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Abstract: The corrugated steel plate shear wall (CoSPSW) is a new type of steel plate shear wall, in
which corrugated wall plates instead of flat wall plates are adopted. The lateral stiffness and shear
buckling capacity of the shear wall system could be significantly enhanced, and then, wall plate
buckling under gravity loads would be mitigated. This paper presents a study on the probabilistic
assessment of the seismic performance and vulnerability of CoSPSWs using fragility functions. The
damage states and corresponding repair states of CoSPSWs were first established from experimental
data. Then, incremental dynamic analyses were conducted on the CoSPSW structures. The structural
and nonstructural fragility functions were developed, based on which the seismic performance
and vulnerability of the CoSPSWs were obtained and compared with the conventional steel plate
shear walls (SPSWs). It was shown that for various repair states, the 25th percentile PGA of the
CoSPSW was always higher than the SPSWs with the same wall thickness and boundary frame,
which indicated that the CoSPSW has a lower damage potential and better seismic performance than
the SPSW.

Keywords: corrugated steel plate shear wall; damage state; repair state; fragility function; probabilistic
assessment

1. Introduction

Steel plate shear walls (SPSWs) were proposed in the 1970s as new lateral load-resisting
systems for mid- to high-rise buildings, with advantages such as high lateral strength,
ductility, and energy dissipation capacity [1–3]. Originally, the SPSW was composed of
flat infill wall plates, boundary beams, and boundary columns, while the wall plates
were generally slender and tended to buckle under low lateral loads or gravity loads in
a serviceability limit state, which was related to wall out-of-plane deformation and an
unpleasant buckling noise. The ultimate lateral strength of the wall plate would then be
achieved through the yielding of the diagonal tension field formed due to wall buckling
under lateral loads [4], which also resulted in high anchoring forces on the boundary
frame [5]. On the other hand, wall buckling under gravity loads or during construction is
not permitted by the Chinese code [6], which prohibits a synchronized installation of the
wall plate with the rest of the story, and this hinders the construction schedule, especially
for high-rise buildings.

Corrugated steel plate shear walls (CoSPSWs) could be a viable solution in that sense;
they consist of horizontally or vertically corrugated wall plates and a boundary frame [7],
as shown in Figure 1. The corrugation significantly increases the out-of-plane stiffness and
buckling strength of the wall plate, which would then resist the lateral loads through in-
plane shear instead of tension field action. In addition, due to the “accordion effects”, axial
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stiffness will be at its minimum when perpendicular to the rib and greatly enhanced when
parallel to the rib. In addition, horizontal or vertical corrugation could either minimize
or resist the vertical stresses transferred to the wall plates from gravity loads and thus
avoid buckling during construction. Therefore, corrugated wall plates could be erected
simultaneously with the rest of the story and considerably increase construction speed,
especially for high-rises.

Metals 2022, 12, 1045 2 of 17 
 

 

in-plane shear instead of tension field action. In addition, due to the “accordion effects”, 

axial stiffness will be at its minimum when perpendicular to the rib and greatly enhanced 

when parallel to the rib. In addition, horizontal or vertical corrugation could either mini-

mize or resist the vertical stresses transferred to the wall plates from gravity loads and 

thus avoid buckling during construction. Therefore, corrugated wall plates could be 

erected simultaneously with the rest of the story and considerably increase construction 

speed, especially for high-rises. 

Experimental [8–17] and numerical analysis [18–23] have been conducted on the cy-

clic and lateral behavior of CoSPSWs and have revealed that the hysteresis curve pinching 

of flat wall plates could be obviously improved and energy dissipation could be increased 

accordingly [20,21], and the corrugated wall plates could even achieve shear yielding 

sometimes, which significantly lowered the anchoring forces on the boundary frame [15]. 

Furthermore, extended research has been conducted on corrugated steel shear walls with 

perforations or openings [24–27], a reduced beam section [28,29], a semi-rigid boundary 

frame [30], and a low-yield-point steel wall panel [31], as well as on the application of 

corrugated steel shear walls in a modular structural design [32]. A performance-based 

seismic design (PBSD) procedure has also been proposed [33], and time-history analyses 

have revealed that the inter-story drift of the CoSPSW with PBSD distributed more 

smoothly than the CoSPSW with a traditional design, which helped to avoid weak stories. 

