
Published online 28 June 2023 NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 2 1
https://doi.or g/10.1093/nar gab/lqad063 

SUPREME: multiomics data integration using graph
convolutional networks
Ziynet Nesibe Kesimoglu 

1 and Serdar Bozdag 

1 , 2 , 3 ,*

1 Department of Computer Science and Engineering, University of North Texas, Denton, TX, USA, 2 Department of
Mathematics, University of North Texas, Denton, TX, USA and 

3 BioDiscovery Institute, University of North Texas,
Denton, TX, USA 

Received January 19, 2023; Revised May 08, 2023; Editorial Decision June 01, 2023; Accepted June 07, 2023 

A

T
c
g
d
p
s
b
n
d
d
n
l
s
m
c
e
i
g
m
t
f
s
s
n
w
c
c
e
d
m
t
m

I

C
c

u
c
p
o
e
T
2
s
a
b
c
f
s
i
d
S
o  

t
b
o

c
c
p
(
m
c
s
S
t
t

 

a
f
b
t
p
t
s
t
P

*

©
T
(
i

BSTRACT 

o pave the road towards precision medicine in 

ancer, patients with similar biology ought to be 

rouped into same cancer subtypes. Utilizing high- 
imensional multiomics datasets, integrative ap- 
roaches have been developed to uncover cancer 
ubtypes. Recently, Graph Neural Networks have 

een discovered to learn node embeddings utilizing 

ode features and associations on graph-structured 

ata. Some integrative prediction tools have been 

e veloped le veraging these ad v ances on m ultiple 

etworks with some limitations. Addressing these 

imitations, we developed SUPREME, a node clas- 
ification framework, which integrates multiple data 

odalities on graph-structured data. On breast can- 
er subtyping, unlike existing tools, SUPREME gen- 
rates patient embeddings from multiple similar- 
ty networks utilizing multiomics features and inte- 
rates them with raw features to capture comple- 
entary signals. On breast cancer subtype predic- 

ion tasks from three datasets, SUPREME outper- 
ormed other tools. SUPREME-inferred subtypes had 

ignificant survival differences, mostly having more 

ignificance than ground truth, and outperformed 

ine other approaches. These results suggest that 
ith proper multiomics data utilization, SUPREME 

ould demystify undiscovered characteristics in can- 
er subtypes that cause significant survival differ- 
nces and could impr o ve gr ound truth label, which 

epends mainly on one datatype. In addition, to show 

odel-agnostic property of SUPREME, we applied it 
o two additional datasets and had a clear outperfor- 
ance. 

NTRODUCTION 

ancer is one of the deadliest diseases for which cancer- 
ausing agents such as onco genes, m utations, and gene reg- 
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la tory associa tions have not been fully demystified. Can- 
er patients show different characteristics in terms of the 
rogression of disease and response to treatment ( 1 ). Vari- 
us biological datasets from cancer tissues have been gen- 
rated to better characterize cancer biology. For instance, 
he Cancer Genome Atlas (TCGA) project generated over 
.5 petabytes of multiple omics (multiomics) data for thou- 
ands of patients from 33 different cancer types (data are 
vailable at https://portal.gdc.cancer.gov/ ). Specifically for 
reast cancer, the Molecular Tax onom y of Breast Can- 
er International Consortium (METABRIC) has generated 

our types of multiomics data for thousands of breast tumor 
amples ( 2 ). Utilizing high-dimensional biological datasets 
n public da tabases, computa tional approaches have been 

e v eloped to discover subtypes of various cancers ( 3–5 ). 
e v eral of the cancer subtype prediction studies rely only 

n one type of biological da ta type ( 4 , 6 , 7 ). Howe v er, each of
hese da ta types captures a dif ferent part of the underlying 

iology, thus de v eloping integrati v e computational meth- 
ds has been an important r esear ch ar ea in bioinformatics. 
Breast cancer is currently the most commonly-diagnosed 

ancer worldwide ( 8 ). Therapeutic groups in breast can- 
er (i.e., estrogen receptor-positi v e, pr ogester one receptor- 
ositi v e, human epidermal growth factor receptor 2 

HER2) amplified group, and triple-negati v e breast cancer) 
ainly depend on thr ee r eceptors. Even though these re- 

eptors are very impactful in determining the breast cancer 
ubtypes, they are not solely sufficient to classify a patient. 
ome other studies showed that genomic and clinical fea- 
ures such as race , age , and some mutations are also impor- 
ant in breast cancer subtyping ( 9 , 10 ). 

Genomic da ta types are f ound inf ormati v e for differenti-
ting subgroups in breast cancer. In 2009, Parker et al. ( 11 ) 
ound a clear difference in the expression of 50 genes for 
reast cancer and introduced breast cancer molecular sub- 
ypes, called PAM50 subtypes . In 2012, the TCGA group 

ublished a study analyzing breast cancer subgroups and 

heir associations with single datatypes, obtaining subtype- 
pecific patterns in each datatype ( 12 ) and supporting 

he importance of gene expression-based models such as 
AM50 ( 11 ). Even though there are important signals from 
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both clinical and genomic features to determine the subtype
of a patient, relying on a single data modality is not suffi-
cient to dif ferentia te subtypes clearly. As we get more sam-
ples and da ta types to analyze, it is important to integrate all
the available da ta types properly with advanced approaches
to understand differences in the characteristics of cancer pa-
tients. 

Recently se v eral groups hav e de v eloped unsupervised
computational tools to integrate multiple datatypes to dis-
cover cancer subtypes. For instance, iClusterPlus ( 13 ) uses a
joint latent variable model concatenating multiple datatypes
with dimension reduction to cluster cancer patients. Simi-
larity Network Fusion (SNF) ( 14 ) builds a patient similar-
ity network based on each da ta type, obtains a fused patient
network by a ppl ying a nonlinear fusion step, and performs
the clustering on that final network. PINSPlus ( 15 ) assumes
that samples that are truly in the same subtype are clus-
tered together despite small changes in the data. PINSPlus
discovers the subtypes if the samples are highly connected
for different datatypes a ppl ying data perturbation. The au-
thors demonstra ted tha t PINSPlus had robust results with
significant survival differences across different cancer types.
Those studies focus on unsupervised multiomics data inte-
gration without the utilization of found subtype labels such
as PAM50 subtype labels. Furthermore, these tools utilize
patient similarity networks or features, but not both simul-
taneousl y, w hile ther e ar e r ecent improvements in graph rep-
resentation learning allowing the utilization of both at the
same time ( 16–18 ). 

