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The lattice point problem in dynamical systems investigates the distribution of 

certain objects with some length property in the space that the dynamics is defined. This 

problem in different contexts can be interpreted differently. In the context of symbolic 

dynamical systems, we are trying to investigate the growth of N(T), the number of finite 

words subject to a specific ergodic length T, as T tends to infinity. This problem has been 

investigated by Pollicott and Urbański to a great extent. We try to investigate it further, 

by relaxing a condition in the context of deterministic dynamical systems. Moreover, we 

investigate this problem in the context of random dynamical systems. The method for us 

is considering the Fourier-Stieltjes transform of N(T) and expressing it via a Poincaré 

series for which the spectral gap property of the transfer operator, enables us to apply 

some appropriate Tauberian theorems to understand asymptotic growth of N(T). For 

counting in the random dynamics, we use some results from probability theory. 
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CHAPTER 1

INTRODUCTION

The lattice point (counting) problem in math has long history dating as far back as

Gauss circle problem. Gauss tried to obtain an asymptotic formula for number of points in

the plane with integer coordinates inside a circle of radius T as T grows. Later on Sierpinski,

Walfisz, Iwaniec & Mozzochi [17], Huxley [15], Hardy [16, p. 372], Landau and Hafner [13]

contributed to problems closely related to Gauss circle problem for purpose of obtaining

better estimates.

The analogous problem in the context of hyperbolic spaces as well gained a lot of

attention starting in 1942 with (unnoticed) work of Delsarte, where he considered the hy-

perbolic plane H2 and instead of Z2 he considered orbit of a point z ∈ H2 under the action

of a Fuchsian group G ⊆ PSL(2,R). He obtained an asymptotic formula for number of

g ∈ G that move z at most by T as T grows. Here the distance is measured by a hyperbolic

metric of constant negative curvature [7]. Independently, Huber published his result on this

problem in 1956. His approach uses spectral decomposition of Laplacian operator, where G

doesn’t contain parabolic elements because he assumes the fundamental domain is compact

[14]. In the same year, Selberg extended this decomposition for the case G contains parabolic

elements where fundamental domain has finite area. He used the celebrated trace formula

for this [37, p. 77]. This helped Patterson to approach the problem in generality providing

some error term as well [30]. Along with these works, Margulis answered similar question

in higher dimensional hyperbolic space in 1969 [24, p. 48]. Several others have contributed

to this problem in different contexts including Sarnak [36], Lax & Phillips [23], Parry &

Pollicott [29], Lalley [22], Mirzakhani [26] and etc.

Recently, Pollicott & Urbański jointly obtained an asymptotic formula in the context

of conformal dynamical systems, see corollary 3.22 or [33, p. 39]. For this, it is enough to

have graph directed Markov system in which our functions in the system are contractions

and satisfy certain properties. The most important one is the conformal property which is
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angle preserving orientation preserving or orientation reversing. They use infinite theory of

graph directed Markov system developed by Mauldin & Urbański [25] and complex trans-

fer operator developed by Pollicott [32] to obtain an asymptotic formula for counting finite

words in the shift space for which the corresponding composition function of the system has

derivative at least e−T as T grows. Further, they introduce slightly different system in which

finitely many parabolic elements are allowed and they apply the aforementioned asymptotic

formula for this system. These two kinds of conformal systems have many applications one

of which is an asymptotic formula for the planer Apollonian circle packing problem. The

circle packing was studied in 1970s by Boyd [3] and estimates of number of circles of radius

at 1/T was obtained by him in 1980s [4]. This estimate had major improvement due to

Kontorovich & Oh in 2011 [20] and Oh & Shah in 2012 [28]. The former article focuses on

two cases: (a) number of circles of radius at least 1/T inside the biggest circle tangent to

the three circles that generate the gasket, and (b) number of circles of radius at least 1/T

between two parallel lines generating the gasket up to a period of the gasket. One year later,

the latter article obtains a similar formula for case (c) number of circles of radius at least 1/T

bounded in curvilinear triangle whose sides are parts of three circles tangent to each other .

The method for Kontorovich-Oh-Shah is equidistribution of expanding closed horospheres on

hyperbolic 3-manifolds G\H3 where G is geometrically finite torsion-free discrete subgroup

of PSL(2,C). Further they use Patterson-Sullivan theory of conformal density (measure) in

which the Laplacian operator has simple isolated eigenvalue −δG(2 − δG) where δG is the

Hausdorff dimension of the limit set under the assumption δG > 1 [38, p. 195], [31, p. 272].

In Pollicott & Urbański’s work the spectral theory is analyzed for the transfer operator

instead where they assume their system has D-generic property which prevents the situation

that the transfer operator admitting 1 as spectral value on the critical line Re(s) = δ of the

Poincaré series except at the exponent itself s = δ. The other condition they impose on the

system is strong regularity which can be perceived to be analogous to the assumption δG > 1

mentioned above.

In this dissertation, we relax the D-generic assumption to see how Pollicott & Urbański’s
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result changes, see theorem 3.19. We noticed that in this situation, we no longer obtain only

one asymptotic formula. We may obtain continuum many relations. More precisely we can

see that the ratio can converge to a full range of closed interval rather than just a point

in Pollicott & Urbański’s result, see example 3.25. However, we can obtain lower bound

for the infimum and upper bound for the supremum. These bounds are shown to be sharp

by an example, see example 3.25. We should mention that we only assume we are given a

real-valued summable Hölder-type function on the shift space. We don’t assume necessarily

the function is induced by a conformal system. Theorem 3.19 is the main result of chapter

3. This involves spectral analysis of the transfer operator which we adapt from Pollicott &

Urbański and a Tauberian theorem 2.42 of Graham & Vaaler. Further we investigate an

asymptotic of the length for which the counting function is related to. Given T > 0 the

maximum length contributing to the counting function is itself subject to an asymptotic

formula, see proposition 3.23. The chapter 4 investigates counting problem for a random

system. There might be different ways to define random systems. We believe our formula-

tion of random systems is one natural way; however, the counting problem in this sense gets

much harder than before. The main result of chapter 4 is corollary 4.10. This shows the

difference of counting in deterministic and random settings. The main tool in this corollary

is the law of iterated logarithm from probability theory. We further tried to find a formula

for more general systems, but with some assumptions on the random factor. The main as-

sumption restricts fluctuations of a random walk. Under this assumption we obtained some

asymptotic formulas, see theorem 4.7 and theorem 4.5. Furthermore, we constructed an

example in which the result suggested by the theorem 4.5 still holds under weaker condition,

see example 4.12.

In chapter 2, we try to mention background materials for chapters 3 and 4. We first

introduce the symbolic space. The notion of Hölder continuity for real or complex functions

over the symbolic spaces comes after. Then we continue with some common dynamical

notions such as pressure, Gibbs and equilibrium measure (state). Moreover, we define prop-

erties such as strong regularity and D-generic property. The latter property is of significant
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concern in this dissertation. Later, we introduce transfer operator and talk a bit about per-

turbation theory of analytic operator. This requires essential spectrum concept. We mention

the notion of graph directed Markov systems. Furthermore, we introduce random dynamics

in the context of graph directed Markov system. Finally, we briefly mention two Tauberian

theorems before we finish the preliminaries chapter with some examples.

In chapter 3 our aim is obtaining a general asymptotic formula for counting in dy-

namical systems. There is no random dynamics flavors in this chapter. First we apply

the analytic perturbation to the transfer operator to obtain a spectral representation of the

transfer operator over its maximal eigenvalues. However, we need to show these eigenvalues

are simple first. This requires introducing a weighted transfer operator. Next, we talk about

the relation between a complex function (Poincaré series), and counting function. The idea

is by taking Riemmann-Stieltjes integral against our target counting function, we obtain a

Poincaré series. Furthermore, we bring some estimates to find some upper and lower bounds

for counting finite periodic words in terms of our ordinary counting function. Then, we use

the spectral representation to argue how Graham & Vaaler’s Tauberian theorem is applicable

to imply the main theorem 3.19 . We use this theorem to obtain Pollicott & Urbański’s for-

mula as a corollary. Finally, we talk about the asymptotic of the length that is conjectured

to contribute the most to our counting function. We provide two asymptotic formulas for

length. We finish by three examples to see how our estimates of bounds are sharp in the last

section.

In chapter 4, we just focus on random systems. We try to investigate the counting

problem for random graph directed Markov systems. The first section is devoted to formu-

lating the problem first. Next, we investigate the problem for some class of random factor λ

when they follow a periodic (or eventually periodic) pattern. In the next section, we loosen

this pattern by some other conditions and we again obtain an exponential growth. Before

finishing by examples we construct a system with non-exponential growth for counting. In

this section we no longer use any Tauberian theorem and instead we compute our counting

function directly.
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We would like to mention that throughout this dissertation we try to stay loyal to

the following conventions:

• e, ωi, ρi : letter

• E : set of letters

• ω, τ, γ : finite words containing letters from E

• ρ, ρ′ : infinite one-sided sequence containing letters from E

• EN
A : set of infinite one-sided sequences

• T : positive real number

• x, y : real number

• s = x+ iy : complex number

• σ : shift map on EN
A

• mx, µ, ν : measure

• f, g, h : real or complex functions on EN
A or on EN

A × Λ

• B: Borel sets of EN
A

• 1B : indicator function of a Borel set B ∈ B

• C0,α : space of Hölder functions of exponent α

• K,Q, c, c1, C1, C,D, cδ : constants

• L,P ,Q,D,F , E : operators

• E : expected pressure (only in chapter 4)

• ξ : spectral value or eigenvalue

• Sp : spectrum

• Γ : interval of form (x0,∞)

• Γ+ : some right half plane Γ× R

• Z : countable (finite or infinite) set of real or complex numbers in the closed unit

disk

• λ : infinite two-sided sequence containing letters from Z

• ZZ : set of infinite two-sided sequences

• Nρ(B, T ), Nρ(T ), N
λ
ρ (T ) : counting function in T
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• ηρ(B, s), ηρ(s), ηλρ (s) : complex function in s

• Snf : ergodic sum of f

• sn,z(λ) : random walk on the random variables {1z}z∈Z

• Xv : a Euclidean domain

• t : a point of Xv

• ϕe : a function of a system on Xv

• ϕ′
e : derivative of ϕe

• ϕω : composition of functions in order of the letters appearing in ω

• π(ρ) : limit point of ρ ∈ EN
A

• J : set of all the limit points

• δ : Hausdorff dimension of the limit set J

• Int(A) : interior of the set A
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CHAPTER 2

PRELIMINARIES

2.1. Shift Space

Let E be a countable (finite or infinite) set calling each of its elements a symbol, a

letter or an alphabet. By EN we mean the set of all infinite sequences of the form

e1e2e3...en...,

where each ei belongs to E. We usually represent the first n symbols of such a sequence,

also called (finite) word or block, by ω throughout this work, i.e.

ω = e1e2...en,

where we sometimes tend to identify ωi with ei and just have

ω = ω1ω2...ωn.

When we write |ω| = n we just mean the word ω has n letters. By En we represent

all the words of length n and by E∗ we represent ∪∞
n=1E

n. As well we use the notation |.∧ .|

to represent the number of common initial symbols in two sequences, i.e. for ρ = e1e2... and

ρ′ = e′1e
′
2... we have

|ρ ∧ ρ′| = m⇔ e1 = e′1, e2 = e′2, ..., em = e′m, em+1 ̸= e′m+1.

One can as well introduce a metric by

d(ρ, ρ′) = e−|ρ∧ρ′|.

Further we set

dα = dα, 0 < α < 1,

i.e. we have

dα(ρ, ρ
′) = e−α|ρ∧ρ

′|.
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Now we equip EN with a metric space, which is called symbolic space. Note that the topology

on EN induce by this metric is the same as the Tychonoff topology where each E is equipped

with ordinary discrete topology. This means for any α and β the topologies of dα and dβ are

the same, however the metrics are not equivalent for different α and β.

One can then see that the shift map σ : EN → EN given by

σ(e1e2...) = e2e3...

is a continuous map.

Furthermore, we want to restrict ourselves to sequences that certain words are not

appearing. We first introduce a map A : E × E → {0, 1} (sometimes called incidence or

transition matrix). We use Aee′ notation instead of A(e, e′). A subshift of finite type consists

of the sequences e1e2e3... in E
N such that

Ae1e2 = 1, Ae2e3 = 1, ..., Aenen+1 = 1, ... .

Of course, if A only assumes the value 1, represented by A = 1, then this is just the space

introduced earlier, that is why we sometimes call (EN, σ) full shift space. Additionally,

when Ae1e2 = 1 we say e1e2 is A-admissible or just admissible. As well, by E∗
A we mean

all admissible finite words of all lengths, by E∗
ρ we mean all ω ∈ E∗

A such that ωρ is an

admissible sequence, by En
ρ we mean all ω ∈ En

A such that ωρ is an admissible sequence, by

E∗
per we mean all ω ∈ E∗

A such that ωnω1 is admissible and we say ω is periodic word, by ω̄

we mean the sequence ωωω... and by En
A we mean all admissible words of length n. Finally,

for each finite word ω of length n we define the cylinder

[ω] := {ρ ∈ EN
A : ρ1...ρn = ω}.

Proposition 2.1. For the subshift of finite type EN
A the followings hold:

a. All the cylinders form a countable clopen basis.

b. Every open set can be written as countable union of mutually disjoint cylinders.

c. It is a Polish space.
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Proof. (a). It is clear that for each positive integer n, we have countably many finite words

of length n, therefore there are only countably many cylinders. Next we show each cylinder

is a neighborhood in EN
A. Let ω be a finite word of length n, choose any fixed ρ ∈ [ω], we

show [ω] = N(ρ, e−α(n−1)). Note that ρ′ is in [ω] iff dα(ρ, ρ
′) < e−α(n−1) iff |ρ ∧ ρ′| > n− 1 iff

|ρ ∧ ρ′| ≥ n iff ρ′ ∈ [ω]. To see [ω] is closed, consider a sequence {ρ(i)}i in [ω] converging to

ρ. This means |ρ(i) ∧ ρ| → ∞ which clearly implies ρ ∈ [ω]. Now for every open set V and

every ρ ∈ V , note that there is ϵ > 0 such that ρ ∈ N(ρ, ϵ) ⊆ V . We choose n large enough

such that e−α(n−1) < ϵ, then obviously [ρ1ρ2...ρn] = N(ρ, e−α(n−1)) ⊂ N(ρ, ϵ) ⊂ V .

(b). The fact that an open V can be written as countable union of cylinder is clear from

part a. Then part b follows from the fact that for any two cylinders [ω] and [τ ] that meet

each other, we have either [ω] ⊂ [τ ] or [τ ] ⊂ [ω]. To show this, assume ρ belongs to both of

the cylinders [ω] and [τ ]. Further, assume |ω| ≤ |τ |. Since ρ ∈ [τ ], we should have ρ = τρ′

for some ρ′ ∈ EN
A, similarly ρ ∈ [ω] implies that ρ = ωρ′′ for some ρ′′EN

A. Thus τρ
′ = ρ = ωρ′′

and since |ω| ≤ |τ | so τ = ωω′ for some finite word ω′. This implies [τ ] ⊆ [ω].

(c). Note that countable product of separable space is separable and countable product of

complete metrizable space is complete metrizable. □

We would like to mention that we only work with probability measure over Borel sets

all through this work.

Definition 2.2. We call a subshift finitely irreducible if there exists a finite set Ω containing

words such that for all e, e′ ∈ E there is ω ∈ Ω such that eωe′ is admissible. As well subshift

is called finitely primitive if it is finitely irreducible and all words in Ω are of fixed length.

Throughout this dissertation, we restrict ourselves to work with finitely irreducible

subshifts.

Remark 2.3. Note that this notion is just a generalization of irreducible matrix when E is

countable. In fact, finitely irreducible condition guarantees that the shift map is topologically

mixing, and finitely primitive guarantees that the shift map is topologically exact. If E is

finite then A is irreducible iff σ is topologically mixing iff σ is transitive. Further, if E is
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finite then A is primitive iff σ is topologically exact. It is clear that if the shift space is

finitely irreducible then the backward orbit of every element is dense, i.e.

∪∞
n=0σ

−n(ρ) = EN
A.

Proposition 2.4. If E is finite,

log r(A) = lim
n

1

n
log#En

A,

where r(A) is spectral radius of matrix A.

Proof. We refer to theorem 3.2.22 [39]. □

2.2. Ergodicity

Definition 2.5. For a measurable transformation T : X → X on a measure space (X,B)

we say a measure µ is T−invariant if for every A ∈ B:

µ(T−1(A)) = µ(A).

Further we say µ is ergodic if µ is T−invariant measure such that if T−1(A) = A then either

µ(A) = 0 or µ(A) = 1.

We are now ready to express one of one of the main theorems in Ergodic Theory.

Before that we need the following notion of Birkhoff sum for any real function g : X → R,

we set

Sng(x) :=
n−1∑
i=0

g(T i(x)).

Theorem 2.6 (Birkhoff’s Ergodic Theorem). Let T : X → X be a map on probability space

(X,B, µ). If µ is T−invariant and ergodic measure, for any ϕ ∈ L1(X) we have

1

n
Snϕ(x) →

∫
X

ϕdµ, a.e. x ∈ X

Proof. We refer to corollary 8.2.14 in [39]. □
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2.3. Hölder Continuity

Next we want to talk about the Hölder continuous maps. In Analysis textbooks [10, p.

52] we have different notions of Hölder continuity of exponent α for real or complex-valued

functions on a Euclidean space D:

• Hölder at a point x0: supx∈U{|f(x) − f(x0)|/|x − x0|α} is finite, where U is a

neighborhood of x0 in D.

• Hölder: supx,y∈D{|f(x)− f(y)|/|x− y|α} is finite.

• Locally Hölder: supx,y∈K{|f(x)−f(y)|/|x−y|α} is finite for every compact K ⊆ D.

