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Introduction
The main focus of machine and statistical learning models is on developing reliable 
predictive models based on available data. In modern machine learning, regularization 
is a common practice to control the ability of a model to generalize to new settings by 
trading off the model’s complexity. Model regularization is a simple yet efficient way to 
compute model parameters in the presence of constraints to control model complexity. 
Specifically, regression regularization is an established method of increasing prediction 
accuracy in many regression models. Model complexity in regression learning models is 
displayed in high prediction variability. The regularization terms aim to control the pre-
diction variability with a slight increase in bias.

Over or under-estimation is a real challenge in many data science applications, from 
business to life science, to derive a reliable prediction generated by machine learning 
models. For example, as a social and business science, price science uses economics, sta-
tistics, econometrics, and mathematical models to study the problem of setting prices. 
In finding the optimal price to maximize profit/revenue with statistical and machine 
learning models, when the size of available products increases, the predicted gross profit 
tends to overestimate [1]. In another instance, India’s Central Statistics Organization 
(CSO) changes its method of computation of national income due to the overestima-
tion in the growth rates [2]. The challenges with over/underestimation in prediction are 
not limited to business or industry. In biology, scientists observed that machine learn-
ing models tend to overestimate the protein–protein association rates [3]. In medicine, 
the statistical and machine learning models missed the pain level of about 50 percent of 
women during labor [4]. Labor pain prediction is vital in obstetrics and helps caregivers 
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properly manage the pain. The over/under-estimation may cause a significant interrup-
tion in future applications. So, besides minimizing the difference in the prediction loss, 
we should bring attention to another form of model complexity that results in over/
under-estimation.

In many machine learning applications, underpredicting or overpredicting is not real-
ized until the estimated period is over. An overprediction or overestimation predicts that 
the estimated value is above the realized value. On the other hand, underprediction or 
underestimation indicates that the predicted value is below the actual value. Even if you 
observe an over or underprediction in the results, the learning model cannot address it 
systematically by model refinement and hyperparameter setting.

In most regression models, the estimation and inferences are closely tied with the pre-
diction variance. Generally, when the model generates a high variance, we can assume 
a large information loss is happening [5]. To avoid high variance in regression predic-
tion, we generally modify the cost function of a regression model to penalize large model 
coefficients for lowering the variance at the cost of increased biased. The well-known 
approaches are LASSO and Ridge. LASSO [6] or variations of �1 canalization [7], or even 
a costume �1 penalty function set to bound the magnitude of the control coefficients [5]. 
Ridge [8] or �2 penalty is usually added to the cost function to address the collinearity 
problem in linear regression models. Many machine learning models with Least Squared 
Error as a cost function may provide a basis for the overall prediction. Still, collinearity 
will cause an improper weight assignment to available variables. Theobald [9] extended 
this result to a more general loss function.

The quality of a regression model is measured by the discrepancy or loss between 
the actual output and the estimated output. The goal of learning is to find a model with 
minimal prediction error. It is unknown that machine learning models with convex loss 
function have an optimum complexity that generates the smallest prediction error [10]. 
Therefore, most of the models have some provisions for complexity control. Usually, 
we use regularization as an effective method to control the model complexity [11]. The 
problem set we have in this paper aims to reduce the number of instances with over or 
under-estimated predictions. The novelty of this paper lies in two parts. First, we intro-
duce a regularization term that can be added to the cost function of any machine learn-
ing model with a convex cost function. The optimism bias regularization term provides 
a satisfactory theoretical and conceptual framework for learning with the finite sample. 
We know that sometimes theoretical concepts may not translate into a practical applica-
tion. In the second part of this paper, we demonstrate the valuable capability of using 
optimism bias to control the complexity of regression models. For this purpose, we test 
regularization terms on various regression models both on synthetic and real-world 
data.

This paper is organized as follows. “Problem definition” section describes classical model 
selection criteria in statistics and machine learning. In this section, I will introduce the opti-
mism bias regularization term. “Numerical results” section describes the empirical compar-
isons between regression models and regularized regression models. “Experiments” section 
implies the optimism bias regularization on the Covid-19 data set to discuss the real-world 
application of the proposed regularization term. The application of optimism bias regulari-
zation is not limited to only business focus data sets. The Covid-19 case study shows how 
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this regularization term affects the performance of predictive models in a broad range of 
applications form business to science.

