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The Semiconductor Industry Association (SIA) has identified the integration of
copper (Cu) with low-dielectric-constant (low-k) materials as a critical goal for future
interconnect architectures. A fundamental understanding of the chemical interaction of
Cu with various substrates, including diffusion barriers and adhesion promoters, is
essential to achieve thisgoal. The objective of this research isto develop novel organic
polymers as Cu/low-k interfacial layers and to investigate popular barrier candidates,
such as clean and modified tantalum (Ta) substrates.

Carbon-silicon (C-Si) polymeric films have been formed by electron beam
bombardment or ultraviolet (UV) radiation of molecularly adsorbed vinyl silane
precursors on metal substrates under ultra-high vacuum (UHV) conditions. Temperature
programmed desorption (TPD) studies show that polymerization is via the vinyl groups,
while Auger electron spectroscopy (AES) results show that the polymerized films have
compositions similar to the precursors. Films derived from vinyltrimethyl silane (VTMYS)
are adherent and stable on Ta substrates until 1100 K. Diffusion of deposited Cu
overlayersis not observed below 800 K, with dewetting occurred only above 400 K.
Hexafluorobenzene moieties can also be incorporated into the growing film with good
thermal stability.

Studies on the Ta substrates demonstrate that even sub-monolayer coverages of

oxygen or carbide on polycrystalline Ta significantly degrade the strength of Cu/Ta



chemical interactions, and affect the kinetics of Cu diffusion into bulk Ta. On clean Ta,
monolayer coverages of Cu will de-wet only above 600 K. A partial monolayer of
adsorbed oxygen (3L O, at 300 K) resultsin alowering of the de-wetting temperature to
500 K, while saturation oxygen coverage (10 L O, 300 K) results in de-wetting at 300 K.
Carbide formation also lowers the de-wetting temperature to 300 K. Diffusion of Cu into
the Ta substrate at 1100 K occurs only after a 5-minute induction period. This induction
period increases to 10 min for partially oxidized Ta, 15 min for carbidic Taand 20 min

for fully oxidized Ta.
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CHAPTER 1

INTRODUCTION

The semiconductor industry is experiencing the transition from aluminum-
alloy to copper-based interconnects as microel ectronic device dimensions
continue to shrink (1). As devices approach the sub-quarter-micron era, the
reliability of existing Al technology becomes questionable. The major limitations
of Al consist of two factors: oneis stress-voiding induced circuit failure
associated with electromigration (2), the other is the high electrical resistivities of
Al and itsdloys. Cu has attracted attention as a new metallization material
because of its superior resistance to el ectromigration and low bulk electrical
resistivity. Cu interconnects provide several advantages over Al, which include
the ability to reduce the number of metal levels, increase chip speed and minimize
manufacturing costs (3). However, Cu is known to diffuse rapidly into Si and
SiO,, causing degradation to device. Also, itsadhesion to Si and most dielectric
filmsis poor. Consequently, diffusion barriers and adhesion promoters must be
developed before Cu can be used in manufacturing devices (1, 4-12).

The research studies presented in this dissertation focus on the fundamental
surface chemical interactions of Cu with potential adhesion/barrier materials. These

studies include:



(@D The development of novel polymeric films that demonstrates excellent
chemical stability and potential as ultra-thin Cu diffusion barriers.

2 The studies of Cu adhesion, diffusion and nucleation behavior on
polycrystalline Ta and the importance of surface impurities in controlling
such phenomena.

The above studies were carried out under ultra-high vacuum (UHV) conditions.
Surface analytical techniques, such as Auger el ectron Spectroscopy (AES) and
temperature programmed desorption (TPD), were employed.

This dissertation consists of three chapters. The first chapter provides background
information on the interconnect integration, namely, role of time delay and the necessity
of Cu and low-dielectric-constant materials, as well as experimental methodol ogy.
Chapter 2 presents the studies on the formation of polymeric carbon-silicon on metal
substrates. Chapter 3 discusses the effect of surface impurities on the copper/tantalum

interface.

1.1. RC Delay
The semiconductor industry has maintained its growth by achieving a 25-30%
cost reduction per function per year throughout its history (1). Such rapid progressin
integrated circuits (1Cs) has been maintained by design innovation, device shrinkage,
wafer size increase, yield improvement and equipment utilization improvements (1).
Historically, the largest contribution to productivity growth has been the reduction in
feature size. Asthe basic device dimension (transistor gate length) decreases, the carrier

transient time at a given voltage across the gate also decreases, making it a faster device.



This scaling increases not only the speed of the circuits but also the number of transistors
per unit areain an IC, making it more cost-efficient. The signal propagation to and from
the device, however, must occur through the interconnections between different areas.
These charge carrying devices are Cu or Al wires, which are insulated from each other by
dielectrics. Figure 1.1 shows (a) the schematic diagram of a basic Cu interconnect

structure and (b) the cross section of a multilayer interconnect structure with six levels of

Cu wireslvias (13).
(@
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Figure 1.1. (@) Schematic diagram of a basic Cu interconnect structure;

(b) scanning electron microscopy (SEM) cross section of a multilayer

interconnect structure with six levels of Cu wires/vias (13).

Smaller wire dimension due to scaling causes an increase in the effective total
resistance (R) of the metal lines. Narrower interline spacing also increases the effective
total capacitance (C) between the lines. The overall effect is the so-called RC delay (4, 5,
8, 14-16). The RC delay can be approached by multiplying R with asimple plate
capacitance, giving the following expression (4, 5):

r L2
RC= | -9 (1-1)

tm tio

wherer, tu, and L are the resistivity, thickness and length of the metal repectively, while
e.p and t,_p are the permittivity and thickness of the interlayer dielectrics (ILD).

Jeng et al. (8) have investigated the interconnect RC delay and the intrinsic gate
daly as afunction of I1C feature sizes. The results of their studies are shown in Figure 1.2.
When the device geometry islarge ( > 1 nm), circuit performance is almost completely
limited by intrinsic gate delay. While the intrinsic delay continues to improve through
scaling, the interconnect RC delay becomes the dominant component in the sub-micron

regions.
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Figure 1.2. Delay time as afunction of feature size

The rapid increase in RC delay time due to scaling, makes it the performance-
limiting factor for ICs with feature size < 0.25 mm. To address this problem, new
materials for use as metal lines and interlayer dielectrics (ILD), as well as alternative
architectures, have been proposed to replace the current aluminum and silicon dioxide
interconnect technol ogy.
The smplified estimate of RC delay, as described in Equation (1-1), gives direct
options to solve the problem. Reducing resistivity (r ) and length (L) of the metal line, as
well asinterlayer dielectric permittivity (eLp), will minimize the RC time constant. This

means switching to metals with better conductivity (e.g., Cu), ILDs with lower dielectric



constants (e.g., Teflon), and reduced interconnection lengths (e.g., multilevel
architectures rather than simple level planar interconnections).

Significant effort will be required to successfully integrate new materials into chip
products at low cost and high yield. Meeting demands within expected time frame, as
specified in Table 1.1 by the Technology Roadmap for Semiconductors (1), will be the

most significant challenge for the interconnect area.

Table 1.1. Roadmap for interconnect technology requirements

Year 1997 1999 2001 2003 2006 2009 2012
Fealure size 0.25 0.18 0.15 0.13 0.10 0.07 0.05
(mm)

Metal levels 6 6-7 7 7 7-8 8-9 9
Interconnect 820 1,480 2160 2840 | 5140 | 10,000** | 24,000**
length (m/chip)

Metal dimension | -, 180 150 130 100 70 50

(nm)

Barrier/cladding | 23+ 20* 16+ 11* g 6+ *
thickness (nm)

Metal resistivity " " " " - -
() 33 22 22 22 2.2 <18 <18
Dielectric " " " "

constant (K 30-41 |2530¢ | 2025 |1520° |1520* |£15* |£15*

Notes: * Solution being pursued, ** No known solution

1.2. Copper Metallization for Interconnection Technology
Formation of metal lines on electronic devices or integrated circuits has been
referred to as metallization. The term “interconnection” or “interconnect” is used instead

when metals are specifically used as interconnecting wires (4).



A comparison of Al to some other low-resistivity metals that are potential

replacementsislisted in Table 1.2 (4-6).

Table 1.2. Properties of possible interconnect metals

Metal
Property
Al Cu Ag Au W

Resistivity (mAfcm) 2.66 1.67 159 2.35 5.65

Méelting point (°C) 660 1085 962 1064 3387
Electromigration resistance Low High Verylow | Veryhigh | Very high

Corrosionin air Low High High Very low Low

Adhesion to SO, Good Poor Poor Poor Poor

sputtering Yes Yes Yes Yes Yes

Deposition Evaporation Yes Yes Yes Yes Yes

CvD Yes Yes ? ? Yes

Dry Yes ? ? ? Yes

Etching
Wet Yes Yes Yes Yes Yes

Al has been extensively used as the interconnection metal because of its relatively
low resistivity and good corrosion resistance in air. Another important reason is its
ability to reduce interfacial SIO, and form strong chemica bonding with the underlying
silicon/oxide substrate. This accounts for the excellent adhesion ability to SIO that is not
shared by the other four metals. However, in view of its low melting point and

electromigration related issues, replacement of Al isinevitable for ULSI applications.



Electromigration is the movement of interconnection material in the direction of electron
flow because of momentum transfer from electrons to the metal ions (17). It is noticeable
only when current density is very high (> 10°> A/cm?), asis often the casein ICs. The
effects of such migration are the growth of hillocks toward the positive end and the
formation of voids and ultimately a break near the negative end. Currently this
detrimental effect is lessened by doping Al with small amounts (1-2%) of Cu (17). As
the line width continues to shrink in ULSI applications, the current density will keep
increasing. The reliability of the circuits calls for the complete replacement of Al.

Of the five metals, W has the highest resistivity, even though it offers high-
temperature stability, good corrosion resistance, excellent electromigration resistance,
practical deposition methods and etching patternability. This major drawback, together
with the poor adhesion ability to SIO,, makes extensive utilization of W in high-
performance interconnects unlikely.

Applications of Ag and Au to replace Al have been suggested in the last three
decades (4). The only advantage of Ag isitsresistivity, about 5% lower that that of Cu.
But, besides a poor electromigration resistance, it is more costly than Cu, and is reported
to diffuse into SIO, at a much faster rate than Cu, especially under bias (18). Au aso
offers only one advantage over Cu — its excellent corrosion resistance. But it isworse
than Ag and W in the aspect of adhesion to dielectric surfaces. It isfar more costly and
its electromigration behavior isinferior to Cu (4).