We call each of the above suprema the Hölder coefficient. Of course D can be replaced

with the metric space EN
A to obtain similar notions on the shift space. We denote the set of

complex-valued Hölder continuous functions of Hölder exponent α on EN
A by C0,α(EN

A,C) or

simply C0,α. We remind that the usual Hölder coefficient is defined by:

|g|α = sup
ρ,ρ′∈EN

A

{
|g(ρ)− g(ρ′)|
dα(ρ, ρ′)

}
.

We would like to define another Hölder coefficient that is justified later. We set:

Vα,n(f) := sup{|f(ρ1)− f(ρ2)|eα(n−1) : |ρ1 ∧ ρ2| ≥ n ≥ 1},

and

Vα(f) := sup
n≥1

Vα,n(f).

There is another notion of Hölder continuity useful for our purposes.

Definition 2.7. A complex-valued function f on EN
A is called Hölder-type continuous with

exponent α > 0 if Vα(f) <∞.

We define a norm on C0,α(EN
A,C) by

(1) ∥g∥α := ∥g∥∞ + Vα(g).

We are ready to find relations between these different notions of Hölder continuity.

Proposition 2.8. The followings hold:
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(a) On EN
A every complex-valued function is Hölder continuous iff it is Hölder-type con-

tinuous and bounded.

(b) The norm given above in 1 is equivalent to usual ∥.∥C0,α = ∥.∥∞ + |.|α norm over

C0,α(EN
A,C).

(c)
(
C0,α(EN

A,C), ∥.∥α
)
is Banach space.

(d) A Hölder-type continuous function is locally Hölder continuous and Hölder contin-

uous at every point.

Proof. a) Assume f is Hölder continuous function, then there is M such that

|f(ρ1)− f(ρ2)| ≤Md(ρ1, ρ2)
α =Me−α|ρ1∧ρ2|,

for every ρ1 and ρ2. Therefore

|f(ρ1)| ≤ |f(ρ1)− f(ρ2)|+ |f(ρ2)| ≤M + |f(ρ2)|.

This gives boundedness of f . For Hölder-type, assuming |ρ1 ∧ ρ2| ≥ n, it follows

|f(ρ1)− f(ρ2)|eα(n−1) ≤Me−α,

i.e. Vα(f) ≤Me−α.

For the converse, assuming that |f | ≤ K for some constant K, and |ρ1∧ρ2| = n ≥ 1 we have

|f(ρ1)− f(ρ2)|eα(n−1) ≤ Vα(f).

Therefore

|f(ρ1)− f(ρ2)| ≤ Vα(f)e
−α(n−1) = Vα(f)e

αd(ρ1, ρ2)
α.

In case |ρ1 ∧ ρ2| = 0, we use boundedness of f to get

|f(ρ1)− f(ρ2)| ≤ 2K = 2Kd(ρ1, ρ2)
α.

Thus

|f(ρ1)− f(ρ2)| ≤ max{2K,Vα(f)eα}d(ρ1, ρ2)α,
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for every ρ1 and ρ2.

b) From the proof above we realize that Vα(f) ≤ |f |αe−α which leaves

∥f∥α ≤ ∥f∥∞ + |f |αe−α ≤ ∥f∥∞ + |f |α.

Furthermore |f |α ≤ max{2K,Vα(f)eα} gives us

∥f∥∞ + |f |α ≤ 3∥f∥∞ + Vα(f)e
α ≤ (3 + eα)∥f∥α.

c) This is a well-known fact, see for example [10, p. 73] for a Euclidean space.

d) This is easy to show. □

Remark 2.9. We want to justify why we used the terminology Hölder-type:

• The Hölder-type continuous functions subject of study in this dissertation in the

case of infinite alphabets are summable. This makes them unbounded and so they

are not Hölder.

• Let E = N. One can see that f : EN → R defined by f(kn2n3n4...) = ln 1/n2
k, is

Hölder continuous at each point (consider [kn2n3n4...nk]) and locally Hölder contin-

uous but is not Hölder-type continuous.

• Note that locally Hölder continuous on EN
A wouldn’t imply continuity necessarily,

however Hölder continuity at a point clearly implies continuity.

• Regarding Hölder continuity at a point even if we were able to find a uniform bound

for Hölder coefficients that worked for all the points it still doesn’t imply Hölder-type

continuity necessarily.

• Over shift space with finite alphabets Hölder continuity and Hölder-type continuity

coincide.

Below we need to use sequence of finite words in the lemma. For that we use the

notation ω(i), to denote that it is not the ith coordinate of ω which we represent it by ωi.

Lemma 2.10. Let {ω(i)}i∈I be any collection of finite words with bounded length, i.e. there

exists a positive integer k such that |ω(i)| ≤ k for each i. If the cylinders {[ω(i)]}i∈I are

13



mutually disjoint, then the indicator function of H := ∪i∈I [ω(i)] is Hölder continuous, i.e.

1H ∈ C0,α(EN
A,C).

Proof. We want to show there exists M > 0 such that

|1H(ρ)− 1H(ρ
′)| ≤Md(ρ, ρ′),

for every ρ, ρ′ ∈ EN
A. If ρ, ρ′ ∈ H , there is nothing to prove as the left hand side is 0.

Similarly if ρ, ρ′ /∈ H. If ρ ∈ H and ρ′ /∈ H, then there is i such that ρ ∈ [ω(i)]. But

|ρ ∧ ρ′| < |ω(i)|, otherwise ρ′ ∈ [ω(i)]. Therefore

e−k ≤ e−|ω(i)| ≤ e−|ρ∧ρ′| = d(ρ, ρ′).

Thus if we just pick M = ek, then for each ρ, ρ′ we have

|1H(ρ)− 1H(ρ
′)| ≤Md(ρ, ρ′).

□

2.4. Basic Lemmas

Lemma 2.11. If f : EN
A → C is Hölder-type continuous with Vα(f) < ∞ then there exists

Kf > 0 such that for any ω ∈ En
A and any ρ, ρ′ ∈ EN

A where ωρ, ωρ′ are admissible we have

|Snf(ωρ)− Snf(ωρ
′)| ≤ Kfd(ρ, ρ

′).

Proof. We refer to [25, p. 26]. □

A sequence {an} of real numbers is called subadditive if for every positive integer

m,n:

am+n ≤ am + an.

Lemma 2.12 (Fekete’s Lemma). For every subadditive sequence {an}, the limit of the se-

quence {an
n
} exists and it is equal to infn

{
an
n

}
.

Proof. We refer to [25, p. 5]. □
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Lemma 2.13. Let fi(T ) be a collection of non-negative functions defined on T > 0. Then

∑
i

lim inf
T→∞

fi(T ) ≤ lim inf
T→∞

∑
i

fi(T )

Proof. Of course if the collection is finite, this is clear. We show it for an infinite countable

collection. As each fi is non-negative so for each n

n∑
i=1

fi(T ) ≤
∑
i

fi(T ).

Taking liminf from both sides

n∑
i=1

lim inf
T→∞

fi(T ) ≤ lim inf
T→∞

∑
i

fi(T ).

This holds for each n, therefore we get the inequality. □

Unfortunately, analogous inequality for limsup doesn’t hold even if
∑

i fi(T ) is uni-

formly bounded above. Alternatively, we mention the following inequality.

Lemma 2.14. For any two non-negative functions f(T ), g(T ) defined on T > 0, we have

lim inf
T→∞

(f(T ) + g(T )) ≤ lim inf
T→∞

f(T ) + lim sup
T→∞

g(T ) ≤ lim sup
T→∞

(f(T ) + g(T )) .

Proof. Let l = lim infT→∞ (f(T ) + g(T )), and g = lim supT→∞ g(T ). For ϵ > 0 there is T0

such that for T > T0 we have

l − ϵ ≤ f(T ) + g(T ) ≤ f(T ) + g + ϵ,

l − g − 2ϵ ≤ f(T ),

which establishes the left inequality. Similar argument gives the right inequality. □
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2.5. Transfer Operator

A real-valued function f on EN
A is called summable if

∑
e∈E

exp(sup
[e]

f) <∞.

One purpose of this definition is to define an operator on the space of bounded complex-

valued continuous functions on EN
A. Therefore we can extend this definition to complex-

valued functions.

Definition 2.15. A complex-valued function f on EN
A is called summable if

∑
e∈E

exp(sup
[e]

Re(f)) <∞.

Definition 2.16. For a complex-valued Hölder-type summable function f we introduce

Ruelle-Perron-Frobenius operator, also known as transfer operator

Lf : Cb(EN
A,C) → Cb(E

N
A,C)

Lf (g)(ρ) =
∑
e∈Eρ

exp (f(eρ)) g(eρ),

where the sum is taken over all e ∈ E that eρ is admissible, i.e. Aeρ1 = 1.

Remark 2.17. Here we would like to mention:

• If this f over shift with infinite letters is summable, then definition 2.15 yields that

Re(f) should go to −∞, i.e. f is unbounded. Therefore it is not Hölder continuous,

see proposition 2.8.

• As well it is clear that when E is finite then every real-valued f is summable.

• Further one can see that this operator preserves C0,α(EN
A,C).

Next we want to consider the adjoint operator L∗
f acting on Cb(E

N
A,C)∗ which is the

space of all regular bounded additive set functions [8, p. 262] (by additive set function we

mean complex valued function g defined on the algebra, not necessarily σ-algebra, generated

by the closed sets such that g is finitely additive, not necessarily countably additive). Below

16



we mention a result which for case E finite is due to Ruelle [35] and for E infinite is due to

Mauldin-Urbański [25, p. 50].

Theorem 2.18. If f : EN
A → R is real-valued summable and Hölder-type continuous func-

tion, then the adjoint operator L∗
f admits an eigenmeasure m with eigenvalue exp(P (f)).

This P (f) is introduced below in definition 2.20.

2.6. Pressure and Equilibrium Measure

Definition 2.19. A Gibbs state for a real-valued function f on EN
A is a probability measure

m on EN
A for which there is Q > 1 and P ∈ R such that:

Q−1 ≤ m([ω])

exp (Snf(ωρ)− Pn)
≤ Q, ∀ω ∈ En

A, ∀ωρ admissible.

It is clear that a Gibbs state has full support, i.e.

supp(m) = EN
A.

Another important fact is that once we get an eigenmeasure from theorem 2.18 it follows

that it is actually a Gibbs state for f [25, p. 28]. Using this Gibbs state an invariant ergodic

Gibbs state µ for f can be constructed as well [25, p. 14]. Furthermore, it is clear that if f is

Hölder-type so is any constant multiple of f . However, the summable property of f doesn’t

necessarily carry on to any constant multiple of f . We set

Γ := {x ∈ R : xf summable}.

Clearly, if E is finite then Γ = R and if E is infinite then definition 2.15 tells us x1 ∈ Γ

implies x2 ∈ Γ for any x2 > x1, i.e. Γ is half line. Therefore using the above explanation we

obtain Gibbs state for xf (x ∈ Γ) as well:

(2) Q−1
x ≤ mx([ω])

exp (xSnf(ωρ)− P (x)n)
≤ Qx, ∀ω ∈ En

A, ∀ωρ admissible.

Definition 2.20. The topological pressure of a real-valued function f on EN
A is defined by

P (f) = lim
n→∞

1

n
ln
( ∑
ω∈En

A

exp(sup
[ω]

Snf)
)
.
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This limit exists by the Fekete’s lemma 2.12.

Definition 2.21. An invariant ergodic measure µ is called equilibrium state for a real-valued

function f on EN
A if it is a Gibbs state for f and it established the following equation:

P (f) = hµ(σ) +

∫
fdµ,

where hµ is Kolmogorov entropy of the shift map σ. Note that in general under much weaker

assumption for f we have the following equation known as variational principle:

P (f) = sup{hµ(σ) +
∫
fdµ},

where the supremum is taken over invariant ergodic measures µ. Furthermore, we set

χµ = −
∫
fdµ,

and call it Lyapunov exponent.

One can see that P in definition 2.19 is actually the same as the topological pressure

of f [25, p. 13]. This means

P (x) = P (xf), x ∈ Γ.

We can actually show this function is strictly decreasing on Γ assuming some weak condition.

This is well-known fact for function systems, but here we don’t assume f is induced by a

function system and so we prove it. First we need the following lemma.

Lemma 2.22. If µ is an invariant ergodic Gibbs measure then

lim
n

sup
ω∈En

A

µ([ω]) = 0.

Proof. Let bn = supω∈En
A
µ([ω]). Note that this supremum is attained so bn is decreasing,

therefore bn is convergent to some b. Fix 0 < ϵ < b and for each n define

Fn := {ω ∈ En
A : ϵ ≤ µ([ω])}.

Clearly Fn is finite. If ωe ∈ Fn+1 then ϵ ≤ µ([ωe]) ≤ µ([ω]) which implies ω ∈ Fn, i.e. each

Fn+1 extends some of Fn. If this extension process stops at moment m or in other words,
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Fm = ∅ then µ([ω]) < ϵ for all ω ∈ Em
A , i.e. b ≤ bm ≤ ϵ. Therefore this process cannot stop

and so we get at least one element ρ = e1e2e3... ∈ EN
A such that ϵ ≤ µ([e1...en]) for each n.

This means ϵ ≤ µ({ρ}). We will show ρ is periodic and periodic orbit of ρ O+(ρ) has full

measure which is a contradiction.

Let A := ∪n≥0σ
−n({ρ}). Clearly either σ−1(A) = A or σ−1(A) ∪ {ρ} = A. In the latter

case µ(σ−1(A)) + µ({ρ}) = µ(A) which yields µ({ρ}) = 0 using invariant property of µ.

In the former case ρ must be periodic with some period m. Since σ−1(A) = A, ergoicity

either yields µ({ρ}) ≤ µ(A) = 0, or otherwise µ(A) = 1. Note that for each i > 0 we have

σi−1(ρ) ∈ σ−1 ({σi(ρ)}) so

µ({σi−1(ρ)}) ≤ µ
(
σ−1({σi(ρ)})

)
= µ({σi(ρ)}),

and since ρ = e1e2...em we have

µ({ρ}) ≤ µ({σ(ρ)}) ≤ ... ≤ µ({σm−1(ρ)}) ≤ µ({ρ}).

Therefore the inequalities in the above line are all equality. For each n ≥ 0 we know σ−n({ρ})

meets O+(ρ) in exactly one point and since µ (σ−n({ρ})) = µ({ρ}) thus the whole mass of

σ−n({ρ}) is on σ−n({ρ}) ∩O+(ρ). Therefore

1 = µ(A) = µ(O+(ρ)).

□

Proposition 2.23. If P (x0) ≤ 0 for some x0 then P (x) is strictly decreasing on Γ.

Proof. We start with the following estimate and we use 2 for it:

exp

(
x0 sup

[ω]

Snf − nP (x0)

)
≤ Qm([ω]).

Next we use the above lemma to find N such that for every n ≥ N and every ω ∈ En
A:

exp

(
x0 sup

[ω]

Snf − nP (x0)

)
≤ Qµ([ω]) ≤ Q sup

ω∈En
A

µ([ω]) ≤ e−1.
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Then for all k > 0 and ω′ ∈ EkN
A :

exp

(
x0 sup

[ω′]

SkNf − kNP (x0)

)
≤ exp

(
x0k sup

[ω]

SNf −NkP (x0)

)
≤ e−k.

Consider x1 < x2 in Γ, we use the above estimate to find

∑
ω′∈EkN

A

exp(x2 sup
[ω′]

Snkf) =
∑

ω′∈EkN
A

exp(x1 sup
[ω′]

Snkf) exp

(
(x2 − x1) sup

[ω′]

Snkf

)

=
∑

ω′∈EkN
A

exp(x1 sup
[ω′]

Snkf) exp

(
x2 − x1
x0

(
x0 sup

[ω′]

Snkf − kNP (x0)
))

exp

(
x2 − x1
x0

kNP (x0)

)

≤
∑

ω′∈EkN
A

exp(x1 sup
[ω′]

Snkf) exp

(
−kx2 − x1

x0

)
= exp

(
−kx2 − x1

x0

) ∑
ω′∈EkN

A

exp(x1 sup
[ω′]

Snkf)

Now if we take log, divide by kN and let k → ∞, we obtain

P (x2) ≤ −x2 − x1
Nx0

+ P (x1) < P (x1).

□

Definition 2.24. A real-valued function f : EN
A → R is called regular if P (x) = 0 for some

x > 0 and is called strongly regular if it is regular and 0 < P (x) <∞ for some x > 0.

Remark 2.25. It is worth to mention

• If P (x) is strictly decreasing, it can have only one root say δ. Further, strong

regularity means

inf Γ < δ.

• The above proposition can be proved under weaker assumption: infx∈Γ P (x) ≤ 0.

Proposition 2.26. If f is strongly regular, the first derivative of P at δ is P ′(δ) = −χµδ .

Proof. We refer to proposition 2.6.13 in [25, p. 47]. □
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2.7. Spectral Analysis

We start with considering family of functions {sf} where s is usually a complex

number in the right half plane Γ+ = Γ×R. Then definitions 2.15 and 2.16 are applicable for

such functions, however definitions 2.20 is not applicable as sf is not real anymore unless

for real s. It is clear that when s ∈ Γ+ then the series

∑
e∈E

sup
[e]

| exp(sf)| =
∑
e∈E

exp(Re(s) sup
[e]

f)

converges. Thus having a Hölder-type summable function, spectral theory of transfer oper-

ator on the right half plane Γ makes sense. Note that

• Ls := Lsψ is an operator on C0,α(EN
A,C) for any s ∈ Γ+.

• The pressure function P is defined on Γ.

Another important property of the transfer operator to be discussed is D-generic

property. This property prohibits the possibility of admitting specific eigenvalue. We adopt

its definition from [33, p. 32]. Before mentioning the definition, we need an equivalency.

Proposition 2.27. The following conditions are equivalent:

(i) exp(P (x) + ia) is an eigenvalue of Lx+iy : Cb(EN
A,C) → Cb(E

N
A,C), for some x ∈ Γ.

(ii) exp(P (x)+ ia) is an eigenvalue of Lx+iy : C0,α(EN
A,C) → C0,α(EN

A,C), for all x ∈ Γ.

