Assembling Artificial Photosynthetic Models in Water Using β-Cyclodextrin-Conjugated Phthalocyanines as Building Blocks

PDF Version Also Available for Download.

Description

Article describes how two water-soluble zinc(II) phthalocyanines substituted with two or four permethylated β-cyclodextrin (β-CD) moieties at the α positions have been utilized as building blocks for the construction of artificial photosynthetic models in water. The hydrophilic and bulky β-CD moieties not only can increase the water solubility of the phthalocyanine core and prevent its stacking in water but can also bind with a tetrasulfonated zinc(II) porphyrin (ZnTPPS) and/or sodium 2-anthraquinonesulfonate (AQ) in water through host–guest interactions.

Physical Description

11 p.

Creation Information

Chen, Xiao-Fei; Gobeze, Habtom B.; D'Souza, Francis & Ng, Dennis K. P. March 29, 2023.

Context

This article is part of the collection entitled: UNT Scholarly Works and was provided by the UNT College of Science to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Publisher

Provided By

UNT College of Science

The College of Science provides students with the high-demand skills and knowledge to succeed as researchers and professionals. The College includes four departments: Biology, Chemistry, Math, and Physics, and is also home to a number of interdisciplinary programs, centers, institutes, intercollegiate programs, labs, and services.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Article describes how two water-soluble zinc(II) phthalocyanines substituted with two or four permethylated β-cyclodextrin (β-CD) moieties at the α positions have been utilized as building blocks for the construction of artificial photosynthetic models in water. The hydrophilic and bulky β-CD moieties not only can increase the water solubility of the phthalocyanine core and prevent its stacking in water but can also bind with a tetrasulfonated zinc(II) porphyrin (ZnTPPS) and/or sodium 2-anthraquinonesulfonate (AQ) in water through host–guest interactions.

Physical Description

11 p.

Notes

Abstract: Two water-soluble zinc(II) phthalocyanines substituted with two or four permethylated β-cyclodextrin (β-CD) moieties at the α positions have been utilized as building blocks for the construction of artificial photosynthetic models in water. The hydrophilic and bulky β-CD moieties not only can increase the water solubility of the phthalocyanine core and prevent its stacking in water but can also bind with a tetrasulfonated zinc(II) porphyrin (ZnTPPS) and/or sodium 2-anthraquinonesulfonate (AQ) in water through host–guest interactions. The binding interactions of these species have been studied spectroscopically, while the photoinduced processes of the resulting complexes have been investigated using steady-state and time-resolved spectroscopic methods. In the ternary complexes, the ZnTPPS units serve as light-harvesting antennas to capture the light energy and transfer it to the phthalocyanine core via efficient excitation energy transfer. The excited phthalocyanine is subsequently quenched by the electron-deficient AQ units through electron transfer. Femtosecond transient absorption spectroscopy provides clear evidence for the singlet-singlet energy transfer from the photo-excited ZnTPPS to the phthalocyanine core with a rate constant (kENT) in the order of 109 s−1. The population of phthalocyanine radical cations indicates the occurrence of electron transfer from the excited phthalocyanine to the AQ moieties, forming a charge-separated state.

Source

  • Chemistry-A European Journal, 29(36), John Wiley & Sons, March 29, 2023, pp. 1-11

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

Publication Information

  • Publication Title: Chemistry-A European Journal
  • Volume: 29
  • Issue: 36
  • Peer Reviewed: Yes

Collections

This article is part of the following collection of related materials.

UNT Scholarly Works

Materials from the UNT community's research, creative, and scholarly activities and UNT's Open Access Repository. Access to some items in this collection may be restricted.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 29, 2023

Added to The UNT Digital Library

  • Dec. 14, 2023, 5:13 a.m.

Description Last Updated

  • Jan. 8, 2024, 2:33 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Chen, Xiao-Fei; Gobeze, Habtom B.; D'Souza, Francis & Ng, Dennis K. P. Assembling Artificial Photosynthetic Models in Water Using β-Cyclodextrin-Conjugated Phthalocyanines as Building Blocks, article, March 29, 2023; (https://digital.library.unt.edu/ark:/67531/metadc2201599/: accessed May 27, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT College of Science.

Back to Top of Screen