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Machine learning is fast growing field as it can be applied to solve a large amount 

of problems. One large subsection of machine learning are artificial neural networks 

(ANN), these work on pattern recognition and can be trained with data sets of known 

solutions. The objective of this thesis is to discuss the creation of an ANN capable of 

classifying differences in propylene glycol concentrations, up to 10%. Utilizing a micro 

pipette thermal sensor (MTS) it is possible to measure the heat propagation of a liquid 

from a laser pulse. The ANN can then be trained beforehand with simulated data and be 

tested in real time with temperature data from the MTS. This method could be applied to 

find the thermal conductivity of unknown fluids and biological samples, such as cells 

and tissues. 
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CHAPTER 1 

INTRODUCTION 

Measuring the thermal properties of biological samples is a rapidly growing field 

of study due to fact that thermal energy is related to all biological reactions inside of the 

cell [1] [2]. One of the most essential of these properties is thermal conductivity as it is 

the governing parameter in all heat conduction and convection problems in engineering. 

It has been shown to also be a viable way to evaluate the viability of cells [3]. Along with 

this thermal conductivity has been utilized as a biomarker to measure the disease state 

of cancer, like the proliferation index in which tumor progression is assessed [4]. 

Therefore, a way to measure this thermal property is needed on a micro scale that is 

also safe for biological applications. Several methods for thermometry have been 

developed for the measurement of single cells. These include electron spin from 

nitrogen vacancies in diamond nanoparticles and fluorescent nanothermometers 

utilizing nanoparticles [5] [6]. However, these methods are complicated and costly. It 

has been shown that a simple method for measuring the thermal conductivity is utilizing 

a micropipette thermal sensor (MTS) and laser point heating thermometry (LPTH) [7]. 

While this method is effective it has a high computational cost because of the 

multiparameter fitting program used by LPTH to solve for the thermal conductivity [8]. 

Machine learning (ML) serves as an alternative to numerical analysis [9]. 

ML works on the concept of pattern recognition [10]. It utilizes mathematical 

minimization techniques to process large amounts of data in order to find the path which 

results in the least amount of error or cost. ML is used in many applications such as 

computer vision, speech recognition, and game play [11]. Different methods of ML have 
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been created such as linear regression, decision tree, and support vector machines. 

This study focuses on artificial neural networks (ANN). Based on a biological brain 

ANNs are a connection of nodes with weighted values placed on the synapses [12]. 

These weights are trained by a process of minimization known as gradient descent. 

Once trained ANNs can solve complex problems instantaneously.  

ANNs have been shown to be used for a variety of thermal characterization 

related tasks, including the prediction of hybrid nanofluids and ethylene glycol thermal 

conductivities [13] [14]. These both utilize a multi-input and single output regression 

learning model, where the inputs are the concentration, density, and temperature of the 

fluids. The output is the thermal conductivity of the fluid.   

This study will focus on a real time approach for the thermal conductivity 

prediction of a glycol solution measuring the time-series heat propagation profile. With 

this an ANN trained with the time-series temperature profiles of known thermal 

conductivities can be proposed to predict parameters (i.e., thermal conductivity) of a 

target chemical or a biological system including liquid or a biological cell. To that end, 

we first obtain massive heat propagation profiles using the partial differential equation 

(3.1) varying the thermal conductivity and train an ANN model for Sim-to-Real 

approach. Once trained, classification is instantaneous thereby solving the issues of 

computation time. Since the AI model is trained by the time-series heat propagation 

data, the proposed approach is unique and useful for real-time physical and biological 

property measurement for time-critical medical applications, in-situ biological screening, 

or for real-time physiological metabolism analysis.   
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1.1 Objectives 

The primary objective for this research is to develop an ANN capable of 

classifying a 10% difference in concentration of propylene glycol utilizing time series 

temperature profiles. Along with this specific objectives are as follows: 

• Train the ANN with simulated data for high classification accuracy  

• Demonstrate the possibility of a simulation to real approach for ANN 
classification of thermal conductivity  

• Produce a micro-pipette thermal sensor using nickel and bismuth wire 

• Measure the experimental temperature profiles of propylene glycol mixtures 
and utilize trained ANN for classification 

1.2 Organization of Thesis 

Chapter 2 presents the literature research. The chapter starts by describing the 

thermal conductivity measurement technique, focusing on the LPHT that is utilized with 

the thermocouple. Along with these details over the thermocouple circuit is covered. 

Lastly ML techniques are discussed, covering ANNs and types of ML problems. This 

section also covers gradient descent and cost functions utilized in this research.  

Chapter 3 covers the materials and method utilized in the experiment and ANN 

development. First the process for the fabrication and calibration of the MTS is given. 

Next a description of the ANN configuration is given as well as the training process used 

to optimize the network.  

Chapter 4 discusses the results from calibration of the MTS, results from training, 

and the experimental results along with ANN classification results.  

Chapter 5 concludes the thesis with a summary and provides the future work for 

this research.   
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Heat Conduction 

The transfer of heat energy from the interaction of molecules is known as 

conduction. Heat energy moves from more excited molecules to less excited molecules. 

Therefore, at higher temperatures the rotational and vibrational motions of the 

molecules are elevated. These excited molecules then collide with neighboring 

molecules and their energy is transferred [15].   

This heat transfer process can be quantified with rate equations. Conduction 

follows Fouries law, where heat flux (𝑞𝑞𝑥𝑥 "), heat energy per unit area, is equal to the 

thermal conductivity (𝑘𝑘) multiplied by the negative of the gradient of temperature (∇𝑇𝑇). 

One dimensional heat transfer formula can be seen in equation (2.1) below.  

𝑞𝑞𝑥𝑥 " = −𝑘𝑘 𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

 (2.1) 

The equation is very similar in cylindrical coordinates.  

𝑞𝑞𝑟𝑟 " = −𝑘𝑘 𝑑𝑑𝑑𝑑
𝑑𝑑𝑟𝑟

 (2.2) 

2.2 Thermocouple Method 

Thermocouples are sensors that measure temperature. It is a junction of two 

different metals, and when this junction is heated, or cooled voltage is generated. This 

is known as the Seebeck effect, discovered in 1821 by Thomas Seebeck. [16] Change 

in voltage with respect to the change in temperature is the Seebeck coefficient, and 

represents the thermoelectric sensitivity of the metal. This is shown in equation (2.3) 

below [17]. 
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∆𝑇𝑇 =  𝑆𝑆 ∗ ∆𝑉𝑉 (2.3) 

where:  ∆𝑇𝑇  = Change of Temperature. 

 𝑆𝑆 = Seebeck Coefficient 

 ∆𝑉𝑉 = Change of Voltage 

2.3 Thermocouple Circuit  

In order to measure the change in temperature from the thermocouple a circuit 

must be created. This is shown in figure 1. The two metals are joined at the ∆𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 end 

and are connected to copper leads a the ∆𝑇𝑇𝑟𝑟𝑠𝑠𝑟𝑟. After this the copper leads are 

connected to a voltmeter in order to register the change of voltage. In this circuit the 

∆𝑇𝑇𝑟𝑟𝑠𝑠𝑟𝑟 must be a constant known temperature. This is because the Seebeck effects 

works on the change of temperature. Therefore, in order to solve for ∆𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 the 

reference temperature must be known.  

