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A B S T R A C T   

Forests are generally extracted from remotely sensed images based on the spectral features, ignoring other 
important auxiliary information, and the techniques of precise extraction need to be further improved. By using 
the Sentinel–2 image and auxiliary factors (AFs) including site conditions (SCs) and vegetation indices (VIs), the 
random forest model with AFs (RF–AFs) was adopted for the extraction of the economic forests in Lancang 
County, which is a mountainous area with rich biodiversity and is witnessing rapid development of economic 
forests in Yunnan province of China. The results obtained using the RF–AFs model were compared with those 
obtained using the random forest model without AFs (RF). The results were as follows: (1) The kappa coefficient 
for extracting the first–level land use obtained using the RF model was 0.9531. Lancang County is dominated by 
forests, accounting for 73.76% of the total area. (2) After parameter optimization, the RF–AFs model yielded the 
highest accuracy in the extraction of the second–level forests, with a kappa coefficient value of 0.9493, which 
was 14.69% higher than that of the RF model. Thus, the RF–AFs model is more suitable for the precise extraction 
of economic forests. (3) The evaluation results of the factors’ importance of the RF–AFs model showed that the 
cumulative importance values of SCs such as temperature (TEM), elevation (EL), precipitation (PRE) and VIs such 
as plant senescence reflectance index (PSRI), enhanced vegetation index (EVI), transformed soil–adjusted 
vegetation index (TSAVI) was 76.09%, indicating that they were the main factors for the extraction of economic 
forests. (4) Economic forests are dominated by Simao pines in Lancang County, which are mainly distributed in 
the central, southwestern and northern regions, accounting for 31.37% of forests area. The proportion of tea 
plantations, eucalyptus, and rubber trees is 9.05%, 6.71%, and 3.05% of forests area, respectively. The RF–AFs 
model is conducive for precisely extracting the economic forests and is thus of great significance in studying the 
ecological and environmental effects of economic forests, performing forestry management, and maintaining 
regional ecological security.   

1. Introduction 

As an important component of the ecosystem, vegetation governs the 
balance of the ecosystem, and acts as an indicator of global change 
(Yang et al., 2015). Extraction of vegetation information is the basis for 
studying the coverage status and dynamic changes in the vegetation 
characteristics. The vegetation distribution, growth, and vigor aid in 

environmental monitoring, forestry management, and maintenance of 
regional ecological security (Savchenko et al., 2020; Wang et al., 2021; 
Kureel et al., 2022). Efficient and effective extraction of vegetation is the 
basis for forest research and precise management. Due to the differences 
in reflectance and emissivity, different vegetation types present different 
spectral features in the remotely sensed images. Remote sensing tech
nology is one of the most effective methods for extracting vegetation 
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information (Pal et al., 2018; Fu et al., 2021). 
With the development of remote sensing and computer technologies, 

extensive research activities have been conducted on vegetation infor
mation extraction at different scales (Reddy et al., 2015; Du et al., 2018; 
Geng et al., 2019; Zhao et al., 2019; Li et al., 2020). In terms of data 
sources, the available satellites for vegetation remote sensing informa
tion extraction include MODIS, NOAA, Landsat, SPOT, Sentinel, among 
others. Sentinel–2 has the features of a double–star network (including A 
and B satellites), large width, short revisit period, high spatial resolu
tion, free data acquisition, rich waveband information and unique 
red–edge waveband, thus offering great advantages in vegetation in
formation extraction (Wakulińska and Marcinkowska-Ochtyra, 2020; Pu 
et al., 2021). In terms of methods for vegetation information extraction, 
existing methods include visual interpretation (Fritz et al., 1999), su
pervised and unsupervised classification (Mohammady et al., 2015), 
expert knowledge (Visser et al., 2018), object–oriented classification 
(Owers et al., 2016), phenology–based feature extraction (Cao et al., 
2016), multi–source remote sensing data fusion (Sankey et al., 2017), 
machine learning (Liu et al., 2021), and mixed pixel decomposition 
(Lima et al., 2017). Among them, the machine learning algorithm 
continuously improves the training and learning ability of the model 
through repeated learning, and plays an important role in the precise 
classification of medium and high–resolution vegetation remote sensing 
(Carranza-García et al., 2019). It further promotes the automatic and 
intelligent development of the object information extraction. However, 
different machine learning methods have different accuracy. Studies 
have found artificial neural network (ANN), support vector machine 
(SVM) and random forest (RF) generally provide better accuracy 
compared to other traditional methods (Thanh Noi and Kappas, 2017), 
while RF has better performance in vegetation information extraction 
compared to other machine learning techniques (Mao et al., 2020; 
Talukdar et al., 2020). RF, a machine learning method based on 
ensemble learning, is advantageous for quickly and efficiently process
ing large amounts of nonlinear multidimensional data under the com
bined effect of the randomness of the training sets and the optimal 
property of node splitting (Melville et al., 2018). The RF model has a 
strong generalization ability, which can help improve the accuracy and 
efficiency of the object information extraction (Tian et al., 2016). In 
recent years, the RF model has been effectively employed for vegetation 
information extraction (Liu et al., 2018; Niculescu et al., 2020). Most of 
the aforementioned vegetation information extraction methods are 
based on the spectral features of the remotely sensed images themselves. 
However, the phenomenon of different objects having the same spectra 
and same objects having different spectra is prominent, which leads to 
great limitation of extracting vegetation information only by the spectral 
features of remotely sensed images (Le and Ha 2019). Various vegeta
tion indices (VIs) offer a deeper exploration of the spectral features of 
remote sensing images and are often used as important auxiliary infor
mation in vegetation extraction (Sun et al., 2019a; Wu and Zhang 2019; 
Bai et al., 2021). Based on different band operations, VIs can reduce the 
interference of vegetation information caused by similar spectral fea
tures of remotely sensed images and aid in the precise extraction of 
vegetation information (Fadaei, 2020; Suchenwirth et al., 2012). Be
sides, the distribution of different vegetation is also affected by site 
conditions (SCs) such as topography, climate, soil, and human activities 
(Waśniewski et al., 2020). Therefore, it is necessary to combine multiple 
auxiliary information features for vegetation information extraction 
(Luo et al., 2015). Although some studies have combined vegetation 
index with elevation factor to extract vegetation information (Barzegar 
et al., 2015; Liu et al., 2018), the research that combines the VIs with 
complex SCs such as elevation, slope, climate, and human activities to 
extract vegetation information is relatively weak. However, vegetation 
growth is closely related to the above SCs. The role of SCs and VI in the 
precise extraction of vegetation information is still unclear. 