Problem definition
The predictive learning algorithms have a similar goal of generalizing the learning from the 
random sample to the entire population. We can achieve this goal by minimizing the pre-
diction risk. The quality of a machine learning model is measured by the discrepancy or loss 
function L(y, h(X)) between the actual output and its estimate produced by the machine 
learning model [12]. Hence, the goal of learning is to find the best function h from a given 
set of functions (or models), and this can asymptotically be possible if the goal is an accu-
rate function approximation [11, 13]. Regression model generalization can be decomposed 
into three components: bias, variance, and noise. The bias-variance tuple demonstrates the 
complexity of the learning model. As model complexity increases significantly, the model 
variance may also be elevated while the bias gets smaller. This bias-variance behavior is a 
sign of over-fitting, and the trade-off is known as a generalization error. Regularization is 
a key component in machine learning to overcome the fundamental issue of over-fitting 
problems [14].

Poggio and Girosi [15] established an application of regularization theory for machine 
learning models with finite train data sets. The traditional regularization approach was to 
find a continuous function � to perform a one-to-one map from a normed space X onto 
another normed space y . Data scientists use different non-negative penalty functions on 
various machine learning models. The primary goal of regularization is to find a function 
h(X) for independent variable y(X) that minimizes the functional:

where � is the non-negative regularization function which penalizes the function h with 
the regularization parameter β.

Optimism bias control

We will present an optimism bias control regularization for regression machine learning 
models with convex loss function, including linear regression, SVM, and deep learning 
models. There are many efficient approaches to minimize the convex and continuous loss 
functions. In this setting, we can formulate the supervised regression model as follows:

where Φ is a mapping function that can be considered kernel transformation. The solu-
tion to the Empirical Risk Minimization (ERM) optimization problem can be described 
as

where L̂ is the generalization error of the model that can be represented as

L
(
y, h(X)

)
+ β�(h(X)),

h(x) = W .�(X)+ b.

h : argmin
W ,b

L̂(y, h(X))
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Unfortunately, ERM minimization tends to result in over-fitting in many applica-
tions. To avoid over-fitting, we can apply Tikhonov or Ivanov regularization tech-
niques [16].

The regularization term P(W ) is defined to stabilize the estimates by adding a pen-
alty to the empirical risk. The penalty multiplier � , ranging from 0 to +∞ , controls the 
degree of stabilization. Two widely used P functions are famously known as �2 and 
�1 regularization terms. Two functions increasingly penalize large absolute values for 
the feature coefficients in different manners [17]. However, neither of these models 
can help control a specific type of regression prediction error. For this purpose, we 
introduce a new regularization term to target a specific type of prediction in a regres-
sion model. The control optimism penalty can be formulated as:

where

or

Respectively, to regularize overprediction or underprediction in regression models. 
The resulting regularized cost function is a strictly convex function that grants the 
existence of an optimal solution.

Lemma 1  αf  is convex if f is convex and α ≥ 0.

Lemma 2  The sum of two convex functions is strictly convex if at least one is strictly 
convex.

Theorem  1   �(h(X)) = β
2

∑
i

(
sgn

(
h(Xi)− yi

)
+ 1

)
.�p

(
h(Xi)− yi

)
 is a convex func-

tion for β ≥ 0 and p ≥ 1.

Proof  −1 ≤ sgn(h(Xi)− yi) ≤ 1 for ∀Xi ∈ XtrainTherefore, 0 ≤
β
2 sgn

(
h(Xi)− yi

)
≤ β , 

which is a non-negative number. Also, any ℓp is a strictly convex function for p ≥ 1 . 
Hence, �(h(X)) is a convex function. � □

Similarly, we can prove that �(h(X)) =
∑

i(−sgn(h(Xi)− yi)+ 1).�p(h(Xi)− yi) is 
also a convex function.

L̂(h) =
1

n

∑

i

�(yi, h(Xi)).

h : argmin
W ,b

L̂
(
y, h(X)

)
+ �.P(W )

h : arg minW ,bL̂
(
y, h(X)

)
+

β

2
�(h(X)),

(1)�(h(X)) =
∑

i

(sgn(h(Xi)− yi)+ 1).�p(h(Xi)− yi)

(2)�(h(X)) =
∑

i

(−sgn(h(Xi)− yi)+ 1).�p(h(Xi)− yi)
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Theorem 2  Assume L̂
(
y, h(X)

)
 is a strictly convex function, then L̂

(
y, h(X)

)
+

β
2�(h(X)) 

is a strictly convex function for p > 1.