Proof. We refer to Proposition 2 in [32, p. 138] and Proposition 2.3.5 in [33, p. 32]. □

Definition 2.28. We say a potential f is D-generic if either of the above statements (i)

or (ii) from the above proposition fails for all non-zero y and a = 0. In other words,

Lx+iy : C0,α(EN
A,C) → C0,α(EN

A,C) doesn’t admit exp(P (x)) as eigenvalue if y ̸= 0.

Further, we say the potential f is strongly D-generic, if either of the above statements (i)

or (ii) from the above proposition fails for all non-zero y and all real a. In other words,

Lx+iy : C0,α(EN
A,C) → C0,α(EN

A,C) doesn’t admit any eigenvalue of magnitude exp(P (x))

for any y ̸= 0.
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One can obtain an alternative statement for D-generic and strongly D-generic prop-

erties.

Proposition 2.29. A potential f is D-generic iff the additive subgroup generated by the

following set is not cyclic,

{S|ω|f(ω̄) : ω ∈ E∗
per}.

And it is strongly D-generic iff the additive subgroup generated by the following set is not

cyclic for any real β,

{S|ω|f(ω̄)− nβ : ω ∈ E∗
per}.

Next we would like to bring some facts from spectral theory. We mostly refer to [8],

[19], [5] or [1]. Assume B is a Banach space, L a bounded operator on B. The spectrum

of bounded operator L, denoted by Sp(L), is defined to be all the complex numbers ζ such

that the operator (L− ζI) is not bijective. Further the spectral radius of L is defined to be

r(L) := sup{|ζ| : ζ ∈ Sp(L)}.

There is an alternative expression of spectral radius known as the Gelfand’s formula:

r(L) = lim
n

∥Ln∥
1
n .

Next we mention the essential spectrum definition. We notify that there are several

other definitions of this concept in math community, however the radius of essential spectrum

(defined below) remains the same for all the definitions. We adapt the following definition

from [5, p. 107].

Definition 2.30. The complex number ζ belongs to the essential spectrum of the operator

L, denoted by Spess(L), if at least one of the following condition holds:

(i) the operator (L − ζI) has a range which is not closed in B.

(ii) ∪i≥0Nul(L − ζI) is infinite dimensional.

(iii) the point ζ is a limit point of the spectrum of L.
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Furthermore, the essential spectral radius is

ress(L) := sup{|ζ| : ζ ∈ Spess(L)}.

Nussbaum showed the essential spectral radius as well follows a Gelfand type formula.

Before bringing his formula we need to introduce a semi-norm. Consider, K the ideal of all

bounded compact operators on B, then

∥L∥K := inf
C∈K

∥L+ C∥,

defines a semi-norm on the space of bounded linear operators on B [27, p. 474].

Proposition 2.31. ress(L) = limn→∞ ∥Ln∥1/nK .

Proof. We refer to [27, p. 477]. □

Next we briefly talk about perturbation theory of linear operator. Our main sources

are [19], [8] and [1]. It is now clear from definition 2.30 that for every r where ress(L) <

r ≤ r(L) we should have only finitely many ζ ∈ Sp(L) with |ζ| ≥ r, each of which are

isolated eigenvalue with finite algebraic multiplicity. Kato calls these finite ζ’s, finite system

of eigenvalues [19, p. 181] or [1, p. 363]. This concept shows up in [8, p. 572] as spectral

set. According to Schwartz-Dunford, spectral set is any clopen subset of the spectrum. The

purpose is to obtain a perturbation theorem for a holomorphic family of operators Ls in

complex variable s. The original idea of perturbation theory of self-adjoint operators over

Hilbert space goes back to Schrödinger. The first major math result in this area was obtained

by Rellich. Later on Sz. Nagy and Kato independently worked on this topic to generalize

Rellich’s result to a general closed operator over Banach space [18]. Many of these results

can be found in [8, VII.6] or [19, Ch. VII] or [1, Ch. 10]. We first want to define holomorphic

family of operators. Note that there are several definitions for this but all in the context of

bounded operator-valued over a fixed Banach space coincide [1, 10.1], [1, 10.3].

Definition 2.32. Let (X, ∥.∥) be Banach space, B(X) be the space of all bounded linear

operator on X, G a region in the complex plane and s 7→ Ls a function from G into B(X).
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We say Ls is holomorphic in G if there exists an operator-valued function s 7→ L′
s such that

∥Ls+h − Ls
h

− L′
s∥ → 0,

for all s ∈ G and h→ 0.

We are ready to express one major result in perturbation theory of holomorphic family

of bounded operators.

Theorem 2.33. Let Ls be holomorphic family of bounded operators from a region G into

B(X). Let s0 ∈ G and ξ0, ...ξn be finite system of eigenvalues of Ls0, each of which with

algebraic multiplicity 1. Then there is small enough neighborhood of s0 such that Ls has the

spectral representation

Ls =
n∑
i=1

ξi(s)Pi,s +Ds,

where each ξi(s) is holomorphic function, Pi(s) is holomorphic operator-valued function and

a projection, D(s) holomorphic operator-valued function and further

ξi(s0) = ξi,

for each i = 1, ..., n.

In general if multiplicity of an eigenvalue is higher than 1 the eigenvalues may have

algebraic singularities at s0. The idea of the proof is first reducing it to the case where X is

finite dimensional and then one can apply perturbation theory of holomorphic operators in

finite dimension. For a detailed proof, first see theorem 1 in [1, p. 367], then theorem 1 in

[1, p. 243], [1, p. 129] and [1, p. 131]. Another source of proof for the general form of the

result is theorem 9 in [8, p. 587]. As well theorem 1.8 in [19, p. 370] provides a proof.

By projection in the above theorem we mean operator with property

P2
i = Pi.

Next, we would like to see how the above spectral representation of operators is

related to spectral decomposition of operators. The following proposition is a consequence

of the celebrated spectral mapping theorem [6, p. 209].
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Proposition 2.34. Suppose B(X) is a Banach algebra of operators on the Banach space

X. Let L ∈ B(X). Further, assume the spectrum of L can be written as

Sp(L) = F1 ∪ F2,

for disjoint nonempty closed sets F1, F2. Then there is a nontrivial idempotent E ∈ B(X)

such that

• if BL = LB, then BE = EB.

• if L1 = LE and L2 = L(1− E), then L = L1 + L2 and L1L2 = L2L1 = 0.

• Sp(L1) = F1 ∪ {0}, Sp(L2) = F2 ∪ {0}.

2.8. Graph Directed Markov System

Definition 2.35. We first consider directed multi-graph (V,E, i, t) and an incidence matrix

A : E×E → {0, 1}, where V is the finite set of vertices, E is the countable (finite or infinite)

set of directed edges and i, t (initial and tail) are functions

i, t : E → V,

such that

Aab = 1 ⇒ t(a) = i(b)

In addition, we have a finite family of Euclidean compact metric spaces {Xv}v∈V and count-

able family of contractions {ϕe}e∈E and κ ∈ (0, 1) such that

|ϕe(t)− ϕe(s)| ≤ κ|t− s|,

for all e ∈ E and t, s ∈ Xt(e). Then

S = {ϕe : Xt(e) → Xi(e)}e∈E

is called attracting graph directed Markov system.

We extend the functions i, t : E → V in a natural way to E∗
A as follows:

t(ω) := t(ωn), i(ω) := i(ω1).
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If ω ∈ En
A we define:

ϕω = ϕω1 ◦ ... ◦ ϕωn : Xt(ω) → Xi(ω).

Now for any ρ ∈ EN
A the sets {ϕρ1ρ2...ρn(Xt(ρn))}n≥1 form a descending sequence of non-empty

compact sets and therefore ∩n≥1ϕρ1ρ2...ρn(Xt(ρn)) is non-empty. Further since

diam(ϕρ1ρ2...ρn(Xt(ρn))) ≤ κndiam(Xt(ρn)) ≤ κnmax{diam(Xv)}v∈V ,

we find that this intersection is actually a singleton and we denote it by π(ρ), in this way

we have defined a map

π : EN
A → ⊔v∈VXv,

where ⊔v∈VXv is the disjoint union of the compact spaces {Xv}v.

Definition 2.36. The set

J = π(EN
A)

is called the limit set of system S.

Definition 2.37. We call a graph directed Markov system conformal if the following con-

ditions are satisfied for some d ∈ N:

(a) For every v ∈ V , Xv is compact connected subset of Rd and Xv = Int(Xv).

(b) (Open Set Condition) For all different e, e′ ∈ E,

ϕe
(
Int(Xt(e)

)
∩ ϕe′

(
Int(Xt(e′)

)
= ∅.

(c) (Conformality) For every v ∈ V there is an open connected Wv containing Xv.

Further for each e ∈ E, ϕe extends to a C1 conformal diffeomorphism from Wt(e)

into Wi(e) with Lipschitz constant bounded by κ.

(d) (Bounded Distortion Property) There are two constants L ≥ 1 and α > 0 such that

for every e ∈ E and every x, y ∈ Xt(e)∣∣∣∣ |ϕ′
e(s)|

|ϕ′
e(t)|

− 1

∣∣∣∣ ≤ L∥s− t∥α,

where |ϕ′
e(t)| denotes the scaling factor of the derivative of ϕ′

e at t.
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From now on we denote the conformal graph directed Markov system simply by

CGDMS. Furthermore, we assign a real-valued function to a CGDMS:

f : EN
A → R, f(ρ) = log |ϕ′

ρ1
(π(σρ)) |,

and we call it the potential function.

2.9. Random Dynamics

We are now ready to define random graph directed Markov system. We want to adopt

Roy-Urbański [34] definition here. We start with directed multi-graph (V,E, i, t), a mapping

A : E ×E → {0, 1} and a family of compact metric spaces {Xv}v as in the previous section.

Then we employ an invertible ergodic measure preserving map T : (Λ, B, ν) → (Λ,F , ν)

on a complete probability space (Λ, B, ν) and family of injective contractions {ϕλe : Xt(e) →

Xi(e)}e∈E,λ∈Λ with Lipschitz constant at most κ ∈ (0, 1). For each word ω we define

ϕλω := ϕλω1
◦ ϕT (λ)ω2

◦ ... ◦ ϕTn−1(λ)
ωn

.

Note that for each (ω, λ) ∈ (E∗
A,Λ) the map t 7→ ϕλω(t) is continuous, the map λ 7→ ϕλω(t)

is measurable for each (ω, t) ∈ (E∗
A, Xt(ω)) and (t, λ) 7→ ϕλω(t) is jointly measurable for each

word ω ∈ E∗
A. Then for every λ ∈ Λ, ρ ∈ EN

A similar to deterministic graph directed Markov

system {ϕλρ1...ρn(Xt(ρn))} is a decreasing sequence of non-empty compact sets whose diameters

are bounded by κn, so

∩n≥1ϕ
λ
ρ1ρ2...ρn

(Xt(ρn))

is a singleton and we denote its only element by πλ(ρ). Therefore for each λ ∈ Λ this defines

a limit set

Jλ = πλ(EN
A).

Definition 2.38. We call a system random CGDMS if the following conditions are satisfied

for some d ∈ N:

a) For every v ∈ V , Xv is compact connected subset of Rd and Xv = Int(Xv).
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b) (Open Set Condition) For almost every λ and all different e, e′ ∈ E,

ϕλe
(
Int(Xt(e))

)
∩ ϕλe′

(
Int(Xt(e′))

)
= ∅.

c) (Conformality) For every v ∈ V there is open connected Wv containing Xv. Further

for almost every λ and each e ∈ E, ϕλe extends to a C1 conformal diffeomorphism

from Wt(e) into Wi(e) with Lipschitz constant bounded by κ.

d) (Bounded Distortion Property) There are two constants L ≥ 1 and α > 0 such that

for every e ∈ E and every s, t ∈ Xt(e)∣∣∣∣ |(ϕλe )′(s)||(ϕλe )′(t)|
− 1

∣∣∣∣ ≤ L∥s− t∥α,

for almost every λ, where |(ϕλe )′(t)| denotes the scaling factor of the derivative of

(ϕλe )
′ at t.

For a random conformal graph directed Markov system we define a random potential

by

f : (EN
A,Λ) → R, f(ρ, λ) := log

∣∣(ϕλρ1)′ (πT (λ)(σρ))∣∣ .
We know that essential supremum of a real-valued function f on a measure space

(Λ, ν) is defined by

ess sup
λ

f := inf{r : f(λ) ≤ r for ν-almost all λ ∈ Λ}.

Definition 2.39. A random potential f is called summable if

∑
e∈E

exp

(
ess sup

λ
f(e, λ)

)
<∞.

For a real number x, then xf being summable means

∑
e∈E

ess sup
λ

|(ϕλe )′|x <∞.

We consider Γ the set of all such x and Γ+ = Γ × R as before. Then one can see that

for x ∈ Γ and almost every λ ∈ Λ, there exists a unique bounded measurable function
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λ 7→ P λ(x) := P λ(xf), and a unique random probability measure {mλ
x} such that

(Lλx)∗mT (λ)
x = eP

λ(x)mλ
x,

for almost every λ ∈ Λ, see [34, p. 271]. That means P λ(x) and mx are uniquely determined

by

mλ
x([eω]) = e−P

λ(x)

∫
[ω]

∣∣(ϕλe )′ (πT (λ)(τ))∣∣x dmT (λ)
x (τ),

for almost every λ.

Remark 2.40. We would like to mention a few words about definition of random subshift

of finite type. Bogenschutz defines it the way that each fiber is closed in a compact set [2, p.

420]. Roy-Urbański generalized it to a special case of subshift of finite type with infinite

letters [34, p. 420]. Bogenschutz as well uses the infinite letter system Z+ but he makes

the system compact (using one-point compactification Z̄+ = Z+ ∪ {∞}) so that his bundle

random dynamical system theory (his PhD dissertation) applies and this doesn’t include

Roy-Urbański random system as special case simply because
∏∞

i=0 Z+ is not a closed subset

of
∏∞

i=0 Z̄+.

2.10. Tauberian Theorems

Before finishing the section, we mention two main Tauberian theorems needed later

on. First Ikehara & Wiener’s theorem [40, p. 127] and then Graham & Vaaler’s theorem

[12, p. 294] which is just a refinement of Ikehara-Wiener theorem. The motivation for

Ikehara-Wiener theorem was to provide a simpler proof of the prime number theorem. We

know that PNT was proved in the late 19th century. However, Ikehara & Wiener used a

theorem of Wiener to obtain the following result in the early 1930s that implies PNT [21, p.

127].

Theorem 2.41 (Ikehara-Wiener). Let α(T ) be monotone increasing function continuous

from right such that

η(s) =

∫ ∞

0

e−sTdα(T )
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converges for Re(s) > δ > 0. If

η(s)− A

s− δ
= g(s)

has continuous extension to Re(s) = δ, then

e−δTα(T ) → A

δ
, as T → ∞.

In 1980s, Graham & Vaaler on their journey to study extremal (minorant and majo-

rant) function in Fourier analysis for some special classes of functions, obtained a refinement

of Ikehara-Wiener theorem as a corollary. One may want to know that the early work in con-

struction of extremal functions was done by Beurling and later on by Selberg (unpublished).

For the proof of the following result see [12, p. 294].

Theorem 2.42 (Graham-Vaaler). Let α be a Borel measure on [0,∞) and that the Laplase-

Stieltjes transform

η(s) =

∫ ∞

0−
e−sTdα(T ), s = x+ 2πiy,

exists for Re(s) > δ. Suppose that for some number y0 > 0, there is a constant A > 0

such that the analytic function η(s)−A/(s− δ) extends to a continuous function on the set

{δ + 2πiy : |y| < y0}. Then

Ay−1
0 {exp(δy−1

0 )− 1}−1 ≤ lim inf
T→∞

e−δTα[0, T ]

≤ lim sup
T→∞

e−δTα[0, T ]

≤ Ay−1
0 {exp(δy−1

0 )− 1}−1 exp(δy−1
0 ).

Remark 2.43. It is worth noting that

• If η(s) − A/(s − δ) has continuous extension to the whole line x = δ then we may

let y0 → ∞, this implies Ikehara-Wiener theorem 2.41.

• Graham & Vaaler or Korevaar [21, p. 30] assumed that A should be positive or

non-negative. But since η is real non-negative on the real line, this assumption can

be relaxed, i.e. A can be any complex number. Then one can see it has to be real

non-negative. Furthermore it is clear that for us the measure α (possibly infinite
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measure) is just taken to be the Borel measure generated by the right continuous,

increasing function Nρ(B, T ), see 16 and [9, Thm 1.16]. Moreover, Graham & Vaaler

provide an example to show their bounds are both sharp.

2.11. Examples

Example 2.44. Consider the iterated function system where in the multi-graph (V,E, i, t),

V is Singleton {v}, E is finite i = t are maps from E to the only element of V and the

mapping A : E × E → {0, 1} is just constant 1. This is an iterated function system. Then

for the conformal graph directed Markov system we consider Xv = [0, 1] and

ϕe(t) = αet+ βe,

where αe, βe are chosen appropriate enough from (0, 1) so that we have all conditions for

conformal graph directed Markov system satisfied, see definition 2.37. Then we know from

below the definition 2.37 the potential is

f(ρ) = log |(ϕρ1)′ (π(σρ)) | = logαρ1

and

Snf(ρ) =
∑
e∈E

ne logαe,

where ne is just number of letter e appearing in the word ρ1...ρn. We can find the pressure:

(3) P (x) = lim
n

1

n
log

∑
|ω|=n

∥ϕω∥x = log(
∑
e∈E

αxe ).

As well we know the following should hold

(4) mx([eω1...ωn]) = exp(−P (x))
∫
[ω1...ωn]

|(ϕe)′ (π(τ)) |xdmx(τ),

for e ∈ E, Gibbs state mx and pressure P (x). This actually leaves

mx([eω1...ωn])

mt([ω1...ωn])
=

αxe∑
e∈E α

x
e

.
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Example 2.45. Consider an iterated function system containing conformal maps

ϕe(t) = αt+ βe, α, βe ∈ (0, 1),

where βe are appropriate enough for conformal conditions, see Definition 2.37, E = {0, 1, ..., k−

1}, with some irreducible incidence matrix A. Then we know for this system we should have

the potential

f(ω) = log |(ϕω1)
′(π(σω)| = logα,

and a Gibbs state has the form

(5) mx([eω1...ωn]) = exp(−P (x))
∫
[ω1...ωn]

|(ϕe)′ (π(τ)) |xdmx(τ),

for appropriate e ∈ E, Gibbs state mx and pressure P (x). This actually yields

P (x) = log (mx([ω1...ωn])/mx([eω1...ωn])) + x logα.