Graphs (networks) are suitable data structures to store
multiomics datasets, howe v er, machine learning (ML)-
based approaches are challenging on graph data. Deep
learning-based ar chitectur es have been used e xtensi v ely for
grid-like data (e.g., image), howe v er, these methods are not
directl y a pplicable to gra ph data. Gra phs ar e unstructur ed
as each node has a varying number of neighbors and there
is no fixed ordering of nodes. To train ML models on graph
data, embedding (a fixed low-dimensional vector) is used
and some shallow embedding methods emerged by encod-
ing e v ery node into embedding, r epr esenting the position
and the local relationships in the graph ( 19–21 ). Howe v er,
these shallow embedding methods are not scalable for large
graphs and cannot utilize the node features that we have
plenty of, thus, these methods have been replaced with
more advanced deep learning-based methods such as Graph
Neural Networks (GNNs) ( 16 , 17 ). The main difference in
GNN-based ar chitectur es is how the featur es ar e aggr e-
gated from the local structure. Graph Convolutional Net-
work (GCN) is one of the most popular GNNs that uses a
modified aggregation involving self edges with normaliza-
tion across neighbors ( 18 ). GNNs have recently been ap-
plied to biological problems such as cancer type / subtype
prediction and drug response prediction ( 18 , 22–25 ). 

Even though there are some studies a ppl ying convolu-
tion to graph-structured data for cancer subtyping, these
models are mostly applicable to a single network or had
some limitations for integrati v e approaches. In ( 26 ), cancer
type prediction of patients from 33 cancer and non-cancer
types (i.e., all normal samples from all 33 available can-
cer types) was performed using GCNs. The input network
was based on gene coexpression or pr otein-pr otein inter-
action, but the convolution was done on the gene expres-
sion dataset only, thus, missing the information of multi-
ple data modalities. Multiomics GCN (MOGONET) is a
supervised multiomics integration frame wor k using GCNs
with a patient similarity network for mRNA expression,
DN A methylation, and microRN A expression separatel y
( 27 ). MOGONET gets the label independently from three
different models, then uses them to get the final predic-
tion. Howe v er, it does not consider multiple features for net-
works. We call this kind of embedding datatype-specific pa-
tient embedding where the methodology generates datatype-
specific networks with da ta type-specific node fea tures and
considers only the prediction labels from separate GCN
models. Howe v er, these embeddings could be improved by
utilizing all the multiomics patient features on each local
network structure, making the embedding network-specific
patient embedding . Moreover, it is possible to utilize GCN
not only to get the prediction label but also to obtain the em-
beddings and integrate them. Going further, we can also in-
tegra te the pa tient fea tures (called r aw featur es ) with embed-
dings to capture any diluted signals from features. To utilize
more from available knowledge, it is important to properly
integrate multiple network r epr esentations and multiomics
features sim ultaneousl y. 

To address the aforementioned limitations, we de v eloped
a computational tool named SUPREME integrating mul-
tiple types of datasets using GCNs. SUPREME gener-
ated similarity networks using features from multi-modal
datasets where node features include features from all data
modalities, assuming that nodes with a similar local neigh-
borhood are likely to belong to the same class. SUPREME
encodes the relations on a network from each datatype
and obtains network-specific node embeddings incorporat-
ing node features on each network. Then SUPREME in-
tegrates these embeddings providing e xtensi v e e valuations
of all combinations of node embeddings. For each com-
bina tion, SUPREME integra tes the selected embeddings
with raw features to utilize all the knowledge at the same
time. SUPREME utilizes all available da ta types from pub-
lic datasets and can interpret each datatype’s effecti v eness
in terms of features and networks. Being model-agnostic,
SUPREME could be easily adapted to any model, any pre-
diction task handling any number of da ta types, and could
be easily modified by changing the embedding integration
method, network gener ation str ategy, and feature extr ac-
tion approach. 

In this study, SUPREME was applied to three differ-
ent prediction tasks from fiv e dif ferent da tasets. We applied
SUPREME to predict subtypes of breast cancer patients
using multiomics datasets (from TCGA and METABRIC
da tasets separa tel y and to gether). Our results on cancer
subtype prediction tasks showed that SUPREME outper-
formed other integrati v e supervised cancer (sub)type pre-
diction tools and baseline methods. SUPREME had im-
proved performance showing the importance of GCN-
based approaches, network-specific patient embeddings,
and raw feature integration. SUPREME was robust show-
ing high and consistent prediction performance. We ob-
served that the gene expression (EXP)-based features were
the most significant features, as expected for breast can-
cer. Importantly, SUPREME-inferred cancer subtypes had
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Table 1. Number of features and samples for each dataset. Subtypes 
ar e abbr eviated as BL: basal-like, HER2: HER2-Enriched, LA: luminal- 
A, LB: luminal-B, NL: normal-like 

Dataset 
Number of 
raw features Number of samples 

TCGA 3088 1022 samples: 172 BL (17%), 78 
HER2 (8%), 538 LA (53%), 195 LB 

(19%), 39 NL (4%) 
METABRIC 1761 1699 samples: 199 BL (12%), 220 

HER2 (13%), 679 LA (40%), 461 LB 

(27%), 140 NL (8%) 
Combined 
(TCGA+ 

METABRIC) 

1229 2721 samples: 371 BL (14%), 298 
HER2 (11%), 1217 LA (45%), 656 LB 

(24%), 179 NL (7%) 
IMDB 3066 4278 samples: 1135 (27%), 1584 

(37%), 1559 (36%) 
ACM 1870 3025 samples: 1061 (35%), 965 (32%), 

999 (33%) 
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onsistently significant survival differences and were mostly 

ore significant than the survival differences between 

round truth subtypes, which were based on gene expres- 
ion da ta type. These results suggest that SUPREME can 

if ferentia te the characteristics of cancer subtypes prop- 
rly utilizing the multiple network relations and multiple 
a ta types. To demonstra te the model-agnostic property of 
ur tool, we also applied SUPREME to ACM and IMDB 

atasets and SUPREME outperformed other methods on 

oth datasets. 

