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The purpose of this research was two-fold: (1) further validate the Virtual Reality Stroop 

Task HMMWV [VRST; Stroop stimuli embedded within a virtual high mobility multipurpose 

wheeled vehicle] via a comparison of the 3-dimensional VRST factor structure to that of a 2-

dimensional computerized version of the Stroop task; and (2) model the performance of machine 

learning [ML] classifiers and hyper-parameters for an adaptive version of the VRST. Both the 3-

D VRST and 2-D computerized Stroop tasks produced two-factor solutions: an accuracy factor 

and a reaction time factor. The factors had low correlations suggesting participants may be 

focusing on either responding to stimuli accurately or swiftly. In future studies researchers may 

want to consider throughput, a measure of correct responses per unit of time. The assessment of 

naive Bayes (NB), k-nearest neighbors (kNN), and support vector machines (SVM) machine 

learning classifiers found that SVM classifiers tended to have the highest accuracies and greatest 

areas under the curve when classifying users as high or low performers. NB also performed well 

but kNN algorithms did not. As such, SVM and NB may be the best candidates for creation of an 

adaptive version of the VRST. 



ii 

Copyright 2022 

by 

Justin M. Asbee



iii 

TABLE OF CONTENTS 

Page 

LIST OF TABLES .......................................................................................................................... v 
 

LIST OF FIGURES ....................................................................................................................... vi 
 

CHAPTER 1. INTRODUCTION ................................................................................................... 1 

1.1 Stroop Task ............................................................................................................. 1 

1.2 Theories Explaining the Stroop .............................................................................. 1 

1.3 Low-Dimensional Computer-Automated Stroop Presentations ............................. 2 

1.4 Cognitive and Affective Processing ........................................................................ 4 

1.5 Virtual Reality (VR) Assessments .......................................................................... 6 

1.6 The Virtual Reality Stroop Task (VRST) ............................................................... 8 

1.7 Adaptive Assessments and Flow .......................................................................... 10 
 

CHAPTER 2. FACTOR ANALYSIS OF THE VRST AND ANAM STROOP TASK .............. 14 

2.1 Purpose of Factor Analysis ................................................................................... 14 

2.2 Methods................................................................................................................. 14 

2.2.1 Participants ................................................................................................ 14 

2.2.2 Materials ................................................................................................... 15 

2.2.3 Analyses .................................................................................................... 17 

2.3 Results ................................................................................................................... 18 

2.3.1 VRST Combined Results .......................................................................... 19 

2.3.2 VRST Safe Zones and Ambush Zones ..................................................... 22 

2.3.3 Throughput Assessment ............................................................................ 23 

2.3.4 ANAM ...................................................................................................... 27 

2.3.5 Factor Correlations.................................................................................... 30 
 

CHAPTER 3. CLASSIFICATION OF PERFORMANCE IN THE VIRTUAL REALITY 
STROOP TASK USING MACHINE LEARNING ..................................................................... 31 

3.1 Purpose of Classifier Assessment ......................................................................... 31 

3.2 Methods................................................................................................................. 32 

3.2.1 Participants ................................................................................................ 32 

3.2.2 Materials: VRST (Virtual Reality Stroop Task) ....................................... 33 



iv 

3.2.3 Procedures ................................................................................................. 34 

3.3 Results ................................................................................................................... 39 

3.3.1 Overall Performance ................................................................................. 39 

3.3.2 Safe Zones ................................................................................................. 44 

3.3.3 Ambush Zones .......................................................................................... 48 
 

CHAPTER 4. DISCUSSION ........................................................................................................ 52 

4.1 Overview ............................................................................................................... 52 

4.2 VRST Factor Analysis .......................................................................................... 53 

4.2.1 ANAM ...................................................................................................... 53 

4.2.2 VRST Combined ....................................................................................... 54 

4.2.3 VRST Safe Zones vs Ambush Zones........................................................ 55 

4.2.4 Comparison of Stroop Tasks ..................................................................... 56 

4.3 Discussion Machine Learning Analysis................................................................ 57 

4.3.1 Naïve Bayes Performance ......................................................................... 58 

4.3.2 Support Vector Machine Performance...................................................... 58 

4.3.3 k Nearest Neighbors Machine Performance ............................................. 59 
 

CHAPTER 5. CONCLUSIONS ................................................................................................... 61 

5.1 Overview ............................................................................................................... 61 

5.2 Conclusions and Limitations from Factor Analysis.............................................. 61 

5.3 Conclusions and Limitations from Machine Learning Analysis .......................... 62 

5.4 General Conclusions ............................................................................................. 64 
 

REFERENCES ............................................................................................................................. 66 
  



v 

LIST OF TABLES 

Page 

Table 2.1. Demographics (N = 115) ............................................................................................. 14 

Table 2.2. Descriptive Statistics.................................................................................................... 19 

Table 2.3. MAP VRST Combined ................................................................................................ 20 

Table 2.4. Randomly Generated Eigenvalues from Parallel Analysis VRST Combined ............. 21 

Table 2.5. PAF Loadings from VRST Combined......................................................................... 22 

Table 2.6. MAP VRST Safe Zone ................................................................................................ 25 

Table 2.7. Randomly Generated Eigenvalues from Parallel Analysis VRST Safe Zone ............. 25 

Table 2.8. PAF Loadings from VRST Safe Zones ....................................................................... 25 

Table 2.9. MAP VRST Ambush Zone .......................................................................................... 26 

Table 2.10. Randomly Generated Eigenvalues from Parallel Analysis VRST Ambush Zone ..... 26 

Table 2.11. PAF Loadings from VRST Ambush Zones ............................................................... 27 

Table 2.12. Throughput Scores VRST .......................................................................................... 27 

Table 2.13. MAP ANAM.............................................................................................................. 29 

Table 2.14. Randomly Generated Eigenvalues from Parallel Analysis ANAM........................... 29 

Table 2.15. PAF Loadings from ANAM ...................................................................................... 29 

Table 2.16. Factor Score Correlations .......................................................................................... 30 

Table 3.1. Demographics (N = 157) ............................................................................................. 32 

Table 3.2. Classification Metrics .................................................................................................. 38 

Table 3.3. Descriptive Statistics for Predictor Variables .............................................................. 39 

Table 3.4. Classification Metrics for Combined Performance ..................................................... 41 

Table 3.5. Classification Metrics for Safe Zone Performance ...................................................... 45 

Table 3.6. Classification Metrics for Ambush Zone Performance ............................................... 49 



vi 

LIST OF FIGURES 

Page 

Figure 1.1. Example Stimuli from the Automated Neuropsychological Assessment Metrics 
(ANAM) Stroop Task ..................................................................................................................... 1 

Figure 1.2. Screen Captures from the VRST, Images Show the Complex Interference Condition 8 

Figure 2.1. Scree Plot VRST Combined Safe and Ambush Zone ................................................ 20 

Figure 2.2. Scree Plot VRST Safe Zones (A) and Ambush Zones (B) ......................................... 24 

Figure 2.3. Scree Plot for ANAM Stroop ..................................................................................... 28 

Figure 3.1. Accuracy for Classifications Combined Performance ............................................... 42 

Figure 3.2. Sensitivity for Classifications Combined Performance .............................................. 42 

Figure 3.3. Specificity for Classifications Combined Performance ............................................. 43 

Figure 3.4. Precision for Classifications Combined Performance ................................................ 43 

Figure 3.5. Accuracy for Classifications in Safe Zones ................................................................ 46 

Figure 3.6. Sensitivity for Classifications in Safe Zones .............................................................. 46 

Figure 3.7. Specificity for Classifications in Safe Zones.............................................................. 47 

Figure 3.8. Precision for Classifications in Safe Zones ................................................................ 47 

Figure 3.9. Accuracy for Classifications in Ambush Zones ......................................................... 50 

Figure 3.10. Sensitivity for Classifications in Ambush Zones ..................................................... 50 

Figure 3.11. Specificity for Classifications in Ambush Zones ..................................................... 51 

Figure 3.12. Precision for Classifications in Ambush Zones........................................................ 51 

 



1 

CHAPTER 1 

INTRODUCTION 

1.1 Stroop Task 

A common tests of executive functioning is the Stroop task (Scarpina and Tagini 2017). 

Psychologists have broadly defined executive functioning as the ability to control complex 

cognition and engage in thoughts and behaviors related to current goals, while ignoring irrelevant 

stimuli (McCabe et al., 2010). Executive functioning consists of multiple aspects of cognitive 

control abilities (e.g., cognitive workload, attention, planning, goal orientation, and inhibition; 

(McCabe et al., 2010). The Stroop task is believed to mainly assess inhibition, to produce a 

correct response participants need to rely on controlled processing to inhibit automatic responses 

(Heidlmayr et al., 2020). 

1.2 Theories Explaining the Stroop 

When performing the Stroop task several conditions exist. Participants are often asked to 

name patches of colors, read color words, and name colors (MacLeod, 1991). The Stroop effect 

(i.e., an increase in response time due to an interference effect) occurs when participants are 

asked to name the color of the stimuli when the semantic meaning of the color word does not 

match the font of the word (e.g., the word blue presented in red font, e.g., blue; see Figure 1.1).  

Figure 1.1 
 
Example Stimuli from the Automated Neuropsychological Assessment Metrics (ANAM) Stroop 
Task 
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Macleod (1991) reviews several theories used to explain the Stroop effect such as 

perceptual encoding. According to this theory the encoding of information such as a neutral 

control or congruent stimuli (i.e., where the ink color and word color match) occurs more quickly 

than the processing of incongruent stimuli because the information provided by the ink color and 

word are not compatible. Another explanation is the relative speed of processing model. 

According to the relative speed of processing model both naming of the color and reading of the 

word are processed at the same time. However, to produce a response a threshold of activation 

must be reached before a response is produced. This model assumes that interference is produced 

because word reading can be processed faster than color naming. There is a resultant increase in 

time required for a correct response.  

While there are other models aimed at explaining the Stroop effect, the predominant view 

is that the Stroop effect is likely due to controlled and automatic processing (Lifshitz et al., 

2013). According to dual process theory, automatic and controlled processing are two distinct 

systems. These two systems are used for decision making and stimulus responses (Pennycook, 

2017). Lifshitz and colleagues (2013) state automatic processes are rapid, automatic, and non-

conscious, controlled processes by contrast are effortful, slow, and deliberate. The Stroop effect 

is thought to involve controlled inhibition of automatic (e.g., word reading) responses, which 

requires greater cognitive resources and leads to increased response time (Lifshitz et al., 2013). 

However, scores on the Stroop task have been found to be correlated with and may in part rely 

other cognitive functions such as attention, processing speed, and working memory (Periáñez et 

al., 2020) 

1.3 Low-Dimensional Computer-Automated Stroop Presentations 

Many Stroop tasks are considered low dimensional assessments. Low dimensional 
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assessments are tasks or measures that often do not allow for interactivity and utilize static 

stimuli which may not reflect real-world situations (Parsons & Duffield, 2020). Many of the 

earliest examples of low dimensional assessments are paper-and-pencil measures using simple 

stimuli (Parsons & Duffield, 2020). Low dimensional assessments typically involve little 

contextual information, (i.e., lacking much of the environmental cues readily available in real-

world settings). The addition of environmental and contextual cues may be important for 

generalization to situations and environments outside of the lab setting (Schilbach, 2015).  

Computerized assessments represent a step beyond simple paper-and-pencil measures. 

Computer-based assessments allow for some degree of automation. Automation can range from 

presentation of directions or stimuli to scoring and evaluation. Computerized assessments may 

allow for precise measurements of behaviors such as reaction time (Rabin et al., 2014). 

Computerized assessments have improved upon traditional measures; however, many can still be 

considered low dimensional assessments (Parsons & Duffield, 2020). Computerized assessments 

are typically designed to mirror the traditional psychological measures they were based on, 

leading many to have the same issues as traditional assessments (Kessels, 2019). Unfortunately, 

many lower dimensional assessments are still considered the gold standard for measurement of 

psychological constructs. This is often due to the large amounts of norming data that have been 

collected over time (Woodhouse et al., 2013). Lower dimensional measures have advanced our 

knowledge and understanding within the field of psychology, but these measures are not without 

their limitations (Pan & Hamilton, 2018).  

The Automated Neuropsychological Assessment Metrics (ANAM) version of the Stroop 

task (Vista Life Sciences) is an example of a computer automated Stroop task (Reeves et al., 

2007). Participants perform three Stroop conditions within the ANAM Stroop, the primary 
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outcome measures are speed and accuracy (Reeves et al., 2007). Computerized versions of the 

Stroop task often involve single stimulus presentations of Stroop stimuli, which may minimize 

interference from surrounding Stroop stimuli (Periáñez et al., 2021). Further, computerized 

Stroop tasks may offer reaction times for individual Stroop stimuli. Participant performance for 

congruent (i.e., word font and written word match) or incongruent (i.e., word font and written 

word do not match) stimuli may also be assessed independently with single-item presentations 

(Brunetti et al., 2021).  

Many low dimensional psychological assessments emphasize experimental control which 

may lead to a decreased ability of assessments to reflect real-world outcomes (Parsons, 2015). 

For many of these lower dimensional assessments application outside of the lab may not have 

been their intended purpose, but many of these assessments have been adopted for such use 

(Baumeister, 2016). Often this approach leads to issues involving ecological validity where the 

ability of low dimensional tasks to predict real-world behavior is poor (Pan & Hamilton, 2018). 

Many low dimensional assessments are designed to optimize experimental control while 

sacrificing ecological validity. Parsons (2015) states that ecological validity has two major 

components: veridicality and verisimilitude. Veridicality infers that construct-driven measures 

should predict functioning in daily life (e.g., measures of memory should be related ability to 

remember items while shopping). Verisimilitude is an indication of the degree to which the 

psychological measures and testing conditions resemble the users’ daily activities (Parsons, 

2015).  

1.4 Cognitive and Affective Processing 

Additionally, many low dimensional psychological assessments focus on abstract 

cognitive tasks and emotional/affective processing is often not assessed. Zelazo (2015) argues 
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that both cognitive and affective processing are important in many real-world situations. 

Assessments focused on cognitive abilities tend to be more related to abstract processes such as 

planning, inhibition, or working memory (Nejati et al., 2018). A potential reason lower 

dimensional assessments may not tap into emotional processing is because of the lack of 

contextual/environmental cues. Cognitive processing involved during low-dimensional Stroop 

tasks is believed to occur in parts of the anterior cingulate cortex (ACC; Cieslik et al., 2015). 

Ruff and colleagues (2001) found that the dorsal aspect of the ACC was most activated during 

conflict (i.e., incongruent conditions) within a lower dimensional Stroop task. The Stroop task is 

also believed to involve other areas connected to the dorsal ACC, mainly the dorsolateral 

prefrontal cortex (DLPFC; Cieslik et al., 2015). However, many other brain areas are involved in 

executive functioning. For example, working memory is unlikely to rely solely on the DLPFC 

(Diamond & Levine, 2018), interactions between brain areas such as the medial prefrontal cortex 

(mPFC) and hippocampus may be critical for components of cognitive processing such as 

working memory (Jin & Maren, 2015).  

Areas of the ACC play an important role in both abstract and emotional processing 

(Shenhav et al., 2016). may not be fully assessed by lower dimensions measures Tasks that are 

affective in nature typically involve emotion, motivation, or immediate vs late delayed 

gratification (Zelazo, 2015). Ventral aspects of the ACC are important for decision making 

regarding risk and reward (Cai & Padoa-Schioppa, 2012). Ventral aspects of the ACC may also 

play a role in effort and motivation potentially determining how much attention is given to 

cognitive assessments (Shenhav et al., 2016). Ventral aspects of the ACC connect to emotional 

areas of the brain such as the limbic area and to some frontal regions such as the orbitofrontal 
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cortex (OFC; Feroz et al., 2019). The OFC and the limbic area play key roles in emotional and 

affective processing (Zelazo, 2015).  

