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Editorial on the Research Topic:

Lipid metabolism and membrane structure in plant biotic interactions
Introduction

Lipid bilayers represent the interface between cells (or organelles) and their

environment. Consequently, membrane lipids and their derivatives play pivotal roles

in inter- and intracellular signaling, and ultimately mediate organisms’ interactions with

their biotic and abiotic environment. Plants contain an array of lipids, which include

phospholipids, galactolipids, sphingolipids, and steroids. Besides their contribution as

structural constituents of cellular membranes, lipids also serve as precursors for signaling

metabolites that regulate plant growth, development and response to the environment

(Hou et al., 2016; Lim et al., 2017). These signaling molecules include sphingolipids,

lysophospholipids, and certain oxylipins such as the hormone jasmonic acid (JA), as well

as secondary messengers such as phosphatidic acid (PA) and phosphoinositides (PIs)

that are generated through the action of phospholipases. This special topic brings

together new reports on several of these lipid classes to shed light on the impacts of

plant lipid metabolism and membrane organization on plant immunity.
Phospholipases and their products

In response to many stresses, membrane lipids are rapidly modified by lipases (Shah,

2014). Phospholipases in particular are important in generating secondary messengers

such as PA and PIs that can trigger intracellular cascades such as calcium release. Besides

their contribution in intracellular signaling, PIs also serve as the source of inositol

polyphosphates (Ins-Ps), which are involved in phosphate homeostasis and act as

messengers in intercellular signaling mediated by plant hormones. The biosynthesis of
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Ins-Ps in plants and their contribution to signaling is reviewed in

this special issue by Riemer et al..

Phospholipases D (PLDs) are among the most common

stress-responsive enzymes that modify membrane lipids. They

hydrolyze phospholipids to produce PA and free head groups,

promoting membrane remodeling and PA signaling. In addition,

certain PLD isomers directly interact with other proteins such as

G protein subunits, cytoskeletal proteins, and enzymes

regulating oxidative stress signaling (Li and Wang, 2019;

Deepika and Singh, 2022). In these ways PLDs and PLD-

generated PA regulate a diversity of processes including

cytoskeletal rearrangements, ROS generation and response,

autophagy, and hormone signaling, and influence abiotic stress

tolerance, pathogen resistance, and interactions with endophytes

and symbionts (Camehl et al., 2011; Hong et al., 2016; Li and

Wang, 2019; Zhang et al., 2021). The multiplicity of biotic and

abiotic interactions that are impacted by PLDs suggest that PLDs

might influence the interplay between environmental stresses

and biotic interactions.

Different PLD isomers, categorized into subgroups a
through z, vary in their catalytic properties and biological

roles (Deepika and Singh, 2022). In this special topic, Yao

et al. characterize the effects of soybean PLDϵ on responses to

nitrogen limitation and nitrogen-fixing rhizobacteria. Compared

to other PLD subgroups, relatively less is known about PLDϵ,
although it is the primary isomer responding to nitrogen (N)

deficiency (Hong et al., 2009; Li andWang, 2019). Here, Yao and

coworkers demonstrate that overexpression of PLDϵ in soybean

can increase growth and activity of nitrogen assimilation-related

enzymes under nitrogen-l imited condit ions . PLDϵ
overexpression did not impact total nodule weight and could

enhance plant growth even in the absence of rhizobia; however,

it increased the accumulation of certain PA species (34:3 and

36:6 PA) in response to rhizobia, and interacted synergistically

with rhizobial infection to promote seed production. Unlike

overexpression of PLDa (Zhang et al., 2021), enhanced

expression of PLDϵ had no negative impact on nodule

formation. These results illustrate the potential applications of

engineering PLD expression for improved stress resistance;

moreover, they highlight the need for further research on

different PLD isomers and their impact on the complex

interplay between plants, their biotic interactions, and their

abiotic environment.
Sphingolipids

Sphingolipids comprise long chain bases (i.e. LCBs) and their

derivatives, including ceramides (Cers), hydroxyceramides (hCers),

glucosylceramides (GlcCers), and glycosylinositolphosphoceramides

(GIPCs) (Quinville et al., 2021). All of these classes of sphingolipids,

and particularly LCBs, have been reported tomodulate plant-microbe

interactions (Zeng and Yao, 2022). Synthesis of all other sphingolipids
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from LCBs begins through the action of ceramide synthases (CSs),

which shape the profile of complex sphingolipids and also regulate

LCB levels in the plants.

In this special topic, Zeng et al. compared the impacts of

Class I and Class II CSs on basal plant defenses against

Pseudomonas syringae pv. maculicola (Psm) in Arabidopsis.