ATERIALS AND METHODS 

UPREME is a computational tool for node classifica- 
ion tasks integrating multiple data modalities using GCNs. 
riefly, the first step is da ta prepara tion. In the second step, 
UPREME extracts features from each da ta type. Using 

hose fea tures, SUPREME genera tes individual similarity 

etworks per da ta type where fea tures from all da ta types are
sed as node attributes. In the third step, using the obtained 

etworks and fea tures, SUPREME genera tes the network- 
pecific node embeddings by running GCN on each net- 
ork. In the last step, SUPREME does prediction by in- 

egrating individual network-specific embeddings and raw 

eatures. In the following part, we explain each step of 
UPREME in detail. 

ata pr epar ation 

e applied SUPREME on three datasets for the breast 
ancer subtype prediction task. We collected the data and 

enerated se v en da ta types (i.e., clinical, copy number aber- 
ation, coe xpression, gene e xpression, DNA methylation, 
icroRN A expression, and m utation) across 1022 breast 

umor samples from TCGA ( 12 ), fiv e da ta types (i.e., clin-
cal, copy number aberration, coe xpression, gene e xpres- 
ion, and mutation) across 1699 breast tumor samples from 

ETABRIC ( 2 ) and three da ta types (clinical, gene ex- 
ression, and mutation) across a total of 2721 breast tu- 
or samples from the combined datasets of TCGA and 

ETABRIC. As ground truth for the prediction task, we 
btained the PAM50 subtype labels, namely Basal-like, 
ER2-Enriched, Luminal-A, Luminal-B, and Normal- 

ike ( 11 ). Data preprocessing details are in Supplementary 

ethods 1.1. 
We also collected ACM and IMDB datasets for two ad- 

itional tasks: movie genre prediction from IMDB dataset 
 https://www.imdb.com ) and paper ar ea pr ediction task 

rom ACM dataset ( http://dl.acm.org ). IMDB dataset has 
 heterogeneous network with three node types (movie, ac- 
or, and director) along with tw o associations: mo vie-actor 
nd movie-director. The movies have three genre classes: ac- 
ion, comed y, and drama. ACM da taset has also three node 
ypes (paper , author , and subject) on a heterogeneous net- 
ork along with two associations: paper-author and paper- 

ubject. The papers have thr ee classes: database, wir eless 
ommunication, and data mining. 

The number of features and samples for each dataset are 

hown in Table 1 . a
eatur e extr action & netw ork gener ation 

r east cancer subtyping. SUPREME incorpora tes se v en 

a ta types for TCGA da ta, fiv e da ta types for METABRIC
a ta, and three da ta types for the combined data. We uti- 

ized a Random Forest-based feature selection algorithm, 
alled Boruta ( 28 ), to extract features from high dimen- 
ional da ta types. The selected fea tures in the da ta prepro- 
essing step (i.e., multiomics featur es) wer e used to com- 
ute the similarity between patients when generating the 
atient similarity networks, as node features in the patient 
imilarity networks, and to integrate as raw features be- 
or e the pr ediction task. To compute patient similarities in 

a ta type-specific pa tient similarity networks, we used Pear- 
on correlation for gene expression, copy number aberra- 
ion, DN A methylation, microRN A e xpression, and coe x- 
ression da ta types; the Gower metric ( 29 ) from the daisy 

unction of cluster R package ( 30 ) for clinical features; and 

accard distance for binary muta tion fea tures. After select- 
ng the top edges, the edge weights were eliminated to gen- 
rate an unweighted network. We used 2500 edges for the 
a ta types of TCGA, 4500 for METABRIC and 7000 for the 
ombined data (having a pproximatel y 2.5 times the sample 
ize). Details of feature extraction and network generation 

re in Supplementary Methods 1.2. 

ovie g enr e pr ediction. We did not a ppl y any feature se-
ection for the IMDB dataset and used node features pro- 
essed in ( 31 ). Using two associations (i.e., movie-actor and 

ovie-director) in the data, two movie similarity networks 
ere generated based on two meta-paths using ( 32 ): movie- 
irector-movie with 17 446 edges and mo vie-actor-mo vie 
ith 85 358 edges. Meta-path-based similarity networks 

onnect nodes based on a gi v en association. For instance, 
he meta-path mo vie-actor-mo vie defines similarity as the 
xistence of at least one common actor between two movies. 

aper ar ea pr ediction. For the ACM da taset, we did not 
 ppl y any feature selection and used the node features pro- 
essed in ( 31 ). Utilizing two associations (i.e., paper-author 
nd paper-subject) in the da ta, two meta-pa ths were used to 

enerate two paper similarity networks using ( 33 ): paper- 
uthor-paper with 29 281 edges and paper-subject-paper 

https://www.imdb.com
http://dl.acm.org
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diction task. 
with 2 210 761 edges. The meta-path-based similarity defi-
nition is the same as in the IMDB dataset. 

When there is a high number of raw features and many
networks to integrate, this might affect the prediction per-
formance, and model training could be time-consuming.
Thus, we added another optional feature selection step to
further reduce the number of raw fea tures integra ted with
the node embeddings for the prediction task. We enabled
this additional feature selection for TCGA data where we
had a high number of raw features and networks and ob-
served that it reduced running time without affecting the
prediction performance. We did not a ppl y optional feature
selection for ACM and IMDB datasets since we have only
tw o netw orks. Similarl y, we did not a ppl y an y reduction f or
the number of edges for these datasets since we do not have
any quantitati v e similarities to prioritize the edges on meta-
path-based similarity networks. 

Node embedding generation 

After extracting features and generating networks, we ob-
tained network-specific node embeddings, which capture
the topology of the network as well as node features to be
utilized in a downstream ML task. 

In this study, we used the GCN model of Kipf and
Welling ( 18 ) involving self edges in convolution and scal-
ing the sum of aggregated features across the neighbors.
GCN models learn the data by performing convolution on
networks, considering one-hop local neighbors with equal
contribution, and encoding the local topology of the net-
w ork. Stack ed layers involve recursive neighborhood diffu-
sion considering more than a one-hop neighborhood. 

Let’s call an undirected graph as G = ( V, E) where V is a
set of n nodes, i.e., V = { v 1 , v 2 , ..., v n } , and E is a set of edges
between nodes where ( v i , v j ) ∈ E when v i ∈ V , v j ∈ V and
v i and v j have an association based on the graph G. Since
the graph G is undirected, ( v i , v j ) ∈ E ⇐⇒ ( v j , v i ) ∈ E .

The input for a GCN model is a fea ture ma trix X ∈ R 

nxk

where k is the feature size, and the adjacency matrix A ∈
R 

nxn with added self edges defined as:

A [ i, j ] =
{

1 if 
(
v i , v j 

) ∈ E or i = j
0 otherwise 

The iteration process is defined as: 

H 

( l+ 1) = σ
(
D 

− 1 
2 AD 

− 1 
2 H 

( l) W 

( l) 
)

with H 

(0) = X where

D[ i, i ] =
n ∑ 

j= 1 

A [ i, j ] ,

H 

( l) is the activation matrix in the l th layer, W 

( l) is the train-
able weight matrix in the l th layer and � is the activation
function. 