It can be clearly seen from the above discussions that Cu is the best choice for the

advanced multilevel metallization applications. However, some critical issues need to be



resolved in order for Cu technology to become an industrial reality. As mentioned
previously, Cu does not bond well to SIO, or to polymers that are being explored for
interlayer dielectric applications. This adhesion problem is particularly serious when
subject to thermal cycling. The lack of self-passivation makes Cu thin films susceptible
to oxidation during processing (9). Cu interacts with a wide range of materials used in
silicon-based devices, including Si, SIO,, silicidesand Al. It is known that Cu diffuses
rapidly in Si by an interstitial mechanism and forms deep traps (7). Cu transport in SiO,
is controlled by both temperature and applied voltage (19). In the presence of an electric
field, Cu is observed to drift readily through dielectric films at temperatures as low as
100°C (19, 20). Therefore, among other issues, the challenge of introducing Cu as the
new interconnect metal includes blocking the transport of Cu into electrically active
regions of devices, and improving the adhesion of Cu to dielectric substrates. The
ultimate goal isto find an adhesion promoter between Cu and the interlayer dielectrics

that will also perform as a diffusion barrier between Cu and these materials.

1.3. Adhesion Promoters and Diffusion Barriers
Adhesion between two materials can be caused by a physical bonding (van der
Waal’ s forces) or achemical reaction across the interface. Chemical bonding is the
stronger one of the two forces and provides better stability under thermal or mechanical
stresses. Cu cannot reduce SiO; to adhere strongly to the SIO, substrate. Alternative
routes have to be taken to enhance the adhesion, such as, using adhesion promoters,
increasing deposition temperature and pre-treating the surface with ion implantation or

plasma (4-6). Adhesion promoters are effective because they act like a“glue’ layer in



between the metal and the dielectric substrate by forming chemical bonds with both
layers. This process should be self-limiting, otherwise the integrity of the materials may
be compromised with continuous reaction. Thusin effect an ideal adhesion promoter
should also behave as a diffusion barrier.

Diffusion barriers are used to prevent undesirable impurities from reaching certain
parts of the circuit. In 1C applications they are mostly thin layers inserted between metal
leads and semiconductor substrates to prevent interdiffusion and chemical reactions.
Barriers have been categorized as passive or sacrificial based on the manner in which
they work (17). Passive layers are quite inert to the layers on each side and thus, in
principle, always keep the two layers separated. Sacrificial barriers will react, at a slow
enough or self-limiting rate so that they are still useful. Under this circumstance, barriers
serve the dual role of improving adhesion and preventing interactions in the contact area.
Therefore the functions of adhesion promoters and diffusion barriers are intertwined. A
successful candidate should possess both properties for ULSI application.

In polycrystaline thin films or bulk samples, there are three kinds of defects that
contribute to diffusion: vacancies, dislocations and grain boundaries (7). The lattice
diffusion occurring by atom-vacancy exchanges is the slowest process, diffusionin
dissociated dislocations is intermediate, and grain boundaries (where the misfit between
the adjoining latticesis large) have the fastest diffusion rates. Diffusionin
polycrystalline thin films is considered to be synonymous with grain boundary diffusion,

and the two are used in an interchangeable manner (7). Diffusion in amorphous

10



materials, on the other hand, depends on their free volume content, owing to the absence
of vacancies, dislocations and of course, grain boundaries (7).

A large volume of research has been carried out to determine the applicability of
various metals or metallic systems as diffusion barriers/adhesion promoters (7, 11, 19-
48). Selection of such amaterial starts with an investigation of the mutual diffusivity and
interaction. Because the diffusivity is directly related to the melting point of the host
material, the best diffusion barriers have the highest melting points, e.g., refractory
metals (4, 5, 9, 36).

A variety of pure transition metals have been investigated for barrier effectsin
Cu/M/Si multilayers (M = transition metal) (25, 27, 32, 33, 38, 39, 45). Thedifferencein
the barrier properties can be related to the metal-Cu binary phase diagrams and their self-
diffusion coefficients (39). An investigation of the binary Cu-metal phase diagrams
reveals that many refractory metals, including Ta, W, Mo and V, form virtually no solid
solutions with Cu, while Cr, Ti, and Nb form one or more binary phases at low
temperatures (9, 36). The formation of Cu-metal binary compounds could result in Cu
diffusion through the barrier to the substrate, leading to the silicidation of Cu. The
diffusion coefficients of Cu and Si through any barrier layer are of practical importance.
The order of self-diffusion coefficients in the transition metals at 400-600°C is roughly
Ti>Cr>Nb>Mo>Ta>W. Thistrend coincides well with the fact that Ta and W exhibit
better diffusion barrier effects against compared to Ti, Cr, Nb and Mo (39).

One method that has been used to improve barrier effectivenessis to intentionally

“contaminate” the barrier with impurity atoms (O, N, C, etc.). Itisbelieved that a small

11



amount of impurites, with limited solubility in the host barrier lattice, will segregate to
the grain boundaries and defects, blocking these fast diffusion paths (23, 40, 43, 46). The
stability of the barriers can be further extended by amorphous systems. Incorporation of
CeO,, or insertion of aZr layer into a Tafilm significantly improved the diffusion barrier
performance by forming an amorphous microstructure (31, 47, 48). Amorphous ternary
aloyslike M-Si-N (M = Mo, Ta, W) have been reported to prevent Cu diffusion even at
800-900°C owing to their chemically inert bonds and the elimination of grain boundaries
(29, 30, 35, 41, 42).

Although compounding of metals results in better barrier behavior, it may be
associated with undesired increase in resistance, counter-balancing the benefit of using
Cu to replace Al. A ssimple computation of the total interconnect resistance suggests the
need of aTiN barrier less than 100 A if we want to take advantage of the resistivity of Cu

over that of Al system (49).

1.4. Low-Dielectric-Constant Materials

The replacement of Al by Cu will only reduce the RC delay by approximately
35% (14). Replacement of SIO,, which has a dielectric constant of up to 4.2, with alow-
dielectric-constant material is required for the interconnect structure to reduce
propagation delays, cross-talk noise between metal wires, and power dissipation from RC
coupling (4, 15, 16, 92).

Interconnect capacitance has two components. the metal line-to-ground and line-
to-line. For ULSI designs at 0.25 micron and beyond, line-to-line capacitance plays a

dominant role as shown in Figure 1.3 (8). When the width/spacing is scaled down below
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0.3 micron, the interlayer capacitance is so small that the total capacitance is dictated by
the line-to-line capacitance, which constitutes more than 90% of the total interconnect
capacitance. This result highlights the importance of reducing the line-to-line
capacitance for sub-quarter-micron devices. Since the capacitance is proportional to the
dielectric constant, the replacement of SIO, as an intermetal dielectric (IMD) with an

insulator with lower dielectric constant is critical to the improvement of device

performance.
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Figure 1.3. Interconnect capacitance as a function of feature size
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The dielectric constant (k) is also known as the relative permittivity (&) because it

is referenced to that of free space (vacuum) as shown in Equation (1-2)

e e(l+c
k=gq=o = BI¥C) o (1-2)

where eand g are the permittivity (F/m) of the dielectric and free space respectively, and
Ce isthe electric susceptibility of the dielectric material.

In generd, & isacomplex number. Itsimaginary term may usualy be neglected,
except at very high frequencies (50). The rea component of e is often called the
dielectric constant (k). Its value depends on frequency, temperature and other factors
(50). Because of its simple numeric expression, as compared to the absolute permittivity
(e), k isgenerally used to describe the dielectric property of materialsin IC applications.
In many publications, the symbol e is conventionally used in place of k to refer to the
dielectric constant and the expression of “low-k” or “low k” is used to refer to the low-
dielectric-constant materials.

The dielectric constant is a physical measure of the electric polarizability of a
material. It describes the tendency of a materia to permit an applied electric field to
induce dipoles in the material. ceisrelated to the electric polarization (P) and the applied
electric field (E) in

P = excE (1-3)
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Pisthe total dipole moment induced in a unit volume of the dielectric (C/m?) and E is the
field strength (V/m).

The magnitude of the dielectric constant is dependent upon the ability of the
polarizable units in the material to orient fast enough to keep up with the oscillations of
an alternating electric field. The polarization mechanisms which comprise the dielectric
constant can be electronic, atomic and dipolar (51). At optical frequencies (10* Hz),
only the lowest mass species, electron, are efficiently polarized. At lower frequencies,
atomic polarization of heavier, more slowly moving nuclei also contribute to the
dielectric constant. Atomic polarization occurs in the infrared (10" Hz) or lower
frequency regimes. Dipole polarization is the redistribution of charge when a group of
atoms with a permanent dipole align in response to the electric field. In the solid state,
alignment of permanent dipoles requires considerably more time than electronic or
atomic polarization, therefore it happens at microwave (10° Hz) or lower frequencies
(51). The contribution of each polarization mode to the dielectric constant is generally
additive, i.e.

K = Kaectronic + Katomic + Kdipolar (1-4)

Strategies for lowering the dielectric constant include minimizing polarizability,
maximizing free volume and fluorination (51). Materials with few polar function groups
are commonly chosen for the first purpose. The introduction of free volume decreases
the number of polarizable groups per unit volume, resulting in lower values for Kaomic and
Kaipaiar.  The addition of pendant groups, flexible bridging units, and bulky groups which

limit chain packing density have all been used to enhance free volume in polymers (51).
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Fluorine substitution reduces k by a combination of lower polarizability and moisture
absorption and larger free volume. Substitution —-H with —F or —CF; groups decreases the
electronic polarizability due to strong electron-withdrawing inductive effects. The bulky
—CF; group can reduce efficient molecular packing and increase the free volume. The
hydrophobicity introduced by F substitution is important since moisture, even in small
concentrations, strongly affects the dielectric constant due to the large k value of water
(78.5 a 25°C) (52).

Strong efforts are being invested to find a suitable insulator material with a
dielectric constant below 3.0 (14, 19-21, 34, 52-91). Recent developmentsin this area
are the subject of several review articles (4, 15, 16, 92) as well as the symposium
proceedings of Materials Research Society (MRS) (73, 93-95) and MRS Bulletin (96).
Under Sematech’ s sponsorship, a cross section of industrial representatives have
determined alist of requirements for the new low k dielectric materials (53). They are
listed in Table 1.3.