Many of these brain areas may also be important for emotional responses (Schweizer et 

al., 2013). Increases in cognitive or affective load (i.e., the degree to which these systems are 

utilized) may lead to strains in both systems and possibly lead to reductions in inhibitory/control 

abilities (Plass & Kalyuga, 2019). The modal model of emotions states that the evaluations of 

stimuli can lead to changes in cognition and physiology based on whether these stimuli are 

attended to or not (Gross, 2015). A person’s active goals and the ability or resources available to 

dynamically attend to these goals likely influence which stimuli are attend to (Gross, 2015). 

Cognitive load has also been found to be correlated with multiple measures of 

psychophysiological arousal including electrodermal response (Romine et al., 2020), heart rate 

(Johannessen et al., 2020), and respiration rate (Barua et al., 2020). Research on the Stroop task, 

typically considered a cognitive task, found changes in psychophysiological arousal occur during 

the assessment, measured via pupil diameter (Laeng et al., 2011). 

1.5 Virtual Reality (VR) Assessments 

Leveraging newer technologies for psychological assessment may provide advantages 

over previous methods. A range of technologies which may provide enhancements to current 

methods include manipulation of measurement techniques, computational modeling and 

simulation, and virtual reality (VR; Parsons & Duffield, 2019). Typically, VR assessments are a 

move beyond computerized assessments and may enable researchers to create and present users 

with high dimensional, interactive stimuli (Pan & Hamilton, 2018). These higher dimensional, 

interactive stimuli may increase ecological validity of the assessment. High dimensional tools 

such VR assessments, may help with some of the ecological validity issues typically associated 
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with 2D computerized assessments. For example, VR may offer enhanced representation of real-

world environments, engaging background narratives, enhanced stimulus presentations, and 

diverse (while reliable) ways of presenting stimuli (Gerjets et al., 2014; Parsons 2015). Most low 

dimensional tasks generally have simple stimulus presentations (Parsons & Duffield, 2020). 

Stroop task stimuli are traditionally presented concurrently on a card or sheet of paper. Moving 

to computerized assessments can be an improvement over traditional assessment, however as 

mentioned before many computerized assessments do not address many of the issues associated 

with traditional low dimensional assessments (Kessels, 2019).  

High dimensional VR assessments present users with more environmental information 

and do not simply provide users with stimuli devoid of context (e.g., a sheet of stimuli or stimuli 

centered within a blank screen; Parsons et al., 2013). For example, the Virtual Reality Stroop 

Task (VRST; HMMWV version) has participants ride in a simulated high mobility multipurpose 

wheeled vehicle (HMMWV) along a desert road modeled after middle eastern environments 

(Parsons et al., 2013). Higher dimensional assessments may lead to increased levels of 

immersion due to increased levels of detail provided by the stimuli and possibly leading to 

arousal (Diemer et al., 2015). Moreover, Parsons and associates (2011) found that when 

participants were in a more immersive virtual environment (i.e., use of VR equipment such as a 

head mounted display), they had increased levels of arousal compared to a less virtual immersive 

environment, where they interacted with the environment using a standard laptop display. 

Neguţ and colleagues (2015) conducted a meta-analysis to examine convergent validity 

of assessments utilizing VR with lower dimensional assessments. The results suggested moderate 

convergent validity. The researchers stated that, often significant differences exist between lower 

dimensional tests and measures utilizing high dimensional VR. These differences may be due to 
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many VR assessments being designed to have greater ecological validity (Neguţ et al., 2015; 

Parsons et al., 2017). 

1.6 The Virtual Reality Stroop Task (VRST) 

The VRST (HMMWV version; Figure 1.2) provides detailed environmental information 

to participants. The VRST manipulates various aspects of the environment (i.e., number of 

arousing stimuli) and stimulus presentation complexity (i.e., congruency of Stroop stimuli and 

location of stimuli) while participants perform the Stroop task (Parsons & Courtney, 2018). The 

VRST includes four conditions: word reading, color naming, simple interference, and complex 

interference. The word reading, color naming and simple interference conditions include Stroop 

stimuli that are like other Stroop tasks. Within the VRST stimuli are presented in the middle of 

the user’s visual field except for the complex interference condition where stimuli are presented 

at varying locations in the user’s visual field (Parsons et al., 2013).  

Figure 1.2 

Screen Captures from the VRST, Images Show the Complex Interference Condition 

 
 

The VRST incorporates some aspects lower dimensional Stroop tasks but also includes 

additional information via the environment. While there are differences between the Stroop 
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modalities, previous research has observed the overall Stroop effect in conditions where giving 

the correct response required more cognitive resources and in general involved an increase in 

response times (Parsons & Barnett, 2019, 2018). Previous research has found correlations 

between scores from low dimensional Stroop tasks and the VRST, indicating construct validity 

(Armstrong et al., 2013; Parsons et al., 2013).  

Participants experience all four Stroop conditions from the VRST in both safe and 

ambush zones. The VRST is believed to influence affective processing, particularly within 

ambush zones. The ambush zones are marked by a high number of potentially arousing stimuli 

(e.g., explosions and gunfire) compared to safe zones which presents a minimal number of 

external distractors. The ambush zones have been found to increase several measures of 

autonomic arousal including heart rate, respiration rate, and skin conductance level, suggesting 

changes in affective and cognitive load (Parsons & Courtney, 2018). As previously suggested 

users may have to direct attention away from the environment and potentially arousing stimuli to 

increase task performance (Parsons & Courtney, 2018). 

Overall performance on the VRST may be impacted by levels of arousal in either a 

positive or negative way. According to Rozenek and colleagues (Rozenek et al., 2019) typically 

cognitive performance for moderately challenging tasks is best when under moderate levels of 

arousal. When arousal is too high cognitive performance tends to suffer as emotions such as fear 

or rage may produce restricted awareness and disorganized behavior to occur (Rozenek et al., 

2019). Performance may also decline with low levels of arousal, when arousal is insufficient 

drowsiness and disengagement may occur (Rozenek et al., 2019; Wekselblatt & Niell, 2015). 

The inverted-U shape of performance (i.e., lowered performance under low or high arousal) has 

been called the Yerkes-Dodson Law (Chaby et al., 2015). The Yerkes-Dodson Law is based on a 
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series of experiments where moderate levels of arousal were associated with the greatest levels 

of task performance (Chaby et al., 2015).  

Previous research modeled optimal arousal and performance within the VRST (Wu et al., 

2010). Researchers found that reaction times followed a pattern like the Yerkes-Dodson Law, 

where optimal performance is found at moderate levels of arousal (Wu et al., 2010; Parsons & 

Reinebold, 2011). Wu and colleagues (2010) found that psychophysiological measures collected 

during the VRST could be used to evaluate task difficulty. In a series of studies Wu and 

colleagues used machine learning (ML) algorithms to examine arousal data from the VRST (Wu 

et al., 2010; Wu & Parsons, 2011a; Wu & Parsons, 2011b; Wu & Parsons, 2012; Wu et al., 

2013). Wu and associates (2010) initially examined the feasibility of identifying optimal arousal 

in participants. The researchers found that there was a high degree of individual variability in 

arousal, using a classifier based on group level metrics for arousal likely led to decreased 

classifier performance. The next several studies attempted to reduce the amount of subject-

specific data needed to accurately classify arousal. The researchers examined transfer learning, 

(Wu & Parsons, 2011a) active class selection, (Wu & Parsons, 2011b), and a combination of 

transfer learning and active class selection (Wu & Parsons, 2012; Wu et al., 2013).  

1.7 Adaptive Assessments and Flow 

Parsons and Reinebold (2012) created a framework for creating adaptive high 

dimensional assessment. Features of the assessment (e.g., number of stimuli or task difficulty) 

can be manipulated to allow users to potentially stay within a level of optimal performance 

(Rodríguez-Ardura & Meseguer-Artola, 2016). Parsons and Reinebold (2012) used transfer 

learning, active class selection, and a combination of the two based on the research by Wu and 

colleagues (2010; 2011a; 2011b) to improve classifications of participant’s affective states. Data 
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from the assessment was used to evaluate task difficulty based upon participant performance and 

psychophysiological measures. These metrics were then used to allow for changes within the VR 

assessment.  

The flow model may be helpful for predicting performance within VR assessments such 

as the VRST. The flow model suggests that trade-offs between environmental excesses and 

decrements (i.e., variation in cognitive and affective load) can lead to changes in task 

performance associated with experiences of flow (i.e., a state of immersion or absorption in the 

current task) (Nakamura & Csikszentmihalyi, 2014). Increased experiences of flow may lead to 

optimal levels of performance which may be associated multiple factors such as when task 

difficulty is consistent with the participant’s skill level (Nakamura & Csikszentmihalyi, 2014). 

Other factors, which improve the likelihood of entering flow states other than the challenge-skill 

balance include unambiguous feedback and having a sense of control (Gerjets et al., 2014; 

Rodríguez-Ardura & Meseguer-Artola, 2016). Increases in experiences of flow have been 

associated with increased performance on a wide variety of tasks such as athletics, musicianship, 

and learning (Chirico et al., 2015; Norsworthy et al., 2017; Rodríguez-Ardura & Meseguer-

Artola, 2016).  

Adaptive assessments can be used to manipulate many of the factors associated with flow 

(Parsons & Reinebold, 2012). Well-designed VR assessments may be particularly suited for 

placing people in flow states because they can manipulate many aspects of the assessment 

associated with flow (McMahan & Parsons, 2020). The VRST for example, could increase or 

reduce the number of arousing stimuli presented in the environment, potentially leading to an 

optimal level of task difficulty for the user.  

The classification algorithm (i.e., statistical procedure for assessing participant 
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performance) is an important aspect of adaptive VR assessments. Selecting and evaluating 

various ML algorithms is essential because some algorithms perform better in certain situations 

compared to others (Parsons et al., 2022). Classifying events related to participant reactions is 

necessary for adaptive VR assessments and more research evaluating ML algorithms would be 

beneficial (Parsons et al., 2022). Further, classification techniques may have utility for screening 

and assessing a variety of conditions and disorders such as autism spectrum disorder, traumatic 

brain injury, and post-traumatic stress disorder (Galatzer-Levy et al., 2017; Mitra et al., 2016; 

Omar et al., 2019). Within the clinical field classifiers may be able to be used as screeners to 

determine if users may need to pursue further treatment. For example, classifiers have been used 

to automated detection of traumatic brain injury (Mitra et al., 2016). Additionally, classification 

algorithms may potentially reduce the costs typically associated with autism spectrum disorder 

diagnosis as classifiers have had some success as screening tools for autism spectrum disorder 

(Omar et al., 2019). Additionally, Badesa and colleagues (2014) suggested that ML classifiers 

could be used to for adaptive therapy applications as well. 

Adaptations within the VE occur in a variety of ways including: the addition and removal 

of stimuli, increasing and decreasing the number of distractions in the VE, or providing guidance 

to the participant (Drey et al., 2020; Zahabi & Abdul Razak, 2020). Parsons and colleagues 

2022) examined EEG signals in the context of game related events. They assessed the 

performance of SVM, NB, and kNN, they found that NB produced the best classification for 

negative game-based events and kNN was best for classifying beta bands from EEG data 

(Parsons et al., 2022). McMahan and colleagues (2021) evaluated three classification techniques 

for building an adaptive Virtual Reality Stroop Task within a classroom setting. The researchers 

examined support vector machines (SVM), Naïve Bayes (NB), and k-nearest neighbors (kNN). 
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They found that SVM outperformed both NB and kNN classification algorithms when using a 

10-fold cross validation (McMahan et al., 2021).  

The following sections describe and explore the use of several of these technologies. The 

first study provides additional validation of the VRST, a 3-dimensional Stroop task, by 

comparing its factor structure with the factor structure of a 2-dimensional Stroop task the ANAM 

Stroop task. The second study examines several ML algorithms and hyper-parameters that can 

potentially enhance the classification of participant performance within the VRST for an 

adaptive version. 
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CHAPTER 2 

FACTOR ANALYSIS OF THE VRST AND ANAM STROOP TASK 

2.1 Purpose of Factor Analysis 

While there is a growing body of literature on the VRST and its validity, the factor 

structure has yet to be explored and would provide a more detailed understanding of the VRST. 

Therefore, the current work performed an exploratory factor analysis of the VRST. Additionally, 

the factor structure of the VRST is compared to a computerized (ANAM) Stroop task.  

2.2 Methods 

2.2.1 Participants 

The current study conducted an examination of Stroop tasks performed by undergraduate 

students (N = 115; M age = 20.39, SD = 3.56; 56.52% women) from a large university in the 

southwestern United States. The participants primarily identified as non-Hispanic white 

(48.48%; Table 2.1).  

Table 2.1 

Demographics (N = 115) 

Characteristic Mean (SD) % 

Age (in years) 20.39 (3.56)  

Men  43.48 

Women  56.52 

Black  18.26 

Asian  7.83 

Hispanic  21.74 

Non-Hispanic white  48.70 

Other/Multiracial  1.74 
 
Participants with scores on variables greater than two standard deviations from the mean had 
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those variable scores removed from the analyses (91 participants had data for all VRST 

conditions, 97 had data for safe zones, 102 had data for all ambush zones, and 98 had data for the 

ANAM Stroop). Participants completed a battery of assessments in addition to the ANAM and 

VRST. 

2.2.2 Materials 

2.2.2.1 ANAM (Automated Neuropsychological Assessment Metrics) 

The ANAM Stroop is a computer-automated version of the Stroop task. This version of 

the Stroop task has three conditions word reading, color naming, and simple interference. In each 

of these conditions, participants are presented with 50 items. Participants are asked to respond to 

stimuli both verbally and by pressing a button. The word reading condition shows participants 

the words red, green, or blue, which are in all caps and white font. Participants are asked to 

respond to the color of the word. When performing the color naming condition participants 

respond to four capital X’s in either red, green, or blue font. Participants are instructed to 

respond to the color of the font of the X’s. Lastly, in the simple interference condition, 

participants are presented with color words (either red, green, or blue) which are in red, green, or 

blue fonts and are asked to respond to the color of the font rather than reading the word. Scores 

from the ANAM Stroop are collected automatically. 

During the ANAM Stroop, participants used a standard desktop computer with a 

keyboard and mouse as interfaces. Participants are presented on a standard computer monitor 

with a black screen. Instructions are presented in white font. Before beginning, participants read 

instructions on the computer screen and are prompted to verbally respond by reading each word 

aloud as they press a color-coded button on their keyboard. Participants are asked to respond to 

each stimulus as quickly as possible without making mistakes. Each stimulus is presented one at 
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a time in the middle of the screen. Once the participant responds to an item the next item is 

displayed. Each condition consists of several practice items before informing the participant that 

they will be tested for speed and accuracy, and then testing the participant on 50 Stroop items.  

2.2.2.2 VRST (Virtual Reality Stroop Task) 

The high mobility multipurpose wheeled vehicle (HMMWV) version of the VRST 

(Figure 1.2) is a 3D presentation of the Stroop task. When performing the VRST participants ride 

in a simulated HMMWV along a desert road modeled after middle eastern environments. 

Participants are not required to drive the vehicle and the simulated HMMWV travels along a pre-

determined path. The VRST consists of four Stroop conditions: word reading, color naming, 

simple interference, and complex interference. However, complex interference was not included 

in the current study to make results more comparable to the ANAM Stroop. Of the Participants 

first respond to color words, then colored X’s, and then words in various font colors. The 

complex interference Stroop condition is like the simple interference condition with an additional 

degree of difficulty. Within the complex interference condition instead of the stimuli appearing 

in the middle of the windshield they appear in various locations of the windshield. Also, 

participants experience safe zones and ambush zones which are alternating and counterbalanced. 

Potentially arousing stimuli outside of the HMMWV are not included as it travels through the 

safe zones. In ambush zones participants experience arousing stimuli such as simulated gunfire, 

explosions, and shouting. Participants experience each of the Stroop conditions in both safe and 

ambush zones (eight conditions in total). 