Considering breast cancer subtyping task using TCGA
data, SUPREME setup for the single model generation was
as follows: there were se v en networ ks (i.e., patient similar-
ity networks), each obtained from a dif ferent da ta type. All
networks had nodes as breast cancer patients and edges
based on the patient similarities from the corresponding
data. For instance, let us consider G as a gene expression-
deri v ed patient similarity network. This network connects
patient nodes with a high correlation between their gene
expression profile. As node features, G has the combined
featur es, which wer e extracted from all the se v en da ta types.
Features of v i are denoted as x i ∈ R 

k where k is the total
feature size. So, the stacked feature matrix X ∈ R 

nxk is:

X = 

⎡ 

⎢ ⎢ ⎣ 

x 1
x 2 
. . . 

x n

⎤ 

⎥ ⎥ ⎦ 

The local one-hop neighborhood of a node v i is N i ={
v j :

(
v i , v j 

) ∈ E 
}

that included the set of nodes having an
association with the node v i . Feature aggregation on the lo-
cal neighborhood of each node was done by m ultipl ying X
by the nxn -sized scaled adjacency matrix A 

′ 
where

A 

′ = D 

− 1 
2 AD 

− 1 
2 .

Using 2-layered GCN in SUPREME, we had the form of
the forward model giving the output Z where

Z = softmax 

(
A 

′ ReLU 

(
A 

′ X W 

(1) )W 

(2))

and W 

(1) ∈ R 

kxh , W 

(2) ∈ R 

hxc were the trainable weights for
the first and second layers, respecti v el y, w here h was the
hidden layer size and c was the number of classes to pre-
dict (namely, Basal-like, Luminal-A, Luminal-B, HER2-
Enriched, and Normal-like, with c = 5). The loss function
was calculated by cr oss-entr opy err or. Adam optimization
( 34 ) was used as the state-of-the-art for stochastic gradient
descent algorithm and dropout was added for the first GCN
lay er. Ear ly stopping was used with the patience of 30 forced
to have at least 200 epochs. 

We split the total samples into training, validation, and
test sets. This splitting was stra tified, tha t is, keeping the
same ratio of the subtype labels in the original data for each
split. We kept the test set only for final evaluation of the
tool. Training and validation splits are randomly selected
for each run as stratified. For the breast cancer subtyping,
we split 20% of the total samples as a test set. The remaining
80% of the samples were used for training (60%) and valida-
tion (20%). For IMDB and ACM datasets, we used the same
data splits in ( 31 ). To tune the hyperparameters of the GCN
model (i.e., hidden layer size and learning rate), for each
run, SUPREME repeated an evaluation metric (i.e., macro-
averaged F1 (macro F1) score) 10 times for each hyperpa-
rameter combination (Supplemental File 2) and selected the
hyperparameter combination giving the best median macro
F1 score on the valida tion da ta to generate the final model.

Similarl y a ppl ying the methodolo gy for other da ta types,
we generated se v en differ ent GCN models on T CGA data.
Repeating the same procedure for other datasets, we ob-
tained fiv e models on METABRIC data, three models on
the combined data, and two models on ACM and IMDB
data. These final models were used to extract network-
specific patient embeddings to use in the downstream pre-
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 r aining pr edictive models using node embedding combina- 
ions 

or each combination of node embeddings from d
a ta types, we conca tena ted them with the raw features and 

rained prediction models (having 2 

d − 1 models). Specif- 
cally, we had 127, 31, se v en, three, and three SUPREME 

odels for TCGA, METABRIC, the combined data 

TCGA+METABRIC), ACM, and IMDB datasets, respec- 
i v ely. 

We tested SUPREME with se v eral ML methods namely, 
 GBoost, Support V ector Machine (SVM), Random For- 

st (RF), and Multi-layer Perceptron (MLP). For all 
atasets, we decided to use MLP as it gave consistently high 

erformance (Supplementary Table S1 and discussion sec- 
ion for the details). 

We did hyperparameter tuning for the prediction task, 
imilar to GCN hyperparameter tuning in the previous step. 

e used the training and validation cohort to tune the hy- 
erparameters (e.g., hidden layer size and learning rate) of 
he final model, where training and validation splits were 
andomly selected as stratified. We repeated the SUPREME 

un 10 times for each hyperparameter combination and 

sed the hyperparameter combination giving the best me- 
ian macro F1 score on the validation data. Using this hy- 
erparameter combination, the final model was built and 

valuated 10 times on the test data, which was ne v er seen 

uring training and hyperparameter tuning. The evalua- 
ion metrics (macro F1, weighted-average F1 (weighted F1) 
cor e, and accuracy) wer e obtained from the median of 
hese 10 runs. 

ESULTS 

e introduced a novel node classification frame wor k, called 

UPREME, that utilizes graph convolutions on multiple 
a ta type-specific networks tha t are annota ted with multi- 
odal da ta types as node fea tures. This frame wor k is model-

gnostic and could be applied to any classification prob- 
em with properly processed da ta types and networks. In 

his work, SUPREME was a pplied specificall y to the breast 
ancer subtype prediction problem by a ppl ying convolution 

n patient similarity networks constructed based on multi- 
le biological da ta types from breast tumor samples (Fig- 
re 1 ). We also evaluated SUPREME on ACM and IMDB 

a tasets demonstra ting the outperformance of SUPREME 

n different domains. 

UPREME outperformed the cancer subtype prediction 

ools and baseline methods 

or the breast cancer subtyping task, we compared the per- 
ormance of SUPREME on three different datasets with 

e v en other cancer (sub)type prediction tools and base- 
ine methods, namely Deep cancer subtype classification 

DeepCC) ( 35 ), GCN-based classification (GCNC) ( 26 ), 
OGONET ( 27 ), MLP, RF, SVM, and XGBoost. For each 

a taset combina tion, SUPREME builds a separa te cancer 
ubtype prediction model. For ML-based baseline meth- 
ds (i.e., MLP, RF, SVM, and XGBoost), we integrated 

nly the raw features from the selected combination and 
id the prediction with those features. MOGONET uti- 
izes GCN on multiomics data utilizing datatype-specific 
mbedding predictions. GCNC le v erages GCN with gene 
xpr ession featur es on pr otein-pr otein interaction (PPI)- 
r coexpression-based gene network, while DeepCC uti- 

izes only gene expression da ta type with pa thway activity 

ransformation through an MLP model. Ther efor e, we had 

nly two classification models for GCNC: GCNC PPI with
he PPI network and GCNC COE 

with the coexpression net- 
ork, and one model for DeepCC. To see the impact of the 

ntegration of raw features into the embeddings, we also 

rained models without integrating raw features with pa- 
ient embeddings, called SUPREME- . We ran SUPREME, 
UPREME-, and the other tools for all the combinations of 
vailable da ta types. Even though MOGONET is applicable 
o any number of da ta types, we could not run the tool for
he models with more than fiv e da ta types (waiting time was 
ore than two days per combination), thus we had only 31 

ifferent models for TCGA data, while we had all models 
or METABRIC and the combined data. 