At thistime, the industry has not compiled a standard for low k materials
properties. The requirements may vary from one application to another and depend on

the interconnect architecture (14).
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Table 1.3. Requirements for low dielectric constant ILD materials

Electrical Chemical Mechanical Thermal
Anisotropy Chemical resistance Thickness uniformity High thermal stability
Low dissipation Etch selectivity Good adhesion Low coefficient of
Low leakage current Low moisture Low stress thermal expansion
Low charge trapping absorption High hardness Low thermal shrinkage
High electric-field Low solubility in water | Low shrinkage Low thermal weight loss

strength Low gas permesability Crack resistance High thermal
High reiability High purity High tensile modulus conductivity
No metal corrosion
Long storage life
Environmentally safe

There are awide variety of dielectric materials with k values less than that of
SiO,. These materials, aslisted in Table 1.4 (53, 96, 97), can be either organic or
inorganic and they can be deposited by either spin-on or chemical vapor deposition
(CVD) techniques. Spin-on deposition involves dissolving low k precursorsin a solvent,
dispensing the liquid mixture onto the wafer, and curing subsequently to drive the solvent
out. Polymerization occurs during the curing to form a solvent-resistant dielectric film.
Spin-on is arather smple method. It can be applied to alarge variety of precursors. The
designs of equipment are also similar for different applications. CVD offers a number of
advantages. Firgt, it isadry process which eliminates the cost and environmental issues
associated with organic solvents. Secondly, it provides uniform coating over large areas.
Thisis especidly attractive for future 300mm wafers. Lastly, it also has superior gap-

filling capability for high aspect-ratio (depth versus width) vias and trenches (74).
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Table 1.4. List of materialsfor ILD applications

Material Dielectric constant | Deposition method
Inorganic
SO, 3.9-5.0 CvD
Fluorinated SIO, 2.8-39 CvD
Spin-on glasses (SOGS) 2.7-35 Spin-on
Organic
Polyimides 2.9-39 Spin-on/CVD
Fluorinated polyimides 2328 Spin-on/CVD
Benzocyclobutene (BCB) 2.7 Spin-on
Parylenes (N and F) 2.3-2.7 CvD
Polynaphthalene 23 CvD
Fluorinated amorphous carbon (a-C:F) 21-23 CvD
Amorphous Teflon 19 Spin-on
Inorganic-organic hybrids 2.8-3.0 Spin-on
Nanoporous dielectrics 1.2-1.8 Spin-on
Air bridge 1.0-1.2

Dielectric constant values vary from different references. Ranges are chosen to
include all possible values.

The integration of low k materialsisintimately related to optimizing different
trade-offs between material properties, device architectures and process flows. The high
processing temperature (~400°C), which involves both Al metallization and plasma
damage sintering, has led to the primary focus on thermally stable inorganic materials.
Low k inorganic polymers are usually based on siloxane chemistry and have an O-Si-O

backbone. Hydrogen silsesquioxane (HSQ), in which the silicon atoms are directly
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attached to oxygen and hydrogen, is stable to 400°C and has a dielectric constant of 2.9.
Increasing the carbon content in siloxanes tends to lower the dielectric constant as well as
increase the thermal stability of the film because of the substitution of Si-H bonds with
stronger Si-C bonds. Methyl silsesquioxane (MSQ) have a methyl group on every Si
atom and a similar ladder structure to HSQ. It has a dielectric constant of 2.7, which is
stable when exposed to air for months. It also has very high thermal stability (>500°C in
the absence of air) and good resistance to stress and cracking (66). The rapid
development of Cu metallization will allow deposition temperatures as low as 100°C,
which may finally permit the integration of organic materials as long as parallel
reductions in the plasma damage sinter temperature are developed.

Since the lowest dielectric constant for any dense material is approximately 2.0
for Teflon, the evaluation of nanoporous dielectrics will eventually be required to push
performance to its fundamental limits. For a porous material, the dielectric constant is a
combination of that of air (~1) and the solid phase. The ultra-low dielectric constant
results from porosity incorporation. These porous materials are classified as aerogels
(dried supercritically) or xerogels (dried by solvent evaporation) (68). In addition to low
k, nanoporous material offers other advantages such as thermal stability to 900°C,
tunable film density over awide range, and ability to use the same material, equipment
and integration scheme for multiple technology nodes. The problem is how to achieve

high strength and porosity yet maintain pores much smaller than microelectronic features.

19



The major driving forces for determining the future of low k material integration
are dielectric constant, process cost, and process reliability. The ultimate solution will be

determined by the best compromise among these three factors (71).

1.5. Experimental Aspects

Processes occurring at solid surfaces are of great importance particularly for the
studies of heterogeneous catalysis, corrosion and semiconductor technology. A surface
can be visualized as the result of a fracture along a certain plane in the bulk material,
where the bonds between neighboring atoms are smply severed. The change in the
equilibrium position and bonding of surface atoms can give rise to drastic reconstruction
of the outermost layers, i.e., the surface can assume a fundamentally different atomic
structure from that of the bulk material (98-101). The surface has a strong tendency to
interact chemically with particles from the gas phase because of the more or less
unsaturated valencies. In order to maintain the original state for long enough to conduct
experiments, it is clearly necessary to keep the pressure of the residual gas above the
surface very low, which calls upon the ultra high vacuum (UHV) techniques.

The concentration of atoms on the surface of a solid is on the order of 10" cm™.
A rough calculation reveals that at a pressure of 10° torr, the surface will be covered with
amonolayer of gas within a second at room temperature if the sticking coefficient is 1.
For this reason the unit of gas exposure is 10 torr-sec, which is called alangmuir (L)
(99). Current surface techniques can easily detect contamination on the order of 1% of a
monolayer. This gives the operational definition of a“clean” surface. Thus, pressures

lower than 10”° torr (so-called ultra high vacuum (UHV) conditions), are necessary to
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maintain a clean surface for about one hour, often the time scale needed to perform one
experiment (99, 101).

Several UHV-based surface analytical methods were employed in this research,
including Auger electron spectroscopy (AES) and temperature programmed desorption
(TPD). The principles of operation for each technique are discussed as follows.

1.5.1 Auger Electron Spectroscopy (AES).

Auger electron spectroscopy is suitable for studying the composition of surfaces.
It can probe the first few layers of the surface by measuring the kinetic energy of emitted
electrons. The surface sensitivity of AES is due to the low energy of these electrons (E £
1000 eV). Electronsin this energy range interact with solid matter very strongly,
therefore thelr mean free path within the solid is consequently only a few atomic layers,
making this an ideal tool for surface analysis (99-101).

The Auger process involves three electrons as shown in Figure 1.4 (99). When an
electron beam strikes the atoms of a material, a core level (K) electron can be gected if
the incident beam energy is greater than the binding energy of the electronsin level K
(Ex). Following the excitation that creates ahole in level K, the atom relaxes by filling
the hole via a transition from an outer level, in this example L;. The energy released
from this transition may cause a third electron either in the same or a higher lying level
(Ls inthis example) to emit into the vacuum. The third electron is called an Auger
electron. The Auger transition in this particular example islabeled conventionally as

KLiLs. If weignore the Coulombic interaction between the two holesin the final state

21



(since in metals and semiconductors, the final state holes are well screened from each
other (102)), the kinetic energy of this Auger electron is approximated by:
Exus=Ex-En-EL (1-5)
The Auger energy is afunction only of the different atomic energy levels. Since there are
no two elements with the same set of atomic binding energies, the analysis of Auger
energies leads to elemental identification. In selected cases, chemical binding
information can also be obtained from peak position, shape or fine structures. Because
Auger peak-to-peak intensity is proportional to the amount of atoms on the surface, AES

studies can be quantitative as well as qualitative.

Photo electron Auger electron
A
KL,L,
—0—0—o0—+o0— L,
o—o L, o—o
o—o L, o—0¢
O O K o O
(a) excitation (b) emission

Figure 1.4. Scheme of the Auger emission process
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The integrated Auger spectra (N(E) vs. E) are less useful because Auger features
have a large secondary emission background as shown in Figure 1.5(a). Auger spectra
are therefore often recorded as the differential with respect to energy as in Figure 1.5(b)

(200). It can be seen that differentiation helps to remove the background and make weak

features more identifiable.
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Figure 1.5. Auger spectrafrom a contaminated molybdenum surface in
(@) integrated and (b) differentiated modes.
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1.5.2. Temperature Programmed Desorption (TPD)

Temperature programmed desorption is a technique for studying surface reactions
and molecular adsorption on surfaces (99, 103, 104). Figure 1.6 shows the schematic
diagram of TPD. The basic operation involves, first, adsorption of molecular species
onto the sample surface at low temperature, then, heating of sample in a controlled
manner (usually at arate b which islinear to time) while monitoring the evolution of
species from the surface back into the gas phase. The detector is generally a quadrupole
mass spectrometer (QMA) and is placed as close as possible to the sample so asto
exclude outgassing species from other than the sample surface and get maximum signal
detection. The whole processis generally carried out under computer control with quasi-
simultaneous recording of alarge number of possible products. The data obtained from
such an experiment consists of the intensity variation of each recorded mass fragment as
afunction of temperature and is called a TPD spectrum (103).

Since the molecular species initially adsorbed on the surface can undergo reaction
pathways with different activation parameters, such as dissociation, recombination and
compound formation with substrate, the analysis of TPD spectra provides kinetic
information and possible mechanism of the surface reaction. During the study of a
specific system, TPD spectra are generally taken for aserial of different initial coverages.
The area under a peak is proportional to the amount of the adsorbate. The peak profile
and the coverage dependence of the desorption characteristics give information on the
aggregation state of the adsorbed species (i.e., associative or dissociative). The position

of the peak, which is the temperature where maximum desorption occurs, is related to the
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enthal py of adsorption and thereby, is related to the binding strength to the surface. That
iswhy if there is more than one binding state for an adsorbate species on a surface with
significantly different adsorption enthalpies, it will give rise to multiple peaks in the TPD

spectrum (99, 103, 104).

TPD spectrum T

Iion

QMA
"o’ o’ e
v oV

e e, g B

Low T adsorption Desorption

Figure 1.6. Scheme of the TPD process
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CHAPTER 2

FORMATION OF POLYMERIC CARBON-SILICON FILMS ON METAL

SUBSTRATES: ADHESION/DIFFUSION BARRIERS FOR COPPER

2.1. Introduction

The introduction of Cu in multilevel metallization architectures has spurred the
demand for more effective diffusion barriers (1). Refractory metals and their compounds
have been extensively investigated in thisregard (2-7). Additionally, the possible
replacement of SiO, with low-dielectric polymeric materials has raised issues regarding
the adhesion of the polymer to Cu or other metal substrates, and the diffusion of Cu into
the polymer (8-12).

Organosilicon compounds have been used to modify surfaces by self-assembly
(13-17). Such compounds are referred to as silane coupling agents (SCAS) because they
act as a bridge between organic and inorganic phases. The genera formulafor these
silanesis RSiX3, where R is an organic group and X is a hydrolyzable group, typically
alkoxy or chloride. The binding mechanism of silanes to the surface consists of a
complex series of hydrolysis and condensation reactions, resulting in a cross-linked
network of siloxanes that are covalently bound to the surface (15). The self-assembly
method typically involves immersing the sample in a solution that contains the silanes,
followed by rinsing and drying. The final structure of the siloxane varies greatly

depending on the functionality of the silane and the experimental conditions.
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This chapter presents the studies of the formation of polymeric carbon-silicon (C-
Si) films via electron-beam or ultra-violet (UV) radiation induced polymerization of
vinyl-silane derivative precursors. The research was carried out under ultra high vacuum
(UHV) conditions. Introduction of the silane precursors was through vapor phase
adsorption, which completely eliminated the effect of solvents. Such films are referred to
as“C-S” rather than SIC (silicon carbide) because the compositions of the films appear
quite close to that of the precursors: vinyltrichlorosilane (H,C=CHSICl3, VTCS) or
vinyltrimethylsilane (H,C=CHSI(CH3)3, VTMYS). The filmsthus formed are
compositionally quite different from the SIC films formed by, e.g., e-beam induced
reaction of methyl silane (18), and therefore might be expected to display different
mechanical, chemical and electronic properties. Furthermore, the close correspondence
between the film composition and that of the precursor indicates that films with
molecularly tailored properties can be formed by a systematic variation in precursor
chemistry. The potential application of these filmsis twofold, as demonstrated in Figure
2.1. First, the Ci-Si film formed by vinyl-silane precursors aone can act as diffusion
barrier for Cu. Secondly, it can be used as an anchor layer for fluoropolymers by
introducing F-containing precursors in the polymerization process. Fluoropolymers are
an important candidate for low dielectric materials but their adhesion properties are weak
(9, 11, 19, 20). Films generated by this method can provide an adhesive interface

between metal and polymers.
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Figure 2.1. Scheme of the potential applications of C-Si films.

