FUSIBLE ENGOBE FORMULATED FOR LARGE CERAMIC SCULPTURE

PROBLEM IN LIEU OF THESIS

Presented to the graduate Council of the North Texas State University in Partial Fulfillment of the Requirements

For the Degree of

MASTER OF FINE ARTS

Ву

Anthony M. Holman, B.F.A.

Denton, Texas

August, 1986

TABLE OF CONTENTS

LIST	OF AF	BBREVIATIONS TO RESULTS CHARTSii
Chapt	ter	
	I.	INTRODUCTION1
	II.	DISCRIPTION OF PROCESS4
	III.	COLOR TESTS
	IV.	CONCLUSION12
FORM	JLATIC	ON CHARTS
	Tests	S A
RESUI	LTS CH	IARTS
	Tests Tests Tests Color	S C @ 2000 f
GLOS	SARY	3 ^L
BIBL:	IOGRAI	РНҮ
TILE	S	
	Engol Engol Color	pe Base Tests A Series
	Oxi	dation Firing42

ABBREVIATIONS IN RESULTS CHARTS

SURFACES:

G	Gloss Surface
S	
SM	Satin-Matt Surface
SW	Satin-Waxy Surface
W	Waxy Surface
SG	Satin-Gloss Surface
MD	Matt-Dry Surface
DP	Dry Pitted Surface
P	

SURFACE DEFECTS:

B	Blistered
C	Crawled
Po	
P	
F	

CHAPTER I

INTRODUCTION

I was introduced to ceramics during the last years of my undergraduate studies. My previous concentration had been in two dimensional art forms. Therefore, the idea of creating three dimensional art work was fairly new. Starting first with the functional side of ceramics, I soon discovered an interest in large sculpture and vessel forms. The technical challenges of constructing large forms intrigued me. It was at this stage that I concentrated my efforts on large ceramic art forms. Later only kiln size and studio space limited mo and surface decoration became a stronger consideration.

Scale and imagery evolved into a personal way of dealing with clay.

My surface methodology changed drastically when I switched from conventional pottery to sculpture, especially large sculptural forms. My surfaces were a result of constant underglaze formulation, pit firing with reductive agents, and further exploration into slip glazes and single firing glazes. The majority of my surfaces were either black or of textured earth-toned engobes. In most cases I felt my forms worked stronger than the surface treatment. While in graduate school, I concentrated equally on the content and structure of my work thus defining imagery and scale. I resolved

surface quality and color by the non-traditional methods of painting and drawing on clay. I saw myself as a sculptor, not a functional vessel maker where glazing is necessary.

The possibility of a more practical method of color decoration gave me incentive to further explore ceramic chemistry. My large ceramic sculpture required a coloration that offered durability, problem free application, and a suitable range of color. These qualities were best achieved through the fusible engobe. Previously, my application of color was primarily restricted to spray painting and oil stick drawing on a highly reduced and highly vitrified terra cotta surface. My sculptures were basically outdoor pieces which required a warranty of permanence. The larger the sculpture, the more the need for a colorant that fused to the body surface.

Traditionally, glazing has been the primary source for coloration in sealing ceramic surfaces. This was best illustrated mainly in the vessel making process. Sources for ceramic coloration extended beyond glazes to the following: underglazes, terra sigillata, Egyptain paste, single firing glazes, slip glazes, and vitreous slips & engobes. While reviewing these alternatives I explored the necessary questions needed to formulate a fusible engobe from a traditional engobe base. My research and past testing pointed to the engobe as a logical area for further calculation. In the past, engobes had produced the closest desirable results. Through examining certain properties of the basic

engobes, I formulated an engobe to my specifications.

The problem I proposed and solved was to produce a fusible engobe that met the necessary criteria and produced a surface and coloration necessary for my large ceramic forms.