 

Figure 1. Corrugated steel plate shear wall. 

In order to acquire a rational estimation of potential seismic losses, the seismic per-

formance of structures could be quantitatively evaluated through a probabilistic assess-

ment method, which is realized by developing analytical fragility functions. Fragility 

functions are statistical models that could predict the possibility of structures reaching or 

exceeding different damage states under different earthquake intensities; therefore, they 

could characterize the seismic performance of structures quantitatively and describe the 

relationship between the earthquake intensity and the damage state of structures.  

Researchers have conducted probabilistic seismic assessment on various wall struc-

tures and evaluated their seismic performance by developing fragility functions for dif-

ferent damage states or repair states. Baldvins et al. [34] established twelve damage states 

and five repair states of SPSWs based on experimental results and observations and de-

veloped the fragility functions for each repair state. Negar et al. [35] established five dam-

age states and the corresponding repair states of steel-plate concrete composite shear 

walls based on experimental results and observations and derived the fragility functions 

for the damage states associated with concrete crushing and faceplate fracture. Wang et 

Figure 1. Corrugated steel plate shear wall.

Experimental [8–17] and numerical analysis [18–23] have been conducted on the cyclic
and lateral behavior of CoSPSWs and have revealed that the hysteresis curve pinching of
flat wall plates could be obviously improved and energy dissipation could be increased
accordingly [20,21], and the corrugated wall plates could even achieve shear yielding
sometimes, which significantly lowered the anchoring forces on the boundary frame [15].
Furthermore, extended research has been conducted on corrugated steel shear walls with
perforations or openings [24–27], a reduced beam section [28,29], a semi-rigid boundary
frame [30], and a low-yield-point steel wall panel [31], as well as on the application of
corrugated steel shear walls in a modular structural design [32]. A performance-based
seismic design (PBSD) procedure has also been proposed [33], and time-history analyses
have revealed that the inter-story drift of the CoSPSW with PBSD distributed more smoothly
than the CoSPSW with a traditional design, which helped to avoid weak stories.

In order to acquire a rational estimation of potential seismic losses, the seismic perfor-
mance of structures could be quantitatively evaluated through a probabilistic assessment
method, which is realized by developing analytical fragility functions. Fragility functions
are statistical models that could predict the possibility of structures reaching or exceeding
different damage states under different earthquake intensities; therefore, they could charac-
terize the seismic performance of structures quantitatively and describe the relationship
between the earthquake intensity and the damage state of structures.

Researchers have conducted probabilistic seismic assessment on various wall struc-
tures and evaluated their seismic performance by developing fragility functions for different
damage states or repair states. Baldvins et al. [34] established twelve damage states and
five repair states of SPSWs based on experimental results and observations and developed
the fragility functions for each repair state. Negar et al. [35] established five damage states
and the corresponding repair states of steel-plate concrete composite shear walls based on
experimental results and observations and derived the fragility functions for the damage
states associated with concrete crushing and faceplate fracture. Wang et al. [36] conducted
incremental dynamic analyses on coupled low-yield-point steel plate shear walls, based
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on which six damage states were established and fragility functions were developed for
different damage states.

In addition, probabilistic seismic assessment was conducted on structural frames
retrofitted with different types of steel walls or panels using fragility functions for dif-
ferent damage states or repair states. Zhang et al. [37] conducted time-history analyses
on retrofitted SPSW systems in order to develop the fragility functions and found that
the SPSW with low-yield-point steel wall plates had lower seismic vulnerability than
the SPSW with ordinary steel wall plates. Jiang et al. [38,39] conducted incremental
dynamic analyses on steel frames retrofitted with steel panels and developed the fragility
functions and validated the effectiveness of adding steel panels to reduce the seismic vul-
nerability of existing steel frame buildings. Bu et al. [40] conducted incremental dynamic
analyses on steel frames equipped with four different types of steel slit shear walls and
developed the fragility functions, and the type with best performance was identified
for all damage states. Currently, research on the probabilistic seismic assessment of
CoSPSWs is still very limited.