SUPREME and SUPREME- outperformed all other 
ultiomics integration methods for three datasets in terms 

f macro F1, accuracy, and weighted F1 (Figure 2 , Sup- 
lementary Figures S3 and S4). SUPREME significantly 

utperformed MLP, which utilizes raw features only in 

ll datasets, showing the importance of GCN utilization. 
e observed that SUPREME significantly outperformed 

UPREME- for all three datasets. 
We ran the tools that utilize only gene expression 

a ta type and evaluated their performance (Supplementary 

able S2). For TCGA data, SUPREME achieved signifi- 
antly higher performance than DeepCC and GCNC mod- 
ls, while performance on METABRIC and the combined 

ata was comparable or superior (Figures 2 and S3). 
In addition, we checked the subtype-specific F1 scores, 

nd had consistent and higher performance across all sub- 
ypes, mostly having significant differences (Supplementary 

igure S5). Specifically, on TCGA data, we had signifi- 
antly better performance than all other tools for all sub- 
ypes in terms of subtype-specific F1 scor es. P articularly, 
UPREME had a significantly higher subtype-specific F1 

core than all other tools on the Normal-like subtype for 
ll three datasets. Considering that the Normal-like subtype 
ad the smallest sample size in all three datasets (4% of the 
amples from TCGA, 8% from METABRIC, and 7% from 

he combined data), achieving this performance increase in- 
icates SUPREME’s robustness e v en for minority classes. 

UPREME had consistently high performance even with sin- 
le models 

o see SUPREME’s performance with a single da ta type, 
e investigated models generated with only one datatype, 

alled single model . We compared SUPREME with an 

LP-based model trained using a single da ta type to show 

he impact of our GCN-based approach. To show the im- 
act of different approaches with one datatype, we com- 
ared our single models against MOGONET and our EXP- 
ased model with DeepCC and GCNC models. We con- 
ucted these experiments for all three datasets. 
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Figure 1. SUPREME pipeline for breast cancer subtype pr ediction. SUPREME extracts featur e from available da ta types and genera tes pa tient similarity 
networks where nodes are annotated with features from all datatypes. Utilizing graph convolutions on each patient similarity network, patient embeddings 
are generated. To provide e xtensi v e e valuations of subtype prediction, a machine learning model is trained for each combination of patient embeddings 
and raw multiomics features. [ u k is k th patient, i ( j ) is a raw fea ture ma trix for the j th da ta type where each row is i ( j ) 

k corresponding to the feature vector of

the k th patient for the j th datatype. Similarly, z ( j ) is a node embedding matrix for the j th datatype-specific network where each row is z ( j ) 
k corresponding to

the embedding of the k th patient.] 

Figure 2. Classification results. Violin plot of macro F1 scores obtained from 127 different models including all dif ferent combina tions of da ta types as 
compared to the cancer subtype prediction tools and baseline supervised methods on TCGA data. DeepCC and GCNC violin plots show the distribution 
of macro F1 scores of ten runs of a single model as they can only utilize gene expression da ta type. The significance le v el was measured with respect to 
SUPREME (Wilco x on rank-sum test p-value to compare the distribution of violin plots r epr esenting the significance < 0.001 by ***, else if < 0.01 by **, 
and else if < 0.05 by *). [MLP: Multi-layer Perceptron, RF: Random Forest, SUPREME-: SUPREME without raw feature integration, SVM: Support 
Vector Machine] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on the single model results, SUPREME outper-
f ormed MOGONET f or all single models from all three
datasets (Table 2 , Supplementary Tables S3–S5). Also,
SUPREME outperformed MLP (six out of se v en models
for T CGA data, thr ee out of fiv e for METABRIC data,
and two out of three models for the combined data), or had
comparable performance, while MLP had extremely poor
performance on some da ta types, showing the importance
of GCN-based approach. 

There was no clear winner for the comparison of the
SUPREME EXP-based model with DeepCC and GCNC
models. In terms of macro F1 score, SUPREME outper-
formed both methods on TCGA data and GCNC (1 draw, 1
win) on the combined data. (Table 2 , Supplementary Tables
S3–S5). This could be because DeepCC and GCNC utilize
pa thway activa tion, PPI network, or coexpression network
in addition to gene expression da ta type. Nonetheless, by uti-
lizing more da ta types SUPREME outperformed or was on
par with both tools for all datasets (Figure 2 , Supplemen-
tary Figures S3 and S4). 

EXP-based models had the highest macro F1 score for all
three datasets for all methods (Table 2 , Supplementary Tab-
less S3, S4, and S5). The only exception is that SUPREME-
MET-based model had slightly higher performance than
SUPREME- EXP-based model on TCGA data. High per-
formance of EXP-based models is not surprising as the
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Table 2. Single model results on TCGA data. Macro F1 scores for each model with a single dataype. See Figure 1 for the abbreviations of the 
da ta types. [MLP: multi-layer perceptron] 

Method CLI CNA COE EXP MET MIR MUT 

SUPREME 0.68 ± 0.04 0.80 ± 0.03 0.76 ± 0.04 0.84 ± 0.02 0.79 ± 0.03 0.73 ± 0.02 0.75 ± 0.03 
SUPREME- 0.72 ± 0.02 0.77 ± 0.02 0.77 ± 0.04 0.77 ± 0.05 0.79 ± 0.04 0.70 ± 0.02 0.74 ± 0.04 
MLP 0.46 ± 0.07 0.53 ± 0.04 0.59 ± 0.02 0.82 ± 0.03 0.69 ± 0.04 0.74 ± 0.04 0.28 ± 0.06 
MOGONET 0.41 ± 0.01 0.52 ± 0.01 0.57 ± 0.01 0.75 ± 0.01 0.61 ± 0.03 0.71 ± 0.03 0.34 ± 0.01 
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reast cancer subtype labels are based on gene expression 

a ta. We observed tha t SUPREME usually outperformed 

UPREME- on single models, which indica tes tha t utiliz- 
ng raw features usually improves the model performance. 
n the other hand, there were few cases where adding raw 

eatures dropped the performance (e.g., CLI-based mod- 
ls on TCGA data). By examining SUPREME- and MLP 

odel performances, we compared the predicti v e power of 
atient embeddings with raw features. We observed that pa- 
ient embedding features were more useful than raw features 
ith few exceptions, such as microRNA expression- (MIR) 
nd EXP-based models on T CGA data, cop y number aber- 
ation (CNA)-based on METABRIC data, and CLI-based 

odel on the combined data. Specifically on TCGA, we 
ee that CLI-based embedding was more informati v e than 

LI-based features. For CNA- and mutation (MUT)-based
odels, embeddings wer e mor e useful than raw featur es, but
e observed that integr ating r aw features to embeddings

urther improved the performance. Similarly, although for
he EXP-based model on TCGA data, embeddings were less
nformati v e than raw features, integrating them improved
he performance.

