Suppression of Higher Acoustic Harmonics by Application of Solid-Solid Periodic Layered Structure in Nonlinear Ultrasonics Nondestructive Evaluation Field

PDF Version Also Available for Download.

Description

Nondestructive testing (NDT) using ultrasound band 1-5 MHz, has been widely used for the early-stage detection of structural failure; however, it fails to detectf material degradation, fatigue, and microcracks. NDT with nonlinear ultrasound (NLU) can detect a microscopic discontinuity or imperfection that may be a source of the second harmonic in the reflected signal. In this research, we focus on creating a metamaterial band filter that filters out nonlinearities induced by the instrument itself. A 1D elastic superlattice (SL) acoustic filter is designed with a bandgap in its frequency spectrum that covers the frequency range of second harmonic. The SL … continued below

Creation Information

Kang, Jinho May 2023.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by the UNT Libraries to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Author

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Kang, Jinho

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Nondestructive testing (NDT) using ultrasound band 1-5 MHz, has been widely used for the early-stage detection of structural failure; however, it fails to detectf material degradation, fatigue, and microcracks. NDT with nonlinear ultrasound (NLU) can detect a microscopic discontinuity or imperfection that may be a source of the second harmonic in the reflected signal. In this research, we focus on creating a metamaterial band filter that filters out nonlinearities induced by the instrument itself. A 1D elastic superlattice (SL) acoustic filter is designed with a bandgap in its frequency spectrum that covers the frequency range of second harmonic. The SL is made of periodically alternating Cu and Sn-Pb solder layers. We conducted analytical and numerical calculations to obtain the appropriate thickness of each layer. The metamaterial in this study has the pass band for the fundamental frequency of 5 MHz and the first stop band centered near the frequency of 10 MHz; 5 MHz was chosen because the second harmonic at 10 MHz can detect 200μm micro-scale damage. Experiments with aluminum as the reference specimen and with SL filter were conducted. A function-generator generates 3 pulses sine signal, within the frequency range from 2.5 MHz to 20MHz. Spectral analysis of the signal through the SL filter shows 100 times voltage suppression of the second harmonic as compared to the signal transmitted through the Al specimen. By filtering out the device's inherent nonlinearity with the SL ultrasonic filter, one can detect microcracks, fatigue and material degradation with much higher accuracy.

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • May 2023

Added to The UNT Digital Library

  • July 8, 2023, 10:46 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 9

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Kang, Jinho. Suppression of Higher Acoustic Harmonics by Application of Solid-Solid Periodic Layered Structure in Nonlinear Ultrasonics Nondestructive Evaluation Field, thesis, May 2023; Denton, Texas. (https://digital.library.unt.edu/ark:/67531/metadc2137584/: accessed December 5, 2023), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; .

Back to Top of Screen