The VRST may be displayed using either a standard computer monitor or can be 

displayed through a head mounted display (HMD). In the case for the current study the HTC 

Vive HMD was used (https://www.vive.com/us/). The Vive (released in 2016) includes 2 
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external sensors for location detection, a head mounted display for displaying visual information, 

and over-ear speakers for emitting surround sound. The field of view provided by the Vive is 

approximately 110° (approximately 90° per eye). Each eye receives visual information from a 

separate 1080×1200 pixel display with a 90 Hz refresh rate. Participants respond to Stroop 

stimuli with an appropriate key press on a keyboard. The Stroop stimuli are presented one at a 

time. Once a participant responds to a Stroop stimulus the next is presented. In each of the 

Stroop conditions participants can experience up to 50 Stroop items, however each zone has a 

time limit before the next zone starts. If participants take a long time to respond to stimuli, they 

may not experience all 50 items in a zone before the next zone starts. 

2.2.3 Analyses 

Factor analyses were conducted to examine and compare the underlying constructs of the 

VRST and the ANAM. Analyses were performed using SPSS software version 27. Outcome 

variables used in the analyses consisted of mean reaction times and percentage of correct 

responses from each of the Stroop conditions (e.g., word reading). Factor analyses were 

conducted with both safe zone data from the VRST together and with the conditions separated 

due to differences between the safe zones and the ambush zones. Because the ANAM does not 

include a complex interference condition, data from the VRST complex interference condition 

was not included in the factor analysis. Participants with scores on variables greater than two 

standard deviations from the mean had those variable scores removed from the analyses (91 

participants had data for all VRST conditions, 97 had data for safe zones, 102 had data for all 

ambush zones, and 98 had data for the ANAM Stroop). Normality of the data was assessed by 

examining skewness and kurtosis values and visually inspecting histograms. Normally 

distributed data can improve the performance of several types of extraction methods such as 
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principal axis factoring (PAF; Yong & Pearce, 2013). 

Before performing the factor analyses, the appropriateness of factor analysis was 

evaluated by examining correlation matrixes (Tabachnick & Fidell, 2013), Kaiser-Meyer-Olkin 

Measure of Sampling Adequacy (KMO), and Bartlett’s test of sphericity (Howard, 2016). KMO 

scores should be above 0.5, but 0.6 and above is more desirable (Howard, 2016). When 

performing the extraction during the analyses, PAF was performed (Ngure et al., 2015). Further, 

the correlation matrix was used as opposed to the variance-covariance matrix to increase 

interpretability of results (Yong & Pearce, 2013). 

Several sources were used to determine the number of factors to extract including 

eigenvalues, scree plots, parallel analysis, and the minimum average partial (MAP) test. Direct 

oblimin (with delta set to 0) is an oblique rotation that was used in the current study for factor 

rotations (Osborne, 2015). Factor loadings in the current study were based on pattern matrices. 

Guidelines for assigning variables to factors based on factor loadings come from Howard 

(Howard, 2016). Participant factor scores from the Stroop tasks were examined for potential 

correlations between the underlying factors across Stroop tasks, using Pearson’s r. Finally, 

differences between scores from the safe zones and ambush zones were examined via paired-

samples tests. These tests assess differences within participants across measures. 

2.3 Results 

Descriptive statistics for percent of correct responses and mean response times to 

variables from the Stroop tasks can be seen in Table 2.2. Skewness, kurtosis, and histograms for 

the variables indicated that the variables were normally distributed. 
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Table 2.2 

Descriptive Statistics 

Variable M SD Skewness Kurtosis 

VRST % correct WR Safe 93.65 4.47 -0.57 -0.30 

VRST % correct CN Safe 93.22 5.26 -0.59 -0.28 

VRST % correct SI Safe 92.40 5.79 -0.69 0.07 

VRST % correct WR Ambush 92.04 4.98 -0.28 -0.57 

VRST % correct CN Ambush 91.71 5.17 -0.57 -0.22 

VRST % correct SI Ambush 91.28 6.17 -0.51 -0.46 

VRST reaction time WR Safe 962.07 116.48 0.32 -0.43 

VRST reaction time CN Safe 866.34 99.59 0.40 0.33 

VRST reaction time SI Safe 1056.08 155.32 0.27 0.06 

VRST reaction time WR Ambush 889.34 107.48 0.32 -0.12 

VRST reaction time CN Ambush 869.39 92.57 0.27 -0.16 

VRST reaction time SI Ambush 992.77 145.58 0.04 -0.42 

ANAM % correct WR 97.04 3.64 -1.21 0.55 

ANAM % correct CN 95.33 3.76 -0.38 -0.91 

ANAM % correct SI 92.42 6.47 -1.12 1.02 

ANAM reaction time WR 644.61 91.85 0.06 -0.44 

ANAM reaction time CN 581.34 91.25 0.36 -0.61 

ANAM reaction time SI 765.74 171.25 0.72 0.17 

Note. ANAM = Automated Neuropsychological Assessment Metrics; VRST = Virtual Reality Stroop Task; M = 
mean; SD = standard deviation; WR = word reading; CN = color naming; SI = simple interference; % correct = 
percentage of correct responses to stimuli; reaction time is in milliseconds; Safe indicates scores from the safe zones 
of the VRST; Ambush indicates scores from the ambush zones of the VRST. 
 

2.3.1 VRST Combined Results  

The KMO (0.76) score which was above 0.6 indicated well defined factors (Howard, 

2016) and Bartlett’s test of sphericity, χ2(66) = 715.31, p < .001, indicated that underlying factors 

likely exist for correct responses and reaction times from the VRST. There were two factors with 

an eigenvalue greater than one for the VRST, which accounted for 58.31% of the total variance. 

Examination of the scree plot also indicated that two factors should be extracted (Figure 2.1). 
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The original MAP and revised MAP test indicated that two factors should be extracted (Table 

2.3). Finally, parallel analysis indicated that possibly all factors could be extracted, however 

factors with initial eigenvalues less than 1 were not considered for extraction, Table 2.4. 

Figure 2.1 

Scree Plot VRST Combined Safe and Ambush Zone  

 
 
 
Table 2.3 

MAP VRST Combined 

Factor Squared 4th power 

0 0.169 0.061 

1 0.139 0.032 

2 0.056 0.008 

3 0.058 0.010 

4 0.075 0.018 

5 0.105 0.030 

6 0.135 0.052 

7 0.165 0.065 

(table continues) 
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Factor Squared 4th power 

8 0.222 0.109 

9 0.358 0.210 

10 0.462 0.358 

11 1.000 1.000 

Note. The minimum average partial is in bold. 

 
Table 2.4 

Randomly Generated Eigenvalues from Parallel Analysis VRST Combined 

Root 
PAF 

Mean 95th Percentile 

1 0.779 0.978 

2 0.595 0.749 

3 0.454 0.553 

4 0.328 0.424 

5 0.219 0.305 

6 0.120 0.213 

7 0.025 0.103 

8 -0.062 -0.002 

9 -0.135 -0.080 

10 -0.211 -0.165 

11 -0.290 -0.240 

12 -0.363 -0.328 

Note. PAF = principal axis factoring; means indicate the average eigenvalue of randomly generated data; 95th 
percentile indicates that fewer than 5 percent of randomly generated data has eigenvalues greater than the indicated 
value.  

 
As can be seen in the pattern matrix (Factor loadings, Table 2.5) the first extracted factor 

was a measure of reaction time. The second extracted factor was a measure of percentage of 

correct responding. The correlation between these factors was weak, r = .18. 
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Table 2.5 

PAF Loadings from VRST Combined 

Variable Factor 1 Factor 2 

VRST % correct WR Safe 0.07 0.65 

VRST % correct CN Safe 0.14 0.73 

VRST % correct SI Safe 0.12 0.62 

VRST % correct WR Ambush -0.17 0.67 

VRST % correct CN Ambush -0.02 0.79 

VRST % correct SI Ambush -0.05 0.74 

VRST reaction time WR Safe 0.74 0.00 

VRST reaction time CN Safe 0.75 0.06 

VRST reaction time SI Safe 0.71 -0.03 

VRST reaction time WR Ambush 0.92 0.07 

VRST reaction time CN Ambush 0.86 0.03 

VRST reaction time SI Ambush 0.85 -0.08 

Note. Principal axis factoring (PAF) factor loadings indicate values from pattern matrix; VRST = Virtual Reality 
Stroop Task; WR = word reading; CN = color naming; SI = simple interference; % correct = percentage of correct 
responses to stimuli; Safe indicates scores from the safe zones of the VRST; Ambush indicates scores from the 
ambush zones of the VRST. 
 

2.3.2 VRST Safe Zones and Ambush Zones 

KMO (0.62) scores were considered acceptable, KMO scores should be above 0.5, but 

0.6 and above is more desirable, see Howard (2016) for review (Howard, 2016). Additionally, 

Bartlett’s test of sphericity, χ2(15) = 187.63, p < .001, indicated that underlying factors likely 

exist for reaction times and percentage of correct responses from the VRST safe zones. Two 

factors had eigenvalues greater than one for the VRST safe zones, which accounted for 53.67% 

of the total variance. Examination of the scree plot also indicated that two factors should be 

extracted (Figure 2.2). The original MAP test suggested that no factors should be extracted but 

the revised MAP test indicated that two factors should be extracted, Table 2.6. Finally, parallel 

analysis indicated that possibly all factors should be extracted, however factors with eigenvalues 



23 

less than 1 were not considered for extraction, Table 2.7. After review of all the extraction rules 

two factors were selected for extraction. 

Similar to the results when safe zones and ambush zones were combined, examination of 

the data from the safe zones revealed that the first extracted factor was a measure of reaction 

time, and the second extracted factor was a measure of percentage of correct responding, Table 

2.8. The factors were only somewhat correlated with each other, r = .33. 

The KMO score for the ambush zones (0.57) was above 0.5 and considered acceptable. 

Bartlett’s test of sphericity, χ2(15) = 315.63, p < .001, indicated that underlying factors likely 

exist for percent correct responses and response time for VRST ambush zones. There were two 

factors with eigenvalues greater than one, which accounted for 63.31% of the total variance. 

Examination of the scree plot also indicated that two factors should be extracted (Figure 2.2). 

The original MAP and revised MAP test both indicated that one factor should be extracted, Table 

2.9. Finally, parallel analysis indicated that all factors should be extracted, but again factors 

without eigenvalues greater than 1 were not considered for extraction, Table 2.10. Therefore, 

researchers extracted two factors. 

As with the results from both the combined analysis and safe zones, the first extracted 

factor when examining ambush zone data was a measure of reaction time and the second 

extracted factor was a measure of percentage of correct responding, Table 2.11. The factors were 

uncorrelated with each other, r = -.03. 

2.3.3 Throughput Assessment 

To examine potential differences in performance between safe zones and ambush zones 

throughput scores were compared within participants. Results indicated that statistically 

significant differences existed between throughput scores within the word reading (p < .001), 



24 

color naming (p = .046), simple interference (p < .01), and complex interference conditions, p < 

.001. Throughput was found to increase within ambush zones compared to safe zones except for 

the color naming condition where, arousing stimuli tended to decrease performance, see Table 

2.12.  

Figure 2.2 

Scree Plot VRST Safe Zones (A) and Ambush Zones (B) 
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Table 2.6 

MAP VRST Safe Zone 

Factor Squared 4th power 

0 0.138 0.036 

1 0.149 0.043 

2 0.144 0.033 

3 0.228 0.128 

4 0.404 0.259 

5 1.000 1.000 

Note. The minimum average partial is in bold. 

 
Table 2.7 

Randomly Generated Eigenvalues from Parallel Analysis VRST Safe Zone 

Root 
PAF 

Means 95th Percentile 

1 0.402 0.559 

2 0.220 0.335 

3 0.082 0.171 

4 -0.031 0.031 

5 -0.124 -0.057 

6 -0.250 -0.188 

Note. PAF = principal axis factoring; means indicate the average eigenvalue of randomly generated data; 95th 
percentile indicates that fewer than 5 percent of randomly generated data has eigenvalues greater than the indicated 
value.  

 
Table 2.8 

PAF Loadings from VRST Safe Zones 

Variable Factor 1 Factor 2 

VRST % correct WR Safe -0.02 0.70 

VRST % correct CN Safe 0.02 0.72 

VRST % correct SI Safe 0.00 0.68 

(table continues) 
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Variable Factor 1 Factor 2 

VRST reaction time WR Safe 0.81 -0.03 

VRST reaction time CN Safe 0.82 0.03 

VRST reaction time SI Safe 0.64 0.01 

Note. Principal axis factoring (PAF) factor loadings indicate values from pattern matrix; VRST = Virtual Reality 
Stroop Task; WR = word reading; CN = color naming; SI = simple interference; % correct = percentage of correct 
responses to stimuli; reaction time is in milliseconds; Safe indicates scores from the safe zones of the VRST. 

 
Table 2.9 

MAP VRST Ambush Zone 

Factor Squared 4th power 

0 0.170 0.075 

1 0.146 0.030 

2 0.163 0.039 

3 0.241 0.137 

4 0.410 0.264 

5 1.000 1.000 

Note. The minimum average partial is in bold. 

 
Table 2.10 

Randomly Generated Eigenvalues from Parallel Analysis VRST Ambush Zone 

Root 
PAF 

Means 95th Percentile 

1 0.422 0.622 

2 0.242 0.404 

3 0.098 0.181 

4 -0.031 0.032 

5 -0.142 -0.086 

6 -0.254 -0.187 

Note. PAF = principal axis factoring; means indicate the average eigenvalue of randomly generated data; 95th 
percentile indicates that fewer than 5 percent of randomly generated data has eigenvalues greater than the indicated 
value.  
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Table 2.11 

PAF Loadings from VRST Ambush Zones 

Variable Factor 1 Factor 2 

VRST % correct WR Ambush -0.11 0.63 

VRST % correct CN Ambush 0.13 0.66 

VRST % correct SI Ambush -0.02 0.78 

VRST reaction time WR Ambush 0.95 0.11 

VRST reaction time CN Ambush 0.80 0.04 

VRST reaction time SI Ambush 0.86 -0.16 

Note. Principal axis factoring (PAF) factor loadings indicate values from pattern matrix; VRST = Virtual Reality 
Stroop Task; WR = word reading; CN = color naming; SI = simple interference; % correct = percentage of correct 
responses to stimuli; reaction time is in milliseconds; Ambush indicates scores from the ambush zones of the VRST. 

 
Table 2.12 

Throughput Scores VRST 

Throughput M SD 

Safe zone WR 0.97 0.14 

Ambush zone WR  1.03 0.14 

Safe zone CN 1.07 0.12 

Ambush zone CN 1.04 0.12 

Safe zone SI 0.87 0.13 

Ambush zone SI 0.91 0.16 

Safe zone CI 0.75 0.14 

Ambush zone CI 0.84 0.17 

Note. WR = word reading; CN = color naming; SI = simple interference; CI = complex interference; Safe indicates 
scores from the safe zones of the VRST; Ambush indicates scores from the ambush zones of the VRST. 
 

2.3.4 ANAM 

KMO (0.70) scores indicated that factors were well defined (Howard, 2016) and 

Bartlett’s test of sphericity, χ2(15) = 227.69, p < .001, indicated that underlying factors likely 

exist for percent correct responses and response time from the ANAM. There were two factors 
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with initial eigenvalues greater than one, which accounted for 55.81% of the total variance. 

Examination of the scree plot also indicated that one or two factors could be extracted (Figure 

2.3). The original MAP and revised MAP test indicated that one factor should be extracted, 

Table 2.13. Finally, parallel analysis again indicated that all factors could be extracted. Given 

that the initial eigenvalue was greater than one, scree plot indicated more than one factor could 

be extracted, parallel analysis indicated that more than one factor could be extracted (Table 2.14) 

and the factors followed a similar structure to the VRST factors two factors were extracted. The 

first factor from the ANAM measured response time and the second factor measured percent 

correct responding. Factor loadings are shown in table 2.15. The factors were only somewhat 

correlated with each other, r = .32. 