In this paper, the seismic performance of CoSPSWs will be quantitatively evaluated
through the probabilistic assessment method using fragility functions, which has not
been reported in current literature. The damage states and corresponding repair states of
CoSPSWs will first be established through experimental results and test observations. Then,
incremental dynamic analyses will be conducted on a 10-story CoSPSW using PBSD, based
on which analytical fragility functions will be developed for the different damage and repair
states of structural and nonstructural components. Finally, the seismic performance and
vulnerability of the CoSPSW and the SPSW are evaluated and compared probabilistically
using the fragility functions.

2. Damage States and Repair States
2.1. Establishment of Damage States and Repair States

The seismic performance and the vulnerability of the structures can be assessed
through the probabilistic assessment, which estimates the probabilistic structural re-
sponse, i.e., the engineering demand parameter (EDP) as a function of ground motion
intensity, i.e., the intensity measure (IM), and uses quantitative measures to evaluate
the structural and nonstructural performance under seismic loads [37]. Therefore, first
it is necessary to determine the engineering demand parameter, which could be peak
inter-story drift, peak floor acceleration or ductility, etc. As the peak inter-story drift and
the peak floor acceleration are used for seismic loss estimation in HAZUS-MH MR5 [41],
these two structural response factors were chosen as the engineering demand parameter
(EDP) in this study. The geometry and peak inter-story drift of 19 corrugated steel plate
shear wall specimens from nine cyclic tests are summarized and shown in Table 1 below.

From the test observations on the 19 specimens listed in Table 1 and the relevant
damage states of SPSW [34], 12 damage states (DS1–DS12) and 5 repair states (RS1–RS5)
were established to describe the damage degree of the CoSPSW specimens and deter-
mine the corresponding repair methods, as shown in Tables 2 and 3. For damage states
DS1,2,4,5, and 6, structural repair is not necessary as there is no permanent residual
deformation. For damage states DS 3 and 9, the corrugated web plate suffers relatively
severe damage and cannot recover the initial state. Thus, the infilled corrugated web
plate needs to be replaced. For DS7,8,10, and 11, FEMA 352 (FEMA 2000) [42] recom-
mends that the frame members should be repaired when the buckling degree exceeds
tolerances and offers details for various repair methods depending on the extent of the
damage. For DS12, the structure suffers extreme damage and the VBEs and HBEs, or the
entire CoSPSW, need to be replaced.
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Table 1. Test data of 19 corrugated steel plate shear wall specimens.

Specimen No. Thickness (mm) Aspect Ratio (L/H) Height-to-Thickness
Ratio (H/t)

Peak Inter-Story
Drift (%)

Emami [9] S-2
S-3

1.25
1.25

1.33
1.33

1184
1184

6.10
6.10

Hos [11]
C-30
C-45
C-60

1.25
1.25
1.25

1.20
1.20
1.20

1261
1261
1261

6.35
6.35
6.35

Ding [12]

CSPSW-1
CSPSW-2
CSPSW-3
CSPSW-4

1.60
2.00
1.60
1.66

1.22
1.22
0.83
1.22

1687
1687
1687
1687

4.00
2.20
4.00
2.10

Sudeok Shon [13] FR-TR-V
FR-TR-H

3.20
3.20

1.69
1.69

555
555

8.00
8.00

Cao [14] S-1
S-2

2.93
2.47

0.96
0.71

425
628

2.53
1.48

Zhao [15]
S-2
S-3
S-4

2.00
2.00
2.00

1.00
1.00
1.00

550
550
550

5.00
4.00
4.50

Wang [16] SPSW-2
SPSW-3

3.00
3.00

0.70
0.70

660
660

1.90
2.30

Jin [17] CoSPSW 5.00 1.00 180 2.50

Table 2. Damage states.

Damage State Description Damage
State Description

1 Elastic Web Plate Buckling for Slender
Corrugated Web Plate 7 HBE Local Buckling Requiring Repair

2 Initial Corrugated Web Plate Yielding 8 VBE Local Buckling Requiring Repair

3 Significant Plastic Deformation of
Corrugated Web Plate 9 Corrugated Web Plate Cracking

4 Initial HBE and/or VBE Yielding 10 HBE and HBE-to-VBE Connection Cracking

5 Initial VBE Local Buckling 11 VBE Cracking

6 Initial HBE Local Buckling 12 Connection and/or Boundary Frame Failure

Table 3. Repair states and corresponding damage states.

