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The syndrome source coding for lossless data compression with side information 

based on fixed-length linear block codes is the main emphasis of this work. We 

demonstrate that the source entropy rate can be achieved for syndrome source coding 

with side information when the sources are correlated. Next, we examine employing LDPC 

codes to apply the channel and syndrome concepts in order to satisfy the Slepian Wolf 

limit. Our findings indicate that irregular codes perform significantly better when the 

compression ratio is larger. Additionally, we looked at how well different applications 

performed when running on two different mobile networks. We have tested those 

applications which are used in our day-to-day life. Our main focus is to make wireless 

communication much easier. We know that nowadays data is increasing which led to 

increase in the transfer of data. There are a lot of errors while doing so like channel error, 

bit error rate, jitter, etc. To overcome such kind of problems compression and 

decompression should be done effectively without any complexity to achieve a high 

performance ratio. 
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CHAPTER 1

INTRODUCTION

1.1. Motivation

In this study, it is demonstrated how the Slepian Wolf theorem for correlated binary

sources can be achieved by low-density parity check (LDPC) codes. We concentrate on

the asymmetric case of side information compression. The strategy is built on using the

syndrome notion and interpreting the relationship as a channel. The processes for encoding

and decoding, also known as decompression and compression are discussed in depth. The

simulated performance results are quite near to the Slepian Wolf limit and outperform the

majority of the current turbo-code performances reported in the literature. Furthermore

in the paper we discussed the applications of LDPC code. Taking in account different

applications in real time communication system, I have analyzed the performance of two

networks which was possible because of low complexity encoders and decoders.

1.2. Compression of Correlated Binary Sources

Input alphabet has the structure of a field (for instance, the binary alphabet gives

the field F2). The idea of linear codes with block lengths of n and dimension k that are

specified as sub-spaces of a particular sequence of bits. Typically, a messaging is described

as a trio consisting of an entry alphabet, an exit alphanumeric characters, and a probability

density p for each pair of inlet and outlet items (i, o). The transition probability, in terms

of meaning, is the possibility that the symbol o will be received provided that the symbol

i was communicated over the channel. Shannon demonstrated the existence of a quantity,

referred to as the channel capacity, so that effective communication is achievable for rate

arbitrarily near to the capacity and is not feasible for rates over the capacity for a given

communication channel. As a result, it cannot assure that there will be transmission plans

that can handle the capacity. So Shannon introduced the concept of codes, It is obvious that

reliable communication across a channel is impossible if only single elements are transferred

through it if even one input element can be processed in at least two conceivable ways
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(although with different consequences). Even if several unrelated parts are sent, this is the

case (in a manner to be made precise). Therefore, it is crucial to communicate input variables

that are connected in order to accomplish trustworthy communication. As a result, the idea

of a code which is a (limited) sequence of vectors over the source alphabet—is introduced.

Assuming that each vector has the same length, we refer to this length as the code block

length. Each vector can be specified with k bits if there are K = 2k vectors. If the vectors

are n length, then k bits have been transferred through the channel in n times of use. In that

case, we say that the code uses k/n bits per channel. Let’s say we submit a codeword and get

a vector of the output alphabet in return. How do we determine the sent vector? There is no

universal method of knowing which codeword had been sent with 100 percent certainty if the

channel permits for errors. The likelihood that this codeword has been sent considering the

reported vector is maximized, so we can identify the codeword that was transmitted most

likely. List all K codewords and their conditional probabilities one by one to demonstrate

that we can indeed find such a codeword. Once you have identified the vector or vectors

that produce the greatest probability, return one of them. The maximum likelihood decoder

is the name of this decoder. Although it may take a long time and occasionally make

mistakes (specifically whenever the code is huge), it is the utmost we can manage. Shannon

demonstrated that there are codes with rates arbitrarily near to capacity, for which the

greatest likelihood decoder’s risk of error decreases as the code’s block length increases to

infinity. (In reality, Shannon demonstrated that the maximum likelihood decoder’s decoding

error decreases exponentially with block length, but we won’t get into that here.) From

the perspective of communication, codes that reach capacity are very good, but Shannon’s

theories are non-constructive and don’t offer any guidance on where to look for such codes.

More critically, it is unclear how to efficiently encode and decode them, even if an oracle

provided us with code sequences that can operate at a given pace. This note’s main focus

is on the implementation of codes with effective encoding and decoding algorithms that

come close to the channel’s capacity. Let us illustrate this with Binary Symmetric Channel.

The input and output alphabets for the BSC are both F2. With probability 1 − p, a bit is
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either transferred correctly, or with probability p, it is reversed. At first glance, this channel

could appear to be easier than the BEC, but it is actually far more intricate. It becomes

complicated since it is unclear which bits are switched. (In the BEC’s instance, it is obvious

which bits are deleted.) This channel has a capacity of 1 + p log2(p) + (1 − p) log2(1 − p).

Finding the codeword with the minimum Hamming distance from the received word for

a given vector of length n over F2 is identical to maximum probability decoding for this

channel. Researchers soon discovered that random codes are capable of obtaining capacity

after Shannon’s discovery. In fact, Shannon’s work itself makes this implicit.

However, reaching capacity is only one aspect of the story. It is necessary to have

quick encoding and decoding algorithms if these codes are to be utilized for communication.

Just 2 random vectors of length n across the input alphabet make up random codes with a

rate of R bpc. To be able to encode information into these vectors, we either need to provide

some description of them or compile them all into a “codebook” that specifies which Rn-bit

sequence corresponds to which codeword. This requires a codebook of size 2 random vectors,

which is too enormous for any code of a manageable size (for example, a code of length 1000

and rate 0.5, which produces 2500 vectors).

One can perform better, at least in terms of encoding, if the the vector space Fn2 was

independently developed by Elias and Golay. Since they are linear and have a rate of k/n,

These codes can be defined in terms of a basis made up of k vectors of length n. By mapping

a bit vector (x1, ..., xk) to the vector created by generating linear combinations of the basis

vectors provided by the coefficients x1, ..., xk, a codebook can now be implicitly stated in a

natural way. To demonstrate that there are linear code sequences with rates arbitrarily near

to capacity and for which the error probability of the maximum likelihood decoder reaches

zero (exponentially rapidly) as the block length grows to infinity, Shannon’s arguments can

be utilized (nearly verbatim). Additionally, it may be demonstrated that random linear codes

reach capacity. Linear codes can be encoded in polynomial time as opposed to exponential

time, unlike their non-linear cousins[8]. The decoding issue appears to be much more difficult.