Figure 2.3 

Scree Plot for ANAM Stroop 

 
  



29 

Table 2.13 

MAP ANAM 

Factor Squared 4th power 

0 0.166 0.059 

1 0.126 0.028 

2 0.139 0.039 

3 0.222 0.152 

4 0.539 0.413 

5 1.000 1.000 

Note. The minimum average partial is in bold. 

 
Table 2.14 

Randomly Generated Eigenvalues from Parallel Analysis ANAM 

Root 
PAF 

Means 95th Percentile 

1 0.395 0.582 

2 0.226 0.337 

3 0.082 0.193 

4 -0.024 0.035 

5 -0.136 -0.075 

6 -0.246 -0.174 

Note. PAF = principal axis factoring; means indicate the average eigenvalue of randomly generated data; 95th 
percentile indicates that fewer than 5 percent of randomly generated data has eigenvalues greater than the indicated 
value.  

 
Table 2.15 

PAF Loadings from ANAM 

Variable Factor 1 Factor 2 

ANAM % correct WR 0.14 0.60 

ANAM % correct CN 0.12 0.65 

ANAM % correct SI -0.12 0.56 

(table continues) 
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Variable Factor 1 Factor 2 

ANAM reaction time WR 0.78 0.10 

ANAM reaction time CN 0.89 0.10 

ANAM reaction time SI 0.82 -0.11 

Note. Principal axis factoring (PAF) factor loadings indicate values from pattern matrix; ANAM = Automated 
Neuropsychological Assessment Metrics; VRST = Virtual Reality Stroop Task; M = mean; SD = standard deviation; 
WR = word reading; CN = color naming; SI = simple interference; % correct = percentage of correct responses to 
stimuli; reaction time is in milliseconds. 

 

2.3.5 Factor Correlations 

Lastly, scores from the factors were created for each participant. These scores were then 

correlated to determine how related the factors are to each other, Table 2.16. 

Table 2.16 

Factor Score Correlations 

Factor 1 2 3 4 5 6 7 8 

1 VRST combined 
factor 1  1        

2 VRST combined 
factor 2 .20 1       

3 VRST safe zones 
factor 1 .89** .25* 1      

4 VRST safe zones 
factor 2 .36** .91** .40** 1     

5 VRST ambush 
zones factor 1 .99** .18 .84** .34** 1    

6 VRST ambush 
zones factor 2 .07 .92** .17 .70** -.03 1   

7 ANAM factor 1 .45** .23* .48** .30** .47** .14 1  

8 ANAM factor 2 .09 .50** .16 .59** .10 .39** .43** 1 

Note. * indicates p < .05; ** indicates p < .01; ANAM = Automated Neuropsychological Assessment Metrics; 
VRST = Virtual Reality Stroop Task. 
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CHAPTER 3 

CLASSIFICATION OF PERFORMANCE IN THE VIRTUAL REALITY STROOP TASK 

USING MACHINE LEARNING  

3.1 Purpose of Classifier Assessment 

The current study was designed to examine ML strategies for use as performance 

classifiers. An important initial step is determining if the classification algorithms can accurately 

identify participant performance (McMahan et al., 2021). Examination and classification of 

participant performance can then be used to allow the VRST to adapt to users. Algorithms used 

in the current study (NB, SVM, and kNN) have been previously examined in other contexts, 

finding that no one classifier outperformed others in all classification tasks (McMahan et al., 

2021; Parsons et al., 2022). Multiple ML approaches were used in the current paper and could be 

considered supervised ML (Ippolito , 2021; Mosavi et al., 2018). Supervised ML techniques 

require the researcher to select which variables will be used for classification (e.g., Researchers 

specifies that participants are labeled as higher or low performers based on throughput and 

outcome variables from VRST are used to classify group membership; Ippolito, 2021). 

Unsupervised learning on the other hand, creates groups/categories based on input data. For 

example, k-means clustering attempts to find different clusters or groups already existing within 

the data (Ippolito, 2021). Further, each of these approaches have several hyper-parameters which 

are selected by the researcher (Luo, 2016). Hyper-parameters are values or aspects of the 

algorithm that can be manipulated to influence how the ML algorithm performs (Luo, 2016). For 

NB the hyper-parameter manipulated in the current study was the use of a gaussian or kernel NB. 

For SVM various types of kernels were also examined. Finally, for kNN hyper-parameters 

included the number of neighbors used as well as distance formula. This study examined the 
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performance of these ML algorithms using several performance indicators such as percentage of 

correct classifications, precision, sensitivity, and area under the curve. Participants were 

classified as high and low performers within safe zones, ambush zones, and combined 

performance from the VRST. 

3.2 Methods 

3.2.1 Participants 

The current study used a sample of college aged participants in the southwestern United 

States (N = 157; see Table 3.1 for demographics).  

Table 3.1 

Demographics (N = 157) 

Characteristic Mean (SD) % 

Age 23.17 (6.79)  

Men  54.78 

Women  45.22 

Black  14.01 

Asian  8.92 

Hispanic  16.56 

Native American  1.91 

Non-Hispanic white  55.41 

Other/Multiracial  3.18 
 

The sample consisted of slightly more men than women (54.78% men), and participants 

primarily identified as non-Hispanic white (55.41%). For outlier removal, scores on variables 

greater than 2 standard deviations from the mean had those variable scores removed from the 

analysis. Removal of outliers can improve classification performance of multiple types of 

classification algorithms (Hautamäki et al., 2005). NB and kNN classifiers can utilize incomplete 

cases, but SVMs require participants to not be missing data. Therefore, SVMs were conducted 
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on 86 participants within the combined analysis, 103 participants in the safe zones, and 106 

participants in the ambush zones 

3.2.2 Materials: VRST (Virtual Reality Stroop Task) 

As described above, this study used the high mobility multipurpose wheeled vehicle 

(HMMWV) version of the VRST, Figure 1.2. The VRST-HMMWV is a virtual environment that 

simulates a middle eastern countryside. Participants are situated in the driver seat of the 

HMMWV while it is traversing down a desert road. Participants are not required to drive the 

vehicle and the simulated HMMWV travels along a pre-determined path. Within the VRST 

participants experience two zone types: safe and ambush. During the ambush zones the 

participant encounters arousing stimuli which includes explosions, shouting, and sounds of 

gunfire. Safe zones do not include the arousing stimuli and have few stimuli other than the 

HMMWV driving along the road. The zone participants experienced first, safe or ambush, was 

counterbalanced. 

The VRST has 4 Stroop conditions that are each experienced in both safe and ambush 

zones, for a total of 8 conditions. The Stroop conditions presented stimuli to the participant in the 

center of the vehicle’s windshield starting with color naming, which required the user to respond 

to colored Xs (XXXX). The second condition is word reading, participants selected the 

appropriate key on the keyboard that represents the color words (RED, BLUE, GREEN). The 

third condition was a simple interference condition where participants indicated the font color of 

the color words (BLUE). The fourth condition, the complex interference, added an additional 

degree of difficulty. In the complex interference condition, the Stroop stimuli appeared in 

various locations of the windshield instead of the stimuli appearing in the middle of the 

windshield, as was the case for the other conditions, see Figure 1.2. 
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The participants were immersed into the VRST using the HTC Vive head mounted 

display (HMD) (https://www.vive.com/us/). While using the HTC Vive, participants can turn 

their heads to look around the environment and audio was presented via headphones. 

Additionally, the VRST provided participants with tactile feedback via a bass shaker speaker 

underneath the participant’s chair. Participants responded to Stroop stimuli by pressing the 

appropriate keys on the computer keyboard. Once a participant responds to a Stroop stimulus the 

next stimulus is presented. Participants can experience up to 50 items in each condition within 

each zone, but there is a limited amount of time to respond to stimuli in each condition therefore 

participants may not experience all 50 items. 

3.2.3 Procedures  

The current analysis compares the performance of multiple classification algorithms and 

hyper-parameters including SVM, NB, and kNN using MATLAB (version 2021a; The 

MathWorks, Inc.). Multiple measures of performance were used, and all measures had skewness 

and kurtosis values within +/- 3, indicating that the variables could be considered normally 

distributed. The VRST collects speed (reaction times for correct responses) and accuracy scores 

from all 4 Stroop conditions in both safe and ambush zones. As indicated by Thorne (2006), 

participants may use different strategies when performing timed tests, some participants may 

prioritize accurate responding while others may favor faster responding. Throughput, which is a 

measure of accuracy divided by time was used because it accounts for tradeoffs participants 

make between speed and accuracy (Thorne, 2006). Therefore, throughput was used as a measure 

of overall performance, which takes into account both accuracy and speed. A median split was 

conducted to classify participant performance, participants were considered high performers if 

their scores were above the median or low performers if their scores were below the median. In 
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all the classifiers, a 10-fold cross validation was used to improve the algorithms’ ability to 

accurately classify new data. According to Jung (2018) a k-fold cross-validation is a leave-one-

out cross-validation method. The dataset is first divided into k approximately equal sized 

datasets, the current study used a k of 10. The k-1 folds (i.e., 9 subsets of data) are used to train 

the classifier and the fold left out is used for testing classifier performance. This process iterates 

k times so that all k folds are used as validation data once. 

3.2.3.1 Naïve Bayes 

NB is based on Bayes theorem, which states that the posterior probability (i.e., 

probability of participant’s membership in a particular group) is based on conditional probability 

(i.e., probability of membership in a particular group based on current data) weighted by 

previous knowledge (i.e., prior probability), divided by the probability of observing membership 

in a group. NB algorithms are called naïve because they treat each variable used in classification 

as independent from each other. NB algorithms tend to be less computationally intensive than 

other classifiers in terms of implementation and training (Vural, & Gök, 2017). During 

classification, likelihood scores are produced and compared for each possible category. 

Membership to that category is based upon which group the item to be classified is most likely to 

belong (i.e., has the greatest likelihood score). Our analysis used two versions of NB algorithms, 

the first was a typical gaussian NB where the predictors are assumed to be normally distributed. 

The second was kernel NB, where fewer assumptions are required, the classifier creates separate 

estimates for each predicted class based on training data rather than assuming a normal 

distribution. 

3.2.3.2 Support Vector Machine 

SVMs may be used for classification and can be understood via four concepts: the 
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separating hyperplane, the maximum-margin hyperplane, the soft margin, and the kernel function 

(Noble, 2006). The separating hyperplane is a higher-dimensional plane which separates the data 

into distinct groups. The maximum-margin hyperplane refers to the plane created when the SVM 

maximizes the distance between itself and the nearest expression vector, the distance is known as 

the margin (Noble, 2006). It is assumed that the greater the margin the better the SVM will 

perform (Bhavsar & Panchal, 2012). Often, real data does not neatly fit into distinct groups, 

therefore the soft margin is introduced. As reviewed by Noble (2006), the soft margin is a user-

specified parameter which determines how much misclassification is acceptable. The final aspect 

of the SVM is the kernel function, which is a mathematical technique that allows data with fewer 

dimensions to be treated as higher dimensional data. Several variations of SVM kernel 

algorithms exist and are used to maximize the margin including linear, polynomial, and radial 

basis to influence the shape of the separating hyperplane (McMahan et al., 2021). The kernel 

uses dot products to examine relationships between points within the dataset as if it were 

transformed to a higher dimension. Once data is examined in a higher dimensional space, a 

hyperplane may be able to separate the data into categories more accurately than points, lines, or 

lower-dimensional planes. This study examines performance of linear, polynomial, and various 

Gaussian kernel SVM algorithms. 

3.2.3.3 k-Nearest Neighbor 

kNN algorithms use a system similar to voting to classify data. First, the k in kNN 

indicates the number of other closest datapoints which are used in the classification. A k of 3 

indicates the three closest datapoints are used, while k = 10 indicates the 10 closest datapoints 

are used for classifications. The closeness of datapoints is based on distance calculations for the 

included predictor variables. Non-weighted kNN algorithms simply use majority rule, for 
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instance if k = 10 and the 6 closest participants based on predictor scores were classified as high 

performers, the current participant would be classified as a high performer. However, kNN 

algorithms have become more sophisticated by including weights that are based on distances. In 

weighted kNN algorithms the more similar the surrounding cases are to the current data point 

(i.e., closer in distance) the more influence they have on the classification. There are multiple 

algorithms for weight based on distance, this study implements Euclidean distances for the 

weights for fine, medium, coarse, and weighted kNN, cosine for cosine kNN, and Minkowski for 

cubic kNN. 

3.2.3.4 Classifier Assessment 

When assessing machine algorithm performance, multiple metrics should be used such as 

area under the curve (AUC), correct classification rate, and specificity (Beunza et al., 2019; see 

Table 3.2 for a list of classification metrics used). Many of these metrics originated from signal 

detection theory and have been used for evaluation of classifiers (Flach, 2016). The metrics are 

often reported from the optimal classification threshold during training, as well as assessing 

generalizability, classifier comparisons, and for selecting optimal solutions; see Hossin & 

Sulaiman (2015) for review. When examining performance of binary classification (i.e., two 

groups) performance can be evaluated using number of correct and incorrect classifications as 

well as various other metrics based on these correct and incorrect classifications. Briefly, classes 

are labeled as zero or one (in the present study high performers were labeled as one and low 

performers were labeled as zero). True positives (TP) are the number of classifications where 

participant was in class one and classifier identified participant as class one. False negatives (FN) 

the number of classifications where participant was in class one and classifier identified 

participant as class zero. False positives (FP) the number of classifications where participant was 
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in class zero and classifier identified participant as class one. True negatives (TN) the number of 

classifications where participant was in class zero and classifier identified participant as class 

zero. Multiple performance metrics are based on formulas using these values. 

Table 3.2 

Classification Metrics 

Metric Formula Description 

TP  Correct positive classifications 

FN  Incorrect negative classifications 

FP  Incorrect positive classifications 

TN  Correct negative classifications 

Correct rate 
(accuracy) 

TP + TN
TP + FP + TN + FN

 Ratio of correct classifications to total classifications 

Sensitivity 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 Measure of positive classification performance 

Specificity 
𝑇𝑇𝐹𝐹

𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑇𝑇
 Measure of negative classification performance 

Precision 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 Probability positive classifications were correct 

AUC 
𝑆𝑆𝑝𝑝 − 𝑛𝑛𝑝𝑝(𝑛𝑛𝑛𝑛 + 1)/2

𝑛𝑛𝑝𝑝𝑛𝑛𝑛𝑛
 Measure of overall performance of a classifier at 

multiple thresholds 

Note: TP = True positives; FN = False negatives; FP = False positives; TN = True negatives; AUC = Area under the 
curve; Sp indicates the sum of all positive examples ranked; np indicates the number of positive examples; nn 
indicates the number of negative examples. 

 
AUC is an indication of how well the classifier performs at different cutoff thresholds. 

Mandrekar (2010) gives approximate interpretations for AUC values, stating that an AUC of 0.5 

indicates that the classifier has no diagnostic value and AUC of 0.7 to 0.8 is acceptable. 

Additionally, Mandrekar (Mandrekar, 2010) states that AUCs of 0.8 to 0.9 are excellent and 

classifiers with AUCs greater than 0.9 are outstanding. Often the AUC is visualized with a 

receiver operator characteristic (ROC) curve. ROC curves often display the true positive rate 
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(i.e., sensitivity) on the y axis and the false positive rate (i.e., 1-specificity) along the x axis, for 

various cutoff thresholds (Jiao & Du, 2016). These cutoff thresholds can be used to minimize 

false positive rates or to maximize the number of classifications for a desired outcome. For 

instance, it may be more beneficial in disease screening to decrease total classification accuracy 

by increasing false positive rates if it will lead to more true positive classifications and getting 

care to people who may need it. 

3.3 Results  

3.3.1 Overall Performance 

Throughput from all Stroop conditions within both safe and ambush zones were used to 

identify participants as high or low performers. Predictors included percentage of correct 

responses and reaction times from all Stroop conditions. Descriptive statistics for the predictors 

are shown in Table 3.3. Participants completed a battery of tests in addition to the VRST. 