 
Figure 1: Image of thermocouple circuit example 

 
The Seebeck for chromium, aluminum, and copper will be denoted by 𝑆𝑆𝐶𝐶𝑟𝑟 , 𝑆𝑆𝐴𝐴𝐴𝐴 , 

and 𝑆𝑆𝐶𝐶𝐶𝐶 respectively. [18] The voltage will then be written as: 

V = ∫ SCu 
Ref
Meter (T) dT

dx
dx + ∫ SCr 

Sense
Ref (T) dT

dx
dx + ∫ SAl 

Ref
Sense (T) dT

dx
dx +

∫ SCu (T) dT
dx

dxMeter
Ref  (2.4) 

It can be seen that this will simplify to the equation: 
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V = ∫ SCr 
Sense
Ref (T) dT

dx
dx + ∫ SAl 

Ref
Sense (T) dT

dx
dx (2.5) 

The Seebeck is mostly constant for small temperature ranges, and the combined 

Seebeck  

𝑉𝑉 = (𝑆𝑆𝑐𝑐𝑟𝑟 − 𝑆𝑆𝐴𝐴𝐴𝐴)�𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑇𝑇𝑅𝑅𝑠𝑠𝑟𝑟� (2.6) 

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑟𝑟𝑠𝑠𝑟𝑟 + 𝑉𝑉
𝑆𝑆𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴

 (2.7) 

2.4 Thermal Analysis Techniques 

Thermal analysis is technique used to measure the temperature and time while a 

substance is heated or is cooled and to observe the physical changes that occur [19]. It 

is often used in heat transfer and thermodynamics applications to find material 

properties such as thermal conductivity, thermal diffusivity, and specific heat. In order to 

measure the thermal conductivity as proposed in this study two elements are needed a 

heat source and sensor. The most standard way to measure the thermal conductivity is 

the hot wire technique [20]. This is where a thin metal wire is submerged in a fluid and 

heated electrically while simultaneously monitoring the resistance variation. One 

application of this work is the ability to use this in a biological environment. Several 

thermal-analysis techniques have been used for the measurement of thermal properties 

of biological samples, such as differential scanning calorimetry (DSC), micro electro 

mechanical systems (MEMS), scanning thermal microscopy (SThM), laser point heating 

thermometry (LPHT) [21] [22] [23] [24] [7]. 

2.4.1 Differential Scanning Calorimetry  

DSC is a technique used to determine the difference in heat energy required to 

increase the temperature of a sample and a reference. It is measured as a function of 
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specific heat vs. the temperature. It is used commonly in biochemical reactions to find 

transition temperature points. The method is done by monitoring the heat flow into the 

sample and reference and plotting with respect to temperature [25].  

 
Figure 2: Experimental setup for a DSC experiment 

 

2.4.2 Micro Electro Mechanical Systems  

MEMS are miniaturized mechanical and electromechanical single devices and 

structures produced by microfabrication techniques. They are currently uses in a wide 

variety of microsensors, micro-actuators, and microsystems [26].  

 
Figure 3: Detail of micromachined mirrors from an array used in a portable digital 

projector [27] 
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2.4.3 Scanning Thermal Microscopy 

SthM is a combination of an atomic force microscope (AFM) and a temperature 

sensor such as a thermocouple or bolometer. AFM is where a nanosized tip is placed 

onto a cantilever beam attached to a piezoelectric device, while moving across a 

sample a laser is reflecting off the tip into a photoelectric sensor. This also the machine 

to detect deflections into the beam and correct with the piezoelectric device to avoid 

damaging the samples, as well as create a topological map of the sample. The 

temperature sensor is mounted on a cantilever beam which is attached to a 

piezoelectric device. Heat is supplied to the tip of the temperature sensor and its 

temperature is constantly monitored. When the sample moves the temperature of the tip 

will change based on the sample’s thermal properties [28].  

 
Figure 4: Scanning thermal microscope diagram [29]. 



9 

2.4.4 Laser Point Heating 

The technique used in this study is LPHT. [30] The main concept is using an 

optical point heating of a thermocouple tip. This in consequence causes a small amount 

of fluid around the thermocouple to be heated as well as simultaneously monitoring the 

fluids thermal response.  

 
Figure 5: LPHT diagram, in this the grey shape is the thermocouple, green is the laser 

light, and blue is the fluid being measured 
 

The equation below analytically expresses the temperature of thermocouple, 

assuming no heat loss through the thermocouple wires. [31] 

𝑇𝑇 =  
𝑞𝑞

4𝜋𝜋𝜋𝜋𝑘𝑘
∗ �

1 + 𝜋𝜋𝑐𝑐1
𝑐𝑐1

−
2𝜋𝜋2𝑐𝑐12𝑐𝑐22

𝜋𝜋
× �

𝑒𝑒−𝛼𝛼𝐶𝐶2𝑡𝑡/𝑎𝑎2

[𝑢𝑢2(1 + 𝜋𝜋𝑐𝑐1) − 𝜋𝜋𝑐𝑐1𝑐𝑐2]2 + [𝑢𝑢3 − 𝑢𝑢𝜋𝜋𝑐𝑐1𝑐𝑐2]2
∞

0
� 

𝑐𝑐1 = ℎ
𝑘𝑘 ,           𝑐𝑐2 = 4𝜋𝜋𝜋𝜋3𝜌𝜌𝐶𝐶

𝑀𝑀𝑠𝑠𝐶𝐶𝑠𝑠
 (2.8) 

where in this 𝜋𝜋,𝐶𝐶𝑠𝑠, and 𝑀𝑀𝑠𝑠 are the size, heat capacity, and mass of the TC tip, 

respectively, and 𝐶𝐶,𝑘𝑘, and 𝜌𝜌 are the heat capacity, thermal conductivity and density of 

the fluid sample, respectively. (𝑞𝑞: heat transfer rate, ℎ: contact thermal conductance at 

the TC tip – fluid.  

The equation is a simple analytical approach to find the thermophysical 
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properties of the fluid. However, it does not account for the inevitable heat loss in the 

TC wire. Therefore, a new approach is proposed using a FEM (finite element method) to 

obtain simulated profiles and these profiles are used to train an Artificial Neural Network 

for classification. 

2.5 Machine Learning Method 

Machine learning is a subset of artificial learning, where algorithms are improved 

automatically through experience by using large data sets [32]. There are three different 

approaches used in machine learning depending on the data that is used in the learning 

system:  

• Supervised learning: The model is presented with inputs and their outputs; its 
goal is to map the input to the output. 

• Unsupervised learning: No output is given to the model; it then finds hidden 
patterns in the data. 

• Reinforcement learning: The program interacts in each environment to 
perform a given goal or output. As the programs navigates its environment it 
is given feedback that it tries to maximize. 

Once the approach is chosen these algorithms build models based on the 

sample or training data. Similar research to ours was done over thermal properties 

classification using a supervised artificial neural network approach [33]. 