Economic forests are forests which aim to produce wood or other 
forest products and obtain direct economic benefits (Brukas et al., 

2014). Economic forests have the characteristics of strong photosyn
thesis, a fast growth rate, and high economic efficiency (Goded et al., 
2019). Driven by economic interests, economic forests such as euca
lyptus, rubber trees, Simao pines (Pinus kesiya var. Langbianensis), and 
tea plantations have witnessed rapid development in China in the past 
20 years (Nong et al., 2019; Zhao et al., 2021; Zhao and Gu 2021). 
However, the large–scale planting of economic forests has led to great 
changes in the structure and pattern of regional land use. These changes 
not only threaten the growth space of natural forests but also change the 
original ecosystem and cause changes in regional ecological security 
effects (Ahrends et al., 2015; Zhou et al., 2020), especially in Yunnan 
Province, which is the most biologically diverse province in China (Chu 
et al., 2019). Therefore, the extraction of economic forests is beneficial 
for the timely and precise analysis of the spatial distribution pattern of 
economic forests, and is of great significance for forest management and 
regional ecological security. However, research on extraction of eco
nomic forests is mostly based on direct extraction by using spectral 
features (Zhao and Xu 2015; Oliveira et al., 2021), with insufficient 
attention on other important auxiliary information, and the accuracy of 
information extraction needs to be further improved. Whether consid
ering other AFs of economic forests will help realize a more precise 
extraction of economic forests is a question worth exploring. 

Studies on forest information extraction have rarely focused on the 
extraction of economic forests in plateaus and mountainous areas with 
rich biodiversity, large–scale, and intensive planting. Therefore, in this 
study, by taking Lancang County of southwest Yunnan Province in China 
(with rich biodiversity and large–scale planting of economic forests) as 
an example and using the spectral features of field samples in the 
Sentinel–2A image, training and testing samples of various land use 
types were selected. Further, AFs including SCs and VIs, were integrated 
into the RF–AFs model to establish a method for economic forests 
extraction. The contributions of this study are as follows: (1) Facing the 
current situation that the research on the precise extraction of economic 
forests is relatively weak, this study can enrich the theory and method 
research of precise extraction of economic forests. (2) The RF-AFs model 
combining VIs and complex SCs is constructed to extract economic 
forests information, which proves that the simultaneous inclusion of VIs 
and complex SCs can effectively improve the accuracy of economic 
forests extraction. (3) The key factors in the precise extraction of eco
nomic forests are identified, which can provide factor reference for the 
precise extraction of economic forests and other forests. 