The maximum likelihood problem on the BSC has indeed been demonstrated to be NP-hard
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for various kinds of linear codes, as was previously indicated (e.g., general linear codes over

Fq for any q). Therefore, polynomial time techniques for maximum likelihood decoding

of generalized linear codes are unlikely to exist. Try to replicate the encoding problem’s

success story and focus on sub-classes of generic linear codes as one strategy to get past this

unfavorable consequence. We haven’t been able to identify any linear code sub-classes that

have polynomial-time maximum likelihood decoding and reach capacity though. As shown

in Fig: 1.1 we are trying to compress two sources X and Y which are correlated and they

do not communicate their outputs with each other. For example in the below case there

are two users trying to play a video game using two different mobile phones there outputs

are measured together at one common computer screen. For the compression of such kind

of sources we use the concept proved by Slepian and Wolf. They proved that two sources

which are correlated can have same joint entropy as two joint sources. In information theory

the aim is to have close to zero probability at decoder. By using error-correcting codes we

can fulfill this, LDPC is one such kind of error correcting code which we are going to use for

compression and decompression. LDPC codes use sparse matrix for determining syndrome.

Sparse matrix means number of ones are less compared to number of zeroes. This parity

check matrix is used for further syndrome concept and its graphical representation is in form

of tanner graph which is shown in Fig: 1.2. By connecting the left variable nodes with right

check nodes messages are sent. This reduces the complexity of decoder as well [6].

Figure 1.1. Compression of binary sources with common decoder
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Figure 1.2. Tanner graph

1.2.1. Introduction to LDPC Codes

In his PhD thesis, Robert Gallager devised the LDPC codes. They were constructed,

essentially disregarded for the next 30 years, and then continuously recreated. One of the

most fascinating parts of their history is that they have returned after two independent

cultures reinvented codes that are similar to Gallager’s LDPC codes almost at the same

time but for very different reasons. Bipartite sparse graphs are the source of the linear codes

known as LDPCs. Assume that G is a graph with n message nodes on the left and r right

nodes (called check nodes). The graph yields the following linear code, which has blocks of

length n and at least nr dimensions: The n coordinates of the codewords are connected to

the n message nodes. The codewords are all those vectors (c1, ..., cn) where the sum of the

surrounding locations among the message nodes is zero for all check nodes. By examining the

adjacency matrix of the graph, it can be seen that the graph representation is comparable

to a matrix representation as shown in Fig: 1.3, let H be a binary r n-matrix in which entry

(i, j) is 1 if and only if the ith check node is linked to the jth message node in the graph.

The collection of vectors c = (c1, ..., cn) such that Hc = 0 is the LDPC code provided by
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the graph. For the code, the matrix H is referred to as a parity check matrix as shown in

Fig: 1.3. In contrast, any binary r n-matrix generates a bipartite graph with n message

and r check nodes. This graph is related with the code that is specified as the null space

of H. Therefore, a bipartite network can be represented by any linear code as a code (note

that this graph is not uniquely defined by the code). Not all binary linear codes, however,

may be represented by a sparse bipartite network. In that case, the code i referred to as an

LDPC (low-density parity-check) code. The sparsity of the graph representation is a crucial

element in LDPC codes’ ability to have efficient algorithms. [8].

Figure 1.3. Matrix for tanner graph

A branch of probability theory called information theory discusses mistake probabil-

ity. When the chance of an error at the receiver approaches 0, an error-free transmission is

feasible. Ideas, limits, and regulations governing the transit of communications across com-

munications networks are computed numerically. Entropy, which is connected to the idea

of information in the information theory and is represented by the letter H, is the average

amount of information in any given source of information. The main challenge in a commu-

nication system is error-free message transmission [10]. The majority of faults are caused

by noise or channels. Techniques for error identification and repair are employed to address

this problem. Encoding is the process of changing a message into binary, or 1 or 0, form.

Extraction of the original message is known as decoding. One such error control coding

method used for error detection and correlation is linear block codes. For each information

word, information data is divided into a block of length K pieces. Then, each information
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word is encoded into a codeword, which is a block of bits with a length of n. Every coset of

data that is sent to the decoder has the syndrome ascribed to it. The decoder receives the

syndrome former and any side information that is readily available to it without any loss [6].

Figure 1.4. Overview of the model

1.3. Thesis Organization

This thesis is organized as follows.Chapter 1 explains how the compression an decom-

pression is done using LDPC codes.

Chapter 2 explains in detail the correlation of channel usage along with syndrome

concept of two correlated sources out of which one is available losslessly at the decoder.

Chapter 3 describes the algorithm of the LDPC codes and how they can be used in

the new generation communications system.

Chapter 4 depicts the results of a mobile phone using two networks like their through-

puts, RSRP, Time on Network, Coverage etc.

In Chapter 5, the conclusion and the future scope are addressed.
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CHAPTER 2

PROBLEM SETUP AND CORRELATION OF CHANNEL USAGE ALONG WITH

SYNDROME CONCEPT

2.1. Compression of Two Sources With Side Information Provided at the Decoder

Figure 2.1. System for compression with side information.

We take into account the system in Fig: 2.1 under the following presumptions. Since

X and Y they are memoryless discrete random variables, knowing one of their past values

does not reveal anything about their present value. They are related at the same instant [3].

The joint decoder can access Y losslessly, and we make an effort to compress X as well as

we can. The theoretical limit for lossless compression of X is derived from the Slepian-Wolf

theorem R1 ≥ H(X|Y ), since the rate utilized for is its entropy. R2 = H(Y ). Imposing the

above three assumptions to the system of Fig: 2.1, we end up with a compression with side

information problem. There is an equivalent way one can view the system of Fig: 2.1 in

order to allow the use of channel codes. The relation between X and Y can be represented

with a channel; X will be the input to the channel and Y its distorted output. Then the

compressed version of X, i.e. Z1 , can be used to make X look like a codeword of a channel.
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All of the common X sequences are divided up into disjoint channel codes with the

same characteristics, all of which perform equally well across the correlation channel. Z1 is

the codebook’s index to which X belongs. Although this method served as the foundation

for proving the Slepian Wolf theorem, it has not yet been made explicit in the material

that is now available for the construction of effective code. The disjoint channel codes can

be created using syndromes if the additional presumption that all values of X and Y are

equiprobable is added. With the binary example, when the presumptions are changed as

follows, this is relatively simple to accomplish. X and Y are memoryless binary random

variables that are equiprobable.

The same instant X and Y are correlated with Pr[X ̸= Y ] = P < 0.5 . This will

be called binary symmetric channel correlation from now on. The joint decoder has lossless

access to Y , therefore we attempt to compress X as effectively as possible. Since the rate

used for Y is its entropy R2 = H(Y ) = 1 bit, the theoretical limit for lossless compression of

X is from the Slepian Wolf Theorem R1 ≥ H(X|Y ) = H(p) = −p log2 p− (1−p) log2(1−p).

These three presumptions will serve as the foundation for the remainder of the article.