2.5.1 Neural Networks 

One model used in supervised learning is an artificial neural network (ANN). The 

model is composed of connected artificial neurons (or perceptions) that are like 

biological neurons in animal brains. Each perception has a weight and activation 

function. This activation function is a type of normalization where the output is a number 

between zero and one. ANNs have three different layers. The first is the input layer 
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where the inputs are fed into the network through input nodes. Next it goes into the 

hidden layer where inputs are multiplied by an associated weight and summed together 

at the node before the activation function is applied. The final layer is the output, where 

it undergoes the same process as the hidden layer. Once it passes through the output 

layer the result is obtained [12]. 

 
Figure 6: Image example of neuron for an ANN 

 
The model is trained by a method known as gradient descent, where the error of 

the model is used to adjust the weights inside the model. The error is calculated by a 

cost function such as root mean square error (RMSE), and the partial derivative or 

gradient � 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕1

� is found with respect to each weight. This is multiplied by a 

hyperparameter called the learning rate (𝛼𝛼) and is subtracted from the weight 

(𝜃𝜃𝑃𝑃𝑟𝑟𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝑠𝑠 ) . This is done until the model has reached an acceptable margin of error [34].  

This process in machine learning is called backpropagation.  

𝜃𝜃𝐶𝐶𝑢𝑢𝑑𝑑𝑎𝑎𝑡𝑡𝑠𝑠
(1) =  𝜃𝜃𝑃𝑃𝑟𝑟𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝑠𝑠

(1)  –  𝛼𝛼 � 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕1
� (2.9) 

𝜃𝜃𝐶𝐶𝑢𝑢𝑑𝑑𝑎𝑎𝑡𝑡𝑠𝑠
(2) =  𝜃𝜃𝑃𝑃𝑟𝑟𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝑠𝑠

(2)  –  𝛼𝛼 � 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕2
� (2.10) 

2.5.2 Gradient Descent Methods 

There are several variants of traditional gradient descent such as batch gradient 
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descent, mini-batch gradient descent, stochastic gradient descent, and conjugate 

gradient method [35]. Batch gradient descent finds the gradient of the cost function for 

the entire training set. This however can be ineffective as it takes longer to train 

because it requires a smaller learning rate [36].  Mini-batch takes the gradient of n 

training samples. Stochastic gradient descent takes a different approach as it finds the 

gradient of each training example. These three methods share a common method as 

they only take the first derivative of the cost function. Conjugate gradient is a second 

order technique, meaning that it takes the second derivative of the cost function [37]. 

Second order techniques will usually find a better path to the local minimum then first 

order methods but use higher computational power.  These four methods all share the 

same challenge as they utilize the same learning rate no matter the size gradient. 

Therefore, a fifth method is presented scaled conjugate gradient method (SCGM). In 

SCGM the learning rate is varied based on the slope of the gradient [38]. Therefore, if 

the gradient is large, the learning rate increases and decreases if the gradient is small. 

This allows for faster and more accurate learning when compared to traditional gradient 

descent in which the learning rate is constant [39].  

𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 − 𝑔𝑔𝑘𝑘𝐻𝐻𝑘𝑘
−1 (2.11) 

𝑔𝑔𝑘𝑘 = 𝐸𝐸′(𝜃𝜃𝑘𝑘) (2.12) 

𝐻𝐻𝑘𝑘
 = 𝐸𝐸′′(𝜃𝜃𝑘𝑘) (2.13) 

where, 𝜃𝜃𝑘𝑘 is the weight of the perception and 𝐸𝐸(𝜃𝜃𝑘𝑘) is the cost function. 

In this 𝐻𝐻𝑘𝑘
  is the Hessian matrix which is a matrix of second order partial 

derivatives of the cost function. In equation (2.11) 𝑔𝑔𝑘𝑘𝐻𝐻𝑘𝑘
−1 is defined as a newton step 

[40]. This newton step is impossible in large scale with multiple dimensions. Therefore, 
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Moller defined a temporal step 𝜃𝜃𝑡𝑡,𝑘𝑘 which is between 𝜃𝜃𝑘𝑘+1 and 𝜃𝜃𝑘𝑘. This is equation (2.14) 

below, where 𝛾𝛾𝑘𝑘 is the step size and 𝒅𝒅𝑘𝑘 is the conjugate direction.  

𝜃𝜃𝑡𝑡,𝑘𝑘 = 𝜃𝜃𝑘𝑘 + 𝛾𝛾𝑘𝑘𝒅𝒅𝑘𝑘,      𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 0 < 𝛾𝛾𝑘𝑘 ≪ 1 (2.14) 

The conjugate direction is the minimization of all search directions. Thereby it means 

that one would find the local minimum for that iteration in the number of dimensions or 

search directions that are associated with the problem.  

With this the newton step can be found using the approximation found in 

equation 2.15. 𝑠𝑠𝑘𝑘 represents the second order information and 𝛼𝛼𝑘𝑘 represents the 

learning rate.  

𝑠𝑠𝑘𝑘 = 𝐸𝐸′′(𝜃𝜃𝑘𝑘)𝒅𝒅𝑘𝑘 ≈
𝐸𝐸′�𝜃𝜃𝑡𝑡,𝑘𝑘�−𝐸𝐸′(𝜃𝜃𝑘𝑘)

𝛾𝛾𝑘𝑘
 (2.15) 

𝛼𝛼𝑘𝑘 = −𝒅𝒅𝑘𝑘
𝑇𝑇𝐸𝐸′(𝜃𝜃1)
−𝒅𝒅𝑘𝑘

𝑇𝑇𝑠𝑠𝑘𝑘
  (2.16) 

Thus, the next weight value can be found using equation (2.17).  

𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 − 𝛼𝛼𝑘𝑘𝒅𝒅𝑘𝑘
  (2.17) 

2.5.2.1 Cost Functions 

Just as with gradient descent there are few methods to find the cost or error of 

the network. One of the most common is RMSE [41]. This is the standard deviation of 

the errors. It can be seen below in equation (2.18) where 𝑥𝑥𝑖𝑖, 𝑥𝑥�𝑖𝑖, and 𝐹𝐹 represent the 

observed value, expected value, and number of samples respectively.  

𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 =  �∑ (𝑥𝑥𝑖𝑖−𝑥𝑥�𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 (2.18) 

The cost function that was used to represent uncertainty in this study is the 

cross-entropy loss function (CELF) [42]. Before this function is discussed the concept of 



14 

entropy in machine learning must be covered. Entropy or 𝐻𝐻(𝑥𝑥) is the amount of 

uncertainty given from a random variable across all the possible outcomes [43]. It is 

based upon the probability density function and an equation is shown below. Where in 

this 𝑝𝑝(𝑥𝑥) is the probability of a random variable.  

𝐻𝐻(𝑥𝑥) = −∑ 𝑝𝑝(𝑥𝑥) ∗ log (𝑝𝑝(𝑥𝑥)) 
𝑥𝑥  (2.19) 

This loss function is based upon the concept of entropy or the uncertainty in 

possible outcomes. When the probability of the ANN classifying the correct output is 

high the loss of the function is minimized. In this 𝑡𝑡𝑖𝑖 is the true label associated with that 

sample and 𝑝𝑝𝑖𝑖 is the output for the class. 