Note that the first term of the above sum does not depend on t and it is actually equal to

lim
n

log#En
A/n = log r(A),

where r(A) is the spectral radius of the incidence matrix A (see Proposition 2.4). We can

see this simply by the pressure formula:

(6) P (x) = lim
n

1

n
log

∑
ω∈En

A

∥ϕω∥x = lim
n

log#En
A

n
+ x logα = log r(A) + x logα.
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CHAPTER 3

COUNTING IN DETERMINISTIC DYNAMICS

In the following section we assume we have a summable strongly regular Hölder-type

function (potential) f : EN
A → R with P (f) = P (1) = 0.

3.1. Spectral Analysis of Transfer Operator

We recall C0,α(EN
A,C) is the Banach space of Hölder continuous complex-valued func-

tions over EN
A, and B := B

(
C0,α(EN

A,C)
)
is Banach space of all bounded linear operators

over C0,α(EN
A,C). For every s ∈ Γ+ it was stated in the previous section that Ls belongs to

B. One major step is to establish holomorphy of operator Ls.

Lemma 3.1. For every n ∈ N, the operator-valued function s 7→ Lns is holomorphic on Γ+.

Proof. For each ω ∈ En
A one can consider the (idempotent) function i[ω] in C0,α(EN

A,C)

where it is defined to be 1 on ξ such that ωξ is admissible and 0 otherwise. Then for each s

in the right half plane Γ+ and g ∈ C0,α(EN
A,C) we define Fω,sg:

(7) Fω,sg(ρ) := i[ω](ρ) exp(sSnf(ωρ))g(ωρ).

We want to show Fω,s is an operator on C0,α(EN
A,C). First note that

∥Fω,sg(ρ)∥∞ ≤ exp(Re(s) sup
[ω]

Snf)∥g∥∞.

To find Hölder coefficient of Fω,sg we let |ρ ∧ ρ′| ≥ k ≥ 1:

|Fω,sg(ρ)−Fω,sg(ρ
′)| ≤ | exp(sSnf(ωρ))g(ωρ)− exp(sSnf(ωρ

′))g(ωρ′)|

= | (exp(sSnf(ωρ))− exp(sSnf(ωρ
′))) g(ωρ) + exp(sSnf(ωρ

′)) (g(ωρ)− g(ωρ′)) |

≤ exp(Re(s) sup
[ω]

Snf).|s|.|Snf(ωρ)− Snf(ωρ
′)|.∥g∥∞

+exp(Re(s) sup
[ω]

Snf)|g(ωρ)− g(ωρ′)|.

By Lemma 2.11, we get

|Fω,sg(ρ)−Fω,sg(ρ
′)| exp(αk) ≤ |Fω,sg(ρ)−Fω,sg(ρ

′)| exp(α|ρ ∧ ρ′|)
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≤ exp(Re(s) sup
[ω]

Snf).|s|.K.∥g∥∞ + exp(Re(s) sup
[ω]

Snf)Vα(g)

≤ exp(Re(s) sup
[ω]

Snf)∥g∥α(1 + |s|K),

where K depends only on f . Therefore we can write:

∥Fω,sg∥α = ∥Fω,sg∥∞ + Vα(Fω,sg)

≤ exp(Re(s) sup
[ω]

Snf)∥g∥∞ + exp(Re(s) sup
[ω]

Snf)∥g∥α(1 + |s|K)

≤ exp(Re(s) sup
[ω]

Snf)∥g∥α(2 + |s|K),

so

(8) ∥Fω,s∥α ≤ exp(Re(s) sup
[ω]

Snf)(2 + |s|K).

Next we want to show the map s 7→ Fω,s is holomorphic on Γ+. As expected derivative is

F ′
ω,sg(ρ) = i[ω](ρ). exp(sSnf(ωρ)).Snf(ωρ).g(ωρ),

we first need to show this defines an operator on C0,α(EN
A,C) and then to check it is actually

bounded. Note that |Snf | is bounded on [ω] by some C, see definition 2.19. If we review all

the inequalities above and replace all the g(ω...) with Sn(ψ)(ω...)g(ω...) we get:

∥F ′
ω,sg∥α = ∥F ′

ω,sg∥∞ + Vα(F ′
ω,sg)

≤ exp(Re(s) sup
[ω]

Snf).∥g∥∞.C + exp(Re(s) sup
[ω]

Snf).∥g∥α.(C + |s|KC +K)

≤ exp(Re(s) sup
[ω]

Snf)∥g∥α(2C + |s|KC +K).

Fix s0 in Γ+, we write: (
Fω,s −Fω,s0 − (s− s0)F ′

ω,s0

)
g(ρ)

= i[ω](ρ).
(
exp(sSnf(ωρ))− exp(s0Snf(ωρ))

−(s− s0) exp(s0Snf(ωρ))Snf(ωρ)
)
.g(ωρ),

therefore

s 7→ Fω,s ∈ B
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is holomorphic iff

s 7→ i[ω](...) exp(sSnf(ω...)) ∈ C0,α(EN
A,C)

is holomorphic. But

i[ω](...) exp(sSnf(ω...)) = i[ω](...) exp(si[ω](...)Snf(ω...))

and i[ω](...)Snf(ω...) ∈ C0,α(EN
A,C), thus since i[ω] is a constant function of s problem boils

down to holomorphy of the function s 7→ exp(sT ) for T ∈ C0,α(EN
A,C), and this is clearly

holomorphic.

Thus the map s 7→ Fω,s defines a holomorphic B-valued function on the right half plane Γ+.

Now because for s ∈ Γ+, Re(s)f admits Gibbs state, B-valued function

s 7→ Lns =
∑
ω∈En

A

Fω,s

converges and so is holomorphic on Γ+. □

Proposition 3.2. The spectral radius of Ls is at most eP (x) and ress(Ls) < eP (x).

Proof. For the case E is finite we just refer to [32, p. 140]. Assuming E is infinite, the

former part is a straight-forward consequence of Ionescu Tulcea-Marinescu inequality (also

known as Lasota-Yorke type inequality) shown in [25, p. 32]:

(9) ∥Lns g∥α ≤ enP (x)(Qe−αn∥g∥α + C∥g∥∞),

which leaves

(10) ∥Lns∥α ≤ enP (x)(Q+ C).

First for every ω ∈ E∗
A choose ω̂ ∈ [ω] arbitrarily. Then for every n ≥ 1 consider the operator

En on C0,α(EN
A,C) defined by:

En(g) :=
∑
ω∈En

A

g(ω̂)1[ω].

Therefore Eng is constant on each cylinder [ω]. It is clear that ∥Eng∥∞ ≤ ∥g∥∞. We want to

show Vα(Eng) ≤ Vα(g). Remembering definition 2.7 if m ≥ n then clearly Vα,m = 0, in case
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1 ≤ m < n and |ρ1 ∧ ρ2| ≥ m there should be ω1, ω2 ∈ En
A such that ρ1 ∈ [ω1] and ρ2 ∈ [ω2],

therefore |ω̂1 ∧ ω̂2| ≥ m and

|Eng(ρ1)− Eng(ρ2)|eα(m−1) = |g(ω̂1)− g(ω̂2)|eα(m−1) ≤ Vα,m(g).

Thus we have:

(11) ∥Eng∥α ≤ ∥g∥α.

Next without loss of generality assume E = N and for each N ≥ 1 define

En
A(N) := {ω ∈ En

A : ω1, ω2, ..., ωn ≤ N}

En
A(N+) := En

A \ En
A(N)

En,Ng :=
∑

ω∈En
A(N)

g(ω̂)1[ω].

Note that n and N are independent. Moreover notice that this time since we have finite sum

the operator En,N on C0,α(EN
A,C) is of finite rank and so compact. We use triangle inequality

to write:

∥Lns − LnsEn,N∥α ≤ ∥(Lns − LnsEn) + (LnsEn − LnsEn,N)∥α

(12) ≤ ∥Lns (I − En)∥α + ∥Lns (En − En,N)∥α,

where I is just the identity operator. Note that 11 implies ∥g−Eng∥α ≤ 2∥g∥α. Furthermore,

for any ρ ∈ EN
A if set ω = ρ1...ρn then we have |ρ ∧ ω̂| ≥ n and

|g(ρ)− Eng(ρ)|eα(n−1) = |g(ρ)− g(ω̂)|eα(n−1) ≤ Vα,n(g) ≤ Vα(g).

Since ρ is arbitrarily, we obtain

∥g − Eng∥∞ ≤ Vα(g)e
αe−αn ≤ ∥g∥αeαe−αn.

Thus using two recent inequalities and 9 we find

∥Lns (I − En)g∥α ≤ enP (x)(Qe−αn2∥g∥α + C∥g∥αeαe−αn)

(13) ≤ C1e
nP (x)∥g∥αe−αn,
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for some constant C1 > 0. Recalling Fω,s from the proof of previous lemma, we can write

Fω′,s(Eng − En,Ng) =
∑
|ω|=n

g(ω̂)Fω′,s(1[ω])−
∑

ω∈En
A(N)

g(ω̂)Fω′,s(1[ω])

=
∑

ω∈En
A(N+)

g(ω̂)Fω′,s(1[ω]) = g(ω̂′)Fω′,s(1[ω′]) or 0,

depending on ω′ ∈ En
A(N+) or not, so

Lns (Eng − En,Ng) =
∑
ω′∈En

A

Fω′,s(Eng − En,Ng) =
∑

ω∈En
A(N+)

g(ω̂)Fω,s(1[ω]).

Then 8 leaves:

∥Lns (Eng − En,Ng)∥α ≤ ∥g∥∞
∑

ω∈En
A(N+)

∥Fω,s(1[ω])∥α

≤ ∥g∥∞(2 + |s|K)
∑

ω∈En
A(N+)

exp(x sup
[ω]

Snf).

Now since A is finitely irreducible, there exists a finite set Ω ⊆ E∗
A = ∪nEn

A such that for

every e ∈ E and ρ ∈ EN
A, there is ω ∈ Ω with eωρ being admissible. Thus there exists finite

set F ⊆ EN
A such that for every e ∈ E, there is τ ∈ F with eτ being admissible. For every

ω ∈ E∗
A choose τω ∈ F with ωτω admissible. Therefore using 2 we can continue

≤ ∥g∥∞(2 + |s|K)Q2
∑

ω∈En
A(N+)

exp(xSnf(ωτω)).

Moreover if we consider

cN := sup
j≥N

exp(sup f [j]),

then the fact that f is summable implies that cN → 0. Now for each ω ∈ En
A(N+) there is

ωi > N so

exp(Snf(ωτω)) = exp(Si−1f(ωτω)) + f(ωi...ωnτω) + Sn−if(ωi+1...ωnτω))

≤ Q.cN .Q = Q2cN .

Therefore for small enough ϵ > 0 we have

∥Lns (Eng − En,Ng)∥α
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≤ ∥g∥∞(2 + |s|K)Q2
∑

ω∈En
A(N+)

exp (ϵSnf(ωτω)) exp ((x− ϵ)Snf(ωτω))

≤ ∥g∥∞(2 + |s|K)Q2Q2ϵcϵN
∑

ω∈En
A(N+)

exp ((x− ϵ)Snf(ωτω))

≤ ∥g∥∞(2 + |s|K)Q4cϵN
∑
τ∈F

Lnx−ϵ(1)(τ) ≤ ∥g∥∞(2 + |s|K)Q4cϵN#F∥Lnx−ϵ∥α.

This together with 10 yields

∥Lns (En − En,N)∥α ≤ (2 + |s|K)Q4cϵN#F∥Lnx−ϵ∥α

≤ (2 + |s|K)Q4cϵN#F (Q+ C)enP (x−ϵ).

For large enough N we get

∥Lns (En − En,N)∥α ≤ enP (x−ϵ)e−αn.

Thus since P is strictly decreasing, the above inequality combined with 12 and 13 implies

∥Lns − LnsEn,N∥α ≤ C1e
nP (x)e−αn + enP (x−ϵ)e−αn ≤ C2e

nP (x−ϵ)e−αn.

Therefore we can estimate the essential spectral radius:

ress(Ls) = lim
n

∥Lns∥
1/n
K ≤ lim sup

n
∥Lns − LnsEn,N∥1/nα ≤ eP (x−ϵ)e−α.

Since ϵ was chosen small enough, this completes the proof. □

We want to introduce two operators closely related to the transfer operator. The first

operator is L0. There is s hidden in the definition but we don’t write that. It is defined by:

L0 := e−P (x)Ls,

and another operator is the weighted operator defined by:

L̄sg := e−P (x) 1

hx
Ls(ghx),

where hx is a fixed point of L0 obtained in [25, p. 34] as the (compactly) convergent point

of the sequence { 1
nk

∑nk−1
i=0 e−P (x)Ljx(1)}. In other words hx is actually an eigenfunction of

Lx corresponding to the eigenvalue eP (x). Moreover, it is clear that
∫
hxdmx = 1.

Lemma 3.3. There is c > 0 such that hx > c.
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Proof. To show this we use theorem 2.3.5 from [25, p. 29]. Let nk − 1 = (M + 1)tk + rk

where 0 ≤ rk ≤M then

1

nk

nk−1∑
i=0

Lj0(1) ≥
1

nk

(M+1)tk∑
i=1

Lj0(1) ≥
1

nk
tkR

which leaves hx ≥ R
M+1

. □

Lemma 3.4. If g ∈ C0,α(EN
A,C) is non-negative then { 1

n

∑n
j=1 L̄jxg} has a converging subse-

quence with limit
∫
gdµx, where µx is the equilibrium state of xf .

Proof. Observe that L̄x(1) = 1 and so L̄jx(1) = 1 for each j ≥ 1. Then one can start

with ∥L̄jxg∥α ≤ ∥g∥α and follow the same proof of theorem 2.4.3 [25, p. 34] to find that

{ 1
n

∑n
j=1 L̄jxg} has a converging subsequence with limit g1 ∈ C0,α(EN

A,C), where L̄xg1 = g1.

This leaves g1hx as a fixed point of L0. Since g is non-negative so is g1 and g1hx. Now

theorem 2.4.7 [25, p. 39] tells us that

(
g1
d
hxmx) ◦ σ−1 =

g1
d
hxmx, d =

∫
g1hxdmx,

wheremx is eigenmeasure of Lx. Therefore if one defines a measure by µ1(A) =
1
d

∫
A
g1hxdmx,

we find that

µ1(σ
−1(A)) =

1

d

∫
σ−1(A)

g1hxdmx

=
1

d

∫
A

g1 ◦ σ−1hx ◦ σ−1d(m ◦ σ−1) =
1

d

∫
A

g1hxdmx = µ1(A).

That leaves an invariant absolutely continuous measure with respect to mx. Then theorem

10.4.2 [39] implies that µ1 must be µx, therefore the Randon-Nikodym derivative of µ1 with

respect to m is the same as that of µ with respect to m a.e. which means g1 = d a.e. and

since g1 is continuous so g1 = d =
∫
g1hxdmx =

∫
g1dµx everywhere. Furthermore, it is not

hard to see that (L̄x)∗(µx) = µx see theorem 2.4.4 [25, p. 36]. Since we had

1

n

n∑
j=1

L̄jxg → g1
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on a sub-sequence, then ∫
gdµx =

∫
1

n

n∑
j=1

L̄jxgdµx →
∫
g1dµx,

i.e.
∫
gdµx =

∫
g1dµx. □

Proposition 3.5. The transfer operator Ls has at most finitely many eigenvalues of modules

eP (x) all of which with multiplicity one.

Proof. Previous proposition implies there are at most finitely many spectral values of

Ls with modulus eP (x) all are isolated eigenvalues with finite (algebraic) multiplicity, see

definition 2.30. We would like to show first for each eigenvalues ξ with |ξ| = eP (x) the

transfer operator Ls acts on X := Pξ,s(C0,α(EN
A,C)) = ∪m≥1 ker(Ls − ξ)m diagonally. To

see this we consider the Jordan normal form of L := Ls on finite dimensional space X, so

there is an invertible transformation P , such that PLP−1 is the Jordan normal form of L.

Consider a k × k Jordan block in matrix representation that has 1 above the diagonal. The

nth power of the block looks like

ξn
(
n
1

)
ξn−1

(
n
2

)
ξn−2 . . .

(
n
k−1

)
ξn−k+1

ξn
(
n
1

)
ξn−1 . . .

(
n
k−2

)
ξn−k+2

ξn . . .
(
n
k−3

)
ξn−k+3

. . .
...

ξn


.

Then for e =
[
0 0 ... 0 1

]T
we have



ξn
(
n
1

)
ξn−1

(
n
2

)
ξn−2 . . .

(
n
k−1

)
ξn−k+1

ξn
(
n
1

)
ξn−1 . . .

(
n
k−2

)
ξn−k+2

ξn . . .
(
n
k−3

)
ξn−k+3

. . .
...

ξn


e =



(
n
k−1

)
ξn−k+1(

n
k−2

)
ξn−k+2(

n
k−3

)
ξn−k+3

...

ξn


.
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Notice that
(
n
1

)
ξn−1 is the (k − 1)th coordinate of this vector. If we equip X with the norm

∥x∥ = |x1|+ ...+ |xt|, t = dimX,

and if we view e and the the above vector in X, we will have:(
n

1

)
|ξ|n−1 ≤ ∥PLnP−1e∥ ≤ ∥PLnP−1∥ ≤ ∥P∥∥Ln∥∥P−1∥ ≤ C0|ξ|n

for some constant C0, where the last inequality holds by proposition 3.2 and because on finite

dimensional space all the norms are equivalent. This is clearly a contradiction. Therefore

there is no non-trivial Jordan block, i.e. L is diagonalizable. This implies

X = ker(Ls − ξ).