There are 2n − k unique syndromes, each of which indexes a set of 2k binary words

of length n using a linear (n, k) binary block code. The original code is what we call the

linear block code (all-zeros syndrome set). All of the 2n−k sets are disjoint because any two

binary words in the same set (corresponding to the same diagnosis) add up to a codeword of

the original code, whereas any two binary words in separate sets (corresponding to different

syndromes) do not add up to a codeword of the original code.

The Hamming distance characteristics of the original code are also preserved in each

set, i.e., all codes operate equally well over the binary symmetric correlation channel. As a

result, this scheme’s compression ratio is n/(n − k). We will now go over how low-density

parity-check (LDPC) codes can be used to compress and decompress with side information

because they have been shown to be very effective linear binary block codes.
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2.2. Encoding and Decoding With LDPC Codes

The bipartite graph and parity-check matrix H of low-density parity-check (LDPC)

codes serve as the finest descriptions of these codes. A binary LDPC code’s (n − k) × n

parity-check matrix is similar to that of a regular binary block code, except it is sparse,

meaning it contains few ones [6]. The degree distribution polynomials tilde λ(x) and ρ(x)

which represent the proportion of H’s columns and rows with various Hamming weights,

respectively, describe how these ones are distributed in (number of ones).

For instance tilde λ(x) = 0.25 × 2 + 0.75 × 3 means that 25% of all the columns in

H have Hamming weight equal to three and the rest 75% have hamming weight four. When

both tilde λ(x) and ρ(x) have only a single term, the LDPC code is regular. Otherwise it is

irregular. In general, a regular LDPC code with the same codeword length and code rate is

expected to be less powerful than an optimized irregular one. The coding rate is precisely

determined given both tilde λ(x) and ρ(x), however multipleH’s can be generated. Typically,

one is chosen at random and occasionally it satisfies specific restrictions that are easier to

relate to the bipartite graph [3]. The parity-check matrix H is equivalently represented by

the bipartite graph of an LDPC code. Each row is represented by a check or right node, and

each column by a variable or left node. Wherever there is a one in H, an edge connects the

relevant row and column. All variable nodes (circles in Fig: 1.2 are placed in one column, all

check nodes (squares in Fig: 1.2 in a parallel column. The tilde is used in numbers tilde λ(x)

and ρ(x) because they refer to the node profile, or the percentage of nodes with different

degrees, respectively. The edge profiles λ(x) and ρ(x), which show how many edges in the

bipartite network are related to different degree nodes, are more commonly utilized in the

LDPC literature. The message-passing algorithm can be applied since the bipartite graph

is used in the decoding process.

2.2.1. Encoding

For our system, the encoding process is rather easy to understand. The degree dis-

tribution λ(x) and ρ(x), are initially determined when fixing the codeword length n. Next,

a random realization of H is generated. An arbitrary binary input sequence can be com-
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pressed, or encoded, by forming a vector out of n successive bits, multiplying them by H,

and identifying the matching syndrome.

Figure 2.2. Working of encoders.

As shown in Fig: 1.2, this can be conceptualized as the binary addition of all the left

node values related to the same right node in the bipartite graph. Fig: 1.2’s left side displays
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6 sequential binary output values of source X from 2.1, whereas Fig: 1.2 right side displays

the equivalent 4 output values Z1 of the first encoder from Fig: 2.1. Since H is a sparse

matrix, the difficulty of this encoding process is linear with the length of the codeword.

For instance, the code in Fig: 1.2 achieves 3:2 compressions while maintaining the distance

attributes of the original LDPC code for all inputs.

2.2.2. Decoding

From its (n − k) long syndrome, the decoder must extract an n-length series of

successive X’s and the accompanying n-length sequence of successive Y ’s. It would be

equivalent to transmitting X across a binary symmetric channel with crossover probability

p given the Y ’s alone. It appears that these n create successive X’s an LDPC-like codeword

with the syndrome. For instance, the n X’s represent an LDPC codeword if the syndrome

is an all-zero vector, and they can be decoded using the message-passing method and the

bipartite graph. It is pretty easy to think of the change required in the case of a nonzero

syndrome. All of the nonzero points in the syndrome vector are noted in the bipartite

graph, i.e., the appropriate check nodes, before the decoding procedure for each binary word

of length n begins. The message-passing decoding process is once more applied, but whenever

we must operate over a marked check node (using the“tanh rule”), an additional change of

sign is made at each output value. The ratio of probabilities must be inverted in the log-

domain in order to satisfy the inverse parity, which requires an additional change in sign at

the check node’s output. LDPC codes can be decoded in two different methods. The decoder

performs all parity checks in accordance with the parity equations in the first method. Any

bit whose value appears in more unsatisfied parity equations than a predetermined number

has its value reversed. Parity equations are recalculated using the new values after the new

values have been obtained. When parity-checks are small, this type of decoding technique is

feasible. The LDPC graph is subjected to probabilistic algorithms in the second way. The

graph is a sparse bipartite graph with two sets of nodes, one set of which stands for the

parity equations and the other set for the code symbols. If the code symbol is given in the

equation, a line connects the node in the first set to the second. Passing messages along the
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graph’s line allows for decoding. The parity values of the messages are determined when

they are passed from message nodes to check nodes and back again. Despite being difficult,

this decoding produces better results than the previous.

Figure 2.3. Working of decoder.

2.2.3. Regular and Irregular Codes

We simulated left standard LDPC codes and compared the outcomes to those of turbo-

codes. The length of the codeword is, which is the same as the length of the interleaver. After

40 cycles of the message passing mechanism, more than 2000 blocks were delivered without

a single error. The LDPC code distribution includes and, where the variation affects the

code rate. The graph shows that even very basic LDPC codes perform slightly better than

turbo codes. Simulated with the standard (3, 6) code was this irregular code. The codeword

(frame) size was the same for both the regular and irregular codes [3]. After the decoding

method has completed 100 iterations, the bit error rate (BER) for was calculated. Fig:

2.5 also displays the best turbo code performance known for this code rate as well as the

Slepian Wolf theoretical limit of 0.5 bits. The rate 1/2 LDPC code presented in that has

been tailored for the binary symmetric channel is the second irregular code, denoted by the

letter “bsc” in Fig: 2.5 (BSC). As seen in Fig: 2.5, the threshold for this code is bits. Only

good irregular codes could marginally outperform regular codes for compression ratios of 4:1
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and 8:1, i.e., only good irregular codes could perform better than regular codes for higher

compression. Our findings for length 10 irregular LDPC codes are shown in Fig: 2.4. It is

shown that (BSC) irregular codes perform much more better compared to regular codes.

Figure 2.4. Table 1 [3].