2. Materials and methods 

2.1. Study area 

Lancang County, with an area of 8807 km2, is located in the south
west of Yunnan Province (99◦29′~100◦35′E, 22◦01′~23◦16′N), and 
south of the Hengduan Mountains. It has a high–altitude terrain in the 
northwest and a low–altitude terrain in the southeast, with large dif
ferences in elevation; the highest elevation is 2515 m, and the lowest is 
468 m. The vertical climate is obvious, mainly belongs to the subtropical 
monsoon climate, with abundant rainfall, sufficient sunshine, and 
distinct dry and rainy seasons. Many rivers belonging to the Lancang 
River system pass through the study area. The zonal soils include 
lateritic red earths, humid–thermo ferralitic, red earths, and yellow
–brown earths; among these, lateritic red earths are the most widely 
distributed. Lancang County has complex site conditions and diverse 
vegetation types. The zonal vegetation comprises subtropical deciduous 
broadleaf forests and coniferous forests. Large–scale economic forests of 
Simao pines, eucalyptus, rubber trees and tea plantations have been 
planted in Lancang County, resulting in extensive changes in the land
scape (Zhao et al., 2021). In 2020, the GDP of Lancang County was 
12.007 billion yuan, the population was 441,500, and the urbanization 
rate was 37 %. The geographic location of Lancang County is shown in 
Fig. 1. 
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2.2. Data source and preprocessing 

2.2.1. Satellite image and AFs data 
The datasets in this study include a satellite image and AFs (Fig. 2). 

The Sentinel–2 image was downloaded from the United States Geolog
ical Survey (USGS) website (Brede et al., 2020). It was taken on February 
4, 2020, with cloud cover below 5 %. The Sentinel–2A image, after the 
process of atmospheric correction and radiometric calibration, was 
resampled to a pixel size of 10 m × 10 m. AFs included SCs and VIs. The 
SCs were elevation (EL), slope (SL), aspect (AS), soil type (ST), tem
perature (TEM), precipitation (PRE) and distance from settlements (DS). 
The EL, SL and AS data were extracted from digital elevation model 
(DEM) provided by the Data Center for Resources and Environmental 
Sciences, Chinese Academy of Sciences (Pu et al., 2021), with a spatial 
resolution of 30 m × 30 m. The ST data, including red earths, purplish 
soils, lateritic red earths, yellow earth, yellow–brown earths, paddy soils 
and humid–thermo ferralitic, was procured from the China soil map 
based harmonized world soil database (Fischer et al., 2008), with a 
spatial resolution of 30 m × 30 m. The TEM and PRE were respectively 
the average annual temperature and annual precipitation of Lancang 
County in 2020 with a resample resolution of 30 m × 30 m, which were 
obtained from the National Earth System Science Data Center, National 
Science & Technology Infrastructure of China (Shi et al, 2022). Referring 
to the Sentinel–2A image, the construction lands after removing the road 
and industrial and mining lands in the first–level land use were regarded 
as the settlements. The buffer zone results of the settlements were 
regarded as DS data. Combining the infrared and near–infrared bands to 
create VIs is effective for extracting vegetation information (Fakhri 

et al., 2019). With the development of hyperspectral and thermal 
infrared remote sensing technology, wavebands of satellite images are 
becoming increasingly abundant (Sun et al., 2019b). Based on previous 
research (Ren and Feng, 2015; Dong et al., 2019; Solymosi et al., 2019; 
Wei et al., 2020; Zhu et al., 2021) and considering the actual situation of 
the Lancang County, the VIs including Ratio Vegetation Index (RVI), 
Normalized Differential Vegetation Index (NDVI), NDVI of Red–edge 
Index (NDVIre1), Perpendicular Vegetation Index (PVI), Enhanced 
Vgetation Index (EVI), Soil–Adjusted Vegetation Index (SAVI), Trans
formed Soil–Adjusted Vegetation Index(TSAVI), Renormalized Differ
ence Vegetation Index (RDVI) and Plant Senescence Reflectance Index 
(PSRI) are selected and presented in Table 1. The VIs were calculated 
based on different bands of the Sentinel–2A image. In order to be 
consistent with the resolution of the image, all AFs data were created or 
resampled as rasters with a resolution of 10 m × 10 m. 

2.2.2. Training and testing samples 
The field samples which were obtained via field investigation rep

resented actual land use types. Due to the limited number of field 
samples, especially for the extraction of vegetation in a large area, it is 
not enough to use only field samples as the training and testing samples 
of the model. Large–scale vegetation extraction only by the field samples 
are quite labor–intensive, and requiring more material resources (eg. 
survey equipments) and financial resources. Based on the spectral fea
tures of the field samples on the satellite image and referenced with the 
same period of Google Earth high–resolution images online, total sam
ples with the same characteristics as the field samples were selected for 
the RF model and RF-AFs model by the visual interpretation method 

Fig. 1. The location of Lancang County.  
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Fig. 2. Satellite image and auxiliary factors.  
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(Thanh Noi and Kappas, 2017). The separability between the differents 
samples of the first–level land use types are above 1.93, while the 
samples of the second–level forests types are above 1.89, indicating that 
the samples confusion between different land use type is very low. 
Training and testing samples were randomly sampled from the total 
samples by the createDataPartition() function in RStudio with a ratio of 
3: 1 (Table 2). 

