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This work explores a continuum representation for diffuse layer models, thereby 

endowing continuum embedding models the ability to capture electrostatic phenomena in 

the environment such as the existence of electrolyte ions, and the nature of ionic liquids. 

It introduces a new field-aware continuum model that adjusts the size of the quantum 

regime per atom based on the distribution of charge in a system. The model accounts for 

the asymmetric nature of solvent distribution when applied to cations versus anions; it 

also overcomes the need to parameterize continuum interface models for different charged 

systems. The continuum representation of cavitation in water does not account for the 

tendency for water to form a hydrogen bonding network that is broken due to the 

formation of cavities. This effect is a major contributor to hydrophobic solvation and is 

an important precondition to the investigation of solvated proteins with continuum 

embedding. A new model inspired by machine learning advances is trained on molecular 

dynamics simulations due to the difficulty of isolating the cavitation energy term in 

experiment. Thermodynamic integration is used to calculate the energy from a step-like 

repulsive potential from cavities in TIP4P water, cavities ranging from small organic 

molecules, to small proteins. Predictions from this new model show a small improvement 

for small molecules and scale much better with respect to the size of the system. 
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a Morse-potential interaction between solute and anions is employed
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CHAPTER 1

INTRODUCTION

1.1. Materials Discovery

A vitally important role that science provides is discovery. Historically discovery has

often preceded theory. For example when understanding how to exploit the world around us,

humans would experiment with different substances, heating them, combining them into new

potentially useful things. Once sufficient discovery had been made, scientific theory could be

established, and by doing so, gaps would appear in what we know exists, predictions for us

to fulfill. Once the periodic table was established in 1869 and the field of chemistry took off,

discovery moved to trying to build a specific previously discovered compound in a way that

could be industrialized, driven by human demand. An example of this is the development

of the Haber process, in which nitrogen and hydrogen combined to form ammonia. Theory

additionally provided predictions about what kinds of elements and compounds should exist,

driven by the patterns that different species of atoms exhibited. Trying to find a product

with specific desirable properties was much more challenging, and required a great deal of

trial and error, driven by the knowledge of chemistry and physics at the time.

There are in general, two fundamental approaches to a scientific problem. One can

start from first principles, from known theory which at this point in time is mostly well

established, or from noticing relationships between a system with full details and one with

less degrees of freedom. For example, the time taken for an object to fall from some height to

the ground can be measured by considering the entire connected universe, but understanding

that most of the contributions are relatively negligible, one can simply consider the object

of interest, the earth and the force of gravity. It is even possible to infer the relationship of

the object properties (in this case, the height above the ground when the timer starts) with

the property we want to measure (the time taken) by performing experiments and finding

patterns in the results.

Realistically a combination of the two should be used. This results in a number of
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different philosophies for approaching problems. We desire accuracy, which implies that

ab initio is the modus operandi, and approximations should be avoided whenever possible.

However, we are limited by computational resources. The majority of problems of interest

are simply too complex to calculate without some level of simplification.

The establishment of quantum theory in the early 20th century provided for the first

time a complete exact model in which to understand the properties of arbitrary chemical

combinations, however, the work required to solve the mathematics was unfathomable. The

n-body problem is a prevalent issue that arises when attempting to apply the laws of physics

to solve even simple systems. It crops up in solving planetary paths due to gravitational

forces, or in solving coupled classical mechanics problems. For large enough time scales,

nonlinear effects become appreciable and the time evolution becomes what is known as

chaotic. It is apparent that only 2 body problems should be solvable in classical physics by

considering the degrees of freedom and the conserved quantities that provide us with the

ability to reduce the degrees of freedom.

With n bodies, we have 6n degrees of freedom, 3 spacial coordinates, and 3 momentum

components for each body. Since we only care about the motions of the bodies relative to

each other, we can factor out the position and velocity of the center of mass (or indeed

any reference point that moves with the center of mass of the system). This accounts for 9

of the degrees of freedom, 3 for the location, 3 for the momentum, and 3 for the rotation.

Additionally we can say that the total energy of a system is conserved. For 2 bodies, we are

left with 2 degrees of freedom, enough to determine a relationship between two variables. For

3 bodies, we have 8 degrees of freedom, and therefore no exact solution should be possible.

This limitation in our ability to solve the physics of systems shows up again in quantum

mechanics when considering the helium atom, a system with two electrons and one nucleus.

To overcome this, we are forced to resort to tricks and approximations that simplify the

problem. The validity of such methods depend on how well the assumptions are held. One

famous approximation in quantum chemistry and a requirement for scalable calculations

is the Born-Oppenheimer approximation. This starts with the assumption that the mass
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of the nucleus is much greater than the mass of the electron. This greatly simplifies the

wavefunction by ignoring cross terms and instead considers the product of the electronic and

nuclear wavefunctions.

Two advances contributed substantially to solving multi-body quantum problems

feasible. One is the rise of the digital computer, and the other is the development of Kohn-

Sham equations. Kohn-Sham equations resolve the intractable nature of density functional

theory by proposing that the ground state electrostatic density can be replaced by a fictitious

system of non-interacting particles which can be solved numerically. This new system is exact

in principle, but relies on a correct exchange correlation potential term that is, in practice,

computationally infeasible to compute and hence left as an approximation. These equations

were introduced in 1965 and numerical methods for computing the ground state of some

quantum system did not significantly improve in the decades since. Rather, computational

power that has grown exponentially even up to the present day. In fact, the entire field of

computational science, from classical mechanics simulations to Monte Carlo methods, has

benefited from this growth and these models continue to be used for cutting edge discovery

to this day.

The advancement of computational discovery is such that now we exist in a world

where theory completely precedes any form of discovery, where finding the properties of

materials via trial and error can happen without any physical manifestation. The future

looks even more bright. Due to the vast quantity of data we have collected over the years of

performing condensed matter and chemistry simulations, we can harness the modern power

of computers to synthesize mappings between known physical parameters and unknown

material properties via machine learning models. Once a mapping is established, it may

even be possible for the processes to be reversed. Models created using machine learning can

find the structures of materials that would best fit a set of criteria.

Our understanding of materials and chemistry would not be where it is today without

the many diverging paths of different research groups over the decades. Simply put, there

is no best way of applying the physics that we know to an arbitrary atomic system. In

3



principle, if time were not a concern, humanity has reached a point where it is possible for

calculate the properties of an atomic system exactly, from the properties that we know such

as number of electrons, protons, and neutrons for each atom in the system. Despite the

n-body problem, we can employ iterative schemes designed get closer to the exact solution

over time. Yet still, if one were to consider every actor at play, even single atomic systems

become intractable, and approximations and simplifications have to be made in order to

make progress.

As we approach systems of larger and larger scales, greater approximations must be

made, but the result is not necessarily a model without accuracy. By reducing the scope

of a problem and reducing the amount of information deemed useful in learning about a

system, useful simulations can be designed at any scale. For example, molecular dynamics

ignores quantum effects, but models many biological systems faithfully. Models of water can

be purely classical by design and yet accurately capture many of the phase transitions that

exist.

1.2. Simulation Models

Density functional theory has for many decades been the most successful solution for

dealing with periodic systems in vacuum, that is, infinitely repeating patterns of atoms. Since

there are many many orders of magnitude between the atomic scale and the macroscopic scale

in which we inhabit with the materials that we use, deriving properties from such assumptions

as infinitely sized, or without regards to defects or edges, is quite reasonable. Density

functional theory is in principle, an exact solution to the Schrödinger equation. However, to

find the ground state of a system in reasonable time, one must make approximations. Even

still, density functional theory, or DFT for short, does not perform well for large systems,

with an approximate scaling of n3, where n is the number of atoms. What is large you may

ask? Well, even at 30 atoms, simulations slow down considerably. DFT, as it was initially

conceived, is somewhat limited in the types of systems it can compute, and yet because of

the periodic nature of materials, it remains to this day an incredibly successful model for

discovery.
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For computers to provide insights into chemical interactions, an understanding of

larger scale systems is necessary. A common fascination is an isolated molecule surrounded

by water molecules. Away from areas of interest, it is necessary to simulate many water

molecules and since they typically exist as some kind of medium, their configuration is

constantly changing, which adds a lot of complexity to the problem. The solution adopted

by much of the computational chemistry community was to ignore the quantum effects

whenever we did not need detailed information about the interaction between electrons and

instead focus on a classical model. In its simplest form, a classical molecular dynamics

simulation consists of a collection of atoms, each with pairwise interactions that serve to

approximate every electrostatic effect. Like in DFT, assuming periodicity resolves many of

the scaling issues that simulations might have and allows us to make macroscopic conclusions

from systems with thousands of atoms.

Classical models certainly have their advantage of their purely quantum counterparts.

They scale much better with system size, and provide computational scientists with the

ability to gain insight into systems of higher complexity. Much of the information is lost,

however, and in practice, both tools find themselves with their own distinct applications.

Further approximations can be made to reach areas where classical methods fall short.

Take a single species liquid for example, like water. In order for Molecular Dynamics, or MD,

to derive the effects of water on larger systems like a dissolved material or the surface of a

material, many water molecules need to be considered, and as stated before, many snapshots

need to be considered, because the configuration of a liquid is continuously varying with time.

In order to derive any time based property, one needs sufficient snapshots for statistical

accuracy. However it is clear that if were to statistically average the configurations of the

water molecules, they would exist continuously over all space. This effect breaks down in

heterogeneous regions, but in a large medium of water, one can fairly confidently represent

the system without atoms entirely. The substitute is a field, or a continuum, where the

properties are permitted to vary continuously over space. Such an approximation finds a lot

of application in finding macroscopic properties of materials and media like elasticity and
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plasticity.

Multi-scale models serve to bridge the gap between these models. The general idea

is that one should be able to split up an arbitrary system into subsystems separated by

boundaries. If we are interested in only a single subsystem, the rest of the system can be

represented by a more approximate model, and therefore one effectively gains the best of

both worlds. A detailed representation of the area of interest and the ability to simulate a

larger system without encountering computational scaling issues. In this writing, I will be

focusing on the combination of DFT and continuum models.

Continuum solvation models, or implicit solvation, are multi-scale models that com-

bine DFT and continuum mechanics in order to produce fast simulations of systems that

involve an interface with some medium. Since their adoption, the continuum idea has been

expanded to include the electrochemical double layer that exists due to the presence of ions

in solution.

In the field of continuum solvation and multi-scale models exist a range of implemen-

tations that take slightly different approaches. The work of Andreussi and others currently

exists in a software package called Environ, and is in continual development primarily by

members of the Materialab group at the University of North Texas, led by Dr. Andreussi

himself. Environ works on top of Quantum ESPRESSO, the most widely used open source

DFT software suite in active development. Environ contains continuum solvation models

that couple with the DFT drivers of Quantum ESPRESSO. The models themselves are

robust and contain very few artificial parameters.

One of the most important distinctions in a model is in the definition of the interface

that separates the vacuum DFT region with the continuum represented implicit solvent.

This can be based on the density of the electrons around a solute, the atomic positions in

the solute, or a combination of the two. In general, there is a tricky balance between adding

features to a model and thus increasing its transferability and accuracy, and adding too

many features, such that there are unnecessary redundancies, and extrapolation works very

poorly.
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1.3. Continuum Solvation Specifically

Let’s take a step back and consider the importance of simulations with interfaces.

Humanity exists as the self proclaimed dominant species of Earth, and thanks to an ever

growing shared knowledge-base called science, we have learned to outpace any natural popu-

lation inhibitions, and effect our environment on a planetary scale. As a collective however,

we are arguably merely children that for too long have lacked the wisdom to wield the power

that we possess in a way that does not compromise our own continued evolutionary success,

and without concern to the diversity of life that exists around us.

The general trajectory is one towards automation, making survival more and more

trivial by driving up the efficiency of processes, the amount of actions possible by a single

human in a given span of time, at the cost of energy. This began with the discovery that

biomass was combustible and therefore a source of energy, and the domestication of animals,

and moved progressively to more dense forms of combustible fuels, like coal and oil.

Our current situation, as of 2021, is somewhat dire. Atmospheric carbon dioxide,

the gas that accounts for the largest quantity of emissions from combustion, has increased

from 260–270ppm before industrialization [105] to 420ppm today [92]. The result is a global

change in air and surface temperatures [43, 61], and trends are accelerating. A somewhat

simplistic way to look at the problem is to focus solely on these CO2 emissions, the rate in

which they are increasing annually, and the current transition away from combustible fuels.

Annual carbon dioxide emissions have increased by 45% in the last 20 years whereas the

global energy consumption increased by 42% [83, 84]. The increase in adoption of renewable

energy sources, whilst encouraging, pales in comparison to the usage of coal, oil, and gas,

which combined, continue to see increased usage year after year. The driving factor behind

the rise in renewable popularity has been their economic viability, which is in turn driven by

materials innovation. Therefore not only is materials discovery useful for the advancement

of all applications that we use today, but it is critically important in the fight to mitigate

the effects of climate change, a task for which our time becomes increasingly constrained.

There are many applications for continuum solvation models, and the situation in the
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world right now is driving current developments very much towards the research of materials

used in renewable technologies. A significant challenge faced in chemistry is the search for

catalysts. When posed as a computational problem, continuum solvation fits remarkably

well [103, 104]. We have a system composed of a catalyst, usually existing in some liquid

medium that is capable of facilitating some chemical reaction. This opens up more options

for what reaction pathways are viable, and provides economically viable or perhaps even

more sustainable alternatives to existing pathways.

One potential fuel source leverages the mechanism of photosynthesis [19, 18]. Another

uses electrolysis; fuel cells exist as a potential answer to our current dependence on com-

bustible fuels. Hydrogen fuelled and battery powered electric vehicles are the front-runners in

the race to replace the gasoline powered vehicle. Each has its advantages and disadvantages,

the latter of which can be mitigated by funding and research. As of 2021, hydrogen fuel

cells have found a niche as an alternative for larger vehicles, where the capacity limitations

of batteries become relevant.

A major barrier preventing more widespread adoption of these sustainable replace-

ments is the economic viability of hydrogen. Currently the fuel cell relies on rare metals

to catalyse the electrochemical reactions of water and its constituents, of which Platinum

has been shown to be the best. A so-called ’volcano’ plot (a graphical representation of the

Sabatier principle) was initially used to illustrate how catalyst choice is typically a compro-

mise between being too strong and therefore preventing dissociation of the product, and too

weak such that the adsorbent does not bind to the surface. A similar trade-off can be seen

in the materials used for the electrocatalysis of water. Take the hydrogen evolution reaction

for example [98]. By studying the bond strength of the adsorbed hydrogen vs. the exchange

current for the reaction, one sees the same apparent volcano plot shape, with platinum at

the top, with the minimum exchange current, and a bond strength that is not too strong

and not too weak.

2D materials are an exciting new development in materials discovery [68, 53, 54] that

have different properties to their bulk counterparts, of which their use in electrocatalysis is of
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particular interest. Continuum solvation models are capable of assessing the stability of 2D

materials in water (or indeed any solvent). They can also test for the stability of adsorbates

that bind to 2D catalytic surfaces. A series of papers by Naiwrit Karmodak explores the

possibilities of these materials as a replacement for the current platinum catalysts that lack

economic viability.

The study of thermodynamic properties of electrodes in solution is somewhat involved

and requires a few pieces on top of the standard continuum solvation model. The electro-

chemical double layer is represented by a continuum [74], and the charge and adsorbate

coverage is varied as part of a grand canonical approach.

Continuum solvation has also been used to investigate the dependence of permittivity

on catalytic activity, in order to find new directions to take to solve the hydrogen fuel

cell problem [32] and to investigate the properties of Pt nanoparticles instead of its bulk

equivalent for economic viability [87]. Montemore [67] applies solvation to investigate the

adsorption of alkyls on a copper catalyst. These intermediates exist as part of the CO2

electroreduction and the aqueous Fischer-Tropsch process (converting fuels from natural gas

and other forms of biomass).
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CHAPTER 2

CONTINUUM SOLVATION

A solvated system consists of a solvent and some dissolved molecules. The solvent is

typically some liquid medium that consists of a single type of molecule, for example, water

is a polar solvent. Water can dissolve polar molecules due to their ability to connect to the

hydrogen bonding network that the polar water molecules typically form. This electrostatic

interaction keeps the energy of the solvated system below the energy of the separated system.

The free energy of solvation (or the energy required to dissolve a solute in some solvent) is

given as the sum of many terms:

• Electrostatic - all electrostatic terms are solved by the Poisson equation, once solved,

the energy can be computed.

• Cavitation - the energy required to create a vacuum filled cavity of some shape

inside the solvent medium.

• Repulsion - the continuum counterpart of the short-range interactions induced by

the Pauli exclusion principle.

• Dispersion - the van der Waals interactions.

• Vibrational/Rotational changes

• Volume changes in the solute Hamiltonian

Continuum solvation models must solve a classical electrostatic problem in order to

account for the field representation of the solvent. The region of space that is populated

by solvent molecules has some constant static permittivity greater than one, and the region

populated by the solute is treated as a vacuum, with a static permittivity of one. Since the

function for static permittivity is not constant over all space, the electrostatic problem is

not so simple to solve for,

(2.1) −∇ · (ε(r)∇V (r)) = 4πρM(r)
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where ρM(r) is the solute charge distribution and ε(r) is the permittivity. Hence,

for a given potential V , one can solve for the charge distribution of the solute due to some

solvent.

2.1. Polarized Continuum Model

One of the most commonly used methods in computational chemistry for the modeling

of solvation effects is the polarizable continuum model [65, 66], PCM for short. PCM splits

a system into the solvent medium and the solute (often a single dissolved molecule). The

boundary between solute and solvent is a hard interface built up from interlocking spheres

centered at each of the atomic positions of the solute. The radii of these spheres is set by

the van der Waals radii. The cavitation energy is approximated as the surface area of the

interface. The electrostatic problem is approached by considering the effect of the solvent

through the interface. Computationally, it is possible to break down the interface into many

small tesserae, each of which has some surface charge. The potential from eq. 2.1 can be

written as the sum of two terms, the potential due to the solute and a potential term due

to the surface of the interface.

To solve for the solute region, which is a quantum mechanical problem, one might

have an effective Hamiltonian for the solute that consists of two terms, the Hamiltonian for

the solute in vacuum and a new term representing the electrostatic interaction between the

solute and the solvent.

(2.2) Ĥeff = Ĥ0 + V̂ R

Continuum solvation models present themselves as a viable approximation to the

explicit solvation achieved by Molecular Dynamics, which simply becomes too expensive in

bulk. Pure DFT on the other hand, does not describe solvents well due to limitations in the

functionals.

From the other side of the scientific community, the computational condensed matter

physicists had embraced DFT for quite some time,
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Arguing for a particular continuum model from a design standpoint is somewhat out

of scope for this dissertation, due to the required theory, and therefore I shall simply consider

the current state of continuum solvation models, how well they perform, and what can be

done to improve a couple of the more recent models that have seen success in the literature.

Much of my work follows the work of Andreussi, Fisicaro, and their collaborators.

2.2. Self Consistent Continuum Solvation Model

The Self Consistent Continuum Solvation model [3], or SCCS, is a reformulated ver-

sion of the solvation model of Fattebert and Gygi [29]. The original motivation for Fattebert

and Gygi in 2002 was to incorporate solvation into DFT, by modifying the original Kohn-

Sham potential into a form that accounted for the additional effects of the solvent on the

solute. In the original Kohn-Sham formulation, the energy functional consists of four terms,

the kinetic energy, the energy due to an external potential, the Hartree energy that accounts

for the electrostatic effects, and the exchange-correlation energy.

To account for solvation, the Hartree energy functional becomes

(2.3)
1

2

∫
ρφ[ρ]dr

where φ[p], the electrostatic potential, can be solved from the Poisson equation, eq.

2.1. The modified Kohn-Sham equations are solved for in all space inhabited by the solute

and the solvent, and the effect of the solvent is captured by the permittivity functional

that can vary over space. Unlike PCM, the shape of the permittivity functional cannot be

discontinuous, because of the way plane wave DFT is typically computed, and therefore

one considers a smoothly varying function instead. Fattebert and Gygi go one step further

and redefine the solute region by the electronic density rather than the atomic positions,

the rationale being that this electronic function is a better representation of how the solute

interacts with the outside world. The electrostatic free energy can be written as,
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(2.4) F [ρel, {Ri}] =

∫ (
ρel(r) +

∑
j

zjδ(|r−Rj|)

)
φ(r)dr−

∫
1

8π
ε(r) |∇φ(r)|2 dr

where φel is the electrostatic density due to the electrons, zi are the ionic charges,

and ε(r) is the dielectric permittivity of the system. The generalized Poisson equation is

recovered by taking the functional derivative of the free energy expression with respect to

the electrostatic potential. The choice of the permittivity functional is somewhat arbitrary,

needing to satisfy only a few constraints, and needing to be stable in applications. The

functional proposed by Fattebert and Gygi was a simple switching function that relates back

to,

(2.5) εr(r) = s(r)(ε0 − εb) + εb

where εb is the permittivity of the bulk solvent, εr is the permittivity at an arbitrary

point due to the solvent and ε0 is the permittivity in vacuum. s(r) is a rescaling of the

permittivity at an arbitrary point to fit some standard mathematical switching function

that ranges from 0 to 1.

(2.6) s(ρ(r)) = 1− 1

2

(
1 +

1− (ρ(r)/ρ0)2β

1 + (ρ(r)/ρ0)2β

)
with ρ0 describing the position of the solvent-solute interface, and β determining the

smoothness of the function.

With the switching function defined, one can relate the electrostatic free energy to

the Kohn-Sham equations. This unified framework determines the Kohn-Sham potential and

the forces,

(2.7) V (r) =

∫
δF [ρel]

δρel(r)
dr′ =

∫
δF [s]

δs(r′)

δs(r′)

δρel(r)
dr′
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(2.8) f =

∫
δF [Ri]

δRi

dr =

∫
δF [s]

δs(r)

∂s(r)

∂Ri

dr

The original model for the first time brought the already well developed DFT meth-

ods from the condensed matter community and the continuum solvation methods originally

pushed by the quantum chemistry community together.Since then, interest in this new family

of methods has grown exponentially. Naturally the next step would be to consider the non-

electrostatic interactions. In 2006, Scherlis, Cococcioni, and Marzari at the Massachusetts

Institute of Technology collaborated with Fatterbert and Gygi, now at Lawrence Livermore

National Laboratory to add a cavitation energy term, defined as the work involved in creating

a cavity inside the solution whilst ignoring any of the solvent-solute interactions. Cavitation

is of particular interest and will be revisited later in an attempt to improve the current state

of continuum solvation models. At this point, a number of prevalent models were considered.

What was chosen was a reasonable estimation,

(2.9) ∆Gcav = γS(ρ0)

where S(ρ0) is the surface of the interface defined in solving for the electrostatic energy

contribution, and γ is the macroscopic surface tension of the solvent. This formulation is

remarkably simple and effective. The original formulation of Fattebert and Gygi and the

possibility of incorporating their methods into DFT was hindered by the requirement of a

fast multigrid solver (an algorithm that solves for the Poisson equation via a hierarchy of

discretizations) and robust choice for the permittivity functional.

