal conductance of an isolated
with two conductance channels at the Fermi energy,
shown in Fig. 3. This behavior is induced by the alignme
of the valence band edge of the nanotube with the Fe
energy of the metal contacts, triggered by the charge tran
in the lead regions. In this particular geometry, these con
tions restore the two original eigenchannels of the nanot
and thus conserve the number of conducting chan

FIG. 2. The conductance spectrum of a periodic array of fin
metallic nanocontacts, as shown in the inset. The Fermi leve
taken as a reference.
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throughout the system. It is important to note that the we
nanotube-metal interaction, responsible for the patholo
cally high resistance of the nanotube-metal assembly, is
strengthened. Both eigenchannels are highly localized on
nanotube, with a negligible fraction on the metal contac
and closely resemble the channel40 shown in the right pane
of Fig. 1. Although the nanotube behaves as an ideal balli
conductor, the bonding characteristics of the nanotube-m
system prevent an efficient electron transfer mechanism f
the nanotube to the Al contact. Indeed, inducing defects
the contact region, e.g., by localized electr
bombardment,16 would drastically increase the bondin
strength of the nanotube-metal assembly and greatly impr
the performance of the device. Alternatively, we have fou
that mechanically pushing the nanotube closer to the Al s
face by a small amount ('1 Å, with an energy expense o
'10 meV/atom) more than doubles the transmission e
ciency between the metal and the nanotube. The mecha
deformation induces a small inward relaxation of the Al s
face in the contact region, facilitating stronger hybridizati
between the nanotube and the metal contact in the cond
ing channels and thus contributing to a higher electron tra
mission rate between the two systems.

IV. SUMMARY

In summary, we have developed an efficientab initio
method to compute quantum conductances in nanostructu
As a first application, the transport properties of carb
nanotube–metal contacts were investigated. The calculat
provide a clear interpretation of current experimental res
for a variety of contact geometries and suggest avenues
improving the properties of nanotube-metal assemblies
potential nanoscale electronic devices, such as rectifiers
tuators, and nanoswitches.
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