2.3. Methods 

2.3.1. Technical flowchart 
The technical flowchart is illustrated in Fig. 3. First, the Sentinel–2 

image was processed by atmospheric correction and radiometric cali
bration using the Sen2cor software developed by the European Space 
Agency (ESA), and the SNAP software was used for band fusion and 
resampling to acquire a multispectral high–resolution Sentinel–2A 
image. Second, based on the training samples 1, testing samples 1, and 
the satellite image data, the RF model in the ENVI platform was used to 
extract the first–level land use including croplands, forests, water 
bodies, construction lands, and unutilized lands. The model accuracy 
was evaluated. Finally, the economic forests were extracted precisely. 
To verify the advantages of the RF–AFs model in the precise extraction of 
forests, training samples 2 and testing samples 2 were inputted into the 

RF–AFs model and RF model to extract the economic forests of euca
lyptus, Simao pines, rubber trees and tea plantations. The accuracy of 
each model were compared to determine the optimal results. It is diffi
cult for the ENVI platform to integrate multiple AFs into the RF model. 
RS is a free, open–source, and convenient platform for data statistics and 
analysis. In RStudio, there are many complete function packages that 
provide important tools for integrating multiple AFs into the RF model 
to extract forests information (Grabska et al., 2019). Therefore, the 
precise extraction of economic forests by using the RF–AFs model was 
implemented through programming with caret, randomForest package 
in RStudio of version 1.3.1073. 

2.3.2. Random forest (RF) model 
The RF model is a machine learning method that combines the 

bagging method to generate multiple mutually independent training sets 
and multiple classification and regression trees (CART) for prediction 
(Huang et al., 2020a). The basic principle (Breiman, 2001) is described 
as follows: 

1) k samples are randomly extracted from the original training set D 
by using the bootstrap sampling method to construct k decision trees 
models. 

2) n (n ≤ m, where m is the total number of features in the sample) 
features are randomly selected from each sample as the split feature set; 

Fig. 2. (continued). 

P. Huang et al.                                                                                                                                                                                                                                  



Ecological Indicators 148 (2023) 110025

6

then, the optimal features are determined to grow the nodes. The min
imum Gini coefficient is used as the optimal feature splitting criterion. 

3) Each tree is grown as much as possible and is not pruned. Random 
forests are generated by repeating the above steps. 

4) Based on the k classification results, each record is voted sepa
rately to obtain the final classification result. The importance of each 
feature in the classification results can be calculated by the mean 
decreased value of the Gini coefficient at the node split. 

The mtry and ntree are two key parameters in the RF model, and the 
optimal mtry and ntree parameters directly determine the superiority of 
the extraction results of economic forests (Dobrinić et al., 2021). The 
mtry is the the number of variables randomly sampled as candidates at 
each split, and the ntree is the number of CART in random forests. These 
two parameters are determined by the out–of–bag (OOB) error gener
ated during the RF model construction (Nina and John, 2016). The mtry 
and ntree in the RF–AFs model were calculated using the Random Forest 
function package in RStudio (Sothe et al., 2020). 

2.3.3. Model training and accuracy assessment 
The above training and testing samples (Table 2) were mainly used 

for model training and accuracy evaluation of each model. By using R 
programming technology, the AFs such as SCs and VIs were linked to the 
forest types, and the RF–AFs model for precise extracting of economic 
forests are constructed. Training and testing samples were inputted into 
the RF–AFs model for model training, parameter optimization, and ac
curacy evaluation (Fig. 4). For the second-level forests, all the training 
samples 2 and testing samples 2 in the RF-AFs model included 16 AFs 
and a unique forest type. Except for the training samples 2 and testing 
samples 2, the remaining forests samples (including only 16 AFs) were 
fed into the trained RF–AFs model to identify the specific forest types. 
The RF model only combined training samples 2 and testing samples 2 
(not including AFs) and the satellite image to extract the forest infor
mation and evaluate the accuracy directly. 

Accuracy assessment is an important step after object classification 
(Abdi, 2020). The overall accuracy (OA) and kappa coefficient are often 
used to evaluate the accuracy of the classification results. To compare 
the effectiveness of different models in the extraction of economic for
ests, overall accuracy and kappa coefficient were used for the accurate 
evaluation of the RF model and RF–AFs model. 

3. Results 

3.1. Extraction of the first–level land use 

3.1.1. Accuracy assessment 
The training samples 1, testing samples 1, and satellite image data 

were inputted into the RF model of the ENVI platform for model training 
and accuracy assessment. The confusion matrix and accuracy of the 
extraction of the first–level land use is shown in Table 3. The overall 
accuracy was 0.9645 and the kappa coefficient was 0.9529, which in
dicates that the extraction accuracy of the first–level land use and the 
model generalization ability realized using the RF model are relatively 
high. 