This can be seen in equation (2.20) below. 

𝐿𝐿𝐶𝐶𝐸𝐸 = −∑ 𝑡𝑡𝑖𝑖log (𝑝𝑝𝑖𝑖)
𝐹𝐹
𝑖𝑖=1  (2.20) 

2.5.2.2 Normalization 

One important aspect of machine learning is normalization of data or feature 

scaling. This is done before data is inputted into the network. Normalization is the 

process of setting the data into a common scale. Rescaling or min-max normalization 

sets the scale of the data in a range in [0,1]. Since learning is based upon calculating 

the cost, the cost between two features that are not on the same scale will not be 

accurate. Feature scaling data will converge faster than data without [44].  

𝑥𝑥′ = 𝑥𝑥−min (𝑥𝑥)
max(𝑥𝑥)−min (𝑥𝑥)

 (2.21) 

The min-max normalization equation is shown above where 𝑥𝑥′ is the normalized 

value and 𝑥𝑥 is the current feature.   



15 

2.5.3 Types of Network Problems 

Mentioned above in supervised learning the network is given an input and an 

output, then it adjusts the weights connected between the input and output layers until 

an error threshold is met. With this learning method there are two main types of 

problems that can be solved: Classification and Regression.  

2.5.3.1 Classification  

Classification deals with mapping input variables to discreate output variables. It 

requires a problem whose outputs can be put in separate classes. When there are two 

classes for outputs this is known as a binary classification problem, and when there are 

more than two classes this is known as a multiclassification problem. A simple example 

of a binary classification would be a picture being classified as “dog” or “not dog”. 

Classification problems commonly find the probability of the input belonging to a certain 

class.  

There are a few metrics to measure the ability of the network for a classification 

problem. These metrics can be calculated by a confusion matrix.  

2.5.3.2 Regression 

Regression is when a network maps input variables to continuous output 

variables. This continuous is most commonly an integer value corresponding to a 

quantity. It is required that the regression predicts the correct quantity. An example of a 

regression problem would be predicting the number of people at a coffee shop 

depending on the time of day.  
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2.5.4 Confusion Matrix 

Classification networks can be evaluated using a confusion matrix. This is a 

visual way to observe the performance of the network. It shows the number of true 

positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) 

produced by the network from the training, validation, and testing data. Most confusion 

matrixes are shown from binary machine learning models, meaning only two outputs. 

This simple example can be seen in figure 7. In this study the confusion matrix 

generated is from a multiclass model.   

 
Figure 7: Binary classification matrix example 

 
There are several metrics that can be utilized to evaluate the performance of a 

classification mode: Precision, Accuracy, and F1 score [45]. Precision represents the 

number of positive classifications the network returned that were positive. Recall 

indicates the number of positive samples that were correctly classified. The F1 score is 

the harmonic mean or the reciprocal mean of the precision and recall of the model. 

𝑅𝑅𝑒𝑒𝑐𝑐𝜋𝜋𝑅𝑅𝑅𝑅 = 𝑑𝑑𝑃𝑃
𝑑𝑑𝑃𝑃+𝐹𝐹𝑁𝑁

 (2.22) 

𝐹𝐹𝑟𝑟𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑃𝑃𝑃𝑃 = 𝑑𝑑𝑃𝑃
𝑑𝑑𝑃𝑃+𝐹𝐹𝑃𝑃

 (2.23) 
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𝐹𝐹1 𝑆𝑆𝑐𝑐𝑃𝑃𝑟𝑟𝑒𝑒 = 2 ∗ 𝑃𝑃𝑟𝑟𝑠𝑠𝑐𝑐𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑠𝑠∗𝑅𝑅𝑠𝑠𝑐𝑐𝑎𝑎𝐴𝐴𝐴𝐴
𝑃𝑃𝑟𝑟𝑠𝑠𝑐𝑐𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑠𝑠+𝑅𝑅𝑠𝑠𝑐𝑐𝑎𝑎𝐴𝐴𝐴𝐴

= � 2∗𝑑𝑑𝑃𝑃
2∗𝑑𝑑𝑃𝑃+𝐹𝐹𝑃𝑃+𝐹𝐹𝑁𝑁

� (2.24) 

In the case of the multiclass model, each of the metrics can be found by the 

individual classification or by the total TP, FP, and FN of the model. When the totals are 

used to calculate the recall and precision, the following F1 score is known as the micro 

F1 score. This can be seen in equation (2.25) where 𝑇𝑇.𝐹𝐹𝑟𝑟𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑃𝑃𝑃𝑃 and 𝑇𝑇.𝑅𝑅𝑒𝑒𝑐𝑐𝜋𝜋𝑅𝑅𝑅𝑅 is the 

total precision and total recall, respectively. The total means these are metrics that are 

calculated using TP of the entire matrix over the amount of data sets used in the matrix, 

because the FP and FN are considered equivalent. Therefore, in multiclass models the 

accuracy, precision, and micro F1 score are all equal. The macro F1 score can also be 

used, as it calculates the average of the individual classes F1 score. Therefore, it 

depends on each class F1 more than the overall accuracy of the network. Lastly the 

weighted F1 score can be found by using the total number of samples for each class 

and multiplying by their F1 score and dividing by the total number of samples. 

𝑀𝑀𝑖𝑖𝑐𝑐𝑟𝑟𝑃𝑃 𝐹𝐹1 𝑆𝑆𝑐𝑐𝑃𝑃𝑟𝑟𝑒𝑒 = 2 ∗ 𝑑𝑑.𝑃𝑃𝑟𝑟𝑠𝑠𝑐𝑐𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑠𝑠∗𝑑𝑑.𝑅𝑅𝑠𝑠𝑐𝑐𝑎𝑎𝐴𝐴𝐴𝐴
𝑑𝑑.𝑃𝑃𝑟𝑟𝑠𝑠𝑐𝑐𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑠𝑠+𝑑𝑑.𝑅𝑅𝑠𝑠𝑐𝑐𝑎𝑎𝐴𝐴𝐴𝐴

 (2.25) 

𝑀𝑀𝜋𝜋𝑐𝑐𝑟𝑟𝑃𝑃 𝐹𝐹1 𝑆𝑆𝑐𝑐𝑃𝑃𝑟𝑟𝑒𝑒 =  1
𝑁𝑁
∑ 𝐹𝐹1 𝑆𝑆𝑐𝑐𝑃𝑃𝑟𝑟𝑒𝑒𝑃𝑃𝑁𝑁
𝑃𝑃=1  (2.26) 

𝑊𝑊𝑒𝑒𝑖𝑖𝑔𝑔ℎ𝑡𝑡𝑒𝑒𝑡𝑡 𝐹𝐹1 𝑆𝑆𝑐𝑐𝑃𝑃𝑟𝑟𝑒𝑒 =  ∑ (𝑤𝑤𝑖𝑖∗𝐹𝐹1𝑆𝑆𝑐𝑐𝑃𝑃𝑟𝑟𝑠𝑠𝑖𝑖)𝑁𝑁
𝑖𝑖=1

∑ 𝑤𝑤𝑖𝑖
𝑁𝑁
𝑖𝑖=1

 (2.27) 
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CHAPTER 3 

METHODOLOGY AND MATERIALS 

This chapter focuses on the development of the neural network and the training 

methods employed for creating the model. Along with this, details over the fabrication 

and calibration of the micropipette thermal sensor used in the experimental thermal 

conductivity measurements. Lastly a description of the experimental setup and 

procedure for the measurement of the propylene glycol mixtures.  