These criteria were as follows:

- 1) Produced results through single firing method.
- 2) Fired to range of cone 04 2 (1940°fahrenheit 2130° fahrenheit).
- 3) Adhered to greenware.
- 4) Showed a resistance to scratching, rubbing-off, chipping, and be durable.
- 5) Simulated wet ware surface effect.

CHAPTER II

DISCRIPTION OF PROCESS

The first of my testing started with three given formulas. These formulas were labeled tests A, B and C. I wanted to set up the least amount of variables so I tested through the following methods:

- Five per cent iron oxide was added to insure that oxides did not alter the results. Oxides have properties that can react as fluxing agents and therefore produce a glassed surface.
- 2) After mixing, the mix (engobe) was sifted through a twenty mesh screen to insure consistency.
- 3) The engobes were allowed to settle overnight to insure accurate application.

Charts were designed for easy formulation and evaluation. The charts were labeled: Formulation Chart, Results Chart, Color Test Formulation Chart, and Color Test Results Chart.

The Formulation Chart consisted of a breakdown of chemical classification. The basic breakdown of the engobe was extended from clay, flux, and colorant to include filler, opacifier, hardener, and deflocculant. These additional categories enabled me to test and locate specific problems for reformulation. The engobe was further subdivided into the following: clay, flux, filler, opacifier, hardener, and

deflocculant plus five per cent colorant.

The Results Chart evaluated the engobe bases on three separate temperature levels: 2035°fahrenheit, 2090°fahrenheit, and 2130°fahrenheit. This chart evaluated the catagories for settling, greenware adherence, greenware hardness, fired ware hardness, fired ware adherence, and surface quality.

The first of the tests were fired in a burn-out kiln, used for jewelry, and fired to 2000° fahrenheit. The reason for using this test kiln was because of its' rapid firing cycle which enabled me to have immediate results. The first tests were conclusive enough but soon the test kiln proved inadequate. The tests at 2000° fahrenheit, labeled B-4 - B-7, resulted in uneven temperatures. All testing was continued in a regular electric kiln. In this kiln the previous tests and the remaining tests were fired at 2090° fahrenheit. The results of the retesting were consistent with the results of the previous tests at 2000° fahrenheit. To confirm results a temperature range test was conducted at 2035° fahrenheit, 2090° fahrenheit, and 2130° fahrenheit.

The first tests were tests A, A-1, B, B-1, C, and C-1. The formulations and results were logged on the Formulation Charts and Result Charts. My main concerns were with the clay content and flux percentages. Calcined kaolin replaced the clays. This was done because problems with greenware adherence were anticipated. Mext, the flux was increased to fuse the engobe onto the clay surface. My results with tests

C and C-1 were poor in all categories. From this, test C was discontinued and the more promising test series A and B were concentrated on.

Tests A and A-1 were formulated with higher percentages of flux in hopes of vitrifing the traditional chalky surface. The results proved much like a glaze. Frit P-133 and ultrox were added to A-l to encourage a direction for further formulation. The results showed no difference in surface. and defects occured in the fired adherence category. Tests B and B-l showed a marked difference in the fired surface. Test B looked like an over-fired engobe, the surface looked chalky and crumbled when touched. The amount of flux was twenty per cent and consisted of the frit P-133 and talc. In test B-1, talc was omitted and the frit was increased to forty-five per cent therefore fluxing the engobe to a glassy surface. The surface became harder but the engobe still adhered poorly. In test B-1 gerstley borate was used as an opacifier. This was done because it could double as an auxillary flux. Opacifiers were not important at this time because the color tests were conducted after the engobe base was established. Gerstley borate, at a much higher percentage, was used as a flux in the A test series.

In test A-2 the opacifier, ultrox, was omitted and the filler, flint was reduced. From this the percentages were carried into the flux hoping to make the surface more fluid thus eliminating the previous crawling defect. The results

were a highly fluxed surface that pooled. The surface changed from a semi-matt to a glossed surface, where it pooled. Test A-3 reacted much the same even though ten per cent borax was kept as a hardener and flint was reduced by ten per cent. It was evident the flux had to be reduced and the clay slightly increased. At this stage it was necessary to introduce new organic chemicals to broaden the scope of the results.

