UNCLASSIFIED

Oltan-1983

comr wo. 13

Cemereet Mins. W-7aO\$-2\#2S

BIOLOGY DIVISION
 SEMANANUAL PROGRESS REPORT
 for Perled Ending Augwes 15, 1955
 Alexander Hollaender, Dirwetor
 Stonley F. Corson, Assistant Director
 Edited by E. J. Slowghter

Quotations from or references to this report must not be mode in opwn titerature without written permission fivom the individual authers.

DATE ISSUED

DEC 121055

OAK RIDEZ mational labonatory Oporsted ly
UnHON CARBHDE NUCLEAR COMPANY

Oalk RMiden, Tehmerwee
UNCLASSIFIED

UMCLASSIFIED

UNELASSIFIED

CONTENTS

PUBLICATIONS AND LECTURES 1
Publicetions 1
Seientific Society Lectures and Traveling Seminors 3
Visiting Lecturers. 10
Education 12
Speokers at Professional Meetings, Foll 1955 12
CYTOLOGY AND GENETICS 13
Cytogenetic Effects of Radiation 13
Effect of postirrodiation temperature on mutotion induction in Panamecium aurelia 13
Effect of X roys on nuclecr exchange at conjugation 14
Studies on cobolt tronsport in Tetrabymena 15
Effect of axygen on primory breakoge and fusion in Tredescantia chromosome oberrations 18
Incompleteness of exchanges 18
Retio of terminal deletions to exchenges 18
Ascites tumor production by single-cell inocula 19
Production of two types of X-roy-induced chromosome breaks 20
Further studies on the biochemistry of chromasome rejoining 22
Dominance velotions in Neturospona heterokeryons 23
Relation between the lethal effects of X roys on microconidie and ascespores 25
Radiation-induced mutations in maize 25
Effects of chemical treatments and radiations on the growth of timothy roots 26
Effects of alpho-particle irradiotion 27
Insect Cytology and Genetics 27
X-roy-induced dominant lethality and chromosomal abberations in o thelytokeus wasp 27
X-ray-induced gene mutations in Nemeritis camescens 28
Recessive lethal mutetions induced by X roys in the first meiotic prophose of Halrobracon oocytes. 29
Rodiosensitivity of the unfortilized Halroboracon egg 30
Effects of polonium alpho porticles on hetchability of Habrolracon epgs 31
Preliminary data an the irrodiation of the cytoplasm and the nuclei of Habrobracom eggs with vorious wove lengths of monochromatic ultraviolet radiation 33
Drosopbila Genetics 35
On the structure of the sce ${ }^{0} \cdot \mathbf{Y}: \mathrm{buw}^{+}$chromosome of Drosopbila melanogaster 35
Constitution of recessive lethals induced by radiations of different ion densitios 36
Anolysis of rod-ahoped derivatives of on unstable ring-X ehromosome in Drosopbila melanogaster 38
Importance of the distribution of the heterochromatin within the genotype to the viability of the argonism 40
Kinetic activity of centrameres associated with Y^{L} 43
Regional inhibition of cressing over in the X chromasome in response to the presence of an outosomal inversion. 44
Chromosomol interference in artoched-X femoles 47
MICROBIAL PROTECTION AND RECOVERY 49
Rodiation Protection and Recovery in Bacteria 49
Protein end nucleic acid synthesis during recovery of becteria. 49

UNCLASSIFIED

Oin the relation between X-ray protection and induced mutogenwais in Escherichia cooli ouxotrophs 50
Pre- and postitrodiation studies with long-ultraviolet and short-visible radietions an Escherichia soli B/r 52
Rediotion protection by $\mathrm{S}, \mathrm{\beta}$-aminoerthylisorthiuronium- $\mathrm{Br}-\mathrm{HB} \mathrm{r}$ and related compounds 53
Effect of streptomycin on survival 53
Protective effectivaness of AET and MEA by wse of $\mathrm{C}, \mathrm{H} \times 101$ mice 55
Experiments with $\mathrm{C}_{2} \mathrm{H}$ mice treated with AET and APT 56
MAMMLIAN RECOVERY 59
Modification of Rediation Injury in Mice 59
Recovery of X-irrodiated mice injected with whole levkemoid bloed or with leukocyte- pletelet suspensions 59
Relation of lymphatic tisave regenaration to survival of bone morrow-treated irrodiated mice 61
Bone murrow response of X-itrodiated mice receiving varying amounts of isologove bone marrow suspensions 61
Preliminary data from studias of deleyed effects in mice surviving totol-bedy expesures to messive doses of X redietion 6)
Sicreening of tisswes for new recovery agents 63
Morderim glond test for trensplentotion of homologous bone morrow cells following totel-body X irrediation 63
MAMMALIAN GENETICS AND DEVELOPMENT 65
Genetic and Developmental Effects of Rediotion in Mice 65
Rodiotion-induced mutations in the mouse 65
Gommorgy sensitivity of spermetogonie of the mouse. 65
PATHOLOGY AND PHYSIOLOGY 69
Parhologic and Plysiologle Effects of Rediation 69
Rodiotion-induced myeloid tevikemia 69
Mechoniam of radiation recevery by morrow tronsfusion - evidence of repopulation 69
Effects of rodiation on megelkeryocytes and platelets - uptoke of $\mathrm{S}^{2 s}$-lobeled sulfate 72
Transplented chloromy eloid feviremie in rats 73
Binding of $\35-lobeled oulfate in rat serum 73
Effects of X redietion on the distribution of $\mathrm{N}_{\mathrm{O}_{2}} \mathrm{~S}^{25} \mathrm{O}_{4}$ in ret plasma 75
Role of the thyroid-pituitory axis in resistence to lymphoid leukemie 75
Effects of radietion on the plosma iron esncentration in intoct and aplenectomized rats 75
MCROBIOLOGY 79
Tracer Studies in Intermediary Metoholism 79
Succinic ocid decorboxylose sy stem 79
DPNH-flevoprotein complex of DPNH peroxidase. 82
BIOCHEMISTRY 85
Srudies an Nucieic Acids, Enxymes, and Rodiotion-protective Compounds 85
Nucleotide sequences in deoxyribonucleic acid 85
Cetalytic reduction ef pyrimidine nucleotides 85
Nucleic acid turnover in cell-free extrocts of Eachericilia coll 85
Nucleotide sequences in becteriophoge deoxyribonvelaic acid 86
Stobitity of augars in the presence of elkaline borate 86

UMCLASSIFIED

Enayme substrate binding 87
Preliminary studies on the metobolisen of S, B-eminoethylisothiusonjifm- $\mathrm{Br}-\mathrm{HBr}(\mathrm{AET})$ with
S^{35}-labeled compound 88
Strweture and activity in radiation-protective sulflydryl compounds 88
Mierobial utillization of heperin 90
ENZYMOLOGY AND PHOTOSYNTHESIS 95
Enxymology 95
Activity of comppunds releted to β-mercepterethylomine en inhibitors of enaymic acetylation 95
Fluorescence pelariaction 95
A requirament for pyridowal in the interconvarsion of olycine and serine 97
Reduction of methemoglobin by phenylhydrazine 98
PLANT BIOCHEMISTRY 101
Elfect of ienizing and sltraviolet radiation an photosynthesis in plants 101
Rodietion sensitivity in formotion of the photesynthetic process 103
Photosynthesis in onthecyenin-contalining leof tisswe 106
Filter affect of onthocyonins 106
Rete of photosynthesis ofter ultroviolet irrodiation of anthocyanin-centaining leaves 107
A form of phosphorus sturoge and tromsport in plonts 109
Photosynthesis and metabolism in Seilum apectabile 111
Glutomic acid metobolism in barley leaves 112
Characterization of an unidentified compound formed in the metabolisen of biowyrthesized. sudoheptulose- C^{14} in plont leoves 114
Growth sulbstance ectivity of serine 115
Isoletion of a phatosynthetic axidatien-reduction coenxyme from green plents 115
GENERAL PHYSIOLOGY 117
Horizontal tubeless centrifuge heod 117
Orgonization of the soluble phase of the rat liver call 117
Prodvetion of density grodients in the horizontal tubeless centrifuge heod 118
Purity of nuclear fractions of tissue homogenates 119
An anolysis of the in wive affect of nucleoprotein from Ehrlich ascites cells 120
Difference in mean survival with time after a single protreatment with NP 120
Modification by a seccond injection of NP 120
Modificetion by an injection of killed ascites cells or ascites fluid 120
Modificetion by cortisone 121
Difference in mean survival time as a function of the omount of NP injected 121
Sapelificity of the reoction 122
effects on tumar celly. 123
Tests for NP-induced sensitivity 123
Antigenicity of ascites tumor-celt components 123
Cytotoxicity of different antisura to ascites tumor cells 125
Im vivo expesures 125
Im vitro \#xposures 125
BIOPHYSICS 129
Moleculer Biophysies and Redielogical Physies 129
Moleculer blophysies 129
Effect of radietion on Tradescamtia 129
Amphibien rodiobiologr 129

UNELASSIFIED

Metemorphosis in Gyrimophitus pallemesu 129
Cytologicel studies an the pituitory of thyroidectomized newts 129
Radiologicel physics 130
Cockerofs-Wolton fast neutron facility 130
Nevitron desimetry. 131
Fost nenutren biological expesures with on internal torget sycletron 132

BIOLOGY DMISION SEMIANNUAL PROGRESS REPORT

PUBLICATIONS AND LECTURES

Publicutions. - Publicetions for the peried enged froe elostracts to the 321-poge Srmpesive on Genptic Recembination. In addition to the Sympesium, 31 full-length papers and 29 abstracts and beek reviews hove appered is epen publicetien. Thirty-hwe popers and 29 ehretrects are in press.

The meteriol cemprising the pesceselings of the April 1955 Bielogy Research Cenferance in Gerlinhurg, the Sympesium on Enzyme and Pretein Strveture, is neorly complete. Preperarien for publicotien es another supplement to the Journol ef Cellivier and Comperative Pilysielogy is progressing.

AUTneones

Amfersen, M. $\mathrm{Mr}_{\text {. }}$

Arneld, \#. A.

Anreed, K. C. E_{s} and
T. N. Pirtenger
 Veen Nelle

Brusen, J. R. C.

Cerleen, J. C_{n} and
N. O. Merrlingter

Denemens, A. M.s. $\mathrm{M}_{\text {. }}$
Cheses, end F. F. Steht
Dellerty, D. Ons and
E. T. Bumert, Ir.

Deflin, M, t.

Upten, end T. T. Odell

TITLE OF ARTICLE
Elies fractitemesite
Sinelies in iseleted eell eempenembs. Vil. A reseveminetien ofl the ureperetion and erepersies of ent tiver hemepenetes
Cle the tipht setimentien of deloyed tight peredeverien le pase plenes.

The alfieleney of mevleper misivg divilng Hetereliergen furwetien th Neurespane evestat
Evilenee 0 thp mephemise al the errwen eflieet br wee of erlise chremaseme

Centenimetien of mevelesp freetimes al thymes themegeneises with ahele celle [Cemen, to ed.)
X-eertindweed "\#ntichiness ${ }^{2 *}$ of the shrume semes al the Clarepilieper nevreblest in relenies to dosp end mitelie svege at treetinent
Genesie secemblivetion and replicetien in hecterivphege
The petwe i re oflleet ef 15 . 3 -emineethyliseth ioneniue- il peunds egeinst Xeadivetien depth ie miee
The DPNeH-ealdising entpese of Smeptececcas feeralis. It. The emeynes weilisinp ewrient, evtepleeme es, pereelife, end 3, -diehlerwphen-el indephenel er ferrieprepide es exidens.
Giemse stelining ef evteredieprems prepered wish striopling Eile

PUBLICATBON

Setesee 121, 773-724 (193s9
Expel. Cell Rewnewl By 11-100 (1935)

The Laminewcence of Bise Ierical fystems, ed. F, H. Jalmsen, Aeedemie Press. + 47-50 (1vss)
Am. J. Betany 42, AWS-500 \{1925)
f. Ceillelar Cemp. Physiet. 45, Swopl. 2. 299-3ct (195s)
Selesere 121, 511-512 tา

Refliatien Rescrant 2, 84\% (19ss)
J. Celleler Cemp. Pbysiel 45, Suppt, 2, 51-74 (1035)
Power. Ser. Fapol. Biet, Med 05, 312-314 (1959)

Anch Blevilen and Biophys. 55, 415-435 (1055)

Stain Teclient 30, 161-162 (1983)

AUTHOM(S)

Helliender, A

Melleender, Anse end C. O. Dendinery

Hens, E. C.

Eubrosith, i, 5 . C. E. Sheprerd, ent D. L. Cresig

Dellerg. E. F.
 Tewselhe, and $\mathrm{m}_{\text {, }} \mathrm{D}_{\text {- }}$ Gede
Pheres. E. F * and M. Y. Leng

Ruseell, L. Bun and \#. L. Avesell

Sehwerts. D.

Stepleten, C. E.

Suensan, C. P.

TITLE OF ARTACLE

Bielevy Divisien Sewiengel Mregess Reptet fer gevied ewding Fwhrwery 15, 19ss

Stulive On thw meelrepisen al rellietives gretectien and weeevery wilh kysteemine ond P-awreepteentiven
 Elyblich sesites tumer cells

The swlesive willeerivenees of veriews ieninimg rellietiens en elremeseens Irealhege in Tradescuestie

Semplairity end sico oll degeneretion al spermetegenile cellis lirediated in werieve steges of mwtiretien in the meves
 the bleed end the lume merver el rets

The eemplete degrediesien of eerbenvidIaleled swewinie seld and wweeinite enhydride by the Sehmidt resevtien
Peth ways of redietiem efllects in the mether and the embirye

Specwletiens on seme oevien and gratele speeifieity

Studies on erwesing twer in meise end Dreanghitle

Fectevs mediliyligy the semelitivity all hecterie te ienising redieniens
EHeet al sarypee tewwiee on the grethection ef efremeseme lreshege by iemisling rediestions: An interperetestien

The sarpee wlleet and elluremeseme lroelege

PUBLACATAON

Proleen Reqeet ORNL-1BS3

1. Cellafler Camph Mhyatel 45, Sivpal. 2 in93s
Eadiabielegry Sy whesiter 1934, ed. Z. E. Beew and P. Alewender, Butherwerthe, Lenden, P 112-114 (193s)
Beochers et Biephyst Arte 18, ay0-4e2 (1985)
fadiedveleger tymperifur ress, ed. Z. H. Beew and P. Aleseeder, Depterwerthe, Lenden. 2 202-384 (1985)

Rediatien Rewravel 2. 389391 (19ss)

Ans J. Plywewh 180, 4014p4 (vess)
f. Ans Chems tees 77, 2558-2557 (1955)

Celd siming Murber 5 ympeoite Quant Binl 19, $50-30$ (1954)

Prect Nath Areal Sel Ust 41, 300-307 (1935)
f. Cellular Comp. Mhyoiel. 45, Swppl. 2. 177-185 (1955)

Barteritel 3mat 19, 26-32 (195s)
Rediebielegry Iympeative IPS4, ed. Z. M. Beew and P. Alewender, Butherwaths, L enden, P 254-251 (1955)
5. Cefllaler Camp Physiel. 45, Svppl. 2. 235-265 (1985)

AUTMOR(s)

Telliert, M. E.

TITLE OF ARTICLE

Beletive eflieets of anelitietively diliferent ienising retiletiens an the predvetien al chorsmetid abersetians in eir and an onitroven
Farmite seid matabelisen in lepley lueves

Antianetelelite stodies oe bene maveer in *ithe

Publication

Gewetic: 40, 193-203 (1935)
f. Biek, Chen 213, 27-34
(195s)
Ansematelitwes aed Cencer, et. C. P. Bheeflex, A.ass Spepaesten Series, ot 153162 (195s)
Arta Maematol 13, 65-76 (195s)
J. Nant Canere Dewt is, 1005-1021 (195s?
Pres. Siect Expal. Bient Mrd 08, 240-253 (1935)
Sriewere 122, 231-232 (1935)
wilde, $\mathrm{FI}_{\mathrm{o}} \mathrm{J}_{\mathrm{n}}$, und $\mathrm{C}_{\text {. W. }}$ Shemere
Wellt, S. and M. E. Leippeld

A transmiss ible diswese of miee ehmesetese iseel by enamis, lewlepenils, spleveresply. and moleseleresis
Spenteneeve end redienien-hedeeed pitwitery edomenses of mie*
Eleeteslytes and wever is mivecles off the nep

Metohelises and ehremesemestreek veioliniag

Selemsilic Seciety Lectures end Treveling Sieminers. - The Iisted 95 lectures represent the Biolegy Division's partieipotion in the Traveling Lecture Pregrom and presentetions from the professienel seciety pletform,

Andereen, N. O.	Sigme K_{H}, The University of Temenases, Kenewille	Cenewpte of the arigin of 1216
	Depertenent ef Bielegr. Sering Wilt Celleges, Sering Mall, Ale.	Soviliss en iseleted hrectiens of tiving cells.
	Departeents af Phreielogy and Zeelegr. Fiteide Septe Uniwersiry. Tellehwese	Cell mertiewletes ond eell phywielegr
	Sigene Xi, Fle ide Sitete University. Telliahesese	Origin al tife
Anderseen, M. Gne end M. L. Andersen	Fed, Ans, Sat. Enyel. Biel. (Am, Physiel. Sen-l. Sen Frensines, Celaf.	Ouentisetive Mreil freetion evien fabstros Fedinnatior Pran. 14, 4 g1vsspl
Arwend, K. C.	Depertesent al Zeellegy. Cellumbie University. Ne= Yelt, M.Y.	Inferwel seminer
Arased, K. C.s. and T. Bistenger	Redietion Meseerch Sete. New Yenly, M.,	X-er-indueed mepretiens in Prewhy mpeoliken el Newrespene
Awerlech, R.	Ans. Asese. Anetop Phitedelphis, Pre.	The develepinent al Xeoyindweet ""epine biliders in the mevee labatron Anat. Perent 121. 258 (19ss)l

BHoLoct piloditess mimont

> Ballen D. C. O. DendiveF. and A. Hellegender
*en Berstal, R. C.
A. B. Whitiny and

K, C. Anseed
wean Berstel. $20-4$
H. Alever

Brwefiveld, R. T. and D. E. Feend

Buneek, F, Ts and
D. G. Deherty

Cersents. 5.

Cahn, $\mathrm{F}_{\text {. }}$ E. and D. Q. Dellevity

Breelihewis Srep. Min. 3 - Ahwhatienk. Uaten, N.Y.

Dwpertesent al Zeeleqy, Uniwersity all Menteelir, Lexiegten
 Anlentis Caly, M.J.

Hedieel and Papehelogisel thestien of the feergie Aewleny at Selemeis, Dahlenege
Dwperinate of Bateny, Uhivarsily of Ceergles, Autuen

Sies. Ans, Becteripl., Tene_-KF. Brenech, tesingten, $\mathrm{K}_{7 \text {. }}$

Sis. Als. Serterielon New Yaph, N.Y.

Internerl. Cenf. te Rediablel. Cembeider, Englend

Aswet- S. E. Bieloe Cherlesten. S.C.

Biechemistry seminar, Sheheel al Medicines, Yonderhilt University, Nesheilils, Tenm.

Redientien Reseerelt Seen, Niew Yerk, N. T.

Divisien ef \$ieliwgicel Shelewees, Nurth Cerel ine State Cellege, Roleinh
Depertesert of Beteny, University of Naerth Cerelins, Chepel witt
Fed. Am Set. Expet, Bief, (Am. Sees. Biet, Chem.3. Sew Frencisee, Colit.

The axypen alleet nod the materion prevess

Gene owtion and otne per sienien
Speetene eve ent andiekien. induewd inis wtreithy in mies

Rodiesien mentaction

The afleets of ieniainy redievien an the thysielegy and eyteliegr ef liecturiel ealle
Seme studies on the ellieets ef X Imedietien en milereergenieres

Studlies son the relarien hew tween indleeed mivegienesis end surviveal in X-linedieted E. enly IAber- Baeterino. Prect., o St clessil
Cendiei anelly delared deminant lethul meteviens in Melrntrakee
Prevleer and eysoplesmie elleste of wilvevialet redi*Wien ac Malnelnuest saer
The eflleet of evertinin chewieel mowtinents on cell wreath is simethy ewets [Abetroy As8 Balleeie 2, 4 (1955)]
On the exeminution of chemieel oretecters Hor X-lensulieted eminuls
Adiviwe ellieet ol S.B. eminsethylievthiveremive. Br-4Atir, hene mavrem, and streptemycie en gemeinredieted mike
Problems in besteriel ehysielegr and bisehamistry

As ebwe

Cevelywie Arydregemerien of eprimadine sueleetides【abetron Fedruation Pres. 14, 19<-195 [3035?

Celne, … E., and J. K. Khy	Fed. Am, See. Expel. Biel. Am, Seer. Biol. Chew-), Sen Freneisee, Colif.
Cehn, W, En and E. Volthen	Third Intemerl. Ceng. Biechem., Arwseels, Belgiver
Cenger, A. D.	Signe Ki, The University of Aleleme uedieel Center, Bir minghoe
	Sevthern Reseereh Institute, Birmingham, Ale.
	Bielepical Selence Depertment, University of Geergie, Aphens
	Bete Bete Bete Regiensl Meeting, Stetsen University, Delond, Fleride
	Divisien al Bielogisel Seiences, Newth Cereline Steste Cellege, Releigh
	Conf, on Aveites Tumer, N.Y. Aced. Selo, New Terk
Cente, F. Ps, G. s. Melvitle, M, Sleter. end A. C. Upten	Redietien Reseerch Secs, New Yerk, N.Y.
Cermier, M. J.s. and J. R. Tepter	An. Cher. Seen 127ih Neel. Meetse Cinelimenti, Ohie
Dent, J. Nes. $\mathrm{N}_{\mathbf{-}}$ Kirly-Sinith, and D. L. Creig	An, Aseve. Anete, Philodelghie, Pe.
Dalverty, D. G.	Chemietry Depertment Jevensel Clulb, University ef Nerth Ceroline, Chapel milt
Delherty, D. G., and J. F. Clulatenen	Sec. Am, Beeteriel., New Yerk, N.Y.
Deherty, D. G., and R. Shapire	Third Intemest. Cengr. Biechem., Bruseels, Belglen
Delin, M, \%	See. Am, Beeteriels, $\mathrm{New} \mathrm{Yeht}, \mathrm{N.Y}$.

Preimidime seporemees in de-aryeithenveleic ocids freen the analysis of ecid digesests

Rediebiologicel studies at atemic bemb detonations
As ebere

As albeve

As aleve

As ebeve

Redietion eflecte on escites tumer chremesemes

Paired dose studies el residual injury abler expesure to fast newtrens and X rey:

Studies on the luminescence ef the fungus Omphalie flavida IAbstr. ef Pepers of 127 th Nent. Meet. ACS. - I1C (1955)

Induction el metomer phesis in Gywivephelus palleserus〔Abstro. Anat. Recond 121, 429 (1955)]

The hyidrolysis of cerbeneerben bends by a. chymetrypein

Mieroblial uviliastion of heperin [abstr- Bacteriol. Proci. p 141 (195s)l
A binetie atudy of the bydrelysis of cerbencerben bend lyy a-chy
DPNH perexidese, enew fleweperetein โAbstro. Barterist. Prec., 116 117 (1955)]
Doudney, C. O., and A. Hollaender

Gude, W. D., T. T.
Odell, Jr., and A. C. Upton

Enzyme Club of the Deportments of Biochomistry and Baeteriology, University of Itimois, Champaign
Soc. Am. Becteriol., New York, N.Y.

Am. Assoc. Anat., Philadolphio, Pa.

Assoc. S. E. Biolv, Charleston, S.C.

Nanl. Acad. Sej. - 92nd Annwal Meet., Washington, D. C.

Internutl. Conf. on the Peaceful Uses of Atomic Energy, Geneva, Switzerland

Am. Nuclear Soc., Steste College. Pa.

Hollaender, A., D. Billen, and C. O. Doudney

Hom, E. C.
Assoc. S. E. Biol., Charleston, S.C.

Rorn, E. C.s and M. E. Houso

Hurst, G. S., W. A. Mills, F. P. Conte. and A. C. Upton

DPNH peroxidaisw, a new Flovopratein

The effeet of cytteamine and mercaptoeshenol on mutation induction by \mathbf{X} rayt in Escherichia coli [Abstre, Bacteriol. Prac., p 56-57 (1955)]
Cytochemical studies of the human and rat platolet [Abstr... Anat. Record 121. 303 (1955)]
Evidonce for anophese bridge formation in the eleavages of Drosophila melamogaster [Ab*tr., ASB Bulletin 2, 7 (1955)]
Studies on protection by treatment before and ofter exposure to X and gamma radiation [Abstr., Science 121. 624 (1955)]

Studies on proftection by treatment before and aftor exposure to X and gemma radiation
Chemicel protection of biological metorials from radiation effects
The modificotion of X-rayproduced mutetions in Escherichia coli by preand postrieatment
An in vivo effeet of nueleb: protoin an aseitps tumorindueed mortality in the mouse [Abstrue ASB Bulletin 2, 7 (1955)]
(1) A test of specific uptoke frem argan hemogenates by hamologous argans in the young mouse
(2) Some sprological abservations on fractions of Ehrlieh ascites tumor cells
Nowtron and gamma-ray desimetry in lethality studies with e cyelotron

Khym, J. X., and W. E. Cohn

Kimball, R. F.

Kimboll, A. $\mathbf{W r}_{n}$, and
V. T. Bumenv, Jr.

Kirby-\$mith, J. S.

Krall, A. R.

Lindsley, D. L.

Morris, D. M., A. C.
Upton, and F. F. WolF

Odell, T. T*, Jres W. D. Gude, and F. G.
Tousche
Phores, E. F., and 5. F. Corsen

Randolph, M. L*. E. B. Dorden, Jras and C. W. Shepperd

Fed. Am, See. Erpil. Biel. (Am. Sec. Siel. Cham.). Sen Francisee, Calli.

Rediation Research Sec., New Yerk, N.Y.

Radiation Research Soe., New York, N.Y.
 Uptinn, N.Y.

Physics Depertment, University of Alebemes, Tuscoloose

Scheol of Veterinary Medicine, Tuskegee Inselitute, Ale.
127th Notl. Mpet. Am. Chem. Soece Cincinnoti, Chio

127th Netl. Meet. Am. Chem. Sec., Cineinnath, Ohie

The Universiey of Absesouri, Colvmbia

Am. Awsec. Cancer Research, Sen Franeisee, Colif.

Rediation Reseerch Sec., New York, N.Y.

Soe. Am, Becteriol., Ne= York, N.Y.

Rediation Resperch Soc.a New York, N.Y.

Ien-enchenge behavier of undeproded nuelele ocild [Abatra, Federation Proc. 14, 235 (1955)]

X-fey mutogevesis during verievs stoges of th t interdivision cycle in Pansmectiam aurolia
Sompling metheds for screwning cempeunde in rediotion protectien atvilies in mice
Effeets on the genetic meterial by redietions of different limpor energy trensfer

Applicetion of megretic resenence techniques to biolepical problems
As abeve

Crtochreme oridese dupendence of thetes ymetic phesphate tranafer TAluatr. Papers at 127th Norl. Meet. ACS, P 43C (1955)]
Light-eetelyzed uptolew of cerbon menexide by iveriey【Abstr. Papers at 127wh Netl. Meet. ACS, p 10-11C [1955]]

Mepping the centremert in the exolet!
The inflisence of the stivereld gland an the suscepribility of AK/R mice to tromsplanted Iympheid lewhemie【Abstres Proc. Am. Awsec. Cancer Reseapll 2. 36 [1955)]
Uptele of $\mathrm{Ne}_{2} \mathrm{~S}^{+} \mathrm{O}_{4} \mathrm{by}$ mepoleryecytus and pletelets of trrediated rets
Svecinie acid dpeetbowllase system [Abstre Bacteriol. Proci. P 112 [1955)]
Fest nevtron foeiliiv fou quentitetive radieblelegy

Avesell, L. B. and W. L. Russell

Ruseell, L. Ben and R. 2. Speor

Rusenll, W. L.

St. Amend, G. S., N. O. Andersien, and M. E. Geulden
\$n. Amend,

Sherre, A. Jeq G. E. Stepletens, and A. Melleander

Stopleten, O. E.

Asses. 5. E. Biele, Cherlestan, S.C.

Redietien Research Sese, Meve York, N.Y.
Invernett. Cenf, on Paseeful Uses of Atemile Energy. Ganewe, Switarerlend

Intemeth, Cenf, an Redieblel, Cemilulger, England

Redietion Reswerch Seew New Yeek, N.Y.

Broelheven Symp. No. 8 - Mutetiens, Upten, N.Y.
Internevl. Cenf. on the Peeceliol Ueew of Abomile Enerivr. Centres, 5 -itzerland

4ht Replenel 5ymp, an Atomis Energy and Selence (epensered by Duke Unive Duehem, N. C. Stete Cellegw, Releigh; end Univ. of N.C.. Chopel Hill, in ceoperotion with ORNL and ORBMS)
Assee. 5. E. Blels, Cherlesten, S.C.

Soc. Am, Becteriol., New York, N.Y.

Ohlohben A a is College, Seitlwoter

Mesorde to the embrye and
fetcs free ienicing redi-
ation
The sensitivity of different stoges in eepenesis tew the redietimen induevion of deminant lethals and ather chenges in the mease
Reletion lhetuean deminent Iethel incidense and stege in eeghnesis irrodieted
The mutetional eharecturisrices of specific leel
Cenetic affekte of rediantion in miew and their bearing on the estimetion of homen hazards

Cenetien

The elfinct of egmotine on eiteele in the neurobleste of the presolvepper. Chortephape viridi/aveciata TAbetr, ASB Balletio 2, 10 (1955)!

Ansephewe olinenmeliry in the Ehrlich mousen escites tumer labatron ASB Bulletin 2, 10 (1955)]
X -rey-induced anitotice and chrempeenel wilfects in the prosahepper naveoblest and in she Ehrtich eseiten corcineme

Partial necevery of Ewelherichia coll B/r from the lethel efferets of tenlaing rediations on o ehemieelly defined medium [Ahstron Bacturiol. Proer. - 56 [1955)]

The modificetime of the effects of ionizing rodiation by peetifrediation treatiment

Stopletentr O. E.E. A. J.
Sberre, and A.
Helloender

Telbert, N. E.

Tetter, J. R.

Tonter, J. R.s and
C. L. Cemer

- Totter, 3. Ro, and M. 3. Corniler

Uptent A. C.

Upten, A. C.s. and F. P. Cente

As elbere

As olvere

Ase ebeve

Rediolitelogient atudies at etemic bemb detenetions

Elfects of the ewlture mediuse on the sensitivity of E. celf B/r to leniaing rediantions [Abetro Bactieriol. Proc., i $\$ 6$ (1953)]

Recewery af beetorie Iree X - ar gemen ray inectivetien

Exerotion of wheofic eelld by olgee during photesphthesis [Ahetre, Feilunation Proc. 14, 292-293 (1955)]
Liminescenew in she atedr. of enayme rwections
(1) The metelbelise of formete
(2) Biplumineweance as * teet
(1) The metoliolise of formete
(2) Blelumineseence es * toel in enzyme strudies
Function of molybdenum in aenthine axidese

Purificetion af lueliforese Irem Ivminews beeterie [Absirtc, Feilenatioe Prec. 16. 293 [19559]

Rediewion inivery

The ewletive bielegieel offeetiverese of fest neutrens, X reys, and gemipe reys for eeute lethwtity in miee

Whislieg A. 角s, and w. t. Aurphy

Wollf, Snan M. E. Lwippelld

Jpten, A. Cors. T.	Fed. Ans. Sive. Erpoth. Biel. (Ams See. Erpit.
Odall, dresen m , D.	Pephelal ten Frenclaee, Callif.
Coce	

Fed. Am. Sies. Erptl. Biel. (Ams Sies. Erpit. Peflelal ten Frensivee, Collit.

Cole

Redietitn Reseeralh Seven New Yerk, N.Y.

Redietiven Heseereh Seen. New Yeik, M.Y.

Intament. Ceent, en Refiebief.a Cembrifer, Emglend
Biechemishry Seminee, Vemdertilt Univerwity Scheet el Itelicine, Meshoille, Tenik.

The ineerperwiten of cillur35 -lepleled teilivie in hesling wevede ond in pletelete of nermel and peerluvile gvinee ples †ahwtror Fellonapioe Prue. 14, 421 (1935)!

Respineses of lirvediened Mabrolreese ages thl *perie to ceveelis and Aveir thesesticel signifieenee

The rele of saidiative nwselblises and ATP prodivelien on the rejalining ell redietion-indueed whremeseme lineelis
The tiechemiest espects ef elhmesewerte ropolning
Chemieel end blechemisel atvilies of eeduhentulipes

Visiting Leeturars. - It has bewn the priwilege of Division members to heor lactures by a number of eminent scientists an the Bielogy Seminer Series. Listed belore are the speokers and the subjectia of their discussions.
5. G. Sinuluens
C. B. Mepte
5. Regers
E. L. Geeen
J. F. Mes ІСу
T. M. Seneabern
5. Kerles

Depertiment of Binehemeletry, Dule
University, Duehen, N.C.
(1) Neturel ereexing is cevten, iss meveurement and sideificence
(2) Sieme pewsille mechenisme ef speciestion in thon senve Geewypher
The netwre and rele of spweilie ewe and aperp sulhetepee in fertiliserien
\$rvalies of the mechenikme of encepenesis, perticwiorify os cencerne polntenery tumers in miev
Mesutrds frow etemie meppes tewts
The exslutienery signifieminee of indweed mivetions in epriecilimest plinists

Aglng and its generie tensesumpees in Pronamecilve

[^0]| L. S. Lelthe | Chuceliati Heopitsh Owfeed Univarsify. Eingliend |
| :---: | :---: |
| L. Weal | U.N. Depertment at Apriepltere, Anlmel Proteline Seetiens. Philedelphle, Pe. |
| W. 5. Vineent | Aneteaty Denartment, Steve Uniruraliy al New Yerk, Upahyte Whedieel Cewher, 5 rreewee |
| R. L. Pletsinee | Depersment of Physiles, Rurdve Univeraly. Lefieyetion, Ind. |
| J. A. V. Burler | Chpoter Beetty Reseepech Insovitusies. The
 Repoll Cencer Maspirel, Lenden, Engitend |
| J. A. J. Stelleigh | Depertesent of Plant Mrysielegy ind Lellevatery fer Phyrales Reselesh, Aplewltwvel Univarsity, Wegomigen, The Neitherlends |
| T. Kemel | Nerianal Ivatisute of Clenpties Manimet, Sirwele-hen, Jopen |
| C. D. Nuealil | Depertment al BlephemileNry, Weatern Dinserve University, Cleveliend, Olie |
| P. Ecellier | Chyster Beetty Reseerch Inselitutit, The Repol Cencer Mosplivil, Landen, Emplowd |
| 5. Mimener | Eaperimentiol Biedingerthalegr Reveerph Unit, Memesoremith Mespitel, Lenden, Englend |
| M. Eyolep | Univerwity off Urelt, Selt Lelte Cibr |
| E. Nevinelt | Depertwent of Zeelogy, Universiby of Mivesouri, Celumbie, Mo. |
| M. Berseek | Divisien of Biplegy. Celifernie linetisete of Twelmelegry, Pasedese |
| d. M, Thedey | Depertiveet of Geneties, The Uniweraity. Sheilineld, Enplend |
| F. Mr Seliels | Cenetisech thesvinut veh do flighouniversaisple to Userecht, The Ne:therlends |
| R. B. Withrever | Smithsenien Invitwitien, Division of Redir asien and Orgenigens, Fephlingten, D.C. |
| R. C. MenCeralle | Leberenery af Petheloyy, Notimel Inatitites of Mealith, Befthendes, ith. |
| C. H . Wens | Cellegen, Cernetlis. |

Storlies an PNA symetheis in humas heve merreve eelle fis witre

The ecetion ef wielble tighe en blelenleatly eetive erviseline
Chemienl atroenve of maslewli * *
Neekeniserg ef lineenifretion af erutelin ly itenising redi. sties

Reewnt mopl of mellele eedid end nuelewpratelins

Plent geroth end light

An aetrull lnitence of elery emplutien whearved in e insest pepulestien
Amine erid metiverien fer protiolis appitheple

Chemieel mitegenewis

The fenyth sit she mitutie eyele in Vicie falle remts eflow I redietive

Inflemputien ent atrees
The nethurs of the aymeptie epothenise it Prousphisle

Feeners neewlenutimp red bleed cells and harenglebin epmethewte
Bielogient aflisere of redietivens, especiully an elupenosenpe
fieliepenelifelf utudies

A revier of the phever ehemiepl rweesions in plente ehlelh wwoulete grewth end develoinsent
axteeliendelel alienges in X Irraliated sleawes

The westipentien af pluesie is miereergenisens

BIOLOGY PMOAESE REPOWT

P. P. Orese
A. Falierge

Depertinate all Bielegr. New Yevk Universitr.

Depertintet af Betery, Unel mersily af Aissenk, Celunelin

The mwleevier ewnets of eyteple smile gelwhiem - en vitro apereesh
Anellysis of intreed ehreineseme eliseratiens by meles andevparm phemitrines

Educetion, - Mony lectures (listed by title in onesher port of this seection) hove been giwen in the Traveling Lecture progrom of ORINS-ORNL. In addition to these, a series af lectures and demonstretions et the secondery wheol level was presented at Oak Ridow High Schoel by the following: W. A. Arnold, 5, F. Cerson, A. D. Cenger, M. J. Cormier, A. L. Kroll, J. R. Totter, and L. P. Zill.

Shert ceurses in rodiation bielogy and biechemistry hove been tought by Bielogy Division memburs of the Duke University Morine Laboretory at Beeviort, N.C. Pasticipeting in this sumemer work weves N. G. Andersen, A. D. Cengwr, C. W. Shepperd, J. R. Teiter, and A. C. Upton.

Sevaral mambers of the Division have Nolinn advantege ef edvectional and reseorch opportunitios during the period, W. A. Arnold is on leave of absunce from she Laborotery to sorry owe studies, on energy tronsfor between lorge molecwles in bielogical systems, ot the Imstitute for Muscle Research, Woods Holos, Mossechwswits. Doniel Billen is toking a month's course in tissue culture, aponsered by the Tiswe Culturs Assecietion, W, E. Cohn is spending a yeor in Englond an a Cupopenheim Fallewahip. He is working with Professor Sir Alewinder Tedd at the Combridge Univarsity Chemicel Leberatory.

Speokers at Frefiesslenel Meetings, Fell 1955. - During she month of Septomber, 21 pepers will be given by Biology Division mpmbers of meptings of the Americen Inytitute of Biologicel Seiences in East Lonsing, Michigon, and at the Americon Chemical Soeciety in Minnaopolis, Minnesete.

At the Americen Sociely of Plont Plysiologists (of the AiBS), aoparz ly the following will be givens N. E. Tolhert; L. P. Zill and N. E. Tollhert; A. R. Kroll; C. W. Nyatree, N. E. Tollhert, and S. M. Wender; and A. W. Noyler and N. E. Tollbert.

The proges of the Genetick Society of Americe (A1BS) Jiats popera by the following Biology members: K. C. Arweod and T. H, Pintenger; R. C. von Barstel, K. C. Atwood, and A. R, Whiting: A. D. Cenger; D. L. Craig. J. S. Kirby-Smith, and J. N. Dent; C. W. Edingten; C. W. Minton, Jroy R. F. Kimbelf and N. Goither; J. S. Kirlyr-Smith and D. L. Crolg; F. F. Ookborg; T. M. Piwnenger; D. Schmertz; J. V. Slater; W. J. Welahonw; and A. R. Whiting and S. Casperi.

At the American Chemicel Seciety, papers will be presentwd by \&. X. Kihy, L. P. Zill, and W. E. Celing and E. F. Phores and S. F. Cersen.

Crtology and cenetics

CYTOGEMETIC EFPECTS OF RADLATIOM

> R. F. Kimbell
K. C. Arwood
S. Wollf
R. T. Brumfield ${ }^{1}$
C. E. Boy
A. D. Conger
D. E. Foard ${ }^{1}$
T. M. Pittenger
D. Scherertz
N. Gaither
A. H. Johnsten
J. V. Slater?
H. E. Luippold

Effect of Pestimrodilition Temperetvie on Mutotion Induetion in Peremecivm ourslie
R. F. Kimbell
N. Goither

Kimbell ${ }^{3}$ reported briefly thet exposures of Penamecium aurelia to $\mathrm{H}_{2} \mathrm{O}_{2}$ folleming X irrodiotion resulted in less mutotion, as meesured by the percentege of amautogomous descendonts that grew normolly. There ore now ten experiments in which this effect has been checked and, though the effect is small, it hes been found in all but two of them. The averoge percentoge of nermal exoutogomous clenes (inversely releted to the number of mutetions) wos 57.4 in the untroeted group and 65.1 in the peroxide-treeted group.
${ }^{1}$ Censeltrent.
${ }^{2}$ Reseereh pertielpent.
${ }^{3}$ R, F. Kimbell, Ans, N, Y. Ace人 Seh 58, 438-697

Among other actions, $\mathrm{H}_{2} \mathrm{O}_{2}$ slows the division cats, on the averoge, to ofout thres-fourths of its nernel walue in the first 24 hr. It seented possible thet this deley mas cousolly reloted to the decrease in detecteble mutetien. Twe other methods of cousing deley in division heve been tried, lew tempereture for 24 hr ond storvation for a few hours offer irradiation. The results of the storvetion ewperiments hove been equivecel so for altheugh the emount of delay was nearly she some as thet induced by $\mathrm{H}_{2} \mathrm{O}_{2}$. The temperature experienents heve yielded cleorly positive results on the smell eflect produced (Toble 1). Altheugh the dete are veriolle, there seems to be litrle question shat there ore less normal clones (more mutetion) ot the higher temperetures than at the lewer ones. Several ewperiments were corried out during a peried of poer prowth fior censidereble numbers of the exovtopemous clones from unirrodieted centrels. There is some indicetion thet the effect of temperature in this peried was greater than ot other simes.

A semperature of $16^{\circ} \mathrm{C}$ reduces the divisien rate to abeut ene-fourth its velue of $27^{\circ} \mathrm{C}$. Thus it is more elfective in this regord than $\mathrm{H}_{2} \mathrm{O}_{2}$. Hewever, it is no more eflective in reducing the mutotion rate. Whatever is involved in the reduction of the mutation rets, it is fairly cleor thet it connot be simply a motter of increasing the time to the first divisien witheut regand to other chonges in the celt, or else the eflect is alreedy of a meximum

TABL 1. EPFECT OF POSTRRADATOM TCAPERATURE ON TME PERCEMTAGE OF nobach exautogamous chones (as meverse arasune op The awount OF RECESSIVE aUTATION me PARAMECIUB aURELA

Eapt. No.	Numher ef Treeted Anciealo per Cirevp	Number of Nersel Exewtegeneose Clenes (\$0) is lrredieted Animals Pesptreeted or Indiceted Tenperetures (${ }^{+} \mathrm{C}$?							Cenbined Unirrediested Centrels
		6	-	16	20	27	31	37	
1	27			58.5	55.5	52.3	45.3		95.2
2	20		45.6			48.2	39.4		98.6
3	20	53.4				47.8		46.4	93.3
4	50			10.3			5.8		42.4
5	80			22.4		17.7	15.0		\$5.4
4	40			42.8		31.4			67.6
7	20			32.8		39.8	30.4		98.8

BHOLOCY PROQREss aEPORT

when the division time is only slightly increased, Hewever, the poaitive elliects with $\mathrm{H}_{2} \mathrm{O}_{2}$ and low temperature and the slightly poeitive, though atill equivecel, effects of atorvation do suggest that division time may be involved.

The possibility comeot be escluded as yet that the effect is not really on the productien of mutotiens levt on the tikelihoed thet they will ceme to expression. At the mement, all that cen be dene is to peint out that quite a fer cell divisions elopse between the time of treatment and outogomy. During this intervening ties, all govps were treated alike. Thws any effect an expression of mutations could howe so be tronsmitred for meny cell divisions, and this seems somewhet inprobeble. Hewever, the censidereble veriebility of the reavits mokes it very desiroble to check this possibility further before eccepting the view thet pesttreetments have cavsed a decrease in mutations.

Eflect of X Reys on Nucleor Exchonge et Cenjugetion

R. F. Kimbell
N. Goisther

It hes been reperted ${ }^{4}$ previously that fewer recessive mutetions, as detected by postoutogomous death and reduced growth rete, are found in Pansmecium anvelie ierodieted within the first 2 or 3 hr then in those irrodieted in the lest 2 hr of the interdivision intervel. This hes now been showen to be true for inhibition of nucleor exchenge at conjugation ${ }^{5}$ as shown in Fig. 1. Animals heving the dominont morker gene elt were irrodieted and mated to animals homoxygous for the recessive allele of this gene. An erconiugont clone from the unirredieted conjugont was considered not to have oltained a gamete nuclews from its irrodiated mate if it grew well tut failed to develop the dominont charocter. The couse of this abnormality in nucieor behovier hos not been fully establishec, but it appears to involve as inherited effect on the nuclevs asseciated with the production of dominant lethality. Thus the letrer port of the division cycle is an insensitive period for the induetion of beth recessive mutations and nueleor affects.

[^1]

Fig. 1. Percentoge of Cemete Muclevs Ew chonge ot Conjegation Between Irrelieted and Unirnolleted Peremecie. O, Animols imodieted in the first pert of the interdivision interval; O , animels irredieted late in the interdivision interval.

Stotionory-phose animals have been used in previous experiments on nuclear exchonge and logphase onimels were used in the present experiments. The dose-response curve for stotionaryphase animels ${ }^{3}$ is meorly the seme os the curve for log-phese onimals late in the interdivision interval. However, previous experiments ${ }^{4}$ have shows that recessive mutations ore induced in stotionary-phase animals at neorly the sams rate as in log-phase animals in the early port of the interdivision interval. This shows thet the twe phenomene do net have the some plysical basis despite certoin similorities in their response. This situetion is further ahown by the foilure ${ }^{3}$ to obtoin an oxygen affect on inhibition of nucleor exchange in contrest wish the morked exygen effect on recessive mutation.

[^2]
Stullies en Cebelt Tresspeet is Tetrolymene

J. V. Slater

It has been demenatrated shat cebolt is essemtiol for growth in Tetralymene? het there is no informotien of any sert regarding ion transpert in this cilisto. The prime function of cololt in metoletism has been swgessted to be thet of serving as port of the vitomin B_{12} molecule, ${ }^{0}$ hut a number of functions hove been oftributed to this element per se. It is an enceedingly specific activator of slycylglycine hydrolysias and it also strongly actiwates the hydrolysis of sercesylolycins, ${ }^{10}$ In generol, in hydrolytic reoctions, this element prebelly ects as a bridpe in the formotion of the ensyme-substrate cemples.
Thepresent experiments were undertoken with the view of closely delineating the movement of cobolt in this protozean and of ottempting to elvcidote seme of the foctors reguloting this tronspent. All experiments were repeoted at least ence.