Repair State Description Corresponding Damage States

1 Cosmetic repair 1,2,4,5,6

2 Replace Web Plate 3,9

3 HBE and Connection Repair 7,10

4 VBE Repair 8,11

5 Replace Boundary Elements or Frame 12

The inter-story drifts are also recorded from the test observations on the 19 specimens
listed in Table 4. The median value, coefficient of variation, and the number of data points
of the inter-story drift for each damage state and repair state are listed in Tables 4 and 5,
respectively. Figure 2 shows the distribution of the repair states and the corresponding
inter-story drift. As shown in Table 4, the median drift increases with the damage state,
which indicates that the ordering of the states is proper and consistent with the damage
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sequence. From Table 5 and Figure 2, it can be known that for RS1, RS2, and RS4 the
results are more accurate because the number of data points is more abundant, with a
smaller dispersion. For RS3, there are fewer data points and related descriptions; so, the
determination of this repair state is more subjective. For RS5, as the ultimate performance
of the CoSPSW is obviously affected by the wall corrugation configuration that varies with
each group of test specimens, the dispersion of the data points is more obvious. Figure 2
also shows that the inter-story drift gradually increases when the repair state varies from
RS1 to RS5, which further shows that the established repair state sequence is reasonable
and consistent with the ideal failure sequence of the CoSPSW. It is worth noting that the
height-to-thickness ratio of the specimens collected in this paper ranges from 425 to 1261,
and the aspect ratio ranges from 1 to 1.33.

Table 4. The inter-story drift data of 19 tested specimens of each damage state.

DS Median (%) COV Data Points

1 0.19 0.15 5

2 0.25 0.32 4

3 0.42 0.39 10

4 0.26 0.45 5

5 - - 0

6 - - 0

7 1.07 0.20 2

8 1.25 0.17 5

9 1.37 0.35 10

10 - - 0

11 3.00 0.10 3

12 4.10 0.39 10

Table 5. The inter-story drift data of 19 tested specimens of each repair state.

RS Median (%) COV Data Points

1 0.19 0.38 14

2 0.80 0.63 20

3 1.07 0.20 2

4 1.51 0.40 8

5 4.10 0.39 10
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2.2. Calibration of Recommended Values of Inter-Story Drift

The damage and repair probability are estimated based on the threshold values of
the structural response parameters, e.g., inter-story drift. These threshold values of differ-
ent repair states are generally obtained from test observations and adjusted through the
maximum likelihood method. The values of inter-story drift determined by the maximum
likelihood method would be more reasonable as they can avoid the random errors caused
by using the median and standard deviation of the sample data directly.

Table 6 lists the median value and standard deviation value of inter-story drift, calcu-
lated through the maximum likelihood method using Matlab. It can be seen from Table 6
that the calculated value θx is close to the median value of the inter-story drift in Table 5.
In addition, the calculated value βx is further adjusted for the convenience of practical
application, according to the recommendation of ATC-58 [43], as in Equation (1) below.
Finally, the adjusted θx and β values are appropriately rounded up to θrec and βrec for the
convenience of the design and application, as shown in Table 6.

β =
√

β2
x + β2

u (1)

where βx is the standard deviation value calculated by the maximum likelihood method,
and βu is taken as 0.25 in order to consider uncertainty in the statistics and the limitation of
the number of experimental data.

Table 6. Repair state statistics and recommended values (%).

Repair State θx βx β θrec βrec

RS1 0.23 0.31 0.39 0.20 0.40
RS2 0.80 0.63 0.67 0.80 0.50
RS3 1.06 0.14 0.29 1.00 0.40
RS4 1.76 0.38 0.46 1.80 0.40
RS5 4.31 0.47 0.54 4.30 0.50

Table 7 summarizes the recommended inter-story drift θrec of each repair state and the
corresponding description of the CoSPSWs and SPSWs, in which the recommended inter-
story drift and repair states for the SPSWs were established by Baldvins et al. [34], based
on experimental observations. As seen in Table 7, no inter-story drift was recommended
for RS4 because there were not enough experimental data. The recommended inter-story
drift of “Repair boundary column” for the SPSW is lower than that of the CoSPSW because
the anchoring forces from the yielding of the diagonal tension field in the flat wall plates in
the SPSW would increase the damage degree of the boundary column.