Temperature programmed desorption (TPD) and Auger electron spectroscopy
(AES) data are presented in this chapter to demonstrate that electron or UV bombardment
induced polymerization occurs via the reactions of the vinyl groups of adsorbed
precursors, and that film composition parallels precursor composition. AES results
indicate that such films are potential candidates for Cu diffusion barriers even at
thicknesses of ~ 100 A. Films derived from VTMS are adherent and stable on Ta
substrates until 1000 K with the ability to resist Cu thermal diffusion at above 800K in
UHV. Films polymerized in the presence of adsorbed hexafluorobenzene display the
incorporation of fluorobenzene units. The stability of these films toward moisture

depends on the structure of the precursors.



2.2. Experimental Methods

Experiments were carried out in a UHV chamber maintained by a turbomolelar
pump and an ion/titanium sublimation pump (TSP) (21, 22). The schematic diagram of
the chamber is shown in Figure 2.2. Typical working pressures in the chamber were 2-5 x
10" Torr. The background pressure was monitored by a nude ion gauge calibrated for
dinitrogen and located out of line-of-sight to the sample in order to avoid el ectron-
induced surface reactions. The chamber was equipped with a quadrupole mass analyzer
(UTI, Model 100c) for both residual gas analysis and TPD studies. Inthe TPD
experiments, the sample was positioned at a distance of less than 5 mm in front of a
collimated shroud (10 mm diameter) for line-of-sight measurements. A linear heating

rate of ~8 K/swas used in al TPD experiments.

Mass
Analyzer

lon Gun

Auger
Spectrometer

Cu Evaporator

Doser Tube
Base Pressure

2x10-10Torr

Figure 2.2. Schematic diagram of the UHV chamber used for TPD and AES studies.

35



The chamber was also equipped with an Auger spectrometer system (Physical
Electronics, Model 101-50) using a cylindrical mirror analyzer (CMA) with co-axid
electron gun. Auger spectrawere collected in the derivative (AN(E)/d(E)) mode using a
lock-in amplifier at 4V peak to peak modulation and an XY recorder. The electron
excitation energy was 3 KeV. Relative concentrations of surface species were
determined by using published (23) Auger sensitivity factors and intensities proportional
to peak-to-peak signal height according to

Na/Ng = 1aXg / 15Xa (2-1)
Where N, | and X represent respectively, the atomic concentration, the peak-to-peak
intensity and the atomic sensitivity factor of a certain element. The thickness of an
overlayer was calculated using the equation

| = loexp(-d/l ) (2-2)
Where lp and | are the intensities of substrate signal before and after the overlayer
deposition respectively, and d is the thickness of the overlayer, and | istheinelectric
mean free path of the specified transition.

Metal samples of Cu, Al and Ta consisted of polycrystalline foils~ 1 cm? in area
and < 0.1 mm thick. The Ta sample was directly attached to the manipulator by two Ta
support leads. Due to their low resistivity, Cu and Al samples were mounted to a Ta
sample holder and then spot-welded to the Taleads. The sample temperature was
monitored by aK type thermocouple spot-welded to the back of the sample (Ta) or to the

sample holder pressed to the sample backside (Al and Cu). The manipulator allowed
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ligquid nitrogen cooling to 80 K and resistive heating to 1500 K for Taand 800 K for Al
and Cu.

Sample cleaning was performed by Ar* ion bombardment at 2 keV beam voltage.
The surface was cleaned by cycles of Ar ion sputtering and annealing to 700 K for Al and
Cu, and 1100 K for Ta. Impurities on Al and Cu were readily removed by this procedure
and sample cleanness was verified by AES. However, the procedure was only sufficient
to remove most of the surface impurities from Ta. The high solubility of oxygenin Ta
caused a diffusion of oxygen from the bulk to the surface upon annealing to elevated
temperatures. Complete removal of carbidic/graphitic carbon was also not accomplished
because it would require heating to above 2000 K (24), which was not possible in the
manipulator setting. The typical well-sputtered and annealed Ta surfaces used for the
experiments have submonolayer coverages of oxygen and carbon.

Vinyl-silane precursors were introduced directionally through manual leak valves
and stainless steel doser tubes. Dosing was carried out using commercially available
VTMS (97%, Aldrich) and VTCS (97%, Aldrich). Both precursors are liquids at room
temperature and were purified by severa freeze- pump-thaw cycles prior to distillation
into the vacuum chamber. Exposures were determined by monitoring background
pressure and time of exposure (1 Langmuir (L) = 10° Torr-sec) and have not been
corrected for the effects of ion gauge sensitivity, flux to the sample or directional dosing.

Electron bombardment of adsorbed species was accomplished using the co-axial
Auger electron gun with 500 eV electron energy. The electron beam was defocused to

the maximum extent (estimated spot size 0.2 cm?) and the filament emission current kept
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at ImA. The current the sample received during the bombardment was approximately 1
MA as measured by a picoammeter. The corresponding electron flux to the sample
surface cal culated under these conditionsis 3 10™*/cm?s. Due to the secondary electron
emission from the sample, the actual flux should be greater than this value.

Ultraviolet (UV) photon radiation was performed by a 500 watt Hg(Xe) arc lamp
(Oriel, Model 66142) placed outside the UHV chamber. It has a continuous output from
200-800 nm wavelength, with intense Hg peaks in the UV-visible and Xe linesin the
near-infrared region. The collimated beam was admitted onto the sample though a UV -
transparent quartz viewport. The beam spot was adjusted to cover the entire sample and
the distance between the source and the sample was about 5 cm.

Cu evaporation was performed with a home-built evaporator that consisted of a W
filament wrapped with a Cu strip. Evaporation was conducted by controlling the heating

current and the evaporation time.

2.3. Results and Discussions

2.3.1. Interaction of precursors with Metal Substrates

AES and TPD studies were carried out to characterize the therma stability and
reactivity of vinyltrichlorosilane (VTCYS) on Al and Cu surfaces.

The relative surface concentrations for Si, C and Cl on Al (calculated by
Equation (2-1)) at different VTCS coverages at room temperature are listed in Table 2.1.
It can be seen that for a wide range of VTCS coverage (5-100 L), the surface
concentrations of Si, C and Cl remain relatively the same. Thisindicates that the

adsorption of VTCS on Al at room temperature saturatesat 5 L. The average Si:C.Cl
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ratio (1:1.8:2.5) is close to the stoichiometry of VTCS precursor (1:2:3), however, it is
hardly meaningful since the individual ratio at each coverage varies greatly. The
standard deviation values (~30%) are well above the possible error range (~15%) of
Auger measurement. A possible explanation is that the adsorption is dissociative, with
similar fragmentation pathways at different coverages, leading to different surface

compositions.

Table 2.1. Relative surface concentrations for Si, Cl and C on Al
at different CTCS coverages at room temperature

CO\XJ;S(L) S C cl s:c.cl
5 0.082 0.10 0.14 11.2:17
10 0.075 0.14 0.19 1.1.9:25
20 0.075 0.10 0.16 11321
70 0.075 0.19 0.32 1:25:4.3
100 0.10 0.19 0.21 1:1.9:2.1
Average | 0.081+0.01 | 0.14+0.04 | 0.20+0.06 | 1:(1.8+0.5):(2.5¢0.9)

Only H, (amu 2) desorption was detected from TPD (anneal to 700 K) studies for
al coverages asis shown in Figure 2.3(a). All the desorptions occurred at the
temperature range of 470-650 K with the peaks at about 540 K. The area under the
desorption peaks are plotted in Figure 2.3(b). It can be seen that the area stays roughly

the same for different VTCS coverage, with the exceptionally small desorption at 10 L.
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Figure 2.3. (a) H2 (amu 2) desorptions from a Al surface with different
initial VTCS coverages at room temperature, (b) the area under the H,
desorption peaks with different VTCS coverages.

This again indicates that the adsorption of VTCS on Al saturatesat 5L. Auger spectra

taken after TPD reveal the complete disappearance of Si and less than 0.02
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concentrations of C and Cl on the surface for al coverages. This shows aweak
interaction and poor thermal stability of VTCS on Al.

The adsorption of VTCS on Cu at room temperature was studied in asimilar
manner. Due to the interference of Cu transitions at 60 and 105 €V, it is hard to quantify
the surface concentration of Si (92eV) in this system by AES. The surface composition
after VTCS adsorption, therefore, was not calculated. VTCS adsorption behavior on Cu

at room temperature, expressed in CI/Cu atomic ratios, is shown in Figure 2.4.

N

0.20

0.15

Cl/Cu Atomic Ratio

0.10 A

0 5 10 15
VTCS Dosage (L)

Figure 2.4. ClI/Cu atomic ratio as afunction of VTCS exposure on Cu at

room temperature.
It can be seen that the concentration of Cl on Cu increases rapidly with initial VTCS
exposures until it saturates at about 5 L. This saturation coverage can be considered as a
monolayer of adsorped VTCS, where it reaches a Cl/Cu ratio of ~ 0.25. Thisvalueis

amost twice that of CI/Al at the same VTCS coverage. These resultsindicate that the
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sticking coefficient of VTCS on Cu is greater than Al at room temperature. No
significant desorptions were detected from TPD studies. Auger spectra taken after TPD
(700 K) show roughly the same amount of Cl and C surface concentrations, indicating
also stronger interaction of VTCS with Cu than Al.

2.3.2. Formation of Films

Even though there is some difference between the interaction of VTCS with Al
and Cu at room temperature, the sticking coefficient in both casesistoo small for film
growth. In order to form athick layer of VTCS precursors on the metal substrates, the
adsorption needs to be carried out at low temperature. After the samples were cooled
down to 80-90 K, 0.05 L VTCS was introduced on to the surfaces. Because of the
enhancement factor of directional dosing and the high sticking coefficient (considered
unity) at such low temperature, even 0.05 L of the precursors formed an ad-layer that was
thick enough to attenuate the substrate signals. According to Equation (2-2), attenuation
of the substrate signal to 1% of its original would require an over-layer equal to a
thickness about five times the mean free path of the substrate Auger electron (5-10 A)
(25). Therefore 100 A is a conservative estimate of the thickness of the over-layer. The
different desorption behaviors of VTCS with or without electron/photon bombardment
were studied by AES and TPD.