This work, published in 2012 by Andreussi, Dabo, and Marzari begins by recasting

the problem in terms of induced polarization charges, suggests an improved formulation of

the permittivity functional, provides an improved algorithm for solving the Poisson equa-

tion, and improves on the non-electrostatic energy contributions. Rather than a switching

function based off the density directly, the logarithm of the density was considered, since

the density due to electrons decays exponentially when moving from the interface to the
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solvent. Alternative switching functions were tested and a trigonometric one was chosen as

the most stable option due to the reasonable nature of its gradient function. The logarithm

of the electronic density was chosen in order to account for the exponential behaviour of the

density away from the solute.

(2.10) s(ρ(r)) = 1− 1

2π

[
2π

(
ln(ρ∨)− ln(ρ)

ln(ρ∨)− ln(ρ∧)

)
− sin

(
2π

(
ln(ρ∨)− ln(ρ)

ln(ρ∨)− ln(ρ∧)

))]
where ρ∨ and ρ∧ are the maximum and minimum bounds for the electronic density

in the switching function, respectively. These parameters determine where the interface

sits, and should therefore change depending on the interaction between the solute and the

solvent molecules. These interactions cannot be captured well with an implicit solvent model,

and therefore any local determination of the interface function (that is, a function that

doesn’t take into account its surroundings) will suffer from some minor shortcomings. Minor

reparameterizations will be needed in order to account for changes in the system, like the

charge on the solute, any electrostatic interactions between the solute and a polar solvent,

or the structuring of solvent molecules around a solvent.

The expression for the interface is continuous in its first two derivatives, which is

useful for solving analytic terms in the Poisson equation. In order to parameterize an interface

model, one can calculate solvation energy for molecules with known experimental values, and

fixed charge and tune the parameters in order to minimize the error between the experimental

values and the values calculated by the simulations.

The model is self-consistent due to the choice of an iterative algorithm in solving the

Poisson equation. In addition, the Poisson equation as stated in eq:2.1 is recast into an

expression in terms of the polarization density. This is in the same vein as the PCM

There are other options for solving for the electrostatic problem, each with its own

advantages and disadvantages

• FFTs

• Multigrid
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• Wavelets

2.3. Soft-sphere continuum solvation

As we’ve seen so far, there are two general pictures for determining the shape of

the interface around a solute. PCM takes an atomic centered approach, and SCCS takes

an electronic density approach. The soft-sphere model aims to take the atomic centered

approach of PCM and apply it to the combined implicit solvent / DFT approaches that

began with Fattebert and Gygi. The framework is therefore similar to the SCCS, with an

interface function

(2.11) s(r,Ri) = 1−

[∏
i

hi({ξ}; ‖r−Ri‖)

]

where {ξ} is a set of parameters describing the spheres. Visually, this looks almost

identical to PCM, where we have interlocking hard-spheres, however, as the name suggests,

these are soft-spheres represented in three dimensional space. Since the derivative of the

interface with respect to the atomic positions is necessary to solve the Kohn-Sham equations,

the functions must be differentiable, and so the interface is instead a product of interlocking

radial error functions.

These error functions, h can be written as,

(2.12) hi(αξ, R
vdW
i ,∆ξ; ‖r−Ri‖) =

1

2

[
1 + erf

(
‖r−Ri‖ − αξRvdW

i

∆ξ

)]

which has two tunable parameters (and one ‘physically defined’ parameter), αξ, a

global multiplicative scaling on the size of the spheres, which couples with a set of radii

(typically van der Waals radii, RvdW
i , so each atomic species will have a different ’interaction’

radius), and a spread function ∆ξ, which controls the region of polarization charge.
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2.4. Model parameterization

By design these models work on neutral molecules. Since they are built on DFT, there

is a molecular size limit for a reasonably timed simulation. Performance-wise, the SCCS and

the soft-sphere models have comparable simulation times to vacuum simulations. Therefore,

a small set of organic molecules are chosen (240 total) such that molecules with properties

that are not captured by the implicit model do not skew the distribution of solute-solvent

mean interaction distance significantly.

Extrapolating away from the parameterization set is somewhat tricky. Previously dis-

cussed was the effect of solute charge on the simulations. Consider a polar solvent like water.

If a solute is positively charged, water molecules close to the solute will reorient themselves

such that the positively polarized part will face away from the charge and the negatively

polarized part will face towards the charge. There is also an electrostatic attraction between

the solvent and the solute. This combined effect means that the mean distance between sol-

vent and solute decreases, and in the reverse scenario, where the solute is negatively charged,

the effect is a lot more pronounced.

The mean absolute error in aqueous solvation free energy, as compared to experi-

mental values, is a popular test to determine how well various competing interface models

perform. The SCCS model for instance, performs well for neutral solutes, with an error close

to chemical accuracy of 1 kcal/mol. However, further analysis shows that this error is highly

dependent on the functional groups possessed by certain molecules, as expected from the

above discussion. In particular, mean errors for alkenes, ketones, and aldehydes are shown

to be well below 1 kcal/mol in many cases, whereas amines, ethers, and acids show errors

of up to 4-5 kcal/mol. When applied to cations and anions, this same model has errors of

around 2 kcal/mol for cations and 17 kcal/mol for anions, an order of magnitude higher. In

contrast, the SSCS model performs comparably for neutral molecules, and again worse for

cations (6 kcal/mol) and anions (10 kcal/mol).

In general, a set of cations and anions is harder to fit than neutral molecules, since

there is more variance in the interactions that don’t get captured by implicit solvent. A
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simple reparameterization of the SCCS model is possible by varying the parameters for a

training set consisting of small cation or anion molecules, and minimizing the mean absolute

solvation error. These parameters are then fed into the simulation according to the a priori

knowledge of the charge state of the solute. Indeed, this does bring down the mean absolute

solvation error down by a small amount for cations (2.55 to 2.26 kcal/mol) and more signifi-

cantly for anions 17.4 to 5.54 kcal/mol). Having higher accuracy for ions in particular greatly

expands the scope of applications for continuum solvation, from capacitance measurements

to reaction intermediates that consist of ions.

The effect of this is to shrink the interface, thus reducing the volume of the quantum-

mechanical region. This captures the physical effect of the solvent interacting more closely

to the solute molecule. However, it has to be noted that such a strategy may have limited

application for simulations involving different species, in which only the global charge state

of the system is assigned a priori, while the specific charge state of the each constituents is

unknown and, possibly, depends on the embedding environment.

Reparameterization can also account for certain functional groups. If it is known

that a particular species of atom behaves differently as part of a functional group, one might

adjust the radius of this atom based on chemical intuition. This approach relies a lot on the

human, and does not generalize gracefully.

2.5. Non-local models

These models perform well when simulating small systems, however, larger systems

with more complicated shapes incur some interesting problems when trying to decide which

regions ought to be solute and which ought to be solvent. Consider a folded protein, the

structure is compact due to the molecule’s ability to weakly self interact and minimize its

own interaction with its surroundings (lower surface area). In the process, small cavities will

often form within the protein due to the complexity of its shape. These cavities might be

too small for solvent to fit, but the model as currently defined thinks of the solvent molecule

implicitly, and so it fills in the volume not explicitly occupied by the protein anyway.

A local representation of the solvent does not work here anymore and we have to
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consider the neighborhood around each atom in order to get an idea of how to place the in-

terface more generally. By exploiting the operation of convolutions, one can identify whether

the region of space around a point is mostly part of the solvent region or mostly part of the

solute region. We call the new functional the filled fraction, fff(r), which is defined similarly

to the interface function s(r),

(2.13) fff[s(r′)](r) ≡
∫
s(r′)u({ξ}; ‖r− r′‖)dr′ = s ∗ u({ξ}; r)

where a ∗ b(r) denotes the convolution between two functions. As in the soft-sphere

representation, the spherical probe u that determines the region of space around each point

r′ is sized depending on the system, in this case however, rather than depending on the

atoms in the solute, depends on the solvent atoms,

(2.14) u(αξ, R
solv,∆ξ; r) =

1

2Nu

[
1 + erfc

(
r − αξRvdW

i

∆ξ

)]
Note the similarity between this and soft-sphere function. We use an error function to

represent the spherical shape of the probe, define a smooth interface in order to produce well

behaved derivatives, and add a normalization factor, Nu which can be numerically solved for

by integrating the volume of the probe. This updated interface function, the solvent-aware

function [4] has a solvent-aware parameter that tunes the size of the spherical probe, thus

adjusting how aggressively gaps are filled in the definition of the interface.

Another use for non-locality is in the definition of the electric field, which can be

used to infer atomic information about electrostatic charge. A more recent paper [100],

which is itself included as part of this work describes a new interface definition that relies

on the electrostatic flux, which is itself a product of the electric field and the existing soft-

sphere interface function [31], which serves as a definition for the surface on which a normal

component for the electric field can be computed. The result is a new field-aware model

which accounts both for possible charges that might cause electrostatic interactions between
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water and the system of interest, and for the asymmetry that arises due to the asymmetric

nature of polarizable solvents like water.

2.6. Additional Energy Terms

Clearly solvents provide additional effects beyond electrostatics on the embedded

system. Some of these additional terms in the free energy calculation can be represented

as continuum effects. Typically they use the same interface function as the one used for

electrostatics. External pressure uses the quantum volume, which can be calculated from

the interface function,

(2.15) V =

∫
s(r)dr

This external pressure enters an enthalpy term,

(2.16) GPV = PV

A cavitation energy term can be written in terms of the quantum surface, defined

again in terms of the interface function,

(2.17) S =

∫
‖∇s(r)‖dr

which relates to cavitation by,

(2.18) F cav = γS
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CHAPTER 3

SIMULATION SOFTWARE

3.1. Quantum ESPRESSO

Quantum ESPRESSO [40, 38] (QE) is an open source suite of codes for performing

electronic structure calculations using DFT, plane waves, and pseudopotentials. Being open

source, it also serves as a primary platform for scientists to develop new models in code. Of

particular interest to the topics covered here is the plane wave (or PW) program provided by

Quantum ESPRESSO, and two of the calculations that it performs. The basic calculation

is a self-consistent calculation (SCF) that iteratively solves the Kohn-Sham equations for a

plane wave basis set. The geometry optimization calculation (relax) additionally calculates

the forces on each atom of a structure and attempts to iteratively find a stable configuration

(such that the forces on each atom are close to zero).

3.2. Environ

Environ [2, 6] is an open source suite of codes that follows in the same vein as

Quantum ESPRESSO (having started out as a plugin to QE). It uses DFT, plane waves,

and pseudopotentials to perform electronic structure calculations with environmental effects.

Of interest to the topics covered here are the SCF and relax calculations. Environ relies on

some kind of driver to perform these calculations. In version 1.0, the software used QE to

solve the Kohn-Sham equations, and additional terms calculated from functional derivatives

would pass from Environ to the QE driver every time the electrons or ions needed to be

updated. In version 2.0, the software was made more general such that any driver could

hand Environ information about the ions and electronic density, as well as information

regarding the partitioning of the real-space and reciprocal grids.

The majority of development covered here is implemented in Environ and either

already released, or expected to release in the near future. This includes an implementation

of the field-aware model, faster computation for the derivatives of soft-sphere functions, and

various diffuse layer models. New developments may also be implemented outside of Environ,
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Figure 3.1. Workflow of a typical calculation in Environ. In order to imple-

ment new interface definitions, functional derivatives for the energy and force

terms need to be derived.

either as a consequence of the pythonization efforts to be discussed later, or as automation

and postprocessing tools.

As it stands, Environ is designed with modularity in mind, possessing for instance, the

ability to use different methods of performing calculus on grids. Maximizing transferability

does have the drawback of a need to keep the base code as general as possible and leaving

22



the calculations for specific applications to the user. This works well for new research,

however, users may often wish to repeat calculations made previously by others but with a

few parameter changes, perhaps a different set of input structures.

AiiDA (which will be discussed later) solves this by providing developers with the

ability to share their workflows in a standardized plugin registry. The widespread adoption

of Environ and sister codes is contingent on a user friendly environment for both development

and application.

3.3. Pythonization

The current landscape of multi-scale models consists of various software tools devel-

oped in house. Each has advantages and disadvantages that allow them to fit a specific niche.

However, we reach a point where there is not much direct improvement to do, and one must

instead consider the modular nature of these models instead. Simulation of more involved

systems becomes possible when combining the models that exist, such that each acts on a

particular region of the simulation.

An example is the concept of combining a continuum embedding scheme with a frozen

density embedding scheme. This has a lot of potential to simulate regions that can contain

many water molecules (an advantage of continuum embedding) whilst paying close attention

to specific interactions of the water molecules close to the quantum mechanical region (an

advantage of frozen density embedding). Alone, both methods lose out on either accuracy

or computational speed, but together, and many possibilities open up for applications.

The question is therefore, how does one go about combining two code bases devel-

oped by different research groups in a space where software developers are a rare commodity?

Python is a three decade old interpreted language that has gained extraordinary popularity

within academia due to accessibility, code readability, development speed, and interoperabil-

ity with other languages, specifically Fortran and C. Where Python lacks in speed, compiled

C and Fortran libraries can be used. Numerical recipes and algorithms that deal with vector

and matrix algebra can all be exposed to Python, and the scripting nature of the language

allows scientists to conveniently perform calculations with much easier customizability than
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a program might provide. Such modularity of computational packages did exist prior to the

existence of Python. However, the accessibility of Python has created a user community,

that to date is unmatched in the world of computational science.

f2py [73] is a Python module maintained by numpy (as of 2021) that automatically

creates a Fortran library out of code that can be imported into python and used directly

through functions within the imported module. This typically works well when an already

written function needs to be exposed to Python, or if a function relies on expensive vector

operations that Python cannot handle effectively. numpy can handle many of the scenarios

that exist due to the latter, and scipy has a large library of wrapped functions for dealing

with vectors and matrices (much of the code originally being written in Fortran). The

migration of high performance code is also possible, since Python has an MPI module that

can interface with a f2py created library containing parallel subroutines. f2py is limited

to classic Fortran, before the addition of object-oriented keywords and complex datatypes

starting in Fortran 90.

Fortunately, work has been done to circumvent this restriction, existing as an unoffi-

cial f2py patch known as f90wrap [55] developed primarily by James Kermode. This tool

handles the majority of additions to modern Fortran, and without much preparation, even

large Fortran code bases can be transformed into compiled Python modules. There are a

number of philosophies going forward. f90wrap can be used out of the box to generate a

wrapper, but this wrapper is designed for use by a Fortran program, not by Python. In

Python, we may want more control over the exact flow of the code, or over the objects that

normally get autogenerated by f90wrap. It may therefore be beneficial in some cases to

modify the original codebase in preparation for a tool like f90wrap or f2py.

For maximum freedom, a modern Fortran to classic Fortran parser can be developed

QEpy [88] is a pythonized Quantum Espresso maintained by Xuecheng Shao. It

utilizes f90wrap allowing researchers access to the main Quantum Espresso drivers in Python.

QE as a driver opens up much more possibilities for codes that rely on it for DFT calculations.

By pythonizing Environ, one removes the limitations imposed by the design of Quantum
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Espresso and the way plugins are able to work with it.

3.4. DL POLY

DL POLY [90] is a classical molecular dynamics simulation software that is often cho-

sen for its extensibility. The code is free for academic use and written in Fortran. Perform-

ing cavitation energy calculations is something that works out of the box for most classical

molecular dynamics codes, and therefore some amount of modification to the source code is

necessary. More recently available options written in flexible languages like Python were not

considered for the task, however, in the long term, these might prove to be better options.

3.5. AiiDA

AiiDA [49] is an open-source Python infrastructure that helps researchers automate,

manage, share and reproduce complex workflows associated with modern computational

science. The power of this infrastructure lies in the ability for developers to write plugins

that not only integrate their software with AiiDA, but also provide automation tools for these

plugins that assist with preprocessing and postprocessing, tasks that some of the older, legacy

codebases struggle with.

The database serves to centralize information in a way that greatly benefits research

that relies on multiple resources for computation, an increasingly common necessity. AiiDA

runs as a background process that can monitor and send jobs from a local machine to a remote

computing machine. It can also check for the completion of these jobs and automatically

parse any results back into the database. The result is a connected graph of input and output

data that can be shared for convenient collaboration and validation, and the query system

helps to efficiently reference previously computed information.

The project has attracted a community of developers primarily in the field of materials

discovery to write plugins for various codes. AiiDA serves as a central hub for sharing data

to and from these codes that are typically maintained by separate research groups. The

result is increased compatibility between codes and the development of workflows that can

benefit from the combined power of different codebases.
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Since Environ historically was integrated into Quantum Espresso, the development

of a plugin for Quantum Espresso by the AiiDA team itself has some compatibility with

Environ, however it is limited and more recent developments of Environ have pushed the

necessity of a completely independent plugin for Environ.

aiida-environ [99] is a plugin currently released in beta status. The vision is to

provide users with tools for setting up some of the more complicated simulations that are

possible in Environ. Since Environ still depends on the Quantum Espresso plugin, they share

similar input and output. The possible errors that occur in Environ are a superset of the

errors that occur in Quantum Espresso. It is therefore reasonable to design aiida-environ

using dependencies from the aiida-quantumespresso plugin, exploiting object oriented

programming ideas.

Currently implemented in aiida-environ is a CalcFunction for the PW program,

that extends the aiida-quantumespresso CalcFunction for the PW program. Environ

requires an extra input file for the Environ parameters. The plugin separates the cards that

would usually be included in this extra input file. Therefore, most of the parameters exist

in environ parameters, a Python dictionary, and the rest exists as separate inputs. For

example, the external charges have their own datatype defined by the plugin, and therefore

they get added separately. Note that as of the time of writing, not all the Environ inputs

are exposed to the plugin.

aiida-environ contains a parser that for the time being is an adaptation of the

aiida-quantumespresso parser, due to the fact that the Environ output is written to the

human readable output file of Quantum Espresso, but not to the XML file. Optionally, extra

output from Environ is directed to a separate file, and the plugin is currently able to parse

some, but not all of this output.

The plugin is designed to be as modular as possible. Since the focus is on sharing pre-

and post-processing tools with users of Environ, automated workflows are written in Environ,

and any calculations that these require are separated into helper classes and functions that

do not store their calculations in the database, and CalcFunctions that do. A couple of
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Figure 3.2. Solvation workflow implemented in AiiDA consisting of two PW

calculations, one in vacuum and one in solution.

these workflows are adapted straight from the aiida-quantumespresso, that provide extra

automation around handling errors in the scf and relax calculations in the PW program.

3.5.1. Solvation

The solvation workchain automates a common calculation performed by Environ,

the solvation free energy. The workflow runs two Environ simulations, one in vacuum and

one in solution. It then performs a simple postprocessing calculation, taking the difference

between the final energy from both simulations.

The workchain expects one of two possible inputs by the user.

(1) An environ-parameter dictionary as per a regular Environ calculation

(2) An environ-parameter dictionary with shared variables and one/two dictionaries for

custom vacuum/solution input.

3.5.2. Grand Canonical

The grand canonical workflow automates grand canonical simulations [47] that find

some of the thermodynamic properties of electrochemical interfaces of metallic electrodes in

aqueous environments. The workflow is fairly involved and consists of a number of steps.

The initialization, the preparation of all the required simulations to make a calculation for a

single material, the submission of the simulations and parsing, and finally the postprocessing,

where the Legendre transformation takes place.
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The workflow takes in a number of inputs,

• EnvPwBaseWorkChain. A standard Environ workchain (which should involve a ba-

sic calcfunction with some automated error handling etc., mirroring the PW base

workchain that exists in aiida-quantumespresso). This can be mostly defined by

the user directly using the builder for convenience (see the example).

• Vacancies. A list of coordinates for the possible vacancies. This might be too

general, and we may in the future want this as a datatype (since it’s used in other

workflows too). General due to the fact that we assume symmetry in the position

of these coordinates. cell shape x and cell shape y should define the position of

all the vacancies given the coordinates for a single vacancy.

• Bulk Structure. Computing the grand potential (see paper eq. 6) relies on the bulk

structure.

• Mono Structure. The monolayer defined without any adsorbate.

• Calculation Parameters. Parameters to define which charge values should be tested.

Also sets the axis that the monolayer is defined (since this is a 2d object, and the

axis will affect some of the automation). Sets the cell shape (x, y) which defines

how many adsorbates can be added to the surface. reflect vacancies is a boolean

that determines whether we want to place adsorbates on both sides of the monolayer

(which should almost always be the case. Vacancies should not define the positions

on the other side, and they are used to determine the possible configurations. These

adsorbates are then reflected since each configuration ought to be symmetric through

the axis that the monolayer is defined).

gen supercell is the CalcFunction that generates all the structures to be used in the

workflow. We generate all possible structures for a given size (x, y), and given number of

adsorbates to fill (n). Any structure that is equivalent to another via rotation (multiples of

π/2), reflection (through principal axes) and translation will be removed since the energies for

these duplicate configurations will be the same. This is achieved by defining a rudimentary

intranslatable coordinate system and then looping through all possible rotation/reflection
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Figure 3.3. Grand canonical simulation workflow consisting of pre- and post-

processing stages, and a series of monolayer and bulk simulations.

states.

For x charge increments and y possible adsorbate configurations, all the necessary

simulations are performed. In total this equates to xy + 2 simulations.

From each simulation, the total energy is taken, as well as the Fermi energy (and the

correction to the Fermi energy from Environ). The goal is to compute the grand potential (see

paper eq. 6). We populate three two-dimensional arrays, the free energy, the Fermi energy,

and the free energy difference between the monolayer and the bulk. Each two-dimensional

array contains values for a range of charge/adsorbate configurations.

adsorbate post supercell performs the postprocessing, the details of which are

discussed in the paper.
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3.5.3. Machine Learning Adsorbsion Energy

This workflow is designed to follow the graph based method of Ulissi and coworkers

[101] to construct surface phase diagrams. The idea is to consider all possible surface con-

figurations on a catalytic surface. Sites are chosen from chemical intuition and for each site,

a number of adsorbates can be considered. The number of configurations for such a setup

scales very quickly as one increases the number of possible sites and adsorbate species.

adsorbate gen multitype serves to automate the process of finding all the possible

adsorbate permutations. The paper discusses how one can exploit the power of Gaussian

Processes, a machine learning tool picked up by researchers in the field relatively recently, to

minimize the number of simulations required to predict all possible configurations. The idea

is that due to similarities between certain configurations, one can interpolate between two

different structures in order to predict a configuration without running a simulation. Simi-

larities are measured by considering how many adsorbates need to be added or removed from

the system in order for two structures to be equivalent. By considering the configurations as

nodes, and by defining adjacency as two nodes that are different by the addition or removal

of a single adsorbate, one can build up a connected graph of all possible configurations.

It is subsequently reasonable to choose the maximally connected nodes as the subset

to feed into the Gaussian Process model as training data.

3.6. Visualization

Visualization in science is a vitally important tool for translating data into a form that

is intuitive for both scientists and the general public. In materials discovery, we typically wish

to display how a theoretical material or compound might look atomically. For continuum

solvation models, many quantities are described as fields. There are commonly two ways

to visualize these, either by representing a scalar field as a cloud. Since the entire data

spans some three dimensional space, a single screenshot cannot realistically convey all the

information in that space, but if we can transform the data into some kind of range of values

with reasonable spacing such that areas of interest have larger values than their surroundings,

we can lower the opacity of smaller values so that they are more transparent, and increase the
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Figure 3.4. Graph based workflow that performs runs a minimal series of

simulations to generate training data for adsorbate configurations.

opacity of large values such that they appear more opaque. The problem can be simplified

by considering a single value within the range of values spanned by a scalar field. One can

imagine generating an isosurface that represents all points that contain that value. This

process typically assumes that the field is well behaved and there are no singularities. Since

we have a discrete representation of the points in the field, interpolation is used to find the

placement of the points that make up a 2d surface mesh.