Table 3.3 

Descriptive Statistics for Predictor Variables 

Predictor name Mean (SD) Min Max 

Safe WR % correct 93.9(4.15) 85.00 100.00 

Safe WR reaction time 935.13(138.07) 617.72 1275.44 

Safe CN % correct 93.5(4.56) 84.00 100.00 

Safe CN reaction time 857.15(96.53) 644 1105.51 

Safe SI % correct 91.75(6.36) 73.47 100.00 

Safe SI reaction time 1056.91(169.17) 681.82 1453.91 

Safe CI % correct 89.32(6.87) 72.09 100.00 

Safe CI reaction time 1170.01(208.02) 745.78 1804.83 

Ambush WR % correct 91.97(5.04) 80.00 100.00 

Ambush WR reaction time 881.88(111.54) 671.68 1174 

Ambush CN % correct 91.96(5.07) 80.00 100.00 

(table continues) 
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Predictor name Mean (SD) Min Max 

Ambush CN reaction time 863.9(103.47) 662.1 1122.28 

Ambush SI % correct 90.03(6.5) 71.43 100.00 

Ambush SI reaction time 1014.25(149.61) 690.98 1329.56 

Ambush CI % correct 88.16(7.99) 69.77 100.00 

Ambush CI reaction time 1034.67(160.01) 680.84 1392.64 

Note. WR = word reading; CN = color naming; SI = simple interference; % correct = percentage of correct 
responses to stimuli; reaction times are in milliseconds; SD = standard deviation; Min = minimum; Max = 
maximum. 

 
When using all the data from the VRST cubic SVMs had the greatest percentage of 

correct classifications, however NB algorithms and SVMs other than fine Gaussian SVM also 

performed at similar levels; Figures 3.1. Additionally, many of the algorithms had AUC values 

which were considered good; see Table 3.4. Similar to ambush zone classification performance 

kNN algorithms tended to struggle when classifying participants as high performers as can be 

seen with poor sensitivity (Figure 3.2) and poor precision, Figure 3.3. Coarse kNN and fine 

Gaussian SVM labeled all participants as high performers, which led to poor scores for both 

sensitivity and precision. 
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Table 3.4 

Classification Metrics for Combined Performance 

 GNB KNB LSVM QSVM CSVM FGSVM MGSVM CGSVM FKNN MKNN CKNN CosKNN CubKNN WKNN 

N 157 157 86 86 86 86 86 86 157 157 157 157 157 157 

TP 65 63 29 29 28 0 30 32 24 24 0 30 24 23 

FN 11 10 7 5 3 0 8 8 3 1 0 5 2 1 

FP 13 15 5 5 6 34 4 2 54 54 78 48 54 55 

TN 68 69 45 47 49 52 44 44 76 78 79 74 77 78 

Correct Rate 
(%) 84.71 84.08 86.05 88.37 89.53 60.47 86.05 88.37 63.69 64.97 50.32 66.24 64.33 64.33 

Sensitivity 0.83 0.81 0.85 0.85 0.82 0.00 0.88 0.94 0.31 0.31 0.00 0.38 0.31 0.29 

Specificity 0.86 0.87 0.87 0.90 0.94 1.00 0.85 0.85 0.96 0.99 1.00 0.94 0.97 0.99 

Precision 0.83 0.81 0.85 0.85 0.82 0.00 0.88 0.94 0.31 0.31 0.00 0.38 0.31 0.29 

AUC 0.90 0.90 0.97 0.96 0.96 0.51 0.95 0.97 0.82 0.95 0.36 0.96 0.95 0.97 

Note: N = sample size; TP = True positives; FN = False negatives; FP = False positives; TN = True negatives; AUC = Area under the curve; GNB = Gaussian naïve Bayes; KNB = Kernel naïve Bayes; LSVM = 
Linear support vector machines; QSVM = Quadratic support vector machines; CSVM = Cubic support vector machines; FGSVM = Fine Gaussian support vector machines; MGSVM = Medium Gaussian support 
vector machines; CGSVM = Coarse Gaussian support vector machines; FkNN = Fine k-Nearest Neighbor; MkNN = Medium k-Nearest Neighbor; CkNN = Coarse k-Nearest Neighbor; CoskNN = Cosine k-Nearest 
Neighbor; CubkNN = Cubic k-Nearest Neighbor; WkNN = Weighted k-Nearest Neighbor.
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Figure 3.1 

Accuracy for Classifications Combined Performance 

 
Note: GNB = Gaussian naïve Bayes; KNB = Kernel naïve Bayes; LSVM = Linear support vector machines; QSVM 
= Quadratic support vector machines; CSVM = Cubic support vector machines; FGSVM = Fine Gaussian support 
vector machines; MGSVM = Medium Gaussian support vector machines; CGSVM = Coarse Gaussian support 
vector machines; FkNN = Fine k-Nearest Neighbor; MkNN = Medium k-Nearest Neighbor; CkNN = Coarse k-
Nearest Neighbor; CoskNN = Cosine k-Nearest Neighbor; CubkNN = Cubic k-Nearest Neighbor; WkNN = 
Weighted k-Nearest Neighbor. 

 
Figure 3.2 

Sensitivity for Classifications Combined Performance  

 
Note: GNB = Gaussian naïve Bayes; KNB = Kernel naïve Bayes; LSVM = Linear support vector 
machines; QSVM = Quadratic support vector machines; CSVM = Cubic support vector machines; 
FGSVM = Fine Gaussian support vector machines; MGSVM = Medium Gaussian support vector 
machines; CGSVM = Coarse Gaussian support vector machines; FkNN = Fine k-Nearest Neighbor; 
MkNN = Medium k-Nearest Neighbor; CkNN = Coarse k-Nearest Neighbor; CoskNN = Cosine k-
Nearest Neighbor; CubkNN = Cubic k-Nearest Neighbor; WkNN = Weighted k-Nearest Neighbor. 
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Figure 3.3 

Specificity for Classifications Combined Performance  

 
Note: GNB = Gaussian naïve Bayes; KNB = Kernel naïve Bayes; LSVM = Linear support vector 
machines; QSVM = Quadratic support vector machines; CSVM = Cubic support vector machines; 
FGSVM = Fine Gaussian support vector machines; MGSVM = Medium Gaussian support vector 
machines; CGSVM = Coarse Gaussian support vector machines; FkNN = Fine k-Nearest Neighbor; 
MkNN = Medium k-Nearest Neighbor; CkNN = Coarse k-Nearest Neighbor; CoskNN = Cosine k-
Nearest Neighbor; CubkNN = Cubic k-Nearest Neighbor; WkNN = Weighted k-Nearest Neighbor. 
 
Figure 3.4 

Precision for Classifications Combined Performance  

 
Note: GNB = Gaussian naïve Bayes; KNB = Kernel naïve Bayes; LSVM = Linear support vector 
machines; QSVM = Quadratic support vector machines; CSVM = Cubic support vector machines; 
FGSVM = Fine Gaussian support vector machines; MGSVM = Medium Gaussian support vector 
machines; CGSVM = Coarse Gaussian support vector machines; FkNN = Fine k-Nearest Neighbor; 
MkNN = Medium k-Nearest Neighbor; CkNN = Coarse k-Nearest Neighbor; CoskNN = Cosine k-
Nearest Neighbor; CubkNN = Cubic k-Nearest Neighbor; WkNN = Weighted k-Nearest Neighbor. 
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3.3.2 Safe Zones 

For safe zone performance throughput from all Stroop conditions within safe zones was 

calculated to identify participants as high or low performers based on percentage of correct 

responses and reaction times from all safe zone Stroop conditions, see Table 3.3 for descriptive 

statistics for predictors. There were 157 participants used to train the classifiers, however the 

number of cases used for SVM algorithms was reduced to 103 because the classifier requires 

complete cases to perform classifications, number of cases used can be seen in Table 3.5. 

Results indicate that Gaussian NB and kernel NB had the greatest percentage of correct 

classifications (i.e., correctly identifying user as high or low performer). Gaussian NB and kernel 

NB had accuracies of 81.53% and 82.17% respectively. The linear, medium Gaussian, and 

course Gaussian SVMs had acceptable accuracies (i.e., >70% correct classifications; Figure 3.5). 

Many of the classifiers had AUCs of .91 indicating excellent classification performance at a 

range of cutoff thresholds. However, fine Gaussian SVM, and fine and coarse kNN performed 

poorly with correct classification rates close to chance approximately 50% correct classification 

rates. While many of the classifiers were able to classify low and high performers well, both fine 

Gaussian SVM and coarse kNN performed poorly when classifying positive cases with low 

sensitivity (Figure 3.6) precision scores (Figure 3.8), coarse kNN simply labeled all participants 

as high performers; see Table 3.5 and Figures 3.6 and 3.8. Box plots (Figures 3.5 - 3.8) show 

additional classification characteristics of the ML algorithms. 
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Table 3.5 

Classification Metrics for Safe Zone Performance 

 GNB KNB LSVM QSVM CSVM FGSVM MGSVM CGSVM FKNN MKNN CKNN CosKNN CubKNN WKNN 

N 157 157 103 103 103 103 103 103 157 157 157 157 157 157 

TP 64 62 37 33 30 2 40 40 22 32 0 40 31 31 

FN 15 12 16 17 13 5 15 13 17 16 0 20 16 14 

FP 14 16 12 16 19 47 9 9 56 46 78 38 47 47 

TN 64 67 38 37 41 49 39 41 62 63 79 59 63 65 

Correct Rate 
(%) 81.53 82.17 72.82 67.96 68.93 49.51 76.70 78.64 53.50 60.51 50.32 63.06 59.87 61.15 

Sensitivity 0.82 0.79 0.76 0.67 0.61 0.04 0.82 0.82 0.28 0.41 0.00 0.51 0.40 0.40 

Specificity 0.81 0.85 0.70 0.69 0.76 0.91 0.72 0.76 0.78 0.80 1.00 0.75 0.80 0.82 

Precision 0.82 0.79 0.76 0.67 0.61 0.04 0.82 0.82 0.28 0.41 0.00 0.51 0.40 0.40 

AUC 0.87 0.86 0.82 0.77 0.80 0.62 0.84 0.85 0.57 0.79 0.43 0.78 0.76 0.79 

Note: N = sample size; TP = True positives; FN = False negatives; FP = False positives; TN = True negatives; AUC = Area under the curve; GNB = Gaussian naïve Bayes; KNB = Kernel naïve Bayes; LSVM = 
Linear support vector machines; QSVM = Quadratic support vector machines; CSVM = Cubic support vector machines; FGSVM = Fine Gaussian support vector machines; MGSVM = Medium Gaussian support 
vector machines; CGSVM = Coarse Gaussian support vector machines; FkNN = Fine k-Nearest Neighbor; MkNN = Medium k-Nearest Neighbor; CkNN = Coarse k-Nearest Neighbor; CoskNN = Cosine k-Nearest 
Neighbor; CubkNN = Cubic k-Nearest Neighbor; WkNN = Weighted k-Nearest Neighbor. 
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Figure 3.5 

Accuracy for Classifications in Safe Zones 

 
Note: GNB = Gaussian naïve Bayes; KNB = Kernel naïve Bayes; LSVM = Linear support vector machines; QSVM 
= Quadratic support vector machines; CSVM = Cubic support vector machines; FGSVM = Fine Gaussian support 
vector machines; MGSVM = Medium Gaussian support vector machines; CGSVM = Coarse Gaussian support 
vector machines; FkNN = Fine k-Nearest Neighbor; MkNN = Medium k-Nearest Neighbor; CkNN = Coarse k-
Nearest Neighbor; CoskNN = Cosine k-Nearest Neighbor; CubkNN = Cubic k-Nearest Neighbor; WkNN = 
Weighted k-Nearest Neighbor. 

 
Figure 3.6 

Sensitivity for Classifications in Safe Zones  

 
Note: GNB = Gaussian naïve Bayes; KNB = Kernel naïve Bayes; LSVM = Linear support vector machines; QSVM 
= Quadratic support vector machines; CSVM = Cubic support vector machines; FGSVM = Fine Gaussian support 
vector machines; MGSVM = Medium Gaussian support vector machines; CGSVM = Coarse Gaussian support 
vector machines; FkNN = Fine k-Nearest Neighbor; MkNN = Medium k-Nearest Neighbor; CkNN = Coarse k-
Nearest Neighbor; CoskNN = Cosine k-Nearest Neighbor; CubkNN = Cubic k-Nearest Neighbor; WkNN = 
Weighted k-Nearest Neighbor. 
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Figure 3.7 

Specificity for Classifications in Safe Zones  

 
Note: GNB = Gaussian naïve Bayes; KNB = Kernel naïve Bayes; LSVM = Linear support vector machines; QSVM 
= Quadratic support vector machines; CSVM = Cubic support vector machines; FGSVM = Fine Gaussian support 
vector machines; MGSVM = Medium Gaussian support vector machines; CGSVM = Coarse Gaussian support 
vector machines; FkNN = Fine k-Nearest Neighbor; MkNN = Medium k-Nearest Neighbor; CkNN = Coarse k-
Nearest Neighbor; CoskNN = Cosine k-Nearest Neighbor; CubkNN = Cubic k-Nearest Neighbor; WkNN = 
Weighted k-Nearest Neighbor. 

 
Figure 3.8 

Precision for Classifications in Safe Zones  

 
Note: GNB = Gaussian naïve Bayes; KNB = Kernel naïve Bayes; LSVM = Linear support vector machines; QSVM 
= Quadratic support vector machines; CSVM = Cubic support vector machines; FGSVM = Fine Gaussian support 
vector machines; MGSVM = Medium Gaussian support vector machines; CGSVM = Coarse Gaussian support 
vector machines; FkNN = Fine k-Nearest Neighbor; MkNN = Medium k-Nearest Neighbor; CkNN = Coarse k-
Nearest Neighbor; CoskNN = Cosine k-Nearest Neighbor; CubkNN = Cubic k-Nearest Neighbor; WkNN = 
Weighted k-Nearest Neighbor. 
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3.3.3 Ambush Zones 

Similar to the safe zone performance, throughput from all Stroop conditions within 

ambush zones was used to identify participants as high or low performers, with predictors 

including percentage of correct responses and reaction times from all ambush zone Stroop 

conditions, for descriptive statistics for predictors see Table 3.3. There were 156 participants 

used to train the classifiers (one participant’s data was completely removed for ambush zones 

due to short reaction times and low accuracy). Additionally, SVMs were conducted on data from 

106 participants who did not have any missing data. 