UPREME had significant surviv al differ ences betw een pr e- 
icted subtypes consistently 

o measure the ability of the supervised methods to differ- 
ntiate samples based on survival, we predicted the sub- 
ype labels for each data modality combination and per- 
ormed the survival analysis. In addition to the supervised 

ethods, we also included the state-of-the-art unsuper- 
ised tools that are specifically applied to cancer subtyping 

i.e., iClusterPlus ( 13 ), SNF ( 14 ), and PINSPlus ( 15 )) and
n algorithmically-relevant clustering method (i.e. affinity 

ropagation (AP) clustering). AP clustering is relevant be- 
ause it uses a message-passing strategy to find the cluster 
 epr esentati v es and the best r epr esentati v e for each node.

e obtained fiv e clusters from the unsupervised methods 
o match the number of PAM50 subtypes and checked the 
urvival differences for these obtained clusters. This analysis 
as only applied to the results on TCGA data where patient 

urvival data were available. To check the statistical signif- 
cance of survival differences between subtypes, we applied 

he log-rank test to compute p-values. Details of survival 
nalysis are in Supplementary Methods 1.3. 

The results showed that SUPREME’s predicted subtypes 
onsistently had significant differences in survival rates and 

ignificantly outperformed all other nine methods in terms 
f the P -value (Figure 3 ). SUPREME had 0.0035 as the 

owest P -value (when integrating CNA-, COE-, MET- and 

UT-based patient embeddings) and 0.0131 as the median 

 -value (Supplementary Figure S6A for the Kaplan–Meier 
lot). Similarly for SUPREME-, we had 0.0018 as the low- 
st P -value (when integrating CNA- and COE-based pa- 
ient embeddings), and 0.0147 as the median P -value. Inter- 
stingly, SUPREME had a more significant survival differ- 
nce than the survival difference between ground truth (i.e., 
AM50) labels (Supplementary Figure S6B for the Kaplan– 

eier plot for PAM50 subtypes). 
Specifically, 106 out of 127 SUPREME models had a 

ower P -value than the p-value for ground truth. For 57% 

f those models, we had CNA-based embedding selected. It 
s followed by 52% from COE-, CLI- and MET-based em- 
eddings. This might suggest that those embeddings could 

ontribute more to dif ferentia ting survival differences be- 
ween subtypes. 

AP, iClusterPlus, MOGONET, and SNF methods had a 

ide range of P -values, while SUPREME, MLP, SVM, and 

GBoost had mostly significant P -values ( ≤0.05) with a
edian lower than the significance le v el of the ground truth. 

UPREME was better than SUPREME-, but the difference 
as not significant. 
Using support from the predicted subtypes by each model 

n SUPREME, we computed an ensembled consensus sub- 
ype based on majority voting for each patient (Supplemen- 
al File 3) and checked the survival difference between these 
onsensus subtypes. Once again, we observed a significant 
 P -value = 0.01) survival difference between consensus sub- 
ypes (Supplementary Figure S6C). We also observed that 
82 out of 1022 patients had the same subtype prediction 

cross all 127 models showing the robustness of SUPREME 

redictions. 

eature / omics importance analysis 

n this section, we investigated the importance of each 

etwork-specific embedding and da ta type-specific fea tures. 

mpact of network-specific patient embeddings. We inves- 
igated the contribution of each patient embedding on the 
odel performance by comparing the models built using 

 patient embedding from datatype X and without using 

hat embedding. Among all 2 

d − 1 models, 2 

d−1 models
ad the patient embedding obtained from a da ta type X , 
alled wi th X n . The remaining 2 

d−1 − 1 models did not have
he patient embedding obtained from X , called noX n . For
ach da ta type X , we compared noX n models against wi th X n
odels, showing the importance of X -specific patient em- 

edding. We did this analysis on SUPREME- (i.e., without 
ntegrating the raw features) to ensure tha t dif ferences were 
ue to the patient embeddings only. 
The results on TCGA data showed that the performance 

f models increased or stayed the same with the inclusion 

f patient embeddings from all datatypes except for gene ex- 
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Figure 3. Survival analysis results violin plot of the log-rank P -value obtained from survival analysis for the SUPREME models as compared to the cancer 
subtype prediction / clustering tools and baseline methods. Significance le v el was measured with respect to SUPREME (Wilco x on rank-sum test P -value to 
compare the distribution of violin plots representing the significance < 0.001 by ***, else if < 0.01 by **, and else if < 0.05 by *). The continuous line shows 
the significance le v el of 0.05 and the dashed line shows the ground truth’s significance le v el. The below figure focuses on the significant surviv al P -v alues 
( < 0.05) [AP: af finity propaga tion, MLP: multi-layer perceptron, RF: random forest, SNF: similarity network fusion, SUPREME: SUPREME without 
raw feature integration, SVM: support vector machine]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pr ession (Figur e 4 ). The inclusion of EXP-based embedding
showed a significant decrease in the model performance.
The exclusion of CLI- and CNA-based patient embeddings
had a significant drop in the model performance. Those
findings agree with single model results. 

For METABRIC data, the inclusion of COE- and EXP-
based embeddings increased the performance, while the
other embeddings did not affect the performance much
(Supplementary Figure S7A). For the combined data,
MUT- and EXP-based embeddings showed higher perfor-
mance w hen included, w hereas the inclusion of CLI-based
embedding did not affect the performance much (Supple-
mentary Figure S7B). 