An alternative representation for environmental boundaries (typically represented by

isosurfaces) uses metaballs, which assumes the field object is atom-centered. Metaballs

Currently a handful of visualization tools exist, each of which sits on a scale from

interactive simulation aids, to high quality image or animation rendering. The majority

of my work sits on the latter of the scale, with the goal of providing researchers with a

convenient tool for rendering images for journals and presentations. The user simply needs

31



an XML file defined by a simple schema that contains information on atomic positions,

species, and bonds. The file can also contain render specific information, for example, any

extra drawables, as well as light and camera positions and parameters. The tool itself is

a plugin for the popular rendering tool Blender. Blender as of its 2.80 update in 2019 has

gone from an open source alternative for enthusiasts and small teams on a budget to an

impressive suite that rivals other leading software in the industry. I chose Blender since it

was open source, and rapidly growing in popularly, as well as having a well-documented API

for Python development. Blender as of 2019 already had an atomic add-on as part of its

official collection of add-ons, however this tool only rendered atoms and bonds, and read in

XYZ or PDB files directly.

Our requirements suggested a more ambitious project. A tool that worked with Quan-

tum ESPRESSO and Environ output, and allowed not only for atom and bond rendering,

but also the rendering of fields, as well as some more customization in the visualization

options from the way that the atoms and bonds looked, to the materials used to represent

them.
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CHAPTER 4

CONTINUUM MODELS OF THE ELECTROCHEMICAL DIFFUSE LAYER IN

ELECTRONIC-STRUCTURE CALCULATIONS

1

4.1. Introduction

The electrical double layer (DL) is of primary importance in the field of energy con-

version, as it plays a crucial role in devices such as supercapacitors and fuel cells[89, 13].

The DL structure is essentially characterized by two layers of opposite charge that appear at

the interface between an electrified surface and an electrolyte solution. This structure arises

from the charge accumulation at the boundary of the solvated surface, which attracts coun-

terions from the bulk solution. The balance between the electrostatic attraction towards the

charged surface, the entropic electrolyte contributions, and the steric repulsion between the

ions gives rise to an equilibrium charge distribution in the solution that is generally known

as the diffuse layer.

Unfortunately, various limitations hamper atomistic simulations of the diffuse layer[106].

First, long simulation times are required in order to achieve statistically significant samplings

of the solvent and electrolyte configurations, with the corresponding time-scales being often

beyond the reach of standard first-principles molecular dynamics techniques. In addition,

large simulation cells are necessary in order to capture the long-range screening of typical

values of the surface charge densities.

Continuum models represent an attractive alternative to fully-atomistic models of

electrolyte solutions. A continuum description of the solvent and of the ions allows, in fact,

to bypass the computationally-intensive configurational sampling of the solution’s degrees of

freedom. In particular, our focus here is on hybrid methods, where a first-principles modeling

of an electrified surface is coupled to a continuum description of the solution (Figure 4.1).

1This chapter is reproduced from Francesco Nattino, Matthew Truscott, Nicola Marzari, and Oliviero An-
dreussi. Continuum models of the electrochemical diffuse layer in electronic-structure calculations. J. Chem.
Phys. 150, 041722 (2019). DOI: https://doi.org/10.1063/1.5054588, with permission from AIP Publishing
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A B

Figure 4.1. Visualization of the atomistic details of a typical electrochem-

ical setup (A): The metal slab (silver spheres) is in contact with an neutral

aqueous solution (oxygen in red, hydrogen in white) containing electrolyte

species (cyan and yellow spheres). Continuum models are obtained by inte-

grating out the atomistic degrees of freedom of the mobile species (e.g. water

and electrolytes) and replacing them with homogeneous continuum bodies,

whose boundaries reflect the physical separation between the QM system and

the environment. In B the solvent boundary (green transparent surface) is

reported together with the continuous charge density of the electrolyte (blue

transparent field), as computed for a charged substrate. Different onset for

the solvent and electrolyte continuum models can be imposed in the definition

of the model or can be obtained by including additional repulsive interactions

between the continuum electrolyte and the QM substrate.

These models are particularly appealing for the accuracy and predictive power that they can

potentially have, as the processes occurring at or within the metal surface are described at a

quantum-mechanical level, while the electrostatic screening of the diffuse layer is accounted

for at a mean-field level.
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Starting from highly simplified models of the double layer, which consist of a coun-

tercharge plane at a fixed distance from a charged metal surface[34, 59, 15], more complex

diffuse layer models have been subsequently proposed and integrated into periodic density-

functional theory (DFT) codes[71, 51, 25, 24, 26, 57, 42, 95, 94, 64]. However, despite the

large variety of electrolyte models proposed, there is no consensus on the model features

required to achieve a physically-sound description of the diffuse layer. On one hand, full-

continuum models that are based on the solution of some form of the size-modified Poisson-

Boltzmann (PB) equation have been shown to qualitatively or semi-quantitatively describe

experimental data[11, 69, 10]. On the other hand, recent work from Sundararaman et al.[94]

has suggested that non-linear effects in the dielectric continuum also play an important role,

and should thus be accounted for in order to reproduce measured trends.

In this work, we tackle these issues by systematically analyzing the performance of

a hierarchy of continuum diffuse layer models of increasing complexity. We show how the

various models can be derived from similar expressions of a free-energy functional and how

they can be implemented in the framework of DFT. We choose the differential capacitance

(DC) of a model metal surface as a prototypical observable to compare and contrast the

various electrolyte models. In particular, we consider a Ag(100) surface in an aqueous

solution as study system, motivated by the availability of accurate experimental data [102]

that have been widely used in the literature to validate diffuse layer models [11, 95, 94].

Results show that a size-modified Poisson-Boltzmann model is able to qualitatively

capture the main features of experimental DC curves, including the minimum capacitance

value at the potential of zero charge, and the two local maxima at higher and lower potentials.

The choice of solvation cavity employed to separate the quantum-mechanical region from the

continuum solvent region is also found to play an important role on the absolute value of

the computed DC.

The article is structured as follows. Section 4.2 reviews the theoretical background of

the diffuse layer models considered and it presents the details of their computational imple-

mentations. Results on the computed DC values for the Ag(100) surface are then presented
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in Section 4.3. In particular, the various electrolyte models are illustratively compared under

vacuum conditions in Section 4.3.1, while their performance is better validated in Section

4.3.2 by comparing results to experimental data. Finally, the conclusions are presented in

Section 4.4.

4.2. Methods

4.2.1. The Electrolyte Cavity

In the framework of continuum solvation models, the solvent’s degrees of freedoms are

smeared out in a continuum description and accounted for by means of a dielectric continuum.

An important element in this class of models is represented by the so-called solvation cavity,

which defines the boundary between the explicitly described solute region and the solvent

region, where the dielectric continuum is located. This partitioning of the simulation cell

can be formally defined through an interface function, s(r). We define here s(r) ≡ 1 inside

the solute region, and s(r) ≡ 0 in the region of space characterized by the solvent dielectric

constant ε0. In the field of material science and condensed matter physics, continuum models

typically involve interface functions that smoothly switch between the two regions, as they

turn out to provide a considerable improvement to numerical stability[28, 86, 3]. Closely

related to s(r), the dielectric function ε(r) sets the local value of the dielectric constant:

(4.1) ε (r) = 1 + (ε0 − 1) (1− s(r)) .

In a similar fashion, the interface function s(r) can be exploited to define the region of

space that is accessible to the ionic species in the solution. In particular, the complementary

interface function γ (r) defines the portion of the cell where the electrolyte solution is located:

(4.2) γ (r) = 1− s (r) .

It is important to stress here that in the above equations we have expressed both the

solvent and the electrolyte domains in terms of the same interface function. In principle,
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since the two domains are associated with the regions of space that are accessible to solvent

and electrolyte particles, respectively, different interface functions should be required. For

example, electrolyte ions that have strong solvation shells may be hindered direct access to

the electrochemical interface, their closest distance from the substrate being increased by the

thickness of the coordinating solvent molecules in what is known as the Stern layer[93]. In

order to simplify the parameterization and tuning of the different interfaces, the electrolyte

boundary is often expressed as a scaled version of the solvent one[24, 44, 81, 94]. Alter-

natively, a single interface is used and additional repulsive potentials are added to the free

energy functional of the electrolyte system to stabilize solutions which are displaced from

the solvent interface[51]. The latter approach has the additional flexibility of allowing both

repulsive and attractive interactions between the components of the diffuse layer and the

substrate. For this reason, we decided to focus the following discussion on models with a

single common interface function.

The interface function s(r) is typically constructed as a function of the solute’s degrees

of freedom. In order to explore how the choice of the solvation cavity affects the resulting

diffuse layer model, we have considered the following three interface functions.

A first interface function is based on the local value of the solute’s electron density.

An optimally-smooth switching function has been proposed by Andreussi et al.[3], who have

revised in the so-called self-consistent continuum solvation (SCCS) model the one originally

proposed by Fattebert and Gigy[28] and Scherlis et al. [86].

As a second interface function, we consider a rigid function of the solute’s atomic po-

sitions, as defined through the product of atom-centered interlocking spheres with a smooth

erf-like profile. This cavity function, as proposed by Fisicaro et al. in the recent soft-sphere

continuum solvation (SSCS) model[31], accounts for the diversity of the chemical species

involved through tabulated van-der-Waals radii.

The last interface function reflects the two-dimensional character of the slab system

considered. In particular, a planar boundary between solvent and solute is defined as a mere

function of the vertical distance from the slab center, d. Two parameters are employed to
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define the cavity. The first one, d, defines the absolute position of the interface. The second

one, ∆, regulates the smoothness of the boundary by defining the spread of the error-function

profile which we have included along the surface normal. This simplified form of interface

has not been explicitly addressed before in the literature. It has been introduced here to

facilitate the comparison with analytical one-dimensional models. For particularly regular

substrates it may provide an easier and more robust approach with respect to atomic-centered

or electron-based interfaces.

4.2.2. The Electrolyte Models

In this section we describe the continuum electrolyte models considered and illustrate

how they can be derived from specific free-energy functionals where we include all electro-

static and mean-field contributions (the usual non-interacting electron kinetic energy and

the exchange-correlation energy terms are also included, but left out in the expressions for

improved readability). In order to perform self-consistent DFT calculations for a system

embedded in an electrolyte solution, energy contributions that explicitly depend on the so-

lute electron density require the inclusion of corresponding terms in the Kohn-Sham (KS)

potential. Furthermore, terms that explicitly depend on the solute’s atomic positions give

rise to analogous contributions to the atomic forces. All these contributions are reported in

the Supplemental Material.

In this work, we have neglected the solvent-related non-electrostatic contributions

to the free-energy[86, 3] based on the quantum volume and quantum surface[22]. Such

contributions, however, can be straightforwardly included by adding corresponding terms to

the free-energy, to the KS potential and to the forces[86, 3].

4.2.2.1. Planar Countercharge Model

To first approximation, the electrolyte screening of the surface charge can be ac-

counted for by introducing a countercharge plane at a given distance from the surface[34].

The presence of this external charge modifies the electrostatic energy of the system. When

accounting for this electrostatic term, the free energy of the system embedded in the elec-
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trolyte solution can be computed as:

(4.3) F PC [ρ (r) , φ (r)] =

∫ [
−ε (r)

8π
|∇φ (r)|2 + ρ (r)φ (r) + ρions (r)φ (r)

]
dr

Here ρ (r) is the total (i.e. electronic + nuclear) charge density of the solute, φ (r)

is the electrostatic potential and ρions (r) is the external charge density that mimics the

counterion accumulation.

This model can be seen as a computational implementation of the Helmholtz model

for the double layer[46]: the countercharge plane completely screens the surface charge in a

region of space that can be chosen to be infinitely narrow. Note that the Helmholtz screening

does not depend on the ionic strength of the solution; it is thus not surprising that the bulk

electrolyte concentration does not appear in Eq. 4.3.

4.2.2.2. Poisson-Boltzmann Model

A more physical description of the diffuse layer can be derived from a free-energy

expression that accounts for the chemical potential and the entropy of the ions in the

solution[16, 24]. These terms allow one to introduce an explicit dependence on the local

concentrations of the electrolyte species ({ci (r)}). For an electrolyte solution with p ionic

species with charges {zi} and bulk concentrations {c0
i }, such that the solution is overall

neutral (
∑p

i=1 zic
0
i = 0), the free energy functional takes the following form[16, 24]:

(4.4) F [ρ (r) , φ (r) , {ci (r)}] =

∫ [
−ε (r)

8π
|∇φ (r)|2 + ρ (r)φ (r) + ρions (r)φ (r) +

−
p∑
i=1

µi
(
ci (r)− c0

i

)
− T

(
s [{ci (r)}]− s

[{
c0
i

}])]
dr.

Here µi is the chemical potential of the i-th electrolyte species, T is the temperature,

and s[{ci}] is the electrolyte entropy density per unit volume. The electrolyte charge density

can be expressed in terms of the local electrolyte concentrations as ρions (r) =
∑p

i=1 ci (r) zi.
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Under the assumptions of a point-charge electrolyte and ideal mixing, the entropy

density of the solution is:

s [{ci (r)}] = −kB
p∑
i=1

ci (r) ln
ci (r)

γ (r)
,(4.5)

where kB is the Boltzmann constant. Note that the exclusion function γ (r), which

sets the boundary between the electrolyte solution and the solute region, enforces a zero

entropic contribution from the volume assigned to the quantum-mechanical region.

In order to find an expression for the equilibrium electrolyte concentrations, the free-

energy functional in equation 4.4 is minimized with respect to ci (r). This procedure first

leads to the condition:

ziφ (r)− µi + kBT

(
ln
ci (r)

γ (r)
+ 1

)
= 0,(4.6)

which allows one to obtain an expression for the chemical potential from the bulk

electrolyte region, where φ (r) = 0 and γ (r) = 1, obtaining:

µi = kBT
(
ln c0

i + 1
)
.(4.7)

By substituting equation 4.7 back into equation 4.6 one then obtains the following

expression for the equilibrium electrolyte concentration:

ci (r) = γ (r) c0
i e
− ziφ(r)

kBT ≡ cPBi (φ (r))(4.8)

By using this equilibrium electrolyte concentration, the free-energy functional expres-

sion significantly simplifies to:

(4.9)

F PB [ρ (r) , φ (r)] =

∫ [
−ε (r)

8π
|∇φ (r)|2 + ρ (r)φ (r) + kBT

p∑
i=1

c0
i

(
1− γ (r) e

− ziφ(r)

kBT

)]
dr.
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Minimization of the free-energy functional with respect to φ (r) now leads to the

well-known Poisson-Boltzmann equation (PBE), which allows one to relate the equilibrium

charge densities in the system to the the electrostatic potential of the system:

∇ · ε (r)∇φ (r) + 4π

p∑
i=1

zic
PB
i (φ (r)) = −4πρ (r) .(4.10)

For low electrostatic potentials, i.e. whenever ziφ (r) � kBT , one can approximate

the exponential dependence on φ (r) with a linear function:

(4.11) e
− ziφ(r)

kBT ≈ 1− ziφ (r)

kBT
.

The expression of the electrolyte concentrations thus reduces to:

(4.12) ci (r) ≈ γ (r) c0
i

(
1− ziφ (r)

kBT

)
≡ cLPB (φ (r)) ,

which leads to the following linearized-version of the PBE (LPBE):

(4.13) ∇ · ε (r)∇φ (r)− k2γ (r)φ (r) = −4πρ (r) .

The constant operator k2 = 4π
∑p
i=1 z

2
i c

0
i

kBT
is related to the Debye length λD of the

electrolyte solution:

(4.14) k2 =
ε0

λ2
D

.

The LPBE can be equivalently derived[81] by Taylor-expanding the exponential term

in Eq. 4.9 up to second order in φ (r), and by subsequently minimizing the resulting energy

functional,

(4.15) FLPB [ρ (r) , φ (r)] =

∫ [
−ε (r)

8π
|∇φ (r)|2 + ρ (r)φ (r) +
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−
∑p

i=1 z
2
i c

0
i

2kBT
γ (r)φ2 (r) + kBT

p∑
i=1

c0
i (1− γ (r))

]
dr,

with respect to the electrostatic potential.

The linear-regime of the PBE is expected to hold for a narrow potential range around

the potential of zero charge (PZC). However, typical applications easily require the modeling

of potential windows that extend for hundreds of mV, making it desirable to have efficient

strategies to solve the full PB problem instead. If the interface between the solute and

the electrolyte is suitable to a two-dimensional approximation, one can tackle the full PB

problem by taking advantage of the reduced dimensionality of the interface. In particular,

one can integrate out the dimensions in the surface plane and exploit the analytical solution

of the PBE in one dimension[24, 25, 26]. In the following, we assume for convenience that

the system is oriented with the x axis perpendicular to the slab plane and that the diffuse

layer starts at a distance xStern from the center of the slab. Taking the planar average of

the physical quantities involved in Eq. 4.10 and assuming that the system charge density

and the dielectric interfaces are fully contained within the xStern distance, the resulting

one-dimensional differential equation

(4.16)
d2φ (x)

dx2
= −4π

ε0

(
ρ (x) +

p∑
i=1

zici (φ (x))

)
can be integrated analytically for |x| ≥ xStern. For the most common case of a

diffuse layer composed by ions of equal concentrations c0 and opposite signs, the electrostatic

potential in the electrolyte region can be expressed as (see Supplemental material for the

derivation):

(4.17) φ (x) =
4kBT

|z|
coth−1 (c1 exp (c2 |x|)) ,

where c2 = 32πkBTc
0/ε0 and c1 is obtained by imposing continuity of the normal

component of the electric field at the electrolyte interface (i.e. for x = xStern). Only the

solution with the correct asymptotic behavior has been selected, ensuring that φ (|x| → ∞) =
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0. This model effectively corresponds to the Gouy-Chapman (GC) model for the diffuse

layer[41, 20], and shares the assumption of a planar distribution of charge at a fixed distance

from the slab surface with the Helmholtz model described in Section 4.2.2.1. However, it

includes a more physically sound shape of the diffuse layer along the surface normal. In the

linearized regime, the one-dimensional solution of the electrostatic problem would instead

be given by (see Supplemental material for the derivation):

(4.18) φ (x) = c0 exp

(
k

ε0

|x|
)

where c0 can be obtained by imposing continuity of the normal component of the

electric field at the electrolyte interface.

For complex interfaces and general geometries, and for applications for which the

linear-regime of the PBE is not expected to hold, one needs to numerically solve the full

non-linear PBE (Eq. 4.10) to find the electrolyte concentration that minimizes the energy

of the solvated system.

4.2.2.3. Size-Modified Poisson-Boltzmann Model

The standard PB model assumes point-like ions, and consistently overestimates the

electrolyte countercharge accumulation at electrode surfaces. An improved model for the

diffuse layer accounts for the steric repulsion between the ions, which opposes the electrostatic

attraction towards the electrode surface and therefore limits electrolyte crowding. This is

the so-called size-modified PB (MPB) model, which can be derived from the free-energy

functional as in Eq. 4.4 but exploiting an entropy density expression that accounts for the

finite-size of the ionic particles.

Borukhov et al. [16, 17] derived such an entropy expression from a lattice-gas model.

In particular, the volume of the continuum solution is divided into a three dimensional lattice,

with each cell of the lattice being occupied by no more than one ion. Thus, the cell volume a3

or, equivalently, the maximum local ionic concentration c0 = 1
a3 , sets the distance of closest

approach between ionic particles in the solution. In this framework, the solute region is not
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part of the continuum solution and should therefore give zero contribution to the solution

entropy density. Otani and Sugino, who focused on two-dimensional slab systems, naturally

achieved this limit by setting the boundary for the continuum solution region at a fixed

distance from the surface[71]. In their derivations, Jinnouchi and Anderson [51] have instead

imposed such a limit through an effective repulsive interaction between solute and electrolyte,

which prevents the electrolyte solution from entering the quantum-mechanical region. Ringe

et al. [81, 82] have similarly accounted for such repulsive potential by recasting it in the

form of an exclusion function. Here we follow a different approach[24, 25], and enforce the

limit by imposing a space-dependence for the maximum ionic concentration, consequently

exploiting the complementary interface function γ (r): c0 ≡ c0 (r) = cmaxγ (r). The final

expression for the electrolyte entropy density is therefore:

(4.19) s [{ci (r)}] = −kB
p∑
i=1

ci (r) ln
ci (r)

cmaxγ (r)
+

− kB

(
cmaxγ (r)−

p∑
i=1

ci (r)

)
ln

(
1−

p∑
i=1

ci (r)

cmaxγ (r)

)
,

The first and second terms in Eq. 4.19 can be identified as the entropy contributions

from the ions and the solvent, respectively. As in Eq. 4.5, the exclusion function γ (r) sets

the boundary of the region that contributes to the entropy of the electrolyte solution.

By minimizing the free-energy functional in Eq. 4.4 with respect to the ion concen-

tration we obtain the following expressions for the electrolyte chemical potentials (cf. Eq.

4.7):

µi = kBT ln

(
c0
i

cmax −
∑p

i=1 c
0
i

)
,(4.20)

and for the equilibrium ionic concentrations (cf. Eq. 4.8):
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ci (r) =
γ (r) c0

i e
− ziφ(r)

kBT

1−
∑p

i=1
c0i

cmax

(
1− e−

ziφ(r)

kBT

) ≡ cMPB
i (φ (r))(4.21)

The denominator in Eq. 4.21 renormalizes the concentration in the regions where

the electrostatic interaction energy is comparable to or larger than kBT , and sets cmax as

the maximum electrolyte concentration. This parameter can be related to the effective ionic

radius ri through cmax = 3P
4πr3

i
. In the following, we will assume random close packing for the

electrolyte particles and correspondingly set the packing efficiency P = 0.64. Note that the

point charge limit of Eq. 4.21, which corresponds to cmax → ∞, consistently leads to the

equilibrium concentration as derived in the standard PB model (Eq. 4.8).

By substituting Eqs. 4.19-4.21 into Eq. 4.4, one obtains the following expression for

the MPB free-energy functional:

(4.22)

FMPB [ρ (r) , φ (r)] =

∫ [
−ε (r)

8π
|∇φ (r)|2 + ρ (r)φ (r) + kBTcmaxγ (r) ln

(
cmax −

p∑
i=1

c0
i

)
+

−kBTcmaxγ (r) ln

(
cmax −

p∑
i=1

c0
i

(
1− e−

ziφ(r)

kBT

))]
dr− kBTcmaxV ln

(
cmax −

∑p
i=1 c

0
i

cmax

)
,

where V is the simulation cell volume. Minimization with respect to φ (r) finally

leads to the size-modified Poisson-Boltzmann equation (MPBE), which is analogous to the

standard PBE (Eq. 4.10) where, however, cPBi (φ (r)) is replaced by cMPB
i (φ (r)).