The proof of the above theorem is trivial considering the Theorem  1 and Lemma 
2. In this paper p = 2 in the �p norms. Hence, an optimism-biased regularized cost 
function is still strictly convex and can be regularized further for model complexity 
control using a �p for p ≥ 1 . The existence theorem guarantees a global minimum for 
the regularized cost function.

Numerical results
This section presents numerical results from simulation studies and a real-world data 
analysis to study the performance of Optimism Bias regularization in the context of 
different models. The simulation scenarios include univariate and multi-variant linear 
regression models, support vector regression models, and deep learning models. It’s 
worth stating that the prediction errors in Machine Learning models are categorized 
as reducible and irreducible errors. Irreducible error is the natural result of variability 
in the system, which suggests that the model may not change this type of error. On 
the other hand, the reducible error can be represented with two statistical functions, 
bias, and variance, to display the complexity and flexibility of the model for the avail-
able training data set. In our study, we will use bias and variance to study the com-
plexity and flexibility of each model with optimism bias regularization term.

Linear regression models

For the first simulation, we consider the univariate linear regression model. We are 
interested in seeing the effect of the regularization hyper-parameter β on variance, 
bias, and regression score and in controlling the optimism bias. For this purpose, we 
have generated one hundred random univariate linear regression data sets, each with 
one thousand instances. The box plots Fig. 1 display, on average, the model variance 
will have minor changes as the value of the hyper-parameter β increases. On the other 
hand, bias will rapidly increase for larger hyper-parameter β values, which suggests 
the regularized method tends to underfit. The sharp drop in the average r2-score sug-
gests that increasing β may result in over-fitting. Meanwhile, by adding this regulari-
zation term, we can control the means squared positive and negative errors.

We tested the new regularization term on a multivariate linear regression model in 
the second simulation. We have generated random data sets for this simulation with 
one thousand instances and four features. The results are summarized in Fig. 2. The 
observation suggests that when the value of hyperparameter β grows, in average vari-
ance does not significantly change while bias increases and regression score declines. 
Also, as it is expected, the mean squared positive error increases while the mean 
squared negative error decreases. For this implementation, we considered Eq. 1. If we 
consider Eq. 2, then we are expected observe the opposite behavior on mean squared 
positive and negative errors.
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Support Vector Machine Models

The Support Vector Machine (SVM) model was introduced by Boser et  al. [18] and 
immediately became one of the most successful algorithms for machine learning 
problems. Vapnik initially studied the approach, and Lerner [19] and Vapnik and 

Fig. 1  The effect of hyperparameter β on variance, bias, and score of univariate linear regression

Fig. 2  The effect of hyperparameter β on variance, bias, and score of multivariate linear regression
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Chervonekis [20] as an alternative statistical learning model even though the ini-
tial algorithm focused on classification problems, but soon after, many scientists 
observed the excellent performance of regression and time series applications. The 
support vector regression problem can be expressed as

where ξi
+ and ξi

− are slack variables representing upper and lower constraints on the 
system’s outputs, and C is the regularization coefficient controlling errors’ influence. This 
loss function is considered an ϵ-insensitive loss function, which means errors less than ϵ 
are ignored in the process. The function h could be the linear function or any other non-
linear function to address the curse of dimensionality, known as the kernel trick.

Similarly, we can modify the SVM problem to consider and control a specific error 
by adding a new regularization term β2�(h(X)) to the optimization problem, where � 
could be Eqs. 1 or 2 depends on the objective of the problem. We have used a simi-
lar multivariate data set to study the effect of added regularization terms. Figure  3 
illustrates similar results to the linear regression models, proving that the intended 
changes limit the specific over/under prediction in a random data set.

min
1

2
ω2

+ C

n∑

i=1

(ξi + ξ∗i )

subject to






yi − h(Xi) ≤ ǫ + ξ+i
h(Xi)− yi ≤ ǫ + ξ−i

ξ+i , ξ−i ≥ 0

Fig. 3  The effect of hyperparameter β on variance, bias, and score of multivariate Support Vector Machine 
Regression
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Experiments
The emergence of coronavirus disease 2019 (COVID-19) has quickly become the major 
healthcare threat in 2020. Our understanding of this deadly virus and possible treatment 
methods is changing daily. In the United States, the disease is expected to infect 20 to 60 
percent of the population [21]. The recent experiences in New York and other parts of 
the world in handling COVID-19 spikes strongly suggest that a critical factor in keeping 
the number of deaths low is to ensure the adequate capacity of inpatient and ICU beds, 
especially during the surge.