3.1 Micropipette Thermal Sensor 

The sensor used for the experimental measurement was a thermocouple 

fabricated in the laboratory. The two metals used were nickel and a bismuth tin solder 

alloy. The melting point of the alloy was 270oC, thereby making this the maximum 

measurement temperature in the research.  

The nickel was applied via sputtering deposition, which is a physical vapor 

deposition process (PVD) that is primarily used to create thin films onto a substrate. It 

occurs when an ionized gas molecule displaces atoms from a target or specific material. 

These displaced atoms from the target then bond at the atomic level to the substrate.  

When the thin film of nickel bonds to the inner core of bismuth, it creates a 

thermocouple junction. Now with the applied Seebeck effect discussed in section 1 

temperature rise can be solved from the increase in voltage of the MTS.  

3.1.1 Fabrication 

The scale of the thermocouple was on the micro size. Thick wall borosilicate 

glass 2mm in outer diameter, commonly used in biomedical applications to inject 

biological cells, was heated and pulled by a pipette puller (P-97, Sutter Instrument) to 
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create a sensor tip between 1-2 microns in diameter. 

 
Figure 8: P-97 Pulling machine 

 
Once pulled the pipette was filled with a bismuth (Bi) alloy by an injection molding 

process in conjunction with localized heating of the material. This was accomplished by 

a combination of a small heating chamber and mechanical pressurization (pushing). 

The heating chamber was maintained at 270°C; this melts the metal inside of the 

chamber. Next a steel rod pushed the molten metal to the tip by a servo motor. 

After this the excess metal needs to be grinded off from the tip of the pipette. 

This is important to create a good connection between the inner metal and the outer 

metal. This was done by the Microforge-Grinding Center MFG-5APT designed for 

beveling micropipettes with tip diameters between 0.1 and 50 µm, which was used to 

sharpen and smoothen the tip. A 2-axis micromanipulator consisting of an angle plate to 

clamp the pipette was used to keep the bevel angle at 90o. The control of the grinding 
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advancement of the pipette to the grinding surface was performed with use of fine 

control knobs mounted on the manipulator. This process was controlled by observation 

through a 20x microscope mounted on the Microforge-Grinding Center. 

 
Figure 9: Pipette filling set up 

 

 
Figure 10: Microforge grinding center MFG-5APT 
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After the tip of the pipette was grinded to create a flat surface, it was sonicated to 

clean off the debris before sputtering. This was done with Sharptek ultrasonic cleaner 

Stamina XP. Once cleaned the pipette are ready for deposition of thin film. Pipettes are 

placed inside the sputtering vacuum chamber on a rotating plate, shown in figure 12. 

The chamber is then vacuumed down to 10^-6 Torr. Argon gas is pumped into the 

chamber in order to create the high energy plasma. 150 Watts of power is sent to the 

target, and the sputtering process is run for 35 min. This creates a coating thickness of 

200-250 nm of nickel on the outside of the pipette.  

 
Figure 11: Denton vacuum sputtering machine 
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Figure 12: Pipettes placed inside of sputtering machine 

 
Once the pipette is coated, copper wire is soldered to the inner core of bismuth. 

This is done by heating outside walls of the pipette with soldering iron and feeding wire 

into the open end of the borosilicate glass. Once cooled the MTS can be tested for 

resistance to ensure no short exists in the circuit. If there is a resistance calibration of 

the MTS can occur. 

 
Figure 13: Completed MTS 
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3.1.2 Calibration 

The sensor was calibrated using a thermally insulated heated chamber filled with 

deionized water. The chamber was made of aluminum with an insulating lid of Teflon. 

Schematics of both are shown in figure 14. 

Temperature of chamber was controlled by a heater unit, with an accuracy of ± .1°C. The 
chamber was heated from room temperature 21°C to a maximum of 40°C. A high-precision 

digital thermometer and the MTS were submerged into the water and placed within a very close 
vicinity to indicate the same temperature. The voltage of the MTS was measured by 

oscilloscope (BK Precision 2190E) The voltage vs. the temperature were plotted and shown in 
figures 17 and 18. The slope of this line is the Seebeck coefficient of the MTS. 

  
Figure 14: Schematic of calibration set up 

 

3.2 Artificial Neural Network Model 

The ANN model was created in MATLAB using the deep learning toolbox and 

neural pattern recognition tool. This allows users to create a single hidden layer neural 

network with specified inputs and outputs. The designed ANN was a classification 

model.  Input data for the model consisted of a temperature vector with respect to time. 

The output was a class label representing a range of potential thermal conductivities. 
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3.2.1 Simulating Training Data 

Since one of the objectives is to demonstrate the capability of a simulation to real 

approach for thermal conductivity classification, simulated data must be used to train 

the ANN. Therefore, a finite element model was created in order to produce the 

necessary data.  

 
Figure 15: 3D cut away COMSOL multiphysics simulation of MTS with temperature scale 

 
This data were generated using a Partial Differential Equation (PDE) Solver. 

COMSOL Multiphysics was chosen to calculate transient temperature profiles given a 

parameter - thermal conductivity for the model. A 2D axis model was made to show the 

MTS and propylene glycol mixture. Next a point source heating element was added to 

emulate a laser heating of the MTS. The parameters of this heating source were 100 

mW for a 500 µs pulse. The temperature of the liquid adjacent to the MTS was sampled 

every 4 µs to get a vector of 126 temperature inputs. Evolution of this temperature was 

dependent on the thermal conductivity of the surrounding liquid, water and propylene 
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glycol in this thesis. The point at which temperature was sampled was important as with 

LPHT the temperature measured from the MTS isn’t directly at the point of contact with 

liquid. Therefore, an analysis must be performed to find the optimal distance.  

𝜌𝜌𝑐𝑐𝑢𝑢
𝜕𝜕𝑑𝑑
𝜕𝜕𝑥𝑥

+ ∇ ∙ (−𝑘𝑘∇𝑇𝑇) = 𝑄𝑄 (3.1) 

Concentration of propylene glycol in water directly impacts the mixture thermal 

properties. Thermal conductivity decreases with the increase in of glycol. Table 1 shows 

the distinction of 10% concentration and the thermal conductivity range.   

3.2.2 Designing and Training the Network 

3.2.2.1 Design 

In this study the ANN utilized was a classification network that is trained with 

SCGD. With this the learning rate is scaled based off the gradient of the cost. In order to 

create the optimal network configuration, the cost function and hyperparameters must 

be chosen. In this study the cost function used was CELF. The number of inputs to the 

network is the 126 transient temperature profile. There were nine classes in which the 

temperature profile can be assigned corresponding to the thermal conductivity range of 

the glycol concentrations. The class output or classification label was a binary vector, 

this can be seen in table 1.  