4.2.2.4. Additional Interactions

The MPB model accounts for the steric repulsion between the ions in the solution,

which limits electrolyte crowding. In addition, the solute and the ionic particles are expected

to be surrounded by a solvation shell, where diffusing electrolyte particles are not expected

to enter. The presence of this solvent-accessible but ion-free region, generally known as the

Stern layer[93], can be simulated in a continuum framework via finite spacing between the

onset of the dielectric function and the electrolyte charge density.
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Such a spacing can be effectively introduced through an ad-hoc repulsive term between

solute and electrolyte, ϕ (r)[51]. The repulsive interaction would therefore give rise to the

following free-energy contribution:

(4.23) Erep [{ci (r)}] =

p∑
i=1

∫
ci (r)ϕ (r) dr,

and subsequently appear in the expression for the equilibrium electrolyte concentra-

tion:

ci (r) =
γ (r) c0

i e
− ziφ(r)+ϕ(r)

kBT

1−
∑p

i=1
c0i

cmax

(
1− e−

ziφ(r)+ϕ(r)

kBT

)(4.24)

As noted by Ringe et al.[81], a repulsive solute-electrolyte interaction can be recast

in the form of an electrolyte-specific exclusion function α (r) ≡ e
−ϕ(r)
kbT . The exclusion func-

tion alone prevents the electrolyte from approaching and entering the solute region in their

Stern-corrected MPB model. The exclusion function γ (r) that appears in our model has a

different physical origin, since it reflects the hard separation between quantum-mechanical

and continuum regions. While the presence of the Stern layer could be effectively included in

our model by using separate interface functions for dielectric and electrolyte, as for instance

done by Dabo et al.[24, 25], we find the picture of a single interface setting the boundary

between quantum solute and continuum solution more physically sound. We thus resort to

repulsive interactions to introduce the finite spacing between the onsets of the dielectric and

the electrolyte fluids. Note that, similarly to Ringe’s model, our approach also predicts a

zero entropic contribution from the Stern-layer volume (cf. Eq. 4.19), which is consistent

with the expected absence of diffusing solvent and electrolyte particles in this region.

For a two-dimensional system like a metal slab, we find appropriate to use one-

dimensional exponential functions to define the repulsion potential:

(4.25) ϕ (x) = e−
|x−x0|−d

w ,
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where x0 corresponds the x coordinate of the slab center and the parameters d and

w set the position and decay rate of the potential, respectively.

Baskin and Prendergast [10] have proposed a similar formalism to account for the

specific adsorption of electrolyte species. In particular, they have used a Morse-like potential

in a fully-continuum model to mimic anion adsorption on the electrode surface:

(4.26) ϕ (x) = Eads

((
1− e−

|x−x0|−d
w

)2

− 1

)
,

where Eads is the anion adsorption energy and d now defines the distance between the

surface plane and the adsorbed anion species. We have tested the introduction of such an

interaction term in our mixed first-principles-continuum model. This description is compu-

tationally attractive as it bypasses the need for surface configuration and adsorbate coverage

samplings. However, it is clear that such a model cannot be expected to capture electronic-

structure changes of the metal surface beyond mean-field electrostatic effects.

4.2.3. Computational Implementations

4.2.3.1. Planar Countercharge Model

For all the models presented here, calculations are performed in a symmetric setup:

the electrode surface is modeled by means of a two-dimensional slab exposing two identical

faces to the continuum solution. The computational setup thus involves two metal-solvent

interfaces. Two charge distributions are added in front of the outermost atomic layers to

compensate for the net charge of the surface, q.

For numerical reasons, the sharp countercharge plane that characterizes the Helmholtz

model for the diffuse layer is broadened to have a Gaussian-shaped profile along the surface

normal direction x:

(4.27) ρHelmholtzions (x) =
q

2A
√
π∆

e−
(|x−x0|−d)

2

∆2 ,
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where A is the surface area and the factor 2 at the denominator of the prefactor arises

from the symmetric setup employed. The distance d from the slab center x0 and the spread

parameter ∆ constitute the only two parameters in the model.

The countercharge distributions are straightforwardly added to the total charge of the

system. The corresponding electrostatic potential does not require self-consistency, allowing

for fast and stable simulations.

4.2.3.2. Analytic Planar-Averaged Poisson-Boltzmann Model

In many ways, modeling the diffuse layer via the analytical one-dimensional solu-

tion to the Poisson-Boltzmann problem can be seen as a straightforward modification of the

Helmholtz approach, in which the shape of the planar countercharges is no longer given by a

Gaussian envelope of arbitrary spread, but rather obtained from a physically sound model.

However, simply inserting the diffuse layer as a charge distribution in the simulation cell

would incur significant numerical problems: the analytical results for the electrolyte concen-

trations can present very sharp features close to the interface, which cannot be described

accurately with the standard numerical resolution of the electronic-structure calculation.

Additionally, diffuse layers may have very long decaying length-scales, extending for tens

of nanometers from the electrochemical interface, thus requiring large simulation cells. For

these reasons, when possible a description in terms of the effects of the diffuse layer on the

quantum-mechanical system, i.e. its electrostatic potential, is preferred.

The assumption behind the model is the one of two sharp interfaces at a fixed distance

xStern from the slab center x0, above and below the slab: the quantum-mechanical system is

fully contained within the two interfaces, while the diffuse layer is fully in the outer regions

and is uniform along the yz planes perpendicular to the slab normal. With this setup, the net

effect of the diffuse layer on the system would be a uniform shift, ∆φDL, of the electrostatic

potential in the quantum-mechanical region of space, provided that the latter is computed

with open-boundary conditions (OBC) along the x axis. Thus, a possible definition of the

full potential in the simulation cell is represented by
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(4.28) φ (r) =


φOBC (r) + ∆φDL0 |x− x0| < xStern

φDL (x) |x− x0| ≥ xStern

,

where φDL is given by Eqs. (4.17) or (4.18), and the shift is computed as

(4.29) ∆φDL0 = φDL (xStern)−
〈
φOBC

〉
yz

(xStern) .

Since the quantum-mechanical system is not bound to be perfectly homogeneous in

the yz plane, its planar average,
〈
φOBC

〉
yz

(x) = A−1
∫ ∫

φOBC (r) dydz, is used in the above

equation, where A is the surface area in the simulation cell. As a consequence, discontinuities

can be present in the potential of Eq. (4.28) when passing through the xStern interfaces.

Even though these discontinuities happen in a region of space which is not occupied by the

quantum-mechanical system, they may be a source of numerical instabilities. To overcome

this limitation, a slightly different path can be followed, where the diffuse-layer contribution

to the potential is expressed as a one-dimensional continuous and smooth correction defined

in the whole simulation cell, namely

(4.30) φ (r) = φOBC (r) + ∆φDL (x)

where

(4.31) ∆φDL (x) =


∆φDL0 |x− x0| < xStern

φDL (x)− 〈φOBC〉yz (x) |x− x0| ≥ xStern

.

The planar average of the potential on the right-hand side of the above equation

can then be approximated by the one-dimensional potential of a planar-averaged charge

distribution, namely
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(4.32) 〈φOBC〉yz (|x− x0| > xStern) ≈ 〈φOBC〉yz (xStern)− 2πq

Aε0
|x− xStern| ,

where q is the total charge of the quantum-mechanical system and we have used the

classical electrostatics result for the potential of a planar charge distribution. With the above

formulation, the correction and its first derivative are both continuous at the interface.

While the correction described here is similar in spirit to the ‘electrochemical bound-

ary conditions’ from Refs. [25, 24, 26], our approach makes use of the electrostatic potential

that analytically solves the PBE in order to determine the diffuse-layer contribution to φ (r),

without the need of an iterative procedure. Another novel element of the procedure described

is the implementation of the correction that corresponds to the linear-regime version of the

PB problem, which allows for the validation of the corresponding numerical approach.

While the above correction is defined for open-boundary conditions, standard electronic-

structure simulations usually exploit periodic-boundary conditions. In this case, an alterna-

tive expression of the electrostatic potential of the electrochemical interface can be obtained,

which incorporates the handling of PBC artifacts and of the diffuse layer into a single contin-

uous and smooth one-dimensional correction. In particular, an approximate OBC potential

is obtained as

(4.33) φOBC (r) ≈ φPBC (r) + ∆φ2D (x)

and assuming a planar-averaged charge distribution a parabolic correction can be

expressed as

[5]

(4.34) ∆φ2D (x) =
α1D

Lx
q − 2πq

V
x2 +

4π

V
dxx−

2π

V
Qxx,

where α1D = π/3 is the Madelung constant of a one-dimensional lattice, V is the cell

volume, q, dx, and Qxx are the monopole, dipole, and quadrupole moments along the x axis
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of the charge distribution. The corrected electrostatic potential can thus be easily expressed

in terms of the PBC one as

(4.35) φ (r) ≈ φPBC (r) + ∆φ2D (x) + ∆φDL (x) .

The above approach can be adopted for any situation where an analytical one-

dimensional solution to the electrostatic problem is available. In the description of the diffuse

layer, both the Gouy-Chapman model and its linearized version have analytical solutions that

can be inserted into the φDL (x) term. Although based on a planar-average approximation,

this class of correction approaches has significant advantages, in terms of speed and stability,

when compared to more advanced numerical solutions of the electrostatic equations.

4.2.3.3. Linearized Poisson-Boltzmann Model

In order to tackle the linear-regime version of the PB problem, we solve the corre-

sponding differential equation using a preconditioned gradient-based method as proposed by

Fisicaro et al. [30], which we will only summarize here. Briefly, we apply a conjugate-gradient

algorithm to solve the LPBE:

(4.36)
(
∇ · ε (r)∇− k2γ (r)

)︸ ︷︷ ︸
A

φ (r) = −4πρ (r)︸ ︷︷ ︸
b(r)

,

using the following preconditioning operator:

(4.37) P =
√
ε (r)∇2

√
ε (r)

Therefore, instead of minimizing the residual function r (r) = b (r)−Aφ (r), one finds

the solution of the problem by minimizing the preconditioned residual v (r) = P−1r (r) =

P−1 (b (r)−Aφ (r)). The algorithm has been proven to converge in a limited number of iter-

ations for simple analytical cases[30]. In addition, the choice of the preconditioner minimizes
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the computational effort required [30]. In fact, the action of the operator A on the precon-

ditioned residual vn (r), which needs to be computed at each of the n-th solver’s iteration,

can be efficiently estimated as:

Avn (r) =
(
∇ · ε (r)∇− k2γ (r)

)
vn (r)

=
(
ε (r)∇2 +∇ε (r) · ∇ − k2γ (r)

)
vn (r)

= −
(
q (r) + k2γ (r)

)
vn (r) + rn (r) ,

(4.38)

where q (r) =
√
ε (r)∇2

√
ε (r) and we have used rn (r) = Pvn (r) = ε (r)∇2vn (r) +

∇ε (r) · ∇vn (r) + q (r) vn (r). The term q (r) can be evaluated only once and stored in

memory. Once the terms rn (r) and vn (r) are computed, the evaluation of Avn (r) at each

of the following iterations requires only vector-vector multiplications. The bottleneck of the

algorithm is represented by the calculation of vn (r), which is calculated as[30]:

(4.39) vn (r) = P−1rn (r) =
1√
ε (r)

(
∇2
)−1

(
rn (r)√
ε (r)

)
.

The overall algorithm performance is thus highly dependent on the solution of the

standard Poisson problem, which in our case is carried out in reciprocal space. The term

rn (r) is computed instead from the knowledge of the residual function at the previous step

rn−1 (r) and other quantities derived from the preconditioned residual vn (r)[30], as typically

carried out in conjugate-gradient approaches.

While the algorithm from Fisicaro et al. was tested in Ref.[30] by solving the LPBE

only for simple analytic potentials, we investigate here for the first time the performance of

such preconditioned conjugate-gradient algorithm for realistic electrified interfaces through

our novel implementation in the ENVIRON module[2] Quantum ESPRESSO[39, 37].

4.2.3.4. Standard and Size-Modified Poisson-Boltzmann Model

The preconditioned conjugate gradient algorithm from Ref. [30] can only tackle linear

problems, like the one represented by the linearized-PB equation. Fisicaro et al. have also
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proposed an iterative algorithm devised to solve the full non-linear PB equation[30], which,

however, turned out not to be sufficiently stable to deal with extended charged systems.

For the numerical solution of the full (size-modified) PB equation, we thus resort to the

more robust Newton-based algorithm as proposed by Ringe et al. [81], which we have also

implemented in the development version of the ENVIRON module[2]. In particular, the

free-energy functional minimization that leads to the PB equation is recast as a root-finding

problem:

(4.40) G [φ (r)] = 0,

where G [φn (r)] is the φ (r) functional derivative of the free-energy F [φ (r)]:

(4.41) G [φn (r)] = ∇ · ε (r)∇φn (r) + 4πρ (r) + 4π

p∑
i

zici (φn (r)) ,

Following Newton’s iterative algorithm, the estimate for φ (r) at the the n-th step is

obtained as:

(4.42) φn+1 (r) = φn (r) +
G [φn (r)]

G′ [φn (r)]
.

Here G′ [φn (r)] is the Fréchet derivative of G [φn (r)]:

(4.43) G′ [φn (r)] = ∇ · ε (r)∇+ 4π

p∑
i

zi
∂ci
∂φ

(φn (r)) .

By rearranging the terms in Eq. 4.42, the following linear problem is recovered:

(4.44)

(
∇ · ε (r)∇+ 4π

p∑
i

zi
∂ci
∂φ

(φn (r))

)
φn+1 (r) =

− 4π

(
ρ (r) +

p∑
i

zici (φn (r))−
p∑
i

zi
∂ci
∂φ

(φn (r))φn (r)

)
.
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Overall, the algorithm proceeds as follows: starting from an initial guess for φ (r),

i.e. φ0 (r), the charge and screening terms in Eq. 4.44 are evaluated. The new guess for

the electrostatic potential, φ1 (r), is then determined by solving the corresponding linear

problem using the preconditioned conjugate-gradient procedure from Ref. [30], as described

in Section 4.2.3.3. The charge and screening terms are updated, and the new linear problem

solved to find φ2 (r). These steps are repeated until convergence is achieved.

4.2.4. Computational Details

All the electrolyte models discussed have been implemented in the developer version

of the ENVIRON module[2] for the Quantum ESPRESSO distribution[39, 37]. Differential

capacitances have been calculated by numerically differentiating charge-potential curves. We

have employed a canonical approach: we perform constant charge calculations and determine

the applied potential U a posteriori from the difference between the asymptotic electrostatic

potential and the Fermi energy of the system. Experimental data and simulations have

been compared to each other using as potential reference the corresponding estimate of the

potential of zero charge. In the simulations, this is the potential computed for a neutrally-

charged surface, UPZC (see Figure 4.2).

All calculations have been performed using the Perdew-Burke-Ernzerhof exchange-

correlation functional[72] and pseudo-potentials from the GBRV set[35], which have been

chosen according to guidelines from the Standard Solid-State Pseudopotential library[77]

(SSSP efficiency 0.7). Cutoff energies for the plane wave and density expansions have been

set to 35 Ry and 350 Ry, respectively. A Γ-centered 18x18x1 k-point grid (or equivalent) has

been employed to sample the first Brillouin zone, using the cold smearing technique from

Ref.[63] with smearing parameter σ = 0.01 Ry.

The Ag(100) slab has been constructed using 8 atomic layers at the bulk equilibrium

lattice constant (4.149 Å). The slab has been fully relaxed only in vacuum. While electrolyte-

and solvent-related contributions to the atomic forces are accounted for and they in principle

allow for fully self-consistent optimizations in the presence of the embedding continuum, test

calculations for the present case show that further relaxations in implicit solvent negligibly
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Figure 4.2. 2D-maps of the electrostatic potential computed with the

planar-averaged analytical PB model (A) and the corresponding numerical

version (B) for a Ag(100) slab in vacuum with a total charge q = 0.028 a.u..

The planar-averaged electrostatic potential computed for the neutral and the

charged surface (red and blue, respectively) is plotted as a function of the sur-

face normal direction x in C and D. The same data is plotted in the C and D

panels, using different scales for the potential axis. The planar interface with

a symmetric monovalent electrolyte with bulk concentration c0 = 0.1 M has

been employed.
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affect the surface structure and the Fermi energy of the system.

Particular care needs to be taken with respect to the simulation cell size when using

the SSCS (‘soft-sphere’) cavity. If the diameter of the atom-centered spheres exceeds one

of the cell lattice vectors, a sharp transition arises in the region where the spheres overlap

with their neighboring periodic replicas, which can trigger numerical instabilities. In order

to obtain a smooth interface function, one has to set the simulation cell size such that all

the sphere diameters fit the simulation box. For this reason, calculations using the SSCS

have been performed in a (2x2) supercell. We also note that the Ag sphere radii as part

of the original SSCS parameterization[31] are such that the resulting cavity includes non-

physical dielectric pockets inside the metal slab. This issue has been fixed by introducing a

non-local correction based on the the convolution of the interface function with a solvent-

size-related probe function. In this way, dielectric pockets that are smaller than the chosen

solvent molecule (in this case water) can be identified and removed. Further details on the

construction of such non-local interface are deferred to a forthcoming publication [1].

The models characterized by a self-consistent optimization of the ionic countercharge

density require large separations between periodic replicas of the slab along the surface nor-

mal. This is to account for the long-range electrolyte screening, whose typical length is the

Debye length λD. Due to the partial screening of the electrolyte charge by the dielectric,

calculations that include implicit solvent require larger cell sizes along the surface normal.

We have verified that Fermi energies are converged within few meVs for a 20 Å (60 Å)

separation between periodic images for calculations in vacuum (implicit solvent). For cal-

culations involving particularly low bulk ionic concentrations (≤ 0.04 M) we have doubled

these spacings. Note that the planar-averaged implementation of the PB model does not

require these large spacings, as one resorts to the analytical solution of the one-dimensional

problem to set the electrostatic potential at the cell boundaries. Such calculations have been

thus performed with a spacing of 20 Å between periodic images. For both the numeri-

cal and analytic electrolyte models, we have made use of the parabolic corrective scheme

from Ref. [5] in order to recover the potential of the isolated system from the electrostatic
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potential computed with periodic-boundary conditions (see also Equations 4.33 and 4.34).

This correction guarantees that the electrostatic potential approaches zero at large distances

from the metal slab, provided that enough empty space is included in the unit cell for the

numerical models. While charge neutrality is often enforced by means of a Lagrange multi-

plier µel in the search for the electrostatic potential φ (r) that minimizes the energy of the

system [96, 42, 64], the asymptotically-zero reference potential can be used with µel ≡ 0.

This choice simultaneously provides the correct asymptotic limits for the electrolyte charge

density and for the ionic concentration profiles[64].

4.3. Results and Discussion

4.3.1. Vacuum

We start by considering the differential capacitance (DC) of Ag(100) in a solution

with the vacuum dielectric constant (ε0 = 1), which allows us to disentangle the electrolyte

effects from the role played by the dielectric medium.

We first consider the planar-countercharge Helmholtz model (see Sections 4.2.2.1 and

4.2.3.1), which represents the lowest-rung diffuse layer model among the ones considered here.

Figure 4.3 illustrates how the two parameters in the model, i.e. the surface-countercharge

distance d and the spread of the charge distribution ∆, affect the computed DC. Overall,

charge-potential curves are found to be close to linear for all tested parameter values. The

DC predicted by the Helmholtz model is thus almost potential independent, with a small DC

decrease for increasing potentials. This trend is consistent with the larger electron-density

spilling at more negative potentials, which effectively reduces the distance between the sur-

face and the fixed countercharge distribution. This simple capacitor model also explains

the effect of the d parameter on the computed DC, as we observe an increase (decrease)

of the DC value for an inward (outward) shift of the neutralizing counterion density. The

broadening of the electrolyte charge density, as regulated by the ∆ parameter, instead has a

negligible effect on the DC. This is expected, as the spread of the distribution only affects the

field in the narrow region where the countercharge is located. In contrast, the electrostatic

57



0.4 0.2 0.0 0.2 0.4
U UPZC (V)

0.020

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.020

Ch
ar

ge
 p

er
 su

rfa
ce

 a
to

m

Helmholtz

d = d0/2 +  4 Bohr,  = 0.5 Bohr
d = d0/2 +  6 Bohr,  = 0.5 Bohr
d = d0/2 +  8 Bohr,  = 0.5 Bohr
d = d0/2 +  6 Bohr,  = 0.1 Bohr
d = d0/2 +  6 Bohr,  = 1.0 Bohr

0.50 0.25 0.00 0.25 0.50
U UPZC (V)

5

10

15

Di
ff.

 c
ap

ac
. (

F/
cm

2 )

Figure 4.3. The charge per surface atom (in a.u.) is plotted as a function

of the potential (in V). The Helmholtz model has been used for all data sets,

varying the d and ∆ parameters that define the position and the width of the

countercharge density, respectively. Note that the three lines corresponding

to d = d0/2 + 6 Bohr are essentially superimposed (d0 is the slab thickness).

The inset shows the differential capacitance as a function of the potential,

as calculated from the analytical derivative of the spline-interpolated charge-

potential curves (same line styles as in the main plot).

potential at large distances from the countercharge planes is essentially unaffected by the ∆

parameter, and so is the DC.

As already mentioned in Section 4.2.2.1, the Helmholtz model for the diffuse layer does

not include any dependence on the bulk electrolyte concentration. The planar-averaged PB

model overcomes this limitation while retaining the assumption of a planar countercharge-
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Figure 4.4. Same as Figure 4.3, but for the planar-averaged analytic

linearized-PB model (triangles and dashed lines) and the corresponding nu-

merical implementation (circles and solid lines). Red, blue and green symbols

correspond to bulk electrolyte concentrations c0 = 1 M, c0 = 0.1 M and

c0 = 0.01 M, respectively. xStern in the analytic model (Section 4.2.3.2) and d

in the planar interface employed in the numerical model (Section 4.2.3.3) are

set so that the interface lies in both cases 6.568 Bohr away from the surface.

density profile. Results obtained with the linearized-PB model (see Sections 4.2.2.2 and

4.2.3.2) are illustrated in Figure 4.4, which shows the computed charge-potential curves and

corresponding capacitance values for three representative electrolyte concentrations. The

linear-regime PB model predicts a weak potential dependence of the DC, as also observed

for the Helmholtz model, but the computed capacitance now depends on the electrolyte

concentration. In particular, lower DC values correspond to lower ionic concentrations.
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Figure 4.5. Same as Figure 4.4, but for the full PB model, in the planar-

averaged analytic implementation (triangles and dashed lines) and the numer-

ical implementation (circles and solid lines).

Figure 4.4 also includes results of calculations performed with the numerical linearized

PB solver (see Sections 4.2.2.2 and 4.2.3.3),using a planar but smooth interface function with

an error-function profile along the surface normal. We have used here a small spread param-

eter (0.01 Bohr) in order to better compare results to the planar-averaged LPB model, in

which a sharp planar interface defines the boundary of the region where the one-dimensional

LPBE is analytically solved. The DC computed through the numerical solution of the

LPBE agrees well with what obtained through the corresponding planar-averaged analytic

model. This is consistent with the interface being essentially two-dimensional, as expected

for closely-packed metal surfaces like Ag(100).