Figure 2.5. Simulation Result

2.3. Algorithm of LDPC Codes

Network communications are the foundation of the modern world’s expanding infor-

mation transmission. Few methods are created for network-based data transmission, despite

the fact that several cutting-edge technologies have been established to actualize comfortable
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communication. Even the most modern information technologies still use point-to-point pro-

tocols, which is unusual given that the “Internet,” a worldwide computer network, already

exists [4].

Thus, it is now that we should concentrate on multi terminal communication meth-

ods. Source coding, often known as data compression, is a method for reducing the size

of messages and information representation. Shannon demonstrated that if the code rate

R = M/N satisfies R = H2(S) in the limit N , M , one can use a different representation

for an information source represented by a distribution P (S) of an N-dimensional Boolean

(binary) vector S in which the message length N is reduced to M(N) without any distortion.

Regrettably, Shannon’s theorem is not constructive and does not outline specific guidelines

for creating the best codes. The fact that a realistic code developed by Lempel and Ziv (LZ)

in 1973 reaches the Shannon’s optimal compression limit for point-to-point communication

is therefore unexpected. However, it should be noted that although the importance of net-

work communications (NC) is growing quickly due to recent developments in the Internet,

generalizing LZ codes to sophisticated data compression suitable for NC is challenging. This

is primarily due to all the real-world codes that reach Shannon’s limit [5]. While compres-

sion should often be performed independently on each terminal, date require comprehensive

information of all source vectors entering the communication network. Therefore, one of the

most crucial issues in information theory is the search for more effective compression codes

that are appropriate for NC.

The idea is to use current advances in error-correcting code (ECC) research to achieve

this. More particularly, future research on the effectiveness and limitations of a linear com-

pression method inspired by Gallager’s ECC, which is actively being investigated in the

communities of information theory and physics, is required [10].

The random binning argument used in the demonstration of the Slepian Wolf theorem

is asymptotic and non-constructive, just like in Shannon’s channel coding theorem. We can

initially try to develop codes that reach the blue corner point A in the Slepian Wolf rate

zone of Fig: 2.6 with R1 + R2 = H(X|Y ) + H(Y ) = H(X, Y )., as shown in Fig: 2.6 Rate
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Figure 2.6. Active region for distributed source coding [10].

region’s second corner point B can be approached by switching the roles of X and Y , and all

points between these two corner points can be realized. time sharing—for instance, the mid-

point C will arise from using each of the two corner point-specific codes 50% of the time.

We only take into account code designs for the corner points in this article, even though

constructive approaches have been suggested to directly approach the midpoint C in Fig:

2.6 and improvement has recently been made in practical code designs that can approach

any point between A and B due to the space limitation. The former approaches are known

as symmetric, whereas the latter ones are known as asymmetric. We then compress X into

H(X|Y ) bits per sample depending on the entire understanding of Y at both the encoder

and the decoder. What if, however, a user needs to decode X and Y individually in order

to recreate both of them? The rate R = H(X) + H(Y ), which is higher than H(X, Y )

when X and Y are correlated, is one straightforward method. Slepian and Wolf shown in

a study that R = H(X, Y ) suffices even for independent encoding of correlated sources.

According to the Slepian-Wolf theory, the feasible region of DSC for discrete sources X and

Y is provided by R1 + R2 + H(X, Y ), as illustrated in Fig: 2.6 Random binning is the

foundation of the Slepian Wolf theorem’s proof. A fundamental idea in DSC is binning,

which is the division of the space of all potential outcomes of a random source into disjoint

subsets or bins. Using the conditional statistics of (or the correlation model between) X
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and Y but not the specific Y at the encoder, we hope to code X at a rate that approaches

H(X|Y ) in asymmetric coding. In his 1974 article, Wyner proposed the use of linear channel

codes as a useful strategy for Slepian Wolf coding after first realizing the tight relationship

between DSC and channel coding. The fundamental concept was to divide the space of

all potential source outcomes into disjoint bins (sets) that are the cosets of some “good”

linear channel code for the particular correlation model. With a linear (n, k) binary block

code and binary symmetric sources, there exist two different syndromes that each index a

bin (set) of two binary words with a length of n and two Hamming distances. Since each

bin is a coset code of the linear binary block code, the original linear binary block code’s

Hamming distance characteristics apply to each bin[10]. Code is kept in each container. A

series of n input bits is compressed by mapping it into its corresponding (nk) syndrome bits,

yielding a n : (nk) compression ratio. This method, which has been known for some time

as “Wyner’s scheme,” was only recently applied to realistic Slepian-Wolf code designs based

on traditional channel codes like block and trellis codes. If X and Y ’s association can be

modeled, By using a binary channel, Wyner’s syndrome can be applied to all binary linear

codes, and modern near-capacity channel codes like turbo and LDPC can be used to go close

to the Slepian Wolf limit. “Turbo and LDPC Codes” gives a brief overview of turbo and

LDPC codes. The Slepian Wolf decoder does, however, have a slight chance of overall loss as

a result of channel coding. Wyner’s technique depends on the correlation model in practice

for the linear channel code rate and code design. In order to employ binary (n, k) Hamming

codes to precisely accomplish the Slepian Wolf limits, examples like those in “Slepian Wolf

Coding Examples” are specifically created with correlation models meeting H(X) = n bits

and H(X|Y ) = n−k bits. The binary symmetric model, where (x1...xn, y1...yn) is a sequence

of i.i.d. illustrations of a pair of correlated binary Bernoulli(0.5) random variables X and

Y , and the correlation between X and Y is modeled by a “virtual” binary symmetric case

(BSC) with crossover probability p, is a more useful correlation model than those of “Slepian

Wolf Coding Examples. H(X|Y ) = H(p) = p in this channel −p log2 p− (1− p) log2(1− p).

Although the Slepian Wolf coding problem appears to be straightforward, it is not. This
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development could be used to create Slepian Wolf limit approaching codes as the BSC is

a well-studied channel model in channel coding and has a variety of capacity-approaching

code designs available as a result of the close relationship between Slepian Wolf coding

and channel coding. However, unlike in “Slepian Wolf Coding Examples,” the earliest such

practical designs did not make the more direct connection with channel coding through the

syndromes and the coset codes. Instead, they took concepts from channel coding, particularly

turbo codes. The Wyner’s system was modified to employ a turbo scheme with structured

component codes and parity bits delivered in place of syndrome bits. Liveris et al. used

turbo/LDPC codes to develop a code that did adhere to Wyner’s scheme for this problem,

and they were able to achieve performance that was superior to and very close to the Slepian

Wolf limit H(p). Fig: 2.5 displays some simulation results. In Fig: 2.5, the vertical axis

represents the likelihood of mistake for the decoded X, and the horizontal axis represents

the amount of correlation, where lower H(p) indicates higher correlation. The Slepian Wolf

limit is demonstrated to be 0.5b at virtually negligible error probability because all of the

coding techniques in Fig: 2.5 accomplish 2:1 compression. Wyner-Ziv Coding: The Binary