TPD results are shown in Figure 2.5 for 0.05 L VTCS adsorbed on clean Al at 90
K, and then desorbed from the surface without (a) or with (b) electron bombardment prior
to the thermal ramp. It can be observed from Figure 2.5(a) that VTCS desorbs

molecularly from the surface near 200 K in the absence of electron bombardment. No
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desorption was detected above 250 K. In contrast, exposure to electron flux, as shown in

Figure 2.5(b), results in much less desorption of the same species over an extended

temperature range. Significantly, no desorption of the vinyl group-containing fragment,

CH,=CHSICl," (amu 125) is observed, although this species is prominent in the

desorption spectrum in the absence of electron bombardment. These results indicate that

electron bombardment has induced reaction of the vinyl group.
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Figure 2.5. TPD spectraof 0.05 L VTCS adsorped on Al at 90 K (@)
without and (b) with electron bombardment (3~ 10 13 /cm2 sfor 10 min)
prior to sample heating.

700

The corresponding Auger spectra are shown in Figure 2.6. Deposition of 0.05 L

VTCS completely obscures the Al substrate signal, suggesting a multilayer coverage of

the precursors, as shown in Figure 2.6(a). Auger spectrum taken after annealing to 700 K
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Figure 2.6. Auger spectra of (a) VTCS multilayer adsorbed at 90 K on Al;

(b) VTCS multilayer adsorbed at 90 K and annealed to 700 K without

electron bombardment; and (c) VTCS multilayer adsorbed at 90 K,

subjected to electron bombardment (3° 10*%/cm?s for 10 min), and annealed

to 700 K.
reveals minor amounts of Si, C, and Cl left on the surface and a distinct increase of the Al
substrate signal, as shown in Figure 2.6(b). The relative atomic concentrations of Si, C
and Cl| are less than 5% compared to Al. These results indicate low reactivity of Al with
VTCS below the desorption temperature of 200 K. The effect of electron bombardment

is demonstrated in Figure 2.6(c). It can be seen that el ectron bombardment prior to

annealing results in the formation of a polymeric film that is adherent and stable on the



substrate to the temperature of 700 K. The film had a Si:Cl:C ratio of 1:3:2 as
determined by relative concentrations of surface species. This composition is the same as
that observed for the molecularly adsorbed multilayer at 90 K, and the same as that of the
molecular precursor.

Similar experiments were performed on a Cu substrate. TPD results of 0.05 L
VTCS adsorped on Cu at 80 K are shown in Figure 2.7. The effect of electron beam is

clearly demonstrated by the difference in the two spectra.
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Figure 2.7. TPD spectraof 0.05 L VTCS adsorped on Cu at 80 K (a) without
and (b) with electron bombardment (3~ 10" /cm? sfor 10 min) prior to
sample heating.
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VTCS desorps molecularly at 200 K without the electron pre-treatment, as shown in
Figure 2.7(a). The molecular desorptions can still be seen in Figure 2.7(b) after the
electron beam bombardment, but to much less extent, indicating the presence of small
amount of non-polymerized VTCS precursors. A second desorption feature appeares at
above 300 K for all the cracking patterns of VTCS except for the vinyl containing moiety
CH,=CHSICl," (amu 125). Thisimplies that the crosslinking is accomplished through
the vinyl group and the process is complete below room temperature.

Corresponding Auger spectra are shown in Figure 2.8. It can be seen from Figure
2.8(a) that depositing 0.05 L VTCS at 80 K produces an over-layer thick enough to
completely attenuate the Cu Auger signal. Heating the sample subsequently to 700 K
causes most of the precursors to desorb, as shown in Figure 2.8(b). Surface concentration
calculations reveal that the Cl/Cu atomic ratio after heating up to 700 K is 0.25, which is
exactly the same as that of the saturation dosage at room temperature (Figure 2.4). This
means that condensing VTCS at 80 K forms a multilayer on Al which is subsequently
desorbed upon heating, leaving the same monolayer coverage of VTCS as obtained from
dosing it a room temperature. Electron beam treatment has proved to improve the
adhesion of VTCS on Cu as shown in Figure 2.8(c). After annealing to 700 K, the
substrate is still completely covered by VTCS film and the chemical composition of the

film remains the sameratio (S:Cl:C » 1:3:2).
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Figure 2.8. Auger spectraof (a) VTCS multilayer adsorbed at 80 K on

Cu; (b) VTCS multilayer adsorbed at 80 K and annealed to 700 K without

electron bombardment; and (c) VTCS multilayer adsorbed at 80 K,

subjected to electron bombardment (3" 10%%/cm?s for 10 min), and

annealed to 700 K.

The effect of UV photon radiation on the adsorped VTCS precursors was studied
by condensing 0.3 L of VTCS on Al at 90 K followed by 30 min of UV bombardment. A

slight temperature increase (less than10 K) was observed during the treatment.
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Essentially identical TPD results were obtained as compared to electron beam
bombardment. Auger spectrataken before (Figure 2.9(a)) and after (Figure 2.9 (b)) TPD
(700 K) indicate that the composition of the VTCS over-layer does not change after UV
radiation. However, thermal annealing causes the reduction of film thickness as
evidenced by the appearance of Al substrate signal in Figure 2.9(b). These results
suggest that UV radiation can also induce polymerization of the precursors but under the

current experimental conditions, it was not as effective as the electron bombardment.
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Figure 2.9. Auger spectraof 0.3 L VTCS adsorpted on Al a 90 K followed
by 30 min UV radiation (@) before and (b) after annealing to 700 K.
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2.3.3. Thermal Stability of the Film

Results from the previous section have shown that VTCS-derived films are
thermally stable at 700 K on Al and Cu. In order to test the thermal stability of the films
at higher temperatures, Tawas chosen as the substrate. Since Ta has a higher electrical
resistivity (13.5" 10° W at 300 K) than Al (2.733 " 10® W at 300 K) and Cu (1.725 "
10® W at 300 K) (26), it allows better resistive heating with the same amount of current
passing through the sample. A thin C-Si film was formed on Ta by successive
condensation and el ectron beam bombardment of another vinyl silane precursor,
vinyltrimetheylsilane (VTMS). Successive depositions permitted the gradual build-up of
afilm until the Ta Auger signa can no longer be observed, suggesting an average film
thickness of about 100 A (25). Thethermal stability of the electron beam-induced VTMS
film on Tais demonstrated in Figure 2.10, which shows the film as formed at 80 K, and
successively annealed to higher temperatures.

Thefilm hasa Si:C ratio of 1:4 as determined by Auger intensity and relative
sengitivity factors. This composition is, again, similar to that of the precursor (1:5). The
Ta substrate Auger signal remains completely attenuated until the film was annealed to
1000 K, indicating the thickness of the film remained about 100 A until 1000 K, when
signal from the Ta substrate is observed. The Si:C ratio also remains stable until
annealed to 1100 K when the structure of the film is completely altered with the Si:C
ratio reduced to 1:1. At this point, the C signal assumes the three-lobed line shape
characteristic for carbidic carbon species (23), indicating the formation of silicon carbide

or tantalum carbide.
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Figure 2.10. Auger spectraof 0.05L VTMS adsorbed on Ta, subjected to
electron bombardment (3° 10*3/cm?s for 10 min) at (a) 80 K, and annealed to

(b) 900 K, (c) 1000 K, and (d) 1100 K.

2.3.4. Stability to H,0

The reactivity of these films to H,O molecules was tested by condensing a small

exposure (0.01 L) of H,O onto the films at 80 K followed by TPD to higher temperatures

(700-800 K for Al and Cu substrates, and 1000 K for Ta substrates). Auger
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measurements were taken after each TPD to examine the stability of the films with
respect to H,O vapor.

The Auger spectrum of a VTCS derived-film on Cu substrate after 10 cycles of
TPD isshown isFigure 2.11. Decrease of the Si, Cl and C Auger signalsis observed
together with increase of O and the Cu substrate signal. It can aso be noticed that the
Si:Cl:Cratio is no longer 1:3:2, indicating the destruction of the film structure. A closer
look at the Auger result revealed that the decrease in Cl signa intensity is much more

pronounced than those of Si and C.
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Figure 2.11. Auger spectrum of a VTCS derived film on Cu after 10
cycles of TPD with 0.01 L H,0.

Corresponding TPD results are shown in Figure 2.12. Essentially identical results
were obtained for all 10 cycles of experiments. Appreciable anounts of HCI and Cl

desorptions are observed apart from the expected H,O desorption. This explains the
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rapid decrease of Cl intensity from the Auger results. It also implies that the Cl group is

the main reason for the VTCS-film’ s susceptibility to moisture.
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Figure 2.12. TPD spectraof 0.01 L H,O adsorpted at 80 K on a

VTCS-derived film on Cu.

Similar experiments were conducted on aVTMS-derived film on Ta. Since this
precursor does not contain Cl, it is expected to display better resistivity to water. In fact
only H,O and H, desorptions were detected in the TPD spectra, whereas no desportion of
any of the VTMS fragments were observed. After carrying out the procedure 10 times,

still no Ta substrate signal from the Auger was observed, as demonstrated in Figure 2.13.
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Figure 2.13. Auger spectrum of a VTMS-derived film on Ta after 10

cycles of TPD with 0.01 L H,0.
The Auger results also show an initia steep increase of O content in the film, which
beginsto level after severa reaction cycles with H,O. The O content in the film
represented by the atomic ratios of O/Si and O/C is plotted in Figure 2.14 against the
number of TPD with H,O. Both ratios reach a plateau after the seventh reaction with a
value of O/S » 1 and O/C » 0.2. Considering the chemical composition of the film (Si:C
» 1:4), this leaves roughly one H,O molecule per VTMS unit when the uptake of water
saturates. The exact mechanism for this processis unclear but it implies that H,O

molecules can only occupy certain sites on the VTM S-derived film.
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Figure 2.14. O/Si and O/C atomic ratio by AES as a function of increasing
number of TPD with 0.01 L H,O on VTMS-derived film on Ta.

2.3.5. Cu Thermal Diffusion

The effectiveness of these films against Cu thermal diffusion was first tested by
annealing a VTCS-derived film on Cu to elevated temperatures. Annealing to 850 K

yields the following Auger spectrum shown in Figure 2.15.
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Figure 2.15. Auger spectrum of aVTCS-derived film on Cu annealed to 850 K.



It can be seen that the chemical composition of the film does not change much according
the Si:Cl:C ratio, but Cu substrate signal appears, indicating that either the thickness of
the film decreases or Cu diffuses through the film at 850 K.

In order to clarify the thermal interaction of Cu with these films, Cu over-layers
were formed on these films and annealed to elevated temperatures. The barrier property
of VTMS-derived films against Cu thermal diffusion was tested on both Al and Ta
substrates. After the formation of aroughly 100 A thick VTM S-derived polymer film at
80-90 K, Cu was deposited on the film by thermal evaporation at the same low sample
temperature. The Auger peak-to-peak intensity ratios of Cu(920eV)/Si(92eV) and
Cu(920eV)/Cu(60eV) were monitored as the sample was annealed to progressively
higher temperaturesin UHV.

