In this study, four different NiTi-based shape memory alloys (SMAs) compositions were processed, shape-set, and characterized to evaluate their effectiveness as SMA actuation component for satellite antennas. Three of the compositions were commercially available NiTi wires (90°C Flexinol® actuator NiTi wire and Confluent ADB SE508 NiTi wire), NiTi SM495 plates (ATI Specialty Alloys and Components) and the other composition was in house lab-produced NiTiCu plate. Different shape-setting techniques were performed such as pin and plate, fixtures and dies, and finally a sandwich fixture. The two most promising outcomes were the SE NiTi 508 wire and the NiTiCu plate. A SE …
continued below
The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.
In this study, four different NiTi-based shape memory alloys (SMAs) compositions were processed, shape-set, and characterized to evaluate their effectiveness as SMA actuation component for satellite antennas. Three of the compositions were commercially available NiTi wires (90°C Flexinol® actuator NiTi wire and Confluent ADB SE508 NiTi wire), NiTi SM495 plates (ATI Specialty Alloys and Components) and the other composition was in house lab-produced NiTiCu plate. Different shape-setting techniques were performed such as pin and plate, fixtures and dies, and finally a sandwich fixture. The two most promising outcomes were the SE NiTi 508 wire and the NiTiCu plate. A SE NiTi 508 wire was first heat-treated at 550 °C for 3 hours and then it was shape-set at 450 °C for 30 min using a Cu tube which was previously deformed to the desired deployment curvature and fixed on a steel rig. The wire was kept inside the Cu tube during the shape-setting process to obtain the desired curvature. After shape-setting, the wire was thermally cycled multiple times. The results showed that the SE NiTi 508 wire was able to retain its deployment shape successfully after each thermal cycle. Furthermore, a NiTiCu plate was sandwiched between two steel sheets which were shaped into the desired full-deployment shape beforehand. The NiTiCu plate was shape-set at 450 °C for 30 min and then thermally cycled multiple times to test its effectiveness. The NiTiCu plate retained its full-deployment shape successfully after every thermal cycle.
This thesis is part of the following collection of related materials.
UNT Theses and Dissertations
Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.