3.1.2. Spatial distribution of the first–level land use 
The extraction results of the first–level land use (Fig. 5) revealed that 

Lancang County is dominated by forests, covering an area of 6495.87 
km2, accounting for 73.76 % of the county. Forests are mainly distrib
uted in the southern regions. Croplands are mainly concentrated in the 
western and northern regions, while scattered in the eastern and 
southern regions, covering an area of 2053.65 km2 and accounting for 
23.32 % of the county. Construction lands are mainly distributed in the 
central regions, covering an area of 136.30 km2 and accounting for 1.54 
% of the county. Water bodies are mainly distributed linearly along the 
eastern county boundary, covering an area of 105.32 km2 and ac
counting for approximately 1.20 % of the county. Grasslands are scat
tered in the southeast and central regions, covering an area of 9.33 km2 

and accounting for less than 1 % of the county. The unutilized land area 
is the least, only 6.53 km2. 

3.2. Precise extraction of the second–level forests 

3.2.1. Optimization of model parameters 
Optimization of parameters directly affects the evaluation results of 

the models. In this study, the training samples of the second–level forests 
were inputted into the RF model and RF-AFs model for model training to 
obtain the optimal parameters, respectively. Fig. 6(a) shows that the 
mean OOB error rate of the RF–AFs model is minimized when mtry = 13; 
the OOB error rate becomes smooth and each forest type can be well 
distinguished when ntree ≥ 100 (Fig. 6(b)). Therefore, the mtry and ntree 
in the RF–AFs model were set as 13 and 100, respectively, to accurately 
extract the economic forests. The mtry and ntree parameters of the RF 
model (not including AFs) were set as 3 and 100, respectively, after 
several rounds of trials in ENVI. 

3.2.2. Accuracy assessment 
Other remaining forests samples except training samples 2 and 

testing samples 2 were inputted into the trained RF model and RF–AFs 
model, respectively, to identify the forest type of each sample. The 
testing samples and the identified results were used to calculate the 
accuracy of different models. The confusion matrix, overall accuracy 
and kappa coefficient of different models were presented in Table 4 and 
Table 5. 

The accuracy assessment results of each model revealed that the 
overall accuracy and kappa coefficient were above 0.8, indicating that 
each model has high accuracy. The overall accuracy and kappa coeffi
cient of the RF model were the lowest, 0.8436 and 0.8024, respectively. 
The RF–AFs model exhibited the highest overall accuracy and the 
highest kappa coefficient of 0.9600 and 0.9493, which were 11.64 % 
and 14.69 % higher than those of the RF model, respectively. It further 
indicates the importance of integrating SCs and VIs for extracting forest 
information. Overall, the RF–AFs model has an absolute advantage in 
extracting forest information in this study. 

3.2.3. Importance of AFs 
The RF–AFs model yields higher accuracy and can identify the 

Table 1 
Vegetation indices.  

Index Abbreviation Formula 

Ratio Vegetation Index RVI RVI = ρ8/ρ4 
Normalized Differential Vegetation 

Index 
NDVI NDVI =

ρ8 − ρ4
ρ8 + ρ4 

NDVI of Red–edge Index NDVIre1 NDVIre =
ρ8A − ρ5
ρ8A + ρ5 

Perpendicular Vegetation Index PVI PVI =
ρ8 − aρ4 − b

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + a2

√

Enhanced Vgetation Index EVI 
EVI =

2.5(ρ8 − ρ4)

ρ8 + 6.0ρ4 − 7.5ρ2 + 1 
Soil–Adjusted Vegetation Index SAVI SAVI = (

ρ8 − ρ4
ρ8 + ρ4 + L

) × (1+

L)
Transformed Soil–Adjusted 

Vegetation Index 
TSAVI 

TSAVI =
a(ρ8 − aρ4 − b)
aρ8 + ρ4 − ab 

Renormalized Difference 
Vegetation Index 

RDVI RDVI =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
NDVI × (ρ8 − ρ4)

√

Plant Senescence Reflectance Index PSRI PSRI =
ρ4 − ρ3

ρ6 

* Note: whereρ2,ρ3,ρ4,ρ6,ρ8, and ρ8A are the reflectivity corresponding to the 
blue, green, red, vegetation red edge (band 6), NIR, and vegetation red edge 
(band 8A) bands in the Sentinel–2A image, reflectivity; a and b are the slope and 
interception of the soil line, respectively. (a = 10.849, b = 6.604); and L is the 
adjustment factor (L = 0.5) (Solymosi et al., 2019).  
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importance of each AFs directly (Fig. 7). The importance value clarifies 
the influence of each AFs on the precise extraction of economic forests. 
Fig. 7 shows that the importance of PSRI, TEM, EVI, and EL is high, and 
all are above 10 %. Among them, PSRI exhibited the highest importance 
value of 25.26 %. The importance of TSAVI and PRE was above 5 %, 

whereas the importance of other indicators was below 5 %. Among 
them, RVI exhibited the lowest importance value of 1.17 %. The cu
mulative importance of the top six factors was 76.09 %, indicating that 
these factors play a decisive role in the forest extraction result. It further 
proves the importance of SCs such as TEM, EL, and PRE and VIs such as 

Table 2 
Training and testing samples of different levels of geographical objects.  