It is clear that if g is in ker(Ls− ξ) then g/hx is in ker(L̄s−e−P (x)ξ). Therefore to show each

ker(Ls − ξ) is one dimensional, it is enough to show ker(L̄s − e−P (x)ξ) is one dimensional.

Let g ∈ ker(L̄s − e−P (x)ξ), for each n

|g| = |e−P (x)ξg| = |L̄ns g| ≤ L̄nx|g|.

Therefore if we apply the above lemma to the function |g| we obtain

|g| ≤
∫

|g|dµx.

Continuity of g and the fact that supp(µx) = EN
A (see explanation below the definition 2.19)

makes this inequality into equality, i.e. every eigenvector has constant modulus. It is not

hard to see that

L̄ns g(ρ) =

e−nP (x)

hx(ρ)

∑
ω∈En

A

exp(sSnf(ωρ))
1

hx(σn−1ωρ)

1

hx(σn−2ωρ)
...

1

hx(σωρ)
hx(ωρ)g(ωρ).

Moreover since L̄x(1) = 1 we get:

1 = L̄nx(1)(ρ) =∑
ω∈En

A

e−nP (x) 1

hx(ρ)
exp(xSnf(ωρ))

1

hx(σn−1ωρ)

1

hx(σn−2ωρ)
...

1

hx(σωρ)
hx(ωρ).
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Note that every term in this sum, say uω, is positive. Eventually we find:

e−nP (x)ξng(ρ) = L̄ns g(ρ) =
∑
ω∈En

A

uω exp(iySnf(ωρ))g(ωρ).

Now note that |
∑

j aj| =
∑

j |aj| implies all aj are co-linear, this along with the fact that g

has constant modulus we get

g(ωρ) = e−nP (x)ξn exp(−iySnf(ωρ))g(ρ).

This means values of g on the dense set ∪nσ−n(ρ) (see remark below the definition 2.2) is

determined by g(ρ), so g spans ker(L̄s−e−P (x)ξ) as long as g has at least one non-zero point.

This shows ξ is simple eigenvalue and it finishes the proof. □

Thus everything is ready to obtain spectral representation of Ls corresponding to the

eigenvalues ξ1, ξ2, ..., ξp of modulus eP (x). We use the above proposition to see that for each

s = x + iy ∈ Γ+, Ls has only finitely many eigenvalues ξ1(s), ...ξn(s) of modulus eP (x) each

of which isolated in the spectrum and actually they are all simple eigenvalues. Therefore we

may use theorem 2.33 to obtain the following spectral representation of the transfer operator:

Ls = ξ1(s)P1,s + ξ2(s)P2,s + ...+ ξn(s)Pn,s +Ds,

where each Pi,s is projection. Note that in this equation the operators are analytic operators

and eigenvalues are analytic functions. Further, composition of every two different operators

on the right hand side vanishes by proposition 2.34. This yields

(14) Lms = ξ1(s)
mP1,s + ξ2(s)

mP2,s + ...+ ξn(s)
mPn,s +Dm

s .

Finally proposition 2.34 implies:

Sp(Ls) ∪ {0} = {ξ1(s)} ∪ {ξ2(s)} ∪ ... ∪ {ξn(s)} ∪ Sp(Ds) ∪ {0}.

We finish this section with the following lemma.
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Lemma 3.6. For every s0 on the line x = 1, there is a neighborhood U of s0, 0 < β < 1 and

constant C > 0 such that for every positive integer m

∥Dm
s ∥α ≤ Cβm, s ∈ U.

Proof. The above spectral decomposition implies the spectral radius of Ds to be strictly

less than that of Ls. Furthermore, proposition 3.2 implies r(Ls0) ≤ eP (1) = 1 so for s0 there

is 0 < β < 1 such that r(Ds0) < β. Thus there is constant C1 and natural number q such

that

∥Dq
s0
∥α ≤ C1β

q ≤ β

2
.

Additionally, using continuity on a small enough ball U at s0 we have

∥Dq
s −Dq

s0
∥α <

β

2
.

Combining these two recent inequalities yields ∥Dq
s∥α ≤ β on U . Furthermore, there is

constant C2 such that for each integer r with 0 ≤ r < q, we have ∥Dr
s∥α ≤ C2 on U . Since

for each positive integer m we can write m = lq + r, we eventually get for some C > 0:

(15) ∥Dm
s ∥α ≤ C(β1/q)m

on U . □

3.2. Counting and Poincaré series

Given ρ ∈ EN
A and B ⊆ EN

A, for every T > 0 we define several counting functions. (a)

The central counting function for us is

(16) Nρ(B, T ) := #{ω ∈ ∪∞
n=1E

n
A : ωρ admissible, ωρ ∈ B, S|ω|f(ωρ) ≥ −T}.

It is not so hard to see that this is a step function of T , continuous from right and increasing.

In order to associate a complex function to this counting function we set Nρ(B, T ) = 0 for

T < 0 and we consider the Laplace–Stieltjes transform of T 7→ Nρ(B, T ) which we call it

Poincaré series:

ηρ(B, s) :=

∫ ∞

0

exp(−sT )dNρ(B, T ).
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We will talk about its convergence in the next proposition. Below we introduce other counting

functions appropriate for our purposes.

(b) Let H = {τ(i)}i∈I be a countable (finite or infinite) collection of finite words of bounded

length, i.e. there exists a positive integer k such that |τ(i)| ≤ k for each i ∈ I. Further,

assume the cylinders {[τ(i)]}i∈I are mutually disjoint. We denote

[H] := ∪i∈I [τ(i)],

then the corresponding Poincaré series is of the form

ηρ([H], s) =

∫ ∞

0

exp(−sT )dNρ([H], T ).

=
∞∑
n=1

exp(−sTi) (Nρ([H], Ti)−Nρ([H], Ti−1))

where T1 < T2 < T3 < ... is the increasing sequence of discontinuities of T 7→ Nρ([H], T ).

Eventually this sums up to

(17) ηρ([H], s) =
∞∑
n=1

∑
ωρ∈[H]

exp(sSnf(ωρ)) =
∞∑
n=1

Lns (1[H])(ρ).

(c) If we require to count only words with certain initial blocks then we should define

Nρ(H,T ) := #{ω ∈ ∪∞
n=1E

n
A : τ ∈ H, τωρ admissible , S|τω|f(τωρ) ≥ −T}.

Then similarly one can see that the corresponding Poincaré series has the form

ηρ(H, s) =
∞∑
n=1

Lk+ns (1[H])(ρ).

Therefore

(18) ηρ([H], s) = ηρ(H, s) +
k∑

n=1

Lns (1[H])(ρ).

(d) For any positive integer q we set

Nρ([H], q, T ) := #{ω ∈ Eq
A : ωρ admissible, ωρ ∈ [H], S|ω|f(ωρ) ≥ −T},

then its Poincaré series would be

ηρ([H], q, s) = Lqs(1[H])(ρ).
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(e) Further we would like to deal with periodic words as well. For this purpose we define

Nper([H], T ) := #{ω ∈ ∪∞
n=1E

n
A : ω periodic word, ω ∈ [H], S|ω|f(ω) ≥ −T},

(f) And

Nper(H,T ) := #{ω : τ ∈ H, τω periodic word, S|τω|f(τω) ≥ −T}.

(g) Finally we introduce another counting function for any positive integer q:

Nper([H], q, T ) := #{ω : ω periodic word of length q, ω ∈ [H], S|ω|f(ω) ≥ −T}.

(h) If H = E then obviously [H] is the whole space EN
A. In this case, we drop the notation

EN
A in Nρ(E

N
A, T ) and we simply write Nρ(T ), similarly Nper(T ).

Next we want to find some relations between these counting functions. Note that

we do not introduce a Poincaré series for the periodic orbits, as it won’t have an ordinary

geometric series expression and therefore Tauberian theorems are not applicable, instead we

use some approximations. Now for every finite word ω we pick (exactly) one ω+ ∈ EN
A such

that ωω+ is admissible. From now on in this section, we assume τ is a fix word of length

k ≥ 0. When k = 0 we mean there is no word involved.

Lemma 3.7. Let q be a positive integer, and γ ∈ Eq
A be any word of length q. Given any ω

where τγω is admissible and it is further a period word, then we have

|S|τγω|f(τγω)− S|τγω|f(τγωτγ(τγ)
+)| ≤ Ke−(k+q)α,

where K only depends on f .

Proof. It is enough to apply Lemma 2.11:

|S|τγω|f(τγω)− S|τγω|f(τγωτγ(τγ)
+)| ≤ Kfd(τγω, τγ(τγ)

+)α ≤ Kfe
−(k+q)α.

□

Lemma 3.8. Let q be a positive integer, then the following inequalities hold:
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(i)

Nper([τ ], q, T ) ≤ Nττ+([τ ], q, T +K),

(ii) ∑
γ∈Eq

A

τγ∈Ek+q
A

Nτγ(τγ)+(τγ, T −Ke−(k+q)α) ≤ Nper(τ, T ),

(iii)

Nper([τ ], T ) ≤
∑
γ∈Eq

A

τγ∈Ek+q
A

Nτγ(τγ)+([τγ], T +Ke−(k+q)α),

(iv) For i ≥ k + q

Nτγ(τγ)+([τγ], i, T ) ≤ Nττ+([τγ], i, T +K),

(v) If F is any finite subset of Eq
A and F ′ = Eq

A \ F , then

Nper([τ ], T ) ≤
∑
γ∈F

τγ∈Ek+q
A

Nτγ(τγ)+([τγ], T +Ke−(k+q)α)

+
∑
γ∈F ′

τγ∈Ek+q
A

Nττ+([τγ], T + 2K) +

k+q−1∑
i=1

Nττ+([τ ], i, T +K)

where K only depends on f .

Proof. (i) Let ω be a finite word contributing to Nper([τ ], q, T ), then |ω| = q. The fact that

ω ∈ [τ ] gives ω1 = τ1 Therefore since ωqω1 is admissible, so is ωττ+. If q ≥ k = |τ |, since

ω ∈ [τ ] so is ωττ+, and if q < k, since ω ∈ [τ ], we can write τ as m copies of ω and some

remainders, i.e. τ = ωmω1...ωr. It is clear then the first k letters of ωm+1ω1...ωr is again

τ . Thus ωττ+ ∈ [τ ]. It remains to show S|ω|ψ(ωττ
+) ≥ −T − K. From our assumption

S|ω|ψ(ω) ≥ −T , we can apply Lemma 2.11 to see that

S|ω|ψ(ω) ≤ S|ω|ψ(ωττ
+) +K.

This finishes the proof for part (i).

(ii) Let γ be a word of length q with τγ admissible. Let ω be a finite word contributing

to Nτγ(τγ)+(τγ, T − Ke−(k+q)α), we want to show γω contributes to Nper(τ, T ). It is clear
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that, this way of contribution is injective, therefore that proves (ii). Since τγωτγ(τγ)+ is

admissible, so is τγω. Furthermore, we know S|τγω|ψ(τγωτγ(τγ)
+) ≥ −T + Ke−(k+q)α. If

we use the above lemma we find

−T +Ke−(k+q)α ≤ S|τγω|ψ(τγωτγ(τγ)
+) ≤ S|τγω|ψ(τγω) +Ke−(k+q)α,

which shows −T ≤ S|τγω|ψ(τγω) as needed.

(iii). Let ω be a finite word contributing to Nper([τ ], T ) of length n. The fact that ω ∈ [τ ]

gives ω1 = τ1 Therefore since ωnω1 is admissible, so is ωτ . Note that

[τ ] = ∪′[τγ],

where the union is over all γ with length q such that τγ is admissible. Since ω ∈ [τ ], there

should be γ such that ω ∈ [τγ]. Since ωτ is admissible, so is ωτγ(τγ)+. Next we want

to show ωτγ(τγ)+ ∈ [τγ]. If we separate to two cases where n ≥ k + q and n < k + q,

then in exactly similar manner as in part (i) we obtain this. It remains only to show

S|ω|ψ(ωτγ(τγ)
+) ≥ −T −Ke−(k+q)α. We have already S|ω|ψ(ω) ≥ −T , furthermore if we use

lemma 2.11 we see that

|S|ω|ψ(ω)− S|ω|ψ(ωτγ(τγ)
+)| ≤ Kd(ω, τγ(τγ)+) ≤ Ke−(k+q)α,

where the last inequality is due to ω ∈ [τγ]. Thus from this inequality, we obtain

−T −Ke−(k+q)α ≤ S|ω|ψ(ωτγ(τγ)
+).

This completes part (iii).

(iv) Take ω that contributes to Nτγ(τγ)+([τγ], t, T ). Clearly, ωττ+ is admissible. Since

|ω| ≥ k + q then we have clearly ωττ+ ∈ [τγ] as well. Further, note that

|S|ω|(ωτγ(τγ)
+)− S|ω|(ωττ

+)| ≤ K.

(v) Take ω such that it contributes to Nper([τ ], T ). If its length is less than k + q, then we

use part (i). This contributes to the third sum on the right hand side. If length of ω is at

least k + q, then (iii) and (iv) tell us ω contributes to either of the first two sums on the

right hand side. This finishes the proof of (v) and the lemma. □
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Below we want to prove item (v) from the above lemma without [τ ]. Let ρ ∈ EN
A,

then due to our assumption that shift space is finitely irreducible, there exists a finite set

consisting of finite words

Ω = {τ(1), ..., τ(r)}

such that for every finite word ω there exists τ(j) ∈ Ω with ωτ(j)ρ being admissible. Below we

have a summation over all τ(j)ρ, while this might not be admissible for all j = 1, ..., r. Note

that sum is only over those j where τ(j)ρ is admissible. Note that Ω and r are independent

of ρ.

Lemma 3.9. If F is any finite subset of Eq
A and F ′ = Eq

A \ F , for any ρ ∈ EN
A we have

Nper(T ) ≤
∑
γ∈F

Nγγ+([γ], T +Ke−qα)

+
r∑
j=1

τ(j)ρ∈EN
A

Nτ(j)ρ([F
′], T +K) +

r∑
j=1

τ(j)ρ∈EN
A

q−1∑
i=1

Nτ(j)ρ(i, T +K),

where K only depends on f .

Proof. The proof is similar to item (v) in the above lemma. Let ω be a finite word

contributing to Nper(T ), pick τ(j) ∈ Ω such that ωτ(j)ρ is admissible. If |ω| < q, clearly ω is

contributing to the third term on the right hand of the inequality. If |ω| ≥ q and ω1...ωq ∈ F ,

we want to show ω contributes to Nγγ+([γ], T+Ke−qα) where γ = ω1...ωq. Since ω is periodic

ωω1 is admissible, and so is ωγγ+. It is clear that ωγγ+ ∈ [γ] as well. Further note that

|S|ω|f(ωγγ
+)− S|ω|f(ω)| ≤ Kd(γγ+, ω) ≤ Ke−qα.

Finally, in case |ω| ≥ q and ω1...ωq ∈ F ′ we want to show ω is contributing to the second

sum on the right hand side. This is similar to our previous case. □

Moreover, we have the following two estimates for the eigenfunction h and the equi-

librium state µ.
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Lemma 3.10. Let ω be a word of length n such that ωρ, ωρ′ are admissible, then we have

1−K1e
−nα ≤ h(ωρ)

h(ωρ′)
≤ 1 +K1e

−nα,

where K1 only depends on h.

Proof. We know from [25, p. 34] that h is Hölder continuous, therefore there is a constant

K0, such that

|h(ωρ)− h(ωρ)| ≤ K0d(ωρ, ωρ
′) ≤ K0e

−nα.

Dividing by h(ωρ) and using lemma 3.3, we obtain

| h(ωρ)
h(ωρ′)

− 1| ≤ K0

h(ωρ)
e−nα ≤ K1e

−nα,

where K1 = K0
M+1
R

. □

Lemma 3.11. Let ω be a finite word of length n such that ωρ is admissible, then

(1−K1e
−nα)h(ωρ)m([ω]) ≤ µ([ω]) ≤ (1 +K1e

−nα)h(ωρ)m([ω]),

where K1 is a constant depending only on h.

Proof. We saw in the proof of the lemma 3.4 that µ(A) =
∫
A
hdm. Therefore we have

(
inf
[ω]
h

)
m([ω]) ≤ µ([ω]) ≤

(
sup
[ω]

h

)
m([ω]).

Now we use the above lemma to see

(1−K1e
−nα)h(ωρ) ≤ inf

[ω]
h ≤ sup

[ω]

h ≤ (1 +K1e
−nα)h(ωρ).

This finishes the proof. □

Proposition 3.12. The functions ηρ([H], s), ηρ(H, s) are holomorphic on Re(s) > 1, and

the function ηρ([H], q, s) is holomorphic on Γ+.
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Proof. Using the relation 18, if we show ηρ([H], s) is holomorphic then ηρ(H, s) will be

holomorphic as well. In order to show ηρ([H], s) is holomorphic we need |Lns (1[H])|∞:

|Lns (1[H])|∞ ≤ |Lns (1)|∞ ≤
∑
ω∈En

A

exp(Re(s) sup
[ω]

Snf).

This reminds us of the pressure function. Using the fact that P is strictly decreasing on Γ

from proposition 2.23, consider an arbitrary s0 = x0+ iy0 with x0 > 1, for any s with x ≥ x0

there is a negative r such that P (x) < r < 0, therefore there is N such that for n > N :

1

n
ln
( ∑
ω∈En

A

exp(x sup
[ω]

Snf
)
< r,

so

|Lns (1[H])|∞ ≤ |Lns (1)|∞ ≤
∑
ω∈En

A

exp(x sup
[ω]

Snf) < ern.

This shows ηρ([H], s) converges uniformly on compact sets, thus ηρ([H], s) as a sum of

holomorphic functions is holomorphic on Re(s) > 1.

The above expression of ηρ([H], q, s) shows it is holomorphic on Γ+. □

Proposition 3.13. If f : EN
A → R has D-generic property, then each ηρ([H], s) and ηρ(H, s)

at each point of the critical line Re(s) = 1 except s = 1 admits analytic continuation and at

s = 1 admits a meromorphic extension with a simple pole and residue

Res(ηρ, 1) =
h(ρ)

χµ
m([H]).