In addition, we analyzed SUPREME results for TCGA
data in terms of the best- and worst-performing models.
Specifically, we had 31 top models with a macro F1 score
is ≥0.88, and 30 bottom models with a macro F1 score is
≤0.83. We counted how many times each da ta type occurred
in the top and bottom models. CNA- and CLI-based em-
beddings were used for 28 and 19 out of 31 top models, re-
specti v ely. The least occurred embedding was EXP-based
with only six models out of 31. For the bottom models,
we had 25 models from EXP-based embedding, while we
had the least occurred embedding from CNA-based embed-
ding with only fiv e models. This analysis showed that CNA-
based embedding was the most selected to have higher per-
formance, while EXP-based embedding was rarely selected,
supporting our findings in this section and in single model
analysis. 

Impact of featur es fr om each datatype. To see the impact of
the features from each datatype, we ran SUPREME exclud-
ing the features from e v ery single datatype separately. For
each da ta type Y , we excluded Y -specific node features from
patient similarity networks and also did not integrate them
with node embeddings during subtype prediction, called
noY f . Considering that Y -specific patient similarity net-
work was generated based on Y -specific features, we com-
pared only the combinations without Y ( 2 

d−1 − 1 models)
to ensure the differences were due to the Y -specific fea-
tur es. We compar ed noY f models against the correspond-
ing SUPREME models (called wi th Y f ), to show the im-
portance of Y -specific features. 

When we excluded features from any datatype, we ob-
served a lower or comparable performance (Figures 5 and
Supplementary Figure S8). The performance drop was sig-
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Figur e 4. Anal ysis of network-specific patient embeddings. Violin plot of macro F1 scores of SUPREME- performance for the models integrated with a 
specific patient embedding from each da ta type ( with X n models, where X is the da ta type whose embedding is included) versus excluding that embedding 
( no X n models) on TCGA data. Significance le v el was measured between with and no cases of the same da ta type (Wilco x on rank-sum test p-value to compare 
the distribution of violin plots r epr esenting the significance < 0.001 by ***, else if < 0.01 by **, and else if < 0.05 by *). See Figure 1 for the abbreviations 
of da ta types. [SUPREME-: SUPREME without raw fea ture integra tion] 

Figur e 5. Anal ysis of fea tures from each da ta type. Violin plot of macro F1 scores for the models excluding the features from each da ta type ( no Y f models, 
where Y is the da ta type whose fea tur es ar e completely e xcluded) v ersus corr esponding SUPREME models ( with Y f models) on T CGA data. Significance 
le v el was measured between with and no cases of the same da ta type (Wilco x on rank-sum test p-value to compare the distribution of violin plots r epr esenting 
the significance < 0.001 by ***, else if < 0.01 by **, and else if < 0.05 by *). See Figure 1 for the abbreviations of datatypes. 
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Table 3. Ablation studies 

Comparison / Section Measures impact of 

SUPREME vs. SUPREME- Raw feature integration 
SUPREME vs. MLP GCN utilization 
Single model section The used method with only one 

da ta type 
SUPREME vs. MLP in single 
model section 

GCN utilization with only one 
da ta type 

This section Node features 

w
i
s
M
i

o
d
c
W
0
g

ificant for all the da ta types on TCGA, and gene expression 

nd copy number aberra tion da ta types on METABRIC 

Supplementary Figure S8A). The drop with the exclusion 

f the gene expression features was more drastic and it 
as consistent for all three datasets (Supplementary Fig- 
re S8B), supporting the importance of gene expression fea- 
ures for breast cancer (in agreement with findings in single 
odel analysis). 

blation studies 

e compared our tool with its variations when some steps 
ere skipped to assess their importance (Table 3 ). A com- 
arison of SUPREME with SUPREME- showed the im- 
ortance of raw feature integration. Also, to show the im- 
ortance of GCN-based approaches, we trained the same 
L algorithm (MLP in our case) using only the raw fea- 

ures and compared it with the SUPREME, which was 
ased on the same raw features and additional patient em- 
eddings. 
To show the impact of each da ta type separa tely, we 

emonstrated the performance of SUPREME models 
ased on a single data type. We also compared SUPREME 
ith other methods that can work with a single data modal- 
ty only. To show the importance of embeddings at a 

ingle da ta type le v el, we compared SUPREME with the 
LP model trained on the features from the correspond- 

ng da ta type. 
In addition to these studies , here , we also checked the 

verall impact of node features on the prediction tasks. To 

o that, instead of node features, we generated one-hot en- 
oded features and evaluated SUPREME on TCGA data. 
e had macro F1 score as 0.75 ± 0.01, weighted F1 score as

.83 ± 0.01, and accuracy as 0.84 ± 0.01. These results sug- 
est that node features were important, dropping the evalu- 
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Table 4. Macro F1 scores for IMDB and ACM datasets. [Macro F1: 
Macro-averaged F1 scores, GCN x : Result with x th network]. *Three re- 
sults: First row with the first network, second row with the second network, 
and third row integrating the first and second networks. The first networks 
are based on mo vie-director-mo vie and pa per-subject-pa per meta-paths; 
and the second networks are based on mo vie-actor-mo vie and paper- 
author-paper meta-paths in IMDB and ACM datasets, respecti v ely 

Method IMDB ACM 

MLP 0.53 ± 0.01 0.90 ± 0.01 
SVM 0.55 ± 0.00 0.89 ± 0.00 
RF 0.48 ± 0.00 0.89 ± 0.00 
GCN 1 0.56 ± 0.00 0.70 ± 0.00 
GCN 2 0.51 ± 0.00 0.91 ± 0.00 

0.58 ± 0.01 0.91 ± 0.01 
SUPREME 

* 0.55 ± 0.02 0.92 ± 0.01 
0.61 ± 0.02 0.94 ± 0.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ation performance drastically. This was expected as biolog-
ical featur es ar e highly effecti v e in determining the subtypes
of breast cancer. 

SUPREME w as model-agnostic outperf orming other ap-
proaches in different domains 

To show the model-agnostic fea ture, we evalua ted
SUPREME on different domains. For that purpose,
we generated two meta-path-based networks from the
heterogeneous network of ACM and IMDB data. Since we
had only two networks for these datasets, we shared the re-
sults for individual networks and the integrated one. Based
on all six evaluation metrics, SUPREME outperformed
other baseline methods on both datasets (Table 4 and
Supplementary Table S6). As compared to MLP, we had
increased performance showing the importance of graph
utilization. Single models from GCN and SUPREME were
not as good as the integrated one, showing the importance
of SUPREME’s integrati v e nature. 

According to these results, the first network of IMDB
data (the network based on mo vie-director-mo vie meta-
path) and the second network of ACM data (the network
based on paper -author -paper meta-path) wer e mor e infor-
mati v e. This is not surprising that mo vie-director-mo vie
association was more important than mo vie-actor-mo vie
on movie genre prediction task on IMDB data. This was
consistent based on the GCN runs and single models of
SUPREME runs. Even though there is not a big difference
on individual networks of ACM data for SUPREME, we
see a big difference on GCN runs, showing the importance
of our methodology utilizing embedding along with node
features. 