Strain E of Tetralymena pyriformis was grown in synthetic medium as previeusly described, with the exception thet celcium, urocil, and aderylic acid were omitted. This medium resulted in full growth, In the first series of experiments, $\mathrm{Co}_{0}{ }^{60}$ et a final concentration of $0.01 \mathrm{pe} / \mathrm{ml}$ was introduced at the beginning of the experiment in onder to troce the movement of this element during prewth. Spectrogrophic anolyais reveoled that the added $\mathrm{C}_{0} 00$ omounted to $3.7 \mathrm{~m} / \mathrm{ml}$ (final concentration). No_{0} growth eflocts mero observed from $\mathrm{C}_{0}{ }^{60}$ at this concentration. Cultures were hervested at oppropriate time intervols by easens of centrifugation in constriction subes, which permitted a quontisative removal of oll the cells. All concentrates were woshed ance with synthetic medium prior to velume edjustment. Experiments on the effect of woshing showed thet negligible amounts of the $\mathrm{C}_{0} i 0$ were left behind from the supernatonts and thet cobolt did not wash out of the onimels. The presence of histidine in the symthetic medium aided moteriolly in removal of $\mathrm{Co}_{0}{ }^{60}$ from the gloss tubes. The suspensions aere odjusted to 2.0 ml end

[^3]checked fer ectivity in a deep-all seintillatien counters. Adjustiment to exscily this volume was found to be critical for reprodveibility of results. All counts were made for 10 min intervels. Concentrotions of $2 \times 10^{\mathrm{s}}$ emingls had no effect on ectivity ceunts.

Uptele of $\mathrm{C}_{0}{ }^{60}$ was ateody during growth of the animols (Fig. 2) and release was etrinpt shertly ofter grouth reoched the stotionsy phose. The aptole during growth amounted to $4.6 \times 10^{-8} 5 \mathrm{of}$ the total uptole of Co ${ }^{60}$ per hour per erganism. Turnover during the stotionary phose was studied for only twe doys se as to evold the pessibility of meosuring cobblt release from disintegroted animols. Filty per cent turnower was observed in 36 hr and the rate amounted to $\left(1.4 \times 10^{-6} 5 / \mathrm{hr}\right) /$ orgonism. Since it was shewn thet atotionery-phose organisms oceupy opproximetely 0.015 ml when packed by centrifugation of 100 g , it wes possible to colculote the concentroting ebility of these organisms for colbols. In medium centoiming 3.7 rg of added colvelt per milliliter, the eiliates cencentrated shis ion to the extent of 19 times thet centained in o cemparable volume of supemetont. When the added

Fis. 2. Trenspent of $\mathrm{Co}_{0}{ }^{60}$ During Crewth of Tetrelymene. Temperature, $27.5 \pm 0.5^{\circ} \mathrm{C} ; \mathrm{pH}, 7.5$; synthetic medium.

BROLOGY PROGRESS MEPORT

coldelt level anounted to only $0.074 \mathrm{me} / \mathrm{ml}$, howewer, the cencentration ability increaved to 45 times.
It can the seen in Table 2 that the number of animols memoined censtont for $6-12 \mathrm{hr}$ olthough the epticel density measurements steodily increased, The uptole of Co^{60} during this peried (Fig. 2) is most likely aspeciated with an incruase in volume of the individial orgomism, which is known to ecevr under these cenditions. The volver racelves a maximus at abovt the middle of the les phase and folls off to obewt eme-half this value upon reeching the shetienary phase.

The turnover of Co^{60} ves olso studied in mediue deficient in essential growth foctors, glucese and the solrs. Lowphase popculations of the order of $8-9=10^{3}$ animals were inculoted for 24 hr in symplotic mediwe containing 0.01 ne of $\mathrm{Co}^{\mathrm{E0}} \mathrm{pm}$ miltiliter and then removed, washed, and ploced in deficient medium. This lotter medium wos employed in order to prevent growth wflects. Two mechonisms (Fig. 3) are evident during cobelt release under these comditions. The first is very rapid and soless ploce withim 2 hr at the rete of (135 Mr)/ergonisin. The secend is much slower and ampunts to $(1.7 \% / \mathrm{hr}) /$ orgonism. Under these conditions, 505 thrnever was atheined in 20 hr .

The influence of mumber of onimals on uptoke per animal wos shidied (Fig-4). Eight-hour periods of time were exsployed in entler to minimize effects frem beth growth and the pilingewp of metabolic wastes. The number of animals preseent hod o definite effleet on the uptelte per animal. Pepulotiens of the ender of 10^{4} beceme neerly ten times

Fig. 3. Temever of $\mathrm{C}_{0}{ }^{40}$ in Sympletle Medlue Deflicient in Silts and Gewth Foeters. Tempersturs, $26 \pm 0.5^{\circ} \mathrm{C}_{\text {; pht }} 7.5$.

Tine that	Opelical Donwity et 650 mp	Numbere of Amimels	Qete of Uptele in Tesel Mese of Aminels (exemen/min)
-		185,000	
15 mim			77
2			2 2e
4			258
*	0.04	479,000	241
*	0.07	459,000	48
10	0.11	457,000	743
12	0.14	488,000	tes

Fig. 4. Infleence of Number of Anlesis en Uptate of $\mathrm{Ce}_{0}{ }^{40}$ in Symithotie Melium. Temperoture, $26.5 \pm 0.5^{\circ} \mathrm{C}_{;} \mathrm{pH}, 7.5 ;$ is.
us radidective as popoletions of 2×10^{6} argonisms. Af these high densities it is net wnlikely thet there wes o greet deal of competition for exygen and alse that hermful metobolic westes resulted in inhibitory wffects. Population densities of 2×10^{3}, hewewer, were far from being cromded under these eanditions and yet centained anly me-thind the ectivity of the tewest cencentration,

Uptole mos propertional to Co^{40} cencemmetions of 0.0005 and $0.01 \mathrm{me} / \mathrm{ml}$ for a peried of 12 hr . As the cencentration of cebelt increased tenfeld, the uptohe increesed twelvelold (Fig. 5). In some studies on the total uptoke et peok growth with $\mathrm{C}_{0} 60$ cencentrations of $0.0002-0.01 \mathrm{je} / \mathrm{ml}$ (Table 3), the uptele per argonism incressed enly seventenenfold, whersen the colbelt cencentration increased fiftylold.
Autaradiegrums are being propared in antempls to lecate the cellular site of Co^{60} in Ternabymerna In a strily an cobalt lecolizotion in the cells of the white mouse, Resennleld and Tobies ${ }^{11}$ reperted

[^4]

Fig. 5. Efleet of Concentration of $\mathrm{C}_{8}{ }^{60}$ on U_{p} tele in 12 lm . Temperoturt, $27.7 \pm 0.2^{\circ} \mathrm{C}$; pH, 7.5 ; synthetic medium; initial inoculation, 558,000 : $<5 \pi$; final concentrations of orgonisms, 832,000 2 <5\%.
thet most of the element was present in the cytoplasm and abovt 1% of it wos firmly bound to cellular protein. Most of the essocietion wes with globulin in the bound froction.

The slowly merning over froction of $\mathrm{C}_{0}{ }^{00}$ in Tetralyment (Fig. 3) moy bo associoted with a firmly bound frection of this type. This fraction eppeers to be about 755 of the totol, hewever.

Tanake et al., ${ }^{12}$ using Aacillus subrilís, demonstroted a steody wptake of rediocobelt and presented dote which moy passibly be interpreted as showing o turnover during the stationary phase of srowth.

Apprecietion is expressed to W. T. Bumell, Jr $\%$ and C. W. Sheppand for cansiderable aid and the use of focilities. N. G. Anderson wos elso very helpful in expecuting o swecessful dusign for a censtriction-chamber centrifuge tube. Gratitude is expressed to W. D. Gude for an introdvetion to the properation of autograms.

[^5]
BIOLOGY PROGRESS REPORT

TABLE 3. EFFECT OF CONCENTRATION ON TOTAL UPTAKE OF Ce ${ }^{30}$

$C e^{60}$ Added Initiolly ($\mathrm{He} / \mathrm{ml}$)	Retio - Uptake Rates at Migh and Low Concentrations	Co^{++}Added Initially ($\mathrm{mg} / \mathrm{ml}$)	Rete of Uptahe per Organism (counts $/ \mathrm{min} \times 10^{-6}$)	Ratle - Uptoke Retes at Migh and Low Concontretions
0.01		3.7	2292	
	50.1			17.7
0.0002	-	0.074	136	

Effect of Oxygen on Primary Breakege and Fusion in Tradascantia Chromosome Aberrotions

A. D. Conger
 A. H. Johnston

An analysis has been made ${ }^{13}$ of the effect of oxygen on primary breakage rote and fusion rate in Tradescantia X -ray-induced chromatid aberrations. The analysis showed that although oxygen increased the primary breakage rote, it also increased the fusion rate; therefore, for an equal number of primary breaks, a smaller proportion of breaks tumed into visible aberrations. The observed air/nitrogen ratios of aberration production were explicable by the analysis.

It would be valuable if the same type of fusional analysis could be extended to the chromosome aberrations - which arise from irradiation in interphase whpn the chromosomes are single - since the bulk of the work reported in the literature is based on chromosome aberration results. It develops that the exact fusional analysis applied to the chromatid aberrations is not possible with the chromosome type, but an approwimate analysiw can be applied, ond it is sufficient to indicate that oxygen has the same effect on fusion for chromosome aberrations as for the chromatid type. The problom is to find, among chromosome aberrations, criteria which will indicate a change in the fusion rate of radiation-induced chromosome breaks. The following ore suitable criteria.

Incempleteness af Exchanges. - Chromosome exchanges (dicentric and ring chromosomes) can be completely fused (at both ends) or incompletely fused (at one and only). If exygen has an offeet on the fusion of braaks, it should result in a chonge in the fraction of exchanyes which ore incomplete.

[^6]This fraction is independent of any effect that the oxygen may have on primary breakage rate.
Retio of Torminal Deletions to Exchonges. Chromosone terminal deletions arise from nonfusion of breaks, ehromosome exehanges arise from the fusion of breaks. The ratio of terminal deletions to exchanges is therefore an estimate of the ratio of nonfusion to fustion events. A valid comparison of fusion in different axygen concentrations can be made by comporing, for equal exchangt frequencies, the ratio of terminal deletions in the different oxygen concentrations.

In two experiments, X rediation was delivered ot $250 \mathrm{kvp}(\mathrm{hvi}, \mathbf{T} .45 \mathrm{~mm}$ of Cu) af rates of over $600 \mathrm{r} / \mathrm{min}$ to Trudescamtia infloresconces in air and in nitrogen, and slides were mode four days Iater for chromosome aberrations. Two doses each were given in air and nitrogen in the first experiment, and five doses in eoch gas in the sewcond. Celfs were analyzed for frequency of completely and incompletely fused exchanges, of interstitial deletions, and of terminal deletions,

Dato on the incompleteness of exchanges are given in Toble 4. The microscopic detection of distally incomplete exchanges is more accurate than that of proximally incomplete exchanges. An exchange which is disfally incomplete con be detected because it produces two frogenents insteod of the single frogment of a completely fuseed exchange. Since the two closses should be equal, the total number of incomplete exchanges is token as two times the number of the accurately observable distally inconplete exchenges (Toble 4). Exchanges are ahout twice as incomplete in nitrogen as in air. This would mean that for equal numbiers of breaks about twice as many tum into terminal deletions in nitrogen as in eir.
By comporisen of the ratios of terminat deletions to exchanges in aitrogen and in eir, it kan be

TABLE 4. PRACTION OF EXCHANGES WNICM ARE NWCOMPLETELT PUSED. AFTER X IRRADIATION BU MITROGEN AND IN AHR

Enpt. Ne.	Alr		Nitregen		Retie of Incempletenese $\mathrm{NH}_{2}{ }^{\mathrm{AA}}$ ir
	Tetel Exehonges	Frection* Ineemplete	Tetel Exchenges	Frection* Inetenplete	
1	420	0.13	273	0.19	1.581
2	684	0.08	531	0.14	2.181

shown by a different method that fusion of breoks is less in nitrogen than in air. Terminal deletions orise from nonfusion of breaks, exchanges from fusion. If nitrogen decreeses fusion, then for an equal number of breaks in each gas, more terminal deletions and fower exchanges would be found in nitrogen than in air. The estimate of fusion is not direct, as for the former case, because exchonges increase as a power of the dose, wherses terminal deletions increase Iineerly. However, a comparison of the frequencies of teminal deletions in air and in nitrogen, for equal exchange fropuencies in the two gases, gives an opproximate estimate of fusion, or cother, the rotio of fusion in the two goses. The values for this comparison, given in Table 5, were made from fitted dose curves for the aberrations concerned.
Experiment 1 is bosed on enly two dose points in each ges, and is therefore less accurste than the results from experiment 2, based on live dese

TABLE S RATIO OF TERMBNAL DELETIONS BM neITROCEN AND IN ANR, FOR EOUAL EXCHANCE Phequewey be the two gases

Expt. Me.	Ethen Frequency of Euchenges tas			
	0.25	0.50	0.75	Averope
1	1.2.1	1.2.1	1.2.1	-4.2.1
2	1.4.1	1.501	1.5.1	21.511

[^7]points in each gas. Here agoin the evidence indicates that fusion is less in nitrogen than in air; the consequences of less fusion in nitrogen would be a higher yield of terminal deletions in nitrogen than in air for on equal number of primary breoks.

By applying the analysis developed for chromatid aberrations ${ }^{13}$ to the chromosome aberration dato of these experiments, estimates of primery breokoge rates and fusion rates and their ratios in nitrogen and in alr can be mode. Absolute values for these retes are only approximate, Sut the ratios in nitrogen' and air are more accurate. Only the data of experiment 2 (live doses in each gas) are considered in the analysis in Toble 6. Definition of terms and method of calculation are given in the previous report. ${ }^{13}$
The f volues meen that about 7\% of the primary breoks induced in nitrogen become terminal deletions detected at metophese, only 35 - obout hall as many - in air. From the f volues for terminal deletions and the e values for exchonges, it is astimated that primary breaks in air and nitrogen are in the ratio of about $3: 1$ to $3.7: 1$ in this experiment. The approximate agreement indicates that the air/nitrogen fusien raties have some validity, and explains how exchanges and terminal deletions can have diflerent air/nitrogen rotios in the same enperiment. The conclusions are sulsstantialfy the same as those for chromatid oberrations.

Aselites Tumer Prodection by Single-Cell Inecule A. H. Johneston

Ascites fumors hove been used extensively in the lost few years for many experimentol purposes.

BAOLOQY MROGRESS REPORT

TABLE 6. ABERRATION RATIOS AND ESTMATED FUSION RATES AMD BREAKAGE

Oes	Fewction of Invemplete Exehonges:	Esilmeted f^{*}	Estimeted e**	Aberration Retio Observed for:		Primory Breakege Ratio from:	
				TD	Exehangen	T0	Exchangws
N_{2}	0.14	0.073	0.97				
Ale	0.06	0.033	0.99				
AirNH_{2}	0.47 .1	$0.45: 1$	1.02: 1	1.5. 1	3.9:1	3.0:1	3.7.1

*f = froetion of primery breaks whieh become terminol deletions ween ot metaphase.
** = solasien betwean yield of wwhonges and the volve of f (number af break eanstont).

The ancient Ehrlich mouse aseites tumor, a foworable strain in many respects, has the disadvantage of consideroble hetwrogeneity in the cell population, which is perpetuated by the approximately 10° cells used for routine transfor; the same comment opplies to some other commonly used escites tumor strains. Storting a now subline from a single cell would achieve the desirable result of genetic homogeneity. This has been done in the past by Hauschiko, Goldmon, and others, but at the cost of considerable effort and of mice because of the low percentage of takes. Results of singlecell imoculations made in this laborotory are given in Table 7. Twenty per cent takes in the mice which have been inoculated long enough (about $18-20$ days) to develop a tumor is a high degree of success. Seventeren more mice have been inoculated at later dotes, but it is still too eurly to toll

TABLET. PRODUCTION OF EMRLICH ASCITES TUMOR FROM SUNGLE-CELL INOCULA (AS OF JULY 26, 195s)

Time Since Inoeulation (doys)	Number of Mice Inserulated	Number of ** okes" (Aseites Formed)
32	5	0
20	-	3
18	6	1
Total	20	4
	Percentape: 20	

whether a tumor will develop. Achieving the desirable reault of genetic homogenoity by the simple and rolotively easy mothod used, with its high percentoge of successful takes, may be of some practical intwrest.

Inoculations were made by a simple method similar to that of S. Hornswy (M.R.C., Hommersmith Hospital, London; porsonal communication). Freshly drawn, six-day-ald ascitie fluid containing tumor cells was diluted out in ceil-free (centrifuged) ascitic fluid to give about 0-10 tumor cells per small droplet delivered onto a glass microscope slide. Under the microscope at obout 150 power, a single cell could be sucked up in a hand-held, fine glass, capillary pipette, connected by rubber tubing to the mouth. At the magnification used, obviously, abnormal or degenerate cells could be rejected, yet delicate manual manipulation of the pipette was still possible. To be certain that only a single cell was inoculated, a cell was drawn up into the pipette the first time, expelled on the slide in its droplet of filuid, examined, then sucked up a second time to inject from the same pipette into a day-old mouse. Ease and success of monipulation depended mostly on the size and bore of the capillary pipette. All inoculations had been made within 4 hr at the most, and usually only 1 hr after withdrawal of fluid.

Production of Two Types of X-Ray-Induced Chrompsome Braeks

> S. Wolff H. E. Luippold

Dose-intensity studies on the seed of Vicia faba have indicated that X-ray-induced ehromosome breaks stay open for at least 2 hr whin the seed
has been sooked in water. It, hewever, the seed hos been sooked in BAL. (British Anti-Lowisito) or ploced in vacwo, then the breaks retnain open for only $/ 7 \mathrm{hr}$ before rejoining. These experiments were designed to determine whether or not there was another type of break present which rejoined at a faster rate than those proviously described. It should be noted thet intensify studies in Tradescantia led Catcheside, Leo, and Thoday ${ }^{14}$ to speculate on the existence of two different types of chromosome breaka - one type thet rejoins rolatively rapidly, and another that rejoins at a slower rate.

In the present experiments, the seeds were soaked in water for 24 hr or in water for $23 \frac{1 / 2 ~ h r}{~}$ and then in BAL for $\frac{1}{2}$ hr. They were then irradiated with 600 r of $250-\mathrm{kvp} X$ rays. After germination, the first mitotic root-tip division was examined for 2 -hit chromosome aberrations. The results of the studies wherein the radiation was administered at various intensities are given in Fig. 6.
As may be seen, there is a group of breaks that stay open for a relatively long period of time. This is indicated by the plateau exhibited by each curve. If the breaks underwent restitution during this period, then, for a given dose, at any given time, there would be fower open breaks in the systom at low intensitios than at high. Conser quently, the number of 2 -hit aberrations would diminish as intensity decreased. The length of the

${ }^{14}$ D. G. Catchoside, D. E. Lea, and J. M. Thodoy, J.
Genei $47,137-149$ (1946).

Fig. 6. Effect of Migh Intensity on Production of 2-Mit Aberrations.
plateou wherein there is ne diminution of 2 -hit aberrations is, therefore, a measure of the time the breaks stay open. This timo, which is dose depondent, is at least 2 hr in those seeds irrodioted in aerated water and $\frac{1}{2}$ hr in those irradiated in BAL. At the ond of these periods, rejoining oceurs and a typical intensity effect results. However, if the rodiation is given at an intensity higher than $200 \mathrm{r} / \mathrm{min}$, an increased number of aborrations above the plateau level is observed. This is true for aberrations produced in both water and BAL. This is interpreted as indicating that there is one type of break produced which rejoins, i.e., restitutes or forms a 2 -hit aberration very rapidly. If the radiation is administered at a very high intensity, these breaks are present in the cell simultaneously and are capable of yielding a large number of 2 -hit oberrations. In those seeds irradiated at lower intensities, most of these breaks restifute and there remain only those breaks which do not rejoin for a relatively long period of timb. The latter are the breaks, described in previous roports from this Laboratory, that are responsible for the plateau on the intensity curves.

It has been postulated that, since respiration and ATP (adenosine triphosphate) are necessary for the rejoining of this latter type of break, the bonds formed are strong bonds, possibly of a covalent nature. Any discussion of the type af bonds formed in the rejoining of the breaks that rejoin very rapidly is, ot this time, purely speculative. However, Mazia ${ }^{15}$ has found that chelating agents are copable of breaking chromosomes, and Steffensen ${ }^{16}$ has found that plants grown without calcium exhibit an increase in the number of spontaneous chromosome breaks. It may be that the breaks described by both Mazia and Steffonsen are the same as the type that rejoins ropidly in Vicia. These may be breaks not of covalent bonds, but of salt linkages that will rejoin immadiatoly and that will not remain open for 2 hr . In Table 8 are presented the results of experiments showing that chelating agents are crapoble of breaking the chromosomes of Vicia. In these experiments, the seeds were soaked first in water and then for varying periods of time in 0.001 m Versene. The tofal time of soaking, in all cases, was 24 hr.

[^8]
BIOLOQY PROGRESS RIEPORT

Total Colls	Time in Varsene (he)	Number of Abevrent Cells.	Aherrutions (\%)
650	0	*	0.94 ± 0.38
780	3	27	3.60 ± 0.69
250	6	36	14.40 ± 2.4

These seeds were not irradiated. The obility of eheloting ogents to cause chromesome breakcoge in Vicia is interpreted as indicating that there are same breaks in the systom that ore breaks of salt linkages. As yet, these brwaks have not been definitely identified as boing the some as those that give the high numbers of aberrations when the matorial is irrodiated of very high intensities. However, the existence of two chemically defined types of treaks - one of salt timkages and one of covalent bonds - is consintent with the results of the rodiation-intensity experiments and the stated hypothesis.

Further Studies on the Blochemistry of Chromoseme Rajoining

5. Wolff
H. E. Luippold

Recent experiments in this Laborstery have indicoted thet pontirradietion inhibition of cellular respiration is capoble of proventing the rejoining of chromosome breaks induced in the soed of Vicia fabas. It has also been determined that the appliv cation of exogenous ATP causes breaks to rejoin in a shorter period of time than they would in the obs ence of tine ATP.

In Fig. 7 may be seen the results of rodiationv intensity experiments performed on seends sooked for $231 / 2 \mathrm{hr}$ in water and then for $\frac{1}{2} \mathrm{hr}$ in either ADP (adenosine diphosphate) or AMP (odenosint monophosphate). In order to allow comparison, Fig. 7 also includes the provious intonsity curves obtained when the last $\}_{2}$ he of saoking took place in either ATP or water. The total dose administered at ony point of the curves was 800 , delivered by a G-E Maxitron tube operated at 250 kevp with 3 mm of At fiftration odded. It moy be noted thet, in those seeds soaked in woter alone

Fig. 7. Effect of Verying the Intensity of Redietlon on Yiold of 2-HIt Chrmmenemel Aberretions.
or in water plus aither ADP or AMP, there was no decrease in the numbers of 2hit oberrations when the rodiation was odministered ot low intensity. This indicotes that, under these conditions of sooking, there was no chremesome rejoining for at least 2 hr after the onset of irrodiation. In contrast, seeds sooked for the fast holf hour in ATP did show an intensity effect (decrease in 2 -hit oberrations), indicating thet the chromesome breoks rejoined $\frac{3}{2}$ to 1 hr ofter the commencement of the irradiation. The anly discemible physiological difference between ATP and AMP or ADP is coused by the presence of a readily availoble high-anergy phosphate bond in ATP. Thus this evidence that ATP itself can cause chromoseme rejeining whereas its-dephosphorylation products cannet is interpreted as being corroborative evidence of our provieusly advaneed hypothesis that ATP with its pyrophosphote bond is necessary as a source of energy to be utilized in chromesome rojoining.
The cumulotive studies in this field for the fost yeor have led as to postulete a scheme to rapresent the train of events that chromosomes follaw ofter irradiation. This scheme is presented in Fig. 8. It may be seen that the radiotion has two independent consequences that affect the prodvetien of chromosomol oberrations. It both breaks the chromosomes and delnoges what, the this time, can only be designated as o "rejoining system," In the presence of ATP, the "rejoining system" is able to recover and cause the breaks to rejoin. If the X irradiation is performed in tacwo, a typical

Fig. 8. Selhenette Reprosemtotion of the Effeets of X Reyn is Prudeclow 2-Wit Clisemesemet Abemp thens.
"exygen effect" is achievedf i.e., there is. less domage coused by the rodiotion. This is reflected in beth fower lrooles and less domage to the tejoining system, enobling the breaks to rejoin in a shorter time then efter irrodiation in air. If, however, the owygen is removed after the imrodietion ond oxidetive matobolism is inhibited, then ne ATP is produced and the breples formed are unable to rejoin.
At present, emperiments designed to slucidete the nature of the "reioining system" are under wey. One possilitity being explered is thet it is connected with mucleic ocid synthesis. In Fig. 9 may be seen the resulrs of dese-intensity. shudies performed on seeds seoked in water for 23), hr and then 5_{2} hr in the varieus purine and primidine besws sifilized in the formotion of nucleie acids. Adenins, guenine, vrocil, and eytosine all oet at protective agents, and the seeds sooked prior to imodiation in these chemicols exhibit fower 2 -hit aberretions than those sooked only in water. This was not so with thymines seeds speked in this substence did nut show a sipnificensly different abentation yield from the witer controls. Thymine per se, however, is not the procursor of the thymine thot becomiss incopr porated into the nucleic acids of the cell. In these experiments, urocil miny be expectind to act as the precursor for both incorperated unocil and thymine. It is coneluded, therefors, thet the time during which the breoks stoy open cen be influenced by preirradiation treotment with these purines and pyrimidines thet are prteursers for the purine and pyrimidine bases incorporated into nuclaic acids.

Fig. \%. Intensity Cerves Alter Prelterelietlen Treetinent winh Selected Purines and Pyelimidines.

These results do not prove that the "rejoining system ${ }^{\text {th }}$ is intimetely connweted with nucleie acid synthesis. However, they ove censistent with sweh - hypothesis and indicete thet fivrther reseecch olong these tines is worrented.

Deminesee Reletions is Neurespere Meteroliaryens

T. H. Pittenger
 K. C. Atweed

Heterokeryons between hiechemical mutants in Newmstony cxassa spow of on optimal rate of 5 $\mathrm{mm} / \mathrm{hr}$ at $30^{\circ} \mathrm{C}$ on minimat medium provided thet the compenents are of the seme mating type and are ganetically compatible. When the preportions of the two nucleor types are sufficiently unequel, however, grewth wifl be timited by the obility of the minerity cemponent to offiset the biochemical defect assecieted with the mojority type, and growth rates will be suleptimal. Under cenditions of prolpnged stobility of the nucleor proportions, a sulinormal prowth rate moy be looked upon es - measure of the degree of deminunce of the wifd type allele present enly in the nuclei of the miner nucleor component. Thus, in cultures with sulficiently fispropertionete ratios, and in the absence of nuclear swlection, growth rotiss will be suboptimal and gens dosope and growth rate cen be cemplated ever a wide range of volues.

The opportunity to comelote gene dosoge and prowth rote is now offerded since recent studies hove shown thet (1) heterokeryons with a wide ronge of nucluar rotios can be propored by verying

anococy peocness nitpont

the proportion of conidial rypes in the inoculum ${ }^{37}$ and (2) heterokeryons cen be constructed with prolonged submaximel rates in which oloptive nueleer ehenges are shsent, 18
In these studies of the dominancw of the pan* gens, a series of 21 heterokaryons with a wide renge of nucleor raties were symilhesized in which an clbine strain with e requirement for pentethenic acid (pas,ul-1 A) was used as the mojor nuclecr component and the miner nuclear cemponent was one of thrme stroins (lyw-3 A, uerg- 6 A, or mic-2,al-2 A), eoch having the normel allele of the panm mutant but with requirements for Jysino, arginine, and nicestinic ocid, tespectively. The heterokeryons were grewn at $30^{\circ} \mathrm{C}$ in $300-\mathrm{mm}$ growh tubws ${ }^{19}$ on Fries minimat medium with washed agor and the growh rates determined. The freguencies of the miner nueleor components were colculated by the approsimetion of Atrood and Mukai. ${ }^{20}$ The nuclear retios in the proximal and distal ends of the growth tubes were then everoged, a procedure which seemed iustified becwuse the diflerences wert usvally small. For the purpeses of correloting overoge growth rate with nucleor ratio and thus omiving of an estimate of dominance of par", the deto from the 21 hetarekerons were plotted in Fig. 10. In addition, the growth rotes of packal-1 A hemokeryens on verieus concentrations of calcium pontothenute ware simillorly determined. These dete are alse plotted in Fig. 10 with the cencentrotion of calcium pentothenete on the sems. oxis os the frequency of pas ${ }^{*}$ nuclei.
The maximum growth rate of pars,al-1 A is reached with 0.5 ps of colcivm pontothenate per millithter and is the some as the growth rote on minimal Fries medium of heterokeryons in which the nucleser proportions are in the optimel range. Below the optimal ronge, the growth rate folls precipitously with decreasing propertions of pare nuclei, or with decreasing concentrotions of supplement. It is netewortly thot the curves ars, at leost roughly. of the sume form; thet is to say, changing the

[^9]

Fis. 10. Stebitity of Mueleer Prepertions Datiag Gewilh of Meuro apore Meterokteryons. O, pan,al-1; O. pan,al-1 + nic-2,al-2; Δ, pan,al-1 + lys-3; $\mathbf{A}_{\text {, }}$, pain, al-1 + arg-6.
cancentrution of pantorthenate by ocertain foctor has she some elficet on the growth rote as changing the proportion of pase nuclel ty the same foctor. Tises the proportion of pam " nuciel cen be equoted to the concentrotion of pantothenate in the medium. From the doto in Fig. 10 it appears that 0.1 pg of colcium pontollemate per mithititer is approximetely equivalont in growth promoting effects to 1\% of pan nuelei.

The heteroteryon having $t y s=3$ as the minor muclear eumpenent appeors to require more pave nuclei for an equivalent growth response than those having either mic-2, al-2, or arg-6. Although at present it is uncwrtain whether shis offect is reol, it is possible that this pan" is less dominant than the others, or that modifying factors in the genwtic background of tyan3 are responsible.

If deminance is defined as the reciprocel of the frequency of the minor component iust sufficient to prombte normal growth, then the dominonce of pan ${ }^{*}$ is approximetely $25-30$; thet is, the maximum oetivity of pan ${ }^{+}$is $25-30$ times as great as that necessary for a nommat growft rale. It would be of interest to leom whether the system always functions with this extro capacity, or whether the peak aetivity is evoled by the growth-limiting conditions. This connet be determined with the type of information at hand, but since the growth
responses to pentothenate and pan* nucliei wore similer, it cen be inforred that the activity per nucleus does not ehenge eppreciably within the subeptimal range.

Relosion Betresen the Lethel Eflects of X Reys on Miterecenldio and Ascesperes
 K. C. Atweod
 T. H. Pittenger

The survival curves of uninucleate miersconidia and of macroconidio, which have a distribution of nueleer number, have been discussed previously. 21 It was apparent that the X-ray survival curve of the multinucleate cells could not have been predieted from that of the uninucleate, and that a large portion of the domoge is prevented by inter actions of unknewn nature between the nuclei in multinucleste canidie. Another morphological element in Neurospona is the ascospore, of interest in these studies becouse it contoins exoctly two nuelei. The nucloi in ascospores are some 40 p aport in a dense, coersely vacuolated storoge moteriat, whereas the nuclei in macrocomidio ore clasely adjacent in a finely granular cytoplasm. X-ady survival curven of ascospores ware first obtained by Uber and Geddard in 1934, but these data cannot be used for comparison because the number seored by the individual isolation technique was insufficient to estoblish the form of the curves. Therefore it sewmed important to oltain a survival curve for ascospores by the sorbose ploting teclinique.

Ascospores triken from the cross between tryp (10575A) and ad (27663a) were irradioted with $250 \mathrm{kvp} \times$ rays, 4 mm of At filtration, and then

[^10]activeted at $60^{\circ} \mathrm{C}$ for 20 min and plated in a thin top leyer on supplemented sierbose ager. Accurate dilutions were mode pessible by suspending the henavy spores in a viscous 0.15 ogor solution. Survival data based an counts of several hunded colonies per point are shown in Teble9.

The significunce of this survival curve is its relotion to the curves proviously obtoined with uninucleste microconidia. The survival of ascospores egrees with that of microconidie on the atsumption that the nuclei are independent units of inoctivation; that is, thet no interactions occur between nuclei in the ascospores and that an ascospore is vioble if it contoins at feost one viable nucleus. On this bosis the ascospore survival would be given by

$$
\begin{equation*}
s_{\text {ese }}=1-(1-s)^{2} \tag{1}
\end{equation*}
$$

where s is the survival of microcenidia. In Table 9 the ascespore survival is compored with that of microconidia and macroconidia. The computed survival according to Eq. 1 is in good agreenumt with experiment. The macraconidio are much less sensitive; at 100,000 . their survival is 86 times as high as that of ascospores. This is consistiont with the notion that the nuclei in ascospores are functionally isolated from one another to an extent which precludes an interaction of the type encountered in meperoconidia.

> Radiotion-induced Mutotiona in Molze $\begin{array}{ll}\text { D. Schwartz } & \text { C. E. Bay }\end{array}$

Proliminary studies ${ }^{22}$ have been reported on the mutogenic oction of ionizing radiotions at the
${ }^{22} \mathrm{D}$. Seh warnz ond G. M, Clinniog, Biol, Quan Proge
Rep. Feht 10, 1952 ORiNL $-1244, p 24-25$.

TABLE 9. SURVIVING FRACTIONS OF MEROCONTDIA, ASCOSPORES, AND macRoconidia as a Function or x-ray dose

Dosen (10 ${ }^{3}$)	Survival, s\% of mieroconidia	$1-(1-s)^{2}$	Survival of	
			Aseesperen	Noerreconidio
20	0.62	0.86	0.90	0.82
40	-0.20	0.36	0.58	0.50
s0	0.026	0.051	0.066	0.35
80	0.0030	0.0080	0.0074	0.17
100	0.00034	0.00068	0.0011	0.095

EHOLOGY PROGRESE REPORT

YF_{2} locus in molize. Further testing has estoblished thet only two of the five yellow-green seedlings and only one of the mosaics found were true mutants. The athors beceme fully green as they motured, and failed to transmit the mutant chorscter to their offspring. The final tobulation gave two yellow-greens of the 33,934 seedlings grown. Since the femole perent was heterozygous for the wed deficiency, only holf the seedlings wore of the proper genotype for the expression of the mutont phenotype. When the comection is mode, the mutation rate of the $\gamma_{\mathrm{R}_{2}}$ gene at 1000 ; of y rays is colculated to be 1.18×10^{-4} $(2 / 16,967)$. The mutetion rate in the unirradiated control is $0.37 \times 10^{-6}(2 / 54,677)$. The difference between these is not statistically significant.
From their X-roy studies on the a locus, Stodler and Roman ${ }^{23}$ concluded thot ionizing radiations produce fow if ony true gene mutations in moize. All the opporent gene mutations which they found were proved conclusively to be minute deletions. The present study was undentaken to determine whether this was peculior to the a locus or was true for other loci as well. The dato presented here support the conclusion of Stodier and Roman.

As the experiment was set up, yellow-green seedlings could result from either gene mutotion or a small internal deficiency which did not affect the loei on aither side, w and py. However, the obsence of pole yellow-seedlings in the irradioted population points to mutation as the agent responsible for the yellow-green seedlings. The deta suggest that all deficiencies in the chromomers must have been gross enough to delete the w locus as well, resulting in a white seedling. One pale yellow seedling was found in the control.

The mutable yellowngreen (mosaic) plant is of sonsideroble interest and is being studied in great detail. It was not included with the yellow greans in calculating mutation rate since it appears to involve a chromosamal aberration similar to the Ac-Ds material described by McClintock. Different states of mutobility which affect the time of mutation have been isolated. The mutability is associated with a change in the morphology of the temminal knob on chromosome 9. The knob is nommally round and, in the line used here, is alsa very large. The mutable y ellow-green plants

[^11]contain both the round and an extremely elongated knob. Both knob types are found in the same onther. The foctor responsible for this mutability does not activote MeClintock's Ds.

EReets of Chemicel Treetments and Rediations on the Crowth of Timethy Reeto

$$
\begin{array}{ll}
\text { R. T. Brumfield } & \text { D. E. Foond }
\end{array}
$$

In on earlier report ${ }^{24}$ it was shown that $2,4,6$ trichlorophenowyocetic acid ($2,4,6-7$) inhibits curvolures induced in timothy roots by unilateral exposure to ultroviolet rodiation. The same compound was also found to inhibit completely the geotropic response of the root. ${ }^{25}$ Indoleacetic acid (IAA) does not madify the curvetures induced by ultroviolet or the geotropic curvature. 24,25 In continuing this resporch, the effocts of other compounds on curvotures in the timpthy root hove been tested. The methods used hove been the same as those described in the earlier reports eweept that a constant-temptorature bow to house the microscope and growing roet has been constructed and put into use. The additional compounds tested up to the present. time are 2,4,5trichlorophenowyocetic acid (2,4,5-T), 2,4-dichlorophenoxyocetic acid ($2,4-\mathrm{D}$), indole-3-butyric acid (IBA), and moleic acid hydrazide (MH)), oll in a wide range of concentrations.
The 2,4,5-T and 2,4-D in concentrotions of 5 $\mathrm{mg} / \mathrm{liter}$ inhibit the geotropic curvature but reduce growth to obout one-third that of controls. IBA has essentiolly the same effect as IAA, i.e., d temporary inhibition of root growth, but the curvature per unit of growth is about the same os that of untreated controls. MH ($800 \mathrm{mg} / \mathrm{liter}$) had no apparent effect on growth or the ghotropic curvature for the interval of observation (100 min). Experiments concerning the effects of these compounds on the curvatures induced by ultraviolet are still in progress.
In the experiments with 2,4,6-T on curvatures in the root, there was some indication that treatment with $2,4,6-\mathrm{T}$ (10 and $20 \mathrm{mg} / \mathrm{liter}$) immediately stimulated root growth in addition to its effect on the geotropic response. This possibility was more closely investigated by keeping individual

[^12]roots under observation for 4 hr and then treating thent with voried concentrations of $2,4,6-\mathrm{T}$ and compering rates of growth before and after trees ment. The rote of root growth is essentiolly constont under uniform envirommental conditions for shout 24 hr . Therefore, the measurement of the gowth of eoch root prier to treatiment serves as - control to detect a stimulation or inhibition of any applied treatment. The $2,4,6-\mathrm{T}$ in 10 - and $20-\mathrm{mg} / \mathrm{lit}$ er concentrations coused a slight tempecery inhibition of growth and $5 \mathrm{mp} / \mathrm{liter}$ had no evident effect. It is concluded for the present thet the stimulation indicated in the eerlier en periesents was caused by nom al differences in growth rates of different groups of roots. This phase of the reseorch is still being investigated.

Effecte of Alphe-Perticle Irrediation. - Since the timothy root is of small size and hos proved to be a suitable test object for ultravielet radietion, which is of timited penetrotion, it oppeored tikely that it might also serve as material for the study of the effects of a imrodiotion on cell division and growth. In proliminery experiments, roots were exposed uniloterolly for $2,4,6$, and 8 min to a polonium orparticle source delivering 1.5×10^{5} a particles $/ \mathrm{sec} / \mathrm{mm}^{2}$ at the surfiace of the root. All these dosoges resulted in curvotures in the root. These curvatures are however quite differont from those induced by ultroviolet radiation. Ultroviolet induces two curvatures in the roet one is toward the source, reaching a maximum about 40 min after imrodiation, and is apparensly coused by the inhibition of cell growth in that part of the root generally referred to as the region of elongation. The second curvature is oway from the source, reaches a maximum about 80 min ofter irradiotion, and is nearer the root tip then the first curveture. The second curvature evidently results from a stimulation of growth of cells on the irradiated side and nearer the tip then in the case of the first curvature. The curvatures induced by a rodiation develop about 4 hr after irradiotion and are toward the source. It is not known at present whether the curvatures induced by a radiotion result from an inhibition of growth of cells in the region of cell division or whether dividing cells ore so offected that their growth is inhibited when they reach the region of elongotion. The curvature of the root straightens out during subsequent growth, passibly on effect of gravity since the roots were kept in a vertical position.

Another effect of a rediotion is the production of greatly elongated cells on the irrodiated side of the root, which becomes evident about $12-18 \mathrm{hr}$ ofter expesure. The elongoted cells are quite similor in eppeoronce to the elongoted cells eppeering ofter ultravielet irrodiation which have been deseribed elsewhere. ${ }^{26}$ The elongoted cells presumebly result frem on inhibition of cell division while the elongation of the cell continues. These experiments ore currently in progress.

mesect cytolcey amb cemetics

M. E. Goulden
B. R. Speicher'
R. C. von Borstel
K. G. Speicher'
J. G. Corlson ${ }^{1}$
A. R. Whiting ${ }^{1}$
R. W. Rogers ${ }^{2}$
G. S. St. Amend

X -Ray-Induced Dominant Levhelity and Chronesemel Aberretions in o Thelytekeve Weep

B. R. Speicher
 K. G. Speicher

The ichneumon wasp, Nemeritis camescens, reproduces by femole porthenogenesis, moles being almost unknown. Diploidy of the motured, unfortilized egg is assured by on ineffective first moturetion division which causes the abortive first polor nucleus to rounite with the second oocyte nuclevs on a common metophose il plate. Completion of the second moturotion division produces a female pronucleus and a single polor nucleus, soch with 2n (22) chromosomes.
If a mature fomele is witheld for a day or two from its host lorva, the Meditemanean flour moth, Epbestia iveloniello, as many as 75 unlaid eges will collect in the uteri. Such eggs hove ofl passed through prophase and metophose of the first meliosis and their chromosomes are uniformily fused into a compact mass, a condition which is common to the eggs of many Hymenopters but distinctly different from Habrobracon. Chronologically ot least, they are in a stoge of arrested and modified anophose I. They do not resume their maturotion divisions until effer oviposition.
In order to determine the sensitivity of these unusual eggs to radiation-induced dominant lerhality, stock fomoles were X-imradiated at doses ranging from 100 to 1200 r by increments of 100. Immediately affer expesure they were allowed to oviposit into their host larvoe for 3 or 4 hr , a

[^13]
BHOLOQY MROQRESS AEPORT

period sufficiently brief to include only these egos prosent in the steri (i.en, in eerily anoplvese I) of the Nime of Imodiation. Neer hutching sime (51 hr et 30rC) the loid epgs were dissected froe the host and the percentege of vieble egen wos determined.

Results (Fig. 11), conected to on inviebitity nomest to the stock of obeut 1.5%, show a 505 survival at about 400 r and essentiolly no survival of 1200 r . These date egree substentially wirh those obteined for Halrotesicon by A. R. Whiting ${ }^{27}$ for egos treated in late metophase l . When plotted semiloparithmically, however, the survival slope for Nemeritis egas oppears mot to be based an a simple one-event phenemenen.

Cytolegicel examination mos mode of abovt 160 eges, varying in trope at the time of fixation from onophese I to completion of the secend maturation division, but all imedieted at 600 r while in eerly onophose f. Chrometid beidges and frogments wers seen in oll stopes, olthough thair frequency in anophase I was impossible to determines. The presence of bridges in anophese f , together wish chromosoms elumping. indicetes thot elrompseme stichiness is present. Bridpes seen in anophese II could be coused by cliromoteme breokege and fusion of aither sister strands or nenhomologous chrowotids. Absut 135 epgs covering the seme stopes, but not irrodioted, showed no snequivocel bridges, frogments, or clumping.

Fig. 11. Sorvival of Nemeritis Eges Trewied in Angephase I to In ereasing Doses of X Reys.

These rasults indicente thet eltheuph the ege of Nemeritis is about equal in Xerey semsinivity with ther of Halrolonecen, there is sees difference in (1) the cevse of some dominont letholity and (2) the pretence of chnomosems ariekinest during anephese t. Beth difleronces could bo ascribed to the more sempert, olmost fused, cendition of the sterine eas nuclevs.

X-Reyindeeed Gene Miviations in Neperifle ceneweens

B. R. Speicher
 K. G. Speicher

Wild-rype femoles were X-imediated with dosen of 200-1000 r to produce mutations thet ceuld be used to neolyze chromosome segregotion in the otrpical meiosis of Nemeritils canwscens. The femoles were lelt with host ceterpillers for only 4 hr after X-roy expesure se they mould ley only these egas which were irrodieted at eerly anophese 1, ond thes ensure a unifomely treated F_{1} poppletion. One visible mutotion wes found in thit 13es F_{2} offspining from X-irrodiated tenoles which were exabined, it hos proved of limle wse becevsu it effects the pesition of the wings and cennet bs recognised in anesthetised specimens, where the wings ore extended in nonnel os well es mutant individuols. Counts an therefors unielioble.
Seven hundred and forty-three eges laid by F, fomales from implieted mothers wers ewemined, ait e timed interval ofter loying, to determine whether recessive ferhal mutations hod been prodveced. Three such mulations were found and have beem followed through three generotions by meons of egp counts. The rerios of inviable epas anong topol -gas extmined from hetereaygous femeles ers given in Table 10. Dete ars incemplete and cen rections heve not been mode for inviobility found in the stock.

TABLE it. Ratios op meviable tecs propuced BY Twnee necessive LeTHAL mutations

Matatien	Tenat Eeps	Number al Invialle Ees	Percentege Inviebility
${ }^{1} 1$	97	24	24.7
${ }^{2}$	111	28	25.2
${ }^{3}$	155	42	27.1

The evthors hat previlously redred Nemerrifir casescens in mess culture through more then 100 penvertions without finding o mole, and the species is deseribed is the liturature as eansiating soploly of fameles, axeept for one repert in 1931 of the scevrrence of three moles in a laborstery exitrues. ${ }^{28}$ In this experienent ont mole was fownd enong the grogeny of an Xerojed femols. Procluremesemes thee ceuld be ceumted in spermetopenial celts were well above the hopleid number, indicasing thet she mele wes diploid. This was wailind by ceunts of liriasten on o meusumed aree of the wing which wers lower then cemperoble briatle ceunts on femole wings, as they are in dipleid males of Hulirelonaces. Since moles in the onfer Hymensopters ore nomeotty hoploid, this moy be censidersid an axceptisnal mele, and its arigin frees on ierndiated femele suppests thet it megy heve bewn produced by on alferation in a ses. determining loews, ter rwgian, diring meiesis.

> Recessive Lothel Miptotions Indpeed by X Reys in the First Matetle Prepliene of Helirelireese Oesytes

R. C. von Berstel K. C. Armeed ${ }^{20}$
 A. R. Whiting

It wes provieusly mppotsed ${ }^{30}$ thet a peredosicel ineprality existed in embre recwsaive lethal mutetien frequener as determined by twe dilforent ewtleds. This peroden wes reselved by the divcovery and demonatrotion of a new type ef deminent lethel mutotion which in mfowed to os a conditienelly deleged deminent Iethel evtetion, ${ }^{31}$ The condirionelly deloyed dominent lerthel mutatien is expressed by deoth of the heploid andirge and deeth of the dipleid lenvee or pupee and is assescieted with wges irrodieted in the first mesiotic mptephowe of aegonesis.