Any outbreak of an epidemic requires an ample amount of historic data to learn and 
make future forecasts. The unique nature of each outbreak is a factor against the accu-
rate prediction. Even though we might have much available historic data on similar out-
breaks, each epidemic outbreak is still unique, making the available data irrelevant.

One of the significant challenges in the early COVID-19 pandemic was the lack of 
preparation for surges. Optimism bias prediction may have many applications in regular 
and cross-sectional data sets. Similarly, there are some significant use cases in the times 
series.

Covid‑19 case study

In this experiment, we have used the Covid-19 patient data collected in the state of 
Washington since the early days of the outbreak. Our study shows that simple predic-
tive methods like moving averages and more complex approaches like Long Short-Term 
Memory (LSTM) [22] cannot predict a surge quickly. As a result, they cannot be used as 
a basis for medical care preparation. LSTM is a widely used recurrent neural network for 
processing sequential data such as time-series data. In a time series prediction, the goal 
is to forecast the upcoming trends/patterns given historical data sets with temporal fea-
tures. Recurrent Neural Networks (RNN) are great tools in sequence data analysis and 
prediction [23]. The major shortcoming of RNN is dealing with long distance depend-
encies. LSTM, a special kind of RNN network, establishes a long delay between input, 
feedback, and gradient explosion prevention to overcome this issue.

This paper will use the LSTM model with optimism bias regularization to predict the 
number of Covid-19 cases in the recent world pandemic. Because Covid-19 has caused a 
significant interruption in human life worldwide, strategic planning in the public health 
system to avoid deaths and manage patients is a crustal task. There is plenty of research 
conducted on this topic since the emergence of this pandemic to forecast the number 
of Covid-19 cases using the LSTM or a variation of this model [21, 24, 25]. Shahid et al. 
[25] compared LSTM with supervised learning models like auto-regression integrated 
moving average (ARIMA), support vector regression (SVR) for time series prediction 
of confirmed cases, deaths, and recoveries in ten major countries affected to Covid-19. 
The comprehensive comparison shows that LSTM outperforms the other two models. 
Therefore, for the last case study of this paper, I apply the LSTM model with the new 
optimism bias regularization to forecast the number of cases affected by Covid-19.

Data used for this case study is collected on the last day of August 2021 from the 
[CDC data track​er]. We have trained the LSTM model and LSTM with optimism bias 
regularization terms. We tested a different range of beta hyper-parameter in this case 

https://covid.cdc.gov/covid-data-tracker/#compare-trends_newcases
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study. This paper aims to show how optimism bias regularization affects prediction 
quality and can achieve the previously impossible goal through model refinement.

Figure 4 shows a daily number of positive cases of Covid-19 in the state of Washing-
ton and LSTM predictions. As this figure illustrates, during the surges LSTM model 
is under-predicting the daily number of positive cases. Therefore cannot be a reli-
able source for the state and the hospital to prepare themselves for the surge. Fig-
ure 5 displays the prediction made by an LSTM model enhanced with an optimism 
bias regularization and regularization parameter 0.01. According to Table  1, when 
hyperparameter β = 0.01, values of Mean Squared Error and Mean Positive Squared 
Error improves. This fact suggests that the LSTM model with optimism bias regu-
larization term β = 0.01 better captures the magnitude of the catastrophe during the 
surge. LSTM model without optimism-biased regularization under-predicts the daily 
number of positive cases in 295 days out of 534 days considered in this study. LSTM 
with optimism-biased regularization and regularization coefficient β = 0.01 cuts the 
number of days with under-estimated positive cases by half to 173 days. This signifi-
cant drop directly affects medical facility readiness, especially during the surge time.