If we lift the D-generic property, then there exists y1 > 0 such that the above statement

holds on the segment {1 + iy : |y| < y1} with the same residue at the simple pole s = 1.

Furthermore, this y1 doesn’t depend on H or ρ.

Proof. By reviewing equations 27 and 14, it is clear that we can write

ηρ([H], s) =
∞∑
k=1

Lks(1[H])

=
∞∑
k=1

(
ξ1(s)

kP1,s(1[H]) + ...+ ξn(s)
kPn,s(1[H]) +Dk

s (1[H])
)
.
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Now we use proposition 2.23 to see |ξi(s)| = eP (x) < 1 if x > 1. Therefore we can continue

the above equation

= ξ1(s)(1− ξ1(s))
−1P1,s(1[H]) + ...+ ξn(s)(1− ξn(s))

−1Pn,s(1[H]) +Qs(1[H]),

where Qs =
∑∞

k=1Dk converges using lemma 3.6. This is a valid relation for the Poincaré

series ηρ on x > 1. We fix s0 on the line x = 1, it is clear that Qs(1[H]) is a holomorphic

function on the neighborhood U of s0 obtained in lemma 3.6. Additionally all the projections

Pi,s and function ξi(s) are analytic as discussed just above the equation 14. Therefore the

right hand side of the above equation is analytic on some neighborhood U0 of s0, as long

as ξi(s0) ̸= 1. As we know for real s = x + i0, one of the eigenvalues of the transfer

operator is eP (x) by theorem 2.18. We let ξ1(s) represent this eigenvalue, it is clear that

ξ1(s) is not constant on any neighborhood of s = 1 as |ξ1(s)| = eP (x) and P is strictly

decreasing by proposition 2.23. Since ξi(s) are isolated, simple eigenvalues and further

analytic functions identity theorem from complex analysis guarantees existence of y1 > 0

for which the equations ξi(s) = 1 on {1 + iy : |y| < y1} have solution only if i = 1 and

s = 1. We deduce the right hand side of the equation above defines an analytic function on

a neighborhood of {1+ iy : 0 < |y| < y1}. Note that ξ1(s) is simple eigenvalue, so near s = 1

we expect

(1− ξ1(s)) ∼ s− 1.

In other words, we find that ηρ([H], s)−A/(s− 1) admits analytic extension to the segment

{1 + iy : |y| < y1}, where

A = lim
s→1

ηρ([H], s)(s− 1) = ξ1(1)P1,1(1[H]) lim
s→1

s− 1

1− ξ1(s)
.

It is clear that using D-generic property y1 can be taken to be ∞. Thus, it only remains to

compute A. It is clear that ξ1 = ξ1(1) = eP (1) = 1. To compute P1,1(1[H]) first note that

L0Pi,1 = ξiPi,1 for each i, so∫
Pi,1(g)dm =

∫
L0Pi,1(g)dm = ξi

∫
Pi,1(g)dm.
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This gives
∫
Pi,1(g) = 0 for every g ∈ C0,α(EN

A,C) and i ̸= 1. Therefore with respect to the

measure m for each k:∫
g =

∫
Lk0(g) =

∫
P1,1(g) +

∫
ξk2P2,1(g) + ...+

∫
ξknPn,1(g) +

∫
Dk

1(g)

=

∫
P1,1(g) +

∫
Dk

1(g),

now implementing the inequality obtained in lemma 3.6 would yield∫
g =

∫
P1,1(g).

This actually determines the action of P1,1 since if P1,1(g) = kgh then kg =
∫
g, i.e.

P1,1(g) = h

∫
gdm.

And lastly

lim
s→1

1− ξ1(s)

s− 1
= lim

x→1

1− eP (x)

x− 1
= −P ′(1)eP (1) = −

∫
fdµ = χµ,

where the equality to the last follows from proposition 2.6.13 in [25, p. 47]. Thus we find

that the residue is h(ρ)m([H])/χµ. □

3.3. Asymptotic Formula for Counting

In this section, we assume f is strongly regular, summable and Hölder-type continuous

with P (1) = P (f) = 0. We keep this assumption to the end of proposition 3.18 and after

that we consider general functions with P (δ) = P (δf) = 0 for some δ > 0. We want to find

asymptotic formula for the counting functions presented in the previous section. We can

provide formula for some estimate of lower bound and upper bound of all possible values.

As well in this section by y0 we mean

y0 =
y1
2π
,

where y1 was obtained in proposition 3.13. As mentioned in that proposition, this y0 doesn’t

depend on H in ηρ([H], T ). Further, we set

c1 := y−1
0

(
exp(y−1

0 )− 1
)−1

, c2 := y−1
0

(
exp(y−1

0 )− 1
)−1

exp(y−1
0 ).
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Proposition 3.14.

c1
h(ρ)

χµ
m([H]) ≤ lim inf

T→∞

Nρ(H,T )

exp(T )
≤ lim sup

T→∞

Nρ(H,T )

exp(T )
≤ c2

h(ρ)

χµ
m([H]),

and

c1
h(ρ)

χµ
m([H]) ≤ lim inf

T→∞

Nρ([H], T )

exp(T )
≤ lim sup

T→∞

Nρ([H], T )

exp(T )
≤ c2

h(ρ)

χµ
m([H]),

and for every positive integer q

lim
T→∞

Nρ([H], q, T )

exp(T )
= 0.

Proof. The first two lines of inequalities follows from proposition 3.13 and applying Graham-

Vaaler theorem 2.42. The last equality follows from proposition 3.12 and applying Ikehara-

Wiener theorem 2.41. □

Proposition 3.15.

c1
1

χµ
µ([τ ]) ≤ lim inf

T→∞

Nper(τ, T )

exp(T )
≤ lim sup

T→∞

Nper(τ, T )

exp(T )
≤ c2

1

χµ
µ([τ ]),

and

c1
1

χµ
µ([τ ]) ≤ lim inf

T→∞

Nper([τ ], T )

exp(T )
≤ lim sup

T→∞

Nper([τ ], T )

exp(T )
≤ c2

1

χµ
µ([τ ]).

Proof. Let
∑′ represents the sum over all γ with length q such that τγ is admissible. Then

using part (ii) of lemma 3.8, lemma 2.13 and proposition 3.14 we can write:

lim inf
T→∞

Nper(τ, T )

exp(T )
≥ lim inf

T→∞

′∑ Nτγ(τγ)+(τγ, T −Ke−(k+q)α)

exp(T )

≥ exp
(
−Ke−(k+q)α

) ′∑
lim inf
T→∞

Nτγ(τγ)+(τγ, T −Ke−(k+q)α)

exp (T −Ke−(k+q)α)

= exp
(
−Ke−(k+q)α

) ′∑
c1
h(τγ(τγ)+)

χµ
m([τγ]).

We use lemma 3.11 at this step and continue:

lim inf
T→∞

Nper(τ, T )

exp(T )
≥ c1

exp
(
−Ke−(k+q)α

)
χµ

′∑
(1 +K1e

−(k+q)α)−1µ([τγ])

= c1
exp

(
−Ke−(k+q)α

)
1 +K1e−(k+q)α

1

χµ
µ([τ ]).
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Since q is arbitrary, by q → ∞ we obtain

lim inf
T→∞

Nper(τ, T )

exp(T )
≥ c1

1

χµ
µ([τ ])

If we show

lim sup
T→∞

Nper([τ ], T )

exp(T )
≤ c2

1

χµ
µ([τ ]),

we are done with the proof. We use lemma 3.8 part (v) for this and then we apply proposition

3.14 several times.

lim sup
T→∞

Nper([τ ], T )

exp(T )
≤ lim sup

T→∞

∑
γ∈F
τγ∈EN

A

Nτγ(τγ)+
(
[τγ], T +Ke−(k+q)α

)
exp(T )

+ lim sup
T→∞

∑
γ∈F ′

τγEN
A

Nττ+([τγ], T + 2K)

exp(T )
+ lim sup

T→∞

k+q−1∑
i=1

Nττ+([τ ], i, T +K)

exp(T )
.

Now the first limsup easily passes through the finite sum and we use proposition 3.14 with

H = τγ, for the second limsup note that∑
γ∈F ′

τγEN
A

Nττ+([τγ], T + 2K) = Nττ+([τF
′], T + 2K),

therefore we apply proposition 3.14 with H = τF ′ and the last limsup is clearly 0 using

again proposition 3.14. Thus we get

lim sup
T→∞

Nper([τ ], T )

exp(T )

≤
∑
γ∈F
τγEN

A

lim sup
T→∞

Nτγ(τγ)+
(
[τγ], T +Ke−(k+q)α

)
exp (T +Ke−(k+q)α)

exp
(
Ke−(k+q)α

)

+ lim sup
T→∞

Nττ+([τF
′], T + 2K)

exp(T + 2K)
exp(2K)

= exp
(
Ke−(k+q)α

) ∑
γ∈F
τγEN

A

c2
h(τγ(τγ)+)

χµ
m([τγ]) + c2

h(ττ+)

χµ
m([τF ′]) exp(2K).

Notice that since F was arbitrary for ϵ > 0 we choose F such that

c2
h(ττ+)

χµ
m([τF ′]) exp(2K) < ϵ,
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then we obtain

lim sup
T→∞

Nper([τ ], T )

exp(T )
≤ exp

(
Ke−(k+q)α

) ∑
γ∈F
τγEN

A

c2
h(τγ(τγ)+)

χµ
m([τγ]) + ϵ.

Now we apply left hand side of the lemma 3.11:

lim sup
T→∞

Nper([τ ], T )

exp(T )
≤

exp
(
Ke−(k+q)α

)
1−K1e−(k+q)α

∑
γ∈F
τγEN

A

c2
1

χµ
µ([τγ]) + ϵ.

Eventually we let q → ∞ to get

lim sup
T→∞

Nper([τ ], T )

exp(T )
≤
∑
γ∈F
τγEN

A

c2
1

χµ
µ([τγ]) + ϵ = c2

1

χµ
µ([τF ]) + ϵ ≤ c2

1

χµ
µ([τ ]) + ϵ.

Since ϵ was arbitrary we have

lim sup
T→∞

Nper([τ ], T )

exp(T )
≤ c2

1

χµ
µ([τ ]).

□

Proposition 3.16.

lim sup
T→∞

Nper(T )

exp(T )
≤ c2

1

χµ
.

Proof. This proof is exactly similar to the proof of the previous proposition for limsup and

implementing lemma 3.9. □

Proposition 3.17. For every open set V ⊆ EN
A we have

c1
h(ρ)

χµ
m(V ) ≤ lim inf

T→∞

Nρ(V, T )

exp(T )
≤ lim sup

T→∞

Nρ(V, T )

exp(T )
≤ c1

h(ρ)

χµ
m(V ) + y−1

0

h(ρ)

χµ
,

and

c1
1

χµ
µ(V ) ≤ lim inf

T→∞

Nper(V, T )

exp(T )
≤ lim sup

T→∞

Nper(V, T )

exp(T )
≤ c1

1

χµ
µ(V ) + y−1

0

1

χµ
.

Proof. We know from proposition 2.1 that V can be written as union of disjoint cylinders,

so V = ∪i[τ(i)]. Therefore using lemma 2.13 and proposition 3.14 with H = τ(i) one can

write

lim inf
T→∞

Nρ(V, T )

exp(T )
= lim inf

T→∞

∑
i

Nρ([τ(i)], T )

exp(T )
≥
∑
i

lim inf
T→∞

Nρ([τ(i)], T )

exp(T )
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≥
∑
i

c1
h(ρ)

χµ
m([τ(i)]) = c1

h(ρ)

χµ
m(V ).

For the limsup we use lemma 2.14 and the above inequality for the open set V
c
to find

c1
h(ρ)

χµ
m(V

c
) + lim sup

T→∞

Nρ(V, T )

exp(T )

≤ lim inf
T→∞

Nρ(V
c
, T )

exp(T )
+ lim sup

T→∞

Nρ(V, T )

exp(T )

≤ lim sup
T→∞

Nρ(V
c
, T ) +Nρ(V, T )

exp(T )
≤ lim sup

T→∞

Nρ(T )

exp(T )
≤ c2

h(ρ)

χµ
,

where the last inequality holds if we apply proposition 3.14 for H = E (all the alphabets).

This yields

lim sup
T→∞

Nρ(V, T )

exp(T )
≤ c2

h(ρ)

χµ
− c1

h(ρ)

χµ
m(V

c
) = c1

h(ρ)

χµ
m(V ) + y−1

0

h(ρ)

χµ
.

For counting periodic words, the idea is similar. Again we implement lemma 2.13 and this

time proposition 3.15 to obtain:

lim inf
T→∞

Nper(V, T )

exp(T )
= lim inf

T→∞

∑
i

Nper([τ(i)], T )

exp(T )
≥
∑
i

lim inf
T→∞

Nper([τ(i)], T )

exp(T )

≥
∑
i

c1
1

χµ
µ([τ(i)]) = c1

1

χµ
µ(V ).

Applying lemma 2.14 and the above inequality for the open set V
c
gives us:

c1
1

χµ
µ(V

c
) + lim sup

T→∞

Nper(V, T )

exp(T )

≤ lim inf
T→∞

Nper(V
c
, T )

exp(T )
+ lim sup

T→∞

Nper(V, T )

exp(T )

≤ lim sup
T→∞

Nper(V
c
, T ) +Nper(V, T )

exp(T )
≤ lim sup

T→∞

Nper(T )

exp(T )
≤ c2

1

χµ
,

where the last inequality is due to the above proposition. This eventually gives

lim sup
T→∞

Nper(V, T )

exp(T )
≤ c2

1

χµ
− c1

1

χµ
µ(V

c
) = c1

1

χµ
µ(V ) + y−1

0

1

χµ
.

□
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Proposition 3.18. For every Borel set B ⊆ EN
A we have

c1
h(ρ)

χµ
m(Bo) ≤ lim inf

T→∞

Nρ(B, T )

exp(T )
≤ lim sup

T→∞

Nρ(B, T )

exp(T )
≤ c1

h(ρ)

χµ
m(B) + y−1

0

h(ρ)

χµ
,

and

c1
1

χµ
µ(Bo) ≤ lim inf

T→∞

Nper(B, T )

exp(T )
≤ lim sup

T→∞

Nper(B, T )

exp(T )
≤ c1

1

χµ
µ(B) + y−1

0

1

χµ
.

Proof. We only prove the first line of inequalities. The other one is proved in a similar

manner. We apply the above proposition to open set Bo:

c1
h(ρ)

χµ
m(Bo) ≤ lim inf

T→∞

Nρ(B
o, T )

exp(T )
≤ lim inf

T→∞

Nρ(B, T )

exp(T )
.

For limsup we use lemma 2.14 and this inequality for B
c
:

c1
h(ρ)

χµ
m(B

c
) + lim sup

T→∞

Nρ(B, T )

exp(T )

≤ lim inf
T→∞

Nρ(B
c
, T )

exp(T )
+ lim sup

T→∞

Nρ(B, T )

exp(T )
≤ lim sup

T→∞

Nρ(T )

exp(T )
≤ c2

h(ρ)

χµ
,

where the last inequality holds if we apply proposition 3.14 for H = E (all the alphabets).

Thus

lim sup
T→∞

Nρ(B, T )

exp(T )
≤ lim sup

T→∞

Nρ(B, T )

exp(T )
≤ c2

h(ρ)

χµ
− c1

h(ρ)

χµ
m(B

c
) = c1

h(ρ)

χµ
m(B) + y−1

0

h(ρ)

χµ
.

This finishes the proof. □

Note that so far we focused on the systems with P (1) = 0. We want to show that

this is not restrictive and we can otherwise get corresponding counting formula as well. For

a general Hölder-type function f : EN
A → R we remember that x ∈ Γ iff xf is summable.

Assuming strong regularity we know there exists δ > 0 such that P (δ) = 0 and inf Γ < δ.

Now if we consider a new function g = δf , first it is clear that g as well is strongly regular.

Secondly, since P (xg) = P (xδf) we have Pg(1) = 0. Therefore all the results obtained above

is applicable for g. Additionally, note that Sng(ρ) = δSnf(ρ), so we find that

(19) N g(δT ) = N(T ).
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Moreover, it is clear

L1g = Lδf .

Therefore if Lδfhδ = hδ then L1ghδ = hδ, similarly if L∗
δfmδ = mδ then L∗

1gmδ = mδ.

Additionally, if Lsf avoids exp (P (δf)) = 1 as eigenvalue on

{δ + iy : 0 < |y| < y0(f)},

then Lsg does so on

{1 + iy : 0 < |y| < y0(f)

δ
}.

This implies y0(g) =
y0(f)
δ

and so

c1(g) = (
y0
δ
)−1
(
exp((

y0
δ
)−1)− 1

)−1

.

It is now enough to use proposition 3.18 for g with m = mδ, µ = µδ and h = hδ to estimate:

c1(g)
h(ρ)

χµ
m(Bo) ≤ lim inf

T→∞

N g
ρ (B, T )

exp(T )
≤ lim sup

T→∞

N g
ρ (B, T )

exp(T )
≤ c1(g)

h(ρ)

χµ
m(B) + (

y0
δ
)−1h(ρ)

χµ
.

Furthermore, note that

χµ = −
∫
g dµδ = −δ

∫
f dµδ = δχµδ .

Now we replace T with δT and use 19 to obtain the following estimate for f :

y−1
0

(
exp(δy−1

0 )− 1
)−1 hδ(ρ)

χµδ
mδ(B

o) ≤ lim inf
T→∞

Nρ(B, T )

exp(δT )

≤ lim sup
T→∞

Nρ(B, T )

exp(δT )
≤ y−1

0

(
exp(δy−1

0 )− 1
)−1 hδ(ρ)

χµδ
mδ(B) + y−1

0

hδ(ρ)

χµδ
.