Results indicate that medium Gaussian SVM had the greatest overall percentage of 

correct classifications (Figure 3.9) and greatest AUC. When predicting ambush zone 

performance classifiers performed better compared performance in safe zones. Only one 

algorithm had a correct classification rate which would be considered unacceptable (i.e., <70% 

correct classifications; see table 3.6). In general, kNN algorithms seemed to struggle with 

classifying users as high performers, often classifying too many participants as high performers 

when they should not, see Table 3.6 for false positive rate and Figures 3.10 and 3.12. As was the 

case for safe zones, the coarse kNN simply labeled all participants as low performers, which is 

why the classifier performed only slightly better than chance. Further, sensitivity and precision 

scores were quite low for both coarse kNN and fine Gaussian SVM (Figure 3.12), indicating 

these classifiers performed poorly when classifying positive cases.  
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Table 3.6 

Classification Metrics for Ambush Zone Performance 

 GNB KNB LSVM QSVM CSVM FGSVM MGSVM CGSVM FKNN MKNN CKNN CosKNN CubKNN WKNN 

N 156 156 106 106 106 106 106 106 156 156 156 156 156 156 

TP 63 62 39 35 34 2 39 39 31 33 0 38 34 36 

FN 10 6 7 5 3 2 2 10 6 2 0 6 2 2 

FP 14 15 5 9 10 42 5 5 46 44 77 39 43 41 

TN 69 73 55 57 59 60 60 52 73 77 79 73 77 77 

Correct Rate 
(%) 84.62 86.54 88.68 86.79 87.74 58.49 93.40 85.85 66.67 70.51 50.64 71.15 71.15 72.44 

Sensitivity 0.82 0.81 0.89 0.80 0.77 0.05 0.89 0.89 0.40 0.43 0.00 0.49 0.44 0.47 

Specificity 0.87 0.92 0.89 0.92 0.95 0.97 0.97 0.84 0.92 0.97 1.00 0.92 0.97 0.97 

Precision 0.82 0.81 0.89 0.80 0.77 0.05 0.89 0.89 0.40 0.43 0.00 0.49 0.44 0.47 

AUC 0.90 0.90 0.93 0.92 0.88 0.83 0.94 0.92 0.80 0.92 0.42 0.93 0.93 0.93 

Note: N = sample size; TP = True positives; FN = False negatives; FP = False positives; TN = True negatives; AUC = Area under the curve; GNB = Gaussian naïve Bayes; KNB = Kernel naïve Bayes; LSVM = 
Linear support vector machines; QSVM = Quadratic support vector machines; CSVM = Cubic support vector machines; FGSVM = Fine Gaussian support vector machines; MGSVM = Medium Gaussian support 
vector machines; CGSVM = Coarse Gaussian support vector machines; FkNN = Fine k-Nearest Neighbor; MkNN = Medium k-Nearest Neighbor; CkNN = Coarse k-Nearest Neighbor; CoskNN = Cosine k-Nearest 
Neighbor; CubkNN = Cubic k-Nearest Neighbor; WkNN = Weighted k-Nearest Neighbor. 
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Figure 3.9 

Accuracy for Classifications in Ambush Zones  

 
Note: GNB = Gaussian naïve Bayes; KNB = Kernel naïve Bayes; LSVM = Linear support vector machines; QSVM 
= Quadratic support vector machines; CSVM = Cubic support vector machines; FGSVM = Fine Gaussian support 
vector machines; MGSVM = Medium Gaussian support vector machines; CGSVM = Coarse Gaussian support 
vector machines; FkNN = Fine k-Nearest Neighbor; MkNN = Medium k-Nearest Neighbor; CkNN = Coarse k-
Nearest Neighbor; CoskNN = Cosine k-Nearest Neighbor; CubkNN = Cubic k-Nearest Neighbor; WkNN = 
Weighted k-Nearest Neighbor. 

 
Figure 3.10 

Sensitivity for Classifications in Ambush Zones  

 
Note: GNB = Gaussian naïve Bayes; KNB = Kernel naïve Bayes; LSVM = Linear support vector machines; QSVM 
= Quadratic support vector machines; CSVM = Cubic support vector machines; FGSVM = Fine Gaussian support 
vector machines; MGSVM = Medium Gaussian support vector machines; CGSVM = Coarse Gaussian support 
vector machines; FkNN = Fine k-Nearest Neighbor; MkNN = Medium k-Nearest Neighbor; CkNN = Coarse k-
Nearest Neighbor; CoskNN = Cosine k-Nearest Neighbor; CubkNN = Cubic k-Nearest Neighbor; WkNN = 
Weighted k-Nearest Neighbor. 
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Figure 3.11 

Specificity for Classifications in Ambush Zones  

 
Note: GNB = Gaussian naïve Bayes; KNB = Kernel naïve Bayes; LSVM = Linear support vector machines; QSVM 
= Quadratic support vector machines; CSVM = Cubic support vector machines; FGSVM = Fine Gaussian support 
vector machines; MGSVM = Medium Gaussian support vector machines; CGSVM = Coarse Gaussian support 
vector machines; FkNN = Fine k-Nearest Neighbor; MkNN = Medium k-Nearest Neighbor; CkNN = Coarse k-
Nearest Neighbor; CoskNN = Cosine k-Nearest Neighbor; CubkNN = Cubic k-Nearest Neighbor; WkNN = 
Weighted k-Nearest Neighbor. 

 
Figure 3.12 

Precision for Classifications in Ambush Zones  

 
Note: GNB = Gaussian naïve Bayes; KNB = Kernel naïve Bayes; LSVM = Linear support vector machines; QSVM 
= Quadratic support vector machines; CSVM = Cubic support vector machines; FGSVM = Fine Gaussian support 
vector machines; MGSVM = Medium Gaussian support vector machines; CGSVM = Coarse Gaussian support 
vector machines; FkNN = Fine k-Nearest Neighbor; MkNN = Medium k-Nearest Neighbor; CkNN = Coarse k-
Nearest Neighbor; CoskNN = Cosine k-Nearest Neighbor; CubkNN = Cubic k-Nearest Neighbor; WkNN = 
Weighted k-Nearest Neighbor. 
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CHAPTER 4 

DISCUSSION 

4.1 Overview 

The current study set out to accomplish two things: 1) provide additional validation for a 

higher dimensional Stroop task, the VRST, by comparing its factor structure the factor structure 

of a lower dimension Stroop task, the ANAM Stroop task. 2) investigate several machine 

learning algorithms and their hyper-parameters for the classification of participant performance 

for the creation of an adaptive version of the VRST.  

The study examined the factor structure of the VRST and compared the results with a low 

dimensional version of the Stroop task the ANAM Stroop task. The study also sought to examine 

potential differences in factor structures between safe zones and ambush zones within the VRST. 

We found that when using the percentage of correct responses and reaction times from both the 

VRST and ANAM, two-factor solutions were obtained. These factors tended to be related to 

either accuracy of responses to Stroop stimuli or time taken to respond to the Stroop stimuli.  

The results from the study examining various ML techniques could accurately classify 

participants into either high or low performer categories. The algorithms used the percentage of 

correct responses and reaction times from the VRST to predict participant performance based on 

throughput scores. Throughput scores consider speed accuracy tradeoffs that many participants 

make when performing timed assessments (Thorne, 2006) While results varied slightly when 

classifying performance based on safe zone performance, ambush zone performance, or overall 

performance, NB classifiers tended to perform well, with around 80% correct classifications. 

Additionally, many of the SVM algorithms tended to outperform the kNN algorithms. Several of 

the algorithms which relied on gaussian distributions tended to perform well. However, 
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classifiers that relied on too few or too many examples for classification rules and cutoffs lead to 

poorer classification accuracy, likely because of the bias/variance tradeoff. These classifiers 

included fine gaussian kNN, coarse gaussian kNN, or fine gaussian SVM algorithms tended to 

lead to poorer classification accuracy. 

4.2 VRST Factor Analysis 

4.2.1 ANAM 

The ANAM had enough evidence for underlying factors based on KMO scores and 

Bartlett’s test (Howard, 2016). Two factors were extracted from the ANAM again one factor was 

related to response times and one factor was related to accuracy. However, weaker evidence 

existed for the inclusion of the second factor related to accuracy. When extracting factors using 

principal axis factoring the diagonal of the correlation matrix is replaced with squared multiple 

correlation coefficients, these values are used as estimates of the communalities (i.e., the 

variance shared between the item and all the factors; Tabachnick & Fidell, 2013). PAF replaces 

the squared multiple correlation coefficients with the communalities and then reruns the analysis, 

until the analysis changes little from one iteration to the next. While the initial estimates 

indicated the eigenvalue was likely above one it was reduced to below one, indicating that the 

factor is likely not explaining a significant portion of variance in scores. Additionally, the 

accuracy variables did not load onto this factor as strongly as the VRST. Taken together this may 

indicate that the ANAM Stroop task is mainly measuring response time to Stroop stimuli. The 

reaction time factor and accuracy factor were only somewhat correlated, indicating that 

participants may be choosing to either respond with a focus on speed or accuracy. 

Participants may be selecting to respond accurately to the Stroop stimuli or may be 

responding as quickly as possible. As indicated by Thorne (2006), participants tend to select one 
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of two strategies when performing timed tests. In the first strategy participants may favor 

response accuracy leading to lowered response time. The other common strategy involves 

focusing on response speed often at the expense of response accuracy. Throughput is calculated 

by summing the number of correct responses then dividing by the total time taken for all 

responses (Thorne, 2006). Therefore, throughput can be used as a measure of participant 

performance even when participants select different strategies because it can account for 

tradeoffs participants make between speed and accuracy (Thorne, 2006).  

4.2.2 VRST Combined 

When VRST data from both safe zones and ambush zones were analyzed together it was 

found that there were two factors. One of the factors measured response time and the other factor 

measured response accuracy. The KMO score indicated that the factors were well defined 

Bartlett's test of sphericity also provided evidence for their existence (Howard, 2016). The 

variables included in the analysis clearly loaded onto one factor or the other. An oblique rotation 

was performed on the extracted factors. Oblique rotations allow the axis angle between extracted 

factors to change, factors can be correlated and tend to produce clearer factor structures than 

orthogonal rotations (Osborne, 2015). The weak correlations between the two factors within the 

exploratory factor analysis indicated that the factors are unlikely to be measuring the same 

underlying constructs. Further, when correlating the extracted factor scores from participants, the 

correlation was weak and not statistically significant.  

Armstrong and colleagues suggested a single factor structure for the VRST because the 

VRST conditions were correlated (Armstrong et al., 2013). However, in the Armstrong study, 

only reaction times from the VRST were included. The current study also included a measure of 

accuracy; including accuracy may have led to multiple factors being extracted in our study. 
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4.2.3 VRST Safe Zones vs Ambush Zones 

The VRST includes safe zones where little activity occurs within the virtual environment 

and ambush zones where potentially arousing stimuli are experienced. There are some 

overlapping brain areas which are important for both emotional processing and for cognitive 

control (Schweizer et al., 2013). Changes in psychophysiological arousal have been observed 

during the VRST (Wu & Parsons, 2012), therefore separate factor analyses were conducted for 

safe zones and ambush zones. Findings were generally similar for both safe zones and ambush 

zones. In both cases KMO scores and Bartlett's test of sphericity indicated that there were 

underlying factors. Two factors were extracted for both analyses as well. In both cases the first 

factor was related to response time and the other factor was related to response accuracy. One 

difference between the analyses was that the two factors were weakly correlated for the safe 

zones when the factors were rotated but were uncorrelated within the ambush zones. In both 

cases variables clearly loaded onto a single factor. The response factor from the safe zones was 

correlated with the response factor from the ambush zones, the same was found for accuracy 

factors. However, the correlations were weaker than the correlations between then the combined 

factor analysis. This indicates that while the factors are similar differences between the two 

conditions likely exist.  

When examining throughput from the VRST differences between safe and ambush zone 

performance were observed. Participants tended to respond more quickly in the ambush zones 

but also had reduced accuracy. When participants encounter the arousing stimuli, participants 

may be experiencing greater levels of arousal. Previous research examining the VRST found 

increased heart rate, respiration rate, skin conductance level when participants experienced 

ambush zones (Parsons & Courtney, 2018). The VRST may tap more into affective processing 
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within ambush zones compared to safe zones. This may lead to participants being more likely 

rely on response styles focusing on response speed at the expense of accuracy.  

4.2.4 Comparison of Stroop Tasks 

As previously discussed, similarities and differences exist between the VRST and the 

ANAM Stroop tasks. Results from analyses of both the VRST and the ANAM Stroop suggested 

a two-factor solution. Again, these were response time factors and accuracy factors. The 

correlations between the factor scores from the different Stroop modalities were in the expected 

directions (e.g., higher scores on the response time factor from the VRST were associated with 

higher scores on the response time factor from the ANAM). The similarities between the factor 

analytic results provided evidence for convergent validity (Carlson & Herdman, 2012). The 

ANAM Stroop and the VRST both present Stroop stimuli one at a time, when participants 

respond to the stimulus the next stimulus appears. Due to single item presentation participants 

may be focusing on responding to the item as soon as it is presented. Possibly minimizing 

interference due to surrounding Stroop stimuli when compared to Stroop tasks that present items 

concurrently (Periáñez et al., 2021).  

Correlations tended to be higher between the safe zone factors and the ANAM than 

between ambush zone factors and the ANAM. This is possibly due to the inclusion of arousing 

stimuli. As discussed above. Other differences between the VRST and the ANAM Stroop task 

also exist. For example, the VRST includes complex interference conditions, the goal of the 

complex interference condition is to increase cognitive load. However, because the ANAM 

Stroop does not have a complex interference condition it was not included in the current analysis. 

Correlations have been previously observed between scores from the ANAM Stroop task and 

VRST. (Armstrong et al., 2013). However, the VRST is considered a higher dimensional 
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assessment because the ANAM Stroop only includes simple stimulus presentations for example 

stimuli are presented in the middle of a blank screen within the ANAM Stroop (Parsons & 

Duffield, 2020). Other research has also indicated that there may be significant differences 

between measures utilizing virtual reality and those that do not (Neguţ et al., 2015). Some of 

these differences may be due to many virtual environments being designed to have greater 

ecological validity (Parsons et al., 2017). The VRST gives participants more contextual 

information than many other Stroop tasks, participants ride in a simulated HMMWV along a 

desert road modeled after middle eastern environments, rather than simply look at a sheet of 

stimuli or stimuli centered in the middle of a blank screen (Parsons et al., 2013). Similar to 

differences observed between safe zones and ambush zones within the VRST, the ANAM Stroop 

is unlikely to assess affective processing. Lower dimensional assessments often focus on more 

purely cognitive abilities (Nejati et al., 2018). However, as noted by Zelazo (2015) both abilities 

associated with planning, inhibition, and working memory as well as abilities which are 

important for emotion, motivation, and immediate vs late delayed gratification are considered 

important when examining real-world behaviors, which the ANAM Stroop task may not be able 

to do as well as the VRST a higher dimensional task. 

4.3 Discussion Machine Learning Analysis 

The VRST was initially designed to utilize VR technologies for the examination of 

multiple variables including the impact of arousing stimuli and interference complexity on 

Stroop task performance (Parsons et al., 2013). Computerized and VR assessments can be used 

to create adaptive assessments. Adaptive systems may enable users to achieve more optimal 

performance or engagement, possibly through increased likelihood of flow states (Parsons & 

Courtney, 2011). 
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The effectiveness of the classification algorithm is an important consideration for an 

adaptive assessment. Several of the algorithms relied on gaussian distributions and tended to 

perform well. This may be because normalization of data has been found to improve classifier 

performance in certain instances (Beunza et al., 2019). Data used in the current study could be 

considered normally distributed and possibly boosted performance of the gaussian based 

classifiers compared to other types. 

4.3.1 Naïve Bayes Performance 

NB classifiers assume each predictor is independentClick or tap here to enter text., but 

NB classifiers also tend to perform well even when this assumption is violated (Arar & Ayan, 

2017). A potential benefit of this aspect of the NB classifiers is that they may be able to use 

provided data more effectively. For example, in the current study, data was used from 157 

participants, however after data cleaning and outlier removal, 71 participants did not have 

complete data. Specifically, 71 participants did not have full data from the combined analysis, 54 

from safe zones, and 50 from ambush zones. Because SVM require complete data these 

participants were not used for the predictions. However, NB classifiers were able to utilize all 

available data because the classifier uses maximum likelihood estimation, and the predictors are 

considered independent. The Gaussian NB and kernel NB may have performed similarly because 

the data was normally distributed. Kernel NB has less stringent requirements for the predictors, it 

calculates distribution estimates for each predictor leading it to be more computationally 

intensive, whereas Gaussian NB assumes that the predictors are normally distributed. 