It is the puppes in this report to wee the two metheds of enelysis for awcessiwe ferthal mivetions on eqpe imodiated in she Sirst metiotic groploses, These metheds ars (1) an F_{1} gemerstion test whiel

[^14]diseleses the frequency of recesaive lethal mutesiens induced by X rays in haploid egps, and (2) a steond-genteretion $\left(\mathrm{F}_{2}\right)$ test which vevesols the inequency of recessive lethal mutotions in epzs which were fertilized subsequent to imedietion. When eggs in the first melestic prophase arolirrodieted, there is no discrepency between the rewsilts of the two matheds of anolysis, and eirher tesir moy be raganded on providing an accurate estimate of the frequency of receseive Itethal mutations indueed by X mys.
Based on the equetiens repertied previeusly, ${ }^{30,71}$
$$
r=1-\left(v_{,} / v_{j}\right)
$$
where r is the frequency of chromesomet sets heving at leest one embre recessive lethal mutation, V_{z} in the vieble mropertion of unfiertilized egus frem unnested or mated fiemeles, and v_{f} is the viable propertien of liertilized nagn. Since approximetely 0.57 of the ages ore nameally forsilized, then V_{f} moy be obteined frem
$$
v_{f} * \frac{m-v_{p_{0}}[1-n}{f}
$$
where s is the vidble propiontion of eggs fram mated fumeles and f is the propertion of fertilized eags, From these equotions, the ambrye recasalve I welhal frequeney con be determined besed on epg hemelhelilitity in the F_{7}.
Similerly, for totol recessive lethols in the F_{p}, the methed can lo wsed to expruss $r^{\prime \prime}$, the frequency of gensmes beaing at least one recwssive tethat mutotion empresseet ot any stoge of developnemt,
$$
F^{*}=1-\left(v_{z} / v_{f}\right)
$$
where
$$
v_{f}=\frac{m^{*}-v_{g}(1-n}{f}
$$
is the propertion of forrilized eggs reaching the sduly stope.

The second methed (F_{2} senolysis) is to iselete smeuted femeles and detemine the firequency that shese are hetersaygeus for of leout one recessive lethul muterion.
Tablo it contalins doto from an axperiment from which the recessaive lerthel frequencies are colculeted by the F, merhed, In this experiment eags

TABLE 11. SURVIVAL DATA AND F, ANALYSIS OF HABROBRACON ECGS IRRADIATED IN THE FIRST MEIOTIC PROPHASE

	Offapring froms	
	Meted Females	Unisated Females
Matehabitity (larvee/eges)	232/531 = 0.437 (m)	211/537 $=0.393\left(V_{0}\right)$
Hatchability (eorrected)	0.459 (V)	
Adulta/eges	$173 / 531=0.326(-9)$	$150 / 537=0.279\left(v^{*}\right)$
Adulva/oges (eerrected)	$0.349\left(v_{f}^{*}\right)$	

were irradiated with 15,000 r in the first meiotic prophase of eogenesis. The values of r and r^{\prime} as calculated by the F_{1} and F_{2} method are compared in Table 12. It is apporent that there is no significant difference between the two methods for determining the frequency of recessive lethal mutations when eggs in the first melotic prophase are irrodiated. At present it is unknown why conditionally delayed dominant lethal mutations are restricted to eggs irrodiated in the first meiotic metaphase.

TABLE 12. RECESSIVE LETHAL MUTATION FREQUENCY DETERMANED BY F_{1} AND F_{2} ANALYSIS
$\left.\begin{array}{lcr}\hline & \begin{array}{c}F_{1} \\ \text { (Computed from } \\ \text { Teble 11) }\end{array} & F_{2}\left(\frac{\text { Feneles mith Lethels }}{F}\right) \\ \hline \text { Femeneles Tested }\end{array}\right)$

Radiosensivivity of the Unfortilized Mabroliracen Egp

W. St. Amand ${ }^{29}$
R. C. von Borstel

In the porasitic wasp, Habrobnacon, oogenesis is orrested neor the end of he first meiotic division and meiosis continues only olter passoge of the egg through the ovipositor. Heving been laid, all eggs develop at approximately the same rate and, within ony given egg, cleavoge division nuclei are synchronized. Stage of meiosis or mitosis can
thus be reloted to time after laying, and the radiosensitivity of division stoges can be determined by the hatchability of eggs treated at known intervals after oviposition.

Eggs from virgin females were collected as soen as laid, placed on numbered plastic cover slips, and the cover slips put in a plastic bow which was maintained at $20^{\circ} \mathrm{C}$ over a woter both. In all cases, the "oge" of the egg is known to within 1 min.

Eggs to be used for cytology were fixed in Kahle's fluid and stained with Feulgen. (See deto in Toble 13.) "Timerange* refers to the interval between oviposition and fixation.

The irradiated eggs recelved 500 r of X rayp (opproximately on LD $s 0$ dose for unlaid arrested egge) at about $600 \mathrm{k} / \mathrm{min}(250 \mathrm{kvp}, 30 \mathrm{mos}$ inherent filtration, 1 mm of Al ; added filtrotion, 3 mm of $\mathrm{AI}_{\text {, }}$ $\frac{1}{2} \mathrm{~mm}$ of Cu). Data on the hotchability of irradiated eggs have been grouped and are tabulated in Table 14. "Time ofter laying" reflers to the interval between ovipesition and irradiation. The hetchability of eggs collected os controls (521 egos) was 92.1%.

A total of 538 eggs hove been irrodiated and 163 eggs were exomined cylologically. Experiments are being continued. The results obtained to dote indicate thot (1) eggs just before or just after oviposition ore obout equolly radiosensitiveg (2) the radiosensitivity of the meletic stoges from the arrested stoge to onophese II shows no great fluctuations of radiosensitivity; (3) the pronuclear stoge is much more radiosensitive than prophase of the first cleavoge division; and (4) there is a progressive increase in rodiosensitivity from the first to the third cleovoge division.

TABLE 13. EYTOLOGY OF UNFERTILIZED

\left.| MABROBRACON EGOS | | |
| :--- | :---: | :---: |$\right]$

Efiocts of Polonium Alpha Particles o

 R. W. RogernR, C. von Berstel owly deposited eggs of virgin femole Halr Nowly deposited esgs of virgin femole Habroo in an offiort to dotemint the relotive rediosensitivities of nucleor and nonnucleor olements of the
epg. At the time of oviposition and for obout to min following, the oge nucleus is in fi-st metiotic metophose or ornophase ond averopes riy a foum microns in diemetor. Duting this time the nuelevs
resides within ofew microns of the egg surface in resides within a fow mictons of the egg surfoce in the enterior one-sixth or less of the egp length,
Thus, in on ese properly oriented, thy nuclevs is
readily accessible to a perticles with limited range reodily accesssible to a porntielest with limited range

TABLE 14. hatchabilities of irraduted eces

Time After Loving	Lervon/Esas	Hatehobitity (\%)
-10	25/34	46.3
11-20	25/45	58.5
21-30	41/73	56.2
$31-4$	22/50	48.0
41 -50	17/43	39.5
$51-80$	2/30	6.7
61-70	18/46	41.3
71.80	29/40	72.5
11-90	16/44	36.4
91-100	$6 / 77$	33.3
101-110	2/26	7.7
111-120	4/21	19.1
121-130	2/17	13.8
131-175	$0 / 32$	0.0

Irradiation of the nueleus was accomplished by orienting small groups of eggs, all of which hod
been oviposited not more than 5 min before imodio. tion, nuclear side up on a mieroscope slide, placing the slide on a microscope stoge, and irrodiating with the source mounted in the microscope notewos 10.0 mm and exposures wers $5-150$ seec in length. The dose rate, computed for on averoge
 (0.015 a porticle/sece) $/$ nuclevis. Hatch Militios mere determined about 40 hr oftor inrodiation. The
 exponential in nature.
With the nucleus exposed efford with the nucleus exposed offords on interesting corrcentoge hatchobilities relorive to dose adminisistered, and the theoreticeal probability of thenuclews recoiving xore a particles during each petiod of receiving xero a porticles during each period of expasure. Thus, in the 5 seece exposiry, with a
dose rote of (0.015 porticle/sec) /nuciovs, the average one is equal to $(0.08$ perticlo/ $/ 5 \mathrm{sme}) / \mathrm{mu}$ -
clevs. The probobility of receiving tom slous. The probobility of receiving zeno a ponti-
cles with this volue for sveroge dose a in the

Fig. 12. Dese-Hatchability Curves for Mabrobracon Eggs Irrodicted with Polonium a Particles. O, Nucleus exposed, dose rote 20.015 a perticles/sec/nucleus; \boldsymbol{A}, nucleus shielded, dose rate \approx 1.1×10^{6} a particles $/ \mathrm{min} /$ ogg.

Poisson formula $a^{x} e^{-a / / x t}$ is 0.92 . The experimental percentoge hatchability was also 0.92 . Comparison is similarly drawn in Table 15 for all the rediation exposures utilized.

Exposure at the doses, in rad, administered to the nuclei is awkward in that the average doses do not have quite the same significance when applied in other radiations. For example, in the 5 -sec dose, only about 8% of the nuclei exposed received any radiation at all, and this in terms of a single a particle. In the 150 -sec dose, the maximum number of particles probobly received by the nuclei was 6, with a probability of about 0.01. It is, then, perhaps better to express the doses in minimal and maximal probabilities; in this experiment the dose ranged from about 720 to $4320 \mathrm{rad} / \mathrm{nu}$ cleus, representing 1-6 a particles per nucleus.

Irradiation of the cytoplasmic or nonnuclear end of the egg was done by arranging eggs, concave surface up, around a small hole in a plastic coverslip so that the nucleated half of the egg was shielded and the remainder exposed for irrodiation. A more intense polonium source was used at a distance of only 1.0 mm from the eggs. The dose rate was computed to be about (1.1×10^{6} porticles $/ \mathrm{min}$)/egg. Duration of exposure was $5-22 \frac{1}{2}$ min, and the experimental results are shown in Fig. 12. The doses ranged from about 2.2×10^{5} rad at 5 min to about $9.6 \times 10^{5} \mathrm{rad}$ at $22 \frac{1}{2} \mathrm{~min}$.

TABLE 15. EXPERTMENTAL AND EXPECTED PERCENTAGE OF MATCMABILITIES

Duration of Itradiation (sec)	Averoge Dose a (No. see imad $\times 0.015$)	Probobitity of Zero a Perticles	Exptl Percentoge Hate hability
5	0.08	0.92	0.92
10	0.15	0.86	0.82
20	0.30	0.74	0.73
30	0.45	0.64	0.62
45	0.68	0.51	0.52
60	0.90	0.41	0.38
75	1.13	0.32	0.28
90	1.36	0.25	0.25
120	1.80	0.17	0.16
150	2.26	0.11	0.11

A comparison between the $\mathbf{5 0 \%}$ lethal doses for nucleus and eytoplasm yolk is complicated somewhat by different shapes of the curves and by the Paisson nature of the nuclear low doses, but the latter difficulty can be generally expressed by the use of an average value for the low dose. The 50% lethal dose in the nuclear irradiations is the $45-\mathrm{sec}$ dose with on average of (0.68 a particle/45 sec)/nucleus. This average actually represents a dose in which obout one-half the nuclei would be expected to receive 0 a particles; obout one-third receive 1 a particle; about one-tenth receive 2 a particles; and the remaining few per cent receive 3 or 4 a particles. The averoge dose with this distribution equals about $500 \mathrm{rad} /$ nueleus. The 50\% lethal dose in the cytoplasm yolk or nonnuclear exposures is approximately the $17 \frac{1}{2}-\mathrm{min}$ dose, or $7.6 \times 10^{5} \mathrm{rad}$. The ratio of nuclear to nonnucleor doses is of the order of about 1 to 1.5×10^{3}. That is to say, the nueleus mould appear to be over a thousandfold more radiosensitive to a particles than an equivalent volume of nonnuclear elements of the egg when hatchability of the egg is used as the eriterion of sensitivity.

Prelliminary Date on the Irrodiation of the Cytoplasm and the Nuelel of Habrobrecon Eges with Verious Wave Lengths of Monochromatic Ultraviolet Radiation
R. L. Amny R. C. von Borstel

In a tiving cell that has been injured by radiation it is of interest to attempt to identify the particular cellular constituent which has been affected adversely. A useful approach to such a study can be mode by utilizing ultraviolet light as the damaging agent, since different wave lengths of this type of radiation are selectively absorbed by different chemical groups. Some information may be gained as to the identity of the cellulor components absorbing the radiation (and thus eliciting the deleterious effect) by comparing action spectra (the relative effectiveness of various wave lengths producing this effect) with absorption spectre of variout cellular constituents.

The newly laid hoploid Habrobracon egg, by virtue of its orgamization, provides an excellent system for ascertaining separately the action spectra for the nuclevs and for the cytoplasm. In the elongate, slightly curved egs, the nucleus is located near the anterior and adjacent to the cont vex surface and remains in this position until
meiosis is completed (30 min). ${ }^{33}$ The bulk of the cytoplosm is distributed in a layer iust beneath the egs membranes and completely surrounds the large centrally located yolk mass. By exposing only the concave surface of the egg to a source of radiation, cytoplesm is treated, whereas exposure of the convex surface results in irradiation of the nueleus. Since individual irradiation of the two surfaces results in (1) differently shaped hatehability curves, (2) dissimilar sensitivity, and (3) unlike appearance, it seems probable that different cellular constituents are affected in each case.
In a typical experimental run, virgin females were allowed to oviposit on their hosts (Epbestia Iarvae) in Stender dishes. By examining the hosts periodically, fairly large numbers of eggs $0-15 \mathrm{~min}$ of age could be collected, positioned on a glass slip, and irradiated. Hatchabilities were reconded two days later. Adequate precautions ware taken to prevent photoreactivation,
Mercury lamps of the Daniels-Heidt type ${ }^{34}$ or of the G-E H-4 type were employed as sources of radiation. The source in use was focused upon the entrance slit of a Hilger D96 monochromator. A holder, attached to the end of the monochromatore, was fashioned so that either a thermopile or an exposure chamber could be fitted into it. With the exposure chamber in place, the glass slip carrying the egas was inserted in it through a side slit. The incident energy was meosured with an Eppley thermopile and galvanometer which had been calibrated previously against an NBS lamp.
Eggs were exposed to various dosages of radiotion at five wave lengths between 3022 and 2378 A. In one group, the convex surfoces were imradiated; in enothar, the concave. The percentages of eggs hatching after exposure to various dose levels are presented in Table 16. Action spectro construetied from these incomplete dota show, for both convex and concave surfaces, broad maxima of effectiveness (with respect to killing) in the region 28042537 A with points of drastically lowered efficiency at 3022 and 2378 A. The date indicate that at 2804 A, cytoplosmic killing is less efficient then at 2650 or 2537 A, whereas killing is approximately the same at all these wave lengths when the nucleus is irrodiated. Dose-hatchobitity studies

[^15]TABLE 14. PERCENTAGES OF EGGS MATCMING AFTER IRRADIATION

$\begin{gathered} \text { Dese } \\ \left(\text { ergs } / \mathrm{mm}^{2}\right. \text {) } \end{gathered}$	Hatchabiliey (Larvae/Eggs * \%) After Treatment with Monoclromatic Ultravielet at:				
	2378 A	25378	2652 A	2804 A	3022 A
	Conven (Nuclear) Surface				
29		$105 / 122$ - 86	$44 / 54=31$		
57		$68 / 108=63$	51/99 = 52	$68 / 112$ - 59	$49 / 51=96$
78			$43 / 114=42$		
114	85/100 = 85	21/103-20	$23 / 109=21$	$22 / 103=21$	
209	$84 / 100=81$				
227		16/101 $=16$	17/104 $=16$	39/104*38	
284		$21 / 72=29$			
*11	$27 / 99=27$	$14 / 100=14$	$8 / 99=8$	14/101 * 14	$43 / 45=96$
1023					$30 / 33=91$
2045					$32 / 54=59$
Cenceve (Cytoplowmic) Siveleee					
\$57		$93 / 109$ - ${ }^{\text {a }}$	$81 / 90=90$	$111 / 115 * 97$	$32 / 32=100$
697		$90 / 114=79$			
436		$56 / 108=52$	76/99 $=77$	69/80 $* 86$	
929			$33 / 94=34$		
976		23/82-28			
1022		24/103 $=23$	24/103 - 23		
1115		11/100 $=11$	$11 / 100$ - 11	57/100 = 57	33/33 $=100$
3257	90/100 * 90	$1 / 303=1$	$1 / 103=1$	48/3s $=56$	
1393		$0 / 100=0$	$0 / 100=0$	7/102 = 7	
1528	73/101*72		$0 . / 110=0$	$10 / 106=9$	$48 / 48=100$
1871	63/112 * 56		$0 / 90=0$. $0 / 104=0$	
2230	$9 / 97$ *			-	
2787	4/104 * 4				$40 / 41=98$
5574					$37 / 41=90$
	Contrefs: 136	24 * 05			

at additional wave lengtha, ather dose levels at the wave lengths listed, and absorption studies on the egg membranes are in process or ore planned which should anoke for more precise spectre.

Dose-harchobility telations for both the comver and conceve surfaces follow the form of those describud by won Beratel and Moser. ${ }^{25}$

The oppeorance of the nomhatching egg following irradiation has olse been studiad in the present work in on attempt to corralate it with the developmental condition ot the time of death. In general, eggs which do not hatch as e result of convex surface imediation die very early in development and are identical in' appearance with ova which have been exposed to ionizing radietionss ${ }^{36}$ Those
${ }^{30} \mathrm{R}, \mathrm{L}$. Amy, Raliasien Reseanch in press.
exposed to rodiation on their concave surfaces die loter in development and present a much different pattem of structural derangement. Present indications are, therefors, that it is possible to defect under low magnification (X25) whether damage induced by radiation has primarily affected the nucleus or the cytoplosm.

DROSOPMILA GENETICS

W. K. Belker

C. W. Edington
W. J. Welshons ${ }^{37}$
C. W. Hinton, Jr. ${ }^{37}$
P. B. Turpin
D. L. Lindsley ${ }^{37}$
E. S. Von Halle

On the Structure of the $s c^{\mathbf{0}}, \mathrm{Y}_{\mathrm{t}} \mathrm{b} w^{+}$Chroneseme of Drosophilla melonegaster W. K. Baker

As a result of past studies on the effect of ionizing radiations on the loss of a ring chroanosome, X e, in Drosopbila ${ }^{38}$ it appeared advantogeous to study the loss of y^{+}and bw markers located on a single Y chromosome. A chromosome fulfilling these qualifications was obtained by Cooper ${ }^{30}$ from a crossover between the $s c^{2} \cdot Y$ and the $Y_{i} b w^{*}$. However, the order of the genes on this new chromosome, which is designated sce ${ }^{\circ} \cdot Y: b w^{*}$. was unknown. With this chromosome it is possible to follow five morkers if oppropriate crosses are miode. These markers are as follows: y^{*}, bu ${ }^{*}$. $b b^{*}, Y^{5}$ (the fertility factors located in the short om of the Y chromosones), and Y^{2} (the Y^{2} fertility foctors).
Males of the genotype, $X^{c}, y / \mathrm{sc}^{0}-Y: b w^{*} ; b w$ were X irrodiated with doses varying from 450 to 1800 r and mated to attached-X females of the genotype, $y=b b \gamma^{L e} ; i b$. The resulting F, females were exomined to determine if either or both of the Y markers, y^{*} or bw^{*}, had been lost or, possibly, mutated. They were not checked for the bobbed phenotype unless eirher y^{+}or $b w^{*}$ were lost. From these phenotypic exominotions it wes possible to determine the loss of any of the three visible markers on the Y. The presence or absence of the two fertility morkers was determined by a series of crosses which resulted in testing the fertility of

[^16]two types of males, $X \cdot Y^{L} / Y^{p}$ and $X \cdot Y^{5} \gamma^{p}$. If only the first mole is fertile, the Y chromosome in question contains Y^{5}; if only the second type is fertile, the irradiated Y has Y^{2}; fertility of both males indicates the presence of both fertility factors.

The types and frequencies of aberrant Y chromosomes recovered in these experiments, from a total of $42,370 \mathrm{~F}_{\text {; }}$ flies, are presented in Table 17. Less of all the markers, genotype 1, could be caused by either complete loss of the irradiated Y chromosome or loss of the X^{e} chromosome in $3 X: 2 A$ aygotes. Either of these losses accompanied by primary nondisjunction in tine parental female or by nendisiunction in $X \cdot Y^{L} / Y^{5}$ male (used to test for fertility foctors) would occount for genotypes 2 and 3, respectively. Therefore, the first three genotypes provide no informotion on the structure of the chromesome in question. The relotively high frequency with which 66° is recovered without any of the other markers (genotype 4) indicates that this locus is very closely linked to the spindte fiber attachment (sfo) and that the other morkers are at some distance from this region. The close linkioge of y^{4} and y^{5} is evident since all the v bu females recovered carried the fertitity foctors of γ^{5}, and only infrequently was y^{*} separated from y^{5} (genetypes 9 and 10). Of particular interest are the $y v$ females of genotype 9. Cytological examination of two of the four cases showed a ring-Y chromosome. (Stocks of the other two cases died before a cytological check could be made.) This result suggests that y^{+}is distal to \boldsymbol{r}^{5} ond that $b w^{*}$ is proximel to \boldsymbol{Y}^{2}. Finolly, the presence of $y v$ th femoles suggests that $6 b^{*}$ is on the same side of the spindle fiber attachment as γ^{5}. The types of chromosomes recovered suggest that the order of morkers on the $\mathrm{sc}^{\mathrm{o}} \cdot \mathrm{Y}$ ibw ${ }^{*}$ chromesome is the one given of the top of the toble.
Other arrangements cannet, however, be excluded solely by these qualitotive considerations. Another opprooch is to determine the order of morkers which would require the least totol number of breoks in the Y chromosome to produce the rearronged chromosemes observed. In addition, orders which require the fewest number of multibreak events would be favored since the doses administered were below 1800 s . The last colvmen of Table 17 shows the expected number of chromosemes of each type bosed on the total number of individuels recovered of a particuler phenotype and the frequency of the genotypes detemmined from the

AIOLOGY PROGRESS REPORT

sample tested of that phenotypt. If the position of $b b^{+}$with respenct to the centromere is dissegarded, there ore 12 possible orders of the y^{*} and bw* markers with respect to Y^{5} and Y^{2}. Calculations of the total number of breaks in the Y chromosome necessary for each of these 12 orders (the assumpfion is made that 1 -break events in the Y can take place - probably chromosiome 4 is involved in these casas - and consideration is taken of the fact that the chromosomes of genotypte 9 are rings) show that the three orders shown in Table 18 have the fewest number of breaks. The dato presented in this table clearly demonstrate that the first order is probably correct since this arder not only
has the fewest number of breaks but also the lowest frequency of 3 - and 4 -break rearrangements.

Constitution of Recessive Lethels Induced by Rodiations of Different Ion Densities C. W. Edington

If sex-linked recessive lethals arise as the result of chromosome breakage with few, if any, as the revult of point mutations (introgenic chonges) or chromosome rearrangement (position effect), some increase in the frequency of induced recessive lethals with increasing ion density would by expected. A decreose would also be expected in

TAALE 17. GENOTYPES OF THELOST OR FPAGMENTED Y CMROMOSOMES RECDVERED FROM AN X-IRRADIATED $\mathrm{se}^{0}+\mathrm{Y}_{\mathrm{i}} \mathrm{bw}$ * CHROMOSOME

Phenetrye ef F_{1} Female	Gemetreie Dwaignatian	y^{2}				y*	Number Fested	Number Expected
			ds*	66^{*}	y^{5}			
x * $6+6$ cr	1	-	-	*	-	-	271	412
(42v)*	2	*	-	-	-	-	3	12
	3	-	-	*	*	-	3	5
y v bur	4	-	-	*	-	-	58	89
(95)	5	*	-	*	-	-	4	6
* b*	6	-	-	*	*	+	13	13
(14)	7	*	-	*	*	*	1	1
y	8	-	*	*	-	-	*	14
(22)	-	-	*	*	*	*	4	s
	10	*	*	*	*	*	1	2
$x+46$	11	-	*	-	-	*	4	7
(v)	12	*	*	-	-	*	1	2

 mecw appeak most hickly

Onder	Nuinber et Srashes Nevestery				Tetel Areubs
	1	2	3	4	
	17	20	6	\bigcirc	\%
	15	\%4	5	*	165
	10	28	13	-	ses

the frequency of recessive fethals induced in a ring* X ehromosome, as compared to the frequency induced in a rod-X chromosome, because torsional restitution of broken chromosome ends results in lass of the ring, whereas a red-X chromosome will not be lost offer torsional restitution occurs. ${ }^{40}$
It has been shown previously that fast neutrons are mare effective than Co^{60} y rays ${ }^{41}$ and X rays ${ }^{42,43}$ in producing recessive lethals, and that the frequency of neutron-induced recessive lethals in a ring- X chromosome is significantly lower than the frequency of eecessive lethals induced in a rod-X chromosome. ${ }^{41}$ Since earlier reparts in the titerature state that the frequency of recessive lethals induced by-X rays in a ring and rod chromosome are the same, 44, 45 if was necessary to deremmine whether this difference in response to fost neutrons and X rays was reol.
Moles of Drosophita melamogaster bearing a ringX chromosome, $X=1$, and moles bearing a rod- X chromosome, $\operatorname{In}(1) \mathrm{EM}$, were exposed simultaneowsly to $250 \mathrm{kvp} X$ roys (30 maj 3 mm of $A l$; hvi, 0.55 mm of (cu) at an intensity of $250 \% / \mathrm{min}$, and the frequency of recessive lethals determined at several dose levels. When the slopes of the regressions of recessive lethals on dose are compared for the ring. $2.3=10^{-3}$, and the rod, 2.5×10^{-3} (see Fig. 13), it is foud that there to ne significant difference in the frequency of recessive lethols induced by X rays in a ring- X and a rod- X chramesome. It is evident from an examination of Fig. 14 that there is on increvese in the frequency of F, moles observed in the offspring of imrodioted ringbewping males. This shiff in sho sex matio eccurs es the result of torsional restitution of the brokem cheompsome ends, with sulsequent loss of she timg. It is af intorest thet, in these experiments as mell es in the eerlier neviron experimunts, "1 no shift in then sex ratio of the offipping from imodiated rod-K. bearing woles was observed. This finding indicaves that dominant Ierlopls involving the X and

[^17]

Fig. 13. Frequency of Recessive Lethels Induced by X Reys in RediX and RingX Chromesomes.

Fig. 14. Frepeoney of F, Melos from Ivrodieted Red-X- and Ringx-Beering intoles.
the Y ehrompsomes eecur with equal frweutncy. At ony eutes, the sesw actie shiff diverved in the tingox offspring et lew doses secturs as the sesult of torsiemal ewstivition of the lroben clupeaseme ends; at higher doses in wilt be prodveed by o cembination of this effect and the freavency of all timp-K avtosomesimterchanges wlich olse ewntribute to the tetol fiequency of induced Xuchepmoseme deminont lethels.

In order to exploin the differsmitiol wflect of sediotions of different ion densities in peoducing rencensove lerthels in ring and red elromosomess, it is necessary to pesnilute shae nemeensive lenthals
are induced by fast neutrons and X rays in qualitotively different ways or that differential sejoining (i.e., testitution versus restitution plus torsional restitution) of the broken chromosome ends occurs after neutron and X -ray exposure. On the former hypothesis, the assumption is made that tarsionol restitution (asymmetrical restitution) and true restitution (symmetrical restitution) oceur with equal frequency. If this assumption is valid, it would be expected, on the breokoge hyporthesis of tethot origin, that at ieast twiceas meny recessive lefhats would be recovered in the rod- X chromosome as in the rimg-X chromosume (Fig . 15) and that. few, if any, encessive lethals arise as the wesult of point mutations. On the ather hand, interpretation of the X-tay date for the ring-red experiments necessitates the canclusion that the masjevity of Xrayinduced tecossive lethals arise as she result of point mutation and ther frw, if any, anise as the retwitr of ehromosome breokegn.

On the differential mioining hyperthesis, it must be assumed thot restitution of brolen chromosemes can occur is the sperm. It this assumption is trues, them offer Xway eapesure broken chwomesomes are capable of restituting in the momeat manner in thue sperne; mhernes, alter mevtron expesure, the mojor-

 X Climemasters.
ity of the chrotrosome breaks remain open 'until after fertilizurion, of which time torsional restitution con occur with subsequent loss of the ring chnomosomes in which it occurred. Therwfore, \& decrease would be observed in the frequency of recessive lethals induced by fast neutrows in a ring clromosome as compored to that induced in e rod, but lirtle or no change would be seen in the frequency of lethals induced by X rays in a ring as compared to a end.

Analysis of Rod-shoped Derivetives of en Uasteble Ring-X Chremesoese in Drosophito melonogestivr

C. W. Hinten

Instability of the $\mathbf{m}^{* *}$ ting-X chenmesome leads to the production of aymondromorphs, $x 0$ males, dominant lethols, and (rovely) amolt unstable rings cansisting chiefly of the $\mathbf{N}^{* *}$ centric and haterscliromatic regions. Furmation of amoplase bridjes by the $\mathbf{m}^{* *}$ ehromosome occounts for these results; ${ }^{40}$ thus, aymandromorphs and XO moles register liridge loss, wherees dominant tethols and smalt *ings arise by inclusion of bridje break age prodwets in the cleavoge muclei. Sister-strond eressimg over hos been propeswd as the bosis for anophose bridge farmution by the ring thromenemes of molse. To test mbether shis mechenise explains $\mathbf{m}^{* *}$
 censtructed hwving the $0^{* *}$ cerbitic and hetersclaromatic repisens intoct; sister-strand exchumges on ond clivomesewes should net pepdice menhese bridges. It wes mepieted that shese devived $=$ =t red ehrenewomes $=$ vere stable, bue fowher investigetiens heve oot subutemiated the peoliminary cenclusion.

Five dilferent $0^{* N}+b^{3}$ cleompsenss vere ab-
 peond-K chapepseres and gemerated $\mathbf{~}^{v *}$ sing chesmesemest were recovened accending to stin schare
 ewted wev sings cove stable, wheress the other tue limes generated unswible $=^{* *}$ vings (Table in). The tieheier of the $=^{* \pi}-e^{3}$ shereptemes mhich gerevethd stelle wege and wheve which gemerated vestitle sings is cimpered in Table 20 . Beth Aines preduce very lees symandenophs. Hewever, the incidence of $X 0$ nales and the deficiency of

[^18]${ }^{* *}, \mathrm{~B}^{5}$ offapring are signifi : satly greater in the unstalile line than in the stoble line. Part of the $\mathbf{"}^{* \pi} \cdot 0^{5}$ offispring deficiency moy te explained by hyperploidy of the B^{5} diuplication, hewever, this does not account fior the vialility difference of abeut 305 between the twe lines. Cresses simila to these of Table 2 have shom that peimary ex-

Fig. 16. Diagre- of the Chesessenes. Eepleyed to Censtruct Red-** Chremesemes WMeh is Turm Cenerete sthe Oifgtinat fingew** Strveture. The meiotic pairing configurations are sheme in the tae-strand stoge and points of anthange are indicated by X between the strands. Eucherematio is shown as a straiglt lime and heterecherematio is denoted by a aligang line.
ceptional females are more frequent in the unstable men. $^{\text {s }}$ line just as are X0 males, indicating pnimery nendisjunction rather than loss of the $\mathrm{N}^{\mathrm{V} \mathrm{\pi}}, \mathrm{BE}^{5}$ clovenesome as the seurce of the X0 males. Asimiler comparison of the cempeund $=* *$-dil-49 clavmosemes in the stable and unstably lines is presented in Tatte 21. Itere, atse, the incifence of X0 moles and deficiency of $\mathbf{o v}^{* *}$-dl-49 oflipting is higher in the unstoble limes, but most of the X0 moles probably vesclt from unstable generoted ting foss.

These data sher that, eltineupht the $\mathrm{N}^{\mathrm{Ni}}+\mathrm{B}^{3}$ and -*c-al-49 chromosemes mhich generate unprable -** vings do not experience loss, shey mevertheless manifest instability as shem ty the teficio ency of $\mathbf{o n}^{* *} 8^{3}$ or "*N $^{* 1}$-49 offipting, that is, stiese clloemesemes still prodoce deminont lethality. If this evidence for instability is accepted ond the anophase triitpe motet of \boldsymbol{m}^{*-} insnatitity is retalined, steen she bypethesis shat anaplase beidges anse by sister-steand eachonge becemel invalid. Altemetively, it may be swepesed that sisten-smant fusion seccurs in tert, rhe wiag and red
 sing could comsist of twe members, and these in she sed, of oemly one mender. This difference in

Lese	* - 1	-** 3	Gs	ne		$\frac{6 \pi}{t-\frac{1}{2}}$	$\frac{x e t}{x-t}$	Aresunter
Steble	2nes	2083	37	18	2.030	-.0ns	e.per	D.bas
- Mestalle	2en?	Nset	33	Ass	0.435	e. 23	eneen	0.350

L-	$x-1$	$=*-8^{3}$	Or	20 ${ }^{4}$	$\frac{e^{-x}+8^{8} \tau}{x-8}$		Exemonder
Shelle	Sases	4×27	3	26	D.ses	B.bes	0.34\%
Unaserile	atat	2873	*	214	4 aty	***t	- ant

TABLE 21. semavion of the mean-a compound-x CMROmosomes

Lime	∇^{*}	-**-d1-49 7	$\times 0$.	Generoted Ring:		$\frac{v^{* \pi-d 1-49 ?}}{r^{*} d}$	$\frac{\text { Ringe }}{r^{*} \ell^{\prime}}$	$\frac{x_{0} d}{y d}$	Remainder
				-**	0				
Seoble	2021	1795	18	164	1	0.887	0.002	0.009	0.022
Unatoble	3852	207	124	161	03	0.537	0.058	0.032	0.373

bridge atructuro mivht be cormelated with the diterence in instobility menifoetrotion by the $\begin{gathered}\text { "e } \\ \text { ring }\end{gathered}$ and rod on the atsimption then the noo moenbered oge, but theo the singlemonberad bridoes alwory: ook

Impertence of the Distritibition of the
Heterochromethe Within the Genotype to the
Violilitity of the Orgent
D. L. Lindaley

From tomoles of the conatitution r^{5} y $c v v N / y^{2}$ ond perrenthesese indicetoto thet order of includuded Cioments unknom). an antemp =or mois to to This product wos seldon neecovered, with the ow cy viten $r^{2}-x\left(\cdot r^{L}\right)^{*}$ chromotomen ere set as follows:
 The $y^{2}-\left(\cdot \gamma^{L}\right) y^{+}$cheromosomes were obtoined as
sponteneous detoclements of $X Y^{2} . X$ with smoll morked heterochromotic x duplicetions (see Fig. ore reproseeted by asteri aks in the following nototions X - $\gamma^{2}-\alpha X$. Table 22 shows the progenies of covery of reciprocel single crossoner classes, groet os $343: 0$, must be explained. It might be considered that the inequolity of reciprocel classes is a fumetion of nonrondom dispunction as described
by Novitaki; 4 this phonomenon is certoinly responsible for some of the inequality, but it foils filly to account for the observetions. Nonrandom disjunction is a menifestation of the orientotion of
${ }^{47}$ E. Nownati, Genvitics 36, 267-280 (1951).

Fig. 17. Altechedx Chomosomes froo Which Fig. 17. AllechedX Chromosemes froon Which
Dotechmente Diseused Wore Deived ond the
Crossover Event Thoeght to Give Rise to $X Y^{2}$. (Hesteroctromatin is designated by hoovy line.)
the dyods at the second meiotic division, the first division being reocond meiotic division, the hirst
in orientation, Conseloci but not for ceintromerere repionss, the lonter being ocovered in the oxpected $1: 1$ rotio. In the present data, however, the y^{*} centromere region is re-
covered with a greatly roduced frequency. This conmot bo a function of the centromere region alons, however, since omong the noncros soovers - r^{+}centromers is recovered in excess of the homologous centromere; this excess may be in port a function of nonrondomness, i.e., proferential
recovery of y^{+}noncrossovers strands rother thon
y^{+}cros sover strands. It was hypothesized that

BIOLOGY PROGRESS REPORT

the deficiency of recovered y^{*} centromere regions is a reflection of the inviobility of only thet class of strands which carry Y^{5} distally and Y^{L} proximelly. The problem was to deconlound the contributions of inviobility and nonrondomness to the inequality of reciprocal classes.
It is possible by tetrod analysis to solve for the frequency of no-exchenge tetrods, E_{o}. one exchange tetrads, E_{1}, two exchange tetrods, E_{7}, the coefficient of nonrondomness, c, and the relative viobility of the $Y^{5} X\left(-Y^{\text {L }}\right)$ crossover type. Novitaki hes listed the expressions for the various recovered types in tenns of E_{0}, E_{1}, E_{2}, and c as follows:

$$
\begin{aligned}
& \text { non- }-\frac{k_{2}}{2} E_{0}+\frac{k_{2}}{2} c E_{1}+\frac{I_{1}}{} c E_{2}+\frac{I_{10}}{} E_{2} \\
& \text { non }{ }^{*}=\frac{k_{2}}{2} E_{0}+\frac{k_{2}}{2}(1-c) E_{1}+k_{3}(1-c) E_{2}+k_{14} E_{2} \\
& \text { non }=E_{0}-\frac{k_{2}}{2} E_{1}-y_{4} E_{2} \\
& \text { sgit }-\frac{k_{2}}{2} c E_{1}+\frac{1}{4} c E_{2}+\frac{k_{1}}{2} E_{2} \\
& s g I^{+}-\frac{1}{2}(1-c) E_{1}+\frac{1}{4}(1-c) E_{2}+\frac{k}{j} E_{2} \\
& \text { sgl }-\frac{k_{2}}{\xi_{1}}+\frac{k_{2}}{} E_{2} \\
& \mathrm{db}^{-}-\mathrm{H}_{10} \mathrm{E}_{2}+\frac{k_{c}}{} \mathrm{E}_{2} \\
& d b^{+}-1_{10} E_{2}+\frac{1}{3}(1-c) E_{2} \\
& d \mathrm{~d}=\frac{1}{4} E_{2}
\end{aligned}
$$

where o plus sign indicetes the presence of teminol Y^{5} and a minus sign its absence. According to
the hypothesis espoused recovery of the normolt centromere mould be expected every time it goes into the functional egg muclevs; consequently, the best eatimate of the total number of males exe pected is twice the number of y moles recovered. This corrected totol wos used in colculating the observed frequencies. Since the only class ano peeted to be effected by the inviability is solt, this class olone is multiplied by the relative viebility foctor a:

$$
s g l^{*}=x\left[\xi_{2}(1-c) E_{1}+y_{4}(1-c) E_{2}+\xi_{1} E_{2}\right]
$$

The solutions to these equations for the sight detachmepts tested are given in the first five columns of Toble 23. The consistency in the values from cross to cross for $\mathbf{E}_{0}, \mathbf{E}_{\mathbf{1}}, \mathrm{E}_{2}$, and e are rather remarkable, \approx being the only foctor showing con sideroble verietion. If it is assumed theo all of the discreponcy between the observed number and the expected number of moles is ecceunted for by inviobitity of the one single-crossover cilass, this discrepancy con be added to the crossover clawses and the mop distance between $w^{\prime \prime}$ and the centromers $\left(y^{4}\right)$ colculated. The values thus obtained, shown in the last column of Teble 23, are in pood ogreement with the stendord mop dilatonce of about 0.60.

These findings are considered to be in peod ogreement with the explanetion originolly postufoted to explain the results. The cause of the inviebility must be heterocluometic for two reasons: first, the detochments are evchrometically identicol, and second, the same discreponcy of recovered crossover closses is observed for all

TABLE 22. RESULTS OF TETRAD ANALYSE ON DATA PRESENTED IN TABLE 22

Detochment	E_{9}	EF_{3}	E_{2}	ε	*	c*-sle
3.	0.052	0.668	0.280	0.59	0.60	0.813
3 b	0.138	0.616	0.246	0.70	0.89	0.5es
3 c	0.145	0.705	0.149	0.60	0.029	0.500
118e	0.078	0.704	0.218	0.84	0.002	0.572
1220	0.060	0.722	0.218	0.58	0	0.582
122b	0.230	0.502	0.278	0.60	0.033	0.567
122 e	0.084	0.642	0.276	0.59	0.046	0.584
1224	0.018	0.812	0.170	0.82	0	0.577

marked regions. It can further be shown thet the heterochromatic constitution of the clromosome rether then of the xypote is the importont foctor in this inviability. The four meles of the constitution $\gamma^{5} y c v \vee\left(-Y^{2}\right) y^{4} / 0$ recevered from detochment 122 e shown in Table 22 mere crossed to y femoles. The progenies of these crosses consisted of 239 $y / 0$ moles and $8 \gamma^{5}$ y cv w $\left(-Y^{2}\right) y^{4} / y^{\prime}$ fomoles. Structurally, these femeles are $Y^{5} X^{L} / X$, but the $\mathrm{Y}^{5} \mathrm{XY}^{\mathrm{L}}$ chromosome was derived from fameles of emoctly the same heterochrometic content, $Y^{3} X / X Y^{2}$, but in which the epportionment of the heterochromotin between the X chromosomes was diffierent. The former fiemales ore extremely invioble and highly infertile, whereas the latter ones ore normal in both respecta. The progeny dato from the eight $\gamma^{5} y$ ev $v f\left(\cdot \gamma^{2}\right) y^{4} / y$ femeles by $Y^{5}, \mathrm{~B}-\mathrm{Y}^{L} / \mathrm{D}$ moles, elthough meoper, ore in egreement with the other dote roported heres there eere 17 , noncrossovers and no y^{*} noncrossovers, and there were $2 y^{+}$single crossovers.

KInetle Aetivity of Centromeres Assecleted with Y^{2}

D. L. Lindeley

E. S. Von Holle

Single exchange within the inverted region of an inveraion heterosypote produces a single firstenophese bridge which is selectively elimineted from the egg nucleus. Line drewings of the consequences of deuble exchange show thet doublecrossover strands are recovered from two- and three-strond docloles. Four-atrand doubles produce double first-anophase bridges; if these bridges are escluded from the oge nueleus, a nullisomic nuclevs results. Expectetions among the progeny of femeles heterozypous for a sew-linked inversion on this besis are three recombinentes two petroclinous meles resulting from fertilization of o nullo-X eag by an X-beoring spenm. When each end of the bridges produced is acrocentric, these expectetions are fulfilled ${ }^{\text {at }}$ Novitaki ${ }^{41}$ has since shown thet, if one end of the bridge is acrocentric and the other and metecentric, the frequency of potroclinous moles is holved. Since the presumptive egp nuclevs is et one and of a lineor quorter of melotic nuclei, this chonge in results hes been

[^19]attributed to dominant letholity of one of the orientations of the asymmetrical double bridges with respect to the ege nucleus. - The analogy of these results to a tug of wor between the two ends of the bridge demended thet the experiment in which both ends of the bridges were metecentric be performed. This situetion results in the virtuol olimination of the potroclinous mole cless. The hypotheticel tug-of-war model can be fully decaribed as followas The atrength of a terminal centromere or, more specifically, the force applied by the attached spindle fibers of a terminol contromere is less then the tensile strength of the chromatin bridge which is; in turn, less then the force epplied by the spindle fibers attoched to a subtemminol centromers. Consequently, double first-anephase bridges with equally motched weok centromeres will hold and olways give rise to a nullisemic egg, wherees bridges with equally metched strong centromeres should invoriably frogment, giving rise to eps nuclei with dominant lethel broken clromosomes. Unequally motched opposed centromeres, where the force epplied to one is levs then tensile strangth of the chromatin atrond, ahould reault in the possoge of the intoct bridge to one pole where it should behove as a dominant lethel, leeving the other pole nullisomic; the egg nuclews will, therefors, be nullisomic in one-helf the cases.
It wes hypothesized that the contribution of a chromosome to spindle fiber formetion or centroction is greeter when poired heterochnometic regions exiat in the nelghberheed of the centromere then otherwise; ${ }^{30}$ the kinetic strength of subteminal centromeres might then be a function of poiring of the heterochromatio on either side of the centromers. Novitaki and Lindsley (umpublishad dete) heve othempted to influence the kinetic behovior of centromeres by adding homologous heterochrometin to the system. This hes been eccomplished either by adding free heterochromatic duplicetions or by altering the heterochrometic constitution of the acentric frogments formed as a concemmitent of double-bridge fiomotion. In no case did the presence of a duplication or the consutitution of the ocentric frogenent influence the kinetic behovior of a centromere. Alt subtominal centromeres tested in the past heve not been strong bee all strong centromeres have been subterminal. The subterminol centromers, which hos consistently proved

[^20]to be wtrong, hes been $X \cdot Y^{2}$, where the center point represents the centromers. The present esp periments werw designed to test whether Y^{2}, rether then the subteminal noture of the cemtromerse could be respensible for kinetic strength in this cose. Chromosemes with presumobly temminol centromeres and with $Y^{L}\left(X Y^{L}\right.$.) were abteined as detechments of $X Y^{L}+X$ chromesomes, os shown in Fig. 17, where the y^{*} duplicetion corries a centromere derived from the X chromosomes. $T=0$ of the detochments were discovered to be linked with chromoteme 4 consequently, these are metocentric detochments with chromonome 4 present as a second am. Detochment 122-19 is 66 in the absance of a Y and is probebly the result of ent change in regien e in Fig. 172 detachenent $179-8$ is ωb^{*} in the absence of a Y and is, therefors, the result of enchange in either region a or d. Detachments $164-9$ and $174-13$ do not cerry $4 b^{*}$ since they mere denived firon duplications 164 and 174 which do not cerry $3 b^{*}$, and detochenents 3-18 and $118-12 \mathrm{z}$ carry 66^{*} and wers derived from duplicotions 3 and 118 whieh alse cerry $b b^{4}$.

Each detochment studied wes tested againat a known weok and a known strong centromers; the results are summerized in Toble 24 . They show that a wabterminal cuntromere is not a sime que noe of strong kinetic behovior, since $X Y^{2}, \sqrt{3} 18$ and $118-12 \mathrm{~h}$ have strong centromeres. $\mathrm{X} Y^{2}$, chuomesomes con behove on if they hod strong or weok centromeres end, in the four ceses studied, this beloviler is correleted with the presence or absence respectively of $4 b^{*}$. Furthermort, $X\left(-Y^{L}\right) 4$ tonder of elements in porentheses unlinown) chupmosomes con beheve as if they had strong or weok centromeres, popin in the two ceses studied, comeleted with the preswnce or absence of 4°. It is tempting to speculate thet there is some specific heterschromatic element, tinked with 66° in the chromesomes studiad hers, whieh contritutes in seme woy to spindle fiber fommotion or spindle hiber controction.

Replenel Inlablitien of Cressing Over In the
 X Cheseosene In Respsase to the Presence of on Autesenal Inversilon

W. J. Welshons

It wes reported eorlier ${ }^{31}$ thet the presence of an eutosomel imversion could both imhibit and stimu-

[^21] 193s, orvel-1853, $40-45$.