Table 7. Repair states and recommended inter-story drift of CoSPSWs and SPSWs.

Repair States
Recommended Inter-Story Drift Description

CoSPSW SPSW CoSPSW SPSW

RS1 0.002 0.004 Repair infill wall surface

RS2 0.008 0.006 Replace infill wall

RS3 0.01 0.015 Repair boundary beam and
beam-column connection Repair boundary column

RS4 0.018 - Repair boundary column Repair boundary beam and
beam-column connection

RS5 0.043 0.0275 Replace boundary beam, column, or frame

Tables 8 and 9 show the damage degrees of drift-sensitive and acceleration-sensitive
nonstructural members, according to the recommendation of HAZUS-MH MR5 [41], which
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are divided into four grades, namely “slight”, “moderate”, “severe”, and “complete”. The
seismic performance and vulnerability assessment of the structure will be conducted in
later sections using these repair states/damage states and the corresponding inter-story
drift or peak floor acceleration.

Table 8. Damage states for nonstructural drift-sensitive components.

Damage States Slight Moderate Extensive Complete

Inter-story drift 0.004 0.008 0.025 0.050

Table 9. Damage states for nonstructural acceleration-sensitive components.

Damage States Slight Moderate Extensive Complete

Peak floor acceleration 0.3 g 0.6 g 1.2 g 2.4 g

3. Incremental Dynamic Analyses
3.1. Structural Models

In order to obtain the relationship between the EDP and the IM, incremental dynamic
analyses were conducted on 10-story CoSPSW structures designed with PBSD [33], based
on which the fragility function was developed, and the probabilistic vulnerability was
assessed. For comparison, two models were studied: (i) a 10-story CoSPSW with a span of
4.5 m and a story height of 3.2 m and (ii) a 10-story SPSW using a flat steel plate with the
same thickness and boundary frame as that of the 10-story CoSPSW. The floor plan is shown
in Figure 3. The dead (live) load was 4.0 (2.0) kN/m2 on the floors and 4.5 (2.0) kN/m2

on the roof. The construction site is Class II (i.e., medium-stiff soil) within a region of
Seismic Intensity 8 and Design Earthquake Group I [44]. The floor was 120 mm thick
cast-in-place concrete, and the beams and columns were steel welded H-sections with
rigid beam-column connections. Q235B grade steel (235 MPa design yield strength) and
Q345B grade steel (345 MPa design yield strength) were used for the wall plates and frame
members, respectively. The corrugation depth and wavelength of the corrugated wall plate
were 100 mm and 400 mm, respectively, and the width of the subpanels was uniform. The
design parameters and member sections are shown in Tables 10 and 11.
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Table 10. Design Parameters for the structural model.

Design Parameter Value

Horizontal seismic influence factor 0.463
Spectral acceleration Sa/g 1.106
Fundamental period T/s 1.152

Yield drift θy 0.005
Target drift θu 0.025

Ductility coefficient µs 5
Ductility reduction coefficient Rµ 5

Energy correction factor γ 0.360
ξ 2.745

Vy/W 0.152

Table 11. Member Sections from of the structural model.

Floor Columns in the Wall Plate Span * Columns Outside the Wall Plate Span * Wall Plate Thickness (mm)

10 H450 × 450 × 12 × 20 H350 × 350 × 16 × 18 1.8
9 H500 × 500 × 14 × 22 H400 × 400 × 16 × 18 3.0
8 H550 × 550 × 18 × 26 H400 × 400 × 16 × 20 4.0
7 H600 × 600 × 24 × 32 H450 × 450 × 16 × 22 4.9
6 H600 × 600 × 32 × 42 H450 × 450 × 20 × 26 5.6
5 H650 × 650 × 36 × 48 H500 × 500 × 20 × 26 6.3
4 H650 × 650 × 48 × 56 H500 × 500 × 24 × 28 6.9
3 H700 × 700 × 48 × 56 H550 × 550 × 24 × 28 7.3
2 H750 × 750 × 56 × 64 H550 × 550 × 28 × 32 7.6
1 H750 × 750 × 68 × 72 H600 × 600 × 28 × 36 7.8

* Note: H sections: overall depth (mm) × flange width (mm) × web thickness (mm) × flange thickness (mm).