Class I CSs prefer to use a dihydroxyLCB (e.g. d18:0) and

palmitoyl-CoA to form 16-Cer and other long fatty acid

ceramides (LFA Cers), whereas Class II CSs prefer

trihydroxyLCB (e.g. t18:0) and very-long-chain acyl-CoA as

substrates to synthesize 24-Cer and other very-long-chain fatty

acid Cers (Markham et al., 2011; Ternes et al., 2011). Zeng et al.

results suggest that Class II CSs (LOH1 and LOH3) negatively

regulate programmed cell death and other salicylic acid (SA)-

dependent defenses against Psm, whereas a Class I CS (LOH2)

may promote resistance. The Psm-resistant loh1 mutant

accumulated higher than normal levels of d18:0, t18:0, 16-Cer,

and 24-Cer, and exogenous application of d18:0 and t18:0

induced cell death and defense gene expression in an EDS1-

dependent manner, suggesting that the heightened levels of one

or both these LCBs may contribute to bacterial resistance in loh1

mutants. The SA signaling nodes EDS1 and PAD4 influenced the

LCB and ceramide profiles of the loh1 mutant, suggesting a

complex interplay between sphingolipid- and SA signaling.

Notably, another recent study reported that heightened t18:0

levels are likely responsible for SA- and EDS1-dependent

programmed cell death in the fah1 fah2 loh2 triple mutant,

which is impaired in synthesis of possible cell death-inhibiting

hCers (König et al., 2022). These results advance our

understanding of the impacts of sphingolipid metabolism on

plant immunity and cell death, and indicate that salicylate

signaling is a key intermediary in the effect of ceramide

synthases on pathogen resistance.
Oxylipins

Oxidized lipids (oxylipins) influence programmed cell death,

possess antimicrobial activities, and serve as signaling

metabolites that modulate plant growth, development, and

stress response (Knight et al., 2001; Hamberg et al., 2003;

Wasternack and Feussner, 2018; Deboever et al., 2020).

Lipoxygenases (LOXs) and dioxygenases (DOXs) contribute to

the biosynthesis of oxylipins (Wasternack and Feussner, 2018).

JA is one of the better studied signaling oxylipin in plants, which

depending on the pathogen contributes to disease resistance or

susceptibility (Yan and Xie, 2015). JA also promotes spore

germination in case of Fusarium graminearum (Alam et al.,

2022). Oxylipins are also produced by phytopathogens and

influence pathogen development and virulence (Christensen

and Kolomiets, 2011; Pohl and Kock, 2014). The similarities

between oxylipins produced by the host and pathogen (Brodhun

and Feussner, 2011; Fischer and Keller, 2016) have led to the
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opinion that oxylipins contribute to inter-kingdom

communication between plants and phytopathogens such that

some plant oxylipins facilitate pathogen development and

virulence, and conversely pathogen produced oxylipins act in

the host to facilitate infection (Christensen and Kolomiets, 2011;

Pohl and Kock, 2014).

In this focus issue, Beccaccioli et al. review the biosynthesis

and impact of fungal oxylipins on plant-fungal interaction. They

further highlight recent evidence demonstrating that a similar

strategy is also utilized by some bacteria to facilitate infection.

They discuss recent studies with Xylella fastidiosa, the causative

agent of olive quick decline syndrome (OQDS), that uncover the

involvement of oxylipins in quorum sensing, biofilm production,

motility, and virulence. They suggest that oxylipins are involved

from the early stages of infection with DOX-derived oxylipins

facilitating xylem colonization. Subsequently, once plant

defenses have been activated, LOX-derived oxylipins

accumulate causing the pathogen to switch to an ‘acquisition

phase’ that promotes bacterial acquisition from xylem by the

insect vector. Another study in this issue by Scala et al. utilized

lipidomics with machine learning conducted on samples from

OQDS-resistant and susceptible olive cultivars to show that 13-

HODE, which is derived from linoleic acid (C18:2), is a

biomarker for OQDS and a factor in olive trees that

contributes to susceptibility to X. fastidiosa. The accumulation

of 13-HODE correlated with increased expression of 13-LOX

that putatively contribute to 13-HODE synthesis. 13-HODE had

previously been shown to promote biofilm production by X.

fastidiosa (Scala et al., 2020).
Conclusions

Lipid-modifying enzymes such as phospholipases and lipid

signals such as sphingolipids, oxylipins, PA, and InsPs play

pivotal roles in inter- and intracellular signaling. Furthermore,

they respond dynamically to pathogens, symbiotic microbes,

insects, and other biotic agents. These dynamic changes in lipid

metabolism can in some cases facilitate plant adaptation and

defense, but in other cases may facilitate the colonization process

by pests and pathogens. Moreover, outside factors such as

environmental conditions or genetic engineering that alter
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lipid composition in host plants may also shift the balance

between host plant resistance and susceptibility. Thus, the

study of plant lipid metabolism is central to our understanding

of inter-kingdom interactions.
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