The capacitance-potential trends obtained from the solution of the full-PBE (see Sec-
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tions 4.2.2.2 and 4.2.3.4) are quite different, as illustrated in Figure 4.5. In contrast with the

linear-regime model, the DC curves computed with the non-linear electrolyte model exhibit

a concentration-dependent drop at the potential of zero charge (PZC), while similar capaci-

tance values are observed at the largest potentials simulated for all electrolyte concentrations

(see also Figs. 4-10 and 4-11 of Ref.[25]). As also observed for the linearized model, we find

very good agreement between the capacitance curves computed with the planar-averaged

approach, which exploits the analytical solution of the PBE along the surface normal, and

the full numerical implementation. As illustrated in Figure 4.2, in fact, the electrostatic

potential obtained with the numerical model is not significantly corrugated in the yz-plane at

sufficiently large distance from the surface, and is thus very similar to the potential computed

with the planar-averaged analytical approach.

The effect of the interface broadening on the DC is illustrated in Figure 4.6, where we

compare DC-potential curves computed with the numerical solver of the full-PBE (Section

4.2.3.4) and a planar but smooth interface function. We have tested different values of

the spread parameter ∆, ranging from 0.01 to 0.5 Bohr. The DC is found to increase

for increasing values of ∆, which follows from the onset of the electrolyte-accessible region

becoming closer to the surface. This effect is most pronounced at large (absolute) potentials

and at high electrolyte concentrations. Under such conditions, in fact, the electrolyte charge

density at the interface boundary is larger and sharper, and thus more sensitive to small

changes in the onset region.

Figure 4.7 compares charge-potential curves and the corresponding DC values as

computed with the numerical PB solver (Section 4.2.3.4) paired to the three different cavities

presented in Section 4.2.1. Specifically, we have tested the use of the planar interface function

also used in Figure 4.5 and 4.6 (see Figure 4.7A), and two additional cavities derived from

the SSCS [31] (Figure 4.7B) and from the SCCS [3] (Figure 4.7C) models, respectively. To

better compare results across the cavities employed, we choose the corresponding parameters

so that the onsets of the three interface functions lie at approximately the same distance

from the metal surface under neutral conditions, and a similar broadening characterizes the
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Figure 4.6. Full Poisson-Boltzmann model: differential capacitance as a

function of the potential for various values of the spread parameter ∆ in the

planar interface function, using the numerical solver. The distance parameter

d has been set so that the interface lies 6.568 Bohr away from the surface. The

full numerical PB model has been used for all calculations, using c0 = 0.01 M.

three interfaces.

Very similar DC-potential curves are obtained using the planar and SSCS cavities.

The former produces slightly higher capacitance values, consistently with the electrolyte

charge density more closely approaching interstitial surface regions with the soft-sphere in-

terface. Both interfaces predict DC-potential curves that are asymmetric around the PZC,

with slightly larger DC values at negative potentials as compared to the corresponding posi-

tive values. This is again consistent with the effective separation between the surface and the

ionic density onset becoming smaller at negative potentials due to the larger electron density

spilling towards the rigid electrolyte interface. Interestingly enough, the trend observed with
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Figure 4.7. Same as Figure 4.5, but for the full-numerical PB model (circle

and solid lines) and linearized PB model (triangles and dashed lines). The

interface functions employed are the following: the planar interface (top, d =

d0/2 + 6.568 Bohr, where d0 is the slab thickness, and ∆ = 0.470 Bohr); the

soft-sphere interface (middle, r = 6.568 Bohr, ∆ = 0.470 Bohr); and the SCCS

interface (bottom, ρmax = 10−4 a.u. and ρmin = 10−5 a.u.). The top subplot

also includes results obtained with the Helmholtz model (black squares and

dotted line) as a comparison. The same d and ∆ parameters used for the planar

interface have been employed to set the Gaussian countercharge density.

the SCCS cavity is reversed. This density-dependent interface function, in fact, shifts the

ionic density onset further away from the surface as the slab charge becomes more negative,

effectively increasing the electrolyte-slab separation.

Figure 4.7 also includes results from the linearized PB model for the three cavities

considered. This model correctly predicts the DC values at the PZC and the qualitative DC

dependence on the bulk electrolyte concentration. Note that the capacitance computed with

this model approaches the infinite-screening limit represented by the Helmholtz model ca-

pacitance for increasing ionic concentrations (Figure 4.7A). As also evident from comparing

Figure 4.4 to Figure 4.5, the linearized version of the PB model dramatically fails in repro-

ducing the potential trend computed with the corresponding non-linear model and it returns

weak potential dependences with no minimum at the PZC. The monotonic trends observed

for the linear-regime model are consistent with the patterns described for the corresponding

non-linear model. For instance, the density-dependent SCCS cavity predicts monotonically

increasing capacitance curves, as the surface-electrolyte gap increases with increasing poten-

tial. This is also consistent with the findings of Letchworth-Weaver and Arias[57], who have

similarly observed monotonically increasing capacitance curves using a linearized-PB model

for the diffuse layer and a density-dependent interface function.

Figure 4.8 compares DC curves computed using the standard (non-linear) PB model
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to results from the size-modified PB model (see Sections 4.2.2.3 and 4.2.3.4). In particular,

we test values for the cmax parameter that range from 300 M to 3 M, which correspond to

effective ionic radii from 0.95 Å to 4.39 Å. Introducing a finite size for the ions affects the DC

at large applied potentials: while the standard PB model predicts monotonically increasing

capacitance values for increasing values of the applied potential, the size-modified model

predicts the DC to first reach a maximum and then decrease as the potential deviates from

the PZC. The DC maximum is reached at lower values of the potential for decreasing values

of the cmax parameter. For cmax = 3 M the DC-potential curve even changes concavity, and

the PZC becomes the maximum. The observed DC decrease can be explained by the fol-

lowing arguments. In contrast with the standard PB-model, which allows for infinitely large

electrolyte concentrations at the interface boundary, its size-modified variant imposes a max-

imum local ionic concentration, cmax. When this maximum concentration is locally reached,

the steric repulsion between the ions pushes the ionic charge density towards the bulk solvent

region, effectively increasing the separation between the surface and the electrolyte charge,

giving rise to the observed DC decrease.

4.3.2. Implicit Solvent

After having investigated the performance of the diffuse layer models in vacuum,

we switch to simulations in implicit water and compare results to prototypical experimental

data, presented in Figure 4.9. In particular, we have considered data reported by Valette[102]

on the differential capacitance of Ag(100) in a KPF6 electrolyte solution. Consistently with

commonly-observed experimental trends, the DC exhibits a ‘camel-back’ shape, with the

minimum indicating the PZC.

As also indicated by Valette, the common potential value at which the potential drop

is observed across the various electrolyte concentrations and the rather symmetric shape

of the DC curve around the PZC suggest a negligible anion adsorption in this electrolyte

solution.

On the basis of the results presented in Section 4.3.1, only the MPB model is expected

to qualitatively reproduce the experimental potential trend, with the capacitance drop at the
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Figure 4.8. The differential capacitance is plotted as a function of the po-

tential for various values of the cmax parameter in the MPB model. The planar

interface function has been used for all calculations, with d = 6.568 Bohr and

∆ = 0.470 Bohr.

PZC and the DC saturation and decrease at large applied potentials. Instead, the Helmholtz

and the linearized PB model fail to predict the capacitance minimum at the PZC, and

the standard PB model predicts monotonically increasing capacitance curves. Concerning

the cavity, the various interface functions have been found to give rise to overall similar

capacitance values in vacuum, at least for parameterizations that lead to similar electrolyte

charge distributions. The planar and SSCS cavities produce essentially identical results, and

for this reason in the following we will consider only the latter, which better suits general

interface geometries.

The DC computed with the MPB model and the SCCS interface including the di-

electric continuum are plotted in Figure 4.9. We have used here the original SCCS cavity
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Figure 4.9. The differential capacitance is plotted as a function of the po-

tential. Experimental data from Ref.[102] are plotted as dashed lines. Results

of MPB simulations using the SCCS cavity with the original parameterization

from Ref. [3] are plotted as solid lines. The value of cmax is set to 20 M. Red

is for c0 = 0.1 M and blue is for c0 = 0.04 M.

parameters[3], which have been fitted to a database of solvation energies of neutral molecules.

We remind, however, that the non-electrostatic solvation terms have been neglected here.

Calculations are performed for the experimental bulk electrolyte concentrations (0.1 M and

0.04M) and for the steric repulsion between ions through the cmax parameter, which we have

initially set to 20 M. Assuming a random close-packing for the ions, this value of cmax cor-

responds to an effective ionic radius of approximately 2.33 Å. In comparison, experimental

upper-bounds for the bare (non-solvated) ionic radii are 2.65 Å [60] and 2.42 Å[85], for K+

and PF−6 , respectively.

As already observed in the vacuum environment, the MPB model predicts a DC drop
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at the PZC, which is more pronounced for the lowest electrolyte concentration simulated

(c0 = 0.04 M). This is in qualitative agreement with measurements. However, the overall

absolute magnitude of the DC is severely underestimated, and the potential dependence

computed is also much weaker than in experiments.

Figure 4.10 illustrates how the inclusion of additional solute-electrolyte interactions

in the MPB model (see Sections 4.2.2.4) affects the computed DC (note the different scale

of the y axis). Figure 4.10A shows the effect of including a solute-electrolyte repulsion

potential. This potential introduces a gap between the onset of the dielectric continuum and

the one of the electrolyte countercharge density. In particular, we test various values for

the distance parameter d in the chosen functional form for the repulsive potential (see Eq.

4.25). By setting the spread parameter w to 0.25 Å we ensure a fast decay of the exponential

repulsion. The effect of introducing this Stern-layer gap is essentially a rigid shift of the DC

curve. The observed capacitance decrease is consistent with the corresponding increase of

the surface-electrolyte charge distance for increasing d values, and the small magnitude of

the shift is related to the large dielectric constant that characterizes the region where the

electrolyte charge is located.

Figure 4.10B illustrates how the DC is affected by anion adsorption as accounted

through the continuum model of Baskin and Prendergast[10]. For the solute-anion inter-

actions, we set the following values for the Morse-potential parameters: w = 0.5 Å and

d = d0/2 + 1.5 Å, where d0 is the slab thickness. The adsorption energy Eads is varied in a

range from 3kBT to 9kBT (i.e. from 80 meV to 230 meV at 300 K). Note that we simulate

the asymmetric anion adsorption without accounting for solute-cation interactions. At the

most negative potentials considered, where the electrostatic attraction of cations is much

stronger than the imposed solute-anion interaction, the anion adsorption does not alter the

computed DC. At the highest potentials simulated, the additional attractive interaction be-

tween surface and anions increases the electrolyte countercharge at the interface, thereby

increasing the DC. At intermediate potentials, the anion adsorption shifts the DC minimum

from the PZC towards negative potentials, where the electrostatic interaction compensates
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Figure 4.10. The differential capacitance plotted as a function of the po-

tential. All data refer to MPB simulations with the SCCS interface. The

original parameterization from Ref. [3] has been employed, and c0 = 0.1

M and cmax = 20 M. In the top panel, a repulsive potential between solute

and electrolyte is introduced. Different colors correspond to different values

of the d parameter, as indicated (w is set to 0.25Å). In the bottom panel,

a Morse-potential interaction between solute and anions is employed instead,

with d = d0/2 + 1.5 Å and w = 0.5 Å. Different colors correspond to different

values of the Eads parameter, as indicated.
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the anion attractive potential.

The cavity parameterization is found to have a much larger influence on the absolute

value of the computed DC. This is illustrated in Figure 4.11, where we plot the DC-potential

curves calculated with the original interface parameterization that was optimized for neutral

isolated systems and with the two parameterizations that have been later proposed[27] to

best fit anion and cation solvation energies, respectively. The DC computed with the cation-

specific parameterization does not significantly differ from the one obtained from the original

parameterization. This is consistent with the very similar values for the cavity parameters

ρmax and ρmin in the two fits. Significantly different cavity parameters were instead found

to best fit the anion database, and we consistently observe a considerable difference in the

resulting capacitance. In particular, the anion-specific parameterization is characterized by

smaller cavities, and the reduced gap between the surface and the continuum fluids give

rise to larger DC values. As illustrated in Figure 4.10A, the spacing between the surface

and the electrolyte countercharge density has a rather contained effect on the absolute DC

value. These findings suggest that the gap between the electrode surface and the dielectric

polarization charge is thus the main responsible for the large DC Dependence on the cavity

parameterization, as also suggested by Sundararaman et al. [94]. Consistently, Melander et

al.[64], who have employed a dielectric cavity based on the van der Waals radii of the surface

atoms, have found that increasing the atomic radii leads to significantly lower capacitance

values.

It is evident that none of the three SCCS cavities described so far is able to describe

well experimental data: the original SCCS parameterization and the cation refit underes-

timate the measured DC, while the anion parameterization overestimates it. This is not

surprising, considering that all three parameter sets have been fitted to solvation energies of

isolated systems. Figure 4.11A also includes a DC curve computed with cavity parameters

that have been recently fitted[47] to reproduce the theoretical estimate of the absolute PZC

of Pt(111). This last paramerization overall returns the best agreement with experimental

data, even though it underestimates the measured DC in the potential region close to the
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Figure 4.11. The differential capacitance is plotted as a function of the po-

tential for c0 = 0.1 M. Experimental data[102] are shown as dashed lines.

All theoretical data refer to MPB simulations with the SCCS interface func-

tion. In the top panel, results from the original SCCS parameterization

[3] (‘neutral’), are compared to results from the cation- and anion-specific

parameterizations[27] and to results from the parameter fit to the Pt(111)

PZC[47]. The value of cmax is set to 20 M. In the bottom panel, the SCCS

parameterization from Ref.[47] is employed, and the value of cmax varied from

20 M to 2 M, as indicated.
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PZC and more severely overestimates it for larger applied potentials.

As clearly shown from the simulations in vacuum, the capacitance of the MPB model

at large absolute potentials is strongly affected by the steric-repulsion between the ions

(cf. Figure 4.8). Figure 4.11B shows the effect of decreasing the value of cmax from 20

M to 2 M, which is equivalent to increasing the ionic particle radii from from 2.33 Å to

5.02 Å. Decreasing cmax broadens the minimum in correspondence of the PZC and lower

the capacitance at the highest and lowest potentials examined, improving agreement with

experimental data. It is thus tempting to suggest that effective radii larger that the bare

ones should be employed for the electrolyte particles, as also suggested in the literature on

the basis of the strongly-bound solvent molecules surrounding ions in solution[11]. Note that

experimental estimates for the radius of the solvated K+ ions span a range [11] from 3.8 Å

[36] to 6.62 Å[70], which would largely justify the range of cmax investigated.

After having investigated the DC capacitance computed using density-based cavities,

we now consider simulations performed with the SSCS interface function. Results are pre-

sented in Figure 4.12, where we have used the parameterization proposed by Fisicaro et

al.[31]. Figure 4.12A reports the capacitance computed using the upper-bound cmax value of

20 M. Despite the cavity parameters were originally fitted to solvation energies of isolated

systems as for the SCCS interface, the SSCS model leads to a very good description of the

experimental DC around the PZC for the two electrolyte concentrations considered. As

also observed for the SCCS interface function, the capacitance at large absolute potentials

is instead overestimated when using cmax = 20 M. Similar to the case of vacuum (Section

4.3.1), the (M)PB model returns asymmetric DC curves with the rigid cavity from the SSCS

model. This finding can again be explained on the basis of the extent by which the electron

density spilling from the metal surface approaches the continuum. The separation between

the surface and the electrolyte onset, in fact, is effectively reduced for lower values of the

potential, with a subsequent increase of the capacitance values.

Figure 4.12B shows the computed DC curve for the lower cmax value of 2 M (ri =

5.02 Å). The agreement with experiments is significantly improved, and both the position

72



0.4 0.2 0.0 0.2 0.4

U UPZC (V)

0

20

40

60

D
if
f.

 c
a
p
a
c
. 

(
F
/c

m
2
)

B

cmax = 2 M

c= 0.10 M, exp

c= 0.10 M

c= 0.04 M, exp

c= 0.04 M

0.4 0.2 0.0 0.2 0.4

U UPZC (V)

0

20

40

60
D

if
f.

 c
a
p
a
c
. 

(
F
/c

m
2
)

AA

cmax = 20 M

c= 0.10 M, exp

c= 0.10 M

c= 0.04 M, exp

c= 0.04 M

Figure 4.12. Same as Figure 4.9, but the SSCS interface has been employed

in the simulations. In top and bottom panel the value of cmax is set to 20 M

and 2 M, respectively.
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and the height of the ‘humps’ are comparable to measured data. Thus, also calculations

performed with the SSCS cavity suggest that ionic radii larger than the bare ones should be

employed to limit the steric crowding at electrode interfaces. Note that Sundararaman et al.

recently achieved a similarly good description of the DC of Ag(100) with a soft-sphere-based

continuum model[94]. The cavity size in their model was also based on the Ag ionic radius

as tabulated in the unified force-field (UFF)[78], times a scaling constant. As also noted by

Sundararaman et al. [94], the good description of the Ag(100) DC might be thus inferred

to the Ag UFF ionic radius being fortuitously suitable to describe the cavity size for this

system. Future investigations of the DC for other systems will shed light on this point.

Despite the overall good agreement with experimental data, the DC predicted us-

ing the SSCS cavity overestimates and underestimates the measured data at negative and

positive potentials, respectively. The trend observed with the soft-sphere cavity in implicit

solvent is consistent with the trends observed in vacuum with rigid cavities, which are found

to predict an overall decreasing DC with increasing potential. In comparison, measurements

exhibit slightly larger capacitance values at positive potentials, in better agreement with

trends observed with the density-dependent SCCS cavity. Future work will clarify whether

improved agreement with experimental data can be achieved by a specific refitting of the

SCCS cavity.

Regardless on the cavity employed, our findings suggest that the MPB model for the

electrolyte is able to capture the main features of the experimental DC for Ag(100) in an

ideally non-adsorbing ionic solution. We note in passing that in addition of being more phys-

ically sound, the MPB model is also more numerically stable than the standard PB model,

as the extremely large ionic charge densities that the latter predicts at the boundary between

the electrified surface and the solvent region are difficult to handle with the numerical solvers

without the inclusion of a Stern layer. While avoiding such instabilities, the linearized-PB

model is inadequate for describing the capacitance of a charged metal surface. As expected

from the results in vacuum (Section 4.3.1), Figure 4.13 illustrates how the linear-regime

model predicts essentially potential-independent capacitance values, which are only accurate
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Figure 4.13. Same as Figure 4.12, but the DC curves obtained with the

MPB model and cmax = 20 M are compared to analogous curves obtained

with the linearized PB model.

close to the PZC.

Our results are in contrast with the finding from Ref. [94], where an additional

non-linear dielectric model was suggested to be necessary in order to reproduce the trends

observed in the measurements. Our findings also differ from the ones of Melander et al.[64],

who have reported potential-independent capacitance trends for a metal surface (Au(210))

in an electrolyte solution using both a linearized- and a non-linear- MPB model. While

discrepancies with Refs. [94, 64] require further investigation, our results are consistent with

data from full-continuum models [11, 69, 10], where the solution of the non-linear MPBE is

found to lead to the experimentally-observed ‘camel-back’-shape for the DC curve for metal

surfaces in aqueous solutions.
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4.4. Summary and Conclusions

In summary, we have presented a hierarchy of electrolyte models that can be inte-

grated in the framework of DFT to account for the presence of the diffuse layer in first-

principles simulations of electrochemical interfaces. We have validated the accuracy of the

models by comparing computed DC values to experimental data, focusing on the Ag(100)

surface in an aqueous electrolyte as study system.

Results suggest that the size-modified PB model is necessary in order to reproduce

the main characteristics of the experimental DC, i.e. the concentration-dependent drop at

the PZC and the two local maxima at intermediate applied potentials. The lowest-rung

planar Helmholtz model, which does not include any dependence on the bulk electrolyte

concentration, predicts negligible DC dependences on the applied potential. Similarly, the

standard PB model, both in the linear-regime and in its full non-linear implementations fails

in describing experimental DC trends.

Further accounting for solvent effects through a continuum dielectric allows for a di-

rect comparison of computed DC values to experimental data. We observe a large influence

of the choice of the dielectric cavity on the absolute DC values, consistently with previous

findings [95, 94]. For the SCCS interface function, the best agreement with experimen-

tal data is obtained for a parameterization of the cavity that is fitted[47] to reproduce an

interface-related observable, i.e. the theoretical estimate of the PZC of Pt(111). The original

parameterization of the SSCS cavity has been found instead to produce a relatively good

agreement with experimental data without the need of refitting.

While it is important to stress how the different approaches can be extended and

tuned to improve the description of electrochemical systems, it is worth pointing out that

the reported analysis is based on continuum models that only account for part of the phys-

ical phenomena occurring at electrified interfaces. At the center of the reported analysis is

the description of the diffuse layer, of its shape and characteristics. Nonetheless, a more

realistic model should account for the different sizes of the ions composing the electrolyte.

Moreover, as it is also clear from the results reported, the dielectric properties of the liquid
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solution at the interface with a solid substrate need to be properly modeled in order for

the continuum approach to be meaningful. The bare substrate and, even more, a charged

interface will induce order and rigidity in the overlaying liquid, substantially affecting the

dielectric permittivity over a distance of one or more solvation layers. The fact that cur-

rent state-of-the-art continuum models are not able to describe with the same accuracy

systems with different charge states, and in particular require a separate parameterization

for anions, is clearly a limitation of the current techniques in dealing with electrified inter-

faces. Similarly, non-linear effects in the dielectric response of the liquid may account for

some of the deviations observed at higher applied potentials. Other possibly minor effects

that are not explicitly accounted for in the presented models are the ones related to the

change in dielectric screening of the electrolyte solution for high concentrations of the diffuse

layer. Cancellation of errors resulting from the parameterization of the model may lead to

an approach that seems accurate, but lacks transferability. As more and more ingredients

are added and carefully tuned, they will unlock the full potential of continuum models for

electrochemical setups.

4.5. Kohn-Sham Potential and Force Contributions

In order to perform fully self-consistent calculations with the numerical electrolyte

models discussed in the paper, one needs to add contributions that arise from the dependence

of the free energy on the solute electron density ρel (r) and on the atomic positions {Rα}

to the Kohn-Sham (KS) potential VKS (r) and to the atomic forces {fα}, respectively. This

procedure leads to contributions analogous to the ones that appear in a standard vacuum

environment, but with additional terms that arise from the dependence of the free-energy

functional on the interface function s (r). These interface-related terms can be easily com-

puted exploiting the availability of the functional derivative of the free energy F [s (r)] with

respect to s (r):

V s
KS (r) =

∫
δs (r′)

δρel (r)

δF [s (r)]

δs (r′)
dr′,(4.45)

f sα =

∫
∂s (r′)

∂Rα

δF [s (r)]

δs (r′)
dr′.(4.46)
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For the Poisson-Boltzmann (PB) model, its linear-regime approximation (linearized-PB,

LPB) and its size-modified variant (size-modified PB, MPB), the functional derivatives

δF [s (r)] /δs (r) take the following forms (see Eqs. 9, 15 and 22 in the main paper for

the corresponding free-energy expressions):

(4.47)
δF PB [s (r)]

δs (r)
= (ε0 − 1)

|∇φ (r)|2

8π
+ kBT

p∑
i=1

c0
i e
− ziφ(r)

kBT ,

(4.48)
δFLPB [s (r)]

δs (r)
= (ε0 − 1)

|∇φ (r)|2

8π
+

∑p
i=1 z

2
i c

0
i

2kBT
φ2 (r) + kBT

p∑
i=1

c0
i ,

(4.49)
δFMPB [s (r)]

δs (r)
= (ε0 − 1)

|∇φ (r)|2

8π
− kBTcmax ln

(
cmax −

p∑
i=1

c0
i

)
+

+ kBTcmax ln

(
cmax −

p∑
i=1

c0
i

(
1− e−

ziφ(r)

kBT

))
.