The result of VTMS on an Al substrate is shown in Figure 2.16. Therelative
Cu/Si intensity remains unchanged until 300 K. It decreases by about 25% between 300
K and 600 K. Above 600 K, it decreases precipitously. In order to determine whether
the decrease in Cu intensity above 400 K isin fact due to Cu diffusion, the AES intensity
ratio of Cu(920eV)/Cu(60eV) as a function of temperature is also shown in Figure 2.16.
Because of the different mean free paths of Auger e ectrons resulting from these two
Auger transitions -- approximately 18 A for the Cu(920eV) transition and 4 A for the
Cu(60eV) transition (25) -- the Cu signal at 60 eV is more surface sensitive. Therefore,
diffusion of the Cu over-layer into the bulk should produce an increase in the ratio of
Cu(920eV)/Cu(60eV) and this has been observed for Cu diffusion into alumina (27). As

demonstrated in Figure 2.16, there is no significant change of this ratio throughout the
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whole temperature range. The decrease in relative Cu/Si intensity above 300 K, therefore,
is attributed to de-wetting: the formation of 3-dimensional nuclei on the Cu surfacein a

transition from conformal coverage.
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Figure 2.16. Relative Auger intensity ratios as a function of sample

temperature for aVTMS-derived film on Al substrate, followed by

evaporative deposition of Cu at 90 K.

In order to completely rule out the possibility that the decrease in Cu intensity was
due to diffusion, Cu was deposited at 90 K on anew VTMS-derived filmon Al. The
sample was annealed to 600 K for prolonged time periods. The results of this experiment
are shown in Figure 2.17. During the first 5 min annealing, thereis an initial 50%

decrease in the Cu/Si ratio. No further decrease is observed up to the 60 min annealing

period at 600 K. Furthermore, the Cu(920eV)/Cu(60eV) ratio remains constant
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throughout the annealing time. These results indicate that annealing to 600 K causes a

change in the conformation of the Cu over-layer, but not diffusion into the bulk.
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Figure 2.17. Relative Auger intensity ratios as a function of annealing

time at 600 K for aVTMS-derived film on Al substrate, followed by

evaporative deposition of Cu at 90 K.

Similar experiments were conducted on a Ta substrate, which enables the thermal
annealing to higher temperatures. The results are shown in Figure 2.18. It can be seen
that the Cu/Si ratio starts to decrease steadily from 400 K. The Cu(920eV)/Cu(60eV)
ratio, on the other hand, remains stable until the sample is heated above 800 K, indicating
that TMV S-derived film has effectively blocked the thermal diffusion of Cu up to 800 K.

The decrease in relative Cu/Si intensity from 300 to 800 K is, again, caused by Cu de-

wetting from the surface.
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Figure 2.18. Relative Auger intensity as a function of sample temperature
for 0.05L VTMS adsorbed on Ta, subjected to electron bombardment

(3" 10%%/cm?s for 10 min) at 80 K, followed by evaporative deposition of
Cu at 80 K: Cu starts to diffuse above 800 K.

2.3.6. Incorporation of Hexafluorobenzene

In order to determine if fluoropolymers or precursors could be incorporated into
these films, different amounts of hexafluorobenzene (CgFs) were condensed ona 0.1 L
VTCS multilayer on aclean Cu substrate at 80 K. The condensed multilayers were then
subjected to electron beam bombardment (3° 10%/cm?s for 10 min) at 90 K and TPD was
carried out to 700 K.

TPD results for the incorporation of 0.07 L CgFs into VTCS film are shown in
Figure 2.19. Again, very little desorption of the vinyl-containing species CH,=CHSICl,"

(amu 125) is observed, indicating the crosslinking through the vinyl groups during the

electron beam bombardment. Other fragments from the VTCS and CgFs molecules also
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desorb at ~220 K. A second desorption of one of the VTCS fragments, SICI* (amu 63) is
also detected as a broad peak in the 280-400 K region. The dependence of this peak on
the amount of CgFg condensed on 0.1 L VTCS s plotted in Figure 2.20. At lower
dosages of CgFs, this peak appears as a shoulder to the 220 K desorption. It grows with
increasing CsFs dosages and becomes separated from the 220 K peak. These results
indicate the interaction between the two ad-layers, which in turn, should promote the

adhesion of the CgF¢ layer.

SiCl+

CSF3+

CSF3+

Mass Spectrometer Signal(Arbitrary Units)

CH,=CHSICl+
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100 200 300 400 500 600 700
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Figure 2.19. TPD spectrafor 0.07 L CsFs and 0.1 L VTCS co-adsorbed on
Cu, subjected to electron bombardment (3° 10*3/cm?s for 10 min) at 80 K
prior to sample heating.
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Figure 2.20. TPD spectraof SICI* (amu 63) for different amount of CeF

co-adsorbed with 0.1 L VTCS on Cu, subjected to electron bombardment

(3 10%%/cm?s for 10 min) at 80 K prior to sample heating.

Auger spectrum recorded after the TPD (Figure 2.21) indicates a stable and
adherent film that completely attenuates the Cu substrate. Furthermore, it also shows the
presence of F, plus a C Auger lineshape (the insert of Figure 2.21) characteristic of
graphite or an aromatic ring system (28). Thisline shapeis distinctly different from that
observed in the absence of CsFs and indicates the incorporation of an aromatic ring in the

structure. The details of the perfluorobenzene film environment, however, cannot be

discerned from Auger analysis.
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Figure 2.21. Auger spectrum of afilm prepared via co-adsorption of 0.1 L

CsFs and 0.01 L VTCS on Cu with electron bombardment (3" 10"/cm?s

for 10 min) at 80 K. The insert shows the different C Auger line shape

from aVTCS-derived film and a VTCS+ CgFg — derived film.

2.4. Summary and Conclusions

The results shown here indicate that electron beam or UV radiation can induce
cross-linking in condensed multilayers of vinylsilane derivative monomers, resulting in
polymeric C-Si filmsthat are thermally stable on Al, Cu, and Ta substrates to elevated
temperatures. Preliminary data also indicate that such films are promising Cu diffusion
barriers and adhesion promoters for, e.g., plasma deposited fluoropolymer films or
related materials. The thermal diffusion temperature of Cu on these films (> 800 K) is
comparable to those of Ta substrates (29) and the de-wetting temperature (400 K) isthe

same as oxygen modified Ta (30). It isaso possible to incorporate fluoropolymers into

the film by introducing fluorine-containing precursors during the growth. In this respect
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it should be pointed out that the adhesion/diffusion barrier characteristics of this class of
materials may well be selectively variable through the appropriate choice of monomer
Precursors.

There are a number of issues to be addressed, including the deposition of C-Si
films at 300 K or above, as commonly encountered in industrial practice. The potential
to deposit adherent films on Cu substrate is high, as silane reaction with Cu surfaces to
form Cu-Si bonds is known to be an activated process which occurs readily at or above
300 K (31), even in the absence of radiation. Studiesto further quantify the diffusion
barrier characteristics of such films at ultra-thin thicknesses are underway in our
laboratories. Recent XPS results (32) indicate that VTM S-derived films are stable in air,
which enables the films to be taken out of UHV for electronic tests such as capacitance

measurements.
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CHAPTER 3

EFFECT OF SURFACE IMPURITIES ON THE

COPPER/TANTALUM INTERFACE

3.1. Introduction

Refractory metals have been recognized as potentia diffusion barriers for Cu
interconnects because of their high thermal stability and good €electrical conductivity (1-6).
Investigations are generally carried out by studying the thermal stability of a CuW/M/Si (M
= refractory metals) sandwich structure, where the thickness of the Cu overlayer is over
100 nm (1-6). It is hard to characterize the interfacial interactions that govern the
adhesion, diffusion and nucleation of Cu on these potentia diffusion barriers at such length
scales. A detailed understanding of the nature of the Cu/barrier interface is of
technological importance to determine optimum barrier layer surface chemistry and
processing for Cu wetting, adhesion and interfacial stability. Studies on the growth mode
and ultrathin (< 50 A) overlayers of Cu on Ta(110) (7), W(110) (8-11), W(100) (12) as
well as TiO,(110) (13) have been reported. Such studies focus on the interaction of Cu
with typically idealized single crystal surfaces where the effect of impurities is neglected.
Surface studies on polycrystaline substrates, where grain boundary diffusion of Cuis
dominant (14), arerare. The work involved in this chapter focuses on the effect of
impurities (O, C) on the wetting/de-wetting behavior as well as diffusion kinetics of Cu on

polycrystalline Ta. Auger electron spectrocsopy (AES) and temperature programmed
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desorption (TPD) results under ultra high vacuum (UHV) conditions point to the
importance of sub-monolayer surface coverages of impurities in controlling the wetting
and diffusion behavior of Cu.

Cu therma diffusion into polycrystaline barriers is dominated by grain boundary
diffusion (14). Improvements of barrier performance have been achieved by intentionally
contaminating bulk barrier materials with impurity atoms (O, C, N, etc.) (2, 15-17). Itis
believed that these impurities segregate to the grain boundaries and defects, resulting in
the blockage of those diffusion pathways.

Recent research (6) indicates that an amorphous interfacial layer with a thickness
of about 50 A is formed by annealing the Cu/Ta(002) interface at 673 K, despite
predictions based on the solid state phase diagram that Cu and Ta are immiscible (18).
Thisinterfacial mixing greatly affects the adhesion/diffusion characteristics of Cu on
barrier materials. Theinterfacial thickness (~ 50 A) implies that the ultra-thin barriers
required for future devices may be readily compromised by such phenomena. The TPD
results from this work support the formation of such an interfacial layer.

The studies presented in this chapter show that even a sub-monolayer of oxygen
on Tadrastically reduces the ability of Cu to wet the surface upon heating, as does an
overlayer of TaC. A surprising result is that the kinetics of Cu diffusion into the
substrate are affected by sub-monolayer surface impurity concentrations. Oxygen and
carbide adlayers retard the thermal diffusion of Cu into the bulk. Surface studies also
indicate that a Cu-Ta mixed interphase forms during the annealing of Cu deposited on

polycrystalline Tain UHV. These results have significant implications for the “real
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world” practices, where the presence of bulk and surface impuritiesisinevitable. The
significance of these results for other refractory diffusion barriers (W, TaN, etc.) will

also be discussed.

3.2. Experimental Methods

The experiments were performed in a UHV chamber equipped with AES and
TPD capabilities (19). The schematic diagram of the chamber was shown in Figure 2.2.
Typical working pressuresin the chamber were 2-5° 10™° Torr. The Tasample
consisted of polycrystalline foil (99.99%, 0.05 mm thick) about 1 cm? in area, and was
attached to the manipulator by two Ta support leads. The sample temperature was
monitored by a K-type thermocouple spot-welded to the back of the sample. The
manipulator alowed resistive heating to 1500 K and liquid nitrogen cooling to 80 K. The
surface was cleaned by cycles of Ar ion sputtering (2 KeV) and annealing to 1100 K.
This procedure was sufficient to remove most of the surface impuritiesfrom Ta. The
high solubility of oxygen in Ta, however, caused a diffusion of oxygen from the bulk to
the surface upon annealing to elevated temperatures. Complete removal of carbon was
also not accomplished because it would require heating to above 2000 K (20), which was
not possible with this manipulator. The typical well-sputtered and annealed Ta surfaces
used for the experiments had less than 10% coverages of oxygen and carbon each.