Tate enosaing over in alloched-X chromonomes, and thet the region of inhibition mas contiguous with the region of stimuletion. Since the deficit of enchanges tended to be canceled by the excess, the effect wes impossible to detect unless the meined regions of the chrompsemws were very small. In the atrached X experiments, the inhibited repion wos beunded by the merker genws rermillion and miniature ($\mathrm{p}-\mathrm{m}$), and the stimuleted region by mistature and gevet ($\mathrm{m}-\mathrm{e}$). Table 25 lists the crossover percentages abtained for etroched X femoles with no known avtosomal inversion and for at-teched-X femoles which mere heterozypous for the thind chromoseme Dichoete inversion, Dexf. It cen be seen thet the cressover percentoge for the inhibited region vori dropped froes 4.5 to 3.4 , whersess the region metincreased from 6.7 to 9.8 .

Table 26 presents a summary of a homogeneity test which tests the hypethesis thet she distribur tion of exchenges ever the various regions is the some whether or not on outonamal inversion is present. Addirional dote have been added to that bedy of dote repented eorlier, but the revults are essentielly the same. The \boldsymbol{x}^{2} volve of 17.65 is highly significant, with the majer pertion baing contributed by the regions avm and mog. When the inversion is present shere ore toe fow exchanges in region o-m and toe many exchonget in region meg.

In a similer experimeet with firee-X chromosames and the some genetic morkers, no inhibition of crossing ovar wes detected when the porents possessed the imversion. The crossover percentoges of Thble 25 indicate an increesend rote of cressing over for eoch region. The hompgenelity test sumb morized in Teble 26 indicates thet the distribution of exchanges over the meted rmaions is the seme whether or not the inversion is present. Thersfors, the inversion cousses on increase in croising over but the incrwese is diatriluted proportionetely over the merked regions. A discrepency in the eorly repent for the region scalloped to forted (sd--) resulted from e miscenlevilotion.
An X chromosem corrying the makers scute(sc), echinas(ec), crossveinlesa(cv), pentegun(ptgh, and vermitlion(v) was wynthenized. Another crossover experiment wes performed with frew-X chwomosomes. The crossover percentoges ore listed in Table 25. When the inversion wos present, the exchenge fiequency for the region exppte dropped from 13,5 to 13.0, whereas erossing over incroased in all the other regions vested. The homogineity

TABLE 22. CENETIC RESULTS FROM VARHOUS wVERSOON NETEROZYCOTES

$$
\text { CRossed TO Lnf1Mal-ev, y } * \text { B males }
$$

 ehremeseme in the cerrespending reve of the genetrpe of the mether

Meremal Cempenition									Tetels		$\begin{aligned} & \text { Reve } \\ & \text { en } 3 \times \end{aligned}$
Struetional	Oenetic	-	142	143	184	283	28.4	284	C.	Peter	
$\underline{x y^{2}-(2-18)}$	$y^{2}{ }^{*}$	2802	5	17	16	58	40	26	2 20	101	3.1.0
s	fecesex	1510	s	20	20	24	36	-			
$x r^{2}-(3-18)$	$y^{2} \sim^{*}$	1317	8	26	7		23	10	200	14	20.0.2
$\operatorname{sex}^{0 \cdot y^{2}}$	cof*ex	1212	12	35	7	33	19	4			
$\underline{x} \mathrm{Y}^{2}$-(118-123)	$y^{2} \sim^{*}$	2838	5	is	10	38	27	13	202	71	3.1 .1
*e ${ }^{2}$	f0ex sex	150	*	22	11	28	18	4			
$\frac{x y^{2}-(118-12)}{s e^{d} \cdot \gamma^{2}}$	$y^{2}{ }^{2}$	1097	1	11	13	22	*	1	*2	*	2.0 .3
	cosfucx	*1	*	14	13	18	4	-			
$\underline{x y^{2}-(164)}$	$y^{2} w^{*}$	417	-	1	2	-	7	5	43	31	30.1
se^{8}	fversex	300	-	1	3	6	6	3			
$x r^{2}-(164)$	$y^{2} v^{*}$	577	3	14	5	27	18	13	162	62	3.1.1
$\sec ^{20} \mathrm{r}^{2}$	center	574	4	23	10	17	24	4			
$x y^{2}+(174-13)$	$y^{2} w^{2}$	1015	-	4	5	19	27		128	*)	3.1 .4
	foce as	716	3	5	-	14	20	4			
$\frac{x y^{2}+(174-13)}{x^{0} \cdot y^{2}}$	$y^{2} w^{*}$	$\begin{aligned} & 507 \\ & 204 \end{aligned}$	2	16	\bullet	19	26	5	154	37	3.0 .7
$\omega e^{2} \cdot y^{2}$	cerf fec		3	22	15	14	18	5			
$x r^{2}-4(12 z-19)$	$y^{2} e^{*}$	1840	4	17	4	23	39	21	173	115	30.0
${ }^{\text {se }}$	fversen	1184	1	17							
$\frac{x r^{2}-4(12 a-19)}{s e^{2} \cdot r^{2}}$	$y^{2} w^{*}$	728	1	8	4	21	17	3	132	43	3.1 .0
	cenfeev	713	10	15	*	20	17	*			
$\underline{x\left(-y^{2}\right) \text { erm }}$	$y^{2} w^{*}$	*90	2	5	1	22	20	-	99	40	3.1 .2
se^{8}	fxevese	an	-	11	5	10	15	3			
$\frac{x\left(-\gamma^{2}\right) e(17 s-a)}{x x^{2} \cdot y^{2}}$	$y^{2} \sim^{*}$	1035	4	13	10	27	18	10	100	11	2.0 .2
	cenfere	650	,	28	5	27	12	4			

Baccocy phocitss tepory

TABLE 2s. ineosonal Disthibution op chossoven pencentaces th Twe x CwRowosowt op DROSOPwit.a

	Crwsaver Regiee								
	Pter	*-3	ent	eved	**)	seewer	evere	cxepter	Ptew
Raseelland-x			.						
Nemidwersien	10.8	4.5	6.7	5.4	5.1				
- Inversien	12.2	3.4	9.8	0.1	4.4				
Freex									
Nemincersien	7.5	2.8	4.8	4.8	4.1	2.73	5.8	13.5	7.8
Ineersien	10.4	4.1	9.8	7.4	5.3	3.5	2.6	120	18.1

TABLE 2A. HOwOCEMEITY TESTS OF CROSSOVEE DATRIBUTIONS

	Regien of Execherg*										
	Ptere	\cdots	**	eosd	** 4	Tetal	sewer	****	expter	Prew	Tetal
Anseeled-x											
Nemiewereion	315	129	154	145	149	282					
Inversten	190	58	162	* 6	76	587					
x^{2}	0.80	7.37	0.17	0.24	1.81	17.45					
Fies-x											
Menimversien	180	48	158	116	*	422	48	101	236	139	525
Insersien	217	58	260	154	110	me	55	136	205	150	555
x^{2}	0.07	0.02	-. 09	0.32	0.61	1.11	0.10	2.41	4.28	0.45	8.24

test sumenerized in Tuble 26 is sipnificent at the 5% level. Agoin the mojor portion of this chlsquere is contributed by twe centiguevs regiens. The regien caphtg hes tee fow exchonges when the inversion is prosent, and the regien ecacw hos the meny exchenges. This, then, is the seme phenome enon firat observed in the atyeched-X experiments.
It was pointed out in she previeus repert shet Humnah ${ }^{52}$ has summerixed much wopk on the solivary mep loceliaetion of intercolery heterchmometin, and thet the s-mregion which in ettesched-X studies respendad to the presence of on autosemal invarslion with e decreased crossover frepuency, wos o region which appeored to be free of heterochrometim. It is interesting to nete thet the soflivery

[^22]regien within the markers ctopte is also one of these reglons which supposedly contains limle or no heterchromertin throughout its length.

The indicetion frees twe seperete experimemts thet cressing over in the X chnomeseme mey be inhibited by the presence of en tutosemell inversien, allews a confident stetememt shet she interchromowemal effect of on imversion on crossing over moy the imhibitery en well es stimuletery. This phemomenen hes not been reportand before. Since crossing over in the som region, under the inffuence of in invtraion, was decreased in the arteched-X shudies and incrusesed in free-X studies, regiens free af heterochrometin mey respond with an increese ar decrease in crospover frepuency. All heterochremotic vegiens tested so for hove respended with en incmesed crossover frequency.

Since the region ex-pte ahewed an inhibitery **spense to the presence of an inversion, on X clupavsome will be symthesized which contains the meiker curmine(em) located between crosaveinless and pentugos. Wirh this maked chromesome it will be possible to determine if the imhibitery eespense is locelized meinly in the smell regiens evern ar em-ptge or if the inhibitery response is spased over thep entire replems ce-phg.

Chrenesenel Interforence is Atrechedx Feneles
 W. J. Welshenes

Shult and Lindegrens $\$ 3$ have emphasized the artien of chrometild interforence on the process of crossing over, and have indicated thet whet is frepuerely measured as cheomosomal or chilasme interference moy be the reflection of nomrondom chapmatid exchanges. They concluded thet the phumomenon of chermosenot interference has neither been demonatreted nor proved. It will be shewen that the ebservation of cloweseemal isterference found in an ampeched-X atudy of crossing over cemnet be exploined es oreflection of chrer metid imterierence.

From a section of clvemoseme which contoins thrwe or more closely linked meskers, the croserover percentogen for woch rwgion moy be colew Ieted from the recovery of single strands. The product of the cwasover frequencies in two regions gives the expected frequency of single cleremetids which hove crowsed over in both regions. The discreponcy between observed and expected frequencies of deuble cressover chmpmetide is a meseure of chromosomel interferences it moy be pesitive or negutive, depending on whether too mony or too fow double-exchange clrometi 'se ore recovered. Chemetid interfersence exists when two nonsister chrometids which hove crossed over at one level hove a greater or lesser probebitity then the npenewchenge stronds of crossing over at a secend level. Pesitive chrometid interforence would result in an encess of fout strond doubleexchange tetrads and a deficiency of aingle chrormenids of the double crossover type. Nipgerive chrumetid interference nould incresse the number of two-strand dosble-exchange tetrods and mould provide too meny chrometids of the double crossover type. Hences, positive chrometid interference

[^23]could the responsible for positive chnomosemel interference, and nepative cheomatid interference ceuld be responsible for megative cluremesomel interference.
In Neurospons, where all prodivets of a vetrad are sweovered singly and in onder, the twe types of interforwnce cen be diatinguished, ${ }^{34}$ A study of crossing over in empelied X chromosemes of Dwr sophile melanescaster will alse peemit mepsurement of chromerid and chromosome intweforence. Corrain products of double exchenges are recepgia es such in the progeny of on atteched-X femole. These predvets cen le wsed to determine the prusence or absence of chrometid interferences. Chror mosemal interference con be celculeted is the utual woy when the two clivemetids of the attachedX fernles have bewn clessified os men crossever, single ceossever, and dowble kressever types.
The easoults of en eneched-X study ${ }^{33}$ indicate thet twer, threer, and fout-atrond dowble-axchange tetrods eceve at rendom with the possille emception thet the twe-strend deable trpe is in excess when the fevals of exchange are very clese togethers, The results on the latter point ore net convincing and additional dote ans being accumuleted. Thersforte, there is mo indicetion of positive chrometid interferance in these dote, and for the moment the megetive chrometid interference which may be present under the conditions specified cen be ignored.
All testedchremetidy were recevered in emoched X femeles with a wild phenotype; erpswever and noncrossever chrometids were identified by progeny testing these fumeles. This population of sested chromosomes has been used to colculete crossover volves and the expected number of double-crossover chromotids. The results of these colculetions ond the coincidence values ore listed in Toble 27. There is timle doubt thet consisient deportures froe a celincidence velue of unity indicates the ection of chlesme interference. If the observetion of negative chrometid interfenenceis substometioted, then positive chiosme interference for the sumeller repions of double exchenge is evem atronger thoin celculeted.

[^24]
aroLoct peocevss ezpoiet

TABLE 27, map Destances and Coniciotnce values

AICROBIAL PROTECTION AND RECOVERY

RADAATION PROTECTION AND RECOVERY me Bacteria

A. Holloender
G. E. Sinaplieton
A. S. Angel
D. Billem
A. L. Shame
w. T. Burnent, Jo, ${ }^{\text {W }}$
D. H. Weedthery
P. w, Rvelf, Jr. ${ }^{2}$
C. O. Doudiney ${ }^{1}$
H. K. Sherweed

Protein and Muelpic Actil Symilesis During Recewnry of Becteris

G. E. Sepepleten
D. H. Weodliury

As part of the inveptigatien of the mecheseism of rwcewery in Esecherichiva ceh B $/ r^{3}, 4,3$ o shedy wes mede of the net symthesis of protein, RNA, and DNLA under cenditiens where cells cen sheo maximelf recovery in rewst ewitrect at $18^{\circ} \mathrm{C}$, and of minimal eecevery in splts-glucese medium at $37^{\circ} \mathrm{C}$. Survival shudips heve shewn that after 20 kr of y rays, obect 15 survival is obtained othen ceils ore held en the simple inerganic salrs-plucese medius, whereas obewt 305 surviwal is oltained when similior aliguots of irrsdioted cellis ore helid on the seme medive plus yeest extrect $(20 \mathrm{mg} / \mathrm{m} /)$. The experiment wos perloneed in liquid mediur

[^25]with wufficient numbers of cells thut aliquots cevld te solen at waripus Nimes during the inculsetien peried; seme chemicel analyses of she cells were corvied out during the process. Aliquots of cells mere remeved frem the suspensions, horvested by centrifugation at $0^{\circ} \mathrm{C}$, mashed and extracted with celd 105 trichlpreacetic acid (TCA) for 30 min at $0^{\circ} \mathrm{C}$. Nveleic acids weve determined by a modified Schmide-Thannheuser techonigue and protein mas estimated on the hot TCA extrects by determining Kjeldahl mitregen.
Nonierodioted cells sher met symthesis of mucleic seids and protein an both types of modie. The rate of symthesis in greater on the rewst extract fertified medie for all liractions anolyaed exkept the DNA (Toble 28).

Since it wos necessary to inculbete cellis in bassal mediues of $37^{\circ} \mathrm{C}$ and in basol plus yeest ewtract et $18^{\circ} \mathrm{C}$ to olvtoin mesimal differpnce in surviwal, it seeved nwcessary to detemmine the rates of wymbesis of these same fructions for nonirradiated cells at the twe temperatuens on the same medivem.

An mould be expweted (Toble 29) the rates of wyothesis of all cemponents studied are reduced by a facter of 3 to 4 lby reduction of the temperature frem 37 to $18^{\circ} \mathrm{C}$. An eutstending difference is fownd for the ecid-soluble fraction, which opporently does net pile op wiven cells are incubated at the lewer temperature. This lack of buildup of shis fraction belone first division (~ 120 mis ot $37^{\circ} \mathrm{C}$ and $\sim 600 \mathrm{~min}$ ot $18^{\circ} \mathrm{C}$ is reflected in a grouter wet synthesis of the scid insoluble component.

The results of experiments in which imediated cells were incubeted suder the conditions which

TABLE 2t. RELATIVE CONCENTRATION OF NUCLEIC ACIDS AND PROTEM M Nonerradiated cells mecubated at $37^{\circ} \mathrm{C}$

lecabetien Timy (elin)	Aelid-5ioluble mena		RNA.		prea		Prestelin	
	Beeel	Teest Extr**	Beewl	Yeest Ext	Besel	Teast Eutr	Besel	Yewst Extr
30	1.0	1.2	1.87	2.5	1.12	1.1	1.25	1.40
40	1.25	2.5	3.12	4.3	2.35	2.35	1.87	2.80
9	2.25	4.25	4.0	4.0	1.47	1.76	2.0	3.75

[^26]
OFOLOGY PROGRESS REPORT

TABLE 29. RELATIVE CONCENTRATION* OF NUCLEIC ACIDS AND PROTEIN BY MONIRRADIATED CELLS INCUBATED ON YEAST EXTRACT AT 18 AND $37^{\circ} \mathrm{C}$

Incubetion Time (min)	Acid-Soluble RNA		RNA		DNA		Pratein	
	$37^{\circ} \mathrm{C}$	$18^{\circ} \mathrm{C}$						
30	1.25		2.50		1.1		1.25	
60	2.5		4.30		1.35		1.87	
90	4.25		6.0		1.78		3.0	
120		1.25		1.67		1.25		1.37
240		1.50		3.50		1.62		1.87
360		1.50		7.50		2.25		2.75
480		1.37		10.0		4.0		4.10

*Seø Table 28.
TABLE 30. RELATIVE CONCENTRATION* OF NUCLEIC ACIDS AND PROTE IN BY IRRADIATED CELLS UNDER CONDITIONS OF MINIMAL AND MAXIMAL RECOVERY

$\begin{aligned} & \text { Incubation } \\ & \text { Time } \\ & \text { (min) } \end{aligned}$	Aeid-Soluble RNA		RNA		DNA		Protein	
	Banal $\left(37^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { Veast Exitr } \\ & \left(18^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & \text { Basof } \\ & \left(37^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & \text { Yoast Extr } \\ & \left(18^{\circ} \mathrm{C}\right) \end{aligned}$	Basal $\left(37^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { Yeast Entr } \\ \left(18^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{aligned} & \text { Basal } \\ & \left(37^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} \text { Yeast Extr } \\ \left(18^{\circ} \mathrm{C}\right) \end{gathered}$
30	1.2		1.2		1.1		1.2	
60	0.9	1.50	3.3	1.60	1.1	1.10	1.2	1.20
120	1.1	2.00	1.55	1.90	0.88	1.20	1.4	1.40
180		2.20		2.10		1.30		1.67
240	1.9**	2.40	4.0**	2.50	1.05**	1.37	2.5**	1.80
360		2.50		2.80		1.55		2.20

${ }^{-5}$ See Table 28.

* The high values for concentration of all components of 240 min incubotion in basal medium of $37^{\circ} \mathrm{C}$ reprewents growth of the surviving celle ond are not to be compored with other roported oxperiments. All values for concentration of cells incubated in yeast extract of $18^{\circ} \mathrm{C}$ are for nondividing cells.
bring about minimal and maximal survival after γ irradiation are shown in Table 30.
It appears from these data that irradiated E. coli B / r show no net synthesis of acid-soluble RNA or DNA in the basal medium at $37^{\circ} \mathrm{C}$, however the presence of yeast extract at $18^{\circ} \mathrm{C}$ stimulates synthesis of all components investigated. In fact, the rate of synthesis of RNA and DNA by irradiated cells is greater in yeast extract at $18^{\circ} \mathrm{C}$ than in basal medium at $37^{\circ} \mathrm{C}$. How these findings are correlated with the recovery process remains to be
demonstrated by further experiments in which the incorporation of labeled nutritional factors can be studied.

On the Relation Between X-Ray Protection and Induced Mutogenesis in Escherichía coli Auxotrophs

D. Billen

H. K. Sherwood

In studies on the induction of reversions in Escheric bia coli auxotrophs by X rays it has been shown that the number of reversions found appeared
to be related to the survival level rother than the dose received,6,7.8 Thus when survival was increased by eitfier a pre- or postirradiation treatment, there was a comparable decrease in the number of reversions. The reason for this relation is now obscure but several possible explanations are now being investigated.

Since the number of residual divisions undergone by biochemically deficient cells has been shown by Ryan ${ }^{9}$ and Demerec and Cahn ${ }^{10}$ to be dependent on the number of viable organisms plated, being greater as the number of celfs plated is decreased, and since residual divisions may be related to the number of mutants finally olstained, the influence of such growth on reversion rates was studied. The reversion rates of E. coli strain T83-8 (tyrosineless) obtained on M/10 agar plates supplemented with sufficient tyrasine to allow an additional 3.3 or more generations was compared to the reversion rates obtained on the unsupplemented medium. The presence of added tyrosine increased the reversion rates observed but not to the extent that it could account for the increase found when survival is reduced tenfold by irradiation (Fig. 18). Such a reduction in number of viable cells plated would allow an additional 3.3 generations of cells per plate and would be equivalent to the additionat residual divisions obtained on the supplemented plates. Thus decreases in the magnitude of residual growth in the presence of larger number of viable cells could accuunt for a portion of the decrease observed in reversion rates when viability is increased because of a pre- or postirradiation treatment.

Another aspect of the same problem is that of the influence of "population pressure" or crowding on revertibility. In studies with three auxolrophs, T83-8, P82/r (purineless), and 45A-25 (argininefess), it was found that the number of viable cells plated does influence the number of revertants

[^27]

Fig. 18. Influence of "Residual Growth" on the Reversion Rates of X-irrodiated E. coll Strain T83-8 (Tyrosine-Requiring). The cell suspensions were exposed in nitrogen to various doses of X rays. Only the surviving fractions are plotted.
observed. In the case of T83-8 this population effect is greater than can be attributed to residual growth alone. The results varied from a very marked population effect in TB3-8 to relatively little influence (within certain limits of populotion) with 45A-25. The results of such studies are now being analyzed and will be reported in more detail at a later date. However, the present information does indicato that the relation between modification of X-ray killing and the comporable reduction in induced mutation rate requires further study and analysis before the reduction in mutations can be regarded as a true consequence of X-ray protection and recovery.

BIOLOGY PROGRESS REPORT

Pro- and Pestirradiation Studios with LongUltraviolet and Short-Visible Radietions on Escherichia colli B/r

A. J. Sberra
A. Holleender

Holloender ${ }^{11}$ has shown that the lethol effect of long ultraviolet and short visible radiation (35004900 A) on Escbericbia coli is dependent on the medium in which the orgonisms are suspended in during irradiation. The surviving fraction of orgonisms is greater if the irrodiation is corried out in beef broth than in buffior. According to Holloender, ${ }^{11}$ two possible explanations for this offect are: (1) beof broth has a high absorption coefficient in the near-ultraviolet region and may protect the organisms suspended in it, and (2) the organisms are obtaining from the beef broth the moterial or materials necessary for the repairing of the cell.
Previous work from this group ${ }^{3,4,5}$ has cleorly demonstrated that a postirrodiation recovery phenomeno oecurs when E. coli B / r is irradiated with X or y rays. This recovery phenomena is stimulated by material or materials prosent in yeast extract. A similar effect may be operative when E. coli B/r is irrodiated with long-ultraviolet and short-visible rodiations. Experiments have been corried out to see if this is so.
An 18. to 20 -hr aerated culture of E. coli B / r was used in all experiments. After washing twice, the organisms were irrodiated in a salt solution ${ }^{11}$ ($\mathrm{NaCl}, 3 \mathrm{~g} ; \mathrm{KCl}, 0.2 \mathrm{~g} ; \mathrm{CaCl}_{2}, 0.2 \mathrm{~g} ; \mathrm{H}_{2} \mathrm{O}, 100 \mathrm{ml}$) at a concentration of about $2^{2} \times 10^{6}$ organisms per milliliter. Exposures were made in a test tube which was slowly rotated by an electric motor. Both control and experimental tubes were held in a constant temperature water bath of $31^{\circ} \mathrm{C}$. The light source used was a G-E AH-5 mercury lamp. Somples were removed from experimental and control tubes at various time intervals and were then plated on a glucase-inorganic salts medium (basal medium) and basal medium plus 2% yeast extract. The plates were then incubated at various temperatures for $\mathbf{7 2} \mathrm{hr}$ and then counted.

Figure 19 shows a typical survival curve obtained when E. coli B / r is irradiated as previously described. It can be seen that the surviving fraction of cells on yeast extract is approximately 40 times as great as the surviving fraction on basal medium. This finding suggests strongly that a factor, or

[^28]

Fig. 19. Surviving Fraction of E. coll B/r as a Function of Dose. O, Basal medium + yeast extract; 0 , basal medium.
foctors, present in yeast extract is responsible for the greater survival. Colonies picked from the yeast extract plates and plated on basal and basal plus yeast extroct media grow equally well on both media, indicating that the phenomenon is not a mutation but a recovery process. This group has been able to substitute for yeast extract in promoting recovery from X or y rays a synthetic medium containing glutamic acid, guanine, uracil, and inorganic salts. This synthetic medium was also effective in substituting for yeast extract in promoting recovery in cells irradiated with longultraviolet and short-visible radiations. Since a considerable portion of the rediation emitted from the light source is 3650 A and since this wave length destroys riboflavin and pyridoxine very effectively, it seemed worth while to supploment the synthetic medium with these two vitomins. No added activity was found; in fact, o slight decrease in ectivity was noted. These results can be seen-in Table 31.

TABLE 31. RELATIVE ACTIVITY OF VARIOUS MEDIA COMPARED TO YEAST EXT:

Medivm	Percentege
Beeel	1
Besel +25 yeest extrect	100
Synthetie*	100
Syntiotie + ribollevin	34
Symthetie + pyredoxine	80
Synthetic + riboflevin 4 pyredozive	35

-See ref. 4
The recovery process with X or y rays is temperature dependent. A somewhat similar finding has been made with long-ultraviolet and shortvisible radiations. At this survival ($\sim 15 \%$), the temperature dependence seems to be more pronounced if the irradiated organisms are plated on a basal medium insteod of basal medium plus yeast extrect; the same was obwerved with X or y rays. As with X or y rays, maximal survival on basal medium is obtained at $18^{\circ} \mathrm{C}$. These results can be seen in Fig. 20.

Studies now in progress indicate that as with ionizing rodiations, oxygen-saturated suspensions are more sensitive than oxygen-free suspensions. This work will be more fully reported in a later publication.

Rediation Protection by S, β-Amineethylisethiaronium- $\mathrm{Br} \cdot \mathrm{HBr}$ and Reloted Cempounds

W. T. Burnets, Ir.

D. G. Doherty ${ }^{12}$
 R. Shopirg ${ }^{12}$

The two most effective compounds in providing mice with protection ogainst X radiation, ${ }^{13}$ S, β-aminoethylisothiuronium $\mathrm{Br}-\mathrm{HBr}$ (AET) and S, , -aminopropylisothiuronium- $\mathrm{Br} \cdot \mathrm{HBr}$ (APT), have been extensively studied to establish their relative effectiveness and therapeutic index. Such factors as the effect of divided dose, time of administrotion, pH of the thiuronium solution, and strain of mouse will be considered in this report. In addition, an effort was made to improve the testing technique through the use of streptomycin posttreatments.

[^29]

Fig. 20. Compertisen of Viebility of E. coll B/r on Basal Modive and Besel Medlun + Yoant Err treet as a Function of Postimediotion Inculeation Temperoturs. O, Basol medium + yeast extract; O, basel medium.

The previous examination of the protective activities of about 60 nitrogen- and sulfur-containing compounds ${ }^{13,14,15}$ has allowed the formulation of a working hypothesis as to the protective action of certain derivatives of β-mercaptoethylomine (MEA). On the Lasis of the hypothesis described elsewhere in this report, ${ }^{16}$ several new derivatives have been prepared and examined for protective activity by a sequential method of analysis, ${ }^{17}$ The results of these tests are shown

[^30]
BIOLOGY PROGRESS REPORT

TABLE 32 . AITROCEM AND SULPUR-CONTANNBG COMPOUNDS SEQUENTLAL ABALVSES, TOXICITY TESTS, ANO 2B-DAY SURVIVORI, $C_{2}{ }^{H}$ MLE MACE CIVEM AN LD 100 DOSE OF X RADHTION (B00 a)

Cenpeunds	Towielity" ($\mathrm{m}, \mathrm{h} / \mathrm{a}$)	Dese (mg/nevse)	EES, - EEC, ${ }^{\text {b }}$	$28-D a y$ Survival (5)
Protective				
5.B-Aminsethylisethiuremius daMBr (AET)	450	8.8	11^{3}	100
1-Thie-4,8,9-triasespire(4,40) nenenediNBr	200	2.8	11^{3}	13
	400	5.5	73	0
S.f-lsothiuronivepropy lomine- H (Br	>700	15.0	0^{3}	0
Nomprotective				
5.f-Aminolutylisethiseoniumedink	400	6.8	1^{3}	0
S.B-Amineethylethylenethioures	60	1.2	-4^{3}	0
Prepylene sulfide	459	7.0	4^{3}	0

${ }^{\text {EEsin}}$ Esimeted by inspection of dete. Number of mice tee forr for setisfectory atetiaticel enelyals.
bsyrvivers in treeted proup minus survivers in seline group. Sivperseripts sheor number of triels mede in seepuentiel test hefoes o compound wes censidered pretective (see rel. in.

TABLE 33. NITROCEM- AND SULFUR-CONTANANC COAPOUNDS, SEQUENTMAL ANALYSES, TOXACITY TESTS, AND 2B-DAY SURVIVORS; SWISS ALBHO MALE AACE GIVEN AN LD 100 DOSE OF X RADLATION (BOO *)

Cempeunds	$\begin{gathered} \text { Temieity" } \\ (\mathrm{mo/hg}) \end{gathered}$	Dose (mg/novee)	EES - EEC $_{3}{ }^{\text {b }}$	28-Day Survivel (5)
Protective				
$5 . \beta$-A-mineethrlisethiursonius- Br HB (AET)	450	8.8	10^{3}	93
2-Aminothieseline	160	2.4	10^{3}	87
	200	3.8	7^{3}	33
2-Amine-1,3-dilseethiuroniveperopene-triHBr	>700	10.0	3^{2}	20
Ethyleneisethiuronium-fi-ethylemine-diMBr	60	$5.0{ }^{6}$		20
N-Allylisethiurenium- B -ethyl emine-diNBr	160	4.5^{4}		20
Nempruatective				
2-Aminethiezele-H8r	300	5.0	1^{3}	0
	100	1.9	5^{2}	7
2-Aminothienoline-5-conterylete	>800	8.3	2^{2}	0
5,3-4sethiveoniumpropylemine-N8	>700	10.0	1^{2}	-

${ }^{\text {an}}$ Estimeted by imspeetiep of dete. Number of miee tee fer- for stetisticel anolysis.
 test helore o cempeund resp considered eretective (oee rell, int.
${ }^{c}$ Creater then LD S_{0} dose.
${ }^{4}$ Approximetely the $\mathrm{LD}_{\text {so }}$ dese.
in Tobles 32 and 33. Five of these cempounds provided protection against an LD 109 rodiation dose by both the sequential test and the survival at 28 days. The most effective, 2 -aminothiazolins, is one of the chemical degrodetion products of AET. However, with the exception of S.flisethiuronivimpropylemine, all the compounds were more toxic than AET or APT. The feilure of S, s-aminobutylisothiuronium- $\mathrm{Br}-\mathrm{HBr}$ (ABT) to protect the mice offers support to the hypothesis thet a cyclic intermediate is essential for activity in thiuronium compounds since, in this case, an unlikely seven-membered ring would hove to be formed. The protective ectivity of 2-aminothiazoline is also in eccord with this idea since it is a labile ring system contoining a potential sulfhydryl group.

Efleet of Streptomyein on Survivel. - One hundred eoch of male and female $\mathrm{C}_{3} \mathrm{H} \times 101$ mice $10-14$ weeks old were irrodiated in ten 10 -mouse groups with 650-1325 r in steps of 75 \%, eccording to proviously desacribed procedures. ${ }^{18}$ One-half the

[^31]mice mere given dolly subcutoneous injections of 5 mg of atroptomycin, beginning on the secend doy and continuing until the eleventh day postirradiotion. In beth coses, the rediation doses selected were toe high for a good estimation of the LD goj° however, the results obtained suggest thet aine LD so 0 is less tian 700 r with or without the supplementory treotment of streptomycin. The stroptomycin treatmant did not matorially increase the number of 28 -dey survivers. Nevertheless, it would appeor thet the survival times of the strepto-mycin-treated mice mare slightily greeter then these of the nentreeted onimols.

Protective Effectiveness of AET and MEA by Use of $C_{2} H \times 101$ Mice. - Toble 34 shews the effect of AET and MEA, in neor towic doses, on the 28-day survival of $\mathrm{C}_{3} \mathrm{H} \times 101$ mice exposed to groded doses of X rodiotion. Inspection of the date indicetes that the LD 30 of the AET-treeted mice is in the neiphborhood of 1250 \% in centrest to on LD so of ~1150 r for the MEA-trected mice. In the range of doses $1400-1700 \mathrm{r}$, a fow more AET-treated mice that were given the streptomycin posttreatment survived then did mice in the groups
 ON THE SURVIVAL OF $C_{3}{ }^{H} \times 101$ mice ${ }^{*}$ EXPOSED TO \times RADIATIOM

$\mathrm{X}-\mathrm{R}$ Dese (r)	AET ${ }^{\text {b }}$				MEAE			
	Femele		Mele		Femele		Amele	
	*	**	*	**	-	**	*	**
1100	5/5		4/5	9	5/5		4/5	12
1175	$4 / 5$	18	2/5	12	1/3	10	1/5	12
1250	2/5	13.	L/S	16	$2 / 5$	12	e/s	12
1325	$2 / 5$	10	4/S	7	1/5	13	1/5	11
1400	0/5	10	0/5	12	$0 / 5$	12	e/s	12
1475	$0 / 5$	8	0/s	10	$0 / 5$	9	0/3	11
1590	$0 / 5$	11	$0 / 5$	7	ors	*	e/s	10
1625	$0 / 5$	-	0/5	12	$0 / 5$	¢	e/s	-
1700	e/s	*	$0 / 5$	5				

[^32]
BPLOEY PROGWESS REPONT

that were not treated with the antibiotic.
The relative merits of AET and MEA, on an equimelor besis, at wix dowe levels each are illustroted in Toble 35. Both compounds provided good protection ogainat 800 r of X roys of the lowest dase levels tried - 2.2 mg of AET and 0.9 mg of MEA. Howevar, opainst $11 c 0$ r of X rays, AET oppeors to to superior to MEA since the lowest doses of MEA and AET that provide protection to 50 s ar more of thit mice were 2.7 and 3.8 mg , sespectively. Very few survivors wers obtoined at doses smaller thon 2.7 mg of MEA. In contrest, three of ten mice thet were given $\mathbf{2 . 2}$ mg of AET survived. This dose is approximately one-fifth or onevixth the LD se $^{\text {dowe of AET. }}{ }^{13}$ Some protection against 1100 r of X rays might be echieved with even lewer doves by the introperitoneal routs.

Experiments with $C_{2} \mathrm{H}^{M}$ Milee Trewted with AET and APT. - Since AET may exist in a number of tovtomeric forms, depending on the wh of the solutien, male $\mathrm{C}_{2} \mathrm{H}$ mice were X -irradisted (800 and 1100 r) in groups of tess mice each 10 min after the introperitoneal injection of AET solutions (8.8 $\mathrm{mg} / 0.3 \mathrm{ml}$) which hod been odjusted to a series of pht's from 4.0 to 9.0. Equivelent protection (28-day survival) was obtained over the pH range of $5.0-8.0$ with 20-30t drop in octivity at both pH 4.0 and 9.0.

Earlier screening tests have indicated that APT in neor-foxic doses, 12,14 is obout os effective as AET as a rodiation-pratective agent. This finding, together with the lock of effectiveness of the butyl derivative (ABT), has importont implications with respect to the relotion of struchure of MEA derivgtives to protective activity. ${ }^{16}$ Although the propyl

TABLE 3s. EPFECT OF GRADED DOSES OF S, PAAw fatencaptot thylawine on The survival of $C, H \times 101$ mice*
 EXPOSED TO TOTAL-BODY X RADLATIOM

C-pewed Deve (ma)	X -Rey Doser, 800 .				X-ltey Deses, 1100 .			
	Fenelos		Helos		Femeles		Meles	
	*	**	*	**	*	**	*	**
2.2	S/3		5/5		2/5	13	1/s	12
2.8	5/5		4/5	10	4/5	15	$0 / 5$	10
3.8	5/5		5/5		$4 / 5$	15	5/5	
5.0	S/5		5/5		3/5		5/3	
4.6	3/5		3/3		2/5	33	4/5	18
8.8	4/s	-	5/5		5/5		4/5	9
B-Etemapteerty ${ }^{\text {a lemisel }}$								
0.\%	2/5	18	5/5		ors	11	$0 / 5$	13
1.2	5/5		3/5		$0 / 5$	13	$1 / 5$	11
1.4	5/5		5/5		1/3	12	$1 / 5$	14
2.0	5/5		e/s	14	e/s	18	$2 / 5$	14
2.7	5/5		5/5		S/S		$4 / 5$	14
2.4	3/5		5/5		5/5		$4 / 5$	12

[^33]derivative is slightly more toxic than the ethyl derivative, ${ }^{14}$ its protective properties ware investigoted over a range of equivalent dose levels. Toble 36 shows the effect of groded doses of AET and APT on the survival and survival times of $\mathrm{C}_{2} \mathrm{H}^{\mathrm{H}}$ mice exposed to 800 and 1100 r of totel-body \boldsymbol{x}^{2} rediation. The redioresistance of nomprotected $\mathrm{C}_{3} \mathrm{H}$ mice appears to be less then thet of nonprotected $\mathrm{C}_{2} \mathrm{H} \times 101$ mice; it was therefore not
unexpected that the number of 28-doy survivors in the AET-treoted groups (Teble 36) would be less then in similorly treated groups of the hylrid (Toble 35). However, on en eqvimoler bosis over the range of doses tested, the protection offered by APT agoinst both 800 and 1100 r of X rays wes about the seme as that offered by AET. This seems to be the case even at toxic and neor-toxic levels of AET and APT.

EXPOSED TO TOTAL-BODY x RADIATION

Cempeund Dese (mp)	K-Rey Deses, 800 .				X-Rey Dese, 1100 .			
	Fenples		Meles		Femeles		Ateles	
	*	**	*	**	*	**	*	**
2.2	1/5	13	$4 / 5$	12	$0 / 5$	7	$0 / 5$	-
2.9	2/5	18	0/5	13	$0 / 5$	10	$0 / 5$	11
3.8	4/5	8	5/5		0/5	14	$0 / 5$	12
5.0	4/5	16	2/5	15	0/3	12	1/5	10
6.4	3/5	18	5/5		0/5	13	$2 / 5$	8
8.8	2/4	16	5/5		2/5	14	0.5	-
2.3	4/5	19	3/5		1/5	12	$0 / 5$	11
2.1	4/5	19	5/5		ors	15	0/s	12
4.0	2/5	16	2/5	19	0/5	14	2/5	16
5.3	4/5	15	3/5		2/5	11	3/5	14
6.9	$4 / 4{ }^{3}$		5/5	${ }^{\prime} 11$	1/5	15	1/5	16
9.3	$0 / 0^{6}$		4/5	8	$0 / 2{ }^{3}$	14	$1 / 3^{b}$	14
Saline								
*	0/s	9	$0 / 5$	11				

[^34]
mamalinit recovery

Slose	
sum, cco	
60	tor
3	
then of tot	4 alotily br ino.
	the todemod to
Mor	wiombien thent oteino
blood, cauted the moterumion ond nop	mita
latiocrioplatabt wpersumer.	\%sor
	vin ism
,	1,3 zita
	is
	2n ..waly
แh.	

Bolody pmocniss mepont

TABLE 37 . EFPECTS OF ANTRAVENOHLY MUECTED LEUKENOD BLOOD OR LEUKOCTTEPLATELET Susp twions separated Fhom Leurkiono blood ow sumvival or anct exposto To Tse f of mol E-BODY x favs

30 -doy survivals of $10-705$. In groups it and i11, 43 and 100K, respectively, of the mice which recelved an intrevenous injection of leukecyteplotelet suspensions were alive 30 deys postirrediation.

Altheugh it is evident that she injection of either whele leviemoid bleped or the leviecyte-pletelet swspension mrepored from leukemoid bloed aremotes vecovery in X-imadiated mice, the avestion sosese whether the swspension, if injected inso mice peier to irrodiation, weuld offord metection. None of the mice injected with the levisertepletelet swspension belove ieroliatien survived Igrevp IV, Toble 37.

The results of these experimunts swpport the concept that the leviocyte is an impertant lister in prometing recovery of X-royed micen. It is not pessible at this time to implicate cenclusively the Ieulecytins in the recovery trocess, becevse the injected swspensions were contnmineted with erythescytes and platelets. Comgdon or al (un-
publiahed olservations), homever, observed thet erythrecytes from nomed movse bleed did net promote recesvery when injected into mice folloing X imadiowion. Furthemers, it hes been shem m^{3} thot injected pletelet suspensions, olthouph centrolling postierodiation hemonhege, do not increase significently the survivel time of logs expened to $400-600$ r of X roys.

Implicetion of ewlls of the prenulocyte seevies in the recevery mocess is evideneed by two fecters: (1) an increase in grimulecytes is primonily respensible for the feulocytesis in the bloed of mice cerving the sepumens cell caritems, and (2) introperiteneally injectied lymphocytes do not alford recevery in X-irredieted rets. ${ }^{4}$

[^35]

Relerties of L ymphetie Thesew Reponemetion to Survival of Blone Merrow-Treeted Irredlieted Milice
 C. C. Cengion
 1. Urse

The striking regemeration of lymphetic tissue in spleen and thigh-phielded inrodiated mice and in bene moreu-treoted imradiated mice hes proved to be of primery importance in detemnining whether irrodieted mice subsequensly develop lymphecytic neeplesms.․ In aevise lethal total bedy imradiotion, lymphetic tissue amgeneration occurs im surviving mice treated with isplegpos bene marrev (alse is spleen and thigh shieliding) but it is not cleor whether the Iymphotic tissue regeneration is ev sentiol for survival es is the bent marrer segeneration and that of the red pulp of the wpleen.
An additional related pmolien was raised by the demonatreation the heterologevs and hemplopous bone marrow did net couse lymphatic tiswe regeneration (determined by thymic =wight measure: ment) in the lewkemogenic irrodiotion situation ${ }^{\text {y }}$ whereas iselogovs bone marrow and thigh shielding ane assaciated with lymphatic tisave angenerstion. In shis study. LAF, mice were given ecute lethel tovol-body impadiation. Thirty-doy survival and thymic weight determinations werw made an surviving mice that seceived bone marvo= from one fanoral bowe shaft of isologows doner mice or the some anpunt of bone marow from hemologows donor mice. Teble 38 shews the dete obtained at the pesent time. The effect of larger empunts of iselogovs, homplogous, and heterelogovs (rat) donor bone marrow on survival and thymus wwight will be determined.

Bene Mowew Rexpense of X-irradieted Mice Recelving Verying Amevets of linelogows Bene Mienser Siespenaliems

> P. Uewe C. C. Congdon

Experience in studying the mechonise of action of suspensions of hent marrow cells and reluted tissues on the recerery of lethelly iaradioted miee hen demenstreted a neved for detailed and repreduerible peopstitetive and evalivative biologicel deta on several aspects of the rweeviery phenamenem.

[^36]For example, informetion moy be newded on how varing the anount of bue marow cells injected inte the irrediated anind at ane expesure level imfluences, net only 30 -dey survival, thut olse the ectual respense of the irrodioted hest animol's bene memeow at varying intarvals after expesure. Techniques for cevnting the number of beni marrow cells injected and for coumting the number of bene marrow cells in the impdieted hest's femenal bene shaft heve been developed. Dutermination of the weight and volume (micro hemetocrit proscendure) of bone mamore in the femoral bone shaft thes alse been reconded. Additional dore roken on the socrificed imadiated hest animal for further comrelations include bedy veight, thymus weight, the opposite fiemorel shalt bone matrow for histologr (avontitative and avalitative shedyl. and periphural blood tevkecyte count, and dif ferential bloed smeor. With noch experimentol run a separate growp of animals is used for survivel duta.

Figure 21 shows the fimoral shaft bene mame: respense of imwdiated mole mice to twe different amounts of injected beine manow cells. Figure 22 shown the peripheral bloed leskecyte cownts for the same mole mice at the time of socifice.

By this seme trpe of experimentol study it is plonned to determine severol types of doserespense relations by wse of diffurent respense end poimts including survival, peripheral blead Ieviecyte coumts, bene murrou responses, and thymus weight eesponse.

Preliminary Dete from Studies of Doleyed fifliets in Atice Serviving Tenal-Bedy Exppoweres to Messlive Deses of X Radistion
 C. C. Conpion
 D. G. Deherty ${ }^{*}$
 A. C. Upten ${ }^{\text {I }}$
 A. \mathbf{w}. Kimbell ${ }^{*}$

The demanstration by Bumett and Deherty thet mice veceiving 2000-2600 e of tetel-bedy y roys can survive beyend a 30 -day ebservation peried, ${ }^{\text {ib }}$ previded they receive 5, h-emineethylisethiviont ive-Blo-NBe (AET) preirvediation and bone marrosweptonycin treatment pestirrodiation mokes it

[^37]
BHOLOGY PROGRESS REPORT

TABLE 38. EFFECT OF ISOLOGOUS AND MOMOLOGOUS BONE MARROW ON SURVIVAL AND ORGAN WEIGHTS OF X-IRRADIATED (900) LAF ${ }_{1}$ MCE*

	Expt No.	Number and Sox of Mice	Age of Irradiation (weeks)	30-Day Survival (\%)	Mean Day of Death for Nonsurvivors	30-Day Survivors		
						Mean Thymus Weight (o)	Mean Spleen Weight (g)	Meon Body Woight (g)
	1	156	11-12	87	14.5	42.5	175.3	22.5
	2	156	12	80	19.3	28.1	226.7	20.9
	3	15 d	12-16	87	11.0	27.4	173.1	23.6
	4	15 ?	15-16	93	7.0	39.9	174.9	20.5
	5	15 ?	11-12	67	12.0	38.7	133.7	21.8
	6	15%	11-12	100		43.0	119.4	23.1
	1	146	11-12	0	19.2			
	2	15 d	12	7	18.3	16.0	59.8	17.3
	3	156	12-16	7	16.6	3.7	117.5	18.0
	4	13%	15-16	7	13.1	7.6	165.4	15.8
	5	147	11-12	43	14.1	26.7	142.4	20.2
	6	15 ?	11-12	20	20.3	11.5	127.1	17.1
$\begin{array}{ll} \stackrel{0}{0} & \vec{y} \\ \frac{0}{2} & 2 \\ 0 & x \\ 0 & 0 \\ 8 & \end{array}$	1	10%	11-12			46.5	186.1	21.3
	2	10%	12			47.7	155.9	21.9
	3	116	16			33.3	131.4	27.2
	4	10.6	15-16			33.7	132.0	29.2
	5	56	11-12			38.7	108.8	28.5
	6	56	11-12			38.1	116.6	28.5

*59 X-ray control mice all died within the 30 -day pariod. Mean day of death mas 8.2 .
desirable to obtain data on life span, fumor incidence, cataract induction, and other delayed effects resulting from exposure to radiation in a range not copoble of being studied in the past.

In the preliminary plonning it was decided to investigate the delayed effects at obout the LD $\mathrm{so}^{1} / 30$-day exposure level for mice with no treatment, those pretreated with AET, those posttreated with isologous bone marrow, and those receiving combination pre- and postirradiation treatment. Determination of the $\mathrm{LD}_{50} / 30$-day exposure values for these four situations is now pertially completed.

The LD ${ }^{28} / 30$-day X-rodiation point estimates for $\mathrm{C}_{3} \mathrm{H} \times 101 \mathrm{~F}$, mice were: untreated mice, 692 r with a 95% confidence interval of $649-753 \mathrm{r}$; AETpretreoted mice, 1148 r with a 95% confidence interval of 1071-1212 $\mathrm{r}_{\text {; }}$ isologous bone-marrow posttreated mice, 1292 * with a 95% confidence interval of 1212-1382 r. This point estimote for combined treatment of X-irradioted mice of this strain has not been determined. However, in one experiment, good survival was obtoined at 1700 r and in another small expuriment all mice receiving 2000 r or more died; thus the LD $\mathrm{So}_{0} / 30$-day value may lie in this range.