It is evident from Eqs. 4.45 and 4.46 that the interface-related contributions to the

KS-potential and to the atomic forces vanish if the interface function does not explicitly

depend on ρel (r) and {Rα}, respectively. Therefore, the {f sα} are zero if the density-based

cavity function from the self-consistent continuum solvation (SCCS) model is employed,

V s
KS (r) is zero if the solute cavity is constructed from atom-centered spheres as in the

soft-sphere continuum solvation (SSCS) model, and both {f sα} and V s
KS (r) are zero for the

space-fixed planar interface function.

4.6. Analytical solution of the Poisson-Boltzmann model of the diffuse layer

Starting from the Poisson-Boltzmann equation for a two-dimensional system homo-

geneous in the plane,

(4.50)
d2φ (x)

dx2
= −4π

ε0

(
ρ (x) +

p∑
i=1

zici (φ (x))

)
one can apply the chain rule to the left hand side:

(4.51)
d2φ

dx2
=

d

dφ

dφ

dx

dφ

dx
=

1

2

d

dφ

(
dφ

dx

)2

.
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The right hand side can be rewritten using the result from the variational approach

applied to the ionic concentrations

ci (x) = c0
i e
− ziφ(x)

kBT(4.52)

In the region of interest, ρ (x) is taken to be zero, and the electrolyte is made up of two

species of equal and opposite charges, and equal concentrations. Hence the right hand side

of the equation can be expressed as

(4.53) − 4πzc0

ε0

(
e
− zφ
kBT − e

zφ
kBT

)
,

or in terms of hyperbolic functions,

(4.54)
8πzc0

ε0

sinh

(
zφ

kBT

)
.

Performing integrations on both sides with respect to φ gives the following differential

equation (
dφ

dx

)2

=
8zc0π

ε0
sinh

(
zφ

kBT

)
(4.55)

=
16πkBTc

0

ε0

cosh

(
zφ

kBT

)
+ k(4.56)

where k is the constant of integration, which can be immediately found by imposing the

condition (dφ/dx) (|x| → ∞) = φ (|x| → ∞) = 0. In this form, the first-order differential

equation can be simplified by a double-angle identity,

(4.57)
dφ

dx
= −

(
32πkBTc

0

ε0

) 1
2

sinh
|z|φ
2kBT

,

where the negative sign is chosen to match the physical interpretation of the electric field.

Rearranging terms and integrating gives:

(4.58) ln

(
κ

∣∣∣∣tanh

(
|z|φ
4kBT

)∣∣∣∣) = −
(

32πkBTc
0

ε0

) 1
2

x,

where the constant of integration κ has been moved into the logarithm for convenience. Note

that x is limited to positive values but since the setup is inherently symmetric, it should

follow that the expression for potential is also symmetric; hence the absolute value of x
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should be taken. The expression from this point is inverted and the potential can finally be

written as

(4.59) φ(x) =
4kBT

|z|
coth−1

(
κe

32πkBTc
0

ε0
|x|
)
,

where κ can be found by imposing conditions at the electrolyte interface.

4.7. Analytical solution of the linearized Poisson-Boltzmann model of the diffuse layer

Searching the solution to the linearized Poisson-Boltzmann equation

(4.60) ∇ · ε (r)∇φ (r)− k2γ (r)φ (r) = −4πρ (r) ,

in the region where ε (r) = ε0, γ (r) = 1, and ρ (r) = 0, for a two-dimensional system that is

homogeneous in the plane, corresponds to solving the following one-dimensional differential

equation

(4.61)
d2φ (x)

dx2
− k2

ε0
φ (x) = 0.

This is a trivial differential equation with the general solution

(4.62) φ(x) = c1e
kx√
ε0 + c2e

− kx√
ε0 ,

where c1 and c2 are constants determined by appropriate boundary conditions. Applying

the condition that φ (|x| → ∞) = 0,

(4.63) φ(x) = ce
− k|x|√

ε0 ,

where c is determined by the electric field at the electrolyte interface.
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CHAPTER 5

FIELD-AWARE INTERFACES IN CONTINUUM SOLVATION

1

5.1. Introduction

Recent efforts to account for charged solutes have benefited from a similar non-local

description for the interface. Previously discussed was the ability for the local interface

models to successfully describe charged systems with a simple reparameterization. The

disadvantage of this method is in the reparameterization itself, which is costly and unsuitable

if investigating variable charge systems.

There are a number of strategies for approaching this problem, of which not all exploit

a non-local interface. One such idea is to represent some of the solvent explicitly instead of

fully implicitly. These approaches have a lot of potential, however, an automatic decision

of what solvent molecules should be represented is non-trivial, and the configuration of this

single layer of water needs to be considered. Therefore, there is merit in developing an

implicit solution to the problem, and this is supported by recent additions to the literature.

A more hands-off approach is to infer the charge/polarization state of the embedded

QM system from its properties instead of using chemical intuition. It can be argued that

the electrostatic field generated by polarization or global charge within a solute can serve as

an effective proxy for this charged state. Multiple groups have pursued this idea. Pomogeva

and Chipman proposed a field-extremum model that calculates the electric field normal to

the interface boundary and selects the minimum and maximum values as potential hydrogen

bond locations. This would be added to the free-energy outside the simulation itself as a

post processing term. The rationale for using the normal component of the electric field is

Gauss’ law. For a closed surface with enclosed charge, the electric flux through the surface is

proportional to the charge. Therefore by measuring the electric field normal to the surface,

1The majority of this chapter is reproduced from Matthew Truscott and Oliviero Andreussi. Field-
aware interfaces in continuum solvation. J. Phys. Chem. B 2019, 1213, 16, 3513-3524. DOI:
https://doi.org/10.1021/acs.jpcb.9b01363, with permission from the American Chemical Society
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a measure of the charge is obtained, and a measure of the effective charge distribution on

the surface of the interface is obtained. This not only means we have the total charge of

the system, but also the distribution of that charge. Pomogeva and Chipman used this

knowledge to infer likely positions for hydrogen bonds, or in other words, locations on the

interface where interactions between solvent and solute were closest.

Rahimi and collaborators took a similar approach, again treating the electric field

normal to the interface as part of a correction factor that would be added as a post processing

term. Sundararaman and Goddard proposed a more ambitious approach, where the interface

adjusted as a function of the normal electric field. A changing interface during the electronic

density optimization introduces more potential for instability but results in the desired self-

adjustment for localized charge that is desirable in continuum solvation.

Following from these successes, the research members of the Materialab group, primar-

ily myself and Dr. Andreussi, set out to extend the capabilities of the SCCS and soft-sphere

models with this modification derived from the electric field. The modification would act on

the interface in a self-consistent fashion. The electronic minimization algorithm implemented

for these models is an iterative one, and the new interface function will now be a function of

the electronic density as part of the iterative process. This cyclic dependency is rationalized

by the stable nature of the interface function.

Of the two models, the soft-sphere approach has a more straightforward way to ac-

count for the electric field. We consider the electric field normal to each of the exposed

spheres in the molecule, and adjust the sizes of each atomic-centered sphere accordingly.

The vacuum electric field normal to the interface can be expressed by

(5.1) En(r) = E(r) · ∇s(r)

where the electric field in vacuum E(r) can be computed from the solute charge

density, summing electrostatic and ionic density terms,
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(5.2) E(r) =

∫
G(r− r′)

(
ρel(r) +

∑
a

zaδ(|r−Ra|)

)
dr′

where G(r − r′) depends on the boundary conditions of the problem. The unscaled

soft-sphere function is defined as before, eq. 2.12, and denoted by h0(r). In order to work

with the electric field expression above, we must first derive the gradient of the interface

function,

(5.3) ∇s(r) = ∇

[
1−

∏
a

h0
a(ra)

]
= −

∑
a

∇h0
a(ra)

∏
b 6=a

h0
b(rb) = (s(r)− 1)

∑
a

∇h0
a(ra)

h0
a(ra)

where

∇h0
a(ra) =

dh0
a

dra
∇ra

=
1√
π∆

exp

(
−(ra − αξRvdW

a )2

∆2
ξ

)
ra
ra

(5.4)

The electric flux through each atomic centered sphere can therefore be defined,

(5.5) Φa =

∫
En
a (r)dr = −

∫
E(r) · ∇h0

a(ra)
∏
b 6=a

h0
b(rb)dr

We now have a scalar quantity that describes the electric flux through each atom

centered sphere. For atoms away from the surface, the flux is zero, since the electric field

normal to the surfaces here is zero. Therefore, only surface exposed spheres should shrink in

size. A new interface function can be defined as a function of this flux term, and the result is

an interface function that relies on both the electronic and ionic components of the system.

Choosing the electric flux through each atom has a good physically intuitive argument,

Gauss’ law states that the total flux passing through a closed surface is proportional to the

enclosed charge.

A definition of a model that depends on the flux differs somewhat from predecessor

models, for example, the CANDLE model where the scaling is a direct function of the normal
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electric field, however it is the natural extension of such ideas when applied to the soft-sphere

interface function. The product of soft-sphere functions on the right hand side of equation

5.5 ensures that the flux is not computed for the portions of the sphere contained inside

neighbouring spheres. This choice makes the connection between the flux and the contained

charge less direct, especially for soft spheres that have only a small fraction of their surface

exposed to the continuum. This does however mirror the expected lack of effect that less

exposed atoms should have on the interface. Indeed, atoms that lie buried within molecules

would not be expected to have significant interaction with the solvent, since their electronic

density is masked by surrounding solute atoms.

New definitions of the interface and soft-sphere functions are similar to before (com-

pare with equations 2.11 and 2.12), only now with a multiplicative scaling factor,

(5.6) ŝ(r,Ri) = 1−

[∏
i

hΦi
i ({ξ}; ‖r−Ri‖)

]

and

(5.7) hΦi
i (αξ, R

vdW
i ,∆ξ; ‖r−Ri‖) =

1

2

[
1 + erf

(
‖r−Ri‖ − f(Φi)αξR

vdW
i

∆ξ

)]
Note that with this definition of the interface function, there exists a cyclic dependence

between the fluxes and the interface function. This can be resolved by a self-consistent

loop, but it would add unnecessary computational complexity to the problem. Instead, the

unscaled soft spheres h0
i are adopted for the calculation of the fluxes. This should produce a

result identical to any reasonable margin of error: the electronic density does not dramatically

vary in the vicinity of the sphere surfaces and therefore the change in flux by modifying the

size of the sphere by some incremental amount should be negligible.

5.2. Functional Derivatives

In order to be able to exploit the new interface function in the Kohn-Sham SCF

procedure and for geometry optimization, we need to characterize the derivatives of the

84



field-aware soft-sphere interface with respect to the electronic density and ionic positions,

since the field fluxes depend nonlocally on both the electronic and ionic charge densities.

We can express the functional derivative of the interface function with respect to the

electronic density in terms of the individual field fluxes and their functional derivatives,

(5.8)
δŝ

δρel
(r, r′) =

∑
a

∂ŝ

∂Φa

(r′)
δΦa

δρel
(r).

By applying this result to Eq. (2.7), we get for the interface contribution to the

Kohn-Sham potential

V interface
KS (r) =

∫ ∑
a

∂ŝ

∂Φa

(r′)
δΦa

δρel
(r)

δEinterface[s]

δs
(r′)dr′

=
∑
a

δΦa

δρel
(r)

∫
∂ŝ

∂Φa

(r′)
δEinterface[s]

δs
(r′)dr′

(5.9)

Note that although the functional derivative of the interface is defined in r for a change

in the charge distribution given in r′, these coordinate systems can be separated cleanly.

This is particularly useful for implementation, since it would be numerically cumbersome

and expensive to manage a quantity defined on six dimensions. By separating the expression

as we have shown, one can now evaluate a three-dimensional integral and multiply by the

final functional derivative term. The partial derivative of the interface with respect to the

field fluxes can be decomposed as

∂ŝ

∂Φa

(r′) =
∂ŝ

∂hΦa
a

dhΦa
a

df
(r′a)

df

dΦa

= αξR
vdW
a

dhΦa
a

dr′a

df

dΦa

∏
b 6=a

hΦb
b (r′b)

(5.10)

where the total derivative of ha is given in Eq. (5.4), while the derivative of the field-

aware function df/dΦa will depend on its definition (as reported in the following Section).
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The partial derivatives of the interface function with respect to the ionic positions is

given by

∇Rc ŝ(r) = −
∑
a

∇Rch
Φa
a (ra)

∏
b 6=a

hΦb
b (rb)

=
∑
a

1√
π∆

dha
dra

(
δca

ra
ra
− αRvdW

a

df

dΦa

∇rcΦa

)∏
b 6=a

hΦb
b (rb)

= ∇Rcs(r) +
∑
a

∇RcΦa
∂ŝ

∂Φa

(r)

(5.11)

Here, the result can be expressed as a correction to the derivative of the original

SSCS interface function. When combined with Eq. (2.8), the field-aware contribution to

interatomic forces can be written as

(5.12) f interfacec = f interface,0c −
∑
a

∫
∇RcΦa

∂ŝ

∂Φa

(r)
δEinterface[s]

δs
(r)dr

Comparing Eq.s (5.12) and (5.9) allows to appreciate the similarities between the two ex-

pressions.

The last ingredients missing in the above expressions are the derivatives of the field

fluxes with respect to the solute degrees of freedom. In particular, the functional derivative

of the field fluxes with respect to the electronic density can be expressed as

δΦa

δρel
(r) =

δ

δρel(r)

∫
E(r′) · ∇h0

a(r
′)
∏
b6=a

h0
b(r
′
b)dr

′

=
δ

δρel(r)

∫ [∫
G(r′ − r′′)

(
ρel(r′′) +

∑
c

zcδ(r
′′
c )

)
dr′′

]
· ∇h0

a(r
′)
∏
b 6=a

h0
b(r
′
b)dr

′

=

∫
G(r′ − r) · ∇h0

a(r
′)
∏
b6=a

h0
b(r
′
b)dr

′

(5.13)

It is important to note that the final result above is free from any dependence on the

electronic density. This allows us to compute this factor only once, before the SCF loop,

for a given set of atomic positions. Obtaining the derivative of the flux with respect to the

ionic positions is more long-winded and so we leave the steps to the supporting information,

showing only the initial expansion and the final result

86



(5.14) ∇RcΦa = ∇Rc

∫
E(r) · ∇ha(ra)

∏
b6=a

hb(rb)dr

= −
∫

(H [φ (zcδ(rc))]∇ha(ra) + δacH [ha(ra)]E(r))
∏
b 6=a,c

hb(rb)dr

+ (δac − 1)

∫
[E(r) · ha(ra)]∇hc(rc)

∏
b6=a,c

hb(rb)dr

expressed in terms of the Hessian H [φ (zcδ(rc))] of the electrostatic potential of atom

c and of the Hessian H [ha(ra)] of the soft sphere on atom a.

All of the derivatives reported above were tested by comparing their analytic expres-

sions with numerical finite-differences estimates.

5.3. Field-aware function

The main ingredient of the field-aware approach is represented by the scaling func-

tion that is responsible to shrink the solvation radii as the field flux increases. This function

should assume a value of 1 for low positive or negative electric fluxes, so as to not rescale

the continuum interface for non-polar atoms or non-charged systems. Alternatively, in order

to reproduce the shrinking of the interface close to polar/charged residues, the field-aware

function needs to decrease for high positive or negative electric fluxes. Moreover, as demon-

strated in multiple preceding publications (e.g. in Ref. ), the mean average error from anions

is greater than cations, suggesting an asymmetric relationship between the flux and the size

of the atom in question. For the above reasons, we chose to introduce a field-aware function

using a piece-wise definition similar to the one adopted for the SCCS model, namely

(5.15) f(Φ) = 1− f0t(Φ)(κ− sgn(Φ))2
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Figure 5.1. The field aware function with parameters set to demonstrate

the asymmetry with a non-zero field factor. This smoothly varying function

can be tuned to ignore atoms with insufficient flux, which can improve the

stability of the self-consistent electrostatic calculation.

where t(Φ) is a piece-wise function defined by

(5.16) t(Φ) =


0 Φ ≤ Φmin

1
2π

(x− sinx) Φmin < Φ < Φmax

1 Φ ≥ Φmax

(5.17) x = 2π
Φ− Φmin

Φmax − Φmin

There are four field-specific parameters to be tuned. The maximum scaling of soft
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spheres corresponding to positive and negative residues is controlled by the combination of

a global field-aware intensity, f0, and an asymmetry parameter, κ. The transition region

between a non field-aware regime and the maximum scaling factor is controlled by two

thresholds, Φmin and Φmax, of the electrostatic fluxes. A typical example of the behavior of

the field-aware function is reported in Figure 5.1.

In principle, since this function directly affects the scaling of the soft-spheres, which

was previously globally tuned for all species of a specific charge, a retuning of the SSCS αξ

scaling factor is also necessary. In the subsequent analysis, we find it convenient to recast the

field cutoff parameters in terms of a mean flux, and a spread parameter. These are related

by Φavg = (Φmax − Φmin)/2 and Φspread = Φmax − Φavg.

It should also be noted that the flux values are given in Atomic Rydberg units.

5.4. Computational Details

In order to validate this newly defined field-aware model, a parameterization effort is

necessary. Solvation energy is calculated for a training set of small molecules, and an attempt

is made to minimize the mean absolute error of this energy with respect to experimental

values.

Pseudopotentials were chosen according to the SSSP (standard solid state pseudopo-

tentials) efficiency set. Kohn-Sham wavefunctions and charge densities were expanded in

plane waves up to kinetic energy cutoffs of 30 and 300 Ry respectively. Simulation cells were

chosen to be 30.0 a.u. to reduce periodic boundary artefacts in charged systems. Note that

when displaying quantities of flux, these are given in Atomic Rydberg units unless specified.

Hence if a sphere has a flux of 8π, the corresponding charge housed within is equivalent

to one electron charge. A few selected neutral and charged molecules were studied as a

function of the field-aware paramters and the soft-sphere scaling factor. The studied sys-

tems were chosen so as to be representative of the different pathological cases encountered

in standard continuum models. In particular, water and its corresponding ionic species (hy-

droxyl anion and hydronium cation) were chosen due to the fact that the solvation free

energies of both charged species show large MAE values with the soft-spheres model, even
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after re-parameterization for charged molecules was performed. In addition, one neutral

molecule, one cation, and one anion are also picked to show the potential of this model.

These are chosen from a set of 13 neutral molecules, 15 cations and 15 anions, as the worst

performing species when calculating the solvation energy by the SSCS. Following this cri-

terium, propanoic acid, the diethylether cation, and the benzyl alcohol anion were selected.

Implementation and simulations were performed using a development version of the Environ-

1.0 plugin for multiscale embeddings in condensed-matter simulations, as coupled with the

Quantum Espresso (v6.3) package.

As discussed previously, the field aware function has four tunable parameters. In

addition, the soft-sphere parameters, which for the neutral set were chosen as a best fit

including species with internal polarization, need to be reconsidered. For simplicity we

begin by just considering how the scaling factor changes. Hence, for preliminary analysis

of neutral molecules, we consider values of αξ ranging from 1.12 to 1.20. This is under the

assumption that the optimal scaling factor from the soft-spheres is a result of a compromise

between molecules without internal polarization effects, which should thus require a larger

spherical functions, and molecules with internal polarization effects, which should require

smaller spherical functions for specific atoms.

For cations and anions, the asymmetry is set to -1 and 1, respectively, to minimize

the computational costs of gathering results, since the flux values for the species we test for

all have the same sign, negative for anions and positive for cations. A range of electric flux

parameters compatible with the values observed for the selected molecules was considered

(see fluxes reported in Figure 5.2), again to minimize computational time. This range may

need to be extended for a more comprehensive parameterization of the model that includes

multivalence charged systems.

The field awareness f0 is chosen to be the upper limit on the reduction of the radii

of the spherical functions. This was originally chosen to match the reduction as seen in the

soft-spheres model between the neutral set and the anion set, but considering the reparam-

eterization of this scaling as part of the field-aware model, it was found that increasing this
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Figure 5.2. Comparison of electric flux values for each individual atom for

the six molecules. A color map proportional to the absolute value of the flux

is adopted. Atoms showing the largest absolute electric fluxes are identified in

Figure 5.3.

Molecule Abs Error Asymmetry α f0 Flux Mean Flux Spread

Water 0.0163 0.0 1.16 0.06 1.5 0.6

Propanoic Acid 0.1035 1.0 1.20 0.05 2.0 0.4

Water (+) 0.2950 1.0 1.18 0.05 1.5 0.6

Diethyl Ether (+) 1.2634 1.0 1.12 0.06 1.5 0.6

Water (-) 0.4813 -1.0 1.20 0.07 1.5 0.6

Benzyl Alcohol (-) 10.9610 -1.0 1.12 0.07 2.0 1.5

Table 5.1. Best Parameter Set

value yielded better results. Note that as defined, both the asymmetry factor and the field

awareness control the global intensity of the field-aware procedure.

5.5. Results

The field-aware model is able to converge for the majority of parameter combinations,

although numerical issues arise with the SCF procedure when specific ranges of parameter

values are selected. This is linked to the sharpness of the field-aware potential when the field-

aware function has a transition that is too sharp with respect to the flux. Nevertheless, for

the ranges of parameters tested in this study, involving about 3000 different combinations,
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Figure 5.3. Set of molecules tested. The atom possessing the maximum

absolute electric flux is highlighted by a red circle, and its flux value is reported

99% of the SCF and geometry optimization calculations converged successfully, validating

the analytic differentiation of field-aware interfaces reported above.

Due to the number of parameters, it is challenging to optimize this model from

scratch. Our main aim here is thus to display insights from a broad sweep, as well as

observations that may simplify the parameterization process. As this process will benefit

from a significant number of experimental and theoretical results on solvation of charged

molecules and interfaces (e.g. results of differential capacitance of metal substrates), its

completion lies outside of the scope of this work.

We start by showing in Figure 5.2 the final values of the electric flux through each

soft sphere for the selected molecules. For full numerical values, we refer to the Supporting

Information. The values attained for the molecules chosen match expectations, neutral
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molecules center around zero flux, with the oxygen atom being where most of the negative

charge imbalance lies and anions show large relative charge differences. One can see how

the field-aware function acts on individual atoms by comparing Figure 5.2 to the field-aware

function, as in Figure 5.1. Any flux with an absolute value over the cutoff will result in a

minimum value for the scaling factor, which varies from 1 (no scaling) to a value determined

by the field awareness and asymmetry parameters. In particular, due to the definition

of the asymmetry factor, a deviation of 0.5 away from symmetry produces a heavy bias

towards spheres of negative flux. The choice of flux cutoff parameters can be simplified by

considering typical flux values for a training set. For this investigation we limit our analysis

to consider how an adjustment of parameters for individual species can improve on absolute

solvation error values. In Table 5.1 we report the best performing set of parameters for each

considered compound. Despite most of these parameters fall in a similar range of values,

the corresponding field-aware functions are clearly not representative of the values of a fully

optimized scaling function. For example, in the case of the chosen anions, the absolute flux

through the oxygen atoms is much greater than the other atoms and as such, only the sphere

around this atom is appreciably altered.