DISCUSSION 

In this study, we introduced SUPREME, a novel integrati v e
approach utilizing GCNs on multiple similarity networks
where nodes are attributed with multi-modal node features.
We applied SUPREME to three different prediction tasks
from fiv e dif ferent da tasets. We observed tha t SUPREME
outperformed other methods on ACM and IMDB data
based on six evaluation metrics (Table 4 and Supplemen-
tary Table S6). On breast cancer subtyping, we compared
SUPREME with se v en cancer (sub)type prediction tools
and baseline methods and observed that SUPREME sub-
stantially outperformed or was on par with them based
on macro F1 score, accuracy, and weighted F1 score (Fig-
ur es 2 , Supplementary Figur es S3 and S4, and Supple-
mentary Table S2). To demonstrate the consistency of the
perf ormance f or individual SUPREME models, we shared
the distribution of standard deviation of SUPREME mod-
els (Supplementary Figures S9, S10, and S11). We dif-
ferentiated Normal-like subtype, which has the smallest
sample size for three datasets, significantly better than all
other tools on all three datasets showing SUPREME’s ro-
bustness e v en for minority classes (Supplementary Fig-
ure S5). We made SUPREME a pub licly availab le tool
at https: // github.com / bozdaglab / SUPREME (under Cre-
ati v e Commons Attribution Non Commercial 4.0 Interna-
tional Public License) for r esear chers , biologists , and clini-
cians to utilize. 

We applied survival analysis to see the power of the meth-
ods to dif ferentia te subtypes having significant survival dif-
fer ences. Using T CGA data, we compar ed our tool with
nine popular integrati v e cancer subtype dif ferentia ting tools
and baseline methods and SUPREME had consistently
significant survival differences between predicted subtypes
outperforming the other tools (Figure 3 ). 

Based on the majority of predictions, we determined
ensemble subtype labels, most of which had high sup-
port from individual models (Supplemental File 3). We
observ ed that survi val difference between these ensemble
subtypes was more significant than survival difference be-
tween gene expression-based ground truth (i.e., PAM50)
subtypes (Supplementary Figure S6). These results sug-
gest that some survival-related characteristics cannot be ex-
plained by gene expression data alone. SUPREME was able
to extract these survival-related characteristics utilizing ad-
ditional data modalities. SUPREME’s ensemble label pre-
dictions that were different from ground truth with high
support could be further examined by biologists and clin-
icians. 

To show the effect of main steps of SUPREME, we
performed an ablation study. In addition, we analyzed
da ta type-specific embeddings and da ta type-specific fea-
tures. We found that gene expression features were highly
important for single models and overall, as expected for
breast cancer. Findings about the important embeddings
of datasets were supported by SUPREME- single models,
where models were fed by only one embedding. We ob-
served that patient embeddings were mostly more informa-
ti v e than raw fea tures. Integra ting raw fea tures with pa tient
embeddings usually improved the model performance (Fig-
ures 2 and Supplementary Figure S3) except for raw features
from few da ta types in single da ta type-based models (Table
2 , Supplementary Tables S3, S4, and S5). 

To compare the performance when we do not utilize the
local neighborhood, we ran SUPREME- on TCGA data
with the EXP-based single model when we do not have any
neighbors than the patient itself. In that model, we had
a macro F1 score of 0.85 ± 0.02 for SUPREME-, which
was much higher than the original EXP-based model of
SUPREME-. This model was e v en better than the EXP-
based single model of SUPREME. This might suggest
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ha t EXP-based pa tient fea tures themselves could perform 

etter than neighborhood-convolved features because the 
round truth utilizes patient features themselves to decide 
he subtype labels. Similarly, because of that, we might see 
 performance improvement when we add EXP-based raw 

eatures. 
SUPREME provides four options of ML algorithms to 

ntegrate embeddings and raw features, namely MLP, RF, 
VM, and XGBoost. We ran SUPREME with all these 
hoices and compared performances (Supplemental File 1, 
upplementary Figures S1 and S2, and Supplementary Ta- 
le S1). RF and XGBoost had a low performance for some 
odels. Overall, SVM had a good performance on every 

hree datasets, howe v er, it did not conv erge for some mod- 
ls. For this study, we chose MLP due to its high and con-
istent prediction performance for all three datasets and its 
ow running time. 

In our experiments, we observed a high number of 
dges in MUT-based patient similarity networks as there 
ere many patient pairs with the same similarity. Fur- 

hermore, the MUT-based models on TCGA data had 

igh predicti v e performance, whereas these models had 

ow predicti v e performance on METABRIC and the com- 
ined datasets. These discrepancies were mainly due to 

he sparse nature of the binary muta tion fea tures. For 
he special da ta types with binary-like sparse values like 
uta tion, pa tient similarity networks and extracted fea- 

ures could be generated in a more sophisticated way 

uch as based on the functional effect of these mutations 
 36–39 ). 

SUPREME is e xtendab le to any number of da ta types 
o integrate. For cases where many datasets are integrated, 
o avoid potential o verfitting, SUPREME pro vides an op- 
ional feature selection step for raw features before train- 
ng the final prediction model. Users could skip raw fea- 
ure integration altogether when network-specific patient 
mbeddings provide sufficient discriminatory power. Users 
ould run SUPREME on their training / validation data by 

na bling / disa bling these features to optimize their mod- 
ls. In addition, users could perform ablation studies on 

UPREME to determine the most effecti v e data modali- 
ies and their combinations. Depending on these results, for 
he final prediction, users could rely on the most effecti v e 
odel or an ensemble model utilizing the most promising 

eatures and networks. 
As a future direction, SUPREME could utilize atten- 

ion mechanisms ( 40–42 ), which allows getting weighted 

ontributions from different datatypes, and also weighted 

eighborhoods from networks. In addition to multiomics 
a ta types, ther e ar e some r egulatory r elations such as com-
eting endo genous RN A (ceRN A) regulation, w hich has 
een r ecently discover ed with important insights into can- 
er ( 43 ). In our recent work, we inferred ceRNA interac- 
ions in breast cancer ( 44 ). To adopt this kind of regulatory 

elations, SUPREME could be improved to utilize patient 
imilarity networks based on gene regulatory interactions 
nd more complex pa tient rela tions. By improving the ex- 
sting methodologies with recent advances in the literature, 
e can obtain more clear cancer subtype groups to pave the 
a y f or precision medicine. 
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