Table 1: Classification based on thermal conductivity range and glycol concentration 

Glycol % Thermal Conductivity 
Range Classification Label 

0% - 10% .608 - .542 [1 0 0      0 0 0     0 0 0] 

10% - 20% .541 - .484 [0 1 0     0 0 0     0 0 0] 

20% - 30% .483 - 432 [0 0 1     0 0 0     0 0 0] 

30% - 40% .431 - .385 [0 0 0     1 0 0     0 0 0] 

40% - 50% .384 - .342 [0 0 0     0 1 0     0 0 0] 
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Glycol % Thermal Conductivity 
Range Classification Label 

50% - 60% .341 - .303 [0 0 0     0 0 1     0 0 0] 

60% - 70% .302 - .268 [0     0 0 0 0 0     1 0 0] 

70% - 80% .267 - .238 [0     0 0 0 0 0     0 1 0] 

80% - 90% .237 - .214 [0     0 0 0 0 0     0 0 1] 
 

The last hyperparameter that the user can optimize in this network is the hidden 

layer size. Six different networks were created with hidden layer sizes ranging from 25 -

150 and compared to find the number of nodes that would yield the lowest error in 

classification. The micro and macro F1 score were calculated using each networks 

confusion matrix. Since each class had the same amount of data the Weighted F1 score 

would be equal to macro F1. A diagram of the network can be seen in figure 16 below. 

 
Figure 16: Neural network diagram, left side is the 126 temperature imputes connected by 

a system of weights to hidden layer. Lastly the hidden layer is connected to the output 
nodes that represent the thermal conductivity ranges. 
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3.2.2.2 Training 

First before training the data was normalized by using the min-max method 

described in the literature review. The normalized data were randomized and separated 

into 70% training, 15% validation, and 15% testing data sets. Training data sets are 

used with optimization methods such as gradient descent. Validation sets provides a 

way to evaluate the model during training. This prevents overfitting of the data by early 

stopping. The final testing data is used to evaluate the trained model. 

 
Figure 17: Normalized profiles of propylene glycol 

 
During training the network utilizes the training set and performs SCGD until 

either the network reaches the performance goal, maximum epoch number, or 

validation failures. The performance goal is the gradient amount the developer wants to 

achieve in this study .005 was chosen. When training the network will continue to iterate 

until this goal is reached. Therefore, a maximum epoch or iteration number is chosen to 

stop training once this value is met. This was chosen to be 300000. Lastly while training 
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the network is evaluated with the validation set. In order to prevent divergence a 

number is chosen for the number of times the network can fail the evaluation; this was 

300 in the current study.  

Using the results from the training a classification matrix can be created. This as 

described in the literature review is used to evaluate the performance of the network. 

Once the network is trained newly simulated or experimental data can be imputed into 

the matrix, which results in instantaneous classification of the thermal conductivity.  

3.3 Experimental Process  

This next section will describe the experimental process followed to prepare the 

testing samples as well as the connection of the MTS to laser and oscilloscope.  

3.3.1 Preparation of Propylene Glycol 

In order to verify the ANN the transient temperature profiles of real propylene 

glycol water mixtures were collected, normalized, and inserted into the network. This 

experiment consisted of 6 different concentrations of propylene glycol, shown in table 2 

below. Samples were prepared in 100 ml graduated cylinder and transferred to beaker 

for mixing. The water glycol samples were then mixed for 60 seconds via magnetic 

stirrer (Corning stirrer/Hot plate). 

Table 2: Experimental propylene glycol mixtures. Row 1 shows the images of the petri 
dishes, row 2 shows the corresponding percent concentration, and row 3 shows the 

thermal conductivity. 

 Dish 1 Dish 2 Dish 3 Dish 4 Dish 5 Dish 6 
Glycol 

Concentration 90% 75% 50% 25% 10% 0% 

Thermal 
Conductivity .214 .2525 .341 .4575 .541 .608 

 
 



29 

 
Figure 18: Propylene glycol water mixture placed on MTS stage 

 
Once samples were mixed the sample was poured into a 35 mm cell culture dish, 

to fit onto servo-controlled stage in the MTS thermal center. This is shown in figure 18.  

3.3.2 Experimental Setup 

The experimental setup consists of the following equipment: 

• MTS actuator 

• Stage actuator 

• Computer 

• Function Generator 

• Oscilloscope 

• Pre-amplifier 

• Laser 
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• Laser shutter 

• Migtex camera 

• 20x lens 

A schematic of this setup can be seen in figure (15). The laser is a 532 nm 

wavelength laser, with controllable power. This was set at a constant power of 100mW 

for the experiment.  Laser pulse was controlled by the function generator and Benchvue 

application on PC. This pulse was set at 500 µs to match that of the simulation.  

 
Figure 19: Schematic of the MTS experimental setup 

 
The laser travels the path shown in the schematic and through the 20x lens down 

to the stage. The Migtex camera was mounted directly above the lens to view the MTS 

tip and laser spot.  

The MTS was connected to a system which had 3 axes of manual movement: 

left/right, up/down, and forward/backward. This system had a linear actuator servo that 
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could translate the MTS up and down at a 45° angle. This is important as the tip is on 

the micron scale and needs to have small and accurately controlled movement. Next 

the stage has 2 axes of manual movement, and one linear actuator servo for up and 

down.  

The MTS was then connected to the pre-amplifier for a 500x gain on the input 

voltage. The pre-amplifier was then connected to the oscilloscope to collect the voltage 

data. Along with this the function generator was connected to the oscilloscope to create 

the trigger for data collection.  

Once everything was connected the experiment consisted of focusing continuous 

laser on tip of the pipette. This would cause the voltage on the oscilloscope to increase. 

The sample that is to be tested is placed on the stage and lifted upward until the tip is 

submerged in the liquid. This will cause an instantaneous decrease in the voltage due to 

the drastic difference in thermal conductivity of air vs. water. Once in the liquid the 

function generator is switched on and the pulse can be sent to the tip of the laser and 

the transient temperature profile can be collected and saved from the oscilloscope.  
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CHAPTER 4 

RESULTS AND DISCUSSION 

This chapter has three sections. The first covers the calibration of the sensors. 

The next goes over the results from training the ANN, discussing the chosen hidden 

layer size as well as the results from inputting new simulated data. The last section 

presents the results of the experiment and the classification of the ANN with real data.  

4.1 Calibration of Sensor 

The first step in the process was to create the MTS that can be used for testing 

the water/glycol mixtures. In this study we wanted to show the improvement of utilizing 

bismuth alloy in replacement of the tin used in previous research.  

Table 3 shows a clear improvement in the Seebeck coefficient with the addition 

of bismuth. This is logical as the difference in the Seebeck between bismuth and nickel 

is 57 μV/K, while tin and nickel is around 14 μV/K. The reason that we are not receiving 

a Seebeck on the scale of the literature value is due to the thin film deposition [46]. 

Conditions for sputtering must be improved to increase the sensitivity of the MTS. 

Annealing of the deposited thin film may enhance the sensitivity. 