The kind of parameterization required will also depend on the broadness of the task for

which the field-aware function is fitted. A conservative approach to the field-aware function

would be to tune it so that it matches the shrinking of the interfaces observed for charged

species. In particular, Fisicaro et al. reported a optimized value of the homogeneous soft-

sphere scaling parameter αξ that goes from a value of 1.12 for neutral compounds to a value

of 1.1 for cations, reaching 0.98 for anions. To reproduce this trends, a field-aware function

with sharp transitions between low and high flux values would be sufficient. However, if

the field awareness is designed to also improve the description of polar groups in neutral

molecules, a more smoothly varying field-aware function needs to be considered.

5.5.1. Propanoic Acid

Propanoic acid (figure 5.4) is the worst performing neutral molecule for the standard

SSCS model, out of the 13 testing neutral molecules. This acidic compound is expected
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Figure 5.4. Absolute solvation free energy error for propanoic acid in

kcal/mol as a function of the mean flux threshold and the asymmetry pa-

rameter. The flux spread is fixed at 0.4, the field awareness is fixed at 0.05,

while an homogenous scaling parameter αξ = 1.20 is considered

to produce larger errors, due to its polar nature. The SSCS model underestimates the

solvation energy by 2.53kcal/mol, suggesting a scaling factor that is too small. Having a

function that reduces the size of the spherical functions would not be able to improve on

the SSCS result and would only worsen the result. The problem is that the homogeneous

scaling factor optimized in the original SSCS model represents a trade-off between apolar

and polar groups, and is thus on average smaller the needed for apolar groups, while being

larger than needed for polar regions. As a result, when the global scaling factor is allowed

to vary above the original soft-sphere value, improved results are observed. In particular, in

the region we considered in our five dimensional parameter search, the global scaling factor
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Figure 5.5. Propanoic Acid. Unscaled interface (left) represents the spheri-

cal functions as calculated by standard SSCS. Scaled interface (right) is based

off an optimized set of parameters, as reported in Table 5.1.

and the asymmetry had the greatest influence on the solvation energy for this acid. In fact, a

reparameterization with α = 1.20 brought the calculated solvation energy remarkably close to

the experimental value (see results in Table 5.1), a result that is consistent with the effect of

interface size on the solvation energy. In addition, promising trends are shown in Figure 5.5,

featuring the behavior of the absolute error on solvation free energies against the asymmetry

and the average flux values. This figure shows that for the chosen fixed parameters, putting

less weight on negative fluxes provides particularly small errors. Indeed, the region where the

asymmetry is negative appears to be more stable with respect to the flux average parameter.

This is consistent with the fact that there is a single oxygen atom with appreciable negative

flux, which is always accounted for in the range chosen for the maximum cutoff flux.

5.5.2. Diethyl Ether

As seen in Figure 5.2, this cation has little variance in flux among its atomic con-

stituents. In the standard SSCS model, the solvation free energy of diethyl ether is over-

estimated by 16.57kcal/mol even after scaling. Despite the good performance of the SSCS

model after reparameterization for the cations, there remain a number of species that have

significant solvation errors. In Figure 5.6 we plot the field awareness against the flux average

95



1.5 2.0 2.5 3.0 3.5 4.0 4.5
mean flux

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065
fie

ld
 a

wa
re

ne
ss

Absolute Solvation Error: Diethyl Ether Cation

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Figure 5.6. Absolute solvation free energy error for diethyl ether in kcal/mol,

as a function of mean flux threshold and field awareness parameter. The flux

spread is fixed at 0.6, and an homogenouse scaling factor of αξ = 1.20 is

adopted. An asymmetry κ = 1 is selected, as in this molecule there are no

atoms with negative fluxes.

to show how the absolute error for this species can be drastically improved without a modi-

fication of αξ to a lower value, which is the standard strategy when accounting for cations.

The region to the right is one where the flux values are too low to be considered by the

field-aware function and thus the error is equal to the standard SSCS result for αξ = 1.12.

Note that since the minimum and maximum possible scaling is controlled by the choice of pa-

rameters under investigation, as long as the model is tuned sensibly, the worst case scenario

ought to be as one can see in the region to the right of this plot, i.e. no improvement. On

the opposite end, when parameters such as the ones varied in the plot are properly chosen,

the absolute solvation error can improve from 18.07kcal/mol to 1.35kcal/mol. Despite the
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Figure 5.7. Diethyl Ether. Unscaled interface (visualized on the left half

of the molecule) represents the spherical functions as calculated by standard

SSCS. Scaled interface (represented on the right half of the molecule) is based

off an optimized set of parameters, as reported in Table 5.1. The effects of the

field-aware scaling are small, mostly noticeable for the acidic hydrogen atom

bonded to the oxygen.

large change in solvation free energy, the overall effect on the shape of the interface is mostly

noticeable for the acidic hydrogen atom bonded to the oxygen, as reported in Figure 5.7.

5.5.3. Benzyl Alcohol

For the range of parameters we currently have tested for, a potential optimal value

for this particular species is somewhat far off. Nonetheless, like in the diethyl ether case,

a significant improvement of the results can be obtained by properly selecting the field-
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Figure 5.8. Absolute solvation free energy error for benzyl alcohol in

kcal/mol as a function of homogenous scaling αξ and field awareness parame-

ter. The flux average and spread parameters are set to values of 2.0 and 0.5,

respectively, so that only a couple of atoms are affected by the field-aware

procedure.

aware parameters. In particular, as reported in Figure 5.8, simply by increasing the field-

awareness of the model, one can achieve the same result as obtained by retuning of the SSCS

model. The free energy of solvation of benzyl alcohol is overestimated by 19.66kcal/mol

before reparameterization, reducing to an error of 10.11kcal/mol with αξ = 0.98. The figure

demonstrates how a similar solvation free energy can be achieved without decreasing αξ

and instead with a field-aware function tuned properly. In fact the figure seems to suggest

that we could use a larger field awareness parameter. However, by visual inspection of the

interface function for the best set of parameters (Figure 5.9, it appears that the improvement

in solvation free energy for this compound is obtained by significantly reducing the size of
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Figure 5.9. Benzyl Alcohol. Unscaled interface (left) represents the spherical

functions as calculated by standard SSCS. Scaled interface (right) is based off

an optimized set of parameters as reported in Table 5.1.

the soft-sphere around the oxygen atom. Increasing even further this effect would lead to

an unphysically small solvation radius. The remaining discrepancy in solvation free energies

should thus be ascribed to the aromatic portion of the molecule and to the assumptions of

the model used to describe non-electrostatic interactions.

5.5.4. Water

As in the previous systems, we consider the prototypical cases of the aqueous solvation

of water and its derived ionic species, hydroxyl anion and hydronium cation. Although

free energy of solvation of a solvent molecule in its own solution represents a pathological

application of continuum solvation models, water is an interesting test case, which performs

well in its neutral state, but remarkably poorly in its singly charged ionic state due to its

small size. Even after the standard scaling that the SSCS performs, while the absolute

solvation error from neutral water is only 0.81kcal/mol, the errors from the cation and anion

are 18.56kcal/mol and 12.13kcal/mol respectively. The maximum flux cutoff is chosen to

be close to the minimum flux of water, resulting in a general scaling of all atoms. In the

different panels of Figures 5.10, we can see that a linear relation exists between the increase

in the αξ scaling factor and the corresponding optimal value of field awareness f0. While
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Figure 5.10. Absolute solvation free energy errors of neutral water (cen-

tral panel), hydronium ion (top panel), and hydroxil anion (bottom panel) in

kcal/mol as functions of field awareness parameter and homogenous scaling

parameter αξ. The asymmetry parameter is set to zero, +1, and -1 for the

three systems, respectively. Mean and spread values of the flux thresholds are

set to 1.5 and 0.6.
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the slope of this relationship is the same for cation and anion, the slope for neutral molecule

is divided by factor of 4 due to the chosen values of the asymmetry parameter (κ = 0 for

neutral vs. κ = ±1 for cation/anion) that introduce and additional scaling in the field-

aware strength. Increasing the field-awareness from zero improves the solvation energy with

respect to the experimental value, and as expected, the optimal field awareness parameter is

different for all three cases. This disagreement in optimal field awareness can be overcome

by an appropriate choice of an asymmetry parameter common to the three systems. One

possible method for choosing the asymmetry parameter is by combining the optimal field

awareness parameter individually obtained for cation (fc) and anion (fa) for an asymmetry

of +1 and -1, respectively. The maximum shrinking effect obtained in the two systems is

thus

(5.18) max
Φ

fat (Φ) (−1− sgn (Φ))2 = 4fa,

(5.19) max
Φ

fct (Φ) (1− sgn (Φ))2 = 4fc.

By imposing that the optimal global values of κ and f0 reproduce both effects, we

obtain a system of two equations in two unknowns,

(5.20) f0(κ− 1)2 = 4fa,

(5.21) f0(κ+ 1)2 = 4fc.

Given the above conditions, the determination of κ is trivial

(5.22) κ =
1

R− 1
(R + 1± 2

√
R),
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where R = fc/fa, and consequently f0 can be found. For the hydroxyl anion and

hydronium cation, parameters that produced reliable solvation free energy estimates for both

would be κ = −0.16 and f0 = 0.24. Simulations exploiting a common set of parameters,

including the two derived above, produce a systematic improvement in the accuracy of the

calculations for all water species (Φmin = 0.1, Φmax = 2.9). Solvation free energy errors of

0.55kcal/mol, 2.67kcal/mol, and 3.26kcal/mol are obtained for neutral, cationic, and anionic

water, respectively.

5.6. Conclusions

In conclusion, a new field-aware approach for continuum interfaces is proposed and

analyzed. The field-aware interface has analytical, smoothly varying derivatives, allowing

for its use in accurate geometry optimization or in molecular dynamics simulations. By ex-

ploiting reciprocal-space techniques to compute the electric field and derived properties, the

overhead linked to this non-local definition is substantially reduced. The field-aware interface

requires a number of new parameters, which can tuned to reproduce experimental data on

solvation free energies of neutral and charged compounds. An analysis of the main parame-

ters involved in the model and of their effects on solvation free energies of a significant set of

test molecules was also presented. Significant improvements over the standard approaches

are demonstrated for a specifically tuned set of parameters. Nonetheless, an optimal pa-

rameterization aimed at improving the description of both neutral and charged compounds

will require a more systematic search over the parameter space. In these regards, it will be

important to focus the search of the individual parameters on specifically selected results,

in order to isolate the physical effects introduced by this model. While experimental data

on solvation free energies of neutral and charged molecules will be the main ingredient of

the parameterization, first-principles molecular dynamics simulations of salts dissolution can

represent a second unbiased source of determination of some of the parameters of the model.

Eventually, parameterization on the physical properties of electrochemical interfaces, e.g.

the differential capacitance of noble metal substrates, will also represent a potential strategy

for the tuning of the presented approach.
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CHAPTER 6

MACHINE LEARNING

To summarize the tools we have so far, there are a hierarchy of model families that

tackle atomic processes of different scales. The truly exact solution for any system is limited

by computational power, and an analytical solution for more than two bodies is infeasible.

Up until recently, our computational power has forced us to be exceptionally clever in how we

define models, in the sense that understanding of the theory and subsequent developments

of empirical models are critical in the progress of models like molecular dynamics, which are

bound by its reliance on well defined force-fields, in DFT, which is bound by well defined

pseudo-potentials, and in continuum solvation, which is limited by the explicit solvent inter-

actions that do affect regions of interest. The hierarchy itself is important in the sense that

there are systems that we might be interested in that can only viably be approached by a

single family of models, and it is important to define a problem with the intended tool in

mind.

These families in the past did connect to each other somewhat, DFT can generate

better ab-initio forcefields for use in molecular dynamics simulations. Continuum solvation

can explicitly represent a layer of solvent in order to better capture the specific interac-

tions with a solute. However, this solution only works for an isolated problem, in general,

if we wanted to perform DFT to prepare forcefields, we would have to do this for every

single molecular dynamics simulation. The forcefields are not particularly transferable, and

therefore simulation time becomes a concerning factor.

The modern solution is machine learning. We know that conceptually there must

be some kind of mapping between families of models. Consider the degrees of freedom in

an n-body system. If the problem were completely general, then we’re out of luck, finding

a solution is not trivial in the slightest. However, chemistry is not completely general.

There are patterns, and therefore, one can reduce the degrees of freedom in the system and

still achieve generalizability. However, finding these mappings is non-trivial. The role that
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machine learning provides us with a solution to this is due to the ability for algorithms to

convert large quantities of data into these mappings.

The use of machine learning to improve or speed up simulation was mainly driven by

what data had been accumulated at that point in time. Large quantities of DFT simulations

had been run and ab-initio molecular dynamics heavily relied on DFT simulations for its

potential energy surfaces (PES). If somehow we were able to take all the simulations already

run previously and train a model to infer the PES from the typical inputs for an MD

simulation, the efficiency of such simulations would increase dramatically. Likewise, if we

were able to interpolate between our vast quantity of DFT data, we could in principle fill in

all the gaps of simulations not yet run.

In 2006, Behler and Parrinello published a now hugely cited paper on solving for

the PES with neural networks trained on DFT data. This is not the first paper to address

the issue, but it is, at the time of publication, the most successful. They propose a neural

network design and a representation for the input that reduces the initial problem, and

showcase it on bulk silicon. The result is a method that is highly generalizable, and, once

trained, performs orders of magnitude faster than DFT, expanding the potential of ab-initio

MD methods to much larger systems, for longer simulation times.

These new generation models have increased accuracy over time (assuming high-

quality data), because they rely on the quantity of data able to be generated by lower-level

methods (methods with higher accuracy but lower speed). There are also limitations to these

models. If the data does not exist, generating it can be an arduous task. If we apply a neural

network to an input that lies outside of the training space, in order words, an extrapolation

to structures very different from those trained, the validity of the model breaks down.

The general design of a model relies heavily on using physical knowledge to simplify

the problem as much as possible before applying a machine learning algorithm. For example,

a common input is the position of each atom. This is typically represented in Cartesian

coordinates, but molecular properties do not depend on the absolute positions of the atoms.

By translating or rotating a molecule, we change the coordinate input without changing
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anything about the output, and therefore the first step would be to represent the positions

of the atoms in a way that removes this invariance. Behler and Parrinello solve this issue by

representing their atomic positions in terms of what they call symmetry functions, each of

which is a function of all the atoms.

Another design complication is that typically the inputs are atomic properties but we

wish to learn about molecular properties. Behler and Parrinello approach this by treating

each atom as its own neural network that produces some energy value (and force), and

then summing the energy values to reach the total energy of the system. Another approach

assumes that the property of interest is additive, and so one can sum the atomic contributions

at the beginning and then fit the weights of the decided model. This idea however requires

training data to be scaled correctly with respect to the systems of interest in order to avoid

any extrapolation.

One major limitation of continuum solvation models is the ability to capture the

specific interactions between the solute and the solvent. For example, water has a tendency

to form hydrogen bonds with solutes that are polarizable, thus reducing the total energy of

the system. One would expect such a system to be more favorable than what a continuum

solvation model might suggest. Another example would be the way that solvents structure

themselves around solutes. Even if we simplified the scenario to zero interaction between

the solute and the solvent except for the inability for the solvent to enter the space of the

solute, we would have to consider the shape of the solvent, and how well it packs amongst

members of its own species, and amongst all sorts of possible solvent molecules. Ignoring

this packing ability, and we arrive at the theory of hard spheres. Many solvents do not

pack like spheres, or they have different interaction radii depending on how they optimize

for electrostatics. Water for example forms a hydrogen bonding network, and therefore

will attempt to rearrange around a solute while preserving a loosely crystal-like structure

(depending on the environment).

Remove all interactions between solvent and solute except for this hard sphere and

we get a cavity. A cavity with the same radius as water will allow water to pack effectively
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around it, but a cavity with radius 1.5 times that of water will not be expected to pack as

well. If the theory of hard spheres gives us a mapping between the shape of the cavity and

the energy to create the cavity, these sterically driven effects will manifest as a correction

factor to that energy.

Simulating the structural tendencies of water around molecular shaped cavities with

molecular dynamics gives us a more practical view of what is going on. Molecular dynamics

treats water explicitly which accounts for specific interactions with the caveat of heavy

performance losses over continuum solvation. We don’t want to resort to this every time

specific interactions need to be considered, and therefore a representative data set can be

chosen, simulations run with molecular dynamics, and machine learning can be utilized for

a more general model that is simple and fast.

Starting with cavitation energy, a single term in the calculation of solvation energy, is

perhaps not the easiest task to prepare for, simply due to the fact that reliable experimental

data on cavitation energy is limited or not collated, and the amount of simulation time to

generate sufficient data is particularly large. On the other hand, understanding the cavitation

energy as an individual term has its advantages

Machine learning can be loosely defined as the automation of the building of models

by means of large quantities of data. There is a scale of dimensionality when defining mod-

els that describe systems. Low dimensionality models are typically simple to understand in

terms of how the input affects the output. Often it is clear that a problem is low dimen-

sionality, and therefore we can restrict this to begin with. For example, the extension on

a spring can, for a certain range, be shown to be linearly dependent on the force applied

on that spring. One can verify this claim by assuming a simple linear model to test the

relationship between extension and force, and then generating data experimentally. Finally

some suitable learning algorithm is selected. In this case, linear regression is a good choice,

since there are not many parameters that seem to affect the output, and the relationship is

seen to be linear. Linear regression in one dimension assumes a relationship of the form
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(6.1) y = cx+ b

where y is the output, x is the input, and b and c are some constants. c is the

constant of proportionality and b is the intercept, the value that y takes when x is zero.

This is somewhat dependent on the scaling of the input and output. Often input and output

is scaled so that machine learning algorithms perform more effectively, and for the correct

scaling of parameters one may further simplify the model by setting the intercept to zero. In

the general case, both constants need to be determined. Given some data of length n with

known input x and output y, each pair of data points (enough to solve for 2 unknowns), or

tuple (xi, yi, xj, yj) will typically produce different values for b and c, despite them following

an approximately linear trend. We therefore determine a ‘best fit’ model, which compromises

between data points and minimizes some arbitrarily defined cost function. A common cost

function is ordinary least squares, which minimizes the square of the difference between

predicted value y′ = cx+ b and the actual value y.

For more complicated systems, for example, finding the potential energy surface of

an arbitrary atomic configuration, one must consider a high-dimensional input. We also may

start to consider higher order terms, and mixed terms. The set of all possible terms becomes

large as we consider higher order terms. Consider even some 3-dimensional input (or 3 input

features), with up to quadratic terms. Already a general model would be

(6.2) y =
3∑
i

cixi +
3∑
i

3∑
j

cijxixj

which has 12 terms and therefore 12 parameters to fit. Generally, to consider non-

linear dependencies without knowing which non-linear terms are important becomes very

expensive with respect to the number of parameters.

Simple regression models work up to a point, but eventually we want the model to

automate more of the learning process. We want the ability to consider a very large feature

space, with many parameters to fit, but also want to be able to automatically determine
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which features are not affecting the output, or to distinguish between features that have the

largest impact on the output versus higher order correction terms.

There are variants on linear regression models that can account that can resolve the

over-fitting problems that arise when considering a large feature space.
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CHAPTER 7

MACHINE LEARNING CAVITATION ENERGY

Solvation can be thought of as a combination of independent effects, one of which is

cavitation, the act of creating a non-interacting cavity in a solvent. Cavitation is a partic-

ularly significant contributor towards hydrophobic solvation, where the interaction between

solvent and solute is weak and the interactions between solvent molecules are comparatively

strong. Of particular interest is the introduction of a bio-molecule to water, a solvent that

possesses a network of hydrogen bonds, bonds that are disrupted by the creation of cavities.

Such a system can be simulated using molecular dynamics, but this is an expensive process.

One alternative is to represent the solvent as a collection of hard spheres. The energy re-

quired to form a cavity in this solvent can then be calculated by considering the statistical

mechanics of a cavity sphere within a collection of solvent spheres. Only the repulsive part

of the interaction of the cavity and the solvent is considered, and the resulting model can be

expressed as a polynomial [76].

Scaled particle theory, as this statistical mechanics approach is commonly known,

is able to make good predictions of the cavitation energy of small molecules, but does not

capture the significance of the choice of cavity shape for protein sized molecules. In part this

is due to the fact that in reality the solvent molecules do not have a spherical shape, however

primarily, as is the case for water, they can possess strong electrostatic interactions with each

other. As a result, errors are introduced by ignoring these effects that scale with the size of

the cavity. The limitations of this simplified model have been documented numerous times

in recent decades [44, 91, 48].

To capture some of these additional effects without incurring the costs of running

explicit solvent simulations for every cavitation calculation, one can take inspiration from

successes that use machine learning techniques. Generally, performance of model frameworks

can be improved by direct use of machine learning on a particular calculation step, or accu-

racy can be increased by a combined use of machine learning and a lower level model that
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would typically not be viable towards the system sizes of interest. Behler and Parrinello [12]

showed that density functional theory (DFT) simulations could be used to train potential

energy surfaces for use in molecular dynamics.

Bartok and Csanyi [8, 7] formalized a smooth overlap of atomic position (SOAP)

representation that transformed the Cartesian representation of atomic positions into irro-

tational descriptors where the position of an atom was described in terms of its neighbour-

hood. They then exploited the power of Gaussian Processes [9], a promising non-parametric

machine learning model by considering the similarity between pairs of structures using the

aforementioned descriptors. This investigation starts by considering the atomic features that

are a precursor the SOAP definition as input features, and then developing features more

suited for cavitation energy, taking inspiration from SOAP and continuum models like PCM

[97] and the soft-sphere continuum description [31].

Molecular dynamics has also been used to generate training data for the improvement

of higher level models such as coarse grained water models, which allows for simulations on

scales that are traditionally unattainable by molecular dynamics simulations. Similarly,

molecular dynamics can provide training data useful for implicit solvation models, since

they include approximations that molecular dynamics can account for. In general, molecular

dynamics is expensive, however by machine learning learning a mapping between known

properties and the desired output, only the initial investment into training the model is

required. A small number of publications have been released at around the time of this

investigation. They focus on using machine learning to ..

The goal of this investigation is to take the discrepancy in treatment between explicit

and implicit solvent models, and focus solely on cavitation energy, with the intention of later

generalizing to other energy contribution terms. Cavitation energy can be approximated by

a very simple linear model,

(7.1) E = γS
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where S is the surface area of the cavity. A better approximation can be derived from

statistical mechanics. By treating the cavity and the solvent as hard spheres, Pierotti [76]

derived a polynomial solution for the cavitation energy as a function of sphere radii. The

function is primarily influenced by a quadratic term, and contributions from powers larger

than 3 are negligible. In reality, cavities and solvents are not simply spherical in shape, and

solvent molecules do not distribute themselves fully randomly due to their electrostatics.

We therefore expect that molecular dynamics will show a linear dependence with respect to

surface area with a higher order corrections.

Implicit solvent models are capable of reaching chemical accuracy for small organic

systems, but their successes are more limited in applications that rely on specific interactions.