In tests B-2 and B-3 the patina was successful, although the fired surface still pooled. The next step was to decrease the flux five per cent and slightly increase the clay content. Test B-2 had the most favorable results thus far; therefore, only slight alteration in the B series was necessary. The shortcomings to work on were greenware application and hardness.

Tests A-4 through A-7 were experimentation with sugar and calgon. Sugar, an organic binder, was used as a hardener and calgon, a dishwashing detergent, as a deflocculant. The sugar was supposed to harden the surface and the calgon was supposed to keep the solution from settling. The tests were not satisfactory with either additives but the solution settling and greenware adherence slightly improved. The greenware hardness and surface effect still remained a problem. The solution settling was solved but not to satisfaction.

The hopeful solution to this problem was with soda ash in my next tests. Soda ash in small percentages acts as a hardener.

Tests B-6 through B-7 involved a slight change in percentages

of the clay and flux to improve surface characteristics.

Calcon was also introduced as a deflocculant, as with the adjoining A tests series. Calgon did not yield any noticeable change. The surface and fired ware adherence never seemed to get better in the B test series. The clay percentages might have contributed to this, therefore in B-7 the calcined kaolin was lowered to twenty per cent and the flux to forty-five per cent. The results were that the surface got too glossy. From this, the logical step was to lower the filler and add borax as a hardener.

Tests A-8 through A-10 introduced soda ash and experimental auxillary fluxing with salt. In tests A-8 and A-10 five per cent soda ash was introduced as a deflocculant, and as an auxillary flux. Tests A-9 and A-10 were sprayed then let dry, and then the engobe solution was applied. The salt crystals were expected to migrate, to the surface, dry, and then react as an auxillary flux to promote a different surface. In A-10 the salt was used more as a flux than in A-9. Unexpectedly, test A-9's fired surface crawled. No reason for this was found. The A-8 test showed the most desired surface thus far. It was satin smooth and simulated a wet surface quality. Therefore, the clay and flux percentages were from then on to remain constant. At this point greenware hardness was satisfactory but the settling remained a problem. At this stage only one more test series was anticipated for conclusive results. A greenware surface

hardener was needed.

Tests B-8 through B-12 introduced borax as a hardener, soda ash as a deflocculant, and salt as an auxillary flux. Tests B-11 and B-12 introduced salt in the same way as in test A-9 and A-10. In B-11 the salt appeared to have pitted the surface and because of the increased clay content, became chalky. In B-11 salt was tested to see if it would react as a flux. The surface quality of B-21 was very favorable but not because of the salt. The salt was eliminated from then on. Tests A-8, B-7, and B-12 were to be used for bases for the final engobe base tests.

In tests B-13 through B-15 and A-12, C.M.C. gum, an organic binder, was introduced as a hardener and deflocculant. Ball clay was also introduced as a hardener. The results proved favorable with the C.M.C. gum. C.M.C. gum jelled the solutions which benefited greenware application, greenware hardness, and solution settling. The problem with the C.M.C. gum was that it hindered the mixing process. Five per cent was too high a percentage and therefore two per cent was the last change for the final engobe base, B-16. Test B-16 produced the best results in all categories and was therefore selected for the final color tests. The formula for B-16 is as follows:

Calcined kaolin	.20%
Frit P-133	45%
Flint	
Gerstley borate	
Soda ash	

CHAPTER III

COLOR TESTS

The color tests were the final part of the thesis project. Two charts were designed to formulate and catalogue the results. The color tests were conducted in both a gas kiln with a reducing atmosphere and an electric kiln with an oxidizing atmosphere. The color tests were formulated from fourteen single mixes, at five per cent and ten per cent each (except cobalt carbonate). There were twenty-five combinations, from a color blend chart, totaling fifty-three oxidation tests and fifty-three reduction tests. The results of these tests were yellows, tans, browns, blues, greens, and blacks. tiles were then tested to see if the application was extended from dry ware to leather hard ware. Tests showed that one coat was successful but two coats caused the engobe to flake and crawl. A particular problem occured, in the mixing stage, due to the C.M.C. gum. The C.M.C. gum jelled and therefore did not dissolve into the formula solution. The result was a white dotted surface. One week later another attempt was made with the colored fusible engobes. The results were very favorable because the formula solution smoothed out and therefore the jelled globs were dissolved. For best results one must: 1) apply the fusible engobe to a dust free surface, 2) after mixing let set for approximately one week to allow

the C.M.C. gum to dissolve, and 3) apply one coat only. The color charts and tiles formed the last part of the thesis project.

CHAPTER IV

CONCLUSION

Through my research and testing a practical surface treatment was achieved for large ceramic sculpture. An engobe was successfully formulated that reached a fired range of cone 04 to cone 2 (1940° fahrenneit to 2130° fahrenheit), fused to the clay surface to create a permanent hard bond, showed a durability in unfired ware, and simulated a wet ware surface effect. My success solved an important technical problem and can help other ceramic sculptors with similar problems.

+ 5% FeOx	CLAY	FLUX	FILLER	OPACIFIER	HARDENER	DEFLOCCULAN
A	30% calcin kaolin	ed 40% gerst borat	30% flint ley e			
A-l	20% calcin kaolin	ed 20% gerst borat 30% frit	Ley	5% ultrox		
A-2	20% calcin kaolin		20% flint ley			
A-3	20% calcin kaolin	ed 20% gerst borat 40% frit	10% flint ley e		10% borax	
A-4	25% calci kaoli		20% flint ey		5% sugar	
A - 5	25% calci kaoli		ey		5% sugar	2% calgor
A - 6	20% calci kaoli	ned	20% flint			2% calgor
A-7	20% calci kaoli				10% wollas 5% sugar	stonite

frit: P-133

+ 5% FeOx	CLAY	FLUX	FILLER	OPACIFIER	HARDENER	DEFLOCCULAN
A-8.	20% calcin kaolin		15% flint ley			5% soda ash
A-9	25% calcir kaolir	ed 40% frit 20% gerst borat			with salt	solution
A-10	30% calcin kaolin		20% flint		10% borax with salt	ash
A-11	20% calcir kaolir		15% flint		10% C.M.C gum	, 5% soda ash
A - 12	20% calcir kaolir				5% ball clay 5% C.M.C. gum	5% soda ash

+ 5% Fe0x	CLAY	FLUX	FILLER	OPACIFIER	HARDENER	DEFLOCCULAN
В	35% calcii kaolii 15% ball clay		20% talc	5% ultrox	5% borax	
B - 1	25% calcii kaolii		20% flint	5% gerstl borate	ey 5% borax	
B - 2	20% calcii kaolii		10% flint	10% gerstl borate	ey 10% borax	
B - 3	20% calcii kaolii		25% flint	10% gerstl borate	еу	
B - 4	25% calci: kaoli:	ned h 45% frit	10% flint	10% gerstl borate	еу	
B - 5	30% calci: kaoli:		10% flint	10% gerstl borate		
B - 6	35% calci kaoli	ned n 45% frit	25% flint	10% gerst borat	le y e	2% calgor
B 7	20% calci kaoli		20% flint	10% gerst borat	ley e 5% borax	5% soda ash

+ 5% Fe0x	CLAY	FLUX	FILLER	OPACIFIER	HARDENER	DEFLOCCULAN
B - 8	20% calci kaoli		10% flint	10% gerstl borate		5% soda ash
B - 9	20% calci kaoli		20% flint	10% gerstl borate		5% soda ash
B - 10	25% calci kaoli		10% flint	20% gerstl borate		
B - 11	30% calci kaoli	n 45% soda ash	10% flint n salt solv	borat		
B - 12	20% calci kaoli	ned n 45% frit	10% flint n salt sol	10% gerst borat	ley e 5% borax	
B - 13	30% calci kaoli		10% flint	5% gersti borate		5% soda ash
B - 14	30% calci kaoli		10% flint	5% gerstle borate	y 10% ball clay	5% soda ash
B - 15	20% calci kaoli		15% flint	5% gerst borat	ey 5% C.M.C. gum	5% soda ash