3.2. Finite Element Models

Two 3-span structural models with wall plates in the interior span and moment frames
in the exterior spans were modeled using finite element software ABAQUS (SIMULIA, 2014),
as shown in Figure 4. Both the frame beams and the columns were modeled using beam
element B31, while the corrugated wall plates were simplified into an equivalent braces
model [45] using truss element T3D2, according to the principle of equivalent lateral
stiffness and strength. The area Aeb and the yield strength f eb of the equivalent brace
model were calculated from Equation (2) and Equation (4), respectively [45]. The flat wall
plates were simplified into a strip model, in which 10 equally spaced discrete tension-only
strips oriented at 45◦ relative to the vertical were represented. The truss element T3D2 was
used to model the strip, and the area of strip As was calculated from Equation (5). The
out-of-plane displacements were restrained at all the beam-column joints, and the columns
were fixed at the base. A bilinear elastoplastic constitutive model that considered the strain
hardening was adopted for the steel material of the infill wall plate and the boundary
members, with an elastic modulus E = 206 GPa, a strain hardening modulus Eh = 0.01E, a
Poisson’s ratio v = 0.3, and yield strengths of 235 MPa and 345 MPa, respectively.

Aeb =
KPleb

2E cos2 β
(2)

KP =
0.95Eqcolnt

2hsco(1 + ν)
(3)

feb =
τcrlnt

2Aeb cos β
(4)

As =
tw
√

L2
e + H2

e
n2

cos[45
◦ − tan−1(He/Le)] (5)
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where leb is the length of the equivalent brace; qco and sco are the wavelength and corrugation
developed length, respectively; tw is the thickness of the wall plate; Le and He are the net
width and net height of the wall plate; and n2 is the number of tension-only strips, which
was taken as 10 in this study.
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Figure 4. Finite Element Model: (a) the 3-span structure, (b) the SPSW model, and (c) the CoSPSW model.

The accuracy of the finite element model was validated by comparing the numerical
analysis results with the experimental results. In order to accomplish the validation, the
cyclic experimental specimen of a single-story CoSPSW specimen [9] and a three-story
SPSW specimen [46] were considered. As shown in Figure 5, the hysteretic curve of the
finite element analysis correlates well with the experiment results, which means that the
equivalent braces model and the tension-only strip model are appropriate and precise in
reflecting the responses of the CoSPSW and SPSW, respectively.
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Figure 5. Validation of the finite element analysis: (a) validation of CoSPSW model, (b) validation of
SPSW model.

3.3. Incremental Dynamic Analyses

Incremental dynamic analyses (IDA) were carried out on both the CoSPSW and the
SPSW structures, in which additional masses were applied at the beam-column joints, and
the earthquake excitation was input through the base. As shown in Table 12, ten earthquake
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excitation records with a magnitude of higher than 6.5, an effective period larger than
4 s, and different spectrum characteristics were selected, according to the Chinese seismic
design specification [44]. The peak ground acceleration (PGA) of the seismic excitations was
adjusted from 0.1 g to 1.2 g, with an interval of 0.1 g for the incremental dynamic analyses.

Table 12. Selected Ground Motions.

Record No. Record Minimum
Frequency (Hz)

PGA
(g)

PGV *
(cm/s)

RSN0169 IMPVALL.H_H-DLT352 0.09 0.35 33
RSN0174 IMPVALL.H_H-E11230 0.10 0.38 45
RSN0752 LOMAP_CAP090 0.25 0.51 38
RSN0767 LOMAP_G03090 0.13 0.56 45
RSN0953 NORTHR_MUL279 0.15 0.49 67
RSN0960 NORTHR_LOS270 0.13 0.47 41
RSN1111 KOBE_NIS090 0.13 0.48 47
RSN1485 CHICHI_TCU045N 0.05 0.51 46
RSN1602 DUZCE_BOL090 0.06 0.81 66
RSN1787 HECTOR_HEC090 0.04 0.33 45

Note: * PGV: peak ground velocity.