Symmetric Case and the Quadratic Gaussian Case, as well as the section “The Binary

Symmetric Case,” describe the performance limit of more general Wyner-Ziv coding. Fig:

2.5 also provides the code-word length for each Slepian Wolf code. It is clear that for a

given Slepian Wolf code, the likelihood of mistake decreases with increasing correlation. The

lower the correlation required for the code to attain very low error probability, the more

robust the Slepian Wolf code is. In the binary symmetric correlation arrangement, stronger

channel codes, such as the same family of codes in Fig: 2.5 with greater codeword length,

provide better Slepian Wolf codes. We can obtain a good Slepian Wolf code through the

syndromes and the accompanying coset codes if the relationship between the source output

X and the side information Y can be described with a ”virtual” correlation channel. Any

correlation model can be applied to the last sentence. Since Slepian Wolf constraints can be

overcome by utilizing near-capacity channel codes like turbo and LDPC codes, the Slepian

Wolf coding problem, which at first look seems to be a source coding problem, is actually a
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channel coding problem.

2.3.1. Wyner-Ziv Coding

As one example of Slepian-Wolf coding, we concentrated on lossless source coding

of discrete sources with side information at the decoder in the preceding section. We fre-

quently deal with continuous inputs in network applications, which leads to the issue of rate

distortion with side information at the decoder. How many bits are required to encode X

under the restriction that the average distortion between X and the coded version X is

Ed(X,X)D, assuming the side information Y is known at the decoder but not at the en-

coder? This issue is an example of DSC with Y available uncoded as side information at the

decoder, initially raised by Wyner and Ziv. It expands on the design of by coding discrete

X according to a fidelity standard rather than a lossless one. Wyner and Ziv provided the

rate-distortion function for this issue for both discrete and continuous alphabet situations

and general distortion metrics [11]. In “Wyner-Ziv Coding: The Binary Symmetric Case,”

we include. Wyner-Ziv rate distortion functions for the quadratic Gaussian and binary sym-

metric cases When the side information Y is present at both the encoder and the decoder,

Wyner-Ziv coding typically experiences rate loss relative to lossy coding of X (see the bi-

nary symmetric case in “Wyner-Ziv Coding: The Binary Symmetric Case and the Quadratic

Gaussian Case”). One exception is the quadratic Gaussian situation in “Wyner-Ziv Coding:

The Binary Symmetric Case,” when X and Y are jointly Gaussian with MSE measure. Since

Wyner-Ziv coding recently expanded the no rate loss requirement to X = Y + Z, where Z

is independently Gaussian but X and Y could follow more broad distributions, there is no

rate loss in this situation, which is of particular interest in practice (e.g., IOT networks).
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CHAPTER 3

APPLICATION OF DISTRIBUTED SOURCE CODE (DSC)

3.1. 4G and 5G Parameters

We primarily covered lossless (Slepian Wolf) and lossy source coding with side infor-

mation entirely at the decoder in the talks above because the majority of the effort in DSC to

date has focused on these two problems. In order to accomplish this, the nodes transmitting

correlated information must cooperate in groups of two or three, especially in communica-

tion networks, so that one node provides the side information and another can reduce its

information to the Slepian Wolf or Wyner-Ziv limit. This tactic has been applied. Since the

decoding loss associated with using lower complexity algorithms may be reduced, this is not

a significant issue. In recent years, several low complexity channel decoding methods have

been investigated [1]. The correlation model is the biggest obstacle to the practical deploy-

ment of DSC. In practice, it is typically difficult to come up with a joint probability mass or

density function in networks, especially if there is little room for training or little knowledge

about the current network topology, despite significant effort being put into DSC designs for

various correlation models, and in some cases even application. The correlation statistics

in some applications, such video surveillance networks, may primarily depend on the nodes

locations. The time-varying correlation could be followed using adaptive or universal DSC

if the sensor network includes a training mode option and/or can track the changing net-

work topology. The most effective method for some networks appears to be such universal

DSC that can perform well for a variety of correlation statistics, but it is still an open and

extremely difficult DSC problem.

DSC can be used to address measurement noise, that is another significant problem

in digital communication. If measurement noise is ignored when using the Wyner-Ziv coding

method described in the preceding section, there will be a discrepancy between the sources’

real correlation and the statistics utilized for noiseless correlation during decoding, which

will result in poorer performance. The robust code architecture is one approach to fixing
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this problem. However, the correlation model can include the noise statistics if they are

known, even roughly. The primary market drivers for 5G and beyond are cellular networks

and the Internet of Things. Cellular networks and the Internet of Things have a wide range

of applications, including e-Health services, autonomous driving, virtual reality, augmented

reality, and remote sensing.

With the Internet of Things in mind, 5G is designed to function at faster speeds with

almost zero delay, enabling a continuous flow of information. In comparison to the current

4G, mobile IoT-based devices offer a low-cost, low-power option. Comparing it to current

wide-area technologies, this 5G enabled mobile network will provide secure connectivity,

authentication, and network scalability for capacity expansion. Similar to a 4G system,

5G channel codes for user data should also support hybrid automatic repeat requests and

variable code rates and lengths for both control information and user data. Several coding

schemes based on the aforementioned specifications are taken into consideration during the

5G standardization process, and LDPC coding has been used for user data focusing on

reduced latency in 5G cellular communications [9]. In 5G, parallelism in encoding and

decoding is crucial to achieving high data throughput. Parallelism in encoding and decoding

is naturally maintained in systematic organized LDPC codes, and this parallelism can be

used to construct high data rate encoders and decoders. Other crucial 5G channel code

characteristics include adaptive rate compatibility, which allows users to choose any number

of transmitted codeword bits from the parental code output, and variable code length. These

functionalities are demonstrated in the 5G LDPC code design. A recent area of network

coding that is also of considerable interest is the coding system proposed for high capacity

5G networks. The trade-off between performance (information processing delay, throughput,

bit error rates, etc.) and computational complexity and some necessary overhead is the key

consideration in the design of the physical layer for the Internet of Things (e.g., frame

overhead, feedback). The fundamental issue with the current cellular system architecture

up to LTE 4G is the high data rate downlink for data communication with big packet sizes.

