The recipes of optical radiative properties manipulation are their materials chemistry, nano/microscale geometry, and transport properties of quasiparticle carriers such as photons, phonons, and electrons. The important technical element in optical properties is the dielectric function of materials, which is different for metals, dielectrics, 2D materials, and phase transition materials. Graphene has a unique electrical conductivity profile which have metallic nature depending on the frequency, but also has a negative thermal expansion coefficient that makes graphene unique. Hence, graphene creates wrinkles when deposited on the substrate as temperature decreases to room temperature from high substrate temperature. We also study phase transition material, particularly vanadium dioxide that transitions from insulating to metallic phase based on temperature change; we investigate its role in far-field thermal radiation. Other transition metal oxides are studied as a thermally and electrically tunable plasmonic gratings: Transition metal oxides include vanadium dioxide, tungsten trioxide, and molybdenum trioxide. The work demonstrates plasmonic phenomena and absorptance/emittance tunability. First, surface plasmon polariton along the graphene (SPPG) when wrinkles are formed above the plasmonic grating is studied. The resonance peak shift is modeled for both magnetic polariton (MP) with inductor-capacitor (LC) circuit and SPPG with Fabry-Perot phase change model. Second, the self-adaptive radiative coating is proposed using vanadium dioxide for high turn-down in emissivity spectrum. The Si high contrast grating (HCG) is introduced on the vanadium dioxide coating to prevent solar absorption by vanadium dioxide layer which have high extinction coefficient in visible to near-infrared region. Lastly, the switching in resonances, transitioning from MP resonance at metallic state to transmission mode obtained from concept of zero contrast grating (ZCG) is described. Overall, the work is aimed to tailor the optical radiative properties of gratings and multilayers used for thermal regulating applications.