In this study, the inter-story drift and the peak floor acceleration were chosen as the
engineering demand parameter (EDP), and the peak ground acceleration (PGA) was chosen
as the intensity measure (IM), with reference to previous studies on the probabilistic assess-
ment of various structures, including SPSWs [37]. The probabilistic seismic assessment was
then employed to relate the EDPs to the IMs and derive the fragility functions. The mean
and standard deviation of the EDP for a given IM were estimated by regression analysis,
and the relationship between the mean EDP and IM is as follows:

EDP = a(IM)b or ln(EDP) = b ln(IM) + ln(a) (6)

where the constants a and b are the regression coefficients obtained from the IDA analysis. It
is assumed that the remaining variability in ln (EDP) for a given IM has a constant variance
for all IMs, and the standard deviation can be obtained as follows [47]:

ζEDP|IM =

√√√√√ N
∑

i=1

[
ln(EDPi)− ln

(
a(IMi)

b
)]2

N − 2
(7)

where N is the number of EDP-IM pairs, and EDPi and IMi are the values of the i-th pair.
From the incremental dynamic analyses, a large number of peak inter-story drift,

peak floor acceleration, and corresponding PGA, i.e., EDP-IM, data pairs were obtained,
and ln[IM = PGA] − ln[EDP = Drift] and ln[IM = PGA] − ln[EDP = PFA] are plotted in
Figures 6 and 7, respectively. The values of parameters a and b can be obtained by perform-
ing regression analysis on the ln [IM = PGA] and ln [EDP = Drift] from the incremental
dynamic analysis results. The coefficient R2, which describes the quality of the fitting
effect of the two parameters, was obtained through linear regression analyses, and R2

was near 0.8 for the two EDP-IM pairs of the SPSW and CoSPSW structures, indicating a
strong correlation. Therefore, the Drift-PGA and PFA-PGA data pairs were appropriate
for developing the fragility functions. The lognormal distribution parameters a and b,
the standard deviation ζEDP|IM, and the functions were then determined and are shown
in Table 13.
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Figure 6. Relationship between ln[IM = PGA] and ln[EDP = Drift]: (a) CoSPSW, (b) SPSW.
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Table 13. Regression coefficients, standard deviation, and function for EDP–IM data pairs.

Model
Selected Regression Coefficients

ζEDP|IM Function
EDP IM a b

CoSPSW
Drift PGA 0.0244 0.7633 0.2792 Drift = 0.0244(PGA)0.7633

PFA PGA 1.3054 0.6144 0.1882 PFA = 1.3054(PGA)0.6144

SPSW
Drift PGA 0.0421 1.1021 0.2919 Drift = 0.0421(PGA)1.1021

PFA PGA 1.4613 0.6534 0.2810 PFA = 1.4613(PGA)0.6534

4. Probabilistic Assessment
4.1. Fragility Functions

Assuming that the engineering demand parameter (EDP), i.e., the peak inter-story
drift and the peak floor acceleration, has a lognormal distribution for a given intensity
measure (IM), then the fragility function defining the probability of the EDP reaching or
exceeding a certain limit state (LS) under a given IM is as follows

P(EDP ≥ LS|IM) = 1−
∫ LS

0

1√
2π · ζEDP|IM · EDP

· e

[
− 1

2

(
ln (EDP)−ln (a(IM)b)

ζEDP|IM

)2
]
· d(EDP) (8)
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Accordingly, ln (EDP) can be considered to have a standard normal distribution, and
Equation (8) could be simplified into the following equation, using the standard normal
cumulative distribution function Φ (·):

P(EDP ≥ LS|IM) = 1−Φ

 ln(LS)− ln
(

a(IM)b
)

ζEDP|IM

 (9)

The damage and repair probability were determined based on the threshold values
of the EDP, e.g., the inter-story drift and peak-floor acceleration, which initiate different
damage states and repair states. These threshold values are LS in Equations (8) and (9) and
are shown in Tables 7–9. According to the considered threshold values of the repair/damage
states and the regression coefficients obtained through IDA analysis, the fragility curves for
the structural and nonstructural components were obtained for the 10-story CoSPSW and
SPSW, respectively, and are shown in Figures 8–10.
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Figure 8. Structural Fragility Curves: (a) CoSPSW, (b) SPSW.
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Figure 9. Drift-sensitive nonstructural components fragility curves: (a) CoSPSW, (b) SPSW.