4.3.2 Support Vector Machine Performance 

The SVMs classifiers also tended to perform well. While the SVM algorithms require 

participants to not have any missing data (unlike the NB classifiers), these algorithms overall had 
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high correct classification rates for the included participants. One of the most common types of 

SVM classifier is the linear SVM which produces a linear function based on weights applied to 

predictor scores to create a cutoff to divide participants into high and low performers. This 

classifier often has scores which are more intuitively interpretable. The linear SVM classifier 

tended to perform well in all three classification situations. Quadratic and cubic SVM raise the 

kernel function to a power allowing the classifier to have curves which may improve 

classification performance. When data from safe and ambush zones was combined the cubic 

SVM classifier performed better than all other algorithms. However, these functions may reduce 

interpretability due to transformations of kernels. Medium and coarse Gaussian SVMs also 

performed well; both classifiers use the Gaussian kernel algorithm. While the fine Gaussian 

SVM also uses Gaussian kernel, likely accuracy was poor due to the bias/variance tradeoff. Bias 

indicates how closely the classifier matches the training data, and variance indicates how well 

classifiers perform when applied to test data or when generalized to new data (Belkin et al., 

2019). Likely fine Gaussian SVM made predictions that matched the training data too closely, 

which may have led to poor performance when examining the test data. A 10 v-fold validation 

was used in the study, this procedure estimates the classifier’s ability to correctly classify new 

data. This procedure trains each classifier on 90% of the data and tests its classification 

performance on the remaining 10% of data. The procedure is conducted 10 times, with each 

procedure a separate 10% of the data, maximizing the amount of training and test data available. 

4.3.3 k Nearest Neighbors Machine Performance 

Finally, kNN algorithms was also used for classification. As stated above, kNN use a 

system like voting to classify data. These classifiers used various formulas to determine the 

closest number of neighbors (k) to determine which group a participant belongs to. These 
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algorithms tended to perform poorly in the current study. Fine, medium, and coarse kNN 

algorithms used, 1, 10, and 100 neighbors as the number of neighbors in the algorithm 

respectively. The coarse kNN classifier performed the worst, but it is possible that even though 

there were more than 100 participants used in the analysis, more data is needed to effectively 

utilize such a large k value. More effective k values are generally closer to the square root of the 

sample size (Gareth et al., 2013). The current study had 157 participants, 90% (~141) were used 

for training the data the square root of this value is 11.8 and as shown in classifying performance 

in safe zones, ambush zones, and overall performance medium kNN using a k of 10 

outperformed both fine and coarse kNN classifiers. Cosine, cubic, and weighted kNN classifiers 

all used a k of 10 as well, however, cosine and cubic classifiers used different distance formulas 

to determine which neighbors were nearest, while weighted kNN uses weights to allow the 

closest neighbors to have a greater impact on the classification compared to neighbors which are 

further away. In general, it was observed that weighted kNN and kNNs with different distance 

formulas performed similarly to the medium kNN classifier. Within a different virtual Stroop 

kNN algorithms tended to perform worse in another virtual Stroop environment (McMahan et 

al., 2021). 
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CHAPTER 5 

CONCLUSIONS 

5.1 Overview 

The work examined several areas of technological advancement that can be applied to the 

field of psychology. Some of these technologies include advancements in computing, virtual 

reality (VR), statistical techniques, and recording/measurement devices. The current work 

implemented some of these techniques and technologies. 

5.2 Conclusions and Limitations from Factor Analysis 

There were some potential issues with the factor analyses of the VRST and ANAM 

Stroop tasks. For example, sample size was relatively low. A sample size of at least 100 

participants is preferred for a factor analysis, however determining the proper number of 

participants needed to increase stability of the results is not easily determined (Gaskin & 

Happell, 2014). First, traditionally researchers have argued for sample size heuristics such as 

having at least 300 participants or other methods such as respondent to variable ratios of 10:1 or 

even 30:1 (Gaskin & Happell, 2014; Yong & Pearce, 2013). As discussed by Gaskin and Happell 

(2014) simulation studies can help determine when sample sizes will lead to stable results. 

Unfortunately, knowing the communalities is one of the most useful methods for determining 

appropriate sample size, but communalities cannot be determined unless data has already been 

investigated either from a previous study or as a post-hoc analysis of the data collected. 

Additionally, participants were not assessed for previous military experience. Participants with 

military experience may not respond in a similar manner compared to civilians, military 

experience may lead to changes in arousal and differences in cognitive and affective load due to 

training. 
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In conclusion, the current study provided additional convergent validity between a higher 

dimensional Stroop task the VRST and a low dimensional Stroop task the ANAM Stroop task. 

When examining response times and percent of correct responses, the VRST and ANAM Stroop 

task both produced two factor solutions. The solutions produced a factor related to the response 

times and a factor related to the percent of correct responses. The within assessment factors 

tended to be uncorrelated or weakly correlated possibly indicating that participants are choosing 

to either respond as quickly as possible or to focus on responding accurately. Therefore, future 

work examining Stroop tasks with the ability to measure single-item responses may want to 

include throughput scores. Throughput scores can combine both factors into a single item 

capturing both aspects of speed and accuracy. 

5.3 Conclusions and Limitations from Machine Learning Analysis 

The analysis examined several machine learning algorithms and hyper-parameters for the 

classification of participant performance for the creation of an adaptive version of the VRST. 

The results indicated that certain ML algorithms can successfully separate participants into high 

and low performance categories based on output data from the VRST. Additionally, this study 

examined hyper-parameters which can influence the performance of ML algorithms. The next 

step for creating an adaptive VE would be to create rules which would influence the environment 

itself. For example, if participants are performing poorly during the ambush zone, the VRST 

might be able to increase user performance by decreasing the number of arousing stimuli 

presented to the participant. In contrast, if a participant is near ceiling level performance, the 

participant could be further challenged by increasing the number of arousing stimuli. Other 

factors from the VRST could also be manipulated such as length of time participants spend 



63 

within each zone depending on performance, such that if participants are performing poorly 

within a zone, additional time could be given to the participants to adequately respond to stimuli.  

The classifiers were based on full datasets, but within an adaptive environment, the 

classifiers will not have access to the participant’s scores from zones which the participant has 

not encountered yet. Previous work from on the VRST suggests that applications such as transfer 

learning and active class selection may be able to boost classification performance in these 

settings (Wu & Parsons 2011). The current study determined whether it was possible to 

categorize participants as high or low performers at all based on output data from the VRST and 

that the hyper-parameters of the classifiers themselves influenced classification accuracy. While 

it was identified that participants can be accurately categorized using some of the ML 

algorithms, additional work could examine if scores collected mid-way through an assessment 

can be used to categorize participants as high or low performers. Future work may also examine 

if additional data collected during the VRST, such as psychophysiological data or number of 

stimuli encountered, may improve classification accuracy. One other limitation of the study was 

the use of only two categories high and low performance. Future work should include the 

addition of more categories to fine tune the user performance. The research conducted shows that 

various ML techniques, particularly NB classifiers can accurately classify participants into high 

and low performance groups based on the percentage of correct responses and reaction times to 

Stroop stimuli. SVM classifiers also tended to perform well but may be at a disadvantage for 

adaptive assessments because they require cases without missing data. Data would likely be 

readily available for measures such as reaction times or number of correct responses. However, 

more direct measures such as arousal including EEG or heart rate noisy input data could 

potentially impact classifier performance. Lastly, kNN algorithms tended to perform the worst. 
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Additional work is needed for the VRST to be a successful adaptive VE. Further studies may 

find that when data is collected part way through an assessment performance, accuracies for the 

classifier’s changes. 

5.4 General Conclusions 

First, a VR based Stroop task, the Virtual Reality Stroop Task (VRST; high mobility 

multipurpose wheeled vehicle; HMMWV version), was compared to a computerized Stroop task 

(i.e., from the Automated Neuropsychological Assessment Metrics; ANAM). It was found that 

both the VRST and ANAM Stroop tasks produced two-factor solutions. For both assessments the 

first factor related to correct responding and the second factor related to response speed. It was 

found that these factors were not highly related to each other indicating that participants may be 

focusing on either responding accurately to stimuli or responding swiftly to stimuli. Further, 

from the VRST safe zone performance and ambush zone performance were also investigated, 

while both had similar factor structures are the combined analysis, differences in performance 

were observed when arousing stimuli were included. The ANAM Stroop tasks provide 

participants with a limited experience: the assessment tends to be less representative of real-

world environments. The ANAM Stroop task and similar measures may be less engaging and 

provide less diverse ways of presenting stimuli, when compared to VR assessments (Gerjets et 

al., 2014).  

Additionally, machine learning (ML) algorithms for participant performance 

classification were examined. The study found that some of the ML algorithms were able to 

accurately predict high or low performance based on correct responses and reaction times from 

the VRST. The study found that results varied a bit throughout different sections of the 

assessment, but SVM classifiers tended to perform the best in the current analysis. SVM 
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classifiers tended to have high correct classifications and AUCs. Also, NB classifiers performed 

well in the current study but kNN algorithms did not seem to perform as well. When utilizing 

ML algorithms, it is important to consider their performance and which aspects of the algorithm 

(i.e., hyper-parameters) may produce the best results (Luo, 2016). 

The field of psychology can potentially benefit from advancements in technology. Some 

of these benefits include improved ecological validity (i.e., the degree to which measures match 

real-world situations or predict real-world behaviors), improved control over stimuli, ability to 

collect data from situations which may otherwise be impossible, and allow for additional ways 

measures can assess and interact with participants. Psychometric properties of newly created 

high-dimensional VR assessments should be assessed in a manner similar to the creation of new 

low dimensional assessments. Finally, when evaluating the ability of ML algorithms for 

classification and potential use for automated assessment, the specific classifier used and hyper-

parameters of the classifiers should be examined as they can impact classifier performance. 

  



66 

REFERENCES 

Arar, Ö. F., & Ayan, K. (2017). A feature dependent Naive Bayes approach and its application 
to the software defect prediction problem. Applied Soft Computing, 59, 197-209. 

Armstrong, C. M., Reger, G. M., Edwards, J., Rizzo, A. A., Courtney, C. G., & Parsons, T. D. 
(2013). Validity of the Virtual Reality Stroop Task (VRST) in active duty military. 
Journal of Clinical and Experimental Neuropsychology, 35(2), 113–123. 

Badesa, F. J., Morales, R., Garcia-Aracil, N., Sabater, J. M., Casals, A., & Zollo, L. (2014). 
Auto-adaptive robot-aided therapy using machine learning techniques. Computer 
methods and programs in biomedicine, 116(2), 123-130. 

Barua, S., Ahmed, M. U., & Begum, S. (2020). Towards intelligent data analytics: A case study 
in driver cognitive load classification. Brain sciences, 10(8), 526. 

Baumeister, R. F. (2016). Charting the future of social psychology on stormy seas: Winners, 
losers, and recommendations. Journal of Experimental Social Psychology, 66, 153–158. 

Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling modern machine-learning 
practice and the classical bias–variance trade-off. Proceedings of the National Academy 
of Sciences, 116(32), 15849-15854. 

Beunza, J. J., Puertas, E., García-Ovejero, E., Villalba, G., Condes, E., Koleva, G., Hurtado, C., 
& Landecho, M. F. (2019). Comparison of machine learning algorithms for clinical event 
prediction (risk of coronary heart disease). Journal of Biomedical Informatics, 97, 
103257. 

Bhavsar, H., & Panchal, M. H. (2012). A review on support vector machine for data 
classification. International Journal of Advanced Research in Computer Engineering & 
Technology (IJARCET), 1(10), 185–189. 

Brunetti, R., Indraccolo, A., Del Gatto, C., Farina, B., Imperatori, C., Fontana, E., ... & 
Adenzato, M. (2021). eStroop: Implementation, Standardization, and Systematic 
Comparison of a New Voice-Key Version of the Traditional Stroop Task. Frontiers in 
Psychology, 12, 2041. 

Cai, X., & Padoa-Schioppa, C. (2012). Neuronal encoding of subjective value in dorsal and 
ventral anterior cingulate cortex. Journal of Neuroscience, 32(11), 3791–3808. 

Carlson, K. D., & Herdman, A. O. (2012). Understanding the impact of convergent validity on 
research results. Organizational Research Methods, 15(1), 17–32. 

Chaby, L. E., Sheriff, M. J., Hirrlinger, A. M., & Braithwaite, V. A. (2015). Can we understand 
how developmental stress enhances performance under future threat with the Yerkes-
Dodson law? Communicative & Integrative Biology, 8(3), e1029689. 



67 

Chirico, A., Serino, S., Cipresso, P., Gaggioli, A., & Riva, G. (2015). When music “flows”. State 
and trait in musical performance, composition and listening: a systematic review. 
Frontiers in Psychology, 6, 906. 

Cieslik, E. C., Mueller, V. I., Eickhoff, C. R., Langner, R., & Eickhoff, S. B. (2015). Three key 
regions for supervisory attentional control: evidence from neuroimaging meta-analyses. 
Neuroscience & biobehavioral reviews, 48, 22-34. 

Davidson, D. J., Zacks, R. T., & Williams, C. C. (2003). Stroop interference, practice, and aging. 
Aging, Neuropsychology, and Cognition, 10(2), 85–98. 

Diamond, N. B., & Levine, B. (2018). The prefrontal cortex and human memory. 

Diemer, J., Alpers, G. W., Peperkorn, H. M., Shiban, Y., & Mühlberger, A. (2015). The impact 
of perception and presence on emotional reactions: a review of research in virtual reality. 
Frontiers in Psychology, 6, 26. 

Drey, T., Jansen, P., Fischbach, F., Frommel, J., & Rukzio, E. (2020). Towards progress 
assessment for adaptive hints in educational virtual reality games. Extended Abstracts of 
the 2020 CHI Conference on Human Factors in Computing Systems, 1–9. 

Evans, J. S. B. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. 
Annu. Rev. Psychol., 59, 255–278. 

Feroz, F. S., Leicht, G., Rauh, J., & Mulert, C. (2019). The time course of dorsal and rostral-
ventral anterior cingulate cortex activity in the emotional Stroop experiment reveals 
valence and arousal aberrant modulation in patients with schizophrenia. Brain 
topography, 32(1), 161-177. 

Flach, P. A. (2016). ROC analysis. In Encyclopedia of machine learning and data mining (pp. 1-
8). Springer. 

Galatzer-Levy, I. R., Ma, S., Statnikov, A., Yehuda, R., & Shalev, A. Y. (2017). Utilization of 
machine learning for prediction of post-traumatic stress: a re-examination of cortisol in 
the prediction and pathways to non-remitting PTSD. Translational psychiatry, 7(3), 
e1070-e1070.Gareth, J., Daniela, W., Trevor, H., & Robert, T. (2013). An introduction to 
statistical learning: with applications in R. Spinger. 

Gaskin, C. J., & Happell, B. (2014). On exploratory factor analysis: A review of recent evidence, 
an assessment of current practice, and recommendations for future use. International 
Journal of Nursing Studies, 51(3), 511–521. 

Gerjets, P., Walter, C., Rosenstiel, W., Bogdan, M., & Zander, T. O. (2014). Cognitive state 
monitoring and the design of adaptive instruction in digital environments: lessons learned 
from cognitive workload assessment using a passive brain-computer interface approach. 
Frontiers in Neuroscience, 8, 385. 



68 

Gross, J. J. (2015). Emotion regulation: Current status and future prospects. Psychological 
Inquiry, 26(1), 1–26. 

Hautamäki, V., Cherednichenko, S., Kärkkäinen, I., Kinnunen, T., & Fränti, P. (2005). 
Improving k-means by outlier removal. Scandinavian Conference on Image Analysis, 
978–987. 

Heidlmayr, K., Kihlstedt, M., & Isel, F. (2020). A review on the electroencephalography 
markers of Stroop executive control processes. Brain and Cognition, 146, 105637. 

Hossin, M., & Sulaiman, M. N. (2015). A review on evaluation metrics for data classification 
evaluations. International Journal of Data Mining & Knowledge Management Process, 
5(2), 1. 

Howard, M. C. (2016). A review of exploratory factor analysis decisions and overview of 
current practices: What we are doing and how can we improve? International Journal of 
Human-Computer Interaction, 32(1), 51–62. 

Ippolito, M., Ferguson, J., & Jenson, F. (2021). Improving facies prediction by combining 
supervised and unsupervised learning methods. Journal of Petroleum Science and 
Engineering, 200, 108300. 

Jiao, Y., & Du, P. (2016). Performance measures in evaluating machine learning based 
bioinformatics predictors for classifications. Quantitative Biology, 4(4), 320–330. 