The creation of communication physical layer, which can better leverage the wireless channel

21



and can fix the faults that occurred during transmission using error correction techniques

like LDPC, is the result of the demand for over growing data rates with limited spectrum

resources. The fluctuation of data rate is one of the core components of 5G and IoT. We might

only have a little data flow or a very large one. The majority of error correcting codes exhibit

performance loss for short code lengths and perform better for larger code lengths. The code-

word length and parity check matrix design have a significant impact on the LDPC decoding

algorithm’s ability to repair errors. Typically, longer codewords and properly constructed

parity-check matrices result in greater LDPC decoder performance. In order to fully satisfy

the aforementioned needs, we presented medium and small size regular parity check matrices,

taking into account the requirements and restrictions of the future communication systems

(5G and beyond, IoTs). The suggested small- and medium-size matrices for LDPC codes

outperform existing ones in terms of performance, making them more appropriate for these

kinds of applications. To implement LDPC codes in telecommunications let us assume two

users playing a video game like call of duty in the almost same cluster and the performance

of how well the game ran in that specific region in terms of throughput, latency, and user

experience is being analyzed by final equipment connected to both the devices in which the

game is being played. This is the scenario of testing the network in different regions of United

States, by doing the testing we can analyze how to improve the latest generation network(5G)

is all the areas. For doing so, we have taken into account certain applications to examine the

connectivity of a network like Zoom, WhatsApp, Facebook, YouTube, UDP , Google Maps,

and Google Chrome. To do the above testing scenario let us consider two kinds of Networks

that is 4G and 5G, as 4G is available in 90% of areas it can give satisfactory output, to

establish 5G in all regions we should first check where can 5G technology work properly. In

case if we are unable to connect to 5G the device will automatically transfer to 4G, this kind

of test scenario will be monitored by observing the transition of networks, in following the

above mentioned method there are numerous things to be taken into consideration

UE measures SINR (Signal to Interference plus Noise) based on Resource Blocks (RB).

Each RB’s SINR is calculated by the UE, converted to CQI, and reported to the eNodeB,
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which uses it to choose the best MCS for user data transmission in that RB. The MCS to be

utilized for an RB, or the number of bits per modulation symbol to be conveyed, determines

the throughput that can be accomplished for that specific RB as well as the number of

RBs that eNodeB will allot to the user. SINR value is defined as the MCS. The signal-to-

interference-to-noise ratio, or SINR, is the ratio of the signal’s power to the average of its

background noise and other cells’ interference. Reference Signal Received Power (RSRP) is

a metric for measuring cell-specific signal strength that is used as an input for choices about

cell resection and handover. The average power (in Watts) of the Resource Elements (REs)

that transmit cell-specific Reference Signals (RSs) inside the analyzed bandwidth is referred

to as RSRP for a certain cell. The major use of RSRP measurement, which is often stated in

dBm, is to rate various candidate cells according to the strength of their signals. In general,

reference signals sent on the first antenna port are used to determine RSRP; however, if

the user equipment (UE) can detect their transmission, reference signals sent on the second

port may also be used in addition to the RSs on the first port. A signal quality metric

that is cell-specific is the Reference Signal Received Quality (RSRQ) measurement. Similar

to the RSRP measurement, the major purpose of this metric is to rank various candidate

cells according on the quality of their signals. In situations (such as those where the RSRP

measurements are insufficient to make valid cell-reselection/handover judgments), this metric

might be used as a factor in decision-making. N is the number of Resource Blocks (RBs) in

the LTE carrier’s Received Signal Strength Indicator (RSSI) measuring bandwidth, and is

used to characterize it.

RSRQ = (N.RSRP)/(LTE carrier RSSI).

Received Signal Strength Indicator (RSSI) is the linear average of the total received

power observed by the UE from all sources, including co-channel non-serving and serving

cells, adjacent channel interference, and thermal noise, within the measurement bandwidth

over N RBs for only OFDM symbols carrying reference symbols. To calculate the LTE

RSRQ measurement stated above, RSSI is used as an input. As can be seen from the

previous Equation, RSRQ takes the combined effect of signal strength and interference into
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account because RSSI is included. RSRQ and RSRP are mathematically related, as may

also be seen.

However, SINR is not defined in 3GPP specifications; instead, UE vendors provide

RSRP, RSRQ, and RSSI metrics.

3.1.1. Study of Baseline Devices

In a Case, a mobility scenario is taken into consideration when the handset is travelling

at a walking pace from a location with acceptable signal quality to the cell boundary where

there is no adjacent cell to make HO to (i.e., the death spot). The measurement results

were captured when the phone was playing a game, downloading a file, or making a zoom

video call. The user experience for a baseline device will be better on the considered LTE

network, with an average throughput of 4.88. The actual bandwidth needed to transfer

files of a specified size at a certain time and under specific network conditions is known as

throughput. The total speed of data transferred to all terminals in a network is known as

the system throughput.

3.1.2. Performance Parameters

The wireless communication link is defined in terms of certain performance measures,

such as Quality of Service (QoS). The following are some of the QoS criteria:

Bandwidth: A spectrum of frequencies is referred to. The difference between the

highest and lowest frequencies.Bandwidth also increases as the difference between two fre-

quencies grows. The volume of data flowing through a network at any particular time is

referred to as throughput. Throughput is the actual link speed as observed in real-time

circumstances, whereas bandwidth indicates the total link speed that is available. Uplink

Throughput: This indicates that no redundant components have been added to the physical

layer. Application data is transferred in the downlink via the PDSCH [7].

Because lower frequencies are absorbed by environmental bands and cannot pass

through the satellite, up-link performance is lower than downlink throughput. As a result,

the frequencies used for uplink from mobile to base station are lower than those used for
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downlink from base station to mobile. The frequency at which the first earth station interacts

with the satellite is known as the uplink frequency.

This signal is changed to a different frequency by the satellite transponder and trans-

mitted to the second earth station using the downlink frequency.

A single radio wave can encode six bits of data using the higher-order modulation

method known as 64 QAM. This method changes the radio wave’s amplitude and phase into

one of 64 distinct and observable states.

The amount of radio resources that can be used to convey data is determined by

bandwidth. Throughput depends on Bandwidth, which is also dependent on SINR. Highest

SINR for the below graphs is 20dbm. 256 QAM modulation scheme is being used which

transfers 8 bits [2].

Throughput depends on several factors like modulation scheme, more bits transfer

because of higher modulation technique. Eventually will get more bytes to be transmitted

for specific second.It is also calculated by the amount of bytes transferred per second. That

concludes to if Bandwidth is higher more PRB which increases the Resource Block, more

frequency gets modulated which in return leads to more bits to be transmitted.

For stationary testing it depends on RSRP. If RSRP is good the performance is better.

SINR will be high, noise gets less in terms of magnitude. Ratio of intelligence signal by noise

signal is how we calculate SINR. For example if a room is full of people and if everyone

speaks together noise can’t be clear(SINR is low). Single signal coming makes it clear. So if

intelligence signal can be decoded easily than less Block Error Rate. BLER less than 10%

SINR should be more which translates to modulation scheme.