Similarly we can obtain a formula for Nper(B, T ) which we omit its proof. We set

(20) cδ := y−1
0

(
exp(δy−1

0 )− 1
)−1

and capture all the aforementioned arguments in the following theorem.
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Theorem 3.19. If f : EN
A → R is strongly regular Hölder-type function with P (δf) = 0, for

every Borel set B ⊆ EN
A and ρ ∈ EN

A we have

cδ
hδ(ρ)

χµδ
mδ(B

o) ≤ lim inf
T→∞

Nρ(B, T )

exp(δT )
≤ lim sup

T→∞

Nρ(B, T )

exp(δT )
≤ cδ

hδ(ρ)

χµδ
mδ(B) + y−1

0

hδ(ρ)

χµδ
,

and

cδ
1

χµδ
µ(Bo) ≤ lim inf

T→∞

Nper(B, T )

exp(δT )
≤ lim sup

T→∞

Nper(B, T )

exp(δT )
≤ cδ

1

χµδ
µ(B) + y−1

0

1

χµδ
.

Remark 3.20. It is important to note that

• For Nρ the eigenmeasure m and for Nper the equilibrium measure µ appears in the

formula.

• The bounds are sharp as shown in example 3.25 below.

• The limit points of the ratio Nρ(B,T )

exp(δT )
can be a full closed interval, i.e.

{
A : A = lim

n→∞

Nρ(B, Tn)

exp(δTn)
, Tn → ∞ as n→ ∞

}
= [c, C],

for some c, C > 0. (see example 3.25)

Corollary 3.21. If f : EN
A → R is strongly regular Hölder-type function with P (δf) = 0,

for every Borel set B ⊆ EN
A with boundary of measure 0 and ρ ∈ EN

A we have

cδ
hδ(ρ)

χµ
m(B) ≤ lim inf

T→∞

Nρ(B, T )

exp(δT )
≤ lim sup

T→∞

Nρ(B, T )

exp(δT )
≤ cδ

hδ(ρ)

χµ
m(B) + y−1

0

hδ(ρ)

χµ
,

and

cδ
1

χµ
µ(B) ≤ lim inf

T→∞

Nper(B, T )

exp(δT )
≤ lim sup

T→∞

Nper(B, T )

exp(δT )
≤ cδ

1

χµ
µ(B) + y−1

0

1

χµ
.

Proof. We just need to apply the above theorem and noting that m(∂B) = 0 implies

m(B) = m(B) = m(Bo). □

Corollary 3.22 (Pollicott-Urbański). Let S = {ϕe}e∈E be a strongly regular conformal

graph directed Markov system with D-generic property. Let δ be the Hausdorff dimension of
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the limit set of S, then for every Borel set B ⊆ EN
A with boundary of measure 0 and ρ ∈ EN

A

we have

lim
T→∞

Nρ(B, T )

exp(δT )
=
hδ(ρ)

δχµδ
mδ(B),

and

lim
T→∞

Nper(B, T )

exp(δT )
=

1

δχµδ
µδ(B).

Proof. It follows from the previous corollary. Note that when S is D-generic then we are

allowed to let y0 → ∞ and this gives cδ → 1
δ
from 20. □

3.4. Asymptotic Formula for Length

Before bringing some examples we would like to talk about counting with specified

length. As indicated in the beginning of the previous section item (d) we had Nρ([H], q, T )

which is counting number of words ω satisfying S|ω|f(ωρ) ≥ −T of length q. We addressed

in proposition 3.14 that growth of this relative to exp(δT ) tends to 0. Therefore if we would

like to obtain fairly interesting growth we have to focus on some counting where q as well

grows as T grows. We know Nρ(T ) ∼ C exp(δT ) but if we write

Nρ(T ) =
∞∑
i=1

Nρ(i, T ),

first we should note that this sum is terminating at some point. More precisely, for ρ if we

set

m(T ) := sup
ω∈E∗

ρ

{|ω| : S|ω′|f(ω
′ρ) ≥ −T, ∀ω′ ∈ E∗

ρ , |ω′| ≤ |ω|}, bn := inf
ω∈En

ρ

Sn(ωρ),

M(T ) := sup
ω∈E∗

ρ

{|ω| : S|ω|f(ωρ) ≥ −T}, dn := sup
ω∈En

ρ

Sn(ωρ),

then Nρ(i, T ) = 0 for i > M(T ), therefore

Nρ(T ) =

M(T )∑
i=1

Nρ(i, T ).

The question we ask is which term of the above sum on the right hand side might have growth

comparable to the left hand side, i.e. for which i(T ) the growth of Nρ(T )/Nρ(i(T ), T ) is not

too fast?! With the tools we have, we couldn’t answer this question, however we have some

words on that. First we prove the following.
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Proposition 3.23. Both of the following limits exist:

lim
T→∞

m(T )

T
= r, lim

T→∞

M(T )

T
= s.

Proof. First we prove the latter one. We set M := M(T ), let ω be a finite word making

the supremum possible in the definition of M(T ) , then for any τ ∈ EM+1
ρ we find

dM ≥ SMf(ωρ) ≥ −T > SM+1(τρ),

dM ≥ −T ≥ dM+1,

dM
M

≥ −T
M

≥ dM+1

M + 1

M + 1

M
.

Therefore it is enough to show that dn/n is convergent. To do so, we note that for arbitrary

τ , γ with |τ | = m, |γ| = n where τγρ is admissible, we can find ω ∈ Ω such that τωρ is as

well admissible by finitely irreducible definition 2.2. By lemma 2.11 we find:

δSm+nf(τγρ) = δSmf(τγρ) + δSnf(γρ) ≤ δSmf(τωρ) + δSnf(γρ) +Kδf

= δSm+|ω|f(τωρ)− δS|ω|f(ωρ) + δSnf(γρ) +Kδf

= δS|ω|f(τωρ) + δSmf(σ
|ω|(τωρ))− δS|ω|f(ωρ) + δSnf(γρ) +Kδf

Now by 2 we know δS|ω|f ≤ logQδ and since Ω is finite, there is C > 0 such that

Sm+nf(τγρ) ≤ Smf(σ
|ω|(τωρ)) + Snf(γρ) + C ≤ dm + dn + C.

Thus we have dm+n ≤ dm + dn + C and we can use Fekete’s lemma 2.12 with an = dn + C

to get convergence of dn/n.

For the other one, note that if E is infinite then using 2 there are infinitely many n for which

bn = −∞, therefore m(T ) = sup ∅ which we set it −∞ and so m(T )/T = −∞ for all T > 0.

Let E be finite, for arbitrary τ , γ with |τ | = m, |γ| = n where τρ and γρ are admissible

there is ω ∈ Ω such that τωγρ is admissible as well. Therefore by lemma 2.11 we find:

δSmf(τρ) + δSnf(γρ) ≥ δSmf(τωγρ)−Kδf + δSnf(γρ)

= δSm+|ω|f(τωγρ)− δS|ω|f(ωγρ)−Kδf + δSnf(γρ)

= δSm+|ω|+nf(τωγρ)− δS|ω|f(ωγρ)−Kδf
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= δS|ω|f(τωγρ) + δSm+nf(σ
|ω|(τωγρ))− δS|ω|f(ωγρ)−Kδf .

Now for large m it is clear that by lemma 2.11 we have δS|ω|f(τωγρ) ≥ δS|ω|f(τρ)−Kδf , so

again we use 2 and the fact that E and Ω are finite to obtain C > 0 such that:

δSmf(τρ) + δSnf(γρ) ≥ δSm+nf(σ
|ω|(τωγρ))− C.

This gives bm + bn ≥ bm+n − C, and once again we use Fekete’s lemma to find that bn/n is

convergent. Note that similar to above we can set m := m(T ) and let ω be a finite word

making the supremum possible in the definition of m(T ), so:

bm
m

≥ −T
m

≥ bm+1

m+ 1

m+ 1

m
.

This finishes the proof. □

Note that m(T ) is the cutoff integer where before that the counting problem is just

counting
∑m(T )

i=1 #Ei
A, while after that not all words with generic length are included in

Nρ(T ). We continue this omitting process till we reach to M(T ) where no finite word of

length bigger is counted anymore. Furthermore, it is obvious that r ≤ s. We know equality

and strict inequality are both possible, examples 3.25, 3.27 correspondingly. Our guess is

the following

Nρ(T )

Nρ(i(T ), T )
= O(T ) ⇐⇒ i(T )

T
→ 1

χµδ
,

where O is just the big O notation and m(T ) ≤ i(T ) ≤M(T ). As stated, we couldn’t show

this by the tools we have. Note that this last assumption cannot be relaxed, for taking

i(T ) =M(T ) + 1 in example 3.25 gives

Nρ(T )

1 +Nρ(i(T ), T )
= Nρ(T ) = O (exp(δT )) ,

i(T )

T
→ 1

χµδ
.

In example 3.25 we have only one choice i(T ) = m(T ) =M(T ) and thenNρ(T )/Nρ(i(T ), T ) =

1. However, computations get much harder for example 3.27. Our computations using an

asymptotic formula for partial sum of binomials [11, p. 492] suggest Nρ(T )/Nρ(i(T ), T ) =

O(T ). In case, such a relation holds in general, it tells us that the main contributor to Nρ(T )
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is asymptotically Nρ(i(T ), T ). This is important because in some cases one needs to deal

with words of specified length rather than any length when working with Nρ(T ).

3.5. Examples

Example 3.24. Recalling Example 2.45 from previous chapter. We should note that this

system is not D-generic. Therefore we can use theorem 3.19. We know that for this system

the transfer operator Ls for real s = x due to Ruelle’s theorem, see [32, p. 136], has only

one eigenvalue of modulus eP (x) and this eigenvalue is eP (x), and since eigenvalue is analytic

function then for any complex s, then eigenvalue is of the form

elog r(A)+s logα,

which is 1 when

s =
log r(A)

− logα
+

2πik

− logα
, k ∈ Z.

Therefore δ = log r(A)/− logα and ηρ − 1/(s− δ) has continuous extension on the segment

{s ∈ C : s = δ + 2πiy, |y| < −1/ logα}

of the critical line. Then theorem 3.19 for y0 = −1/ logα, δ = log r(A)/ − logα and

χµδ = −
∫
logαdµδ = − logα gives us the following estimate:

(21)
h(ρ)

r(A)− 1
≤ lim inf

T

N(T )

exp(δT )
≤ lim sup

T

N(T )

exp(δT )
≤ h(ρ)r(A)

r(A)− 1
,

Example 3.25. Recalling previous example if we consider the full shift for n = 2, i.e. the

case A = 1, and α = 1
3
with maps

ϕ0(t) =
1

3
t, ϕ1(t) =

1

3
t+

2

3
.

The limit set of this system is the Cantor set on unit interval. Therefore

f(ρ) = log |ϕ′
ρ1
(π(σρ))| = log

1

3
,

Ls1(ρ) = exp(sf(0ρ)) + exp(sf(1ρ)) = 2(
1

3s
)

h = 1

r(A) = 2.
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y0 = (log 3)−1

δ = log 2/ log 3

Thus

(22) 1 ≤ lim inf
T

N(T )

exp(δT )
≤ lim sup

T

N(T )

exp(δT )
≤ 2.

This actually can be seen directly by computing N(T ) = 2⌊
T

log 3
⌋+1 − 2, so

(23) 1− ϵ ≤ N(T )

exp(δT )
= 2(2⌊

T
log 3

⌋− T
log 3 − 1

2
T

log 3

) ≤ 2

for any ϵ > 0 and T large enough, as we got in 22.

Remark 3.26. The above example establishes the fact that the lower bound and upper

bound in theorem 3.19 are both sharp.

Example 3.27. Recalling example 2.44, consider the deterministic system with conformal

maps of the unit interval

ϕ0(t) =
1

2
t+

1

20
, ϕ1(t) =

1

3
t+

1

30

on the full shift space E∞ = {0, 1}∞. Clearly, we have

f(ρ) = log |ϕ′
ρ1
(σρ)|,

Snf(ωρ) = n0 log
1

2
+ n1 log

1

3
,

where n0 = n0(ω) = Sn1[0](ωρ) and n1 = n1(ω) = Sn1[1](ωρ). Basically n0 is the number of

0s and n1 is the number of 1s in ω ∈ En. The pressure is calculated to be

P (x) = lim
n

1

n
log

∑
|ω|=n

∥ϕ′
ω∥x = lim

n

1

n
log

∑
|ω|=n

(
1

2n0(ω)

1

3n1(ω)
)x

= lim
n

1

n
log(

1

2x
+

1

3x
)n = log(

1

2x
+

1

3x
)

And a Gibbs state by 4 can be found first on [ω1], then on [ω1ω2] and so on:

mx ([ω]) =
( 1
2x
)n0( 1

3x
)n1

( 1
2x

+ 1
3x
)n

, ω ∈ En.
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Note that, it defines a system with D-generic property. One way to see that the system is

D-generic is by Proposition 2.29. Note that E∗
per is the set of periodic words of any length

which is exactly E∗, since we work with the full shift. Therefore if the set

{S|ω|f(ω) : ω ∈ E∗
per} = {n0 log

1

2
+ n1 log

1

3
: n0 + n1 = n ∈ N},

generates a cyclic additive group with a generator β, then there exist integers k, k′ such that

kβ = log 1/2 and k′β = log 1/3. This yields k/k′ = log 2/ log 3 is rational. The other way to

see that our system has D-generic property, is directly solving the following equation for the

eigenvalue of maximal modulus of transfer operator:

1 = ξ(s) =
1

2s
+

1

3s
, x = δ

| 1
2s

+
1

3s
| = 1 =

1

2δ
+

1

3δ
= | 1

2s
|+ | 1

3s
|,

so by properties of the triangle inequality there exists b ≥ 0 such that

1

2s
= b

1

3s
⇒ b =

3s

2s
=

3δ

2δ
exp(iy log 3− iy log 2) ⇒ b =

3δ

2δ
, y =

2kπ

log(3/2)
.

But,

1 =
1

2s
+

1

3s
= b

1

3s
+

1

3s
= b

1

3δ
exp(−iy log 3) + 1

3δ
exp(−iy log 3)

=
1

2δ
exp(−iy log 3) + 1

3δ
exp(−iy log 3) = exp(−iy log 3) ⇒ y =

2kπ

log 3
,

i.e. y can only be 0. Now we are ready to apply corollary 3.22 to find

Nρ(T )

exp(δT )
→ 1

δχµδ
, T → ∞.
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CHAPTER 4

COUNTING IN RANDOM DYNAMICS

4.1. Counting and Poincaré series

Theorems 3.21 and 3.22 in the previous chapter addressed asymptotic counting prob-

lem in deterministic systems. Later, M. Urbański wondered about an analogous result for

random systems. This chapter is supposed to answer his question in some special cases. We

only consider some special class of random CGDMS, with most attention toward random

CIFS. The notion of random system is what we adopt from Roy and Urbański, see section 2.9

or [34]. For this purpose we need to specify our complete probability space with an ergodic

invertible measure preserving transformation. We consider a countable (finite or infinite) set

of complex numbers z within unit disk that are bounded away from 0:

Z ⊂ {z ∈ C : 0 < ϵ < |z| ≤ 1},

and then we set:

Λ := ZZ.

From now on we represent an element of Λ by λ and of course λi is i
th coordinate of

λ and i ∈ Z. For the σ−Algebra B of measurable sets we just consider the Borel sets, for

the ergodic invertible measure ν we consider a Bernoulli probability measure and for T the

we consider the shift map on Λ. Therefore (Λ,B, ν, T ) is just two sided full shift space with

an ergodic measure. Then we will have

• Λ = {λ = ...λ−(i−1)...λ−2λ−1λ0λ1λ2...λi−1... : λi ∈ Z, i ∈ Z}

• [λi1 = z1, λi2 = z2, ..., λik = zk] = {λ ∈ Λ : λi1 = z1, λi2 = z2, ..., λik = zk}

•
∑

z∈Z ν([λ0 = z]) = 1

• T (...λ−(i−1)...λ−2λ−1λ0λ1λ2...λi−1...) = ...λ−(i−2)...λ−1λ0λ1λ2λ3...λi...

• ν(T−1(B)) = ν(B), B ∈ B.

With this measurable system (Λ,B, ν, T ), we can introduce a random system for any de-

terministic CGDMS. This process can be defined in different ways. We explain one, which
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will be our main focus in this chapter. If {ϕe}e∈E is a countable (finite or infinite) family of

conformal contractions, then we define

ϕλe := λ0ϕe.

Note that we have to be careful with our definition so that we make sure it satisfy

definition 2.38. For instant, we need to know that λ0, chosen non-real, only makes sense

when ϕe is a complex-valued function, or this λ0 should be appropriate enough so that we

make sure the image of ϕλe is stillXi(e). We provide some examples to address these issues. As

well note that this random CGDMS is summable (in the sense of definition 2.39) exactly for

those x that the deterministic system is summable (in the sense of definition 2.15). Therefore

without change we use the same notation Γ for all these x and Γ+ for the right half-plane,

see above the definition 2.20. Next, we want to compute pressure and transfer operator

associated to this random CGDMS above. Referring to below the definition 2.38, we can

obtain our random potential function

f(ρ, λ) = log
∣∣(ϕλρ1)′ (πT (λ)(σρ))∣∣ = log |(ϕρ1)′ (π(σρ))λ0| = f(ρ) + log |λ0|,

where f(ρ) is just the potential obtained from the deterministic system {ϕe}e∈E, see below

the definition 2.37. Therefore we get

Snf(ρ, λ) = f(ρ, λ) + f(σρ, Tλ) + ...+ f(σn−1ρ, T n−1λ)

= f(ρ) + log |λ0|+ f(σρ) + log |λ1|+ f(σ2ρ) + log |λ2|+ ...+ f(σn−1ρ) + log |λn−1|

(24) = Snf(ρ) + log |λ0λ1...λn−1|.

Also from the remark below definition 2.39 we obtain

P λ(x) = P (x) + x log |λ0|,

for almost all λ. Therefore for the expected pressure we will have

(25) EP (x) =
∫
λ

P λ(x)dν = P (x) +

(∑
z∈Z

ν([λ0 = z]) log |z|

)
x
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Note that if there is at least one z ∈ Z with |z| < 1, then the parenthesis above

would be a negative value. Therefore the root of this expected pressure δΛ is not anymore

the same as the root of the deterministic pressure δ. In fact:

δΛ ≤ δ.