4.2. Seismic Vulnerability

When the variation is similar, the seismic vulnerabilities of the different structures
could be compared through the 25th percentile PGA values, i.e., the PGA values corre-
sponding to exceeding the probability of 25% [48]. The larger the 25th percentile PGA
values, the better the structural performance in earthquakes, as it indicates that the struc-
ture needs to undergo higher levels of seismicity to suffer the damage level. The seismic
vulnerability of the CoSPSW and the SPSW structures were then assessed by comparing
the 25th percentile PGA values of the structural and nonstructural fragility curves for the
damage/repair states, as shown in Figures 11–13.
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Figure 10. Acceleration-sensitive nonstructural components fragility curves: (a) CoSPSW, (b) SPSW.
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It is clear from Figures 11–13 that from the RS1 to the RS5 repair states and from
the “Slight” to the “Complete” damage states, the 25th percentile PGA values for both
the CoSPSW structure and the SPSW structure increase significantly, indicating that the
structures would experience more serious damages with the increase in seismic intensity.
Furthermore, from the RS1 to the RS5 repair states, the 25th percentile PGA values of the
fragility curves of the CoSPSW structure are 22%, 33%, 18%, and 62% higher than those
of the SPSW structure, respectively. For the same repair method concerning the repair of
the boundary column (the RS4 of the CoSPSW), the 25th percentile PGA value is 0.53 g,
which is 55% higher than the RS3 of the SPSW. This indicates that for a given damage
state, the CoSPSW is required to undergo higher levels of seismicity to suffer the same
damage degree as the SPSW. For the drift-sensitive nonstructural damage state of “Slight”
to “Complete”, the 25th percentile PGA values of the fragility curves of the CoSPSW
structure are 22%, 5%, 54%, and 51% higher than those of the SPSW structure, respectively.
For the acceleration-sensitive nonstructural damage state of “Slight” to “Complete”, the
25th percentile PGA values of the fragility curves of the CoSPSW structure are 13%, 24%,
28%, and 32% higher than those of the SPSW structure, respectively.

Therefore, as the number of damage states/repair states increases, the 25th percentile
PGA values of the CoSPSW become obviously higher than those of the SPSW, which
indicates that the CoSPSW has a lower seismic vulnerability and probability of structural
and nonstructural damage than the SPSW structure, especially for the repair state RS5
for the structural members and the “extensive” and “complete” damage states for the
non-structural members.

5. Conclusions

(1) The inter-story drift data on the seismic performance of the corrugated steel plate
shear walls (CoSPSWs) were collected and analyzed. The observations on the cyclic
behavior of the 19 CoSPSW test specimens have resulted in the development of twelve
damage states. Five repair states were also proposed to consider the difficulty of repairing
the observed damage following the earthquake, ranging from cosmetic repair to member
or boundary frame replacement.

(2) In order to avoid the random error caused by the direct use of the median and
standard deviation of the test data, the maximum likelihood method was used to calculate
the median value and the standard deviation value of the inter-story drift. According to
ATC58, the recommended median value θrec and the standard deviation value βrec of the
inter-story drift corresponding to the different repair states of the CoSPSW were derived
and were used as the threshold value of each repair state in the fragility function.
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(3) Incremental dynamic analyses (IDA) were conducted on a 10-story CoSPSW struc-
ture and a conventional steel plate shear wall (SPSW) structure with the same wall plate
thickness and boundary frame. From the IDA results, the relationship between the EDP
(peak inter-story drift/peak floor acceleration) and the IM (PGA) were obtained. The coeffi-
cient R2 was approximately 0.8, which meant that the data-fitting was relatively precise.
Based on the relationship between the EDP and the IM, the regression coefficients in the
fragility function were obtained.

(4) According to the recommended threshold values of the repair/damage states
and the regression coefficients obtained through incremental dynamic analyses (IDA),
fragility curves were obtained for the 10-story CoSPSW structure and the SPSW structure,
respectively. It was shown that the 25th percentile PGA of the CoSPSW was higher than
that of the SPSW for various repair states and damage states, especially for the repair state
RS5 for the structural members and the “extensive” and “complete” damage states for the
non-structural members. Therefore, the CoSPSW structure had a lower damage degree and
better seismic behavior than the SPSW structure.
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