+ 5% FeOx	CLAY	FLUX	FILLER	OPACIFIER	HARDENER	DEFLOCCULAN
B - 16	20% calci kaoli	ned n 45% frit	15% flint	5% gerstl borate	ey 2% C.M.C. gum	5% soda ash
						·

+ 5% Fe0x	CLAY	FLUX	FILLER	OPACIFIER	HARDENER	DEFLOCCULANT
С	9½% fire ball 18½% ball clay 22% calci kaoli	ned	par 20% flint	5% ultrox	2 1 % borax	
C-1	20% calci kaoli	ned		5% ultrox	5% borax	
	DISCONTIN	UED C TEST	SERIES			

@ 2000 ° f	SETTLING	GREENWARE ADHERENCE	GREENWARE HARDNESS	FIRED WARE HARDNESS	FIRED WARE ADHERENCE	SURFACE
С	ok	poor	poor	poor	poor, F	chalky, F
C-1	ok	poor	poor	poor	poor, F	chalky, F
	DISCONTI	NUED C TES	r series _			

@ 2000 f	SETTLING	GREENWARE ADHERENCE		FIRED WARE HARDNESS	FIRED WARE ADHERENCE	SURFACE	
A	ok	poor	poor	good	poor, B,C	vitrifie G,C,B	d,
A-2	ok	poor	poor	good	poor, C	vitrified SG,C	•
A-3	good	poor	poor	good	good	vitrified G,Po	
A-4	good	poor	poor	good	good	vitrifie S,Po	d,
A-5	good	good	poor	good	good	vitrifie S,Po	d,
A - 6	IMPROPER	FIRING					
A-7	IMPROPEF	FIRING					
A - 8	ok	poor	poor	poor	poor, F	chalky	

@ 2000 f	SETTLING	GREENWARE ADHERENCE	GREENWARE HARDNESS	FIRED WARE HARDNESS	FIRED WARE ADHERENCE	SURFACE
В	ok	poor	poor	good	poor, B,C	vitrified, G,C,B
B - 1	ok	poor	poor	good	poor, C,B	vitrified S,C,B
B - 2	poor	poor	good	good	good	vitrified G,S
B - 3	good	poor	poor	good	poor, C	vi t rified, S,C
B - 4	IMPROPER	FIRING				
B - 5	IMPROPEF	FIRING				
в - 6	IMPROPE	FIRING				
B - 7	IMPROPEI	FIRING				

*	SETTLING	GREENWARE ADHERENCE	GREENWARE HARDNESS	FIRED WARE HARDNESS	FIRED WARE ADHERENCE	SURFACE	
A-2	good	good	poor	good	good	vitrified, G	
A-3	poor	good	poor	good	good	vitrified, G	
A - 4	good	poor	poor	good	poor, C	vitrified, SG, C	1
A - 5	good	good	poor	good	good	MD	
A - 6	good	good	poor	good	good	vitrified G	d,
A-7	good	good	poor	good	good	vitrified G	d,
A-8	good	good	poor	good	good	vitrified G	d,
A - 9	good	good	poor	good	poor, C	vitrifie GS,C	ed,

^{*} Results fired at 2035° fahrenheit, 2090° fahrenheit, and 2130° fahrenheit with the same results.

*	SETTLING	GREENWARE ADHERENCE	GREENWARE HARDNESS	FIRED WARE HARDNESS	FIRED WARE ADHERENCE	SURFACE
A-10	good	good	poor	good	good	vitr ified S
A-11	good, jelled alittle	very good	very good	l ok	ok	DP
A - 12	very good	very goo	l very good	ok	ok	DP
						·

^{*} Results fired at 2035° fahrenheit, 2090° fahrenheit, and 2130° fahrenheit with the same results.