Land use type Training samples Testing samples Total 
samples 

Image characteristics Description 

First–level land 
use  

Croplands Training 
samples 1 

2250 Testing 
samples 1 

750 3000 Light brown and light green is alternate, but light 
brown is the dominant color. 

Forests 2250 750 3000 See the Second–level 
forests. 

See the Second–level forests. 

Grasslands 375 125 500 Dark green and dark brown is alternate, but dark 
green is the dominant color. The texture is rough. 

Water bodies 750 250 1000 The color is dark blue, and the texture is uniform. 

Construction 
lands 

1500 500 2000 Light blue and white is alternate, but light blue is 
the dominant color. It concentrated in spatial 
distribution. 

Unutilized 
lands 

150 50 200 White is the dominant color, and the surrounding 
is dark brown. 

Second–level 
forests 

Eucalyptus Training 
samples 2 

1500 Testing 
samples 2 

500 2000 The color is dark green and the texture is uniform. 

Simao pines 1500 500 2000 The color is light green, but it is darker than 
rubber trees and other shrubs. The texture is 
rough. 

Rubber trees 750 250 1000 Light brown and light green is alternate, and its 
green is the lightest color among all kinds of 
forests. 

Tea plantations 1125 375 1500 The color is dark purple, and it is concentrated in 
spatial distribution. 

Other shrubs 375 125 500 Light green and light brown is alternate, but light 
green is the dominant color. 

Other forests 2250 750 3000 The color is dark green and the texture is rough.  
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Fig. 3. Technical flowchart.  
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PSRI, EVI, and TSAVI in the accurate extraction of economic forests in 
Lancang County. 

3.2.4. Spatial distribution of economic forests 
The extraction results of economic forests under different models are 

shown in Fig. 8. 
The spatial differentiation of each forest type was obvious, and the 

overall pattern of the classification results of the two models was rela
tively consistent. The area of economic forests under each model was 
obtained separately (Table 6). The area of Simao pines, rubber trees, and 
tea plantations obtained using the different models exhibited obvious 
differences, whereas that of eucalyptus were relatively similar for two 
models. 

In summary, the RF–AFs model provides the most precise results 
compared with the RF model. Therefore, the extraction results of the 
second–level forests obtained using the RF–AFs model were used for 
further analysis. Simao pines, the main economic forests in Lancang 
County, are mainly distributed in the central, southwestern, and 
northern parts of the study area, covering an area of 2037.92 km2 and 
accounts for 31.37 % of forests area. Tea plantations are mainly 
distributed in the northern and southern regions, covering an area of 
587.95 km2 and accounting for 9.05 % of forests area. Eucalyptus, as 
introduced species, are distributed in all townships, covering an area of 
435.68 km2 and accounting for 6.71 % of forests area. Rubber trees are 
mainly distributed in the eastern region of the study area, with an 
obvious spatial distribution pattern following the river valley, covering 
an area of 197.86 km2 and accounting for 3.05 % of forests area. 
Furthermore, other shrubs are mainly distributed in the central and 
western regions, covering an area of 185.74 km2 and accounting for 
2.86 % of forests area. Other forests are mainly distributed in the 
southeastern, central, and northern regions, covering an area of 
3050.72 km2 and accounting for 46.96 % of forests area. The above 
extraction results of economic forests will serve as an important refer
ence for future research on ecological benefits, structural adjustment, 
and spatial pattern optimization of economic forests in Lancang County. 

Fig. 4. Schematic of the use of training and testing samples in the RF–AFs model.  

Table 3 
Confusion matrix and accuracy of the extraction results of the first–level land use.  

Samples type 
Identified type 

Croplands Forests Grasslands Water bodies Construction lands Unutilized lands 

Croplands 720 12 3 0 14 1 
Forests 27 710 7 0 6 0 
Grasslands 1 6 118 0 0 0 
Water bodies 1 0 0 249 0 0 
Construction lands 2 2 0 0 496 0 
Unutilized lands 1 1 0 0 2 46 
OA 0.9645 
Kappa 0.9529  

Fig. 5. First–level land use.  
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4. Discussion 