PERIOD ENDIMC AUGUST 15,1955

Fig. 21. Femoral Shaft Bone Mernow Counts of Irradieted (900 t) Mole CAF, Mice Recelving Two Different Amounts of Isologous Bone Merrow Colls Intravenously. A, Normal CAF, mice; O, X-iay only; $0, X$-ayed mice receiving 4.5×10^{5} to 7.5×10^{5} bone marrow cells; Δ, X-rayed mice receiving 7.4×10^{5} to 1.2×10^{6} bone morrow cells.

Fig. 22. Perlpheral Blood Leukecyte Counts of the Some Mice Shown in Fig. 21.

Sereening of Tissues for New Recevery Agents

C. C. Congdon

1. Urso

The search for tissues, other than those of the hematopoietic system, which will promote recovery from lethal total-body X irradiation has demonstrated the failure of intraperitoneal transplants of urinary bladder and iejunum to alter the 30 -doy mortality following a 900 r exposure. LAF, mice were exposed to 900 r of irrodiation ond shortly thereafter were anesthesized. Through a laporotomy incision each onimal in one group received a urinary bladder, cut into small pieces, from n normal LAF, mouse and ach animal in a second group received about $\frac{1}{2} \mathrm{in}$. of jejunum, eut into small pieces, from a normal LAF, mouse. The mean day of death closely approximated that of the control X-rayed mice. The rationale for testing urinary blodder depends on the old observation that urinary bladder mucasa will stimulate bone formation on transplantation. ${ }^{11}$ The testing of intestinal tissue follows from the recent work of Goldwasser and White indicating a recovery effect from noncellular extracts of hog infestinal mucosa when injected into irradiated mice. ${ }^{12}$

Merderion Glond Test for Transplentation of Homolegous Bone Merrow Cells Following Tatol-Body X Imadiation

C. C. Congdon
R. M. Merwin ${ }^{12}$
T. W. McKinley ${ }^{13}$

A technique developed by Merwin and Hill ${ }^{14}$ was used as an immunological test for the type of bone marrow present in irrodiated L.AF, mice thet received $\mathrm{C}_{3} \mathrm{Hf}$ bone marrov, cella intravenously following the irrodiation exposure. The test animals were normal LAF, mice carrying tiny, nonvascularized grofts of Harderion gland from young $\mathrm{C}_{3} \mathrm{H}$ miee in a trensparent window. $\mathrm{C}_{3} \mathrm{H}$ tissue injected subcutaneously into the test anidnals will cause the graft to disoppear; LAF, tissue would not couse it to disoppeor.

[^38]
BIOLOGY PROGRESS REPORT

In two series of experiments, each LAF, mouse exposed to 900 r of X rays received the bone marrow cells from one femoral shaft of a $\mathrm{C}_{3} \mathrm{Hf}$ mouse. The irradiated recipients (LAF,) were sacrificed at different intervals following the oxposure and the bone marrow from one femoral shaft was injocted subeutaneously into a test animal (normal LAF, mouse carrying nonvaseulorized $\mathrm{C}_{3} \mathrm{H}$ Harderian gland graft). The graft in the fest animal was then observed through the transparent window for continued viability of the graft or its necrosis and disoppearance. On day zero following irradiation two tests (the grofts did not disappear) foiled to demonstrate presence of $\mathrm{C}_{3} \mathrm{Hf}$ cells. Six rests on day 1 showed presence of $\mathrm{C}_{3} \mathrm{Hf}$ cells in three and absence of these cells in three. On doy 2, three tests showed presence of $\mathrm{C}_{3} \mathrm{Hf}$ cells in two and absence in one. On day 3, two tests showed a positive (presence of $\mathrm{C}_{3} \mathrm{Hf}$ cells) and a negative (obsenco) result. On doy 4, four of five tests were positive, one was nagative. From day 7 through 180 all nine tests were positive indicoting the presence of $\mathrm{C}_{3} \mathrm{Hf}$ cells in the LAF, miea.

The present interpretation of these results is that, between day zero and day 7 affer $\mathrm{C}_{3} \mathrm{Hf}$ bone
marrow cells were injected into an irrodiated LAF_{1} mouse, sufficient $\mathrm{C}_{3} \mathrm{Hf}$ cells "take" and multiply in the bone marrow of the femoral shaft of the LAF, mouse to chenge the test from negotive (absence of $\mathrm{C}_{3} \mathrm{Hf}$ cells) to positive (presence of "sufficient" $\mathrm{C}_{3} \mathrm{Hf}$ colls). This is further interpreted to indicate that homologous transplantation of $\mathrm{C}_{3} \mathrm{Hf}$ cells occurs in this experiment. Total repopulation of LAF, femoral bone marrow by $\mathrm{C}_{3} \mathrm{Hf}$ cells would be a special case of transplantation, and this evaluation has not been made. The role of the cells that do transplant in determining survival remains to be studied. Evidently transplantation is an early step in the mechani am of recovery. These results are in line with those of Main and Prehn on skin homografts after irrodiation and bone marrow injection. is In their work the transplantation of hybrid bone marrow cells had far-reaching immunological consequences but the interpretation of total cellulor repopulation of irradiated bone marrow by the hybrid cells cannot be made at this time.

[^39]
mammalian genetics and development

GENETIC AND DEVELOPMENTAL EFFECTS OF RADIATIOM IN MICE

W. L. Russell, Section Chief

E. F. Oakberg	J. W. Bangham
L. B. Russell	M. B. Cup
J. Sower Gown	R. L. DiMinno
J. Cilo, Jr.	M. K. Freeman
L. Wickham	E. K. Kelly
R. Averboch ${ }^{2}$	M. H. Major

W. St. Amand

Radiation-induced Mutations in the Mouse
W. L. Russel!
M. K. Freeman
J. S. Gower
E. M. Kolly
J. W. Bangham
M. H. Major

Investigations on radiation-induced mutation rates in mice, ${ }^{3}$ and a comparison of the results with as nearly similar data as were availabie for Drosopbila, showed a higher mean rate in the mouse, and led to the conclusion "that estimates of human hazards based on Drosopbila mutation rates may be too low." It was recognized that the Drosopbila data that were available were not ideally suited for comparison with the mouse data. Thus the mouse mutation rates were determined for irrodiated spermatogenia, seven specific autosomal loci being used, and there was no information on specific-loci rates for irradiated spermatogonia in Drosophila, although there was information on specific-loci rates for irradiated spermatozoa. This was considered a serious lack. Therefore, a study was suggested and supported in this laboratory by Alexander ${ }^{4}$ (1954) which was designed specifically to provide Drosophila data more suitable for comparison with the mouse. In this investigation, the mutation rates were determined: (1) at specific loci, (2) on autosomes, (3) for irradiated spermatogonia as well as spermatozoa, (4) with essentially the same genetic: technique and method of scoring the mutations as had been used on the mice, and (5) with the

[^40]same X-ray machine and method of dosimetry as that used in the mouse experiment. Since there is a suddenly increased interest in genetic hazords of rodiation, it seems desiroble at this time to discuss the species comparison again, the Drosopbila data of Alexander and new Drosophila data of other workers being used.
Alexander's data on Drosopbila spermatogonia provide the most closely similer results for comparison with the mouse data. Tha mouse mutation rate may be calculated on the basis of the tested mutations reported in 1951 publication ${ }^{3}$ plus 10 mutations that had been only partially tested at that time and 12 presumed mutations thet hod not yet been tested. These additional 22 have since been fully tested and all of thom have proved to bo mutations ot the specifi/ loci. The six mouse "mutants" that died befice testing aro excluded for purposes of comparison with Alexander's dato, which include only tested mutants. This reduces the published figure for the mouse from 25×10^{-8} to $22 \times 10^{-8} / \mathrm{r} /$ locus. Comparison of this with $1.5 \times 10^{-8} /$ //locus for the Drosopbila spermotogonia mutation rate gives an estimate of 15 as the ratio of the mouse rate to the Drosopbila rate.

In this comparison there is no question of a statistically significant difference between the mean mutation rates of the two sets of loci. Statistical tests of high sensitivity are not available for the more important question of whether the data indieate a significant difference in overall mutation rates between the two species, if the two sets of loci are assumed to be, at least, random samples of comparable kinda of loci. Nevertheless, the application of a nomporametric test, namely, Pitman's (1937), does show a difference of this kind which is significent at the $\mathbf{3 . 9 \%}$ level. 5 The following semiquantitotive considerations are also instructive. Five of the seven loci tested in the mouse spermatogonia gave induced mutation rates higher than the highest of the rates obtained by Alexander for the eight loci in Drosophila spermatogonia and also higher than the highest of the eight rates obtained by Alexander for Drosophila spermatozoa, even without adjusting for the fourfold greater mean rete in her spermatozoa results.

[^41]
BIOLOCV PROGRESS REPORT

Since the Drosopbile .epermatogonio mutetion rate for specific loei is based on only ten mutotions, it is still of interest to compore the mouse rote with the Drowophila spermatozoo rate, porticularly the new and indepeindent sets of informution en specific Ioci in outosomes. Alewonder's rate for 71 tested mutotions in spermotease is $5.98 \times 10^{-8} / \mathrm{c}$ /locws. Micker's ${ }^{6}$ (1954) rate for 32 mutations at the same eight Ioei is 3.35×10^{-6}. Potterson's rate (quoted by Alewander) for a total of 70 mutations at seven of the same loci and one other locus is 4.39×10^{-6}. In estimating spermatoganio rotes from these spermotozoo rotes, a step necessary before comporison with the mouse dato, it would defeat the purpose of gerting estimates independent of the limited informotion on apecific loci rates in Drosophila spermatogonia if Alexonder's estimate of the ratio of spermatiozoe to spermotogonia rates were used. The information that comtes closest to providing a sutisfoctory independent estimate of this ratio is thet of Auerbech ${ }^{7}$ (1954). Table 1 in her publication gives the rate of mutation to recessive lethals on the secand chromosome in broods of Drosophila coming from irrodiated moles mated for successive periods of three days each. Data from the last brood are presumed to be from irrodiated spermatogonia. In Mickey's experiment, the males were mated for six days following irradiation. His data may, therefore, be taken as being roughly equivalent to the first two broods of Auerbach's date. The ratio of the weighted mean mutation rute for these two broods compored with the rate in the last brood is 4.6. Miekey's rati divided by this, gives $0.73 \times 10^{-6} / \mathrm{r} /$ locus, as on estimate of the spermatogonia rote in Drosopbita. Dividing the mouse rate by this adjusted Drosopbila rate given a ratio of mouse to Drosopbila rates of 30 . In Alexander's experiment the males were mated for four days following irradiation. If this is taken as corresponding to Auerbach's first brood and one-third of her seccond brood, 3.7 is the figure with which to divide Alexander's spermatozoo rato. This gives an estimate of $1.6 \times 10^{-8} / \mathrm{r} / \mathrm{hocus}$, for the spermatogonia rate, and 14 as the ratio of the mouse to the Drosopbila rate. These last figures ore in excellent agreement with those

[^42]obtained directly from Alexander's spermatogonio dete. It may be noted that Alewander's doto, when compared with the mouse results, give a more conservative estimate of the difference between mouse and Drosopbit. mutation rates than Mickery's deta.

Comperisons between species as different as Drosopbite and mice are difficult. There are many compliceting factors which make it unwise to generalize obeut the relotive rates of rediationinduced mutarion in Drosopbita and mice. Hewever, beceuse of the humon hezards, there is a pressing need to draw the best possible conclusion. The new Drosopbila dote indicate that the induced mutation rate per locus in the mavse moy be obout one arder of mognitude higher than that in Drosopbila. This reinforces the conelusion reeched in 1951^{3} that "from the point of view of these concerned with the immediate problems of protection in mon, it would be risky to ignore the indication that estimates of humen hazards based on Drosopbila mutotion rates may be too low."

Cemme-Rey Semsitivity of Spermategento of the Mowse

E. F. Oakberg
 R. L. Diminno

In order to confirm the sensitivity curve proviously published for spermptogonia, ${ }^{0}$ hylrid ($101 \times$ C, H) male mice wwre given y -ray dosws of 5,8 , $12,17,23,38,47,57,68,80$, and 100 r at a dose rate of $6 \mathrm{e} / \mathrm{min}$, and killed 72 hr after exposure. Techniques of fixation, sectioning, staining, and scoring were the same as described previously. ${ }^{0,0}$ Dato for the four control mice and the four mice at each dose leval have been combined in Tables 39 and 40.

With the recent estimate ${ }^{10}$ of the duration of spermatogenesis available, the stages ot which cells are irradiated and subsequently scorod can be determined with greater accuracy. Thus comporison of sensitivities of spermatogonio of different stoges of their developmental sequence is fecilitated. The 72 -hr interval between irradiation and observation was chesen for comparisons hased on counts of newly formed spermatocyties at stoges

[^43]
TABLE 3n. GAMBARAY SEMSITIVITY OF DIVIDBNG TYPE A GTERMEDIATE, AND TYPE B SPERMgTOCONAA

Dese (a)	Trpe A in Divisien + Eely lintermediene		Antermediete + Type 8	
	Terel Cells	Froestien ef Cerstrel	Tesal Cells	- Freswien el Commel
0				
5	1101	0.945	1372	0.921
8	1161	0.864	1182	0.750
12	1020	0.741	1091	0.733
17	911	0.662	1018	0.884
23	780	0.587	774	0.520
30	47	0.348	546	0.387
38	408	0.295	308	0.206
47	253	0.184	254	0.171
57	193	0.120	268	0.180
68	4	0.091	41	0.028
10	11	0.008	6	0.028
100	5	0.004	8	0.00s

*Sesped as resting primery spermeteeytes at stege Yhb.
**Sieved at heginning of leptetene at arege Vil.

TABLE AB. GAMMARAY SENSITIVITY OF TYPE A SPERMATOCONA

Dese (t)	All Steges Combined		Imedieved at Steges vili-x" $x^{*}{ }^{\prime \prime}$		Irrediesed at Sieges $\mathbf{v i})^{b} ; \mathbf{v i t}$	
	Tesel Cells	Frestion el Centrel	Tetal Cells	Freetion ef Centrel	Tetel Cells	Froetien al Centrel
0	1593		387		258	
5	1555	0.974	346	0.094	281	1.009
8	1284	0.005	311	0.804	192	0.744
12	1320	0.827	303	0.783	182	0.705
17	1095	0.084	251	0.649	160	0.620
23	924	0.579	217	0.581	129	0.500
30	481	0.552	198	0.512	143	0.554
38	730	0.457	153	0.395	122	0.473
47	628	0.393	120	0.310	100	0.388
57	633	0.397	9	0.256	9	0.384
58	557	0.349	101	0.251	79	0.305
50	522	0.327	69	0.207	74	0.287
200	498	0.311	82	0.212	58	0.341

[^44]
BHOLOGT PROGRESE AEPOAT

VII and VIII, but is not optimum Is all spermeteponial steges. Seme sensitivity cutves for type A spermetogonis, however, can be determined.

Since stoge VII accupies obout 20.6 her of the totol sphermotogenic cyclo, the count of resting primary spermatocytes is drawn from a simitor time range 72 he eorlier. This wauld correspond to irredietion of spermetogenie at tubule steges il. during the thind division of type A cellis; and et tubule stoge It, whan transition from A to the intermediete type is oceuning. The mid-point falls late in stage II , at she sieok of spermatogenis! division. The count of spermatocytes sbout to enter leptotene at stege VIII represents e range of cells irrodiated from stoges III to IV, with the mid-point at stoge IV, when intermediate spermptogonio divide to form cells of type B. The two survival curves (Table 39) are remarhobly similar. with the LD 30 between 23 and 30 r in beth cases. These rwsults are in excellent agreement with the sensitivity of intermediate and type B spermatagonie pubtished earlier."

The survival curve eltaimed by combining the counts of all type A cells for all 12 stoges of the cycie is given in column 2 of Table 40. The surviving froction agrees well with the dote of Table 39 at doses of 5, 8, 12, 17, and 23 r, but of doses of $30-100$ r the type A curve flantens not ceobly, with the "Ifraction of control" being olmost uniform at $47-100 \%$. This has been interpreted as an indication of a heterogeneity of sensitivitios within the type A population, and
the supgestion hes been mode that "dermant" type A cells ore most resistans. ${ }^{*}$ In order to tesst this hypothenis, number of spermatogonio at stopes I (ropresenting cells irrodioted at stoges VIII-X, with the mid-point at $1 X$) and III (representing irrediation of stowe XI) were used for astimation of sensitivity during the mitotic peaks at stopes IX and XI (toble 40, column 4). Sensitivity af cells irrodieted in the "dormant" stage was astimated by sphrmatogeniel counts at stages X and $X 1$, which represent cells irrodiated at stoges V, VI, and VII (Toble 2 , colvmn 6). These cells hove gone through one division at stoge $I X$, and some ars undergoing a secend division at stoge XI, providing the opportunity for expression of rodiation damoge. The survival eurves given in columiss 4 and 6 , Toble 2, are not morkedly different except at doses of $57,68,80$, and 100 r . where irrodiation at the mitotic peoks gives a sliglatly lower survival. That the difference is not greater is not surprising, however, for even during the mitotic peoks most cells are in interphase. The more interesting observation is the rapid decrease in number of type A spermatogonia of low doses oven when irrodiated in the "dormant" stete. With the exception of the 8 - and $12-$ dases, survival of type A cells irradioted at tubule stoges V-VII does not differ from the penerol response of all type A spermatogonia. Thus the existence of differences of sensitivity is indicated even for the mitotically inactive "dormant" type A spermatogonio.

PATMOLOGY AND PWYSIOLOGY

PATMOLOGIC AND PMYSIOLOGIC EFFECTS of Radiation

A. C. Uption, Section Chief

T. T. Odell, Jr.	L. M. Smith ${ }^{3}$
W. H. Benedict ${ }^{\text {² }}$	F. G. Tousche
K. W. Christenberry ${ }^{1}$	B. Andersan
G. S. Melville ${ }^{2}$	P. Ledford
F. P. Sonte ${ }^{2}$	F. F. Wolff
W. D. Gude	R. J. Elliotr ${ }^{4}$

Redietien-indeced Myoloid Levikemie

$$
\begin{aligned}
& \text { F. F. Wolff } \\
& \text { W. D. Gude P. Ledford }
\end{aligned}
$$

The induction of myelogenous leukemia in mice of the RF stroin by ionizing rodiation has been raported previously. ${ }^{5}$ Because of the resemblance of this diseose to radiation-induced myefogenous Ioukemio in man and because of the paveity of experimental data concerning its pathogenesis, on extensive investigation of this condition, begun in collaboration with J. Furth, is in progress.

Mice of the RF strain ore being exposed to whole-body X radiation at 5-6 weeks of age; the radiation factors are as follows: $250 \mathrm{kvp}, 30 \mathrm{mo}$, TSD 97.3 cm , rate $70-80 \mathrm{r} / \mathrm{min}$ in air with scatter, filtration $\mathbf{3 ~ m m}$ of AI ($\mathrm{hvf} \mathbf{~} 0.55 \mathrm{~mm}$ of Cu). Doses were administered in a single axposure unless otherwise indicated. In order to study the role of certain physiologic factors in leukemia induction, various orgons were removed one week before irradiation. Because of the large numbers of mice required for the experiment, the individual treatment groups ore being filled sequentially, littermates divided among the various groups concomitantly. The mice ore being observed throughout life under stendard laboratory conditions and submitted to postmortem examination promptly after death. As reported earlier, there is a marked increase in the incidence of myeloid leukemia ofter a single exposure to only 150 r , the death rate from this disease being maximal

[^45]in mice 8-15 months of oge (Table 41). As the dose is elevated from 150 to 300%, the incidence rises and the onset is hastenod; however, with further elevation of the dose to $450 \mathrm{r}_{\text {, }}$ the frequency declines. Becouse it was thought that the decreased incidence of myeloid leukemia sccompanying the increase in dose from 300 to 450 r might result from the intercurrent death of mice with thymic lymphomas, a group of mice were thymectomized preirradiation; although as yet inconclusive, the preliminary data suggest that thymectony has not significantly affected the incidence of myeloid leukemia; it is noteworthy, however, that in the irradiated, thymectomized mice, an increased frequency of nonthymic lymphoid tumors has been observed within the first 12 months of life. With fractionation of 450 r into three exposures of 150 r each, with a five-day interval between treatments, there appears to have been an enhanced induction of thymic lymphoma, as noted by Kaplanj ${ }^{6}$ by contrast, the incidence. of myeloid leukemia appears to have been reduced as a result of dividing the dose. Castration has resulted in a leukemia response in the mole more like that of the fomale, i.e., a greater number of thymic lymphomas and fower myoloid leukemias; similarly, gonadectomy of the female has brought about a leukemia-induction pattern more like that of the mole; however, both the male and the female retain to some extent after gonadectomy the disease response characteristic of their sex, suggesting the existence of sex-specific leukemiamodifying factors operative in the absence of the gonads.

Mechanism of Radiation Recovery by Morrow Transfusion - Evidence of Repopulation
D. L. Lindsley ${ }^{7}$

T. T. Odelf, Jr.
 F. G. Tausche

It has been demonstrated that recovery from lethal doses of X radiation is promoted by the injection of unirradiated bone marrow cells, but the mode of action of the bone martow is not presently known. It has been pestulated on one

6H. 5. Kaplan and M. B. Brown, J. Nath. Cancer tnst. 13, 185-208 (1952).
${ }^{7}$ Drosophita Genetics Group.

TABLE 41. meciognce of Leuremia min mace given moole-body X IRRADIATION AT S-S WEEKS OF AGE

K-Rey Dose (t)	Operevion	Tesel	Mice/ Tokal Deod, and Ser	Number Deod of Leulemie in Indiceped Peried (menths)								
				Alyefoid L evkemid			Thymic L.yephomge			Opher Leulnemias		
				$0-7$	8-14	15-22	$0-7$	8-14	15-22	-0-7	8-14	15-22
0			7819	0	0	0	0	0	1	0	1	10
150			104/52 6	1	16	4	3	3	1	0	2	12
300			95/65 d	8	25	6	6	7	2	0	2	3
450			86/626	4	13	3	10	10	1	0	5	3
450	Thymeetomy		101/44 6	5	14	0	1	1	0	2	10	1
450*			$57 / 24$ d	2	3	0	6	8	0	0	0	0
450**			$93 / 42$ d	3	3	0	20	7	0	1	1	0
300	Costration		113/85	0	23	6	12	14	3	0	3	3
0	Costration		101/32	0	0	0	2	2	6	0	0	7
0			99/74 7	0	1	- 2	0	4	12	0	2	21
0	Costration		121/15 ${ }^{\text {? }}$	0	0	0	1	3	0	1	2	0
300			94/84 7	1	8	. 1	20	20	5	0	1	5
300	Costration		90/44 7	0	6	1	16	8	0	1	5	0

Protocols 250 -kvp X rays; 30 mas $T S D, 97.3 \mathrm{cmg}$ rate, $70-80 \mathrm{~m} / \mathrm{min}$ in air with seatter; filtration, 3 mm of Al (hvi, 0.55 mm of Cu).
*Three exposures of 150 r each at intervals of two days.
**Three exponures of 150 r each at intervals of five days.
hand that the introduced marrow cells proliferate and are responsible for recovery by cell repopulation and on the other hand that they elaborate some humoral substance which elicits a recovery response of the indigenous marrow; a tiding-over of the host by the injected celfs until the irradiated marrow can recover has also been suggested. It is plausible, of course, that a combination of these actions may be responsible for recovery. Information in the literature concerning the transplantation of tumor tissue after irradiation and/or cortisone administration, and the known inhibiting effect of irradiation on the
immune reaction make it seem likely that the introduced marrow might repopulate the acellular marrow space of the irradiated animals. Because the use of a strain of rats having a pair of known red cell antigens seemed an ideal tool for testing the reoopulation hypothesis, the following experiments were designed to carry out this test.

The rats used have the cellular antigens C and D, which are controlled by a single pair of alleles; erythrocytes of the two homozygotes, C/C and D/D, earry antigens C and D, respectively, while those of the heterozygote, C/D, earry both antigens C and D. It is possible, therefore, to
detect cells of either type C or type D in a mixture of both by the specific agglutination of each with its homologovs antiservm. (Animols segregating for these genes, as well as agglutination reagents specific ogoinst each ontigen, were kindly supplied by R. D. Owen of the Californio Institute of Technology.) Rats bearing C or D antigen were irrodiated and subsequently injected introvenously with bone marrow cells, in the initiol experiments with type CD bone momow (since it olone was ovaileble) and in later experiments with morrow from rots of the opposite (D or C) blood type (Table 42). At vorious intervals after injection the red blood cells of the recipients were typed serologically; when agolutination was not observed with the unaided eye, samples of the resuspended mixture were examined microscopically in a hemocytometer. Two classes of controls were used - one was an irrodiation control in which rats were subjected to the same dose of X rays as the experimentols and injected with saline only; the other was an implantation control in which unirradiated rats were injected with bone marrow (Table 42).

The results of the experiments are presented in Table 43. By the end of the second week nearly all the irrodiated animals surviving had erythrocytes of the implanted type in their peripheral blood; however, the injected but unirradiated animals showed no sign of the implanted cells
et this time or any subsequent time. The presence of cells of the implonted type was often recog. nized first only upon microscopic exominetion of the agglutination test mistures, later becoming apperent upen viswal observation of the reaction tube. At the present time, one mosoic animal from experiment 2 is Iiving 90 doys after implontation, and 14 mosaic animals frem the third experiment 35 doys after implontation without any evidence of regression of the implant. PreIiminary quontitative tests on several animals indicate that cells of the implanted type mole up from 10-905 of the circulating red cells of the recipients.
The results are interpreted to indicate a repopulation of the bone morrow of irrodiated recipient animals with marrow from the doners. (The phenomenon of "transformation" found in becteria is thought to be a very unlikely explonation for the observed genetic change in the red bloed cell population.) These experiments do not prove that implantation of the marrow is the only, or even the most importont, mechanism involved in the recovery from rodiation injury. Furthermore, it should also be noted that it can as yet only be inferred that the myeloid elements repopulate, which is important since several lines of investigation now tend to implicate the myeloid elements of the blood and bone morrow as recovery agents.

TABLE 42. TREATMENT SCMEDULE OF RATS IMJECTED WITH ANTIGEM-LABELED MARROW

Experiment . No.	Number of Rats	Dose (r)	Type of:		Time of Marrew Injection Pestirradiation (hr)
			Host	Implant	
1.	10	900	C or D	CD	$0-3$
b	10	900	CD		
c	10	0	C or D	CD	0-3
2 a	11	750	C or D	CD	18-24
b	7	750	CD		
3 a	23	750	C or D	D or C	18-24
b	11	750	CD		
c	7	0	$C \text { or } D$	D or C	18-24

BHOLOET PROCDESE REPORT

Enenter	Treener	Time ather lenelinien (itye)											
		-	6	*	10	13	14	18	20	22	28	38	48
5 *	Epenemeal	- 15	0/3	-2	-73		$1 / 1$	1/7	-8				
$\stackrel{ }{ }$	Exay mental	- 10	-/8	- 0					-	\pm			
*	Inplare ement	- 10	- 10	-78	-/10	- /20							
$2 *$	tepenemed	- 11	- 11	$8 / 4$	4		3.18	$3 / 3$	$2 / 3$	2/2	2.2	2.2	1/7*
$\stackrel{ }{ }$	Noig eental	-7	-77	-/8	-/8		-13	-/3	-13	- $/ 4$	-/4	-	- 0
$3 *$	Eepenmened	-23	- 23	- 21	$2 / 73$		13/78	-/38	14/76	-176	14/16	14.78	
$\stackrel{ }{ }$	Nory evenel	- 11	- 13	- 19	$-\sqrt{8}$		- $/ 3$	- 7	-8	- $/ 4$	-/4	$-/ 4$	
*	luplost eentel	- 7	$-\pi$	-7	$0 \cdot 7$	\%	0.7	-77	$6 / 7$	-17	$0 \cdot 7$	$0 / 7$	

EWoets of Rediotlen an Mepoleryoeytes and Pletelets - Uptele of s^{33} alobeled Selfete

T. T. Odell, Jr.
 F. G. Teusche

From studies of the uptake of $5^{33} \mathrm{O}_{4}$ by megokaryocytes and plotelats following thole-body irradiation," it is apperent thet the total radioectivity of bleod pletelets from rats injected with $\35-labeled sulfate during recovery from an LD ${ }_{50} / 30$ doys dose of X rays (750 r) is much higfer then the activity of pletelets from nonirrodieted controls (oll sulfate injections were mode opproximately 24 hr prier to socrifice of the rats by exsanguination). The platelet activity has been observed to be highest 14 doys postirrodiation, the first time during the recevery phase when sufficient pletelets are obtainoble for activity measurements; from a value several times nomsal it then declines to less than twice the control value at 24 days (Table 44). Since the platelets are believed to be labeled, at least to a major extent, during their production in the bone marrow, the increased radioactivity is probably associated with the younger composition of the platelet population during its buildup in the recovery period. The proportion of new platelets in the circulating population presumably decreases as the platelet count returns to normol.

[^46]TABLE थ EPFECTS OF IRRADIATIOM ON THE UPTAKE OF ${ }^{23}$-LABELED SULFATE BY PLATELETS

Dey Pestieredienise ${ }^{4}$	$\begin{aligned} & \text { Rediesevivity at } \\ & \text { Pletelets } \\ & \text { (esveps/ } \mathrm{min} \times 10^{7} \text {) } \end{aligned}$	Nunther of Rete
14	57.9	5^{*}
16	40.1 ± 7.65^{6}	$2{ }^{2}$
18	26.7 ± 2.03	5
20	31.2 ± 4.00	2
22	22.4 ± 4.61	5
24	16.8 ± 1.61	4
Centrel	11.0 ± 1.53	11

TRers receiond 730 ; in esingle expesure and wors in

Stranderd devierion, ± 1.
${ }^{\circ}$ Plotelets frem two animels were entimedin ander to obvoin o swifieiont mimber for - wetivity चeverement.

In oddition to study of the uptake of $5^{35} \mathrm{O}_{4}$ by the plotelets, observations ware mode on the number of megokaryocytes in the bone morrow and on the peripheral platelet counts during the first 24 doys postirrodietion (Fig. 23). The number of megokeryocytes begins to drop three deys after irrodiation and decreases almost to sero of six doys; of 12 doys, the cells appear to be returning.

Fig. 23. Merebers of Megelerrecytes ($-\mathbf{-}-0$) In the Bene Merse and Pletelets ($\quad \mathbf{O}$) Cires fatiog to the Biteod in Reletten to Time PesttmotieNlen. Numerols beside points show numbers of enimels used.
and at 18 doys, they are bock to normal numbers. The peripheral pletelet count, telen just before secrifice, remains normat for the first three doys ond then begins to drep ropidly; at seven doys it is less then 50,000 pletelets $/ \mathrm{mm}^{3}$. It begins to rise egain in the survivers between 14 and 18 doys, and at 24 doys is bock in the normel range. The numericel counts of mepoleryecytes and platelets show the the pletelet drop logs obevt one doy hehind the megeleryocyte decrease, and the mepolerocyte rise precedes the platelet increase by five or six doys.

Trensplented Chlerengeleld Levhemie In Rets F. F. Wolff

A chloremyeloid leukemie, enceuntered ariginelly at Meund Leberatory in an ectinium-iniected Spropue-Dowley rot," hes been transferred in seriol passege through four transplant generations in this laberatery. The disease hes been transmitted by intraperitoneol, introveneus, or subewtoneous injection of whole bleod or of tevkemic Ievkecytes obtroined from sites of levkemic infil. tretiong the letter appeor to be more effective than whole Hood, presumably becouse of the greater number of teukemic cells present. Thus for, with

[^47]e single ineculetion of 0.1-0.5 mi of levkemic cell swapension, it hes not been pessible to secure soles in oft odult hests; hewever, newbern recipients hove developed the diseose in neorly every instance, dying 4-8 meeks ofter injection. Viemed grossly, the levkemic- Infilitrations are greeng microscepicelly, they are seen to consist of myelecytes and prompelocytes. Infiltrotion of the Iiver, spleen, Iymphoties, and bone morre= has been noted terminelly, but splenemegoly has net been enceuntered, oven in rats inoculeted introvenovsly. The peripherel bleed has been observed to centain verielle numbers of immature myeloid cells and to exhibit varying degrees of levkecytesis in the final stoges of the diseose.

Attempts are being mele to develep o methed wherely transmission of this leukemio can be eflected unifermly in edult hosts, in the hepe that this disease will then furnish o useful teol for the study of eertoin aspects of myeloid levkemis.

Binding of 5^{23}-lebeled Selfete ia Ret Serve L. H. Smith
 $$
\text { B. Andersen } \quad \text { T. T. Odell, Jt. }
$$

 B. Andersen

 B. Andersen T. T. Odell, Jt.

 T. T. Odell, Jt.}It has been sheme with the use of filter poper electrophoresis thet a mojor froction of injected 5^{31}-lobeled swlfote becomes bound to a constituent of ret serve which migrates to the a_{1}-plobulin regiens ${ }^{4}$ furthermores, this region stains intensely with the PAS staining routine, swopesting that the censtituent in question is assecieted with o carbelydrote. Additional experiments hove been conducted to extend knewledpe of this substance.

Results from the anolysis of nine serum semples confin these previously reperted ${ }^{10}$ (Toble 45). Sisty per cent of the whole serum ectivity wos recevered en the strip, 405 of it cencentrated in e peok. ${ }^{11}$ The remoinder of the 5^{33} ectivity was distributed ever the rest of the areo accupied by the serum proteins.

In ene experiment (strip 159, Table 45) the senum was diolysed in the cold ($\left.2^{\circ} \mathrm{C}\right)$ agoinst three portions of the barbiturate buffer (ph 8.6) during the 24 hr prier to electrophoresis. The failure of this procedure to alter the pertern of distribution or the mognitude of the sulfote octivity

[^48]TABLE 4S. DISTRIBUTION OF S^{35} ACTIVITY AFTER ELECTROPHORESIS ON FILTER PAPER OF SERUM FROM NORMAL RATS INJECTED INTRAVENOUSLY WITH $\mathrm{Na}_{2} \mathrm{~S}^{35} \mathrm{O}_{4}$

Animal Ne.	Strip No.	Time Pestimjectien (hr)	Whole Serum [(ceunta/min)/25 μ 1]	Activity* (counts/min)		Percentage Total Counts Recovered		Percentage of Recovered Counts Found in Peak
				Whele Strip	Peok	On Strip	In Peak	
640	91	24	3987	2134	1382	53.5	34.7	64.8
	106	24	3987	2370	1599	59.4	40.1	67.5
	161	24	3987	2270	1510	56.9	37.9	66.5
	159**	24	3987	2426	1596	60.8	40.0	65.8
641	92	24	4488	2384	1671	53.4	37.4	70.1
	100	24	4468	2925	2111	65.5	47.2	72.2
654	143	48	2581	1451	1006	56.2	39.0	69.3
655	144	48	2110	1345	914	63.7	43.3	68.0
645	118	48	1910	1359	844	71.2	44.2	62.1
			-	Meant		60.0 ± 1.8	40.5 ± 1.3	67.6 ± 1.0

*Corrected for self-abserption.
**This sample was dielyaed for 24 hr in cold against shree changes of barbiturate buffer prier to electrophoresis.
on the strip is evidence that free sulfate ions wore not responsible for the activity peak. It was also noted that the S^{35} activity distribution in the serum was qualitatively the same 24 and 48 hr postinjection.

Whereas a solt linkage between a protein and the sulfate ion could explain the present observations, results of the following experiments do not support such an hypothesis. After dialysis of S^{35} sulfate-labeled plasma against a buffer of pH $12.0,38 \%$ of the whole octivity remained in the plasma, essentially the same amount (40\%) as was found in the α_{1}-globulin region following electrophoresis of undialyzed plasma of pH 8.6 . At pH 12.0, few if any positively charged groups of a protein would be available for anion binding through a salt Iinkage. Even at pH 8.6, the number of positively charged groups of a protein would be small.

There ore three forms in which \mathbf{S}^{35} may be found in the serum: as $-\mathrm{S}-\mathrm{S}$ or -SH groups of omino
ocids, as the sulfate ion bound to a protein through a salt linkage, and es sulfuric acid esters. It is known that sulfur admisistered to rats in the form of sulfate becomes incorporoted into amino acids in negligible amounts. 12.13 It seems, therefore, that the $\35 activity peak reflects the presence of a sulfuric acid ester. Winzler ${ }^{14}$ described the isolation from plasma of a mucoprotein. This mucoprotein has the electrophoretic mobility of an a_{1}-globulin of $\mathrm{pH} 8.4,{ }^{15}$ and contains approximately 30% carbohydrate. ${ }^{16}$ In

[^49]he present series of studies it was observed that the ${ }^{35}$ sulfate activity peak corresponded to an
area on the strip which contained PAS positive eonstituents. Since the S^{35} sulfate activity peak and the PAS positive region appear to coincide
electrophoretically with Winzler's mucoprotein electrophoretically with Winzler's mucoprotein
(Mehl et al. ${ }^{15}$), it is suggested that the carbohydrate moiety of this mucoprotein is esterified with sulfuric acid. A similiar interpretation was previously suggested by Mehl et al. 1 to account
for the finding that sulfur in excess of that
required by methionine and cystine was present in a mucoprotein of rot plasma.

Effects of X Rediation on the Distribution
of $\mathrm{No}_{2} \mathbf{5}^{35} \mathrm{O}_{4}$ in Ret Plasma
B. Anderson T. T. Odell, Jr.

It was reported ${ }^{6}$ that the level of labeled sulfate in whole plasma was usually much lower in rats 7 750 r of X radiation then in the exposure
 difference, the plasma of irradiated rats was subbected to electrophoresis on filtor paper, and 5^{35} ectivity determinations were made on segments
of the filter poper as previously described. The of the filter poper as previously described. T
pattern of 5^{35} distribution and the magnitude the activity on the poper strips were essentially the same for the irradiated animals as found for lasme of unirrodiated controls. Accordingly, the difference between the while plasma levels of
S^{35} in X-rayed and control rots cannot be accounted for by changes in the 5^{35} fraction which
is bound to a plasma constituent having the is bound to a plasma constituent hav

Role of the Thyroid-Pituitary Axis in Resistance
to Lymphold Leukomia
F. F. Wolff

In en otronpt, to invortiotere tow focters inosistences of the touknics host, tho offoct of hypothyroidism on the survival of rats bearing a amined.
Inbred male and female rats of o Wistor subline were divide weeks of age; one group was given propylthio-
uracil in the drinking woter (0.025%), ond the
ther group roceived tap water. The ani als were eoged individually, weighed regularly, ond pair-fed roxim body weight throughout both groups. Approximately nine weeks ofter beginning
the administration of propylthiouracil, all rats were injected intraperitoneally with 0.1 ml of a in physiological saline solution (the suspension was prepared by mincing leukemic lymph nodes in soline and aspirating the cells through a colton filter). On the doy after inoculation and every
three days thereafter, half the rats in each group received a subcutaneous iniection of thyroxine (crystals, Squibb), 1.0 mg in each of the first two iniections, and 0.5 mg /dose subsequently.
The survival patterns are summarized in The survival patterns are summarized in Table
46. The propylthiouracil-treated rats survived longer than the controls ($(P$, 0.5%); ; this was not
observed, however, in the females, receivin not observed, however, in the femoles receiving thyroxine concomitontly. The differ
The results of this experiment tend to confirm hose observed in radiothyroidectomized AKR mice ${ }^{17}$ and further strengthen the hypothesis that
the survival of lymphoid leukemia-bearing hests the survival of lymphoid leukemia-bearing ho
is enhenced by depression of thyroid function. Effects of Radiation on the Plosme Iton G. S. Melville, Jr. F. P. Conte Elevation of serum iron concentrotions in rats ${ }^{10}$ and of plosma iron levels in burros and shoep ${ }^{19}$ the lethal ronge. The effect of removal of the spleen on plasma. iron levels in rats has also been noted. ${ }^{20}$ The following experiments were
The undertaken to determine the response of plasma iron concentrations in intact and splenectomized range. Groups of male, albino, $250-9$, Sprague-Dowley
ats were exposed to a single whole-body dose
 18. . Chanutin and S. Ludewig. Am- 1. PbysioL 166,
$380-383$ (195). ${ }^{10} \mathrm{G}$. S. Melville, Jr., and B. F. Trum, unpublished

Animal No.	Treakment	Survival (days)	Mean Survival (doys)
$2156{ }^{\circ}$		29	25.7
21578	Propulthiaurseil	30	
21586		18	
21597		22	
2160%	Propylthiouracil	26	25.3
2161\%		28	-
21628		25	24.5
2164 d		24	
2165		14	18.3
2166	Propylthioureeil +	14	
2167°		27	
2158 d		17	18.7
21696	Controls	24	
2170 d		15	
21719		16	17.3
2172%	Controls	15	
2173 ?		21	
$2174{ }^{6}$		15	18.0
2175 \%	Controls + thyeold	24	
$2176{ }^{6}$		15	
2177 7		13	
2178	Controls + thyroid	13	13.7
2179%		15	

of 75, 150, or 225 r of 250 -kvp X radiation. Iron determinations were performed by a microspectrophotometric method adopted from the analytical procedure of Ramsay. ${ }^{21}$ Blood samples were obrained from the oorto of onesthetized rots, three experimental animals and three controls being sacrificed to obtain each paint, and duplicate analyses were performed on each plasma sample. In the splenectomized group, the splenectomy was carried out four weeks before irradiation.

Following exposure to $75-225$ \%, there was elevation of the plasma iron level (Fig. 24). The differences in iran concentration between irradiated rats and cencurrently sampled controls (Table 47) were subjected to an analysis of variance ${ }^{22}$ and found to be significant at the $5-10 \%$ level. The hyperferremio occurred in two phases (Fig. 25), the first during the initial $\mathbf{2 4} \mathrm{hr}$ postirradiation

Fig. 24 Plesme Iron Concentrations In Irradleted Rets. Each point represents she mean iron concentration of three animals, socrificed concomitontly.
and the second 8-15 doys ofter exposure, simulating the pottern noted in acutely irrodiated burros and sheep. 13 Splenectony appeared to curtait the early elevation of the plasma iron produced by exposure to 75 r (Fig. 26).

TABLE 47. COMPARISON OF THE PLASMA IRON CONCENTRATION IN IRRADIATED RATS \#ITH THAT IN CONCURRENT NOMIRRADIATED CONTHOLS

Time Pestirradiation	X-Rey Dose, Whele-Body ($*$)		
	75	150	225
5 hm	37.2 ± 27	29.0 ± 22	80.2 ± 22
10 hm	75.7 ± 27	73.9 ± 22	
24 hr	45.0 ± 22	43.2 ± 22	16.5 ± 22
3 doy*	-1.2 ± 22	20.0 ± 22	21.0 ± 22
6 dey*	21.7 ± 22	-12.7222	-16.7 ± 28
8 day*	39.0 ± 16	22.2 ± 17	2.2 ± 16
10 day*	36.7 ± 22	55.8 ± 22	73.1 ± 22
13 dey*	$13.4+22$	a9.4 ± 22	26.9 ± 22
15 day*		60.7 ± 22	-8.3 ± 22

*Mean difference in plaxma irson cancantratien (im jagtu] between imadiated rats and concurrent comtrols.

Fig. 25. Wet Differences in Plesee Iron Concentrattion Betweve Imedleted Rlots and Thele Concurnent Moni rreditited Controls.

Fig. 26. Effecte of Splenectony on the Response of the Plasme Iroa in Irrediated Rets. The irrodiated rats, intect or splenectomized, are compared wish their respective intaet ar aplenectomined shom-irradiated Controls.

The mechonism of these alterotions is under study: plasma iron changes are being correlated with reticulocyte counts and bone marrow cytology. The significance of these observations in relation to radiation-induced depression of erythropoiesis, as measured by Fe^{59} uptake in the red blood cells, is being axplored.

MACROBIOLOCY

TRACER STUDIES IN INTERMEDIARY METABOLISM

5. F. Carson
E. F. Phares
M. 1. Dolien
M. V. Long

Sercinic Acid Decerbaxylese System
S. F. Corson
E. F. Phares

A previows repert ${ }^{1}$ an suceinic acid decarboxylose studies described an enryme system, from combined cell extracts of Propiomibacterism pentosaceum and Veillonella garogenes, which fixed a C_{1} frogment (from the decarbexylatien of succinyl-CoA) into molate. This transfer was dependent on t - = presence of DPNH (reduced diphosphopyridine nucleotide) and pyruvate. It was proposed that the C_{1} frogment was combining

IS. F. Corten and E. F. Phares, Biol, Semians, Proy. Rep. Feb, 15, 2995 , ORNL -1B63, : B4-68.
with pyruvate to form OAA (oxalocetate) by a unique carboxylation machanism, and that this product (OAA) was converted to malate by the malic duhydrogenase system.

Additional suppont for this hypothesis was obtained from troser experiments employing succinyl-$1-2 \cdot 3-4-\mathrm{C}^{14}-\mathrm{C} A$ A an a substrate, perforend in thie presence of molonate to inhibit the direct convers' on of succimyl-CoA to malate through fumsrate. The data presented in Table 48 demonstrate the inhibition of CO_{2} (but net propionate) production by addition of pyruvate and DPNPH, and the accompany ing increased lobeling of the malate carbexyl. Oenly negligible amounts of Iebeled lactate were formed.