*	SETTLING	GREENWARE ADHERENCE	GREENWARE HARDNESS	FIRED WARE HARDNESS	FIRED WARE ADHERENCE	SURFACE	
B - 2	poor	good	poor	good	good	vitrified G	,
B - 3	good	poor, F	poor	good	poor, C	vitrifie S,C	d,
B - 4	good	good	poor	good	poor, C	vitrified S,C	,
B - 5	good	good	poor	ok, C	poor, F	F, looked burned c	ff
В - 6	good	good	poor	good	poor, C	vitrified S,C	,
B - 7	good	good	poor	good	poor, C	vitrifie G,C	d,
B - 8	good	good	poor	good	good	vitrified G	,
B - 9	good	good	poor	good	ok, began to C	vitrified S	,

^{*} Results fired at 2035° fahrenheit, 2090° fahrenheit, and 2130° fahrenheit with the same results.

*	SETTLING	GREENWARE ADHERENCE	GREENWARE HARDNESS	FIRED WARE HARDNESS	FIRED WARE ADHERENCE	SURFACE	
B - 10	good	good	poor	ok, C	poor, P	С	
B - 11	good	good	poor	poor, C	poor, P	C,P	
B - 12	poor	good Tr	poor	good	good	vitrified SW	,
B - 13	good	ok, C	ok	good	good	vitrified	
B -14	good	poor	poor	good	good	vitri fied D	,
B - 15	good	good	good	good	good	vitrifie SW	d,

^{*} Results fired at 2035° fahrenheit, 2090° fahrenheit, and 2130° fahrenheit with the same results.

COLOR TESTS FORMULATION BLEND CHART

		ixe constant	chrone of	ide hydr	Tititing A	Joha X
NICKEL OXIDE N-3	I1-3 N-3	CoC-2 N-3	Ch-3 N-3	FeH-3 N-3	Lc-3 N-3	
MANGANESE CARBONATE MangC-3	Il-3 MangC-3	CoC-2 MangC-3	Ch=3 MangC=3	FeH-3 MangC-3	Lc=3 MangC=3	
RED IRON OXIDE RFe-4	I1-3 RFe-4	CoC-2 RFe-4	Ch-3 RFe-4	FeH-3 RFe-4	Lc-3 RFe-4	
YELLOW OCHRE Yo-4	I1-3 Yo-4	CoC-2 Yo-4	Ch-3 Yo-4	FeH-3 Yo-4	Lc-3 Yo-4	
COPPER CARBONAT CuC-4	I1-3 CuC-4	CoC-2 CuC-4	Ch-3 CuC-4	FeH-3 CuC-4	Lc-3 CuC-4	

COLORANT	EMBLEM	COI oxidation	
5% copper carbonate	CuC-5	light green, shiney	medium green, satin- waxy
10% copper carbonat	e CuC-10	brown- green, shiney	dark green, satin- waxy
5% black stain	Bk - 5	black, satin- gloss	black, satin
10% black stain	Bk - 10	black, satin- gloss	black, satin
5% chrome oxide	Ch-5	army green, satin	army green, satin- matt
10% chrome Oxide	Ch-10	army green, satin	army green, satin- matt
½% cobalt carbonate	CoC -1	medium blue, satin	medium blue, waxy
2% cobalt carbonate	e CoC-2	dark blue, satin	dark blue, waxy