4.1. Applicability of the RF–AFs model 

Precise extraction of forest information is an important research 
topic and technical difficulty in the field of forestry remote sensing 
(Schäfer et al., 2016; Zhang et al., 2019). Existing studies on forest in
formation extraction are mostly based on the spectral features of satel
lite images, while other important auxiliary information including 
complex SCs and VIs have not been considered simultaneously, the 
precise extraction technology of forests needs to be further improved 
(Liu et al., 2018). In this study, the spectral features of satellite images 
were used in combination with the visual interpretation of training and 
testing samples, and a method was developed for precise extraction of 
economic forests by using an RF–AFs model that integrates relevant AFs, 
including SCs and VIs. An effective connection between auxiliary in
formation and economic forests types is realized through model 

training, so as to realize the mapping and precise extraction of economic 
forests information from point to surface (Fig. 4). In the RF–AFs model, 
AFs are linked with the forest category without additional weight 
calculation and classification standard of AFs in advance. In other 
words, the RF–AFs model has the function of index importance assess
ment, which can directly obtain the importance of each evaluation 
factor. Meanwhile, the RF–AFs model does not de–dimensioning or need 
hierarchical processing of indicators, and the data can be directly 
inputted into the model. In addition, the RF–AFs model inherits the 
advantages of the RF model, and only requires two key parameters for 
the model optimization, which can be optimized on the open–source 
platform of RStudio. The RF–AFs model has advantages in the form of 
the randomness of the training sets and the optimal property of node 
splitting, resulting in high accuracy (Talukdar et al., 2020). Specifically, 
the bootstrap method was used to select the training sample sets from 
the training samples using a random return sampling method. Features 
for each node splitting in the classification tree are randomly selected, 

(a) (b)
Fig. 6. Determination of optimal parameters for the RF–AFs model: (a) The mean OOB error rate of different mtry; (b) The OOB error rate of different ntree when 
mtry = 13. 

Table 4 
Confusion matrix and accuracy of the extraction results of the second–level forests based on the RF model.  

Samples type 
Identified type 

Eucalyptus Simao pines Rubber trees Tea plantations Other shrubs Other forests 

Eucalyptus 466 6 2 0 1 25 
Simao pines 4 424 0 4 2 66 
Rubber trees 2 1 229 7 3 8 
Tea plantations 0 4 2 360 2 7 
Other shrubs 9 32 8 3 41 32 
Other forests 64 85 7 1 4 589 
OA 0.8436 
Kappa 0.8024  

Table 5 
Confusion matrix and accuracy of the extraction results of the second–level forests based on the RF–AFs model.  

Samples type 
Identified type 

Eucalyptus Simao pines Rubber trees Tea plantations Other shrubs Other forests 

Eucalyptus 481 4 0 0 0 15 
Simao pines 1 485 0 0 0 14 
Rubber trees 0 1 245 1 0 3 
Tea plantations 2 5 0 356 1 11 
Other shrubs 0 7 4 3 83 0 
Other forests 0 0 0 0 0 750 
OA 0.9600 
Kappa 0.9493  
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that is, randomly selecting a part of the sample features on the node and 
selecting an optimal feature from them as the criterion for the node 
splitting. This randomness enhances the generalization ability of RF–AFs 
model, resulting in greater tolerance and flexibility to input features 

compared to other machine learning algorithm (Ma et al., 2021). The 
RF–AFs model is highly suitable for the precise extraction of forest in
formation. Besides, the RF–AFs model is not limited to the extraction of 
economic forests, but also provides a method reference for the fine 
extraction of other tree species. 

4.2. Discussion of the AFs importance 

The RF–AFs model can be used to perform AFs importance analysis, 
which is convenient for analyzing the degree of influence of each factor 
on forest classification. The PSRI can maximize the sensitivity of the 
carotenoid–to–chlorophyll ratio, which is often used in vegetation 
health monitoring, plant physiological stress detection, crop production, 
and yield analysis (Guerini Filho et al., 2020). This study further shows 
that PSRI is also an important factor in the extraction of economic forests 
as well as other forests. The EVI not only possesses the advantages of 
NDVI but also overcomes the problems of the saturation of high vege
tation coverage areas, incomplete atmospheric correction, and water 
vapor interference. The EVI can improve the sensitivity of vegetation in 
biotopes, and has higher sensitivity and superiority for vegetation 
monitoring (Huang et al., 2020b). Therefore, EVI has high importance in 
the extraction results of economic forests. The different responses of soil 
background to spectral radiation affect the accuracy of forest informa
tion extraction. The TSAVI takes into account the interaction of elec
tromagnetic radiation, atmosphere, vegetation cover, and soil 
background noise and minimizes the influence of soil background 
(Lemenkova, 2021), which contributes to the effective extraction of 
economic forests. In addition, the precipitation and temperature of the 
sites are necessary for vegetation growth. Moreover, affected by the EL 
(Liu et al., 2018), the vegetation growth and their spectral reflection and 
radiation characteristics differ, which enlarges the variability between 
different forests. Perhaps these factors could be considered as the AFs in 
the accurate extraction of the economic forests in other region. 

Fig. 7. Importance of AFs.  

(a) (b)

Fig. 8. Spatial distribution of economic forests under different models: (a) RF model; (b) RF–AFs model.  