Fig. 4  Forecasting the number of daily positive cases in the state of Washington

Fig. 5  Forecasting the number of daily positive cases in the state of Washington using the LSTM model with 
optimism bias regularization term

Table 1  Hyperparameter tuning in Covid-19 daily positive case study

Model Mean squared error Mean positive 
squared error

LSTM 557,289.587901 6.965658e + 05

LSTM—β = 0.01 537,408.970020 6.710319e + 05

LSTM—β = 0.1 527,946.192856 8.641470e + 05

LSTM—β = 0.8 677,850.136593 8.442096e + 05

LSTM—β = 1 530,538.572982 1.256760e + 06
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Data driven remaining useful life prediction
The remaining useful life (RUL) is when a machine is likely to operate before it requires 
repair or replacement. The application of RUL is from material science to biostatistics 
and econometrics. RUL estimation is one of the main challenges in conditional-based 
maintenance and prognostic health management. Method-based RUL prediction 
models build mathematical models to explore the degradation trajectory of machin-
ery. The benefit of these types of models is their high accuracy. However, as mechani-
cal systems’ complexity increases, such models’ design and implementation may result 
in extraordinarily complex and sometimes impossible-to-solve mathematical models. 
Also, the model development heavily depends on domain expert knowledge of system 
components.

Alternatively, a data-driven approach estimates RUL using sensor and operational 
data and traditional machine learning models. Data-driven models rely on previously 
observed data to predict the systems’ future state. Researchers applied various machine 
learning models like polynomial regression, support vector regression, and autoregres-
sive integrated moving average models to forecast RUL. Deep neural network techniques 
outperform other machine learning models when the complexity of the mechanical sys-
tem increases and available sample data suggest a robust nonlinear pattern [26–28].

For the second case study, we use Commercial Modular Aero-Propulsion System 
Simulation (CMAPPS) developed by NASA to study engine degradation [29]. This data 
set consists of multiple multivariate time series collected from different engines. Each 
engine starts with different degrees of initial wear and manufacturing variation, which 
is unknown to the user. Each engine usually operates at the start of each time series and 
develops a fault at some point. The objective of this data set is to predict the number of 
operational cycles after the last cycle that the engine will continue to operate.

We followed the data preparation technique outlined in [30] to prepare and scale 
the data set. The initial collected data set contains 26 columns containing information 
about the engine operational settings and sensor measurements of 100 engines. This 
data set does not provide RUL directly as a value. Instead, it has time series informa-
tion of all runs to failure of all engines. From this data, we can compute the linear 
degradation model of each engine in this data set. RUL in this data set ranges from 
128 to 362 cycles without engine failure. We consider only the sensor measurements 
at the beginning of each cycle for the machine learning model to predict the RUL. We 
use a support vector regressor model, SVR, with RBF kernel to predict the RUL of 
the CMAPPS data set. The computed best parameters for this model are C = 10 and 
ϵ = 5. However, this model overestimates the RUL of about half of the instances in 
both train and test data sets. Considering the cost of over-estimation, it is essential to 
build a model that, while minimizing the prediction cost, also avoids overestimation 
as much as possible. For this purpose, we have trained an SVR model with optimism-
biased regularization. The overestimation in this data set is costly and may cause sev-
eral operational obstacles in the system. To control the number of instances with RUL 
prediction higher than the actual value, we have included the optimism regulariza-
tion term with regularization coefficient β = 1. Figure  6 compares the RUL predic-
tions with and without optimism bias regularization. The overestimation rate in this 
plot is the ratio of instances with RUL predicted value higher than the actual to the 
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total number of instances. For the regularization parameter β = 1 we could control 
the over-estimation by 40 percent from 0.5 to close to 0.3. The drawback of this sig-
nificant drop in the over-estimation rate is the increase in model complexity which 
has been displayed in plot MSE of Fig. 6.

Conclusion
This paper discussed a new regularization term that can be added to a convex cost 
function of a machine learning model. Generally, model complexity represents itself 
in the form of high variance in regression machine learning models. To avoid model 
complexity in regression prediction, We modify the cost function to penalize model 
coefficients. The cost of this modification usually is higher biased in prediction. Then 
we introduced a new function to penalize the over or underpredictions in the learn-
ing model. This new penalty function works best on machine learning models with a 
convex cost function. We have tested it on various synthetic and real data to validate 
our proposed method. In all the examples, we can inspect the rise of bias when the 
regularization coefficient increases. We can conclude the proposed regularization is 
controlling the over or underestimation complexity of the machine learning model.
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