In addition, it has been observed that catelytic amounts of malate will reploce the requirement for swecinyl-CaA during DPNHt axidation with this sy stem. Figure 27 presents spectrephotometric

TABLE AS. EFFECT OF FYRUVATE PLUS DPNM ON LABELANG OF MALATE AND CO

Cempeunds Iselered	Trecer \longrightarrow	Centrel		Priuvate and Dipnow Adiled		
		Suecinate-C C^{14}		Surcinute-C C^{14}		$\mathrm{c}^{14} \mathrm{O}_{2}$
		Redieacrivity (counta/see)	Rutie - Outside : Inside	Redienetivity (exeunts/ *ev)	Retia Ontside: Inside	Rediapesivity (eevnta/seed)
Swecinate		2800	1.8	2moe	1.9	2.8
Prepionete		75	1.9	73	t.9	0.2
Melere		2	1.8	16	15.8	13.0
CO_{2}		46		34	*	nowo

[^50]
alologr phogess merpont

 os indicented, celldreee ortrocts (centrififuged of $100,000 \times{ }_{z}$ for 1 hy) of P., peotuxavom (P) and V. susugevers (V) represeraing 0.02 mg of protrim;

data chowing, the dependence of DPNot exidetium
 pyouvite, Mopronihacterium and Vvilionella cell istice moture of the depentency for mepletes, ond the stoichiemetric dependency for pprivete. 45) thoor that prrwivete-2-C ${ }^{\text {th }}$ is cesemented to and thom that privele-2-C ${ }^{14}$ is camerted to
 loctote is formed in the ebsence of mplete; moce
 is fester (measured by spectrephotemetry) and ioctote is feosed from fobpled proverestry) hot the recovered molote has very low specific activity. omounts of suliobeled OAA (theo in the presimene. of DPNate) en mpotuced.
The spectrephetionstric and trocer experiments con grobobly be interpeoted mont aimply an ind. verted to loction on a peothengy, throwedto is is and nelotesc satelytic amonts of the C , froppen thom

Fig. 28. Ricpirements fur Conelytic Amounts of Melute and Seoicliomentie Cuevis of Prowete Proploniboctoitus and Voillonellio. Conditions and editionst ore the atwe es for Fig. 27, wnewet there indicefed.
cerben requived to initiote the erclic process. Further uxpmiensts in chich tice colli-hroe an wocts verz used nith odjed purified condensing retion of pyrivesto-2-CA di imponstrote that is incerpont.
 incorperation inte citrote depends on the inter. modiete fermation of OMA, molate is the donere the celton trepmum, ohich is necentory for the comversien of pyruwate te OMA. Coltos diasid enistence of the proweto to ona step (and it iesuirrement for molote) establiches the tionk fo the molote dopmondere. Figure 20 C_{1} Figure 29 iomperises sosections invelvion the c, iceltomplations. The swecingl-ciod and molote the C, cycle an portions thereot, trem olves, fo -hen o C, seurce. succimyl-Ced or molotes, is The DPNor probolly dives oad condensing emay= then prownote reluction beceuse ed the , velher omousts of loctice det, Locouse al the limining the overuhalminge mevirts of molice compored mit in the Propition ibcteriom eutroct. The cendensing ongy woults the reactions in the some direction

BIOLOGY PROGRESS REPORT

TABLE SO. EPFECT OF WALATE ON PYRUVATE M CORPORATION MTO CITRATE

Additions	C^{14} Ineorperation (eeunte/ ene)	Proweete It orperation C
Prruwete-2-C $\mathrm{C}^{14}+\mathrm{CO}_{2}$	2.5	1.5
Prruwate-2-C $\mathrm{C}^{14}+\mathrm{CO}_{2}+$ melate	- 18.0	10.0
Priuvate $+\mathrm{C}^{14} \mathrm{O}_{2}+$ malate	$0.2 *$	$0.1 *$

[^51]

Fig. 29. Reections Involving " $\mathrm{C}_{1}{ }^{\text {" }}$ Derived Irves Suedeyl-CoA and Molete D ecerboxyletfons.
formation. The elockwise reaction with DPNH steps at malote if suceinyl-CoA is presemt, ber couse the molate \longrightarrow loctote $+C_{1}$ step apporently needs "pulling" by removol of the C_{1}. It appears to be this pulling effect that keops/lobeled molate (derived from OAA) from equilitrating with on unlabeled pool. When DPNH and condensing enayme system are absent, but with malote present, the cycle runs counterclockwise; this is possible becalse of the coupling of pyruvate reduction with malete oxidetion to regenerote DPNH from the catalytic omounts of DPN remoining in the extrocts after dialy sis.

[^52]
DPNH-Flovepretein Complex of DPNH Perexidese

M. I. Dolin

The complex formed between DPNH and DPNH paroxidase flevoprotein, is being investigated further since the system offers a tool for dotermining one of the mechonisms by which pyridine nucleotides are bound to enxymes. Any successiul hyperhessis repording the structure of such a complex must explain the following feotures of the system: (1) electron transfer between the coenxymes, (2) the blocking of the hydrosulfite reaction by DPN or DPNH, (3) DPN is not bound to the enayme or, ot least, if bound, is not bound of the some site as DPNH (a twentyfold excess of DPN does not inhibit the exidation of DPNH by peroxide, nor is there any evidence for complex formation between DPN and axidized flovoprotein), and (4) the ocid pH optimum of the reoction.
A structure embedying these charocteristics is shown in Fig. 30. It is an adaptation of Mohler's hypothesis ${ }^{6}$ regordinr the prosthetic group of DPNH cytochrome e reductase, in which an ironflavin chelate is bound to the protein. In the present system, the unshored electrons on the ternary nitrogen of DPNH are used to form a coordinate covalent link with the metal. On the oddition of peroxide to the chelate, DPNH is oxidized to DPN. One of the resonance forms of DPN has a equerternary nitrogen which cannot

Fig. 30. Propesed Structure for the DPNEFFlavoprotein Complex of DPNH Peroxidose.
therefore, form a covalent timkage. DPN should dissociate from the complex. In such a structure, hydrexyl tens would compete with the ternery nitrogen of DPN for orbitals of the metel; thus a low pH optimum might be expected. This ternory nitrogen should not bind protons in the optimum pH range of the enayme (5-5.5). Scole medels show that there are several ways of orienting the coenaymes by using an octohedral metal structure, without encountering hindrance.

Several features of model reactions lend support to this hypothesis, but there is no definitive evidence for the existence of such a structure in DPNH peroxidase.

There is as yet no conclusive evidence for the presence of a metal in the purified enayme. Indirect evidence thet sugpests the presence of a metal constituent is shown in Table 51. Direct spectrographic examination of the purified ensyme indicates that there may be 1 atom of iron present per 2-3 bound flovins; however, owing to the sn zill amount of highly purified enzyme available, exheustive anolysis for troce metols has not been possible.

TABLE S1, EPFECT OF METAL COMPLEXING ACENTS OM DPNH PEROXIDASE

Itabibiter	Molarity	pH	Inhibitien (5)
Petessium prrophosphete	0.05	6.1	37
		7.2	62
Petaskium sitrete	0.05	6.1	-
	0.09	7.2	46
ePhenenthreline	2.3×10^{-3}	5.4	18
		7.0	32

DPNH perexidetien mes follemed in the stenderd aytsen^{7} by weing o purilied enxyme of speeific oetivity of 10,000 in she presence of the imhibiters as shem. The ectivities were cempared with centrols run in 0.05 m petessive phesphete st the apprepriete pH: At pH S.4, the buller mes 0.033 m sodive ecetete.

Further characterization of the complex is being corried out by determining which structural features of the substrate are necessary for the formation of a complex with flavoprotein. It oppears that the pyridinium timkoge in itself is insufficient to allow complex formotion. It moy bo possible, by pursuing this particulor approach, to correlate enzyme octivity with spectral properties of the complex and structural properties of the exidizable substrate.

[^53]
BIOCHEMISTRY

BHOLOGY PROGRESS REPORT

methods swch as described by Schnoider. ${ }^{5}$ In all swch experiments, it was necessory to eliminete a large amount of tightly bound (odserbed?) rediooctivity from the nueleic ecids by extended dialysis opainst phosphate buffer, before the truly incerporated isetope could be assoyed.
In eddition, proof of incorporation into the RNA was accomplished by ion-exchange seporotion and assoy of the mononucleatides abtained on alkaline hydrolysis. The results of one such experiment with a log-phase E. coli extroct ore ween in Table 52. It is worth noting that the degree of incorporation represents some 500 -to 1000 -fold more than could be accounted for an assumption of complete turnover of all the phosphorus in these few viable cells remaining in the extroct.

Necleotide Sequences in Becteriophopw Densyribonveleie Acid
 E. Volkin
 L. Astrochan
 M. H. Jones

Further information hes accumulated with respect to the hydraxymethylcytosine (HMC) polynucleotides derived from enxymically degroded phoge DNA's. Purified DNA's from becteriephoges T2rt, TArt, and TGrt were degreded by deonyribonuclease and whole anoke vanom (phosphodiesterase + phosphomonoesterase) and the digests separated by ion exchanges, the gradient elution scheme being used. Thus it mas possible accuratelly to compore the elution profiles of all the polynucleotide froctions from these DNA's by dirwet abwervation of the superimposed patterns.

[^54]Such a comperisen indicated that the relative omounts of some of these products differ among the phope sources; this, in turn orises probobly es a function of nucleotide sequential differencen in the intoct nucleic ocids. Much furthur work chorecterizing these products remoins; however, it oppeors that these internucleotidic sequence differences may be a chemical reflection of the genetic differences among these phoges.

\$nolility of Segers in the Presence of Alkeline Berate

J. X. Khym
D. A. Monden L. P. Zill
A. B. Ortinger

In the development of the borote methed for the separation of sugars by ion exchenge ${ }^{6,7}$ timle attention was given to the possibility that the weokly alkaline ($\mathrm{pH} \sim 9.0$) sodium or petossium tetraborate eluting solutions, or the borate exchanger, could cause chemical changes in the sugors tested. However, even in meekly colkaline solution, som sugurs may undergo rodical changes. A series of experiments was therefore orronged to determine the extent of any degradotions or tronsformations of vorious types of sugors swbjected to the berate procedure.

The following sugars were tested: fructose, mannose, geloctose, glucese, meltose, melibiose, turanose, sucrowe, loctese, ribese, arobinese, and sylose. Each suger (concentration, $20 \mathrm{mg} / 100 \mathrm{ml}$) was allemed to stend at room temperature in

[^55]TABLE S2 TOTAL COUNTS PER SECOND MECORMORATED BA PMOSPHORUSCONTABNNG CELL FRACTIONS

Cell Prection	Ineubatien ot $30^{\circ} \mathrm{C}$ (min)				
	0	15	es	90	180
Aeid-selville	900,000	*00,000	900.000	\$00,000	900.800
Lipid	45	1,118	t.ses	2,550	2,5e9
Rena	60	410	450	700	\$10
DNA			te bee sig		
Pretein	62	428	476	508	735

0.001 M and $0.1 \mathrm{M}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ for 1, 3, and 5-7 doys. At the end of these intervals, the redvcing power was checked colorimetrically by comparing the experimental suger egoinst a standerd dissolved in water only and hept in the cold. The borate was then remeved and the swgor solutions wwre onalyzed by poper chrometogrophy to determine the extent of any transformation that might have taken ploce threugh the Lobry de Bruyn mechanism. The sugars were alse allowed to rwmein in contect with the borate exchanger for 1,3 , and $5-7$ days. Three columns were employed ($1 \mathrm{~cm}^{2} \times 4 \mathrm{~cm}$) and on eoch columin 20 me of 'a test sugor was abr sorbed. At the end of a given interval, the sugers were eluted with $0.1 \quad \mathrm{M}_{\mathrm{Na}}^{2} \mathrm{~K}, \mathrm{O}$, and, ofter the solution wes shecked for reducing power, the berote was removed and then the sugars were swbiected to anolysis by poper chromatograply. an before.

No mesosuroble changes were observed in any of the 12 sugors which were dissolved in the two cancentrotions of tetroborate and which had bewn allowed to stand at reom temperature for periods up to seven deys. Definite changes were observed in some of the supors after they hod remained in cantoct with the borate exchanger. Mannose, fructose, and glucose, altheugh showing no lows in reducing power, underwent chemical chonge as divtermined by poper chromatogrophy. The extent of the change was slight (<557) but was detected et the end of the first doy with ne further noticeeble increase accurring up to six days. The thrwe manosocchorides involved apporently underwent 2 epimerization, which allowed the intercenversion of all three. Ribose and turanese were the only swgors which showed censideroble loss of reducing pewer after being removed from the berate exchonger. Essentially ne change wws observed up to three doys, but at the and of six diga the reducing pewer af both these aupors was about 605 of their initiol velues. The alkelinity of the borate exchonger presumobly caused maltose and turanose to thydrolyze pertiolly to thalr constituent monssaccharides. At the end of one doy, the extent of hydrolysis wes estimated at greeter then 105 .
These experiments cleerly demenstrote that chemical chonges can oceur in some swgors if they are allowed to remain in contoct with the borate exchonger for prolonged periods of times. The use of smaller columis which allow most analytical runs to be corried out in lews then

24 hr , of the wae of neutral sodium or petensivm borate to condition and elute a columin, showld eliminute the difficulties which have been discussed.
Erayme Substrete Binding
D. G. Doherty
E. Eovensen Shepire

A survey of the specificity requirements of other proteolytic enxymen was made in an effort to extend the scope of cerbon-corbon bend scission ${ }^{*}$ to systems other than a-elymotrypsin. Trypsin seemed to be neorly identical to a-chymotrypsin in that the specific binding of the substrate is at the groups behind the point of hydrolysis whentes the group being removed has mo effect on the observed rates. Thus trypsin requires for meximum binding e carbenyl ot site I , on ocylomino group at site II, and a basie greup four corbans out at site III (Fig. 31). The hydrolyzable group R has bewn restricted to for to an amide and a wide veriety of esters.

Fig. 31. Basie Sirveture of a Typleal Trppale Sol streve.

Since the symthetic work for the properotions of β-hete esters would be considerobly sosier if the ocyl amino group ot site II covid be omitted witheut less of enayme ectivity, the suscwptibitity of the saters of E -aminocsproic acid to trypoin ection mas imvestiguted. Contrury to previows reperts ${ }^{*}$ both the ethyl and methyl esters ware eopidly hydrolysed by mypsin to the free acid. The reaction was zero order over an eighteenfold

[^56]range of enaytioe concentrotion, the equilitrium constonts being 0.0127 (mole/min)// mg of protein $\mathrm{N} / \mathrm{ml})$. The elfect of pH an reaction rates was leund to be similer to other ester substretes of trypsin (Fig. 32), with a broed maximam in the range pi 7.5-10.0. The effect of chain length on the reoction rate was tested by aubjecting ethyl Δ amino valerete and athyl y-omino butyrete to trypsin action. The velerete ester was hytrolyzed et a rate one-half thet of the coproete whereas the butyrate was not hydrolyzed at all, indicating thet the positively cherged amine group hes to be four to five corlon otoms ovt from the sensitive timkege.

Since the enxyme renults with substrates locking on a-acyl omino grow were promising, symthesis of the corrosponding etly 18 -amino-3-hete actomeote wes catempted. ©-Avinecoproic acid was cenverted first to c-cerbobenaexyaminocoppoic ocid and then to the ocid chloride and coupled to

Fig. 32. pH Allliliy Cerve with Trpsin. Parcentoge relotive activity - percentoge hydrolysis pur minute (measured of 10 min).
ecetoecetic evter ${ }^{2}$ wie the mognesium compleax. The cevpling product ethyl 8-cerbobenzaxyemino-3-kete-2 acetyloctonoate was isoleted in foir yield os the cryatalline cepper comples. Experiments ore in progress on the purification of the cemplex and the removal of the acwlyl and corbobenzany groups in order to obtein the desired β-keto ester in a pure condition for enzymic experiments.

Proliminery Studies on the Motebolisen
af $5, \mathrm{~B}-\mathrm{A}$ minepethylipethlurenivm- $\mathrm{Br}-\mathrm{HBr}$ (AET) with $\mathrm{s}^{2 n}$-ilebeled Compened
D. G. Deherty
R. Shepire
W. T. Burnett, Jr. ${ }^{10}$
C. C. Congdon ${ }^{11}$
$S^{35}, \mathrm{~B}$-Aminethyifisothiurenive- $\mathrm{Br}-\mathrm{HBr}$ (AET) was propored from 0.52 mmole of thiovise conteining 3 me of 5^{35}. The rodioactive AET was administered by thrse routes fo four mice, and after a peried of time the mice were sporificed, disesected, and the individual argans ware homogenized. A small semple of each hemogenate wes plated, dried, weighed, and counted. The resulting counte per minutu per milligram of ty weight were converted arbitrorily for exmporison purposes to a heort count of 10 , as shoun in Trable 53.

In general, the lebel was most cencentroted in the arine and the blood plasma. Ne organ axamined wes completely void of lobeled materiol. At the present time, it is not possible to toll whether the lobeled moterial is oll in the forms af AET ar axists portly as sleprodetion pooducts. The high cencentrution in the bleod plasma awgosests thet it is hound to plosme proteins and that ite primary route of transpert is vie the cirewletory system.

Strweture and Activity in Redietien-protective Sellifylryl Cempeends

> D. G. Doherty $\begin{array}{ll}\text { W. T. Burnett, } \mathbf{J r}^{10} & \text { R. Shopire } \\ \text { E. Eevensen }\end{array}$

The study of structure and rediation-protective ectivity of compeunds previeusly roperted ${ }^{12}$ con be summeorized with a theery of oction which correlates structures of compounds with their octivities.

[^57]TABLE s3. s^{23} spECIFIC ACTNTTY* Be ace TREATED wTM AET

*Cenverted to a heert ceunt af 10.
$5 . \beta$-Aminoethy lisethiuronium $\mathrm{Br}-\mathrm{HBr}(\mathrm{AET})$ hes been reperted by Doherty and Burnett ${ }^{i 3}$ to hove the profound effect of protecting againat totol-body X irrodietion if odministered prier to irrodiation. This effect is similer to thet observed with β mercaptoethylemine.

> Senveture al AET

AET is an isothiuronivm compound with several exceptionel properties in addition to its protective netures. Nermal isethiuronium compounds are very stable at pH1 7 and are hydrolyzed anly by strang bese abeve pH 9. Allyl mercoptons and urea are the primery prodvets. AET, on the other hend, oppeors to be reodily hydrolyzed at pH1 7. as indicated by a positive mitropruaside -SH teat. Further studies showed that all the compounds

[^58]which protect alse give a positive -SH test et pH 7. The best explenotion of this phenemenen is that AET exists in multiple forms, and the equilitrium between these forms cen be chenged by modifying the pH (Fig. 33). When AET is boiled briefly in water, 2 -aminethiasoline hydrobromide d is obteined. Thas indicetes shot, as soen as AET is ploced in water, the equilitrium $a \rightleftarrows t$ toles plece. Addition of bicerbenate solution displeces the equilitrium in the direction of c, es shewen by the -5 H test.

Fig. 33. Molnple Eqpitibifus Struetures of AET.

Aft the compounds that are setive in protectime mice are cepoble of estoblishing on intormediate selution. Compeveds ohich do not give on positive SSH teat of neutrol peti have no protective octivitity. 54 in their a and $b \mathrm{ffarms}$. Severol of the Tective compounds are too toxicic to be tested on an copvimoler besix with AET; however, when they are giver in smeller quantities, partiol protection
in this repert. ${ }^{14}$
Toble 54 itlivatrotex the apperent examentiolity of an active compound to underge a thiaselidine a thienove ring closure of trpe b. In over 100 hove been foumd. Thiozoling and hexthiezerns ringes eet similerly to their sotureted forme. In sumady. is is impossitle to think of AET ar reloted compounds as being of ons structure but A^{13} thespect, it is simileor in notore to coenayme coltiplo forms. Also it is cencluded thot teo bosic ring ty stoms (Fig. 39) moy be subntituted

> Microbiel Unitisetion af Hoperin
D. G. Dolerty
J. F. Christman

It hose been atiom ${ }^{17}$ that, by using heperin as aierocrgonism, thet could wilize hepprint os of substrote could he ispoleted from soil. In viem of the evidence ${ }^{\text {it, }}$, 4 that hecteriostatic oetion on certoin becteria in minimel acteriostatic aetion on certain bocterie in minimel to determine the extent of this inhibitaory oction coemsed in order. Accordingly. a vide veriety of octerie and yeosts were exovined for their abitity
 Sectic

heparin. The orgenisms used and their sewreen *e given in Toble SS.
Three medie were preppored. The componition of adive I is shown in Table S6. Medivesition of anarymicelth modium 1 , except thet the vitomin-free. Medium III consiated of 10 cascin mas emitted. tract and tryptones, and 5 goch of of yeost axtract
$\mathrm{KH}_{7} \mathrm{PO}_{4}$.
in 4 me modie were adiusted to pH 6.5 , and tubed in $4-\mathrm{ml}$ portions. To one-half the thes of eoch sationc, the fingl concentrations of heperin evere. The $1,0.1,0.01,0.001,0.0001$, and 0.000015 the atized holf of each medives, in tubes, was heparined and the apprepriete filter-sterilized equivolent concentrietions. The totter prove the
 Troup, the hoperin wos outocloved with the medie. The arganisms were then inseculeted imto moch of the theree medio, and seriolly avbeultured throuph four tronsfers to estoblish the ergonism on the

TABLE SS. HEPARIN SENSITIVITY OF A VARIETY OF mICROORGANISNS IN VARIOUS MEDIA

Orgonism	Source or Strain No.	Maximune Pepreentoge of Meperin in she Medismes in Which Growth Will Oecur					
		Medium 1		Medive. -		Mediur ${ }^{11}$	
		${ }^{\text {a }}$	5^{6}	A	s	-	s
Mierocoecrus cimens		1	1	NGE	NG	1	1
4 progenes var, albus	midmest evitures	1	1	ng	ng	1	,
N prosemes ver. ourove		\pm	1	NG	NG	1	3
Bacillues hrevia	Univ. of Tams.	:	1	0.1	0.1	1	1
a. laterosporus		3	$\cdot 1$	0.1	0.1	1	1
B. suberios	midwest evitures	1	1	1	1	1	,
A. cereus		1	1	ng	ng	1	1
B.		;	1	NG	NG	1	3
Alhatigenes fleceatis Streptococeus /aveatis	Univ. of Tame.	1	1	NG	NGG	1	1
S. progenes		1	1	NG		;	;
Proteus vulsaris		1	1	$0.1{ }^{\text {d }}$	$0.01{ }^{4}$	1	1
Paracolobactiom aerogenoides	ATCC 11604	1	1	1	1	1	1
P. cotiforme	ATCC 11605	1	1	1	1	1	1
P. intermedium	ATCC 1160\%	1	1	1	1	1	1
Excberichia colit	ATCC 10795	1	1	1	1	1	1
E. colit	ATCC ${ }^{\text {ar39 }}$	1	1	1	1	1	1
E. cotit	ATCC 10sms	1	1	1	\%	,	1
E. colit	Stroin B	1	1	1	1	1	1
Bacterium radaveris	Gale	1	1	NG	NG	1	1
Avorobacter aerosenes		1	1	NG	NG	1	1
Sematia marcesens	Univ. of Tonn.	1	1	$1{ }^{\circ}$	$1{ }^{\circ}$	1	1
Salmonella enteriditity		7	1	${ }^{\prime}$	3^{\prime}	1	1
Saccharomyces cerrevisiae	ATCC 4110	1	1	1	1	1	1
5. cerevisiae	ATCC 4126	1	1	1	1	1	1
S. cerevisiae	ATCC 9096	1	1	1	1	1	1
s. cerevisiae	ATCC A12S	1	1	1	1	1	1
s. fragitis	ATCC scea	1	1	1	1	1	1
S. interredius	ATCC 2380	1	1	1	1	1	1
s. logos	ATCC 10630	1	1	1	1	1	t
S. thermantitomum	ATCC 563	1	:	,	1	1	,
${ }^{\text {a }} \mathrm{A}$, modium centaining outocloved hoparin. ${ }^{\text {bs }}$, medium contoining heparin suorilized by filtrotion and added asopticelly. ${ }_{\text {CNG }}$, no growth in orgonisms serially subecultured on this medium. 							
'Orgonism nonpigmented when Seotter growth of the organiem	in this modium.			hopori			

BMOLOGY PROGRESS REPORT

TABLE S6. COMPOSITION OF HEDIUM I

Compound	**	Cempeund	ma*	Compeund	βg^{*}
NeCl	5	MaCl_{2}	50	$\mathrm{Ne}_{2} \mathrm{MeO}_{4}$	10
$\mathrm{K}_{2} \mathrm{HPO}_{4}$	2.5	$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$	10	Thiemins MCl	200
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	4.5	FeCl_{3}	10	Nieotinie seld	100
Glucese	2	CeCl_{2}	10	Colcium pentorlhenote	100
Cosein (vitomin-lies), enzymicelly hydrolyzed?	5	MnCl_{2}	1	Prridexine HCl	40
		Inealtol	1	Biotin	0.5
				Chelime chloride	500
				Riboflowin	5
				PAminolbenzel 2 ecid	10
		-		p-Hydromylenzoic eeld	10
				Vitamin B_{12}	0.05

[^59]maintain continued growth on medium II, but all grew adequately in 48 hr on the other two media. The orgonisms were then inoculated dropwise into the corresponding heporin series. After 48 hr , the tube with growth in the highest concentration of heporin (uswally 19) was serially subcultured through three transfors and finally tronsferred to the original heporin-free medium. Following growth, the orgonism was examined microscopically for any change or possible contomination. The results of these experiments, ore given in Table 55.

It would appear that most of the organisms are completely insensitive, under the conditions tested, to relatively high concentrations of heporin. This observation is in disogreement with the observations of Worren and Groham, ${ }^{19}$ who showed thet in a synthetic medium, heparin was inhibitory in concentrotions as low as 10 ppm . The single difference between the two media was the presence of the trace quantities of the B-vitamins. These materials were found to be essential in most of the organisms for continued growth in the absence of heporin.

ENZYMOLOGY AND PHOTOSYNTHESIS

J. R. Totter
W. A. Arnold
J. V. Passonneav ${ }^{1}$
J. W. Davis

EnzYMOLOGY
 Aetivity of Compounds Releted to β-Mercoptoethylemine as Inhibitors of Enzymic Acetylation

A. N. Best
R. Shopira ${ }^{4}$
D. G. Doherty ${ }^{4}$
J. R. Totter

The relatively high degree of protection against rodiotion injury which has been obtained by treatment of mice with certain derivotives of β-mercaptoethylomine raises the possibility that metobolic effects may play some port in the function of these compounds as protective agents. Since β-mercoptoethylamine is a constituent of coenzyme A, the cocatalyst for acetylation, metabolic effects might be exerted through an influence on reactions which are CoA dependent. There is, of course, no evidence that an in vivo alteration of the rate of acetylation could affect survival after irradiation. It remains for future work to determine whether the in vitro effects demonstrated in this investigation do reflect in vivo changes and whether such changes might have an influence on survival rates.
A series of compounds which had previously been examined for toxicity and for relative obility to increase the survival of mice after irradiation ${ }^{\text {s. }}$, was tested for ability to inhibit the acetylation of sulfonilamide in the Kaplan and Lipman CoA assay test system. ${ }^{7}$ Aside from interest in a possible correlation of these three tests, there is intrinsic interest in possible competitive inhibitors of CoA, since inhibitors of other vitamin derivatives have proved extremely useful in the treatment of disease

[^60]H. M. Rostorfer ${ }^{2}$
A. N. Best
M. J. Cormier
J. F. Altright ${ }^{3}$
and as tools for elucidation of biochemical reoction sequences.
The results of the asscys for inhibition of acetyIation are given in Table 57. It moy be seen thet the first three compounds listed are quite octiveOf these, S, y-aminopropylisothiuronium- $\mathrm{Br} \cdot \mathrm{HBr}$ and $\mathrm{S}, \mathrm{\beta}$-aminoethylisothiuronium- $\mathrm{Br}-\mathrm{HBr}$ are excellent protective compounds, whereas the di-n-butyl compound was too toxic for satisfoctory testing and is of uncertain activity. All the other compounds show less activity as inhibitors and have not been found to be very active in the mouse tests, although odditional testing will be required to estoblish any correlation. B-Mercaptoethylamine itself does not appear to affect the acetylation reoction aven though it is a very effective protective agent. Since it is a constituent of CoA, not an analog, it would not be expected to inhibit acetylation. Additional compounds will have to be investigoted to establish whether a good correlation exists between the in vitro activity of the derivatives and their activity as protective agents. It should be borne in mind that such a correlation should not necessarily be expected for a protective effect which is exerted solely by competition for rodicols produced in water by irradiation.

Fluorescence Polerizetion
 J. W. Dovis W. A. Arnold

In studies on the fluorescence polerization of methanolic extracts of green leaves and of purified chlorophyll, the material under examinotion was dissolvod in castor oil in an optical cell having polarized light incident on one of its sides. The fluorescent light amitted from the material along a poth at a right angle to the beam of incident light was anolyzed for degree of polarization through e movable Nicol prism (Fig. 35). The relative intensity of fluorescence was detected by - photomultiplier tube, and recorded.

The polarization of the tight by the material in the cell is given by:

$$
P=\frac{I_{n}-I_{\perp}}{I_{n}+I_{\perp}}
$$

TABLE 57. ACTwITY OF COMPOUNDS \&EL.ATED TO B-MERCAPTOETMYLAMNE AS MNABITORS
OF THE COENYME A-DEPENDEN ACETYLATHON OF SULFANLAMDE
An oH 6.5-6.8 and CoA cencentrontien of 0.0267 manele/lisuy

- Compeund	Renge of Coweentrosion Tested (-mpler)	Comeentratien 光equired for SOT Inhibition of Acetylation (maspler)
$5 . \gamma$-Aminepropylinothluroni un-Br-HBr \quad.	$1.41-28.2$	2.8
N, N '-Di-erbutylisenhiuroniumer β - athyl amine-diHele	1.06-21.2	3.8
	0.59-17.7	4.0
N-Aentylaminserihylisothiuromium-HBr	1.83-36.6	4.0
	1.14-22.81	7.1
N -Merthyt-5, F --minoeshylisothivesmium-Cl-HC]	2.02-40.4	10.5
1,6-Dithio-4,9-diozaspiro(4,4")nonamw-diMBr	0.645-12.9	13.0
N, N '-Diethyli wethiurenicmor-athylemineodiMst	1.24-24.8	13.4
Trimesthylamineethylisenhiuronium-Br-HBr	1.28-25.6	19.2
DimethytemineethylisethiuroniumeCl-HCI	1.9-38.0	31.0
N, B -Bremeerliplehiourse	4.65-46.5	41.0
2-Aminethiezeline	2.45-11.7	57.0
B-atereapieethylamine	10.8-108.0	>108
2-Amineshioxaline-4-eprbexylute	0.57-11.4	>11.4

Fig. 35. Polerization Apparatus.
where I_{11} and I_{\perp} ere the intensitios of Aluorescence reaching the photomultiplier when the plane of the polarizer and analyzer are parallel and perpendiculor to each other, respectively.

When degree of polerization was meosured as a function of the wave length of the exciting light (Fig. 36) a low valve oceurred in the neighborhood of 440 mp for both the erude plent extroct and the chlorophylls partially purified by sucrose column chrometography. This depolarization of light by the plant extract can be accentuated by increasing its concentration in the castor oil.
The effect on polarization of adding bock the extracted carotenoid fraction to wach of the chlorophyll preperotions was tested with the hope of finding evidence for a transfor of energy between these two molecules. Preliminary data indicate that corotemoids have no effect on the depolerizotion by chlorophyll a but a measurable effeet on the depol crization by chloroplyill b (Fig. 37).
The occurrence of negotive polorization of light by the plont extroct moterial suggests either that two molecules involved in energy transfer hove a fixed spatial relation to each other or thet the chlorophyll alone is responsible for the depolarization through transfer from one electronic oseillator to another within the same molecule.

Fig. 36. Poleriaetion of Plent Moteriels. O , Plont extract in castor oil; \mathbf{Q}, purified ehlorophyll - in castor ail.

Fig. 37. Effect of Carstene on Polorizarion of Chlorophyll b. O, Purified ehlorophyll b; Q, chlorophyll b with plant carotenes added.

Fivorascence polderization has also been applied in investigating the destruction of deoxyribonucleic acid (DNA) by various ogents such as deaxyribenuclease, gamma radiation, and ultraviolet light. The kinetics of DNA degradation may be followed

[^61]and the relotive sizes of the perticles formed by various metheds of treatment moy be estimated by this means.

A Reqpirement for Pyidexel in the Intercenversion of Clycine and Sierine

J. V. Passonneav
 J. R. Tonter

The interconvarsion of serine and glycine involves octivation of one-carbon intermediate which is also an intermediate in nucleotide synthesis. Since the serine-glycine interchonge is more easily studied them nucleotide formotion, the former reaction has been used as an experimental model.
The formation of serine has been invest'gated by Kisliuk and Sokemi ${ }^{\circ}$ and by Alexander and Grewnberg." The letter workers postulated a requirement for a pyridexal deriverive in their liver extract system on the basis of inhibition by deomypyridoxine. However, they were unoble to demonstrote directly a meed for pyridasal in the uninhibited reaction.
Am investigation of woter extracts of acetomedried Iuminescent coccobocilli ${ }^{10}$ indicoted thet the extrocts contained an octive system promoting the formation of serine from glycine. Treatment of the extracts with Dowes-1 inactivated the glycine \rightarrow serine reaction. The activity could be fully restored by the addition of a boiled, untreated extroct or by the oddition of beth teteo hydrofolic acid and pyridowal or pyridonal phosphate. Either of the latter compounds alone failed to restore the activity fully. Pyridoxine partially replaced pyridoxal but pyridoxamine was entirely inective.
The test system consisted of treated extroct, serime, glycine $2-\mathrm{C}^{14}$, and phosphate buffer at pH 7. Compounds to be tested were added to this mixture and after incubation for 3 he the reaction was stopped with trichloroacetic acid. Serine carrier was added to the acid extroct, precipitated with alcohol and pyridine, then repeatedly vecrystallized and washed. The isplated carrier was shown to be free of C^{14}-plycine by paper chromotogrophic mpthods. The radiooctivity of the serine increased liniearly with time (Table 58) in the complete system. Table 59 gives the results of typical experiments with the Dowex-treated extroct.

[^62]
\#BLOGY PROGRESS REPORT

Redivetien of Merhemeglebile by Phenylhydrasiee

H. H, Rostorfer

Several reducing wibatances which ge known methempglobin-forming ogents are also metheme-globin-reducing agents. It is shown here that phenylhydrazine is a member of this group. The dote prosented indicate the nature and velocity of the reaction of methemoglobin with phenyllydrosine. The experiments, which were corried out under the most rigid anoorobic conditions possible, estoblished the reletionship of the mitrogen and benzene evolved with the omount of methemoglobin

TABLE SA. mefluEnce of the of medmation on Conversion of c^{14}-clycher TO c^{14}-sermet BY DOWEX-TREATED BACTERLAL EXTMACTS FORTIFIED \#ITM PYRIDOXAL FWOSPWATE AND TETRAMYDROPOLIC ACIO

Tine (min)	Tenell C^{14} Aenvity in Serine per Milliliter of Eatrekt (sounts/sec)
15	23
30	29
00	72
120	193
180	207

reduced in the reaction. The aver-all reection can be expressed as shown in Fig. 38.

Fis. 38.
From the dote of Table 60 , it is evident thet, for each volume of nitropen tiberoted, two volumes of CO ore taken up during the reduction of methemoglobin. Thus the redvetion of 1 mole of methemeglobin requires the exidetion of 2 moles of phenyllydrazine. Also, the dete cleorly show thet all of the nitrogen of the whenyllydrozine moy be evolved when the ampunt of methemoglobin exceeds the ampunt of phenylloydrazine and sulficient time is ellowed for completion of the reoction (lines 2 and 4, Table 60). The staichiometry sugpests thet only benzene and net phenol could remain as ane and prodvet.

In spectrogrophic studies corried ovt on the wepor arising from the surfoce of the reaction medium, benaune wos definitely identified. Furthermore, no phenol could be found ofter all of the nitrogen of the phenyllydrazine was evolved, even

TABLE S9. EFFECT OF PYWIDOXBE DERIVATIVES AMD TETRAMYDROFOLAC ACID ON TME CONVERSION OF c^{14}-GL YCME TO C^{14}-SERBE OW DOWEX-TREATED BACTERIAL EXTRACTS

Cempeund Added (20 He eeell	Tetrehyirefolie Acid (225 m)	Tetell C^{14} Aetivity in Serimp per Multititer of Teat Syaten (ceunts/see)
None	-	10
None	+	38
Prildonemine	+	40
Pruideaine	*	62
Preideeel	*	129
Preidexet phesplhete	*	170
Preidenel phesphete	-	29
Nene*		195

[^63]TABLE ©A. RELATION \#ETMEEM wITROCEM EVOLVED AND CO UPTAKE DURING जETMEMOCLOBsm nसDUCTION

Merlhevegolebin Aliled $(\rightarrow \mathrm{flt}$ ef CO$)$	Pherepllighewaine Aldet $\left(\mathrm{OH}_{\mathrm{H}} \mathrm{H}\right.$ of $\left.\mathrm{N}_{2}\right)$	Nitregen Evelived (4a)	Co Upiathe (a)
282	157	108	214
282	41	*	360
91	154	42	93
91	40	46	91
76	77	14	67
78	154	39	74

with the sensitive phenol reagent of Folin and Ciocolveou.
A modification of this test ${ }^{11}$ moy be uned as an anolytical methed for phenylhydrazine. The test is pesitive for phwnyllyydrezine and the color obeys Beer's Law. It was therefore uned to eqvontitute the phengllydrazine which diseppeared during the methemoplobin reduction. Table 61 indicettes the equality of the nitrogen evolved and the phenylhydrazine decomposed. When neverly all of the phemylhydrazime nitrogen wes avolved, the "phanol" test indicoted that practicelly no phenylhydrazine remained. Thus benzene is the only product formed in the reaction with methemoglobin, os it is in the reaction with oxyhemoglobin.
The velocity of the reduction of methemoplobin wos measured by subtrocting the anount of N_{2} (41) evolved in the absence of CO from the amount

[^64]TABLE 61, EELATION BETVEEM ARTROCEM EVOLVED AND PHENYLMYDRAZNE DESTROVED EXPAESSED AS FERCENTACE OF TOTAL PRESENT BMTIALLY - TWE WOLAR ROUVALENCE OF mETMENOCLOBM REDUCED aND PWEMYLMYDEAZNE OXIDIZED (WTH 7 meplen or PMENTLMYDRAzBEE ADDED)

Phengliydraminy Osidiaed			$1 \mathrm{H}_{4}{ }^{\text {+** }}$ Redured (ymesiens)
Colev free	$\frac{1 i_{2}}{}$	Anelyseel 5	
Purceltege ef Tetel	Ambunt (meplen)	of Tenel	
58	2.02	62	1.92
25	1.75	26	0.0y
14	0.98	45	0.53
83	5.32	93	2.04

(41) of chonge in volume in o companion flask containing CO. The algetraic sum is equivalent to the methemoglobin reduced in a given time. The rate of reoction moy be expressed as a secondorder velocity constont since, under proper conditions, the kineties of a bimolecular reaction are sotisfied. The averope velocity constant in these experiments was abeut $0.10\left(\mathrm{~m}\right.$ mole- $\left.\mathrm{ml}^{-1}-\mathrm{mm}^{-1}\right)$.

The reduction of methemoglobin is only somewhot slower then the velocity of its formotion in the reoction of pherythydrazine with exyhemoplobin. This high velocity mikes possible a cyclic reaction between phenyllydrazine and axyhemoglobin in the presence of atmospheric onygen, in which relatively ferge amounts of phenyilhydrazine can be decenposed to nitrogen and bemzane.

PLANT BIOCMEMETRY

balocy peocerss mepont

There mas no visible less of ehlorsphyll ofter each af these ienizing radietion expesures.
An epproaimate percentege distribution of the produets formed by the fixetion of the lebeled CO_{2} mos otroined by peper chrometegrophy for each of the points in Figs. 39 and 40 . Results for ultroviolet rediation are given in Toble 62 and for y radietien in Toble 63 . In me experiments cere labeled compeunds, other theo those in the control, formed nor mere any conpeunds lost which cere preseet in the centrol. A certoin emeunt of varietion in the percentoge distribution of the labeled cempounds is to be noted, but not of sufficient magnitude to reflect the appremimately 805 loss in photosynthetic ability. Indeed, these veriations are more probobly reloted to the differentiol rodiation sensitivities of the enrymes, for formation ar vailization of the verious normal
intermediotes of CO_{2} fixation. It thus appeers ther if CO_{2} enters the phetesymtheric cycle ot all, ofter imrodietion, it does so in a more ar less normal foshion, and that the gress decrease in phetesynthetic fixetion can be attributed only to on effeet on seme other process than the perth of certeon in phetosymithesis. Ir might be postuleted that the effiect is cennected with the unilization of light energy and very possibly with the dorange ment of the chlerophyll molecule. The inhibition moy alse be anly o reflection of over-all cell Iethorgy after irrodietion. A certain amount of suppert for the lest orgument is found in the similerity of respense to both ienizing and nonionizing redietion since these are dissimiler in mode of abserption and mechanism of denoge.

The reversibility of the domege to photosyent thesis by ienizing rodietion is shown in Fig. 41.

TABLE A2. DISTRIBUTION OF PRODUCTS FROA $C^{14} 0_{2}$ FIXATION APTER VARIOUS DOSES OF ULTRAVIOLET RADIATION

TABLE 42. DISTRBUTHON OF PRODUCTS FAOA $c^{14} 0_{2}$, MXATIOM APTER vARIOUS Doses of canala rabtatiose

About 775 of the rote of photosynthesis in nonimediated centrols was regained in a 24 hr period ofter irradiatien. Teble 64 presents the distribution of labeled products formed at verious times ofter insodietion. After 24 ho , epproximately normal distribution of products is observed. Whether this recovery is coused by the reversibility of the of the domoged material or process or by the production of new material is not known.

These deto are summorized as follows: (1) Lerge doses of ultraviolet or y radiation (100,000 r) mere required to produce on 805 inhibition of phetesynthesis. (2) This inhibition was temporary

Fig. 41. Recevery of Ability to Fix $\mathrm{C}^{14} \mathrm{O}_{2}$ at Veriows Times After Inedietion. Four leaves of Thatcher wheot were irrodieted with 100,000 r. At the time intervels indicated on the groph a semple mes expesed to e stondord $\mathrm{C}^{1} \mathrm{O}_{2}$ etmosphere for 10 min and detemination was made of the totol counts fixed. The whoot wes kept in she light at oll times.
and the photosymthesis rate recovered substantially in 24 hr . (3) Gommo-roy doses even as high as 500,000 r did not destroy a residual capecity of the leaf to photosymithesize at about 205 of the nonirradiated control. (4) During inhibition of photesynthesis or ofter recevery, therf, wore no gress chonges in the distribution of $\mathrm{C}^{14} \mathrm{O}_{2}$ fixed into the products of the poth of corbon in photosynthesis. (5) The main reason for inhibition of photesynthesis by ionizing rodietion is not known.

Redietien Sensitivity in Formetion of the Phetesynthetic Precess
 $$
\text { F. B. Goiley } \quad \text { N. E. Tolbert }
$$

 N. E. Tolbert

 N. E. Tolbert}As described, ${ }^{4}$ the photosynthetic process alreody formed and functioning in a green plont is extremely insensitive to ioniaing rodiation. Those date substontiote the concept that radiotion injury and possibly subsequent deoth of wheat must be cevsed by an effect or effects on some other process in leaf tisswe than on photosynthesis and the enzymes cotolyzing this process. At least one sensitive site of rodiotion domoge has been estoblished in the genetic composition of the nuclevs. From the standpoint of comporative biechemistry, the next question would be whether developinent of the biochemical system is more sensitive to rodiation than the preformed syatem.
In the normal process of greening, etioleted plonts, when ploced in light, form the complete and cempliceted phetosynthetic mechonisms' This

[^65]TABLE 4L DISTRIBUTION OF PRODUCTS FROM $C^{14} \mathrm{O}_{2}$ FIXATION AT VARIOUS THES APTER CAMAMA IRRADIATION NTH 100,000 .

Cempend ar Ares	$\text { Centrol }^{\text {Time }}$	Altoser	Irredietion (O) \longrightarrow	$\rightarrow 0$ Peree	1 Tetal	5 Antivity en	24 teperse
Plesphete erse	22			21	18	17	19
Suerses	24			35	31	48	26
Glvesee	1			2	3	1	4
Olpaine ond serline	32			27	32	21	34
Frwesese	1			3	3	4	4
Alenies	1			3	1	2	2
Malie eeld	11			6	7	5	7

BIOLOGY PROGRESS REPORT

formation, which takes many hours, includes the building of the chloroplast particles and at least some of the enzymes for photosynthesis. Details of this formation will require much more work, but for the present, relative tests of the radiation sensitivity of the photosyntheric mechanism may be made by measuring ehlorophyll formation during this time.
The data to be presented show that, for etiolated plants irradiated ot various times during greening, the subsequent formation of photosynthate in the leaves was inhibited only by large doses of radiation which were about equivalent to the doses needed to inhibit photosynthesis in a normal green plant. Furthermore, the inhibition of the formation of this prazess by massive doses of y radiation (150,000 r) was only temporary, as has also been observed for photosynthesis in a green plant. Thus the formation of photosynthetic apparatus would appear to be no more radiation sensitive than photosynthesis itself. In both cases, the radiation effect may be caused by general killing of the plant rather than by any particular destruction of photosynthesis.

In these experiments, etiolated plants were placed in white light from a reflector flaod bulb. Heat was removed with water filters between the plants and the light and, at intervals up to 48 hr afterward, total chlorophyll analyses were run on the plants as a measurement of their greening. In Fig. 42 is shown the rate of chlorophyll formation in thie plants in various intensities of light. In $1000 \mathrm{ft}-\mathrm{c}$ of light, the plants greened at a nearly

Fig. 42. Rate of Chlorophyll Fommotion in Etiofated Plants Placed in White Light of Increasing Intensity.
maximum rate; this intensity has therefore been used in the rest of the work.

Thatcher wheat plants were grown in the dark in $30-\mathrm{mm}$-dia sintered-glass Gooch crucibles filled with soil. The crucibles conveniently fitted into the holder used in the radiation exposure chamber, and the sintered glass provided drainage and aeration of the roots. The plants were irradiated in the dark in a Coso exposure chamber delivering approximately $1365 \mathrm{r} / \mathrm{min}$. For most of the experiment, the plants were prevented from receiving any light until after the y irradiation by covering the crucible and plants with aluminum foil in the dark growing room before taking them to the cobalt source.

When the seven-day-old etiolated plants were exposed to various doses of y radiation before exposure to any light, it was found that doses of thousands of roentgens were needed to inhibit chlorophyll formation. In Fig. 43 are drawn curves which show the effects of 50,000 and $150,000 \mathrm{r}$ delivered immediately before placing the plants in the light. Large biological variation has been experienced in obtaining these data. Each point on the figure represents a separate experiment and batch of plants. At $50,000 \mathrm{r}$, there was approximately 50% reduction in the rate of chlorophyll formation, but by the end of two days the plants were about as green as their nonirradiated controls. At $150,000 \mathrm{r}$, there was complete inhibition of visible greening or significant chlorophyll formation for

Fig. 43. Rete of Chlorophyll Fometion in EifoIated Plonts in 1000 thee of Light After Expesure to Gomma Rediation.
obout 10 hr after plants were placed in the light; whereas, in the unirradiated controls after 2 hr in the light, some chlorophyll was present. After $150,000 \mathrm{r}$ of y radiation and 10 hr of light, the plants began greening, but for the first two days the total chlorophyll was much less than in the unirrodiated controls.

The physiological form of these treated plants was interesting. The etiolated wheat leaves are rolled in a tight curl and, upon exposure to light, slowly unroll to become a flat blade after obout 16 hr of light. Irrodiation with $50,000 \mathrm{r}$ doloyed this unrolling for about one day and 150,000 r caused a delay of several days. This unrolling may be related to cell growth and elongation necessary to permit the change in shape of the leaf. Severe or complete inhibition of growth should be expected after $150,000 \mathrm{r}$. However, plants not used for chlorophyll analyses after 48 hr of continuous light have been kept in the greenhouse for observation. The leaf unrolled slowly into a flot blade, and other growth was ovident by the development of new leaves. Growth was, however, very slow compared to nonirradiated controls and could arise by cell elongation from the leof primordia.
Since $150,000 \mathrm{r}$ produced a $10-\mathrm{hr}$ period in which the plants did not green when placed in the light, experiments were run to determine whether light was necessary during this period to bring obout chlorophyll formation. Figure 43 also shows data (A) for plants kept in the dork for 6 hr alter enposure to 150,000 r. These plants also reswired 10 hr in the light for an oppreciable amount of chlorophyll to form. There was, therefors, a time lapse of 16 hr before greening began. In other exper iments, plonits were held for 2, 15, and 24 hr in the dark after 150,000 r of y radiation, but always 10 hr of light wos needed for greening to begin. In another experiment, plants, irradianed with 150,000 r follewed by $\frac{1}{2}$ hr of light and then dorkness, ofso required abeut 10 hr of light for onswt of greening.
In a nonirradiated wheat plant, rapid, sustained chlorophyll production does mot begin until the plont has been in the light for obout 1-2 hr. The reoson for this time lepse is not well understood. Since the greening process is not radiotion sonsitive for plonts irrodiated just prior to exposure to white tight, experiments were run to determine whether the plants were more sensitive during the first 6 tr in the light, when ehlorophyll
formation was actually getting under woy. Two types of experiments were rum - the y rodiation was given during dark periods alternating with nonirradiated light periods, or in one dark period ahter 2, 4, or 6 hr of light. Date for the lotter experiments (Toble 65) show thet chlorophyll formation was not severely depressed by 50,000 F delivered during greening. The 150,000 e dose, if delivared 2 or 4 hr ofter the plant was placed in the light, inhibited greening for abovt 10 hr . The same dose, delivered ofter several hours of greening (ofter 6 hr of light), prevented further greening for many hours, but the greening formed before y irrodiation was not destroyed. Inhibition of chlorephyll formation was even less from the $150,000-\mathrm{r}$ y-roy dose delivered over $3 \mathrm{-6} \mathrm{hr}$, alternoting short y-roy exposures with white light.