Table 3: Calibration results table of Sn vs. Bi inner core metal with Seebeck coefficient 
and tip size 

Inner core material Pipette Number Seebeck  Tip Size  

Sn Pipettes 

1 2.7959 3.15 

2 1.8712 3.15 

3 3.0979 3.15 

Bi Pipettes 

1 10.386 3.15 

2 11.458 3.6 

3 11.809 3.6 
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Figure 20: Calibration of Sn MTS with similar tip sizes the slope of each of the lines 

shows the corresponding Seebeck coefficient of the MTS 
 

 
Figure 21: Calibration of Bi MTS with similar tip sizes, the slope of each of the lines 

shows the corresponding Seebeck coefficient of the MTS 
 

y = 2.7959

y = 1.8712
y = 3.0979x

-5

0

5

10

15

20

25

30

20 22 24 26 28 30 32 34 36 38 40

Vo
lta

ge
 (µ

V)

Temperature (°C)

Sn Pipette Calibration

Pipette 1 Pipette 2 Pipette 3
Linear (Pipette 1) Linear (Pipette 2) Linear (Pipette 3)

y = 10.386x 

y = 11.458x 
y = 11.809x 

-10

0

10

20

30

40

50

60

70

80

90

20 22 24 26 28 30 32 34 36

Vo
lta

ge
 (µ

V)

Temperature (°C)

Bi Pipette Calibration

Pipette 1 Pipette 2 Pipette 3
Linear (Pipette 1) Linear (Pipette 2) Linear (Pipette 3)



34 

4.2 Results from Training 

The simulation was run 900 times with 100 data sets for each class of glycol 

concentration. The transient temperature profiles were collected and normalized using 

the min-max method outlined in chapter 2. The data was then randomized and split into 

the 70% training, 15% validation, and 15% testing. These data sets were then used to 

train the ANN.  

4.2.1 Hidden Layer Size 

The first part of optimizing the ANN is to find the hidden layer size that yields the 

highest F1-Score. This would mean that it had low FNs and FPs in the confusion matrix. 

Six different network configurations were created with hidden layer size staring at 25 

nodes and increasing by 25 until 150 nodes in the hidden layer. All the networks 

received the same amount of training data for each class representing the 10% change 

in glycol concentration. Next the micro and macro F1 score was calculated using each 

networks confusion matrix. Since each class had the same amount of data the 

Weighted F1 score would be equal to macro F1.  

Table 4: Results of hidden layer size testing from 10% change in glycol concentration 
where column one represents the hidden layer size, two is the micro F1 score, and three 

is the macro F1 score 

Hidden Layer Size Micro F1 Score Macro F1 Score 
25 .9988 .9988 

50 .9933 .9962 

75 .9988 .9988 

100 1.00 1.00 

125 .9888 .9888 

150 .9977 .9977 
 

It can be seen in table 4 that all networks performed similarly with a 98% accuracy or 
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above and no clear correlation between accuracy and hidden layer size. However, the 

100 hidden layer size with a perfect performance of 0 FP and FN.  

 
Figure 22:Total data confusion matrix for varying hidden layer size. The green diagonal 

represents the data sets the network got correct. The far-right column shows the 
precision for each class, while the bottom row shows the recall. (A) 25 Hidden Nodes (B) 
50 Hidden Nodes (C) 75 Hidden Nodes (D) 100 Hidden Nodes (E) 125 Hidden Nodes (F) 

150 Hidden Nodes 
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This configuration reached the minimization at epoch number 109. The validation 

performance of this epoch was .00852 using the cost function CELF discussed in 

chapter 2. Confusion matrices for each hidden layer size can be seen in figure 22. 

These matrices are for the entire set of data meaning the training, validation and testing 

are included in the final accuracy. The column on the far right of each matrix shows the 

precision of the class, or the percentage of the classes that were correctly identified. 

While the bottom row shows the recall of the examples or the percentage of examples 

that were correctly identified as positive. The bottom right corner shows the overall 

accuracy of the ANN, which is equal to the Micro F1 score as discussed in the method.  

4.2.2 Sensitivity Analysis  

The next part of the ANN results was to find the sensitivity of the network or the 

smallest percent change in glycol that the network can detect. In order to reduce the 

output size a 0-10% glycol concentration data set was simulated in COMSOL.  

 
Figure 23: Sensitivity analysis from ANN where the network accuracy and number of 

training epochs were measured against the percent change in glycol 
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This data was used to train five different networks: .1%, .2%, .5%, 1%, 2%, and 5% 

change in the concentration of glycol. It was found that the sensitivity had an inverse 

effect on the accuracy. It means that as the ANN was trained to classify smaller percent 

changes in glycol the overall accuracy declined. Along with this the number of epochs 

increased as the sensitivity increased. This study shows promise that the ANN can 

classify small changes in glycol concentrations up to .2%, with a 96.5% accuracy. This 

can be seen in figure 23. 

4.3 Experimental Results 

This next section will cover the experimental results from measuring the 

propylene glycol water mixtures. First the optimal distance was found in order match the 

simulation to the experiment. Next the ANN classification results will be given for the 6 

glycol concentrations.  

4.3.1 Optimal Distance Testing 

Before the ANN can be utilized for testing glycol samples the optimal distance 

must be found. This is the distance from the tip of the MTS that is being measured. 

Water with a known thermal conductivity of .608 (W/mK) was tested and compared to 

simulated data with varied point of measurement. The mean absolute percent error 

(MAPE) was used to evaluate the difference between the simulated and experimental. It 

was found that the optimal distance lies between 4.2 and 4.7 µm. These results can be 

seen in table 5.  

𝑀𝑀𝑀𝑀𝐹𝐹𝐸𝐸 =  
1
𝐹𝐹
� �

𝑥𝑥𝑃𝑃 − 𝑥𝑥�𝑃𝑃
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�
𝑁𝑁
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Table 5: MAPE results from optimal distance testing. Distance of 4.2 µm yielded lowest 
percent error, leading this to be optimal distance of measurement.  

Distance 
from 
tip(µm) 

0.7 1.2 1.7 2.2 2.7 3.2 3.7 4.2 4.7 5.2 

MAPE 
(%) 79.867 58.539 42.514 30.285 20.180 12.976 7.1765 3.9760 5.9831 10.841 

 

Although this distance had the lowest error, it the experiment was still 4% off 

from the simulated profile. A comparison of both profiles can be seen in figure 24.  

 
Figure 24:Comparison of a simulated normalized temperature profile of water with a 

optimal distance of 4.2µm vs. an experimental normalized temperature profile of water 
 

Along with this different optimal distances were tested for different thermal 

conductivities and plotted. It was found that the distance stayed constant, however there 
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was a drop after the thermal conductivity fell below 2.5 W/mK. These results can be 

seen in figure 25.  