COLORANT	EMBLEM		LOR	
		oxidation	reduction	
5% manganese dioxide	MangD-5	light brown, satin	tan, waxy	
10% manganese dioxid	e MangD-10	medium brown, satin	brown, waxy	
5% ilmenite	I1 - 5	creamy with black dots, satin- waxy	medium k cream with blac dots, waxy	k
10% ilmenite	I1 - 10	creamy wi black dot satin- waxy		ack
5% nickel oxide	N - 5	green,	brown- green, satin- matt	
10% nickel oxide	N-10	medium green, satin	army green, satin- matt	
5% red iron oxide	RFe-5	light tan- red, waxy	maroon, satin- matt	
10% red iron oxide	RFe-10	dark red- tan, waxy	dark maroon, satin- matt	

COLORANT	EMBL EM	1	OR reduction
5% yellow iron oxid	e YFe-5	maroon, satin	tan, waxy
10% yellow iron oxi	de YFe-10	maroon, satin- gloss	brown, waxy
5% yellow ochre	Yo - 5	medium maroon, satin	dark maroon, waxy
10% yellow ochre	Yo-10	medium maroon, satin	maroon, satin- matt
5% yellow stain	Y - 5	bright yellow, satin- matt	bright yellow, waxy
10% yellow stain	Y-10	bright yellow, satin- matt	bright yellow, waxy
5% green nickel oxi	de GN-5	grey- green, satin- matt	army green, matt- satin
10% green nickel ox	ide GN-10	grey- green, satin- matt	army green, matt-satin

GOT OD AND	TUNATUT TUNA	COI	LOR
COLORANT	EMBL EM	oxidation	reduction
5% manganese carbona	te MangC-5	medium brown, satin- matt	brown- green, waxy
10% manganese carbon	ate MangC-10	medium tan, satin- matt	army green, waxy
5% pink stain	P - 5	light pink, satin- matt	light pink, waxy
10% pink stain	P-10	medium pink, satin- matt	medium pink, waxy
3% ilmenite 3% nickel oxide	Il-3 N-3	light green- gr with dots satin- waxy	
2% cobalt carbonate 3% nickel oxide	CoC-2 N-3	brown- green, satin	medium brown, waxy
3% chrome oxide 3% nickel oxide	Ch-3 N-3	medium brown, satin	medium brown, waxy
3% iron hydroxide 3% nickel oxide	FeH-3 N-3	medium brown, satin- waxy	dark brown, satin

COLORANT	EMBLEM	COL	OR
COLORANI	E4-11-12-12-17-1	oxidation	reduction
3% lithium carbonate 3% nickel oxide	Lc-3 N-3	light green- brown, satin- waxy	medium brown, waxy
3% ilmenite 3% manganese carbona	Il-3 te MangC-3	medium brown with dots satin- waxy	light brown, waxy
2% cobalt carbonate 3% manganese carbona	CoC-2 te MangC-3	medium tan, satin	light brown, waxy
3% chrome oxide 3% manganese carbona	Ch-3 te MangC-3	medium tan, satin- waxy	grey- brown, waxy
3% iron hydroxide 3% manganese carbon	FeH-3 ate MangC-3	maroon- brown, satin	dark maroon, satin
3% lithium carbonat 3% manganese carbon		medium tan, satin- waxy	medium brown, waxy
3% ilmenite 4% red iron oxide	I1 - 3 RFe - 4	light brown- tan, satin- waxy	medium grey- brown, waxy
2% cobalt carbonate 4% red iron oxide	CoC-2 RFe-4	light brown- tan, satin- waxy	medium grey- brown, waxy

COLORANT	EMBL EM	COLOR	
CODORANI	11110101111	oxidation reduction	
3% chrome oxide 4% red iron oxide	Ch-3 RFe-4	light grey- tan- brown, green, waxy satin- waxy	
3% iron hydroxide 4% red iron oxide	FeH-3 RFe-4	medium dark tan- grey- green, brown, satin- waxy waxy	
3% lithium carbonat 4% red iron oxide	e Lc-3 RFe-4	light light green- grey- green, waxy waxy	
3% ilmenite 4% yellow ochre	Il-3 Yo-4	tan medium modeled tan with rust, with dot waxy waxy	ts,
2% cobalt carbonate 4% yellow ochre	CoC-2 Yo-4	black, satin- black, waxy	
3% chrome oxide 4% yellow ochre	Ch-3 Yo-4	dark dark maroon, satin waxy	
3% iron hydroxide 4% yellow ochre	FeH-3 Yo-4	rust, dark maroon, waxy	
3% lithium carbona 4% yellow ochre	te Lc-3 Yo-4	tan- yellow waxy with rust, waxy	