TABLE 6S. EPFECT OF GAMAM RADIATION DELIVERED DURING GREENING OF ETIOLATED PLANTS

Illumination Before Irrediation** (hr)	Chlerephyil (ug / s of siswus)	
	\$0,000 .	150,000 *
2	207^{6}	$\Delta 8^{6}$
4	208	93
6	291	353

[^66]Parallel experiments on the rate and products from $\mathrm{C}^{14} \mathrm{O}_{2}$ fixetion during greening of y-ieradiated etiolated wheat plants art being runt. The $\mathrm{C}^{1 *} \mathrm{O}_{2}$ fixation follows chlorophyll formation, indicating that when the irrodiosed plant does become green, it is eapoble of phetosymthesis.

Similer experiments hove olso been run with ultroviolet radiation from a germicidal lamp (2537 A maximum). Owing to epidermal shielding of the inner cells of the loaf and to the curled structure of the leof, the slitrovielet expmriments were not so satisfoctory as those with the Ce^{60} source. But opproximotely the some retults were obtained, namely, farge doses were necessary to inhibit tumporarily the chlorophyil formatien, as had been
found for inhibition of tlio preformed photosynthetic process in a green leof.

Phetosynthesis in Anthecyonin-contoining
 Leaf Tiswe
 C. W. Nystrom
 N. E. Tolbert

Filter Effeet of Anthocyaniss. - There are canflicting reports in the literature as to whether the rate of photosynthesis is affected by the anthocyanin pigments in the leoves of plonts. In ewperiments reported here, the rate of $\mathrm{C}^{14} \mathrm{O}_{2}$, fixation and the intensity of ehlorophyll fluorescence hove been stilized to measure the rate of phetosynthesis in both onthocyanin-containing and anthocyoninfree leof tissues in differunt qualities of lights.

The results show thet the anthocyanin does filter out much of the green light, making it unovailoble to the plont for photosynthesis. However, anthocyanin does not, absorb a significent amount of the red tight, thus making it adviseble to cerry out ony photosynthesis rate studies in red light when enthocyaninceontaining tissue is involved.
A variety of coleus was selected which hod lorge, random sections which were either devoid of visible ampunts of anthocyanin or were heovily pligmented with red. The anthocyanin was located entirely on the upper opidermis of the leaf (Fig. 44A) and there were no visible amounts of it on the lower epidermis (Fig. 44B) or in the polisede cells in the interior of the leof. With such a leaf,

Fig. 44.
it was possible to study the rate of photosynthesis in the anthocyanin-containing and anthocyanin-free sections during identicel expurimental treatment.

An aqueous HCl extroet for the onthocyarin pigments of the leof had a meximum abserption at 520 mm with very limle absorption above 645 mp p. Atthough the absorption of the pigments in the leof itself moy not be identical to thet of the HCl estract, it opporently is wery similer, since o difference spectrum obtoined by subtroeting the spectrum of the anthocyanin-free section of the leof from the anthocyonin-containing section hod an absorption maximum at $\$ 25 \mathrm{mp}$. Therefors, if thers is a filter effect by the onthocyonin, in green Iight (465-545 mp), the CO_{2} fixation rate should be much lower in the anthocyonin-contoining than in the anthocyonin-free section. In red light (S45 mp or greoter), the rate should be mearly equal in both sections of the leaf.
Chloraphyll anolyses and total amount of CO_{2} fixed in 5- and 10 -min intarvals in both red and green light hove been determined fer the two sections of the some leof. The enthocyenincontaining sections of the leof also contoined more shlorophyll (Toble 66). This might be considered analogous to growing plonts in low light imtensity, whereby they produce more chlorophyll. The totals of Cid fixed in the soluble froctions ore recorded in Tuble 66 on a freshoweight basis, as well as on a chlorophyll basis. The results
show thot the rate of CO_{2} fixation on a chlorophyll basis is morkedly lower in the anthocyamin section of the leaf in groen Iight; but there is little or no difference in the fixation rate between the two sections in red tight.

Observation of the intensity of the ehlorophyll fluorescence in both sections of the colows leaf in green light geve fuether experimental evidence of the fitter effinet of the anthocyanint. Figure 4SA. B shews the leef photographed through a for-red fither which permits the passoge of the red-chlorophyll fluerescence, but no apprecioble amounts of the sherter wove lengths of light. The photogroph of the tep surfoce of the leef expesed to green light (Fig. 45A) shows the highest chlorophyII fluorescence in the anthocyaninfree sections. In the lower surfoce of the leaf exposed te green light, the chlorophyll fluorescence is higlest in the anthocyonin section, where the chlorophyll is in a somewhat higher concentrotion. These observntions can best be exploined by o filter effect of the onthecyanin.

Rete of Photesynthesis Aher Ultreviolet Irnedietion of Anthocyanin-contolning Leaves. If hes been suggested that anthecyanin pigments in plonts moy function by screening out deleterious sltraviolet reys from sumlight. This hypothesis hes bewn tested by irradiating the leaves of the veristy of colens described in the preceding subsection with ultraviolet and then measuring the

TABLE C6. EPFECT OF LIGNT QUALITY ON THE RATIO OF $\mathrm{C}^{14} \mathrm{o}_{2}$ FIXED W THE ANTNOCYANU COMTABNAS TO THE ANTHOCYANMM-PREE SECTIONS OF TME COLEUS LEAF

Questity ef Lighes	Time of Ps* \{ $\mathrm{m} \mid \mathrm{in}$)	Shetion of Leef	(eewnts/ees)/706 mos of Tiswe	Chlerophyll (ev/a of *iseve)	$\begin{aligned} & \text { (esunts/see)/100 e } \\ & \text { of Chlorepllyll } \end{aligned}$	Resio
Red	10	$\left\{\begin{array}{l} \text { Anthweranin } \\ \text { Anthe-flree } \end{array}\right.$	$\begin{aligned} & 1775 \\ & 1520 \end{aligned}$	$\begin{aligned} & 412 \\ & 345 \end{aligned}$	$\left.\begin{array}{l} 441 \\ 430 \end{array}\right\}$	4.0
Red	5	$\left\{\begin{array}{l} \text { Anshereyenin } \\ \text { Anshe-free } \end{array}\right.$	1191	485 546	$\left.\begin{array}{l} 246 \\ 215 \end{array}\right\}$	1.3
Green	10	$\left\{\begin{array}{l} \text { Antheryenie } \\ \text { Anthe-livee } \end{array}\right.$	$\begin{gathered} 575 \\ 1264 \end{gathered}$	$\begin{aligned} & 554 \\ & 450 \end{aligned}$	$\left.\begin{array}{l} 104 \\ 282 \end{array}\right\}$	0.37
Green	5	$\left\{\begin{array}{l} \text { Ansheryenin } \\ \text { Ansherliren } \end{array}\right.$	$\begin{array}{r} 63 \\ 243 \end{array}$	$\begin{aligned} & 261 \\ & 112 \end{aligned}$	$\left.\begin{array}{r} 21 \\ 217 \end{array}\right\}$	0.14

*Pleweernethesil.

Fig. 45.
rate of photosynthesis in the anthocyanin-containing and anthocyanin-free sections of the leaf. No pratective action by the anthocyanin pigments cowid be demonstroted, since the rate of photosynthesis appeared to be decreased more on a chlorophyll basis in the anthocyanin-containing section than in the anthocyanin-free section of the leaf.

Leaves were exposed at varying distances and for verying periods of time to o 15 -w germicidal lamp, 2537 A maximum, or a Blacklite lamp, 3660 A moximum. After ultroviolet irrodiation, the rote of $\mathrm{C}^{14} \mathrm{O}_{2}$ fixation was measured in red light. In unirradiated controls, this rate of photosynthesis
in red light was directly proportional to the chlorophyll content in both sections; whereas, in green light, the rate in the anthocyanin section was much lower than in the anthocyanin-free section, owing to a filter action (described in the preceding subsection) by the anthocyanin pigments.

In one group of experiments, leaves were exposed to ultroviolet and then allowed to stand overnight; in another, the leaves were allowed to stand for IC min in red light after ultraviolet exposure. In both groups, $\mathrm{C}^{14} \mathrm{O}_{2}$ fixation was measured for 10 min in red light. The results as shown in Table 67 indicate that short-range ultraviolet light around 2537 A has a marked effect on the

TABLE 67. EFFECT OF ULTRAVIOLET LIGNT, 2537 A MAXIMUM, ON $\mathrm{C}^{14} \mathrm{O}_{2}$ FIXATION IM TME AMTHOCYANU AND ANTMOCYANHN-FREE SECTIONS OF THE COLEUS LEAF

Duration of UV Exposure (min)	Section of Leof	(counta/ave)/100 mg of Plent Tissue	Chlorophyll ($\mu \mathrm{g} / \mathrm{g}$ of tisswe)	(counts/aece)/100 $\mu \mathrm{g}$ of ChlorophyII	Rotio
7*	$\left\{\begin{array}{l}\text { Anthoeyenin } \\ \text { Antho-free }\end{array}\right.$	$\begin{aligned} & 1875 \\ & 2260 \end{aligned}$	$\begin{aligned} & 427 \\ & 397 \end{aligned}$	$\left.\begin{array}{l} 439 \\ 569 \end{array}\right\}$	0.8
15*	$\left\{\begin{array}{l} \text { Anthoeyanin } \\ \text { Antho-freen } \end{array}\right.$	$\begin{aligned} & 2201 \\ & 2300 \end{aligned}$	$\begin{aligned} & 510 \\ & 336 \end{aligned}$	$\left.\begin{array}{l} 394 \\ 686 \end{array}\right\}$	0.6
30^{*}	$\left\{\begin{array}{l} \text { Anthoeyanin } \\ \text { Antho-free } \end{array}\right.$	$\begin{aligned} & 366 \\ & 492 \end{aligned}$	$\begin{aligned} & 563 \\ & 371 \end{aligned}$	$\left.\begin{array}{r} 66 \\ 133 \end{array}\right\}$	0.5
7**	$\left\{\begin{array}{l} \text { Anthoeryanin } \\ \text { Ansho-froes } \end{array}\right.$	3886 3845	$\begin{aligned} & 558 \\ & 539 \end{aligned}$	$\left.\begin{array}{l} 661 \\ 713 \end{array}\right\}$	0.9
15**	$\left\{\begin{array}{l}\text { Anthocyonin } \\ \text { Anetho-frew }\end{array}\right.$	$\begin{aligned} & 2921 \\ & 2771 \end{aligned}$	$\begin{aligned} & 539 \\ & 413 \end{aligned}$	$\left.\begin{array}{l} 542 \\ 671 \end{array}\right\}$	0.8
30**	$\left\{\begin{array}{l}\text { Anthocyanin } \\ \text { Antho-frea }\end{array}\right.$	$\begin{aligned} & 2026 \\ & 1989 \end{aligned}$	$\begin{aligned} & 502 \\ & 448 \end{aligned}$	$\left.\begin{array}{l} 403 \\ 444 \end{array}\right\}$	0.9

-Leof allghed to fix $\mathrm{C}^{1 /} \mathrm{O}_{2}$ for 10 min in red light.
**Leaf ankwed to stand for 16 hr after exposure to ultraviolet tight.
rate of photesynthesis. Since long-range ultraviolet light (~ 3660 A) had titvle or no offect, the data are not presonted.
In these experiments, a greater decrease in the rate of $\mathrm{C}^{34} \mathrm{O}_{2}$ was observed in the anthocyanin sections than in the chlorophyll sections of the leaf. Although this effect was not so marked after the leaf had stood overnight, there was still a definite trend in this direction. The extent of this inhibition is indicated by the ratio of the $\mathrm{C}^{14} \mathrm{O}_{2}$ fixation on a chlorophyll basis in the two sections of leaves after the witraviolet treatment. These ratios varied extensively and only representative data ore presented in Table 67.

A Form of Phosphorus Storage and Transport in Plants

N. E. Tolbert
P. C. Kerr

Recent studies on phosphorus metabolism have indicated the presence of numerous unknown compounds labeled with P 32 which could be separated by chromatographic procedures. One of these has
been selected for more extensive investigotion because it contains more phosphorus than any other compound in the plant, except inorganic phosphate. In this report, it appeared to be a storage form of phosphorus. ${ }^{6}$ Furthermore, this unknown was transported, along with inorgonic phosphate, from the roots to leaves, where it was utilized in the metabolism of the leaf. This represents a unique function of the substance, since, of the many phosphorus-containing compounds of the root, only this one and inorganic phosphorus were transported to the leaf. ${ }^{7}$

Investigations toward identification on the chemistry of this unknown show it to be characterized by a great stebility to acid or base hydrolysis and by the nonreactivity to numerous chemical tests expected of phosphorus compounds. This has resulted in slow progress in isolating it in sufficient quantities for chemical analysis.

[^67]
BHOLOGY PROGRESS REPORT

In order to escertain the optimum conditions for growing plents from which to begin the isolation procedures, a detailed itudy of the amount of the unknown storage compound was undertaken in plants growing in nutrient solution containing variable amounts of phosphorus. Of more importonce, these nutrition experiments have shown the distribution of the amount and percentoge of the phosphorus in the plant among this storage and transport compound, inorganic phosphate, and organic phosphate esters of inetabolism, when plants ore grown on phosphorus-deficient, normal, or phosphorus-rich media.

Secramento barley plonts were grown in nutrient cultures varying from 10^{-6} to $10^{-1} \mathrm{M}$ total phosphate, but otherwise containing all the constituents of a normal Hoagland nutrient solution. A phosphate concentration of $10^{-3} \mathrm{M}$ is considered a standard molority since thot is the concentration employed in Hoogland's nutrient solution.

Nutrient solutions were made up with the p ${ }^{32}$ trocer in sufficient amounts to produce autoradiographs of the chromatograms and to permit subsequent counting of rodioactivity in each compound. The amounts of P^{32}, in microcuries per liter of nutrient solution, were 25 for $10^{-6} \mathrm{M}$ phosphate, 125 for $10^{-5} \mathrm{M}$ phosphate, 250 for $10^{-4} \mathrm{M}$ phosphato, 500 for $10^{-3} \mathrm{M}$ phosphote, 1000 for $10^{-2} \mathrm{M}$ phosphate, and 2000 for $10^{-1} \mathrm{M}$ phosphate. This specific activity was sufficient to cause visible radiation damage to the plants by the tenth day, especially in the range of 10^{-4} to $10^{-3} \mathrm{M}$ phosphate.
Plants wore harvested by grinding in liquid nitrogen, boiled in water, and aliquots were counted for total radioactive phosphorus and were chromatographed for separation of the campounds. In Table 68 these findings are reported for three representative analyses. Similar data for the leaves have been obtained; the experiments have also been repeated with Thatcher wheat, but these data are not recorded in this report.
The following tentative conclusions regarding phosphorus distribution in the roots of barley plants may be made.

1. The amount of P^{32} in the roots, representing the total phosphorus in the plant, increased with increasing phosphate concentration in the nutrient solution. This increase was about proportional to the phosphate concentration of the nutrient, up to $10^{-4} \mathrm{M}$, after which the phosphorus of the root
continued to increase at a slower rate than the phosphote molority of the nutrient solution increased.
2. The highest percentoge of the phosphorus of the root in the unknown storage and transport compounds was at the lower phosphate concentrations in the nutrient solution. This indicates that the synthesis and storage of the unknowns had a great demand for the phosphorus of the root. This also probably indicates that other factors besides the inorganic phosphote of the nutrient solution, such es energy and nitrogen supply, were contributing to the synthesis of these compounds.
3. Highest yields of the unknowns were obtained of high phosphate concentrations of 10^{-3} and $10^{-2} \mathrm{M}$ in the nutrient solution. The percontage of P^{32} in the unknowns decreased less ropidly thon the amount of P^{32} in the roots increased. Thus excessive phosphote concentration in the roots fovors still more synthesis of the unknowns.
4. The unknown storage compound accounted for as much as 10% of the phosphorus in the roots of these barley plonts at the lowest phosphate concentration in the nutrient solution. The amount of phosphorus in the unknowns also increased with the age of the seedlings.
5. Unknown No. 2 has been described eorlier? and as previously noted, the amount of it appears to coincide with the amount of Unknown No. 1.
6. Experiments were also run with no phosphate except the small amount of the $\mathrm{P}^{32} \mathrm{O}_{4}-\cdots-$ odded to detect these compounds. Small amounts of $\mathrm{P}^{\mathbf{3 2}}$ had been added to prevent too severe rediation damage, and as a result there was low radioactivity on the chromatograms used for analysis. The results indicated that at the very low phosphate concentration, less than $10^{-7} \mathrm{M}$, the amount of the phosphorus incorporated into these unknowns was less.
7. Experiments were also run at $\mathbf{0 . 1} \mathrm{M}$ phosphate in the nutrient solution or at 100 times normal phosphate concentration. There were only troce amounts of the unknowns, but the amount of P 32 in the inorganic phosphate was very high. Because of the very low activity in the unknowns, these chromatograms were not counted. The data sugpest that the high asmotic pressure from the high phosphate concentration may have had some offect on the production of the unknowns.

TABLE ce. DISTRIBUTION OF PMOSPNORUS STORAGE AND TRAMSPORT UNENOWN (U_{1}) m Barley leaves

Phespheto Mellerity	p^{32} Activity* [(coments/eve)/vest]	Percentege Diatrilutioner		
		PO, ${ }_{4}$	U_{1}	u_{2}
(10-4	200	94.2	5.8	**
10^{-5}	3,400	97.2	2.8	**
S-dey-old plents $<10^{-4}$	45,000	97.	2.1	$4+4$
10-3	100,000	92. 2	0.8	**
(10-2	293,000	90.5	0.5	+
10-6	1,670	88.1	8.3	3.6
10^{-5}	18,600	90.1	4.7	3.2
$9-$-dey-old plonte $\left\{10^{-4}\right.$	93,500	94.9	2.3	1.3
10^{-3}	426,000	98.4	1.0	0.8
$\left(10^{-2}\right.$	708,000	98.9	1.0	0.1
(10-4	4,300	06.4	11.4	***
10^{-5}	26,000	88.5	8.7	2.8
10 -loy-old plente $\left\{10^{-4}\right.$	327,000	94.3	4.5	1.2
10^{-3}	801,000	98.3	1.1	0.6
$\left(10^{-2}\right.$			*+	**

*Cerrected to the dete on which the S-der-old semples were first evented ond to the seeme speeifie setivily ee thent of the first semply.

Photesynthesis and Metobolism is

Seduew apectebile

L. M. Rohrbeugh
 N. E. Tolbert

The phosphote ester of sedoheptulese has been recognized in the past fow years as being an importont intermediate in both the path of cerbon in photosynthesis and in the aurobic glucese metobolism pothway for respiretion. The present investigation, to determine why Sedum spertabile ocquires so much free swgor, which normally does not accumulate in detectoble amounts in other plants and onimals, is approached by studying the effects of difforent environmental cenditions on the corbolydrate metobolism.
Since the sedvm leaf is thick and furgid and has a heavy epidermis, the penerrotion of $\mathrm{C}^{16} \mathrm{O}_{2}$ gas of the otmosphere into the leof is slowed during
short photesynthesis perieds. Preliminary axperiments indicete thet remeval of the lower epidermis increoses the rate of $\mathrm{C}^{12} \mathrm{O}_{2}$ fixetion, of lesest for short experiments and at porticl pressure of CO_{2} below 1\%.
It wes also necessery to know whether the distribution of the C^{14} ompng the products frem photesymbesis was different after the removal of this epidermis. The lower epidermis was removed from one-half of soch leef used but left intect on the other half, which was used as a control. After the leof had been allewed to fix $\mathrm{C}^{15} \mathrm{O}_{2}$ photosyntheticolly, it was splis longitudimally along the midrib, end each half. extracted suparately. The phetosyntheric products from eoch holf of the leaf wiere then onolyzed ty poper chremotogreply for a number of phetosyntheric conditions. In no case was a mojer difference observed in the products
of the corbon cycle in photosynthesis. However, one compound which could not be detected in the normel teef wes formed in apprecioble amounts (but not more then 1 or 25 of total C^{14} fimed) from leof tissue with the epidermis removed. Its R, value in phenol-water was obeut 0.7 and in lutanol-propianic acid-water wos about 0.4.

Clutemie Aeld Metelolisen In Berley Leeves

A. W. Noylor N. E. Tolbert

The corbon ehain of glutamic acid ploys a centrol role in the nitrogen metobolism of plants and animols. At prosent, glutamic acid is thought to be formed by transuminotion from oketoglutarie acid - a member of the Krabs citric acid cyele. When fod to the plant or conimal, it cen be utilized in the synthesis of proteins; be deomineted and metebolized by woy of the Krebs cycle; serve in the general metabolism of arginine and proline; be trensformed inte its amide, glutamine; and it cen be decorboxylated.
Studies by others hove mede it cleor that the pool site of olutomic ocid is morkedly affected by foctors changing the general metobolism of the organism. It is known that, in plants, there is a chonge in pool sixe of a number of the amino acids following treatment with the hormone indole 3-acetic ecid. In the present investigution, the many nomel metabnlic products associated with glutomic ocid metobolism heve been determined by feeding the plant uniformily labeled glutamioc C^{14} acid. These have been anolyzed by poper chromotogrophy for comporison in future studiss of its metabolisen by euxin-treated olents. Simile en pariments, not reperted here, have also been performed with olyeine-C ${ }^{14}$.

The molor new discovery with Iabeled glutomic acid is thet, under all environmental conditions tested, this amino acid was converted to γ aminobutyrie aeid and that, under anaerobie conditiens, this acid was the major product. There is no known biologicel function ascribed to r aminobutyrie acid, though it is present in large amounts in sweh diverse -tissues as the potato suber and the brain, it is not a known constituent of protein.

Young Soeremente berley seedlings, grown in soit, wore olways employed. Immediately before uses, the blode of the first leaf was cut off above the sheoth and ploced in an aquepus solution of
slutanic-C ${ }^{14}$ acid with only $1-2$ mm of the leof submerged. The leaves were kept throughout axperimantal treatment in o glass chamber with - circulating atmosphere which could be varied in composition. When tight was used, intensities of $500 \mathrm{ft}-\mathrm{e}$ or more were obtained at the feof surfoce with a photoflood bulb. Heat was minimized by passing the light through a moter layer maintained at constant temperature and by rapidly flowing air or nitrogen through the glass vessel. This provented the temperature from rising above $28^{\circ} \mathrm{C}$.

At the end of the feeding pariod, the leaves were killed by freezing in liquid nitrogen, grinding in a methanol-water mixtures, and then boiting for 1 min in a hot water both. Aliquots mere subiected to anolysis by paper chromatography. A typical autoradiograph of a chromatogrom is given in Fig. 46. Identification of some of the compounds was made by cochromatography and specific sproy tests, but at least five compounds have net been identified.

Fig. 46. Autoradiogroph of Glutemie-C ${ }^{14}$ Acid Metobolism by Berley Leaves in an Almosphere of Mitregen.

Percintage diatribution of the C^{14} in the leef among the various products from the glutamic acid is recorded in Toble 69 for four different experimental conditions of light or derk and an thtmosphere of air or nitrogen. The time interval during which glutamic acid was available was voried from 1_{2} hr to 3 hr . In Table 69 only 3 -hr experiments in the dork and 1 -hr experiments in the light are recorded. Dato from 1-hr experiments in the dark or 3 -hr experiments in the light showed no significant change in distribution of the metobolic products. Three hours in the dork was required to yield extensive metabolism of the glutamic acid, and 1 hr in the light best showed utilization of the glutamic acid with relativaly limle evidence of eirculation of the C^{14} into the photosynthetic cycle.

The major product from glutamic ocid under aerobic conditions was glutamine, the y amide of glutamic acid. As expected, glutamine was not formed under anaerobic conditions, since its formation requires high-energy phosphate from oxi-
dotive phosphorylation, Under enoerobic conditions, however, glutomic acid was decorboxylated next to the amino group, yielding rominobutyric acid as the major product. In light and nitrogen, a little axypen was likely formed through photosynthesis, which would account for the results being port way between those for leaves in nitrogen and those in sufficient oxygen, as in air.
pAminobutyric acid was identified by (1) the ninhydrin sparay test on the chromotograms and its R_{f} values, (2) cochromatography of the radioactive compound with chemically synthesized reminobutyric acid, (3) conversion of the unknown to its ureide, and (4) the foilure of this compound to complex with CuCO_{3} on poper chromotograms.
Glutamic acid decarboxylase is widely distributed in nature. When the glutamio-C $\mathrm{C}^{1 / 2}$ acid was used as a substrate for this partially purified enzyme, yeaminobutyric-C ${ }^{14}$ was formed in 100% yields, as shown by chromatography, followed by radiooutogrophy and the ninhydrin test. Thus the

TABLE 69. PERCENTAGE* OF c^{14} in PRODUCTS FROM GLUTAMIC C^{14} ACID METABOLISM IW BARLEY LEAVES

Products	Dark and Air 3 hr	Light and Air 1 hr	Deak and Nitrogen 3 hr	Light and Nitrogen 1 he
Glutamie ecid	22.4	31.4	56.6	63.2
Glutarmine	32.4	33.0	0.6	11.3
Malie aeid	24.2	11.3	0.6	0.7
Suecinic eeid	2.4	3.3	5.4	1.5
Aspartic aeld	6.5	2.3	Traee	0.1
Asporugine anea	1.0	0.0	0.0	0.0
Unknown orgonie acid	4.3	1.3	Trace	1.1
Alonine	1.7	2.9	Trace	1.3
Threestine	0.6	0.3	Trace	0
Swerose	0.4	5.4	0.5	0.5
γ-Aminobutyric acid	1.4	2.3	32.3	15.6
Unknown No. 1 (U_{1})	2.1	1.1	0.9	0.3
Unknown No. $2\left(\mathrm{U}_{2}\right)$	0.5	0.6	0.6	0.3
Unknown No. 3 (U_{3})	0	1.3	Trece	1.7
Unknown No. 4, No. $5\left(\mathrm{U}_{4}, \mathrm{U}_{5}\right)$	0	0	2.5	1.2

[^68]
BHOLOCY PROGRESS REPORT

produet of glvtamie acid decorbonylose action on glutamic acid has been identified as yominobutyric acid. Furthermors, this enxyme functions actively in barley leaves under both aenobic and anamrobic conditions.
Other wariations observed in glutomic acid metabolism ares (1) The Iabeling in suceinic and matic acids indicates thet glutamic acid is doaminated anoerobicolly in wive to aketoglutaric ocid and then to succinic ocid, which comot be further metobolized vie the Krobs eitric acid cycle in a nitrogen atmosphers. (2) Corben-14 Iabeling in the orgonic and associoted amino acids of the Krebs cycle does not appeer rapidy in the photosynthetic products in the light, even in such metabolically active tissue as borley leaves. This indicetes that the eitric acid cyele is not functioning ropidly in the light. In terms of metobolic products, there eppeored to be no mojor differences in glutomic acid metobolism in the light or dork.

Four opparently important compounds from glutomic acid metaboliam remain unidentified. Unknown No. 1 has an \mathbf{R}, close to raminobutyric acid. Unknown No. 2, on the chromatogram, had an R_{f}, value near lactic acid, and unknown No. 3 was near fumaric acid. Unknowns No, 4 and No. 5 were formed in detectable amounts only in a nitrogen etmosphere. Their R_{f} volues suggest that they may be cyclic compounds. Investigations ore now in progress to determine whether they are produced from o further conversion of yominobutyric acid.

Cherectorization of an Unidentified Compeund
 Formed in the Motabolism of Biosymthesized Sedoheptulose-C C^{14} in Plent Leaves

C. W. Ny strom
N. E. Tolbert

In previous stridies by Tolbert and Zill ${ }^{\text {B }}$ on the metabolism of sedoheptulose- C^{14} in plant leaves, on unidentified compound centaining C^{14} and formed in considerable quantities was observed on developed paper chromatograms of the extracts of leaves fed sedoheptulose- C^{34}. This compound, the one labeled "unknown" in the upper lefthand corner of the chromatogram shown in Fig. 47, had an R_{f}, value of 0.80 in the phenol-water solvent system and 0.65 in the n-butanol-propionic

[^69]

Fig. 47. Autoradiegreph of a Chrometogren of Products from Sedoheptulose-C ${ }^{14}$ Metoboli se in Berloy Leaves.
ocid-woter solvent system. it was also formed when glucose-C ${ }^{14}$ was metabolized by either groen or etioloted wheat and borley leaves. The compound has now been shown to be identical with phenyl glucoside and to be formed as a result of the detoxification of traces of phenol, which were acquired by the sugar solutions during their preparation from a plant source.

Proliminary studies on the formation of the compound showed that, in either light or dork, the percentage of the C^{14} remaining in a leof which metabolizes glucose-c. C^{14} or sedoheptulose- C^{14} increased in the compound with time. The com pound was located on the developed chromatogram by its radioactivity and then oluted from the paper with distilled woter. The elvate was treated with Polidase 5 and then rechromotographed. GlucoseC^{14} was the only C^{14}-contoining compound found in the elvate. These results suggested that the compound might be either a detoxification product or, possibly, an active intermediate in glucoside metaboli sm.

In erder to teat the pexsibility thet the eepe pound wes a detoxificetion product of shenel wwed in the chrometegrophic preperation of sedolephluleseC^{14} and glucese- C^{10}, oberley leof was allowed so menabolise sume alweese $6-\mathrm{C}^{14}$ and glucese 1-C ${ }^{14}$ which mould he free frow sweh contemino tion. Only waces of activity cowld be detected in the ares normolly sccupied by the sempeund on the developed eliromatogram. Then 10 , at of whenel was added to the olvceve-C ${ }^{14}$ solution, and the leol wos allewed to metalolize it. Chrs matograms of the extrocts of such a leof centained sevaral counts of C^{14} eetivity in the awe oeeupied thy the exmpeond, indiceting that the compound was probobly a detoxification prodiet of phenol. Soee phenyl glursaite was ponthesised and the exmpeund evehrometogrephed in all the solvent systems tried with the wynthetic whempl sluceside.
The compound wos sluted from a number of poper chromotogres and redeveloped in solvents free of phemel. Diskilled meter elveres of the ares epmituining the cempuind an wech chromategrams had on absorption spectrum identicel with that of the winthetic phenyl glveeside. After hailing in dilifte ecid, the alwate had an abserption speetrum identicel with phenol. Eimulsien hydrolyzed the compound, yielding slucese- C^{-14}. The conpound, therefore eppeors to be identical with B-phenyl olveeside.
Extrection of the blesynthasived glucbse-C-14 ar sedoheptulose- $\mathrm{C}^{\text {te }}$ solvitions with ether ofver weidificetion epporintly removes oll of the conteminoting phenol, since nove of the compound was formed when the suger solutions treated in this manner were metobetized by bailey feoves.

Growth Sidestence Activiry of Siveine

> A. R. Kroll A. W. Neyler

Corbon monoxide is metoboliand by quen beiley leaves, yielding serine as the mojor product." Since Zimmermon of at. ${ }^{10}$ had reported thet exposure of Turkish tobocce and temate stems to CO was followed by adventitious reet formation, it wes thought this effect might to exerted through serine. With wild stroins of Newrospone, this

[^70]substance combines with indele in the formotion of Erytophen " Tryptephen is thaught te be o precurior of imdoleocetic acid, a meltilnown, moturally prodveed growth swibtance in plants.

A swine-lanolin misture was smeared, in froed bends, ariund the stems of melt-developed tometo plants. Lavelim alene was used on the contrel plants. In every instence, serine applicetion mos asseciated with the fiormation of Iorge numbiers of root primprila in the sene of treatment. In several ensest, where the stems mere horisontol, reots auichly emerged threugh the poste on the lewer side of the stem. The Iavelin eantrols eahilised mo extre neoth. Following seme serine applicetions, leoves on the stams above the peints of treetment showed epinosty. This did not ecevr when limolin wlone wes wsed.

Solbsepuent to serine application, collivs formotion charosteristically eccurred. The first indication of an offect with serine-is o dorkening of the stem in the trooted area. This is follewed if a gradvel, lecally eenfined bleoching and enfegenent in size. Numerows timy mounds indiee tive of the presence of reet primordie appeer. This moy be followed by emargence of individual reats or erecking of the certex into strips, reveating hundreds of reets inside.

Additional evidinet of growith sulbsance activity has been shown with heass. The grewing tips of teo-mepk-old Block Volentine seedtings mere severed sleut 3 em eleve the unifeliete leoves. Normelly, this eperatien is tellowed by repid growth of the bude in the axile of the leovis, but suich growth cen be suppressend liy the applicotion to the top of the eut stem of substances shewing awsin activity. Serine-lanolin poste applied to the eut stump inhibits growth of these buds but tanolin alone does met. This offect is shewn in Fig. Ab, where A represents a serinetreated roup, B o mrutophan-tested gouph and C a lanalinetreated group of theon swedtings.

Iseletien of a Phetosynthetic Onidetion-Redivetive Ceensyme free Grees Plente

A. R. Krull

A compound chich beheves physiolegically as If it were ot raduced coenryme has been iseleted frem berley and com leoves and from the oreen

[^71]

Fig. 48. Bud Growth on Been Stems Following Treatment of Severed Stem Tip withe A, SerineLenoltin Paste; B, Tryptophan-Lanollin Peate; and C, Lenolin Peste. (Treoted 8/7/55; photogrophed 8/12/55).
alga, Chlorella, by the column chromatographic method discussed previously. ${ }^{12}$ Phosphorus-32labeled tissue that is exposed to light of about 2000 ft -e up to the instant of immersion in boiling 30% ethanol contains a small amount of an unknown compound (5a).. If dorkened a few seconds before exposure, it contains none of the material. If illuminated with flashbulbs ($\gg 10,000 \mathrm{ft}-\mathrm{c}$) at the instant of immersion, large amounts of label are found in the materiol. Thus its production is dependent on illuminotion of the tisswe.
Label occumulates in 5 g in tissue which is illuminated at normal levels ($2000 \mathrm{ft-c}$) if the oxidative process known to be associated with CO_{2} uptake or phosphote exchange is inhibited. The oxidative process, which terminates in cytochrome oxidase, moy be inhibited by CO in the presence of red but not in yellow light. Since p32 accumulates in 5 a in teaves illuminated with red light under CO but not in those illuminated with yellow light, the compound produced by illumination is oxidired via cytochrome oxidase in a coupled system which may be represented by Fig. 49.

It was also possible to pile up P^{32} in 5 a by illuminating the leaves in a nitrogen atmosphere or under evocuation, both of which ore conditions known to inhibit carbon dioxide uptoke.

The compound is not the direct product of a light-

[^72]

Fig. 49.
driven phosphorylation since its level changes oniy slowly upon cessation of oxidative activity. Its level is very high in those plants inhibited by CO under red light, conditions which give the lowest level of P 32 aṭtainoble in adenosine triphosphate, which is also seporable by the ionexchange method used. No change in level of ATP can be noticed in the flash illumination experiments which pile up high levels of the substence. Ii, however, the tissue is exposed to an anoerobic environment for 1 hr or more, So does not pile up. This can be interpreted as evidence for Iability of the phosphate bond involved, requiring its continual resynthesis in the plont. This lobility is borne out by the ropid decomposition of the moterial to inorganic phosphate ofter isolotion.

This compound moy be lobeled with 5^{35} as well as P^{32}. Paper chromatography of the two d:fferently Iobeled materials give spots at the same place on the chromatogram. The isolated material gives a positive test for SH groups, the decolorization of an iodine-azide solution being used as a measure of -5 H . Calvin has proposed that lipoic acid is the compound first reduced upon photolysis of woter. As yet it has not been possible to confirm the presence of lipoate in this compourd with the pyruvic oxidase test of Sunsolus et at. ${ }^{13}$ This may be coused by low concentrations of the material, or by its being some other compound than tipoic acid.

[^73]
GENERAL PHYSIOLOGY

Fig. 50.
0.25 M sucrose by a loose fitting cooxial "homogenizer" in which the plunger is moved vertically. Centrifugation is corried out in two steps - at $18,000 \times \mathrm{g}$ for 20 min and at $104,000 \times \mathrm{g}$ for 60 min. Electrophoresis in veronal buffer (p H 8.6) and phosphate (8.6) gave reproducible patterns in the ascending limb (Fig. 51), but anomolous disturbances and precipitations appeared in the descending limb. Evidence indicates that the precipitation is caused by the migration of certain compleseforming proteins awoy fiom the proteins which they normally solubilize. Changes observed in the cytoplasm of celts placed in an electric field might be explained on this basis. Several other properties of living cytoplasm have their counterport in this preparation. Thus freesing and thewing produce either prepcipitation or

Fig. 51. Electropheresis of Ret Liver Soluble Phese in Veronal Eufler, pH s.6. A. Descending boundary showing precipitatión as blank space; B, ascending boundary; C, descending boundory showing precipitation areo and precipitoted protein as shoded area; D, ascending boundary showing multiplicity of peoks.
gelation. However, the addition of glycerol, which is now widely used to preserve cell wiability during freezing and thawing, provents the changes otherwise observed in the soluble phase. Incubation at $37^{\circ} \mathrm{C}$ for 15 min results in the formation of a voluminous precipitate, a change considered to be anologous to the golation which oecurs during eytolysis. A detailed study of the mechonisms of these reactions is in progress.

The isolotion of classes of soluble proteins and of individual molecular species by three methods has been storted; nomely, isoelectric precipitation, zenal electrophoresis on atorch, and electroconvection. The first method was odopted after a study of the effect of pht on the stability of the fresh undialyzed preparation showed it to be stablo between pH 1.2 and 4.2, and pH 6 and 10. At $\mathrm{pH} 5,25 \%$ of the woluble nitrogen was precipitated in 90 min at $0^{\circ} \mathrm{C}$. Several reprecipito tiens, with necessary changes in pH, wore used to purify the precipitate. Electrophoretic examinotion of pH 8.6 showed that one very fast component predominoted.

Electroconvective separations carried out at pH 7.8 in sweh a manner that only proteins isor electric \Rightarrow this pH were seporated are being charocterized. Corbon electrodes, which were used in orienting experiments, were unsatisfoctory since a consistent drop in pH with time was observed even theugh the buffers in the two electrode comportments mere constantly mixed. Instellation of platinum electrodes corrected this difficulty completely.

Theoretically, a protein fraction isoelectric at the pH used may be obtained in better than 90% purity in one run by electroconvection. Further purificetion is diffieult since insufficient impurities are present to electroconvect. This problem has been solved, insofor as pure protein ontigen production is concerned, by the addition of pure plasma albumin from the animal in which the antibedies are to be sroduced. By this method, purities of 99.95 with respect to contamination by other rat liver proteins is theoretically passible in three or four cuns.

Production of Density Gredients in the Morisontol Tubeless Centrifluge Mead

J. R. C. Brown

Continuous density grodients of known compo sition and rate of change with rodivs have been
produced in the horizontal tubeless centrifuge head. For production of the gradient, a Lucite box having a volume equal to the total volume of solution desired in the grodient is divided into two compartments by o thin partition. The curvoture of the partition is mathematically calculated to produce the desired gradient, provided that the levels of the solutions (light and heavy) in the two compartments are kept equal at all times during outflow. Since the heavy solution is much denser and more viscous than the tight solution, a hand-operated leveling device on the outflow is necessary to maintain equal levels in the two compartments. A magnetic mixer installed in the line assures thorough mixing of the two solutions prior to their introduction into the centrifuge head.

Calculation of the curvature of the partition must take into consideration the fact that the volume of the head increases as the square of the radius. Thus, for a straight-line gradient, the curve should be that of the parabola $v=c \mathrm{cr}^{2}$, where V is the volume, \subset the constant depth of the head, and r the radius. Since the head is not filled to the center, only that sector of the parabola between rain (distance from center to suriace of gradient) and reax (distance from center to outer limit of gradient) is used. Figure 52 shows the theoretical gradient and the actual recovery of material from a sample run with a gradient formed by mixing 135 (wt/vol) sucrose and 605 ($\mathrm{wt} / \mathrm{vol}$) sucrose as the light and heavy solution respectively. The concentration of the recovered material was determined by refractometer an samples taken ot 500 -anl intervals. The obvious mixing of material at the stort of the gradient may be corrected by installation of radially arranged baffle plates which have since been installed but net yet tested.

Purity of Nivelear Frestions of Tissue Homogenates

> J. R. C. Brown

Nuclear fractions of thymus homogenates iso lated in 0.25 Mt sucrose- $0.0018 \mathrm{M} \mathrm{CaCl}_{2}$ have been shown to contain large numbers of intoct small thymocyties, identifioble on basis of their osmotic activity as contrasted with the mon-

Fig. 52. Theoretical Gradient and Aetual Recevery of Meterial from a Somple Run. O-, Theoretical curve; ©-r., recovery curve on run July 14, 1955.
osmotic behavior of isolated nuclei.s These thymocytes, which are probably identical with small Iymphocytes, have a very thin layer of cytoplasm and are indistinguishable from isolated nuclei by microscopic examination of the homogenate. Further investigations have demonstrated that exposure of nuclear fractions and homogenates contoining osmotically intact thymocytes to enzymic digestion by chymotrypsin or deoxyribonuclease leaves these cells unaffected. Since resistance to enzymic digestion is considered one of the criteria of living cells, this indicates that these cells are not only osir otically intact, but in all probability still viable.
Nuclear fractions of thymus homogenates pre pared in the citric acid medio, or in morkedly hypotonic medig, do not contain osmotically active or enzyme-resistont cells. Low pht, ion binding. and hypotonicity appear, therefores, to lavor rupture of the cell membrane.

Repetition of these experiments on spleen homogenates has indicated a similer contamination by whole cells in the nucleor fraction of this tissue.

[^74]
An Anolysis of the in wivo Effect of Mucleoprotelin from Ehrifich Ascitas Celfs

E. C. Horn M. E. House

The introperitoneal injection of niveleoprotein (NP) extracted from Ehrlich ascites tumor cells reduces the mean survival time of mice titen they are subsequently challenged with living ascites tumor cells, ${ }^{7,0}$ This study was made to determine the cause of accelerated death in such pretreated mice.

The method of preparing the NP hes alreody been outlined.?

Differsence in Mean Survival with Tiee After a Single Pretreatiment with NP. - Thirty mice were injected introperitoneally with 0.4 ml of an NP preparation (N/P $=5.26 ; 10.3 \mathrm{mg}$ dry weight). Thirty control unimals were set aside of the same time and treated identically except for lack of pretreatment with NP. At weekly intervals beginning on the fourteenth doy and continuing for five weaks thereafter, five experimental and five control mice were challenged with an ascites cwll suspension. Their deaths were recorded twice daily and the mean survival time for sach group calculated. The results are shown graphicelity in Fig. 53 . Since the difference between the mean survival time of the controls (S_{5}) and thut of the experiments ($S_{„}$). fluctuotes with the number of ascites cells used for challenge, a quotient obtained by dividing the difference in mean survival time of the two groups by the mean survival of the controls $(5,5 \mathrm{j} / \mathrm{s}$, allowed for comparison between different challenges. This quetient is plotted agoinst time in all the grophs which involve differences in mean survival time. The data in Fig. 53 for the simultaneous injection of NF and ascites colls (doy zers) and that for the seven-doy interval were taken from another experiment which was comparable in treatment but in which the same series of animals was not uned.
The date show some irregularity but o meximum decrease in mean survival time (high quotient)

[^75]

Fig. 53. Relative Differences in Survival Between Control Mice (S_{e}) and NP-injected Mice (\$,) When Chollenged with Ascites Suspensions ot Different Tiene Intervals After the NP Injection. The dotted arrow indicates a second NP injection at 35 days. Broken lines connect points indicating relative survival for mice receiving the second injection either intraperitoneally (IP) or introvenously (IV).
is evident three weeks after the injection of NP; thereofter this difference decreases somewhet more gradually than the initial rise to the moximum, Similar results were reported earlier in much less complete form and have been corrobarated by additional experiments.

Modificiation by a Second Infection of NP. Twenty mice, prepored identically to those used for the time data, mere given a tecond injection (0.1 ml) of NP ($\mathrm{N} / \mathrm{P}=5.41 ; 1.8 \mathrm{mg}$ dry weight) an the thirty-fifith doy of the experiment. Ten animals received the meterial intravenously; ten, introperitoneclly. Five of eoch group were challenged with ascites cells 7 and 14 days after the second injection (or 42 and 49 doys after the initiol injection). From Fig. 53 it is readily apporent that the meen survival time for the mice receiving a second injection of NP has been drastically shortened not only when compored to controls but also to thase mice receiving but one injuction.

Modification by ant Infection of Killed Ascites Cells or Ascites Fluid - In these experiments cell-free ascites fluid or washed ascites cells killed with weok formalin solution were used for - second injection into NP-prepered animols. The fluid was obtained by centrifuging cleor, peoled ascites suspensions and passing the supermatont fluid through a sterilized, sintered glass
filter. The formalin-killed cells were obtoined by suspending saline washed cells in 0.5% formalin-soline for 24 hr at $4^{\circ} \mathrm{C}$. These cells were then washed thoroughly in 0.14 M NaCl by successive suspension and centrifugation. Final suspensions for injection were made in soline.

Twenty-one days after the initial NP injection, four mice were injected intravenously with 0.5 ml of a 50% suspension of killed cells; five uninjected controls received the same weotment. Twenty-one days later (day 42 of the experiment), both groups were challenged witin the some ascites suspension used for the injections of mice already described for day 42 in the time study. The mice which had received killed cells alone showed the greatest decrease in mean survival time yet observed, whereas the mice prepored first with NP and then with killed cells showed no difference in mean survival time from the control ascites-injected mice of day 42 (Fig. 54).

Fig. 54. Relotive Differences in Survivel when Challenged with Ascites Suspensions 42 Days After Treatmest with NP and with Killed Cells (KC) or Ascitic Fluid (AF).

Five NP-injected mice were given, introvenously, a second injection of 0.4 ml of undiluted cellfree ascites fluid (epproximately 8 mg of protein) 21 days after the initial NP injectiong four unprepared controls emeraived identical treatment. Twenty-one doys later (doy 42 of the experiment), both grovps were chal lenged with the same ascites cell suspension used for all other $\mathbf{4 2}$-doy challenges. The animals receiving the fluid alone actually survived slightly longer than the ascites control whereas those thet received NP and leter the fluid injections showed a difference in meon survival from the controls identical to that of the group which had been prepored with NP alone 42 doys corlier (Fig. 54).