Gas dosing was performed by introducing gases (oxygen, 1,3-butadiene) through
separate manual leak valves and directional doser tubes. Exposures were determined by

monitoring background pressure in the chamber and time of exposure. Coverages are
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reported herein Langmuir (1 L = 10°® Torr-s) and have not been corrected for the effects
of ion gauge sengitivity, or directional dosing. Oxidation of Tawas carried out with
oxygen (99.997%) gas at room temperature. Surface carbide was formed by dosing 1,3-
butadiene (99%wt minimum in liquid phase) at 90 K, followed by electron beam
treatment (5 mA/cm?, 10 min) (21) of the adsorbed butadiene layer and flash annealing to
1000 K. Carbide formation was evidenced by the characteristic carbon AES line shape
(22).

Cu evaporation was performed with an evaporator that consisted of a Cu (99.95%,
oxygen-free) ribbon wrapped around a W filament. Evaporation was conducted by
controlling the heating current and the evaporation time. Filament temperature and Cu
flux were not determined.

A linear heating rate of 10 K/swas used in TPD measurements. A quardrupole
mass spectrometer was collimated for line-of-sight mass measurements. Up to ten
different atomic mass unit (amu) channels can be acquired from a single run through a
computer program.

AES spectra were collected in the differential mode using a cylindrical mirror
anayzer, alock-in amplifier (4 eV peak-to-peak modulation), and a X-Y recorder. The
electron excitation energy was 3KeV. Relative concentrations of surface species were
determined by using published Auger sensitivity factors (22) and peak-to-peak signal
intensities according to

Na/Ng = 1aXg / 1gXa (3-1)

Where N, | and X represent respectively, the atomic concentration, the peak-to-peak
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intensity and the atomic senditivity factor of a certain element. The thickness of an
overlayer on Tawas calculated using the mean free path value of 7.2 A (23) for the
Ta(179eV) transition and the equation

| = loexp(-d/l ) (3-2)
Where o and | are the intensities of Ta signal before and after the overlayer deposition
respectively, and d is the thickness of the overlayer, and | the inelastic mean free path of

Ta

3.3. Results

3.3.1. Oxidation of Ta substrate at room temperature

An oxide surface layer was formed by exposing the Ta surface to O, at room
temperature under UHV conditions. Figure 3.1 shows the change in relative oxygen
coverage (O/Taatomic ratio) as afunction of O, exposure at 300 K. The concentration
of oxygen on the surface increases initially with exposure until it reaches a saturation
coverage at 10 L. At this coverage, an oxide overlayer thickness of 2.2 A was calculated
with the use of Equation (3-2). Since the ionic diameter of O is 2.8 A (24), one can infer
that a monolayer thick oxide overlayer is formed on the Ta surface upon exposing it to
O, at room temperature. Himpsdl et al. (25) have shown that O, exposures at relatively
high oxygen pressures (10° Torr) and elevated temperatures (~1000 K) cause the growth
of bulk oxides, whose much slower growth mechanism causes the rate of oxygen
adsoption to decrease markedly. Under our experimental conditions (room temperature,

low oxygen pressure of 1° 10°® Torr), the oxidation of the Ta substrate is unlikely to
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proceed beyond the surface stage into bulk oxide formation. Similar behavior has been
reported in previous studies on the oxidation of Ta (26, 27) and Nb (28-30). These
studies have shown that small O, exposures at room temperature lead to chemisorbed

atomic oxygen, followed by the formation of a monolayer thick surface oxide.
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Figure 3.1. Relative O/Taatomic ratio by AES versus O, exposure on
Ta(poly) surface at 300 K.

3.3.2. Carbide formation on Ta substrate

A thin layer of tantalum carbide was formed by the surface reaction between the
1,3-butadiene and the Ta substrate with electron beam bombardment (5 mA/cm?, 10 min)
at 90 K and thermal annealing to 1000 K. The adsorption of 1,3-butadiene on Tais

negligible at room temperature under UHV conditions as evidenced by Auger spectra
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taken after the exposure. Carbide overlayers on transition metal surfaces have been
produced by the thermal cracking of unsaturated hydrocarbon molecules such as ethylene
and 1,3-butadiene at temperatures above 600 K (31-33). In this study, the growth of a
monolayer of carbide on the Ta surface was carried out at 90 K with the assistance of
electron beam bombardment.

TPD spectra before (a) and after (b) treating the butadiene (0.1 L)/Ta sample with

electron beam are displayed in Figure 3.2. The peak at ~170 K is shared by al the

(a) before electron beam

amu 27

(b) after electron beam

amu 27
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Figure 3.2. Desorption of 0.1 L 1,3-butadiene from a Ta(poly) surface at 90
K (a) before and (b) after electron beam bombardment (5 mA/cm?, 10 min).
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ionization fragments of 1,3-butadiene, which include CH,=CH" (amu 27), CH,=CHC"
(amu 39) and CH,=CH-CH=CH," (amu 54). This peak is attributed to the multilayer
desorption of 1,3-butadiene. Given the low adsorption temperature and directional
dosing, multilayer formation is not surprising. The second peak at ~280 K is most likely
due to the molecular desorption from the first monolayer. The third peak at ~ 860 K isthe
result of surface decomposition and recombination reactions at elevated temperatures.
The absence of the parent ion (CH,=CH-CH=CH,", amu 54) desorption at this
temperature indicates that the 1,3-butadiene has reacted with the surface. The desorption
behavior of 1,3-butadiene after subjecting it to electron beam bombardment (5 mA/cm?, 10
min) is markedly different as shown in Figure 3.2(b). In this case both the molecular
desorption features below 300 K are absent. The only desorption peak observed is that of
the decomposition/ recombination products at 860 K. Subsequent thermal ramp (not
shown) reveals that even the 860 K feature is absent, indicating that the only species that
remained on the Ta surface after the second anneal was the carbide.

Direct evidence of carbide formation upon e ectron beam bombardment and TPD
(thermal ramp) is demonstrated by the Auger spectrain Figure 3.3. A distinct changein
the carbon Auger line shape can be observed before (a) and after (b) the thermal ramp.
The split peaks near 252, 260 and 271 eV are the spectral signature of carbidic carbon
species (22). The Auger spectrum collected after the thermal ramp for the butadiene/Ta
sample without electron beam bombardment is a'so shown in Figure 3.3(c). It isevident
from these spectra that the electron beam bombardment followed by thermal annealing

results in the carbide formation. Calculations using Equation (3-1) and (3-2) reveal that
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Figure 3.3. Auger spectra of a Ta(poly) surface exposedto 0.1 L 1,3-
butadiene followed by electron beam bombardment (5 mA/cm?, 10 min) at
90 K (@) before and (b) after athermal ramp to 1000 K (TPD); (c) the
same surface annealed to 1000 K without electron beam bombardment.
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the carbides formed by this method have an average C/Taatomic ratio of 1.1 + 0.1, which
corresponds to a carbide overlayer thickness of 3.5 + 0.4A.

3.3.3. Cuinteraction with “clean” Ta(poly) substrates

In order to study the thermal stability of Cu overlayer on Ta substrates, thin layers
of Cu with various thicknesses were deposited on a clean Ta surface at 300 K and the
sample was annealed to progressively higher temperatures (10 min at each temperature).
The Cu/Ta sample was then cooled down to 300-400 K to allow for AES measurements.
The Cu(920 eV)/Ta(179 eV) atomic ratio and Cu(920 eV)/Cu(60 eV) peak-to-peak
intensity ratio are presented as a function of temperature in Figure 3.4 for different initial
Cu coverages. The variation in the Cu(920 eV)/Ta(179 eV) atomic ratio reflects the
change of Cu surface concentration. This variation, however, does not discriminate
between diffusion and surface nucleation (de-wetting), because both of these processes
lead to a decrease in the Cu/Ta Auger intensity ratio. The Cu(920 €V)/Cu(60 eV) peak-
to-peak intengity ratio, on the other hand, allows one to determine whether diffusion or
de-wetting has taken place. Due to the different mean free paths of these two Auger
transitions (18 A at 920 eV and 4 A at 60 eV (23)), the Cu(60 eV) signal is more surface
sengitive. While surface nucleation causes little change to the Cu(920 €V)/Cu(60 eV)
ratio, Cu diffusion into the bulk causes the ratio to increase (34).

For a2 A Cu overlayer (Figure 3.4(a)), annealing to 1000 K resultsin no
significant change in the Cu/Ta intensity ratio. The surface concentration of Cu remains

fairly stable until 1000 K; above 1000 K it decreases rapidly.
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The corresponding Cu(920 eV)/Cu(60 V) ratio exhibits a similarly stable temperature
range below 1000 K, followed by a pronounced increase at 1100 K. Thisindicates that
for ultrathin Cu films (less than one monolayer, considering the 1.40 A van der Waals
radius of Cu (35)), the Cu does not de-wet Ta upon heating. It remains relatively stable
till 1000 K, at which temperature diffusion into the bulk occurs.

A digtinctly different behavior can be observed when the Cu coverage is increased
to 5 A (Figure 3.4(b)). The Cu/Taratio remains stable during annealing of the Cu films
from 300 K to 600 K. Upon heating the sample from 700 K to 1000 K, the Cu/Ta Auger
intensity ratio decreases consistently. During this period, the Cu(920 eV)/Cu(60 eV)
Auger intensity ratio revedls that diffusion of Cu into the bulk is not happening. Hence,
the decrease in the Cu/Taintensity ratio in the 600 K to 1000 K region is attributed to Cu
surface nucleation. Figure 3.4(b) also demonstrates that Cu diffusion into the bulk
becomes appreciable at 1100 K. A similar result is obtained when the Cu coverageis
increased to 9 A as shown in Figure 3.4(c). Significant decreasein the Cu/Taratio is
observed above 600 K. This, together with the trend in the Cu(920 eV)/Cu(60 eV) ratio,
indicates that the 9 A Cu film also de-wets the Ta substrate at 600 K. The nucleation
process, however, is accomplished in much shorter period (600-700 K) than in the 5 A Cu
film (600-1000 K). Inal three cases diffusion of Cu into the bulk was observed only at
1100 K.

3.3.4. Cu de-wetting behavior on oxygen covered Ta(poly) substrates

The effect of surface oxidation on the de-wetting/diffusion behavior of Cu was

studied by depositing 5 A of Cu on oxygen covered Ta substrates, followed by annealing.
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The results of various oxygen coverages are compared to “clean” Tain Figure 3.5.
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77



For a3 L O, exposure the oxygen coverage is equivalent to 0.7 monolayer (Figure
3.1). Figure 5(b) shows that the Cu/Taratio starts to decrease at 500 K. Since the
Cu(920 eV)/Cu(60 eV) ratio does not change at this temperature, the decrease in Cu/Ta
intensity is caused by the nucleation of the Cu overlayer on the surface. A more
pronounced effect is obtained at one monolayer oxygen coverage (10 L O,), which further
lowers the Cu de-wetting temperature to 300 K. Cu diffusion was not detected for
oxygen covered Ta substrates under these annealing conditions (10 min at each
temperature). Thisimplies that surface oxidation affects both de-wetting and diffusion
behaviors of Cu overlayer upon thermal annealing.