COLORANT	EMBL EM	COLOR	
COLORANI		oxidation	reduction
3% ilmenite 4% copper carbonate	I1-3 CuC-4	blue- green, satin	light green
2% cobalt carbonate 4% copper carbonate	CoC-2 CuC-4	blue- green, satin- gloss	dark green- blue, satin- gloss
3% chrome oxide 4% copper carbonate	Ch-3 CuC-4	dark blue- green, waxy- satin	dark green, satin- matt
3% iron hydroxide 4% copper carbonate	FeH-3 CuC-4	brown- green, waxy- satin	dark brown, satin
3% lithium carbonat 4% copper carbonate		light green, gloss- satin	light green, gloss- satin

GLOSSARY

EARTHENWARE: Low-fire pottery (below cone 03), usually redtan in color with an absorbency of from 5% to 6%.

EGYPTAIN PASTE: A clay body that has glaze-forming ingredients and colorants incorported into the body in a soluable form. The body is nonplastic and fires to between cones 08 and 05. First developed by the Egyptains before 5,000 B.C., this paste was the earliest form of glaze known.

ENGOBE or SLIP: A suspension of slurry of finely divided ceramic materials in a liquid. This underglaze can be applied to wet ware, green ware, and bisque ware. Generally, the difference between and engobe and a slip is that engobes are applied to larger surface areas.

FLUX: A substance that even in small quantities, lowers the fusion point of material in which it is naturally present. e.g. borax added to glaze.

FRIT: A commercially prepared combination of silica and soluable fluxes melted together and ground to powder to render the flux insoluable. Frits render toxic effects of lead and melt such compounds as borax or soda ash.

GLAZE: A liquid suspension of finely ground minerals that is applied by brushing, pouring, or spraying on the surface of bisque fired ceramic ware. After drying the ware is fired to the temperature at which the glaze ingredients will melt together to form a glassy surface coating.

SLIP GLAZE: A glaze consisting primarily of readily fusible clay or silt and other ingredients blended to a creamy consistency in water.

TERRA COTTA: An earthenware body, generally red in color and containing grog. It is the common body type used for ceramic sculpture.

TERRA SIGILLATA: The red slip glaze used by the Romans, similar to the Etruscan bucchero and Greek black varnish ware and made of fine decanted particles of red clay.

UNDERGLAZE, UNDERGLAZE DECORATION: A finely milled ceramic color decoration, or ther coating applied directly to the unfired or bisque fired surface of ceramic ware and subsequently covered with a transparent glaze and then fired concurrently with a glaze.

VITREOUS or VITRIFICATION: The progressive partial fusion of a clay as a result of a firing process. Vitrification is the point where the clay is at its hardest state.

VITREOUS ENGOBE or SLIP: An engobe or slip that is fritted to flux much like a glaze. A traditional use is where potters use it to replace a glaze where trimming is to tedious.

BIBLIOGRAPHY

- Chappell, James. The Potter's Complete Book Of Clay And Glazes. New York: Watson-Guptill Publications, 1977.
- Dawalt, Kent. "Notes From Glaze Calculation Class." Indiana University, Bloomington, Indiana, 1982.
- Nelson, Glenn C. Ceramics: A Potter's Handbook. 4th ed. New York, Chicago, San Francisco, Atlanta, Dallas, Montreal, Toronto, London, Sydney: Holt, Rinehart and Wilson, 1978.
- Rhodes, Daniel. <u>Clay And Glazes For The Potter</u>. Revised ed. Radnor: Chilton Book Company, 1973.