Modificetion by Cortisomes - A fourth group of 20 mice which hod been prepared with NP on doy sero, identical in every respect to all previousty mentioned NP-injected mice, were given an addifional $0.1-m l$ injection, intravenously, of NP on the fifty-sixth day of the experiment. Ten of these mice wore administered 1 mg each of certisone intramuscularly on days 60,61 , and 63 . On the sixty-thied day, all 20 of these animals were challenged, together with unaniected centrols. As expected, the "Hoosted"t NP-imiected animals succumbed earlier than the controls, but the NP. prepared animals which received the cortisene treatment outlived the controls (Fig. 55). A1though suggestive, these results must be tonditioned by the indication, in a separate experiment, that cortisone given in the manner described does extend slightly the mean survival time of untreated mice challenged with. Ehrlich ascites tumor (Fig. 55), controry to the findings of others."

Fig. 55. Elfeet of-Cortisohe on the Difference in Mean Survivel Time in Treeted and Untreated Mice Challenged with Ascites Twmer Cells.

Difference in Mean Survivel Time as a Function of the Ameunt of NP Imjected. - Three groups ot mice were injected introperitoneally with on NP preparation as followsi 16 mice received 0.1 ml , 16 received 0.5 ml , and 12 received 2.0 ml . Each week thereafter for four weeks, untreated control animals of the some age and four each of the first two injected groups were challenged with ascites tumor cells. The date froe the differences in mean survival time are plotted in Fig. 56 . Those receiving 0.1 and 0.5 mt showed the -awat

[^76]

Fig. 56. Seletive Dillerences 'o Survival Whem Chellenged with Ascites Sisspensiens ot Difleseent Time tintervels Afier Diffesent falitiet wiP Io fections, 0. $0.1 \mathrm{~m}, ~ 0.0 .5 \mathrm{mb} ; ~ \$ 2.0 \mathrm{mb}$,
responses, withian the limits of the experiment, alflewgh the mise with the fower diosoge at NP responded fater. The wice reicelving the tuithest dose $(2.0 \mathrm{ml})$ did tor sher the eharectenstic response during the fiest thene seeks.

Specifieity af the Revestion - A mebter of sub stasices have bere teated to determine the sepecifieity of the sespoeste to the te, including prote ming, histone astracted free shichen erytiracyte euclel, histone antrocted from ascites cell moclai,

Pretamine and elickee erptlivecyte tiatowe pros dicent me significent depression of the meon survinal tims. Since aseites cell liantene, an the orther hand, prodiced imrepula redvertions io the mean survival times, an acceunt at ist peppuration is given hars.
faslated nucles, prepored es for NP metruction, werr treated aith 0.2 N HCl everwigh at $4^{\circ} \mathrm{C}$ The sutgensien mas ceretrifiged at 3000 n s for 30 min, and the clea mpernote cas nevinalized by the gendiel additien of difute NioOr Any procipitate shich appeared during thus pescess was removed by further hidhospeed cemtrifoppotion for 30 min. At ar neor 1 S S , it white perecipitete invoriably appeaned - wery tikely, ecid peo tein componeos. Any cleor wipernate wish pety 7 which mes abtainad was dialyaed apainst spereral changes of distilled meter for 24 hv . The histone solution mas them centrituged again at 8000 * 4 whether ar not it appeared cleser, and the mpermate was apich lresen and ipephilizent. The pure
white, water-soluble prodect mos adpinistered an on aqueevs selution.

Trenty mice mere each given A.t4 ay of ascites cell histione av a I-mil intriperitaneal injections 20 additienal mice at the same age served as un treoted centrolis Geaps of five treeted and five untreated mice mere dialtenged noet meek fv fowr reeks, and their survival recended (Figs 57). Althevgh ebvioer diflerences is meion hurvisel time are nalibised, the mathent is ematic.

Fig. 57, Relumier Diflerences is Survisel Itien Chollenged mieb Ascites fiwspensione at Different
 teP Toweted mieb Deseypiliemesloses.

Ne depoessiep in the mean surweral tieve mes diakeverel ie o small series of experiments ins rolling the mice injected mith oe NP preperatien derived lrue a wot Irmphemes

It en metemet te elveridete the orisicelity of undlasecivited NP for the eifect, 20 mice mene prepered pish ap iesteperitoned ingectien of NPP trested nith devepribenucleove (the injected nos teriel had lest all theicel wiscesipyl. These enimals were chrallenged in poups of fire each 14, 21, 2t, and 42 diors alter she ini inal injecriens The differences in mege surwinal tive are shewe in Fig. S8, a reswlt resembling in ine ierepulanty. thet abpained mith histane.

Fig. S8. Reletive Diflesences io Survioul Wher Chellenged mith Asecites Suspensions ot Differsen Tion Intervels Fetlewing an Initial Injection ol Nistere Fiveteeted fros Asecites Cell Atueleis.

Elfects en Trear Cells - A fer anieals ahich had ancoived on NeP injection 35 days pier Ao escites thaflemp were sacsiticed atung nith untreated centrels at cloys $2,3,4,5$, med 7 after the turer inpeculation. The spleen, liver, for bodies, and a kidhey geev fiand, staived, anetianet, and examient to there thevsien The sesvits meev exsemtially those repeated by Klem and Revess, ${ }^{15}$ vamply. initial imeosien of sto tissues mas eor abserved mntel the fereth ar difis doys after tump inscutotion. the differenoe nos seem fletreese treated and untreated animals.
Call cevits and hematocrits aere alse ende of the ascites cell awspensions than contrel and tereted enimals. Agnie no difference in Hureer-cell ceverts our unit velun of ascites flund mas found tretween censels and tested animals, alehevgh the henatocrits ueve invariably higher in tio ascites ther treated nios, sugposting aiftur lerger tungr cellis ar more contominating cells of ofter trpes. This finding is leing investigetes mase filly.

Tests for mP-ieluend Semaitivity. - Ditlerent teats aere cenducted in an eflion to shor more conclusively mbetter the NPP injections prodveed in fle mice a senvitivity demanstrable theoup onaphylactic sespenses. Treesty-ane, 2t, and 35 divys after an iavitiel introperituneal injectien of
 $229-2 r 7$ (ivs3)

NP mhen, accending to the mean survwnal dave, o *iter equisat NP sheodi lo that, o mionter of senimals meve pvee a secoent snjection al NP at different isse levels ([..1, 0.4, and 0.5 ml) and hy o vaciety of swites (ieptavenous, eetengeritimeal, awlicutomeoss and intravenaes, and int aveness and ietrogeritaneal) le ne case cevild ang anaphylactic manilestation lie depmestrated evelier by exemining the eve vesseels ${ }^{11}$ or hy eating more sbreses syegtems. The Arthros seacitioes, se
 abs athengted, mith me suecess.
 ments, the expected menah, plesis mes seet mested in enefy of the enimals mhieh hal seceriend as o ancend infection vary ithy anceants od bulied cells
 of animals phish had encesvet meay bises the aneunt al tep woed revitienly to gredice tor *o-
 iected mish NPP aloen.
Ie copcliviten, the neriation in mene sur wival sime aith tie anfent al tap inpected and mith stio
 as to swapor the prethetion of e semsitivity is
 death al treated mace is thengle to le cesveed by a enectien leftrees the semsitiand meese aes the ceintrediced aetigen ie Ntr firm at Nir ascutes cell shatlenge. The date sheovey, the vesponse to Ans avilely syaced ingections at NeP pever to the ascites cell elas eng sheopgly swousp tie trpecal "feecentary sespensen mhieh is silected ohen an entigen is tevetraduced inte an animal alenedy anciniaed to its

Aesigneicity al Ascites Trepe-Cell Cempoeents

E. C. Hhen

A. E. Hewse

Bespuse of the conclivsiens sesechet is she geeceding peper demanotiratioes of the anti genicity of evelenopestein aneperatians eetrected as alienaly describept mas cemsidered enperatives. At the seme time peregonetions of exler ascites cell comacopents, phale ascites cells, and a peneral mavse liver homognopte meve aliaiesel as antigens fer cengerative serelogical merpeses.

[^77]
bolocy meocersb efpoer

Thet $f=$, valber antisere to eoshed, ahole escites cells $\{\mathrm{ACl}$ ascites cell mitechombia [AMM , ascites coll meciei (ANH), and ar ive vell evelewpenteie (au)P) Have lees aliniend.

The testing of thase ontisere peseseted copplcetions. Wrecigition seactions aere certhiess lecense al NPP melvility in phestialogicel salins. Aiteryts to watract the muter-selible avesioglot Al- faction theo aNPP serw oed as mobe tests with tert as diabilled rotver geve highty dabione wevits.
 fesosile (- AC (Fig. 5N). Unifors, nasily *e perticitle swapersiens at meclei and mitechondis vere avtionely diffievir to arvoent, and agolutime
 ation severapl to he the lest test sevetion mo ah ich as flese o cemperison of ther vaievs antiumo in Moir revelimen with all the diflerent antiges. enpleynet.

Tahle 70 gresents the cemplesaret fisutioe siters of tir menaw antisere onvicted with the antighes tus for tested. Wingus ore poen hecmes the titers, atem evpeated effen sory +7 aerditution.
 ponimp with Ithb. She viters aoe Sers and poivts. tro mits of cemplewest more wael thenghet.

The insuits indieste milespenest interaction letreeve - antiserin to abcites ceils, on
 In all untimees, tiese ascites an apre wescled
 wits forir hapolospes apipigen these vesults
 wation centained Ere after antignes. Mivituds of

Fig. 99. Agpletinetive at on Aveites Cell
 the tiles sembeis, in alditien to nemal velurus al o Lepe ascites avil swopensiens, nouel velvess at Trate's solutim, sors, ANP sernets, ace AC

 in O least me vevinet, int two could evist .
 ceclens surfocs, ant the mitechembiel surfies. 3 such o sweng antigns avists mith apecifocity trpied of the ascites dell (in Sis inatimeth this in itsollf umold to at andenme amterent and in
 periegle level is hiphly diliest. Thr mesenow at even weall amemets af mitechendio in on aveler of
 *Row ascives cells awp tweum onmontwrs

Autisene	Anerges			
	Cellis	Aselle:	aisentunder	Aserlenemwter
$A C$	as-bes	tabr	tee	18-30
4se	casmas	tes	320	-8
An	Earlee	chee-33n)	Ieth-3ad	20
nay	4	cas-abs	8	ab-ay
A2.	0	(4)		-

[^78]nucleegneteis preperatien, for example, has evt heph seefirent hy phowe-cemipast micrebcepy, mor is is likily that malechandeve wesild turwive as centestugully precipituble merticles in the is ciswie acidu-liwnilled water cashes waed for eaclear aseliptian. Mureven, examenation of tie cehglinement fising ability af the AN and ANP sero with mispeltandeis as the anstipes eveveals thigh sitwes is lwesh inwionices.

At prespet, ne atsengy will ile medr se dewn cee. clywiens feen shese thats. 供 is theped that the pupar me- is propews. the spotenetic shody of abiserytion ef thest antiseses oith for marelly ef entipens evailalile, will sevenl meae specit - - -13y the meanimy of these interactions. Evidenice for tembenemtal diflerencops if these aetiserks net pet ewwewled by seveliegienal tests thas far weed. is prevediet ie the sucicending suctient.

Cptietepieity al Ditlereet Anelsere to focitew Trener Cells

E. C. Hean

4, 5. Nawse
Te suppleineet ilie serulayscel theta ten enelibet
 eskites thery cell, en nown and in wetw mejeswres ef esrites epllip were evile and their eflest on semee survivel mas trated ly intruperitioneal unjectien at hnyen enembers.

 inctiens: 0.1 m ol undelute aestisure to AK, AK teed ANP. dilete (1:10; to AC, and undiline Niles learnal rabliet sermel. Niepety mimetes ofter initial inperimen eweh mowse ines shallewgad noth an enimetien el 625 - 10° uscites celle in waline. fenve injuctidess aere vepueted en ders 2, 4. wed of lalleming the tumse shallenge, and the surwawors

Ne signifiefent increase se meve survival time mas evited in experimenthal preupe over thar hilS peap (Fig) AON. in is apositile, of cevese, that * lierger anenuer of entiserum anj jit livee arolioced
 of any *apewimential youp.
 *wsyengion of escities cells were cembined -ith epenal parts of marisus antisera (AC, AN, AM, ANP). NRS, and walines. The mienves mere inew
 ondulute encept AC. whese dolvsion wes $1: 20$ liefore aliditien to the coll susgension. Diring inciliotion, cellis egolutimated rapidly in the AC

 with A seites Tumes Cellis and Seccessire Aliqeats of Diflewer Relliar Sees. Hiscilod hars sudicater
 has. peried foet first to lawt death it a peve.
 of the grap. See weat for serion abineviatiens.
 sliyhtily in Nefs, end nept at sfl in the selieve suspeension.

Each gruep af inculated eellis oas tien thonbuyhly eeswspended and iniecied intreyer itonevilly into tes mike for sach poep, ench mawse receiving 6.25 510^{4} cellt. Sorvival et sive mice whe 6 . $\%$ lawed and nyted thy troe daily abservations ventil wall were dead. The neswlss (Fig. 61) indicave that the ABL and AM sero ceuse a lengthened meon turwival time.

Fig. 61. Porvers of Survival for Mike Injected wish Aseltet Tumer Cells Which Move Been Inculeted in Different Media. See Fig. 60 for explonotion.

The experiment was repeoted in essentially the same manner except that the AC servm was wsed undiluted and three odditional antisera wore tested - antimouse liver homogenate (AL), antiascitic fluid (AAF), and ontibovine plasme albumin (ABPA). AC, AN, and AM sere were tested at different low dilutions. There was little or no indication that the offiect was obtained after on twofold dilution. Results from this second in vitro test are shown in Fig. 62. Survival times ore diffierent from the provious test because the ascites cell suspension dilution was different. Although not all experimental animols had died

Fig. 62. Pettern of Survival for Mice Injueted with Awcities Tumor Colls Which Heve Been Incubeted in Diffonent Rabbit Sers. Seme mice of groups AN and AM still alive.
when the data were collated, the results are swfficiently complete to bear comparison with the earlier experiment. The effect of $A N$ and $A M$ swere is even more striking then befors in the lengthening of the meen survival time of the mice within these two groups. Of the other antisera tested, only that prepared against mouse liver homogenate deviated enough from the control to worrant special attention. Not only was the mean survival time of this group lengthened somewhat beyond that of the control, but the pattern of death in this group was remarkable in its brevity; all died in the short span of three days compared, for example, to the ten days during which contrel mice died.

Since these antisera ore the same as these used to accumulate the data on titer of the previous wection, it is of especial interest to compare their effectiveness in increasing the mean survival time of mice with titer. Exomination of the titers of the $A C, A N$, and $A M$ sera ogainst whole cells (Table 70) shows them to be essentially the same by the complement fixation test. The results of the im witro, test reported here, however, indicate that differences exist which are not yet reveoled by complement fixation. There is the possibility that absorption of the antisera with different antigens will supply some clue to these differences.

BIOPMYSICS

Coreful studies on such changes heve not been reperted for lower vertelrates.

Two types of bosophiles hove been found to atain, in the newt hypophysis, with PAS and with aldehyde fuchain. They hove tentatively been identified as thymotrophs and gonadotrophs. A study is being mede of these cells in animels which hove been thyroidectomized or castrated. Halmi and Gude reported thet pituitory tumors develop from greetly enlorged, lightly stoining "thyrroidectomy cells" ${ }^{\text {"t }}$ in the rodiothyroidectomized mouse. Similer cells have appeared some 15 days following thyroidectory in the newt and are numerous ofter 30 deys.

Steinitz and Stone ${ }^{5}$ observed changes in the ultimobranchial bedy of the thyroidectomized newt and suggested that it may teke on a thymaid function in the obsence of the thyroid. If this is the case, the ultimpbranchial bedy would be wxpected to tele UP mo redioiodine ofter thyraidectomy. Newts given rodioiodine six months following thyroidectomy, however, showed no iodine upteke in their ultimobranchial bodies.

Fediolegicel Physics

Ceckenoff-Woltron Fast Nevtron Foeility (M, L. Randolph, E. B. Dorden, Jros ${ }^{4}$ and T. A. King ${ }^{\text {º }}$, The progress of the accelerstor pregras cen conveniently be considened under the heodingas dosimetry, fast neutron yield, and nevtron exposures.
Three independent methods heve been employed to determine the dose rate from $D(d, w) H^{2}{ }^{2}$ nuclear reaction: a homogenous ethylene-polyethylene ion chamber, a proportional counter to measure the proton flux from the componion ($D,<, p$)T eseaction, and a long counter celibrated versus vorious stondand Po-Be fast neutron sounces. Since the dose cote may be colculated from meosursments with the ion chomber in two woys - from the volume, Bragg-Gray principle and absolute rewistance meosuroment or from comporison of cumpnts induced in the meutron field and in a known y field neer a standand radium seurce - there are four at least semiindependent simultaneous values of dose retes which moy be celleulated and compared. In making these intercomperisens, allowancess have

[^79]been mode for such factors as building scatter (besed on measurements of flux from a stondord source in a scotter free aree and in the accelerator room), target scetter, y attenuetion for the ion chomber, recoil proton ettenuetion owing to the equodog loyer in the ion chamber, and proton attenuation of the foil covering the windew of the proton counter (besed on measurements with difforent foil thicknesses). The everoges of intercomporisons of any two methods of obtaining dese rates are in ogreement to within less than 5%. The agreement of the dese-rate walues obtained by the total energy diasipetion method (ion chamber) with the values obtoined by the fiux methods (proton counter and long counter) as well as meesurements with a lead-lined ion chamber indicate that the r roy dose is less than 55 of the torol dose. Merhods to meke a complete study of the spatiol distribution of dose aroumd the target are now availoble. Final measurnments are to be mede with optimun torget conditions of minimum scetter, yeeoy production and anergy degrodation, and of maximum neutron yield such as will be employed for biologicel expesures.

Following the reolizotion of sotisfoctory dosimetry, the chief emphasis hos shifted to obtoining maximum fost neutron yield. Since (1) the doaimetry has been developed for the ded nuelear reerction, (2) the problems of obtaining meximum yield by the $d d$ and d et repetions are vwry similar, and (3) there is some contominetion hexerd in hendling tritium, the d d reaction has been employed olmost exclusively. The high-voltege power supply hes been completely rebuilt by the manufacturer and now operotes ateodily ot 250 kv with varying loods up to slmost 2 ma. The ion source, sher slight modification hes yielded 7 -me beom current focused through a $/ 4$-in.-dio epenture near the serget. With o power dissipetion of about 200 w and probebly severnl thousend wotts per squore centimater ot the target, the problem becoment thet of predecing a deuterated terget which will retoin deuterive at high temperature or alse wery efficiently cooling the torget, proferobly with on en sembly of amatl mass and nomhydrogenous coolont. A number of devterated aircomium tergets on vorlous bockings heve been produced and tested with e variety of epeling systems. As a compromise between the effectiveness of massive weter cooling and the low scatnme and energy degredation of eir cooling. a schene of injecting into the ali
strwein small quontities of weter to be veporized at the target has been devised, and hos given encouroging preliminery rwaults. Approximote steody state yields and dose retes abtained with the d-d reaction at 250 kv on a panticular target under vorious cuoling situatiens are given in Toble 72.
A single tritium torget with weter cooling hos been used briefly with a maximum total emisaion of roughly $2.4 \times 10^{\circ}$ neutrons $/ \mathrm{sec}$ or $150 \mathrm{rap} / \mathrm{hr}$ ar 5 cm from the target with a 160 kv beem of less than 100 Fe
In generol, os a result of the agreement of independent dosimetric methods and d-d yields obr tained, the accelerator now appears as a nearly established focility for the exposure of biologicel meterials to $d \alpha$ neutrons, and two instructive orientation experiments hove been corried out. Although emphesis hes been given to the $d-/$ reoction, it is felt thet the tronsition of dosimetry and terpet methods to the much more prolific d at reaction will be much less difficult then the estoblishment of the focility es a $d<d$ seurce.
Neutren Desinetry (M. Sleter). - The neutron source for the chronic focility will have an initial emistion rote of 2.5×10^{0} nevtrons $/ \mathrm{sec}$ and thus will provide an ewcellent opportunity for an imtercomporison of mevtron dosimetry methods. In preporetion for thas, the existing neutron dowimetry equipment hes been overheuled, added tes, and corvfully investigoted for reliability and stability. The primory comperisoms will be hetween veriews ion chombers ${ }^{2}$ and she neutron proportional count-
PE. B. Dusles, Mr., ed C. W. Shepperd, tepicel repert. 0roci- 1002 (1351)
er. ${ }^{\text {P Methods heve been devised and teated to }}$ give each of these measurements an accuracy of the onder of 15.
Increased precision in the measurement of the dose rate from a point source has been obtained by a new methed for inverse square deteminotions. The meowuring device (e.g-g, ion chamber or proportional ceunter) is constrained to move along a straight lins, and dose-rate measuremants are mede at eccurutely measured distances from on erbitrary sers on this line. The problem of making eccurate measurements of the distance from the center of the source to the certer of the chomber is thus reploced by the simples one of mesosuring distances along a line. A simpler mathematicel enolysis then gives the dose rote from the source and alse the locetion of the effective center of the measuring device. An exomple of the effectiveness of this technique is an ion chamber mesasursment of the dose rate from a 20 mg rodium source, with a standord error of the mean of 0.45 , differing from the Notional Bureau of Standonds value fier the source of 0.9%.

In order to wse this technique with the ien chenbet, a lightweight, fiexible cable is neceswary between the ion chember and vibroting reed electrometer. Vorious cables, connectors, and fabrication procedures wert inveanigated, which movid leod to a final cable having o resiatance greater than 10^{14} ohms, a noise volroge of a few hundred microvolts, and which recevers apite ropidly fo fow minutes) when flemed.

TABLE 72. APPROXAMATE STEADY-STATE YELDS AND DOSE RATES BY THE d-d REACTION AT 250 kv

Ceelving Agent	Bues Cument (ee)	Tesel Suisulen		Dese litere (rep/ hat) n 5 em free Triget	
		Newtrens/ape	Neuthens/me	$\begin{aligned} & 90 \text { dee } \\ & \text { Ne Been } \end{aligned}$	0 des
Messive meter	$\left\{\begin{array}{l} 200 \\ 670 \end{array}\right.$	$\begin{aligned} & \text { L.0 } \times 10^{6} \\ & 2.8 \end{aligned}$	$\begin{aligned} & 5.4 \times 10^{3} \\ & 5.7 \end{aligned}$	12	28
Water injection * alr	$\left\{\begin{array}{l} 400 \\ 700 \end{array}\right.$	2.05 0.8	5.3 3.1	6.5	14
Air	200	0.7	2.3		*

A proportional counter dosimetry syatam was built up and investigated with a 10 curie Po-Be source. The results ae extremely sensitive to the lecation of the aere of the pulse height discrimetor which meesures the helight of the pulses out of the linear emplifier - a 0.1 ve emor in the aero prodveing a 15 emor in the results. A method was devised, with a pulse generator and count rate meter, to measure the zars accu tely, and to monitor the emplifier goin and counter high volroge to echieve is stobitity in this method of dosimetry.

A series of colculations on the ORACLE, performed with the assistance of J. Z. Heoron and J. Vender Sluis of the Mothemetics Penel, on the energy abserbed by verieus meterials imediated by y raye and fost mevtrons et various energies, gove results which ore uselul in the interprotetion of the readinge of various types of ion chombers expesed to mixed beams of rodietion.

Fest Neutrea Blologicel Expesures with en Internal Terget Cyoletron (C W. Shepperd, ${ }^{10}$ E. B. Darden, Jro, and M. Sieter). - In Nlovember 1951, biologicel meterial wes expesed in the ORNL 86-in, cycletron, but serieus mork wes not begun until Aupust 1952 when a preliminary progroe of phyaical investigation was instituted to determine to what extent the mechinecould serve es a source ef fost neutrons for radiobielogicel atudies. These studies indiceted thet quite high doses of nevtrons ceiuld be obtelined (40,000 rep were given on one eccesion). With a smell leod box with 2 -in-thick wells ploced 30 deg below the axis of the proton beoe os it strikes the terget, there wors ebout $z-125 y$ reys in the field and a negligible amount of themel nevtrons. Since the neutrons are produced by proton bomberdeent of heryllives, moat of thes are in the energy range below 3 Mev. The ORNL mechine dees not accelerate deuterons. Dosimetry wes besed on the reodings of two Vietereens, one with a bakelite shimble and one with a thimble made of condvering tucite-grophite plastic developed by Roper and Zirkle during World Wor il. ${ }^{11}$ Rerios of rep to n-umit to convert the Victereen reodings to dose values were determined by a limited number of dove deteminations with tissue-equivalent chombers provided by M, H. Rossi.

[^80]The over-all physicel situation was not ideal for precise work. The neutrons were highly scatrered and degraded, which precluded the use of tech miques for outlining the neutron spectrum in detoil. Other difficulties have been described. ${ }^{12}$ Nevertheless, beceuse of the imminent need for dato required in Operation Upahot-Knothole a Iimited progrem of biological investigation was instituted end aervice wes provided to a number of inveatigotors for semiquantitative exposure of their moteriol. Jon chambers were alse colibrated for use In the operation. Biological findings wore pubIished in a series of preliminary reports, $13-14$

In the summer of 1953 the Pothology and Physiology Section beceme interested in the facility and begen to moke exposures with the assiatence of the Heelth Physics Division. Their biological and physicel findings mode on the axis of the proten beem in a large leod box with l-in-thick wolls are now in press. ${ }^{17,10}$ Comperison of the eertier desiestry with the Heolth Physics results seon indicated that an omror of ~ 305 hod been mode in the eerlier figures.

In February 1954, an intensive progroe of phyalcol observations was begun to investigete the diseropancy. At the seme time further biologicel work wos in progress and, eccesionally, bielogical measurements from the eorly period were repeated by the more setisfoctory dosimetry. Some of the studies were mode in the experimentol petholegy box and orhers in the old box. The prineipel conclusions cencerning the desimetry wers:

1. Tissueeequivalemt ion chembers cannot be relied upon in their present fom umless freshly filled with ges before wse. This conclusion mey not epply, possibly, to chembers of mere recent design and constructed of different typese of plostic then the type used in our in atrument.

[^81]2. Victorsens and tisswe-eppivalent chambers used with eVictoreen alectrometer heve an op precieble ion-cetlection defect for neutrons which sets in with the 25 r Vietorese usuall y et expesure rates comreaponding to about one-third full weole deflection per minute. The defeet slise oscurs when deflections greater then one-thind full weale occur beceuse of the folling off of the collecting voltoge ot large deflections.
3. The "educated puess factor" of 2.5 often opplied to Victersen ruodings moy swflice for very rowgh work with the high-wnergy neutrons prodivced by bembarding beryllium wilh deuterons. With lowemenergy mustrons, the walve for a belelite thimble is olvent $3.0-3.2$.
4. Monitoring a cyclotron by mesewuring the beckground "*log" of meutrons at seme point well removed frem the torget is timited in procision when, os in the intemal terget mechins, degradotion by the target structures is appreciable. Movement of the protom boom on the target cen elter the degrodetion pertorn and cowse the radiotion field close to the torget to change reletive to the beckgneund fog. There will be changes in the dose and elso, to aome extent, the apectrum.

The $\sim 30 t$ increese in all the eorlier dose figures does not affect the ratie of the Upehet-Kroothole results to those obrained in the cyclotron since the Upshet-Kinothole dosimeters were cellibroted in the cyclatron. The resulte of Arwoed and Mukal ${ }^{17}$ wore done later and do mot contoin the error. In Mickey's eyclotron resulrs, ${ }^{\text {is }}$ en edditional euror in dasimetry wes enceuntered. His expesures involved a lorper then nomel correction flor ion collection delect and his final doses are chout two times greater than befiers. This is the worst euror which wow mode, however.

[^82]It is felt, that in the more recent mork, the'fimal dosimetry was improved to the point that approximetely $=15 \%$ confidence fímits could the sloced on the results. This wos achieved by rupetitiens of the bielegicel determinetiens and by molking leage numbers of dose determinotipns. The fluctuedtions de net seent to have been wery severe sinces, wavally, quite smbeth denw-eflect curves mene obr tained. Nevartheloss, since accesionel difits and ivmps mere obtained, it is mot felt thet results besed on eny single exposurs cen be trusted. With the eampletios of the heen deflection progres with this mochinw, e better sitwetien whould be echieved in furure work. The development (M. Sleter) of en integratimg type of tissun-equivolers dosimeter is the letter pert of the work will else impreve the siltuetion to some extent.
In addition te thy Experimental Pothology atwilies olreedy reperted ${ }^{17}, 10$ the following bielegical inwestigations in the cycletron were modes:

1. dominone fethol mutorions in mice;
2. spennatogoniel degeneration in mice;
3. devalopmental divevibunces in the mavse enbryes
4. radiation protection in mice (preliminery study):
5. Tethelity studins in Eacherteliae coll;
6. cheomesome and chrvmetid aberretion production in Trualeserantias
7. Brosoptifle dominent and recessive tethal mur tutions at apecific loek;
8. translocentions in Drosophile and detacliment of ettoched X elonemenemes;
9. clrompsome breokege and rejoining in Virie fates
10. mutetions in micronvelei of Pantescitis.

A 10 poge collation of the physieal date and foctors pertineme thensto has been prepared and distributed among the weriows biologists invelved in the cyclotron cork. This cempletes the physics service provided to this project.

[^0]: En*yme resetions

[^1]: ${ }^{4}$ R. F. Kimbell, M, Geither, and M. K. Kiny Miot
 - $12-12$.
 ${ }^{3}$ r. F. Kimbelt, N . Geither, and M, K. Kine Biol. 5 13-12 Pres ReA Feh is, 193s, ORNL-1803,

[^2]: C_{R}. F. Kimbalt, N. Goither, and M, K. Kimg, Biel Ouas Prop Rep Feh 15, 19SJ, ORNL-909, o11-12.

[^3]: T3. V. Sleter, Mbyaiel. Zeel, 25, 223-332 (19523.
 BH_{H} R. Meraten, Plysilel Resi 22, 66-121 (19323.
 60-92 (1v42).
 ${ }^{30}$ E. L. Smirh, f. Nioh Cbens. 175, 21-32 (19a8).

[^4]: 270-3ep (1951).

[^5]: ${ }^{12}$ s. Tenaly, Y . Seeode, and T. Yements, Kyoto

[^6]: ${ }^{13}$ A. D. Conger and A. M. Schnston, Aioh, Semdans. Prog Rep Foh is, i9ss, opinl-1B33; if-21.

[^7]: *TO $=$ - terminal deletions.

[^8]: ${ }^{15}$ D. Mazio, Proc. Natl. Acial Sel. U.S. 40, 521-527 (1954).
 ${ }^{16}$ D. Steffensen, ibid. 41, 155-160 (1955).

[^9]: 17K. C. Ateeel. T. H. Pinteniger, end A. W. Kimheit, Binh Sruans. Prose Rep. Felk is, 1935, opnL-1B63, * $75-2$.
 ${ }^{11}$ T. N. Pimenger, K. C. Areoed, and A. W. Kimbell. iNat o 30-32.

 ${ }^{20}$ T, H. Pimenger and K. C. Arweed, Gemetic: 35, 9a7 (iose).

[^10]: ${ }^{21}$ K. C. Arvont, Hiot, Smianm. Prog. Rep. Feb, is, 1953, ORNL-1863,

[^11]: 23L. J. Stodler and H. Remon, Geneties 33, 273-303 (1948).

[^12]: ${ }^{24}$ R. T. Brumfiold, Biol. Semiann. Prag. Rep. Asg. 15. 1954, ORNL-1766, p 24-27.
 ${ }^{25}$ R. T. Brumfield, Biol. Semiann. Prog. Rep. Aug. 15. 1953, ORNL-1614, P 19-21.

[^13]: ${ }^{26}$ R. T, Brumbield, Proc. Naet, Aced Sel, U.S. 30 , 366-371 (1953).

[^14]: ${ }^{26}$ e. Devert-willimeik, Zoel Ank 23, 274-273 (1931).
 ${ }^{21}$ Crtequentie ENsets of Hedietion Oreen.

 , 20-20.
 ${ }^{31}$ p, C. ven Berstal, K, C. Arveed, and A. E, Whatien;

[^15]: ${ }^{33}$ R. C. con Seratel and S. Wollf, Riol. Semiame Prog Ren Fel. 1s 1935, ORNL.-1B63, P 35-36.
 ${ }^{34} F_{\text {F. Daniels and L. J. Heidl. } f \text {. As. Chem Sees } 54}$ 2381 (1932).

[^16]: ${ }^{37}$ Reseweh Asweciete.
 ${ }^{30} \mathrm{w}$, K, Soker and E, s. Vop Mollg, J. Cellwler Comp. Phywiol es Suppl, 2, $200-307$ (1953).
 (1052).

[^17]: ${ }^{40}$ p. G. Cetchewide and D. E. Lew, J. Giens 48 , 25ab (ivas).
 twst onink-1835: 42-66.

 ${ }^{43}$ P, T, Irew, R, P, Levins, pil N, T, Tew, Ar. Mres

[^18]:

[^19]: 554-804 (1v34).
 45. Nevinahi, Genemice $37,270-287$ (19325.

[^20]: 2. 151-170 (195is).

[^21]: S1w. J. Felwhens, Ajoh Semiens. Prep Itek. Feh. is

[^22]:

[^23]: ${ }^{53}$ E. E. Shelt and C. C. Lindegren, Natare 175807 (tesse.

[^24]: ${ }^{54} C_{1}, C$ Lindepres and G. Lindegren, Gewvitic: 27, 1-24 (1982).

[^25]: ${ }^{3}$ Termiseted et clese wf this peried.
 ${ }^{2}$ Temperery emplopes, swener 10SS

 - $35-34$
 ${ }^{4}$ a. E. Siepleter, a d. Shery, end L w, Beven, Bint

 ons. 45

[^26]:
 **Besell medivers plve $20 \mathrm{mg} / \mathrm{ml}$ of Difee reest extreet

[^27]: ${ }^{6}$ E. H. Anderson, Proc. Natl. Acad. Sch. U.S. 37. 340-349 (1951).
 7. Billon and R. W. Whityle, BioL Semiann. Prog. Rep. Amg. 15. 1954, ORNL-1766, 40-41.
 ${ }^{8}$ C. O. Doudnoy and A. Hollaender, Biol. Semiann. Prog. Rep. Feb. 15, 1955, ORNL-1863, p 46-47.
 ${ }^{9}$ F. J. Ryan and L. K. Schnoider. J. BacterioL 58, 201-213 (1949).
 10 M . Demerec and E. Cahn, J. Bacteriol. 65, 27-36 (1953).

[^28]: ${ }^{11}$ A. Helleender, J. BacterioL 46, 531-54) (1943).

[^29]: ${ }^{12}$ Blechemiatry Section.
 ${ }^{13} \mathrm{~W}$. T. Burnett, Jree D. G. Doherty, and A. W. Kimboll, Biol Semiann. Prog. Rep. Feb. i5, 1955, ORNL-1863; 48-52.

[^30]: ${ }^{14}$ D. G. Dpherty and W. T. Burnewt, Je.y Proce Soc. ExpeL BioL. Med. E9, 312-314 (3955)-
 ${ }^{15} \mathrm{D}$. G. Deherty, \mathbf{W}. T. Burnett, Jrop R. Sheplins, and E. Eavensen, ibil, p $93-94$.
 ${ }^{16}$ Sqe Deherty, Burnett, Shepirg, and Eavensen, Biechomistry, this report.
 ${ }^{17} \mathrm{w}$. T. Burnell, Jrie and A. W, Kimbell, Dempenetretion, Rodiation Roceureh Socev, Now York City, May 195s. Radiation Reverancll, in prest (Abstreet).

[^31]: ${ }^{10} \mathrm{~m}$. T. Burnete, lr . A. B, Buhe, lo, and A. C. Upten, Am. J. PilyaieL $174,254-250(1933)$

[^32]: *Nuplher el 25-dey survivars/humeler leredieted.
 *Wiees deeth time (deys) fer nems.rwivers.
 "Doily celhewteneove injectiens of S me of streptemgrein free seeend te oleventh dey folliewing X irredietien. Newsed in indivilunel eveges.

 "2.6 ins intreperitaneally, 10 min hefere X ievedietion.

[^33]: *Nunter ef 25-dey suevivers/itumeler iprediated.
 **Meen deeth sitee (dayw) fer numsurvivert.
 the thind tw sthe thirteemelh dey foliewing irrediatien.

[^34]: *Nusher ef 28 -dey survivars//number ieredieted.
 *- Miteen deeth sime (doys) for nomservivers.
 the third to the thirteenth toy fellewing irvedietien.

[^35]: ${ }^{3}$ E. P. Cendity, G. Brecter, ont K, E, wither, The

 1183 (1ws).

[^36]:

[^37]:
 Mothenowes Henel.

[^38]: ${ }^{11}$ G. J. Loewi, I. Pakhol, and BacterioL 68, 419-422 (1954).
 ${ }^{12}$ E. Goldwoster and W. F. White, Radiation Reseanch, in press. (Abstrect of peper or Radiation Research Soe., Now York Ciby, May 1955.)

 13 Notional Concer Inswitute.
 ${ }^{14}$ R. M, Morwin and E, L. Mill, I. Narl. Cancer Insh 14, 819-839 (1954).

[^39]: 15 J. M. Main and R. T. Prehn, I. Natl. Cancer Inst. 15, 1023-1029 (1955).

[^40]: ${ }^{1}$ Consultant.
 ${ }^{2}$ Research Asmociate.
 ${ }^{3}$ W. L. Russell, Cold Sprirg Harbor Symposia Quant. Biol. 16, 327-336 (1951).
 ${ }^{4}$ M. L. Alexander, Genetics 39, 409-428 (1954).

[^41]: ${ }^{5}$ This tost was suggested and computed by A, W. Kimball of the Marhomgatics Panel.

[^42]: ${ }^{6}$ G. H. Mickay, Am Naturalist 28, 209-314 (1954).
 ${ }^{7} \mathrm{C}$. Auerbech, Z imiuht. Abstammungeo.l Verentumgev lebre es, 113-125 (1954).

[^43]:
 ${ }^{9}$ E. F. Ookherg. J. Mopphol. 97, in prese.
 ${ }^{10}$ E. F. Owhbere and R. L. DiMinne, Biol Semians Prog. Rep. Fuh 13. 1953, ORNL-1853, $59-51$.

[^44]: "Misetic peoks at IX end XI et mid-point of irrodiation so seering tims.
 "Cells in "dermonf" stege during imedietien.

[^45]: ${ }^{1}$ Consultant.
 ${ }^{2}$ U.S. Air Force.
 ${ }^{3}$ Research Associate; in this section flor port of period.
 ${ }^{4}$ Joinad the section in July 1955.
 ${ }^{\text {SA. C. Upton, J. Furth, and K. W. Christenberry, }}$ Cancer Research 14, 682-690 (1954).

[^46]: ${ }^{5}$ T. T. Odell, J., W. D. Gude, and F. G Teuschs: Biof, Scmiam Prog. Rep. Feh is, trys, OpmL-1B63; -76-78.

[^47]: ${ }^{5}$ We ere indebsed to D. M. Antheng and M, Miller for kimaly providing the low emie revs, ind for sesisvenee in inikiof triding tomseniens.

[^48]:

 hetroes the cisvity point of the olbumin evree end the lev pelist exedel to the o_{2}-glotwlin regien.

[^49]: ${ }^{12} \mathrm{H}$, B5̈wom and E. Jorpen, Experientia 10, 392-396 (1954).
 ${ }^{13}$ D. C. Daiewiotkowaki, J. Biol. Chem 207, 181-186 (1954).
 ${ }^{14}$ J. Winaler, A. W. Dewor, J. W. Mehl, and I. M. Simythe J. Clim Invers 27 , $609-616$ (1948).

 15 J. W. Meht. J. Mumphrey, and R. J. Wimaler, Proc. Sec. Expil Biel. Med 72, 106-109 (1949).
 ${ }^{16}$ H. E. Weimer, J. W. Mehl, and R. J. Winaler, J. Biol. Chem 105, 561-568 (1950).

[^50]:

 ${ }^{5}$ E. F. Pheres, Anct Eiectrin and Bieplyin 33, 173-178 (19s1).

[^51]: *Corrected for differences in ariginal apecific activity of CO_{2} end pyruwete.

 * Besed on ameunts of $\mathrm{C}^{14} \mathrm{O}_{2}$ fised.

 Pretocelt Semples were imevbated in 5 -ml (setal veluma) Werhurg vescels centeining 100 pimeles
 (es indiceted) petessiven pyruvate- $2 \cdot \mathrm{C}^{14}$ (180 covmen/sec), 3.0 peples of potessium melleve, 1.5 fmoles of $\mathrm{BeC}{ }^{14} \mathrm{O}_{3}\left(10,000\right.$ enunts/awe; cenverted to $\mathrm{C}^{14} \mathrm{O}_{2} \mathrm{by}$ eddition of phespheric evid free $\$$ iemese sideorw), centrifuged ($100,000 \times g$ for 1 hb) and diolyaed P. pentosarewn and V. gasegener coll-frow extrocts (conveining 0.5 mp of protein of eoch eatritet), ond purified cendensing enayme. Final vplues, 1.5 ml gee phases, $55 \mathrm{CO}_{2}$ in eirg inculbered 40 min at $24^{\circ} \mathrm{C}$. The ecide were ise leted and seperated, and assayed for C^{14} es in Toble 48.

[^52]: 6, R. Whhler and D. G. Eleme. J. Biol. Chem 210, $165-179$ (1954).

[^53]: 7M. 1. Dolin. Arch Biochem and Bioplys. 55, 415-435 (1955).

[^54]: ${ }^{5}$ w. C. Selweiller, J. Biot Cbem 164, 747-751 (1048).

[^55]: 4. X, Mor © L. D. Zill, f. An Chem Soes 74, 2010-2002 (1052).
 ${ }^{3}$ L. P. zill , X, Khy and G. Meneres, J. Am Chens Socs 75, 1300-1322 (1953).
[^56]: D. G. Deharty and Es, Exeroen, Byal Semiam.

 40-153 (1950).

[^57]: ${ }^{10}$ miserablelegleel Prekection and Revevery Fiectien.
 $13_{\text {memention Recevery Sectime }}$
 ${ }^{12}$ D. G. Diherty, W. T. Bumert, Iros R. Shepirs, and
 citinl-ins3, $53-94$.

[^58]:

[^59]: -Ameunts given ore weights per 800 ml of medium before eddition of heporin.

[^60]: ${ }^{1}$ Consultant.
 ${ }^{2}$ Research participant.
 ${ }^{3}$ Temporary employee, sumener 1955.
 ©Biochemiurry Section
 ${ }^{3} \mathrm{w}$. T. Bumant, Jr.. D. G. Doherty. and A. W, Kimboll, Biol Somianm. Prog: Rep. Feb. 15; 1955, ORNL-1863, - $48-52$
 C_{W} T. Burnets, Dt. D. G. Doherty, and R. Shepire, this roport, Microbiological Protection and Recevery
 ${ }^{7} \mathrm{M}$. O. Kaplan and F. Lipman, J. Biol. Chem, 174, 37 - 44 (i948).

[^61]: O_{R}. L^{K} Kialiuk and W . Sokemi, I. Biol Chen 214, $47-57$ (i95s).

[^62]: ${ }^{9} \mathrm{M}$, Alazander and D. M. Greenberg. J. Biol. Chem 214, $821-637$ (1955).
 10 , \& Cormier ond B, L. Strehior, f. Cellular Comp. Phystioh. 44, $277-280$ (1954).

[^63]: *Untreated beeverial ewtrect.

[^64]: R. J. Rendell. J. Bind Chen iv3, 285-27s (ivsi).

[^65]: L. P. Zail, N, E. Tellert, D. A. Menden, and P. C. Kam, ibic, 100 .

[^66]: ${ }^{4} 150,000=$ wt 1345 a/min frem Ce^{40}.
 bAnelyaed fee shiterophyll ef thr offer hepinnimg of itluminetion.

 EAnelyzed for chlorwpliyll 10 tr after lhepinning of illuminotion.

[^67]: ${ }^{6}$ N. E. Tolbert and P. C. Kerr, ibid., p 97-98.
 $\mathbf{7}_{\mathrm{N}}$. E. Tolbert, H. Wiebe, and P. C. Kerr, Bial. Semiann. Prog. Rep. Aug. 15 , 1954, ORNL. 1766, Semiann.

[^68]: *Differsnce between 100% and the sum of the values in each column is attributable to small amounts of ather compounds net listed in this toble.

[^69]: 8, E. Tolbert and L. P. Zilt, Arch. Biochem and Biophys. 50, 392-398 (1954).

[^70]: FA, R, Krall and M, E. Tolbert, Biol, Semiane Prep Rep. Feb. 15, 1953, ORNL-1563, $102-103$.
 ${ }^{i 0} \mathrm{P}, \mathrm{W}$, Zimmermen, W, Crueker, ond A, E, Misehreek, Contrit. Boyer Thowtron fant. 5, 1-17 (iv33).

[^71]: ${ }^{31} \mathrm{~F}, \mathrm{~L}$. Titure and D, M, Bermer, J. Biok. Cherk 151, 3 (ipan.

[^72]: ${ }^{12}$ A. R. Krall bind L. P. Zill, Biol. Semians. Proge Kep. Awg- 15, 1954, ORNL-1766, p 83.

[^73]: ${ }^{13}$, C. Gunsalus, M, D. Dolin, and L. Struglie, J. Biol. Chem 194, 849-857 (1952).

[^74]: 52. R. C. Brewn, Setemex 121, 511 -512 (1955).
[^75]: ©This work was supperted in pert by egseand grant
 sarwies.
 7E. C. Horn and M. E. Howse, Mist Semades. Preg. Rep Feh 15, 1933, OmNL-1843, 100-111.

 E, C. Mern, hiowhim et Biephys Aete 16, 440-442 (t953).

[^76]: \%R. G. Geatpehalt and A. Grollman, Caerer Erenarel 12. $651-653$ (ivis2)

[^77]: Se3-956 (asev.

[^78]:

[^79]: Sh, Steimete end L. S. Seens, Ameat Erecoed 120, 435 (10s).

 SNow in Genarel Phreieloger Seetion.
 J/natrumenterion and Cemtrele Division.

[^80]: ${ }^{10}$ Genersel Plirnielear Section.
 ${ }^{11}$, E, Beper and E. E. Zuble, U.S. Potent No. 2.585.0.6.

[^81]: orevi-1sio (TVS品)
 ${ }^{12}$, s. Eith-inith and C. P. Sumsen, Selience 110 . 42-is (ivse)
 ${ }^{16} 4$, K. Beler and E. I. Von Hello, caid. 46-48.

 (atd, $260-206$.
 ${ }^{17}$ G. S. Morst, I. A. Mills, F. P. Certs, and A. C. Upten, fídiatse fifeniovit in pross.
 ${ }^{18}$ A. C. Upien, F. P. Centen Q. S. Murst, and w, A. wills, ibich, in press.

[^82]: 295 - 314 C 10 Ses.