In order to clarify the role of surface oxygen on the de-wetting behavior of Cu
overlayer, corresponding O/Ta atomic ratios are plotted as a function of temperature in
Figure 3.6. The change in oxygen content upon heating follows exactly the same pattern
asthat of the Cu/Taratio. Namely, significant decrease in the O/Taratio occurs at 600,
500 and 300 K, respectively, for “clean”, 3L and 7 L O,-covered Tasurface. This
suggests that the surface O undergoes a concurrent nucleation process with Cu upon
annealing. In the absence of Cu, the change in the O/Taratio for a sputter-cleaned Ta
sample (plotted in dotted line) is negligible upon heating. This indicates that the decrease
in O content is specifically due to the interaction of O with Cu. Similar repulsion induced
phase separation between Cu and O atoms has been previoudly reported by Gomer and co-

workers for Cu films deposited on a chemisorbed-oxygen-covered W(110) surface (8, 10).
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3.3.5. Cu de-wetting behavior on carbidic Ta(poly) substrate

Carbide formation on Ta can also dramatically change the wetting/de-wetting
behavior of Cu as demonstrated in Figure 3.7. The de-wetting temperature of Cu (5 A)
occurs adso at 300 K asindicated by the sharp decrease of Cu/Taintensity ratio. Since the

Cu(920 eV)/Cu(60 eV) ratio stays relatively stable over the whole temperature range, it is
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inferred that the decline in the Cu/Taintensity ratio is not caused by diffusion.
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Figure 3.7. AESratios as afunction of temperature for Cu overlayer on a

carbide covered Ta(poly) substrate. Cu initial coveragewas5 A at 100 K.

The changesin C (from carbide) and O (interna impurity) relative intensity during
thermal annealing with or without the Cu overlayer are presented in Figure 3.8. Inthe
absence of Cu overlayer in Figure 3.8(a), C and O intensity remain roughly constant till
900 K. Above 900 K, the relative C intensity decreases substantially while no significant
change is detected for the O concentration. In the presence of 5 A Cu in Figure 3.8(b), a
similar trend is observed for C except that this time the decrease occurs at 800 K.
However, a strikingly different behavior is observed for O. The O intensity starts to

decrease at 400 K. Thisis attributed to the strong repulsion between Cu and oxide, which
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induces the formation of separate Cu and O domains (8, 10).
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Figure 3.8. The change of carbon and oxygen surface concentration with
annealing temperature for a(a) TaC/Ta, and (b) Cu/TaC/Talayer.

3.3.6. Cu diffusion kinetics on “clean”, oxidized and carbidic Ta(poly) substrates

The above dataindicate that Cu diffusion at 1100 K only occurs on clean Ta,
under the employed annealing conditions (10 min at each temperature setting). However,
under prolonged annealing at 1100 K, Cu diffusion was observed after different induction

periods for oxygen and carbide modified Ta substrates. The diffusion of Cu as afunction
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of annealing time at 1100 K is show in Figure 3.9. The divergence of Cu(920 eV)/Cu(60
eV) AESratioisindicative of Cu diffusion into the bulk. No desorption of Cu was
observed at 1100 K from TPD (not shown), which is consistent with Cu diffusion rather
than desorption. Cu diffusion does not occur for clean Ta until an incubation time of 5
min. Thisinduction period was reproducible whether the sample was kept continuously at
1100 K or cycled between 1100 K and 400 K (when Auger measurements were taken).
Aslong asthe total annealing time at 1100 K did not exceed 5 min, no Cu diffusion was
observed. Different induction times were aso obtained for O and C modified Ta
substrates. Asshown in Figure 3.9, it requires 10 min for Cu diffusion to occur on
partially oxidized Ta, 15 min on carbide covered Ta and 20 min on Tawith saturation
oxygen coverage. Thisindicates that the kinetics of Cu diffusion in Ta are affected by
surface impurity levels. Introduction of ~ monolayer concentrations of contaminant atoms
(O, C) appearsto retard the diffusion of Cu in Ta substrates. It should be point out that
the annealing temperature, as well as the annealing time, is aso a critical factor for the Cu
diffusion process. Extended annealing was performed for the above systems at 600, 900

and 1000 K for up to 60 min. No Cu diffusion was observed at those temperatures.
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3.3.7. Cu desorption from “clean” Ta(poly)

TPD results for Cu multilayer on a*“clean” Ta surface are shown in Figure 3.10.
The Cu coverage is estimated 40 A judging by the complete attenuation of Tasignal. A
first anneal to 1200 K was carried out but no desorption of Cu (mass 63) was detected.
Auger measurement after the first anneal indicated no change in Cu intensity. A second
TPD was performed toward 1400 K. Due to the difficulty to maintain heating at
temperatures above 1300 K, TPD experiments were terminated prematurely at 1350 K,
causing the asymmetric shape of the desorption peak. Asshown in Figure 3.10, one Cu
desorption peak is observed at above 1300 K as opposed to the two TPD features due to

monolayer and multilayer desorption of Cu on Ta(110) (see the insert in Figure 3.10 (7)).

83



The lack of multilayer desorption peak at lower temperature and the significantly higher

desorption temperature (compared to the 1150 K sublimation temperature of Cu (9)) are

evidence that the Cu is chemically bound to Ta. This corroborates results of Wong and

co-workers (6) in indicating that Cu forms a pseudo-two dimensional mixing layer with

Ta(002) substrates with a thickness of ~ 50 A.
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Figure 3.10. TPD spectra of Cu (mass 63) from a clean Ta(poly) surface.
Cu initial coverage was~ 40 A at 300 K. First anneal was carried out to
1200 K, second 1350 K. Theinsert (7) showsthe Cu TPD on aTa(110)

surface.

3.4. Di

scussions

Since the wetting/de-wetting of metal overlayers with substratesis well correlated

with the work of adhesion (9), the wetting behavior of Cu on a substrate is not only of



practical significance during deposition, but also a guide to subsequent interfacia stability.
For sub-monolayer (2 A) coverage of Cu at room temperature, annealing to 1000 K does
not cause Cu to de-wet “clean” Ta substrate (Figure 3.4a). Thisindicates that the Cu
adatoms form a conformal first layer on Ta(poly) at room temperature. The formation of
a“smooth” first layer of Cu has been observed by Goodman et a. on a Ta(110) surface
(7). Asevidenced by their TPD results (see insert in Figure 3.10), only one desorption
feature is present for submonolayer coverages of Cu (vapor-deposited at ~350 K). For Cu
coverages greater than one monolayer, a second peak develops at lower temperature. The
second peak corresponds to multilayer desorption while the first to monolayer desorption.
The existence of a conformal first layer indicates that the interaction between Cu-substrate
is stronger than that of Cu-Cu. Such substrates include Ta(110) (7), W(110) (9, 36),
W(100) (36), aswell as Al,Ox/Al(111) (34).

Annealing of 5 A Cu overlayer on various Ta substrates result in the 3-D
nucleation of Cu at elevated temperatures. The decrease in Cu Auger intensity on partialy
oxidized Ta substrates coincides with the decrease in O Auger intensity (Figure 3.5 and
3.6), indicating the segregation of Cu and O into separate domains. This phase separation,
induced by strong Cu-O repulsion, has been reported on Cu/O,/W(110) systems (8, 11).
Contrasting behavior is observed for the Cu/Al,Os/Al(111) system (34), where Cu
diffusion through the oxide layer occurs upon heating. This results in the concurrent
decrease in Cu Auger intensity and increase of O intensity due to the diminished
attenuation of the Al,O5/Al(111) substrate.

Unusua induction periods are observed for the thermal diffusion of Cu into
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“clean” and modified Ta substrates (Figure 3.9). This cannot smply be attributed to the
segregation of impurity atoms into grain boundaries, since the C and O coverages are at
the monolayer range. One can hardly expect that such minor concentrations of impurity
would effectively block the diffusion pathways of Cu. The fact that Cu diffusion occurs
at the same temperature but after different retardation periods suggests that the
mechanism is kinetically, rather than thermodynamically, driven. Unfortunately, the
exact mechanism of this process cannot be elucidated by the experimental data collected
so far.

Since barrier layers even in some present devices (e.g., near the corners of
trenches) may approach 50 A in thickness, the formation of such pseudo-two dimensional
mixing layers presents a significant threat to the integrity of conventional diffusion barrier
materials. Datafrom the literature (12) suggest that this mixing effect may occur on W
aswell as Tasurfaces. The data also suggest that this mixing effect may be extremely
sensitive to surface structure, that is, it occurs only on (100) or similar surfaces (6, 12)
but not on (110) surfaces (7, 36). Furthermore, such mixing may aso be affected by the
presence of impurities because impurities such as C, N and O prefer to occupy the high
coordinate site at such surfaces (e.g., the 4-fold site on the (001) surface). Since Cu may
also prefer such high coordinate sites (12), the implication is that impurity occupancy of
high coordinate sites will critically affect Cu wetting, adhesion and diffusion at W and Ta-
containing barrier layers. Therefore, even minor surface contamination encountered
during cluster tool processing can significantly affect Cu/Ta interfacial properties. This

has significant implications for the type of pre-cleaning/contamination control required
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for consistent interface properties.

3.5. Summary and Conclusions

The thermal stability of Cu on clean, oxidized, and carbidic Ta substrates was
studied under UHV conditions with the use of Auger electron spectroscopy. Analysis of
the intensity ratios between Cu/Ta and Cu/Cu shows that even sub-monolayer coverages
of oxygen or carbide on polycrystalline Ta significantly degrade the strength of Cu/Ta
chemical interactions. Surface nucleation of Cu on clean Ta substrates occurs above 600
K. The presence of 0.7 monolayer of oxygen on Ta samples, however, lowers this de-
wetting temperature to 500 K. The de-wetting temperature is further lowered to 300 K
when the Ta substrate is pre-covered with a monolayer of oxygen. Similar behavior was
observed for Ta substrates modified by carbide. Cu startsto de-wet C/Ta surface at
monolayer coverages of carbide above 300 K. The diffusion of Cu into the bulk Tais
similarly affected by oxygen and carbon. If the surface temperature of the clean Tais held
at 1100 K, Cu diffuses into the bulk after an induction period of 5 min. This induction
period increases to 10 min for partialy oxidized Ta, 15 min for carbidic Taand 20 min for
fully oxidized Ta. It isclear from these results that the diffusion barrier property of
polycrystalline Taimproves with the incorporation of impurity atoms. This improvement,
however, comes at the expense of weakened Cu adhesion on Ta as demonstrated by

reduction of de-wetting temperature.
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