3.2. Working of Two Networks in One Mobile Phone

Consider the above Fig: 3.1 in which there are two cases Non-StandAlone and Stan-

dAlone. For NSA the device will have two networks both of which operate from one network.

The network provided to the device is 4G and 5G. If the signal is stronger than 5G it will

automatically latch to another network. These kinds of devices are less expensive as they

will use the frame structure as 4G. When it comes to SA devices they are much stronger and
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give stronger output compared to NSA. To overcome the above problem let’s bring a new

mobile phone which can operate two networks on the same device having different operators.

It is a technology that allows a capable device to use two sims where one is an active sim

and the other one is an inactive sim.

Figure 3.1. Non stand alone and stand alone devices

One network can have both 4G and 5G while the other network provides only a 5G

network. The basic concept is if you want to latch to another network you will first need

to sync with it. Once you latch to LTE it will broadcast the threshold. If the threshold is

stronger than LTE you will latch to 5G of the first network p (sim) only. If e sim is stronger

than p sim it will shift to another network of p sim.
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CHAPTER 4

SIMULATION RESULTS OF TWO NETWORKS

4.1. System Working

P Sim(MNO)-Mobile Network Operator E Sim(MSO)-Mobile Service Operator. If it

inside the coverage of MSO it will perform data calls, once outside the coverage it will latch

to MNO, Uses MNO for voice/sms/mms. For different applications KPI’s were measured in

order to analyze the performance of the device. As mentioned about throughput it plays an

important for signal to be transmitted from transmitter to receiever. Primary sim provides

both data and calls whereas E sim only provides data used by MSO for data offload.

4.2. Results

Fig: 4.1 and 4.2 displays the typical throughput numbers. Throughput values have

been recorded in various test scenarios while remaining on the same network or switching to

a new one.

Figure 4.1. Physical downlink throughput

4.2.1. Transition Time and Transition Count

Calculate for how much seconds it is staying on the actual network before transition

to another network. This is done by approximately counting if is less than three seconds
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of network usage it won’t be calculated as transition. Let’s consider one network as Mobile

Service Network and the other one as Mobile Network operator. Wherever it can get access to

Mobile Service Network device will start using (it can shift to MNO automatically). Normal

calls and messages are still taken place on MNO. MSO is only used for internet related

applications. This kind of network transition can be caused when MSO signal changes below

or above threshold in cell edge areas. When users move from indoors to outdoors vice versa.

If there is any normal text which doesn’t uses data it will latch to p sim. When MSO network

is at maximum capacity and inactive users’ needs to be pushed out. For every application

individually transition time and its counts were calculated i.e. for how many times it is

latching into another network and for how long it is staying on it. Considering the time

for which the device stays on one network by taking into account different test scenarios as

shown in Fig: 4.3

Figure 4.2. Physical uplink throughput

UDP DL and Youtube (more data demanding apps) has higher average TP on MSO

vs MNO and hence the % data offload to MSO compared with Time on Network as shown

in Fig: 4.4

Data Offload: On a WiFi network rather than the 3G or 4G networks, providers

redirect traffic. This occurs swiftly and flawlessly, frequently without people even realizing.
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Figure 4.3. Transition time

Figure 4.4. Physical downlink throughput

It will either switch immediately or, in some situations, always request permission to connect.

Specifically for data offloading because using WiFi requires no user action. Since the switch

and authentication are embedded into the service itself, they happen automatically. MVNOs

are free to keep up their hotspots and WiFi networks so that subscribers can access them

without doing anything. If the move is seamless, offloading happens soon. It is adaptable
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to increase capacity and bandwidth. The time on MSO network varied between 5%− 25%.

Data offload in generally range expect a few cases where DL TP is as shown in Fig: 4.5 and

4.6.

Figure 4.5. Time on network

Figure 4.6. DL data usage

Its impact on the user experience is if there is a subscription change from one sim to

other involves a break before making switch. The user may experience an interruption(jitter)

when data switches from one network to another if there is an on-going data session. If user

is on MSO and an incoming call takes place, there is a small probability that the incoming

calls are missed. If there is an on-going data session and pure SMS/MMS originated or
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termination, there will be data packet flow interruption. So here we have analyzed several

trial and error to implement this new generation technology in a better way.

Figure 4.7. Physical uplink throughput

Figure 4.8. Sample counts

Samples and Throughput are calculated on the same graph: Samples mean how

much time it stays on that network. They want to validate whether the throughput value

had many samples on it. Throughput should be analyzed for every sample. 1000’s of samples

per second were calculated, some of them don’t report the throughput values but we want to

make sure that we provide average of multiple points and not only one value. Throughput
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which is above 0.1 is only calculated. More samples less throughput which will result into

less average. If we send low throughput and more PRB bits/sec will be less as shown in Fig:

4.7 and 4.8. In the same way it is demonstrated for Downlink Throughput in Fig: 4.9 and

4.10. Let us take an example of a water tank if we find 5 litre of water per 1 second the

average speed will be 5litre but for 1 litre of water it takes 3000 seconds speed will be 1l .

Speed here is indicated as average throughput and time as total number of samples.

Figure 4.9. Sample counts

Figure 4.10. Physical downlink throughput

No. of samples is calculated by how much time it is staying on that network.
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4.3. Benefits and Challenges

4.3.1. Benefits

The advantages of 4G networks contribute to a wider variety of services and user-

cases. However, from the user and service provider perspectives, the commercial models

and eco-systems that are necessary to drive adoption have not yet been built. Increased

uplink and downlink throughput, as well as reduced latency and network capabilities, are

provided by the technology. Everyone agrees that the amount of mobile data traffic will

increase dramatically over the next few years. Despite the utilization of 4G technology (LTE

or WiMAX) in relation to 3G, the bulk of the fundamental throughput and transport bottle-

necks will surely be caused by the technology itself. With 4G technologies, spectrum is used

at least twice as efficiently and effectively real-time applications are better supported, and

maximum speeds are increased. Despite the fact that there are still network and capacity

issues to be fully resolved in order to maximize the benefits of the upgrade, these issues

include edge or gateway management and signaling management [7]. It makes it possible

for new mobile applications to improve on already-existing ones (Streaming Music). The

increased 4G bandwidth and latency will benefit a number of 4G services, including digital

storage and smart home monitoring. Other services like MMS, digital image frames, and

numerous applications won’t experience any noticeable improvements when using a 4G net-

work. Therefore, it is vital to pay particular attention to the services and applications that

4G developments are likely to improve. We can see that applications like video streaming,