Jin, J., & Maren, S. (2015). Prefrontal-hippocampal interactions in memory and emotion. 
Frontiers in Systems Neuroscience, 9, 170. 

Johannessen, E., Szulewski, A., Radulovic, N., White, M., Braund, H., Howes, D., Rodenburg, 
D., & Davies, C. (2020). Psychophysiologic measures of cognitive load in physician 
team leaders during trauma resuscitation. Computers in Human Behavior, 111, 106393. 

Kessels, R. P. C. (2019). Improving precision in neuropsychological assessment: Bridging the 
gap between classic paper-and-pencil tests and paradigms from cognitive neuroscience. 
The Clinical Neuropsychologist, 33(2), 357–368. 

Laeng, B., Ørbo, M., Holmlund, T., & Miozzo, M. (2011). Pupillary stroop effects. Cognitive 
Processing, 12(1), 13–21. 

Lifshitz, M., Bonn, N. A., Fischer, A., Kashem, I. F., & Raz, A. (2013). Using suggestion to 
modulate automatic processes: From Stroop to McGurk and beyond. Cortex, 49(2), 463-
473. 

Luo, G. (2016). A review of automatic selection methods for machine learning algorithms and 
hyper-parameter values. Network Modeling Analysis in Health Informatics and 
Bioinformatics, 5(1), 1–16. 



69 

MacLeod, C. M. (1991). Half a century of research on the Stroop effect: an integrative review. 
Psychological Bulletin, 109(2), 163. 

Mahesh, B. (2020). Machine learning algorithms-a review. International Journal of Science and 
Research (IJSR).[Internet], 9, 381–386. 

Mandrekar, J. N. (2010). Receiver operating characteristic curve in diagnostic test assessment. 
Journal of Thoracic Oncology, 5(9), 1315–1316. 

McCabe, D. P., Roediger III, H. L., McDaniel, M. A., Balota, D. A., & Hambrick, D. Z. (2010). 
The relationship between working memory capacity and executive functioning: evidence 
for a common executive attention construct. Neuropsychology, 24(2), 222. 

McMahan, T., Duffield, T., & Parsons, T. D. (2021). Feasibility Study to Identify Machine 
Learning Predictors for a Virtual School Environment: Virtual Reality Stroop Task. 
Front. Virtual Real. 2: 673191. Doi: 10.3389/Frvir. 

McMahan, T., & Parsons, T. D. (2020). Adaptive Virtual Environments using Machine Learning 
and Artificial Intelligence. ANNUAL REVIEW OF CYBERTHERAPY AND 
TELEMEDICINE 2020, 141. 

Meyers, J. E., & Vincent, A. S. (2020). Automated neuropsychological assessment metrics (v4) 
military battery: military normative data. Military Medicine, 185(9-10), e1706-e1721. 

Mitra, J., Shen, K., Ghose, S., Bourgeat, P., Fripp, J., Salvado, O., Pannek, K., Taylor, D. J., 
Mathias, J. L., & Rose, S. (2016). Statistical machine learning to identify traumatic brain 
injury (TBI) from structural disconnections of white matter networks. NeuroImage, 129, 
247–259. 

Mosavi, A., Ozturk, P., & Chau, K. (2018). Flood prediction using machine learning models: 
Literature review. Water, 10(11), 1536. 

Nakamura, J., & Csikszentmihalyi, M. (2014). The concept of flow. In Flow and the foundations 
of positive psychology (pp. 239–263). Springer. 

Neguţ, A., Matu, S.-A., Sava, F. A., & David, D. (2015). Convergent validity of virtual reality 
neurocognitive assessment: a meta-analytic approach. Transylvanian Journal of 
Psychology, 16(1). 

Nejati, V., Salehinejad, M. A., & Nitsche, M. A. (2018). Interaction of the left dorsolateral 
prefrontal cortex (l-DLPFC) and right orbitofrontal cortex (OFC) in hot and cold 
executive functions: Evidence from transcranial direct current stimulation (tDCS). 
Neuroscience, 369, 109–123. 

Ngure, J. N., Kihoro, J. M., & Waititu, A. (2015). Principal component and principal axis 
factoring of factors associated with high population in urban areas: a case study of Juja 
and Thika, Kenya. American Journal of Theoretical and Applied Statistics, 4(4), 258. 



70 

Noble, W. S. (2006). What is a support vector machine? Nature Biotechnology, 24(12), 1565–
1567. 

Norsworthy, C., Gorczynski, P., & Jackson, S. A. (2017). A systematic review of flow training 
on flow states and performance in elite athletes. Graduate Journal of Sport, Exercise & 
Physical Education Research, 6(2), 16–28. 

Omar, K. S., Mondal, P., Khan, N. S., Rizvi, M. R. K., & Islam, M. N. (2019). A machine 
learning approach to predict autism spectrum disorder. 2019 International Conference on 
Electrical, Computer and Communication Engineering (ECCE), 1–6. 

Osborne, J. W. (2015). What is rotating in exploratory factor analysis? Practical Assessment, 
Research, and Evaluation, 20(1), 2. 

Pan, X., & Hamilton, A. F. de C. (2018). Why and how to use virtual reality to study human 
social interaction: The challenges of exploring a new research landscape. British Journal 
of Psychology, 109(3), 395–417. 

Parsons, T. D. (2015). Virtual reality for enhanced ecological validity and experimental control 
in the clinical, affective and social neurosciences. Frontiers in human neuroscience, 9, 
660. 

Parsons, T. D., & Barnett, M. (2019). Virtual Apartment-Based Stroop for assessing distractor 
inhibition in healthy aging. Applied Neuropsychology: Adult, 26(2), 144–154. 

Parsons, T. D., & Barnett, M. D. (2018). Virtual apartment stroop task: Comparison with 
computerized and traditional stroop tasks. Journal of Neuroscience Methods, 309, 35–40. 

Parsons, T. D. & Courtney, C. G. (2018). Interactions between threat and executive control in a 
virtual reality stroop task. IEEE Transactions on Affective Computing, 9(1), 66–75. 

Parsons, T. D., Courtney, C. G., & Dawson, M. E. (2013). Virtual reality Stroop task for 
assessment of supervisory attentional processing. Journal of Clinical and Experimental 
Neuropsychology, 35(8), 812–826. 

Parsons, T. D. & Duffield, T. (2019). National Institutes of Health initiatives for advancing 
scientific developments in clinical neuropsychology. The Clinical Neuropsychologist, 
33(2), 246–270. 

Parsons, T. D. & Duffield, T. (2020). Paradigm shift toward digital neuropsychology and high-
dimensional neuropsychological assessments. Journal of Medical Internet Research, 
22(12), e23777. 

Parsons, T. D., Gaggioli, A., & Riva, G. (2017). Virtual reality for research in social 
neuroscience. Brain Sciences, 7(4), 42. 

Parsons, T. D., Gaggioli, A., & Riva, G. (2020). Extended reality for the clinical, affective, and 
social neurosciences. Brain Sciences, 10(12), 922. 



71 

Parsons, T.D., McMahan, T., & Parberry, I. (2022). Classification of Video Game Player 
Experience Using Consumer-Grade Electroencephalography. IEEE Transactions on 
Affective Computing, 13(1), 315. 

Parsons, T. D., & Reinebold, J. (2011, November). Neuroscience and simulation int erface for 
adaptive assessment in serious games. In 2011 IEEE International Games Innovation 
Conference (IGIC) (pp. 93-96). IEEE. 

Parsons, T.D, & Reinebold, J. (2012). Adaptive Virtual Environments for Neuropsychological 
Assessment in Serious Games. IEEE Transactions on Consumer Electronics, 58, 197-
204. 

Pennycook, G. (2017). A Perspective on the Theoretical Foundation of Dual Process Models. In 
Dual Process Theory 2.0 (pp. 5-27). Routledge. 

Periáñez, J. A., Lubrini, G., García-Gutiérrez, A., & Ríos-Lago, M. (2021). Construct validity of 
the stroop color-word test: influence of speed of visual search, verbal fluency, working 
memory, cognitive flexibility, and conflict monitoring. Archives of Clinical 
Neuropsychology, 36(1), 99–111. 

Plass, J. L., & Kalyuga, S. (2019). Four ways of considering emotion in cognitive load theory. 
Educational Psychology Review, 31(2), 339-359. 

Rabin, L. A., Spadaccini, A. T., Brodale, D. L., Grant, K. S., Elbulok-Charcape, M. M., & Barr, 
W. B. (2014). Utilization rates of computerized tests and test batteries among clinical 
neuropsychologists in the United States and Canada. Professional Psychology: Research 
and Practice, 45(5), 368. 

Reeves, D. L., Winter, K. P., Bleiberg, J., & Kane, R. L. (2007). ANAM® Genogram: Historical 
perspectives, description, and current endeavors. Archives of Clinical Neuropsychology, 
(22), 15-37. 

Rodríguez-Ardura, I., & Meseguer-Artola, A. (2016). E-learning continuance: The impact of 
interactivity and the mediating role of imagery, presence and flow. Information & 
Management, 53(4), 504–516. 

Romine, W. L., Schroeder, N. L., Graft, J., Yang, F., Sadeghi, R., Zabihimayvan, M., ... & 
Banerjee, T. (2020). Using machine learning to train a wearable device for measuring 
students’ cognitive load during problem-solving activities based on electrodermal 
activity, body temperature, and heart rate: development of a cognitive load tracker for 
both personal and classroom use. Sensors, 20(17), 4833. 

Rozenek, E. B., Gorska, M., Wilczynska, K., & Waszkiewicz, N. (2019). In search of optimal 
psychoactivation: stimulants as cognitive performance enhancers/U potrazi za 
optimalnom psihoaktivacijom--stimulansi kao pojacivaci kognitivne funkcije. Archives 
of Industrial Hygiene and Toxicology, 70(3), 150+. 



72 

Ruff, C. C., Woodward, T. S., Laurens, K. R., & Liddle, P. F. (2001). The role of the anterior 
cingulate cortex in conflict processing: Evidence from reverse Stroop interference. 
Neuroimage, 14(5), 1150-1158 

Scarpina, F., & Tagini, S. (2017). The stroop color and word test. Frontiers in psychology, 8, 
557. 

Schilbach, L. (2015). Eye to eye, face to face and brain to brain: novel approaches to study the 
behavioral dynamics and neural mechanisms of social interactions. Current Opinion in 
Behavioral Sciences, 3, 130–135. 

Schweizer, S., Grahn, J., Hampshire, A., Mobbs, D., & Dalgleish, T. (2013). Training the 
emotional brain: improving affective control through emotional working memory 
training. Journal of Neuroscience, 33(12), 5301–5311. 

Shenhav, A., Cohen, J. D., & Botvinick, M. M. (2016). Dorsal anterior cingulate cortex and the 
value of control. Nature Neuroscience, 19(10), 1286–1291. 

Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Pearson 
Boston, MA. 

Tarnanas, I., Schlee, W., Tsolaki, M., Müri, R., Mosimann, U., & Nef, T. (2013). Ecological 
validity of virtual reality daily living activities screening for early dementia: longitudinal 
study. JMIR Serious Games, 1(1), e2778. 

Thorne, D. R. (2006). Throughput: a simple performance index with desirable characteristics. 
Behavior Research Methods, 38(4), 569. 

Vural, M. S., & Gök, M. (2017). Criminal prediction using Naive Bayes theory. Neural 
Computing and Applications, 28(9), 2581-2592. 

Wekselblatt, J. B., & Niell, C. M. (2015). Behavioral state—getting “in the zone”. Neuron, 
87(1), 7-9. 

Woodhouse, J., Heyanka, D. J., Scott, J., Vincent, A., Roebuck-Spencer, T., Domboski-
Davidson, K., O’Mahar, K., & Adams, R. (2013). Efficacy of the ANAM General 
Neuropsychological Screening Battery (ANAM GNS) for detecting neurocognitive 
impairment in a mixed clinical sample. The Clinical Neuropsychologist, 27(3), 376–385. 

Wu, D., Courtney, C., Lance, B., Narayanan, S.S., Dawson, M., Oie, K., & Parsons, T.D. (2010). 
Optimal Arousal Identification and Classification for Affective Computing: Virtual 
Reality Stroop Task. IEEE Transactions on Affective Computing, 1, 109-118.  

Wu, D., Lance, B., & Parsons, T.D. (2013). Collaborative Filtering for Brain-Computer 
Interaction Using Transfer Learning and Active Class Selection. PLOS ONE, 1-18. 

Wu, D., & Parsons, T.D. (2011). Active Learning for Arousal Classification. Lecture Notes in 
Computer Science, 6975, 132-141. 



73 

Wu, D., & Parsons, T.D. (2012). Customized Cognitive State Recognition Using Minimal User-
Specific Data. Proceedings of the Military Health Systems Research Symposium, Fort 
Lauderdale, FL, August 2012 

Wu, D., & Parsons, T.D. (2011). Inductive Transfer Learning for Handling Individual 
Differences in Affective Computing. Lecture Notes in Computer Science, 6975, 142-151. 

Yong, A. G., & Pearce, S. (2013). A beginner’s guide to factor analysis: Focusing on 
exploratory factor analysis. Tutorials in Quantitative Methods for Psychology, 9(2), 79–
94. 

Zahabi, M., & Abdul Razak, A. M. (2020). Adaptive virtual reality-based training: a systematic 
literature review and framework. Virtual Reality, 24(4), 725–752. 

Zelazo, P. D. (2015). Executive function: Reflection, iterative reprocessing, complexity, and the 
developing brain. Developmental Review, 38, 55–68. 

 


	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1. INTRODUCTION
	1.1 Stroop Task
	1.2 Theories Explaining the Stroop
	1.3 Low-Dimensional Computer-Automated Stroop Presentations
	1.4 Cognitive and Affective Processing
	1.5 Virtual Reality (VR) Assessments
	1.6 The Virtual Reality Stroop Task (VRST)
	1.7 Adaptive Assessments and Flow

	CHAPTER 2. FACTOR ANALYSIS OF THE VRST AND ANAM STROOP TASK
	2.1 Purpose of Factor Analysis
	2.2 Methods
	2.2.1 Participants
	2.2.2 Materials
	2.2.2.1 ANAM (Automated Neuropsychological Assessment Metrics)
	2.2.2.2 VRST (Virtual Reality Stroop Task)

	2.2.3 Analyses

	2.3 Results
	2.3.1 VRST Combined Results
	2.3.2 VRST Safe Zones and Ambush Zones
	2.3.3 Throughput Assessment
	2.3.4 ANAM
	2.3.5 Factor Correlations


	CHAPTER 3. CLASSIFICATION OF PERFORMANCE IN THE VIRTUAL REALITY STROOP TASK USING MACHINE LEARNING
	3.1 Purpose of Classifier Assessment
	3.2 Methods
	3.2.1 Participants
	3.2.2 Materials: VRST (Virtual Reality Stroop Task)
	3.2.3 Procedures
	3.2.3.1 Naïve Bayes
	3.2.3.2 Support Vector Machine
	3.2.3.3 k-Nearest Neighbor
	3.2.3.4 Classifier Assessment


	3.3 Results
	3.3.1 Overall Performance
	3.3.2 Safe Zones
	3.3.3 Ambush Zones


	CHAPTER 4. DISCUSSION
	4.1 Overview
	4.2 VRST Factor Analysis
	4.2.1 ANAM
	4.2.2 VRST Combined
	4.2.3 VRST Safe Zones vs Ambush Zones
	4.2.4 Comparison of Stroop Tasks

	4.3 Discussion Machine Learning Analysis
	4.3.1 Naïve Bayes Performance
	4.3.2 Support Vector Machine Performance
	4.3.3 k Nearest Neighbors Machine Performance


	CHAPTER 5. CONCLUSIONS
	5.1 Overview
	5.2 Conclusions and Limitations from Factor Analysis
	5.3 Conclusions and Limitations from Machine Learning Analysis
	5.4 General Conclusions

	REFERENCES