 
Figure 25: Optimal distance of MTS vs. the thermal conductivity of measured fluid 

   

4.3.2 Experimental Glycol Profiles 

In this study 6 different concentrations of glycol were tested and their transient 

temperature profiles for a 500 µs laser pulse were collected and plotted. It can be seen 

that 0% and 10% had very clear distinction in the profiles. However, as the 

concentration increased the difference in thermal conductivity decreases therefore 

distinction between profiles become blurred. This can especially be seen in 25% and 

50% concentrations. It should also be noted that 90% concentration had a very high 

slope almost following the 25% profile. This may be caused by the sensitivity of the 
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sensor. As the thermal conductivity of the liquid decreases the accuracy of the sensor 

seems to decrease as well.  These plots can be seen in figure 25.  

 
Figure 26: Experimental normalized temperature profiles of water propylene glycol 

mixtures with concentrations of: 0%, 10%, 25%, 50%, 75%, and 90% 
 

4.3.3 ANN Classification Results 

Once the optimal distance was found the networks can be trained with the 

simulated profiles for this distance. Two different networks were created with optimal 

distances of 4.2 µm and 4.4 µm. The configuration for both networks had a 100-node 

hidden layer size. This training showed similar results to the previous section, in which 

the overall network had a 98.7% and 97.2% accuracy with simulated results.  

Experimental profiles from the propylene glycol mixtures were inputted into the networks 

and the classification vectors were collected. Three trials for each mixture concentration 

of: 0%, 10%, 25%, 50%, 75%, and 90% were tested, and the results for ANN for optimal 

distance 4.2 µm and 4.4 µm are shown in tables 6 and 7, respectively.
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Table 6: Confusion matrix for the ANN with optimal distance of 4.2 µm, This network 
shows an overall accuracy of 22.2% based upon experimental results. 

   0% - 
10%  

10% - 
20%  

20% - 
30%  

30% - 
40%  

40% - 
50%  

50% - 
60%  

60% - 
70%  

70% - 
80%  

80% - 
90%  

 

0% - 
10% 0 0 0 0 0 0 0 0 0  100% 

10% - 
20% 0 0 0 0 0 0 0 0 0 100%  

20% - 
30% 6 0 2 0 0 0 0 0 3 22.2% 

30% - 
40% 0 0 0 0 0 0 0 0 0 100%  

40% - 
50% 0 0 0 0 0 1 0 0 0 0.0% 

50% - 
60% 0 0 0 0 0 2 0 0 0 100% 

60% - 
70% 0 0 1 0 0 0 0 3 0 0.0% 

70% - 
80% 0 0 0 0 0 0 0 0 0  100% 

80% - 
90% 0 0 0 0 0 0 0 0 0  100% 

  0.0% 100%  66.6% 100%  100%  66.6% 100%  0.0%  0.0% 22.2% 

 
Table 7: Confusion matrix for the ANN with optimal distance of 4.4 µm, this network 

shows an overall accuracy of 33.3% based upon experimental results 

   0% - 
10%  

10% - 
20%  

20% - 
30%  

30% - 
40%  

40% - 
50%  

50% - 
60%  

60% - 
70%  

70% - 
80%  

80% - 
90%  

 

0% - 
10% 6 0 0 0 0 3 0 3 0 50.0% 

10% - 
20% 0 0 0 0 0 0 0 0 0 100% 

20% - 
30% 0 0 0 0 0 0 0 0 0 100% 

30% - 
40% 0 0 1 0 0 0 0 0 3 0.0% 

40% - 
50% 0 0 2 0 0 0 0 0 0 0.0% 

50% - 
60% 0 0 0 0 0 0 0 0 0 100% 

60% - 
70% 0 0 0 0 0 0 0 0 0 100% 

70% - 
80% 0 0 0 0 0 0 0 0 0 100% 

80% - 
90% 0 0 0 0 0 0 0 0 0 100% 

  100% 100% 0.0% 100% 100% 0.0% 100% 0.0% 0.0% 33.3% 
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The ANN for 4.2 µm showed good classification for 25% and 50% concentrations 

with 66.6% precision for each class. Although 75% concentration has a 0% precision, it 

was put its classification between 60%-70%, which is close to the correct class. All the 

trials for 0% and 10% were not classified correct and ended with 0% precision for this 

network. However, when these profiles were tested for the ANN with optimal distance of 

4.4 µm, this network correctly classified these concentrations. With 100% precision for 

this class. This ANN had 0% precision with all other temperature profiles. Both networks 

had 0% precision with 90%, which could be attributed to this profile overlapping 25% 

and 50% profile.  We can see from the bottom right corner of the confusion matrixes the 

accuracy of 4.2 µm and 4.4 µm optimal distance were 22.2% and 33.3%, respectively.  

If we take the classification of the 0% and 10% concentration from the 4.4 µm 

optimal distance ANN and the classification of 25% and 50% concentration from the 4.2 

µm optimal distance ANN, the overall accuracy of the network would be 55.5%. The 

reason for the low accuracy of the network might be due to a shifting of the optimal 

distance at the thermal conductivity of the liquid changes. This method has validity if the 

change in optimal distance is considered when training the network.  

  



43 

CHAPTER 5 

CONCLUSION 

In this study we discussed the capability of an ANN to classify up to 10% 

differences in propylene glycol concentration. This was done by using a PDE solver to 

simulate a laser pulse unto a bismuth and nickel MTS and collecting the transient 

temperature profile every 4 µs to train the ANN. The network was designed to have 126 

inputs representing the temperature profile, a single hidden layer, and 9 outputs for the 

range’s thermal conductivity of corresponding to the concentration of glycol. Training 

consisted of utilizing SCGD meth with a CELF for the cost. The optimized configuration 

of the ANN was found by comparing different hidden layer sizes varying from 25-150. It 

was found that 100 nodes in the hidden layer produced the highest accuracy based 

upon the confusion matrix. The sensitivity of the network was also found to be .2%, 

meaning that with simulated data the network could identify a 0.0066 W/m*K change in 

thermal conductivity.  

The next part of the study was to identify if the network can replicate these 

results with real experimental data in order to demonstrate a sim to real ML approach. 

In order to complete this the optimal distance of measurement from the tip of the MTS 

had to be found. This was done by measuring a liquid with known parameters such as 

water. Utilizing this method, 4.2 µm resulted in a 3.98% MAPE. Two networks were then 

trained with an optimal distance of 4.2 µm and 4.4 µm. Next six different concentrations 

of propylene glycol water mixtures were tested with 3 profiles collected from each. The 

confusion matrix was generated for both networks resulting in an accuracy of 22.2% 

and 33.3%, for 4.2 µm and 4.4 µm optimal distance ANNs respectively. The accuracy of 
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the networks can be improved by considering a varying optimal distance depending on 

the thermal conductivity of the fluid being measured.  

5.1 Recommendations for Future work 

The following topics are recommendations to improved and continue the direction 

of the research:  

• Utilize different materials for the MTS coating such as gold which would 
increase the overall Seebeck coefficient. Along with this perform coating 
inside a clean room in which contaminates from the environment can be 
removed, thereby improving the coating quality. 

• Improve grinding quality of the tip with a laser etching technique, as this 
directly effects the performance of the MTS. 

• Compare accuracy of the ANN with a regression model instead of 
classification. 

• Gather a large amount of experimental data and train the ANN with these 
profiles and compare to ANN trained with simulated data.  

• Improve the simulated training data sets by include a secondary parameter of 
the optimal distance. 
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