Table 6 
Area statistics of the second–level forests in different models (km2).  

Model Eucalyptus Simao pines Rubber trees Tea plantations Other shrubs Other forests 

RF  445.57  1441.51  345.92  935.79  111.94  3215.14 
RF–AFs  435.68  2037.92  197.86  587.95  185.74  3050.72  
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4.3. Parameters optimization and accuracy assessment 

Model parameter optimization is essential for improving model ac
curacy. In this study, the spectral features and AFs of forests were 
considered, and training and testing samples were used for model 
training and model error calculation to determine the optimal parame
ters of different models. This is the key that the RF–AFs model can 
achieve high accuracy in the extraction of forests information. The 
kappa coefficient of the extraction results of forests in the RF–AFs model 
is 0.9493, which is significantly higher than that of the RF model, 
confirming the importance of AFs, including SCs and VIs in the precise 
extraction of forests information. 

In the extraction process of the first–level land use, AFs are not 
considered, and the optimal parameters are not determined because the 
spectral features of croplands, forests, grasslands, water bodies, con
struction lands and unutilized lands differ greatly, and these types can be 
well distinguished without combining multiple AFs. It can be seen from 
the accuracy results of the first–level land use. However, during the 
precise extraction of economic forests, different forest types are difficult 
to distinguish due to their similar spectral features. Therefore, important 
interpreted features of different economic forests must be considered 
simultaneously, and other auxiliary features for increasing the vari
ability among different forest types must be explored further to 
comprehensively improve the extraction accuracy of economic forests. 

4.4. Study limitations 

This study aimed to develop a method for the precise extraction of 
economic forests. The major economic forests in Lancang County were 
selected for empirical demonstration. This method can also be employed 
for the precise extraction of other forests. However, the textural features 
of forests are not considered. Considering multiple AFs of forests in the 
extraction model simultaneously may improve the extraction accuracy 
of forests. In the future, more AFs such as spectral features, textural 
features, shape features, and SCs can be integrated simultaneously, and 
multivariate machine learning algorithms can be used for the precise 
and intelligent extraction of vegetation information. Finally, there are 
other hyper parameters in the RF model and RF–AFs model. We only 
selected the key parameters for optimizing. Considering more hyper 
parameters for optimizing is useful to obtain a more precise model. 

5. Conclusions 

Based on the AFs, including SCs and VIs, the RF–AFs model was 
employed for the extraction of the economic forests in Lancang County 
of Yunnan Province, China. The main conclusions are as follows: 

(1) The kappa coefficient of the extraction results of the first–level 
land use in Lancang County obtained using the RF model is 0.9529, and 
Lancang County is dominated by forests. Forests are mainly concen
trated in the southern region, accounting for 73.76 % of the territory 
area. The proportions of croplands, grasslands, water bodies, construc
tion lands, and unutilized lands are 23.32 %, 0.11 %, 1.20 % and 1.54 %, 
and 0.07 %, respectively. 

(2) Economic forests and other forests can be extracted precisely and 
effectively by integrating AFs, including SCs and VIs. The RF–AFs model, 
after parameter optimization, achieved good results in the extraction of 
economic forests. The kappa coefficient of the RF–AFs model is 0.9493, 
and the extraction accuracy is higher than that of the RF model. 

(3) The importance of PSRI, TEM, EVI, EL, TSAVI and PRE are all 
above 5 %, and the cumulative value of their importance is 76.09 %, 
which are the main factors affecting the extraction results of economic 
forests in Lancang County. It may provide factors reference for 
extracting economic forests and other forests in other regions. 

(4) Simao pines constitute the dominant economic forests in Lancang 
County, and are mainly distributed in the central, southwestern, and 
northern regions, accounting for 31.37 % of forests area. Tea plantations 

are mainly distributed in the northern and southern regions, accounting 
for 9.05 % of forests area. Eucalyptus are distributed in all townships, 
accounting for 6.71 % of forests area. Rubber trees are mainly distrib
uted in the eastern river valleys, accounting for 3.05 % of forests area. 
Furthermore, other shrubs and other forests other than economic forests 
account for 2.86 % and 46.96 % of forests area, respectively. 
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Schäfer, E., Heiskanen, J., Heikinheimo, V., Pellikka, P., 2016. Mapping tree species 
diversity of a tropical montane forest by unsupervised clustering of airborne imaging 
spectroscopy data. Ecol. Indic. 64, 49–58. https://doi.org/10.1016/j. 
ecolind.2015.12.026. 

Shi, X., Zhao, X., Pu, J., Huang, P., Gu, Z., Chen, Y., 2022. Evolution modes, types, and 
social-ecological drivers of ecologically critical areas in the Sichuan-Yunnan 
ecological barrier in the last 15 years. Int. J. Environ. Res. Public Health 19 (15), 
9206. https://doi.org/10.3390/ijerph19159206. 
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