As well it is important to note that, this expected pressure is defined on Γ, so

δΛ ∈ Γ.

Furthermore the random transfer operator is given by

Lλx(g)(ρ) :=
∑
e∈E1

ρ

exp(xf(eρ, λ))g(eρ),

for a bounded continuous function g and x ∈ Γ. This leaves

(Lλx)n(1)(ρ) =
∑
ω∈En

ρ

exp(xSnf(ωρ, λ)) =
∑
ω∈En

ρ

exp(xSnf(ωρ))|λ0λ1...λn−1|x

= |λ0λ1...λn−1|xLnx(1)(ρ).

It is important to note that this above expression is not nth iteration of the operator

Lλx, simply because of the random variable λ that is involved. We want to investigate counting

problem in random dynamics. Let ρ ∈ EN
A and T > 0. Now we are ready to introduce the

appropriate counting function:

(26) Nλ
ρ (T ) := #{ω ∈ E∗

ρ : Snf(ωρ, λ) ≥ −T}.

This define a Poincaré series

(27) ηλρ (s) :=

∫ ∞

0

exp(−sT )dNλ
ρ (T ).

Alternatively, we can find another expression of ηλρ in terms of the random transfer operator.

In fact,

ηλρ (s) =
∞∑
n=1

exp(−sTi)
(
Nλ
ρ (Ti)−Nλ

ρ (Ti−1)
)
,
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where T1 < T2 < T3 < ... is the increasing sequence of discontinuities of Nλ
ρ (T ). This sums

to

ηλρ (s) =
∞∑
n=1

∑
ω∈En

ρ

exp(sSnf(ωρ, λ))

=
∞∑
n=1

∑
ω∈En

ρ

exp(sSnf(ωρ, λ)) =
∞∑
n=1

(Lλs )n(1)(ρ) =
∞∑
n=1

|λ0λ1...λn−1|sLns (1)(ρ).

Let δλ represent the critical line of this series. We focus on those λ that the series ηλρ is

convergent on x > δλ > inf Γ.

Remark 4.1. For example if E is finite all λ satisfy this.

This assumption enables us to obtain another expression of this Poincaré series. In

fact by the spectral decomposition from 14 and noting that δλ ∈ Γ we can write

ηλρ (s) =
∞∑
k=1

|λ0λ1...λk−1|sLks(1)(ρ)

=
∞∑
k=1

|λ0λ1...λk−1|s
(
ξk1 (s)P1,s(1) + ξk2 (s)P2,s(1) + ...+ ξkn(s)Pn,s(1) +Dk

s (1)
)

(28) =

(
∞∑
k=1

|λ0λ1...λk−1|sξk1 (s)

)
P1,s(1) + ...+

(
∞∑
k=1

|λ0λ1...λk−1|sξkn(s)

)
Pn,s(1)

+
∞∑
k=1

|λ0λ1...λk−1|sDk
s (1).

It is important to note that analogue of the proposition 3.13 from the previous chap-

ter is not anymore easy to construct for random systems as the transfer operator under

consideration here is a random operator and the conventional notion of eigenvalue does not

exist here for us in this chapter. Therefore to find an asymptotic formula for 26 we may

apply Ikehara-Wiener theorem 2.41 or Garaham-Vaaler theorem 2.42 directly, depending on

the behavior of this ηλρ along the vertical line x = δλ. This requires to understand behavior

of each of parenthesis in 28 above, along x = δλ.
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4.2. Asymptotic Formula for D-generic Potential

In this section we assume the potential function of the deterministic system S =

{ϕe}e∈E is D-generic, see definition 2.28.

Definition 4.2. We say λ ∈ Λ is future periodic, if there exists k ∈ N such that σk(λ0λ1...) =

λ0λ1..., and we say it is eventually future periodic, if for somem ∈ N we have σk(λmλm+1...) =

λmλm+1... .

Theorem 4.3. For each eventually future periodic λ, there exist C,D > 0, such that

C ≤ lim inf
T→∞

Nλ
ρ (T )

eδλT
≤ lim sup

T→∞

Nλ
ρ (T )

eδλT
≤ D.

Proof. We let

λ = ...λmλm+1λm+2...λm+k−1λmλm+1λm+2...λm+k−1...,

ai(s) := |λm...λm+k−1|sξi(s)k,

ci(s) := |λ0...λm−1|s
(
|λm|sξi(s) + |λmλm+1|sξi(s)2 + ...+ |λm...λm+k−1|sξi(s)k

)
.

Then there exists a holomorphic function bi(s) such that the ith parenthesis in 28 above, can

be written as:

bi(s) + ai(s)ci(s) + ai(s)
2ci(s) + ai(s)

3ci(s) + ... = bi(s) + ci(s)
ai(s)

1− ai(s)
.

Now since ai(s) is holomorphic function, there should be yi > 0 such that ai(s) omits 1 on

{s = x + iy : −yi < t < yi, y ̸= 0}, unless ξi(s) = ( k
√
|λm...λm+k−1|)−s, which implies that

i = 1. But in this case ξ1(s) meets 1 infinitely often which cannot happen as we assumed

D-generic property. This means there is y0 > 0 such that for each i, the function ai omits

1 on {s = x + iy : −y0 < t < y0, t ̸= 0}. Therefore the ith parenthesis has continuous

extension at least on this segment and so Graham-Vaaler theorem 2.42 is applicable. This

finishes the proof. □

Remark 4.4. Note that
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• it is easy to see that δλ is the unique root of

P (x) +
x

k
log |λm...λm+k−1| = 0.

• it is clear that for many future periodic λ, we have δλ ̸= δΛ. Therefore Nλ
ρ (T ) ̸∼

exp(δΛT ).

If further the potential of the deterministic system S = {ϕe}e∈E is assumed to be

strongly D-generic (see definition 2.28), we can find an exact formula.

Theorem 4.5. If the deterministic potential f is strongly D-generic, for each eventually

future period λ, there is a constant C such that

lim
T→∞

Nλ
ρ (T )

eδλT
= C.

Proof. Along the proof of previous theorem it is enough to notice that ai(s) can meet 1

only if i = 1 and s is real, which means all along the critical line of convergence (except at

the real point) we have continuous extension and therefore Ikehara-Wiener theorem 2.41 is

applicable in this case. □

4.3. Asymptotic Formula for Random Walk of Bounded Boundary

In this section we assume Z is finite, see the beginning of the this chapter. We

adapt the notion of boundary from the theory of random walk to prove some results for our

counting problem. For each positive integer n, z ∈ Z and λ ∈ Λ we let sn,z(λ) denote the

number of times that z appears in λ0...λn−1. It is obvious that for each λ ∈ Λ and n ∈ N we

have ∑
z∈Z

sn,z(λ) = n.

Definition 4.6. We say λ ∈ Λ is of bounded boundary if there are numbers p, q, lz such

that for all n ∈ N:

nlz + p ≤ sn,z(λ) ≤ nlz + q.
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Note that in the above definition it is clear that lz cannot be negative. This definition

basically can be perceived as a condition to prevent fluctuation in a random walk. We remind

that f is the potential function for the deterministic system S = {ϕe}e∈E. We set

c :=
∑
z∈Z

lz log |z|, d :=
∑
z∈Z

log |z|.

Theorem 4.7. If g = f + c inherits strong regularity from f , for λ of bounded boundary,

there exist constants C,D > 0 such that

C ≤ lim inf
T→∞

Nλ
ρ (T )

eδλT
≤ lim sup

T→∞

Nλ
ρ (T )

eδλT
≤ D.

Proof. By the bounded boundary definition we can find the following inequalities for the

random ergodic sum:

Snf(ωρ) + nc+ q
∑
z

log |z| ≤ Snf(ωρ, λ) = Snf(ωρ) + log |λ0...λn−1|

≤ Snf(ωρ) + nc+ p
∑
z

log |z|

Next we consider a new function defined by

g := f + c,

and its counting function as N ′
ρ(T ). Then using the above inequalities we get

N ′
ρ(T + qd) ≤ Nλ

ρ (T ) ≤ N ′
ρ(T + pd).

This yields

exp(δλqd)
N ′
ρ(T + qd)

exp(δλ(T + qd))
≤

Nλ
ρ (T )

exp(δλT )
≤

N ′
ρ(T + pd)

exp(δλ(T + pd))
exp(δλpd).

Now it is enough T → ∞ and use theorem 3.19. □

Remark 4.8. First note that when E has finite number of alphabets then g inherits strong

regularity from f , then the first assumption in this theorem is redundant. Furthermore, it

is clear that every eventually periodic λ is of bounded boundary. Therefore this theorem
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implies theorem 4.3. However, it doesn’t imply theorem 4.5. Finally we can find that δλ is

the unique root of

P (x) + cx = 0.

Note that if f is just D-generic then the bounds obtained above may not necessarily be

improved. However, by imposing strongly D-generic property on f we get a better estimate

as

lim
T→∞

N ′
ρ(T )

exp(δλT )
,

exists. For this it is enough for us to notice

Lsg = escLsf

P (xg) = P (xf) + cx,

therefore in case Lsg admits eP (x)+cx as eigenvalue, then Ls must admit eP (x)−ciy as eigenvalue,

but this cannot happen as Ls does not admit any eigenvalue of modulus eP (x).

4.4. Constructing System With non-Exponential Growth for Counting

Recalling example 2.45 from section 2.11, we can construct random IFS as follows.

We let Λ = {z, w}Z and consider a Bernoulli measure with ν([λ0 = z]) = p, ν([λ0 = w]) = q,

where 0 < z < w < 1 and p+ q = 1. Therefore we can express our deterministic system as

ϕi(t) = αt+ αi, i = 0, 1

and our random system as

ϕλi (t) := λ0(αt+ αi), i = 0, 1, λ0 = z, w.

Therefore from section 4.1, we can find the random potential:

f(ρ, λ) = log |(ϕλρ1)
′(πT (λ)(σρ))| = log(αλ0),

the random pressure:

P λ(x) = P (x) + x log λ0 = log r(A) + x log(αλ0),
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and the expected pressure:

EP (x) =
∫
Λ

P λ(x)dλ = log r(A) + x logα + x(p log z + q logw).

Note that we consider a fixed Bernoulli measure on EN
A for our random measure, see below

the definition 2.39. Therefore the root of this expected pressure is

δΛ = − log r(A)

logα + p log z + q logw
.

We mention below the inequality 21 from the example 2.45 again

(29) C ≤ lim inf
T

N(T )

exp(δT )
≤ lim sup

T

N(T )

exp(δT )
≤ D,

for some C,D > 0 and we remind that δ = log r(A)/− logα.

Theorem 4.9. Given the random system above, for almost all λ we have

lim inf
T

Nλ
ρ (T )

exp(δΛT )
= 0, lim sup

T

Nλ
ρ (T )

exp(δΛT )
= ∞.

Proof. Recalling sn,z(λ) from section 4.3, for an integer m one can find a sequence ni such

that sni,z(λ) ≤ pni +m < sni+1,z(λ). Therefore we can give the following estimate:

(30) ni logα + (pni +m) log z + (qni −m+ 1) logw ≤ Sni
f(ωρ, λ)

≤ ni logα + (pni +m− 1) log z + (qni −m) logw.

Furthermore note that since f(ρ, λ) and so Sn(ρ, λ) are constant negative functions in ρ,

then we find that for Ti := −Sni
f(ωρ, λ):

Nλ
ρ (Ti) = #{ω ∈ E∗

ρ : S|ω|f(ωρ, λ) ≥ −Ti} = #{ω ∈ E∗
ρ : |ω| ≤ ni}

= #{ω ∈ E∗
ρ : |ω| logα ≥ ni logα} = #{ω ∈ E∗

ρ : S|ω|f(ωρ) ≥ ni logα}

= Nρ(−ni logα).

Therefore the inequality 29 above for any small enough ϵ, there exists a large N such that

for i ≥ N :

(31) (C − ϵ)r(A)ni ≤ Nλ
ρ (Ti) ≤ (D + ϵ)r(A)ni .
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Additionally, 30 gives:

exp (−δΛ (ni logα + (pni +m− 1) log z + (qni −m) logw))

≤ exp(δΛTi) = exp(−δΛSni
f(ωρ, λ))

≤ exp (−δΛ (ni logα + (pni +m) log z + (qni −m+ 1) logw)) ,

which can be rewritten as

r(A)ni exp
(
δΛ(m log

w

z
+ log z)

)
≤ exp(δΛTi) ≤ r(A)ni exp

(
δΛ(m log

w

z
− logw)

)
.

This along with 31 yields:

(C − ϵ) exp
(
−δΛ(m log

w

z
− logw)

)
≤

Nλ
ρ (Ti)

exp(δΛTi)
≤ exp

(
−δΛ(m log

w

z
+ log z)

)
(D − ϵ).

By passing to a subsequence, we find:

(C − ϵ)wδΛ(
z

w
)δΛm ≤ lim

i

Nλ
ρ (Ti)

exp(δΛTi)
≤ D − ϵ

zδΛ
(
z

w
)δΛm.

If m→ ∞:

lim inf
T

Nλ
ρ (T )

exp(δΛT )
= 0,

and if m→ −∞:

lim sup
T

Nλ
ρ (T )

exp(δΛT )
= ∞.

□

Corollary 4.10. Given the random system above and any C,D, a > 0, the set of all λ ∈ Λ

satisfying

C exp(aT ) ≤ Nλ
ρ (T ) ≤ D exp(aT ) as T → ∞,

has ν measure 0.

75



4.5. Examples

Example 4.11. In section 4.4, if we let for instance

α =
1

3
, z =

1

5
, w =

1

7
.

Then it is not hard to see that we can actually get a stronger result than that of the theorem

4.9: {
C : lim

n→∞

Nλ
ρ (Tn)

exp(δΛTn)
= C

}
= [0,∞].

Example 4.12. Recalling example 3.27 from section 3.5,

ϕ0(t) =
1

2
t+ β0,

ϕ1(t) =
1

3
t+ β1.

Note that the potential for this system is D-generic, but it is not strongly D-generic. We let

z =
1

5
, w =

1

7
,

and we consider Λ = {z, w}Z. Then the random maps would be

ϕλ0(x) = λ0(
1

2
x+ β0),

ϕλ1(x) = λ0(
1

3
x+ β1).

Then the Poincaré series for future periodic λ can be simplified as (see proof of the theorem

4.3):

ηλρ (s) =

(
(
1

2s
+

1

3s
)λs0 + (

1

2s
+

1

3s
)2λs0λ

s
1 + ...+ (

1

2s
+

1

3s
)mλs0...λ

s
m−1

)
θ(s)−1, x > x0

where

θ(s) = 1− (
1

2s
+

1

3s
)mλs0...λ

s
m−1,

and x0 is the unique real root of θ(s). Using the triangle inequality we can see x0 is actually

the only root of θ(s) along x = x0, see example 3.27 for the similar argument. Note

θ(s) = 1− (
1

2s
+

1

3s
)mλs0...λ

s
m−1 = 1−

(
(

m
√
λ0...λm−1

2
)s + (

m
√
λ0...λm−1

3
)s

)m

,
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so by taking derivative

θ′(s) = −m

(
log

m
√
λ0...λm−1

2
(

m
√
λ0...λm−1

2
)s + log

m
√
λ0...λm−1

3
(

m
√
λ0...λm−1

3
)s

)

×

(
(

m
√
λ0...λm−1

2
)s + (

m
√
λ0...λm−1

3
)s

)m−1

If θ has a root of order 2 or higher, then θ′ as well vanishes at that root. Looking for such s

we should have

(32)

(
(

m
√
λ0...λm−1

2
)s + (

m
√
λ0...λm−1

3
)s

)m

= 1,

log
m
√
λ0...λm−1

2
(

m
√
λ0...λm−1

2
)s + log

m
√
λ0...λm−1

3
(

m
√
λ0...λm−1

3
)s = 0.

The latter one leaves

(33) (
2

3
)s = −

log m
√
λ0...λm−1 − log 2

log m
√
λ0...λm−1 − log 3

.

Let β represent the right hand side of the above equality. Note that since β is real, then the

left hand side must be real either. This gives:

y =
jπ

log(2/3)
, j ∈ Z

Substituting 33 into 32, yields:(
(

m
√
λ0...λm−1

2
)s + β(

m
√
λ0...λm−1

2
)s

)m

= 1

=⇒ (
m
√
λ0...λm−1

2
)ms =

1

(1 + β)m
.

Again the right hand of this is real, and so

y = lπ(m log
m
√
λ0...λm−1

2
)−1, l ∈ Z.

We found two expressions for y. This is possible only if log(2
3
)/ log(

m
√
λ0...λm−1

2
) is rational,

which cannot happen. This shows all the roots of θ are of multiplicity one and so all the poles
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of the Poincaré series are simple. Therefore the Ikehara-Wiener theorem 2.41 is applicable.

There exists C > 0,
Nλ
ρ (T )

exp(δΛT )
→ C.

It is clear that we can find a similar behavior for eventually future periodic λ. Fur-

thermore, as we said the above system is not strongly D-generic, however the counting had

similar result to that of strongly D-generic systems, see theorem 4.5.

Example 4.13. If we consider a Schottky group that generates the Apollonian gasket as

our deterministic system, we know that with some modifications of the theorem 3.22 one

can obtain an exponential counting growth formula for the number of circles of radius at

least 1/T in the packing. However, investigating the counting problem for random Schottky

group is not an easy question. But, it is good to notice that for Z as a subset of the unit

circle, the answer would be exactly the same as that of the deterministic Schottky group due

to the fact that the random ergodic sum is identical to the deterministic ergodic sum, see

4.1. This is actually expected, since each z ∈ Z may change each limit point, but it leaves

the circles of inversions intact. In fact, these random factors play the role of rotations.
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[33] Mark Pollicott and Mariusz Urbański, Asymptotic counting in conformal dynamical

systems, Mem. Amer. Math. Soc. 271 (2021), no. 1327, v+139. MR 4288186
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