MMOG/gaming, and knowledge applications like interactive learning benefit the most from

the adoption of 4G technology. Expansion of Addressable Devices: Network potentials and

chipset scalability may increase connectivity to a variety of cutting-edge devices. Through

the use of smart phones and other more specialized devices, handset technologies continue to

advance along a wide spectrum of features and value-added services. The Terminal operating

model has traditionally supported a carrier-controlled service experience. Heavy data users

have been drawn to commercial operating systems like Windows Mobile which has led to

network congestion by losing some control. Additionally, the expanding open eco-systems,
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made possible by 4G, present operators with a difficult opportunity because third parties

create services, applications, and personalization tools to satisfy customer wants. Because

of open standards, devices are becoming much more customizable, and specialized devices

like netbooks, eReaders, tablets, etc. are entering the market. Vendors, in our opinion, need

to consider a micro-segmentation-based device roadmap to cater to the needs of smaller user

segments; additionally, new channels of distribution are necessary to enable the adoption of

converged mobile devices and 4G apps. Managing user expectations and experiences with

new features and services is made possible by a differentiated customer experience. We take

into account the user’s experience in gaining a thorough understanding of how these ser-

vices are entirely facilitated and how they integrate into the fabric of our daily lives, the

necessity or capability to deploy expertise or configured gadgets to support enhancement,

and finally, how to make money and when to share the income from the service delivery.

It has been difficult to comprehend what a 4G user goes through, and it is unclear how

much this will change as more and different 4G services become available. We employ mon-

etization strategies. Additionally, we think that customers expect that other services and

applications will be combined into a “solution” that enhances their quality of life. Therefore,

resolving the most likely User-Cases for 4G services will be essential for the successful adop-

tion of 4G services. Being very conscious of the fact that user expectations for price points

are shifting, with growing demands for “a little for a little,” which challenges the current

costs. The bandwidth requirements of various 4G use cases indicate that, if current pricing

systems continue, the aforementioned issue would only worsen. One option that operators

are currently considering is shifting toward tiered pricing based on traditional factors like

time, speed, and service quality. The bandwidth-on-demand service model, together with

the associated pricing strategy to charge premium prices for these burst requirements, is

an extra capable service type. This could be useful for organizing high bandwidth events

like video streaming or LIVE TV. Given what we know at this moment, pricing structures

for 4G wireless technologies will need to be expanded in order to favor lower upfront costs

(subscriptions, one time purchases, ad-based, fermium and per-use).
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4.3.2. Challenges

Security and privacy: To enable the safest method for data transfer, security measures

must be implemented in the creation of 4G Wireless Networks. “The 4G core delivers

mobility, security, and QoS by leveraging the existing approaches while still working on a few

mobility and handover challenges,” it states explicitly. Therefore, the company must create a

set of efficient and effective technologies that will support the strictest 4G security procedures

in order to protect data being carried across the network from hackers and other security

breaches. Due to the nature of the 4G wireless network, security incursions are more likely to

occur, thus various degrees of security, including greater requirements for validation, will be

crucial for protecting data and information transmitted across the network. Therefore, it is

crucial for service providers to create a method for the 4G Wireless Networks that is efficient

and effective, will improve quality, bestow effective security measures, and will ensure that

all users are given access to a wide range of options for quickly downloading music, video,

and picture files. Integrating IP-based and non-IP-based devices is the main challenge for 4G

wireless networks. We are aware that devices without IP addresses are frequently utilized for

VoIP services. Contrarily, devices that rely on IP addresses are typically utilized to deliver

data.
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CHAPTER 5

FUTURE SCOPE AND CONCLUSION

We have provided a helpful method for source coding in the presence of side in-

formation at the decoder in this study. This strategy, which is based on concepts from

algebraic channel coding, produces encouraging outcomes. These systems are based on the

fundamental idea that the source is quantized first using a source codebook created for the

marginal probability density function of the source. Cosets of a channel code created for

the fake channel between the side information and the quantized source are divided up into

the source codebook. The encoder simply delivers the index of the coset containing the

quantized codeword; it does not send the index of the quantized codeword. By decoding the

side information in the designated coset of the channel code, the decoder is able to recover

the quantized codeword. It quantifies and analyzes the intricate interplay between the es-

timation component, the channel coding, and the source coding. We began by considering

a construction in which both the source code and the channel code lack memory before

moving on to the scenario in which both do. The design of such codes is also covered, and

simulations are used to assess performance. We have observed that irregular codes perform

much better and can reach the Slepian Wolf limit compared to regular and turbo codes. We

studied in brief about encoders and decoders in detail and how the complexity of decoders

is reduced using LDPC codes. This study used a mobile device application to measure the

Quality of Service characteristics based on time to the cellular network. The service card

package provided by is the method utilized to gauge the end-to-end parameters of the three

providers. Similar to PING, this approach only evaluates overall network speed without tak-

ing into account the specifics of a certain application’s content. Additionally, measurements

have been made by testing in other places around the USA. Test scenarios designed to show

how mobile ping and other capabilities can be used while also giving a basic overview of

performance for each instance in each region. Our main aim is to establish strong coverage

in all areas for better user experience. In order to test any potential correlations between
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LTE measures like SINR, RSRP, RSSI, and RSRQ as well as to assess the effects of SNR on

throughput, an examination of some practical measurement findings taken from a live LTE

network is presented in this study.

The handover events that took place within LTE during the test time are also in-

vestigated. The average relationship between RSRP and SINR has been observed, and the

smaller the gap between RSRP and RSSI, the better the RSRQ; if the SINR is better for

a measurement slot, higher throughput is attained. Additionally, it has been observed that

the handover event occurs to the adjacent cell when the RSRP and/or RSRQ of a serving

cell fall below that of the neighbour cell.

The acquisition and creative use of spectrum will be more crucial than ever as the de-

mands placed on mobile communication networks increase. Better utilization of the spectrum

now accessible to mobile networks, access to extra bandwidth at comparable frequencies, and

manipulation of higher frequencies in the centimeter-wave and millimeter-wave bands are all

necessary to meet upcoming needs. High tenacity and bi-directional shaping of big band-

width. All networks can be connected together using technology more dynamic and efficient.

Utilizing technology to streamline subscriber administrative tools. Most likely, will offer a

sizable amount of transmitting data supporting over 60,000 connections. Simple to handle for

earlier generations. A solid technology base to provide a wide range of service areas (includ-

ing private network).It is possible to pay for global connectivity that is constant, unbroken,

and reliable. In the near future, 5G will provide greater service quality, reduced latency,

and increased bandwidth, all of which will enhance user experiences in both the consumer

and corporate sectors, ranging from telemedicine use cases to cloud gaming. The Internet of

Things will change thanks to 5G networks (IoT). However, it will take some time until the

majority of the earth is covered by technology. WiFi will manage the local wireless connec-

tion for the majority of users, while 5G will handle wide-area wireless connections. However,

there may eventually come a point where only one of them will be necessary. It might seem

absurd to consider that WiFi might disappear, especially given how commonplace it is now.

Greater capacity, more users, and faster speed on the improved spectrum.
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