In the case of complex structures that

7.1. Scaled Particle Theory

The statistical mechanics of rigid spheres is an interesting problem that saw most of

its theoretical development in the late 50s / early 60s by Reiss, Helfand, Lebowitz, Frisch,

Casberg, and Praestgaard [45, 56, 79, 80]. Of particular significance is the work by Pierotti,

who formulated the Gibbs free energy of creating a cavity in a fluid of hard spheres.

Consider N spherically symmetric molecules with a diameter a1, exerting attractive

forces consistent with some fluid volume V . Exclude some spherical region (a cavity) of

radius r. The idea is to consider the probability of this cavity, p0(r, ρ), where ρ = N/V , the

number density of the fluid. This probability would be given by

(7.2) p0(r, ρ) = exp

(
−W (r, ρ)

kT

)

W is described as the reversible work to produce a cavity of radius r.

The scaled particle theory attempts to determine the LHS (and therefore W ) based

on statistical mechanics and geometric arguments. Consider the probability of finding a

molecular center in a spherical shell radius r,
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(7.3) 4πr2ρG(r, ρ)dr

where ρG is the conditional probability that a molecular center is location in that

spherical shell.

The probability that no molecule exists inside the sphere multiplied by the probability

that no molecule exists in a shell on this spherical radius is

p0(r + dr) = p0(r) +

(
∂p0(r)

∂r

)
dr

= p0(r)(1− 4πr2ρG(r, ρ)dr)(7.4)

or

(7.5)
∂

∂r
ln p0(r) = −4πr2ρG(r, ρ).

This can be related to W ,

(7.6) βW (r, ρ) = 4πρ

∫ r

0

r2G(r, ρ)dr

G can be appropriately expanded like

(7.7)
∑
i

Gi(ρ)

(
1

r

)i
To obtain an exact relationship, some assumptions have to be made. Take the case

r ≤ σ1/2 (which relates to a point solute), only a single hard sphere can have its center in

the spherical region of radius r such that the spheres do not overlap. The probability that

a cavity exists is

112



(7.8) p0 = 1− 4

3
πr3ρ

This produces the interesting result

(7.9) βW0(r, ρ) = ln

(
1− 4

3
πr3ρ

)
which represents the reversible work of introducing a point solute into the fluid. For

a solute sphere diameter σ2, the cavity has a size of r = (σ1 + σ2)/2.

Much work has gone into pinpointing the coefficients for G. The result is an expression

for W ,

(7.10) W (r, ρ) = K0 +K1r +K2r
2 +K3r

3

In the original development of scaled particle theory, these K constants were obtained

by Taylor expanding W , so

K0 = W0

K1 = W ′
0

K2 =
1

2
W ′′

0

K3 =
1

6
W ′′′

0

The result is,

(7.11) βW (R, ρ) = − ln(1− y) +

(
3y

1− y

)
R +

[
3y

1− y
+

9

2

(
y

1− y

)2
]
R2 +

βyP

ρ
R3
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where y = πρσ3
1/6 is the reduced number density, and R = σ2/σ1. To simplify the

problem of cavitation, the solvent is kept constant, and the cavity is modified. Hence, just

the change with respect to σ2 is of interest,

In the case of water, scaled particle theory suggests that the work done to create a

cavity scales like a quadratic function. Pierotti reports for water, y = 0.371, which results

in K0 = 0.463, K1 = 1.769, K2 = 3.335. The linear term in eq. 7.11 is smaller than the

quadratic term, and the cubic term is negligible in comparison for reasonable pressure values.

This implies that a somewhat good approximation for the cavitation energy based off hard

spheres is,

(7.12) W = γS

where S is the surface area of the cavity and γ is some constant to be determined.

This approximation applies remarkably well for systems simulated with continuum solvation

models, which all exploit this result for the cavitation energy. However more complicated

molecules will surely exhibit behaviours in a solvent that cannot be captured by scaled par-

ticle theory. Scaled particle theory does not account for the complex shapes that molecules

can manifest as.

If we replace solvent molecules with atoms rather than spheres, and consider a regular

spherical cavity, we arrive at a slightly different result to scaled particle theory. Molecular

dynamics can be used to set up a system of water molecules surrounding an atomic centered

cavity with no interactions between the solvent and the cavity other than a repulsive potential

that emulates a hard vacuum interface. This is somewhat unphysical and the cavitation

energy term is not a property to be isolated experimentally.

In order to compute the free energy of cavitation computationally, a free energy

method needs to be selected. Thermodynamic integration is a somewhat rudimentary strat-

egy, but it is regarded as robust. Combining the idea of a hard sphere potential with

thermodynamic integration is non trivial, since in principle a hard sphere potential should
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be a step function of infinite potential. Thermodynamic integration, however, relies on the

definition of a finite potential in order to integrate from 0 to V , where V is the potential of

the step. Additionally, a step potential incurs instabilities in MD simulation and so resorting

to a smooth potential is necessary.

Jover et al. [52] proposed a cut and shifted Mie potential with high powers in an

effort to capture the hard potential in a way that

Water is described using TIP4P. In comparison to a hard sphere model of the solvent,

water molecules now have electrostatic interactions with each other, they have a non-spherical

shape, and they form an electrostatic dipole. The result is that water will structure itself

in a way that is driven by the dipole dipole interactions, something that is not seen in the

hard-sphere model.

The result is a drift away from the hard-sphere model as we move to larger cavities.

The water will loosely structure itself around the spherical cavity in a way that favors certain

cavity sizes over others.

7.2. Methods

7.2.1. General Framework

In order to generate training data for machine learning models, investigations often

rely on a rich supply of pre-existing simulations. In the case of cavitation energy, it is a

more challenging problem for two reasons. Firstly, a mechanism for calculating the free

energy of cavitation for a system is not straightforward and requires expensive free energy

molecular dynamics simulations, and secondly, it is not feasible to directly measure the cavi-

tation energy experimentally. One must instead, indirectly infer the energy from subtracting

known energy contributions from say, the solvation energy. As a consequence, we use the

scaled particle theory developed by Pierotti in order to validate the results of the simula-

tions. An exploratory approach was taken regarding the design of a machine learning based

model. As with previous approaches, the position coordinates of the atoms would be used

as training descriptors, but would have to be transformed into some coordinate independent

representation first.
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7.2.2. Descriptors

Descriptors for machine learning condensed matter simulations have a significant

impact on the effectiveness of the parameterization of the final model. Since obtaining

training data can be computationally expensive, it is preferential to minimize what the

model needs to learn. For example, if our input features consist of the collection of atomic

coordinates represented in Cartesian space, we need the model to infer that a translation of

the molecule does not affect a property like solvation energy. Hence, one of the first efforts

has been to recast the positions of atoms into a coordinate free representation system, one

that is unchanged by both translations and rotations of the molecule of interest.

We consider the idea that cavitation is the sum of two effects, the volume displaced

plus the ability for the water to structure around the cavity. The descriptors should be

non-local, since the shape of the cavity can best be captured from the positions of the atoms

by considering their position relative to one another. A coordinate free representation is

typically non-local, since the reference points for the positions of atoms need to be relative

to the molecule rather than the space in which it lies. We consider a popular representation

for atomic positions in machine learning, SOAP descriptors [7] as a starting point towards

learning cavitation energy. SOAP descriptors are non-local, and effectively describe the

surrounding environment around each atom. This should give us a powerful distinction

between different cavity shapes. However, it is expected to not scale particularly well for

larger sized cavities, since the descriptors do not account for the fact that cavitation energy

does not in principle, weight atomic contributions equally. The ability for water to structure

around the cavity is determined solely by atoms exposed to the interface with the solvent

molecules.

We derive a new family of descriptors inspired by the successes of SOAP and the

inherent capabilities of continuum models to derive properties like surface area and atomic

contributions to surface area, something that is not trivially available in SOAP. Consider

the soft-sphere interface as described in eq 2.12. We can use this atomic based interface

function along with functions for the quantum surface (eq. 2.17) and the quantum volume
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(eq: 2.15) to define molecular descriptors. Now consider a spherical probe P (r) centered

on an atom. It is possible to describe the contribution that an atom has on the surface

area of the molecule by taking the same function used to compute the quantum surface but

restricting the integration to the volume defined by the spherical probe. By varying the

radius of this probe, it is possible to define a collection of descriptors that range from zero

when the radius of the probe is smaller than the radius of the atom (note that in practice,

since the functions are smooth, the quantity computed is non-zero), all the way to the total

surface area of the molecule for a probe radius that fully engulfs the molecule. We label these

as Environ surface descriptors. Similarly a collection of volume descriptors can be defined,

labelled Environ volume descriptors.

(7.13) SP (r) =

∫
P (r)

‖∇s(r)‖dr

(7.14) VP (r) =

∫
P (r)

s(r)dr

It is perhaps expected that a combination of these descriptors is important in closely

representing the cavitation energy of a molecule. The volume is important in determining

how much water needs displacing, whereas the surface descriptors should effectively represent

the solvent-solvent interactions that are possible around the cavity. We generate a collection

of Environ surface and volume descriptors with a varying size of probe from 0.1Åto 10.0Å.

In order to filter these descriptors down to a set of useful descriptors, CUR decomposition

is used [50].

7.2.3. Molecular Dynamics

A general system for measuring cavitation energy is comprised of a single solute sur-

rounded by water molecules in a periodic cell, such that the solute does not interact with

itself. To simulate water, the TIP4P model is chosen due to its simplistic implementation

whilst still being able to accurately capture its interactions. The solute has no interactions
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Figure 7.1. Visualization of Environ surface descriptor. Atomic centered

spherical probe shown in green overlaps boundary defined by Environ soft-

sphere interface (shown as a transparent ’bubble’ surrounding the protein

molecule). Overlap shown in bright green.

other than its ability to exert a repulsive force on atoms that cross a certain distance thresh-

old. Ideally this force would be defined by an infinite step potential, so that an interaction

is zero outside the cutoff and any incoming atoms will be reflected without any change of
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kinetic energy. Defining such a potential in molecular dynamics is non-trivial since any

function needs to be differentiable in order to compute for forces and maintain a stable sim-

ulation. Instead a steep but smooth potential is chosen. The Mie potential is the general

form for a pairwise potential with attractive and repulsive terms. Each term is raised to

an arbitrary power, set by two parameters that define the potential. A cut and shifted Mie

potential is a piece wise potential that ensures a smooth potential that is only repulsive (the

shift), and past some cutoff, exactly zero interaction (the cut).

In order to compute the free energy of cavitation from molecular dynamics simula-

tions, thermodynamic integration was the method of choice [33],

(7.15) ∆F (O → A) =

∫ 1

0

〈UA(λ)− UO(λ)〉λdλ

where in context to cavitation energy, A is the state at which a cavity exists in solution

and O is the state without a cavity in solution. 〈· · · 〉λ denotes the ensemble average for a

system with potential energy function U(λ).

Compared to other free energy methods, TI is robust, but the cost of calculation can

scale quite poorly if the potential function is not well behaved. In the case of cavitation

energy this issue does arise, however we will show that it is possible to interpolate via

a variable power law instead of the standard linear or fixed power interpolation used in

integration methods.

Applied to cavitation free energy, TI is not particularly well defined due to the fact

that it requires taking the difference between two configurations, one of which is nonphysical.

If we consider the zero potential case, molecules can freely move between the barrier. However

once they are in such a configuration, the full potential must be considered, and this results

in very high energy values that break computational models.

Another way to see this complication is in looking at the shape of the integrand

function, which behaves somewhat similar to the function y = x−1, for the cut and shifted

Mie function that we wish to use for the cavity. This function is non-analytic when integrated
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from zero, but we know that the free energy of cavitation is a finite value. One way to

approach this is to consider a simple power law, U = αλγ between two points, A and B. If

UA = αλγA(7.16)

UB = αλγB(7.17)

then

α =
UB − UA
λγB − λ

γ
A

(7.18)

γ =
log(UB)− log(UA)

log(λB)− log(λA)
(7.19)

UA→B(λ) = αλγ(7.20)

∆F (A→ B) =
α

γ + 1
(λγ+1

B − λγ+1
A )(7.21)

As λ→ 0, it is important that γ(λ) is less than one (which implies that the function

does not diverge). Analysis from running MD simulations for λ = 10−1 all the way down

to λ = 10−40 for varying powers of 10, shows that the power does indeed stay less than 1

and the function converges with each successive power of 10 contributing less and less to the

total free energy beyond a certain λ threshold.

Consider a potential Mie(n, m) where n is the power law governing the repulsive

potential and m is the power law governing the attractive potential,

(7.22) Un,m(r) =


εU0

n,m(r) r < σ
(
n
m

) 1
n−m

0 r ≥ σ
(
n
m

) 1
n−m

where

(7.23) U0
n,m(r) =

(
n

n−m

( n
m

) m
n−m

[(σ
r

)n
−
(σ
r

)m]
+ 1

)
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We wish to calculate ∆F (O → A) where O is a system with no potential and A is

the system with some Mie(n, m) potential. Therefore,

(7.24) 〈UA(λ)− UO(λ)〉λ = 〈UA(λ)〉λ = 〈λUn,m(r)〉λ

In order to calculate the free energy, we can take values of λ in the range (0, 1) and use

a numerical integration scheme. Since the Mie(n, m) potential has a constant multiplicative

factor built in (ε), we can repurpose that as the scaling factor for thermodynamic integration.

We can print out the energy at each timestep, and then rescale it to get the energy that the

system would have if the potential were not scaled by the λ parameter.

We finally arrive at the expression,

(7.25) Gcav = ∆F (O → A) =
λ=1∑

λ=λmin

〈λUn,m(r)〉λ

In order to construct a cavity, a set of atomic radii needs to be decided on. Since we

treat the cavity as a purely repulsive force field without any electrostatic effects, it makes

sense to use van der Waals radii [14].

7.2.4. Machine Learning

To create a reference, we compare various linear regression models with the one

dimensional linear model given by eq. 7.1.

7.3. Computational Details

Molecular Dynamics simulations are performed in DL POLY 4 [90] due to its reputa-

tion of being a well structured codebase that development oriented researchers can exploit to

modify the standard operation of the code. This is often useful when investigating properties

that aren’t often looked at. To set up a free energy calculation, a number of parameters

need to be optimized for. The number of water molecules needs to be such that adding extra

molecules to the periodic cell (for constant density) does not significantly alter the config-

uration energy. By simulating varying sizes of cell, it is possible to find the point in which
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the equilibrium energy of the system has converged with the number of water molecules

simulated.

Since free energy requires statistical sampling, it is also necessary to find a compro-

mise between convergence of a calculation and computational time taken to perform said

calculation. There are two dimensions in play, the number of points to be integrated, and the

amount of time a simulation is run for (which gives the number of sample points available).

Since each simulation step has a causation link with its predecessor and successor step, for

true random sampling, not all the points can be considered. Another way of looking at this

effect is by considering taking the average of all the steps, and then taking this causation

phenomenon into account in the error analysis by performing the method of block averages.

In order to prepare systems for production runs, equilibration is run and the com-

plexity of this process mirrors the complexity of the system.

7.3.1. Small Molecules

For small molecules, a single equilibration simulation is performed for each lambda

point, since these simulations are relatively cheap. The initial cells are prepared roughly by

placing the water molecules on vertices in a three dimensional grid in Cartesian coordinates

and removing those that are too close to cavity centers depending on the van der Waals radii

of the atoms constituting each cavity. Equilibration is performed, first at constant pres-

sure with a Berendsen barostat (1.0ps relaxation) and thermostat (0.5ps relaxation), with

momentum re-sampling every 3fs, and temperature re-scaling every 5fs and with energy

optimization after 10ps. The remainder of the equilibration is performed without strict mo-

mentum re-sampling and temperature re-scaling, starting from the optimized configuration

found earlier for 0.19ns at 300K.

Production is run at constant volume with a Hoover thermostat (0.5ps relaxation) and

a time-step of 1fs. Simulations are run for 0.2ns at each lambda point and the first 10ps are

ignored due to instabilities from the switch of ensembles. Simulations are run at 300K with

a van der Waals cutoff of 10 Angstrom. Water is modeled using TIP4P with electrostatics

and the cavity is modeled by a cut and shifted Mie(30, 29) without electrostatics.
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7.3.2. Proteins

For the protein cavities, water molecules were added by using the Packmol tool [62].

For each cavity, two initial simulations were performed sequentially. The first in constant

energy, constant volume with a timestep of 0.5fs for 25ps. The second at constant vol-

ume, constant temperature (300K) with a timestep of 1fs for 0.5ns. The equilibration was

performed per lambda point for 0.4ns at room temperature.

We then vary the two body potential (following thermodynamic integration) between

the solute atoms (constituting the cavity) and the solvent atoms. The only information given

for solute atoms are the position and the radii, the latter is chosen to match the van der

Waals radius of each atom.

7.4. Results

7.4.1. Convergence Testing for Molecular Dynamics

The number of water atoms required to solvate a molecular dynamics system was

chosen by considering increasing factors of 2 from 256 to 4096 and selecting a compromise

between convergence for a cavitation energy calculation and time. The ability of DL POLY

to run in parallel depends on the system size and cutoff distance. This means that the

time for a simulation does not monotonically increase with respect to the number of water

molecules in the system. Figure 7.2 suggests that for small water molecules solvated with

more than 1500 water atoms, the cavitation energy is close to converged.

The first n steps of the simulation were expected to be unsuitable for analysis due

to inherent instabilities in switching ensembles from equilibration to production. This can

clearly be seen in figure 7.3, instabilities exist at the beginning of the simulation. The choice

of where to apply the cutoff is made at 10ps.

In order to improve simulation accuracy, lambda points need to be chosen reasonably.

Additionally, a compromise between simulation time, number of lambda points, and length of

production run needs to be made. Error analysis is non-trivial to determine since exact cav-

itation energies are unknown, and with thermodynamic integration, the ideal case (ignoring
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Figure 7.2. Free energy of cavitation of a water-like cavity immersed in a

solution of water atoms. Data obtained as in section 7.3.1, with a production

time of 1ns and a reduced van der Waals cutoff for simulations with smaller

cells, or less water molecules.

computation time) would be running infinite points for an infinite length of time. Analysis

on small molecular cavities shown in figure 7.4 suggests that increasing lambda points from

10 to 20 has a more significant impact on the convergence of the cavitation energy than

the simulation time. Errors for the cavitation energy can be estimated by considering all of

these convergence tests in combination. Taking the difference of free energy between 14 and

20 lambda points as within 0.05 kcal/mol, the difference of free energy between 1500 and

4000 water molecules as within 0.05 kcal/mol, and the convergence with respect to time as

less than 0.05 kcal/mol after 200ps, and assuming these are independent sources suggests

a total error of the order of 0.1 kcal/mol. The assumption here is that the convergence of

cavitation energy or the gradient with respect to a convergence parameter will continue to

decrease monotonically as the parameters continue to increase beyond what is tested for.
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Figure 7.3. Free energy of cavitation reported as a difference with respect to

the final energy. Plot represents the averaged cavitation energy of seven small

molecular cavities taken with respect to the cavitation energy calculation at

a snapshot after 2ns of simulation time. Shaded blue region shows a stan-

dard deviation of the free energy fluctuations that occur during simulations,

aggregated as described in section B.

Another calculation for the error is accounted for in figure 7.3. Here, the shaded blue

region represents one standard deviation of the free energy fluctuations that occur during

simulations. For a discrete number of lambda points,
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Figure 7.4. Free energy of cavitation reported as a different with respect

to the final energy as calculated with 20 lambda points. Plots represent the

averaged cavitation energy of seven small molecular cavities taken with respect

to the cavitation energy calculation at a snapshot after 2ns of simulation time.

This figure demonstrates how the clustering of the trendlines (convergence with

respect to total time available for sampling) is smaller than the convergence

over lambda points.

7.4.2. Cavitation Energy of Spheres

In order to validate cavitation energy calculations, comparisons with scaled particle

theory are made. By considering both the solvent molecules and the cavity has hard spheres

one can derive equation 7.11 from statistical mechanics.

In the molecular dynamics simulations, the water molecules are represented by a four

point model which have dipole interactions. We therefore expect to see a divergence between

theory and the molecular dynamics calculations due to the specific interactions of the water

molecules with each other as they arrange themselves around the cavity.
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Figure 7.5. Work done to create a cavity diameter σ2 in TIP4P water in

yellow, against hard-sphere equivalent 7.11 in blue (y = 0.371). Pressure

chosen to match simulations, T = 300K. Red line denotes quadratic term in

scaled particle theory to demonstrate how the contributions come into play.

Figure 7.5 suggests that for atomic sized cavities, there will be relatively little differ-

ence between theory and simulation. It is somewhat tricky to compare a cavitation energy

calculation with scaled particle theory. Scaled particle theory assumes rightly that the radius

of water is approximately 1.4Å, this is due to the fact that water is a polarizable solvent

and electrostatics reduces the mean distance between water molecules such that the effective

radius is reduced. However when interacting with a hard cavity such that only cavitation

effects are included and electrostatic effects are not, the radius of water to be used should

be the van der Waals radius, which is approximately 1.7Å[58]. However there are still some

takeaways to be made for such a comparison. Firstly, for cavities of equivalent size to the
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solvent, the cavitation energy from molecular dynamics simulations agree closely with scaled

particle theory. For small cavities, the shape fits a quadratic shape, which agrees with the

idea that the quadratic term is dominating in the scaled particle theory expression [75].

There is a divergence for larger cavities. This is somewhat expected simply due to the fact

that the steric effects of water should start to show as the cavity size increases. Addition-

ally what can be seen is that certain sizes of cavities are more suited for the packing of

water than others, since the gradient of the cavitation energy curve is seen to increase in a

non-monotonic fashion.

Suppose we now take the molecular dynamics results for small organic molecules and

fit them to scaled particle theory. The immediate issue is that these small molecular cavities

are not spherical, and therefore an effective radius needs to be computed for each cavity.

Treating cavities of this size is perhaps fine in the sense that the complex shapes that might

significantly impact the structuring of water molecules around a cavity are limited by the

small cavity sizes. Colominas [23] takes the approach of defining the radius of a molecule

in two possible ways, either by rearranging the equation for the surface area of a sphere

and deriving the radius from the surface area of the molecule (SPT-S), or by rearranging

the equation for the volume of a sphere and deriving the radius from the volume of the

molecule (SPT-V). Both of these properties can be calculated from the soft-sphere interface

function. A comparison is then made with the Claverie-Pierotti formula for the cavitation

energy around a cavity made up from a collection of hard spheres [21],

(7.26) Gcav =
N∑
k=1

Ak
4πR2

k

Gcav(Rk)

which is a summation over all atoms in a molecule. A is the surface of the atom

that is exposed. Essentially, this formula takes the cavitation energy for a hard sphere of

radius equal to each atom and scales this based off its contribution to the surface area of

the molecule. This should in principle scale well for larger molecules which have atoms not

in contact with solvent molecules. There are two ways to calculate the Gcav(R). Either by
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SPT-V SPT-S C-SPT C-SPT-MD

y 0.335 0.3191 0.378 N/A

α 1.0 1.0 1.02 1.123

MAE (SM) (kcal/mol) 0.481 0.395 0.836 1.024

MAE (P) (kcal/mol) 42.275 133.45 272.34 226.38

Table 7.1. The performance (given in terms of the mean absolute error with

respect to molecular dynamics simulations) of scaled particle theory as opti-

mized for small molecules (SM) is shown. These optimized parameters y, α

are then applied to a set of proteins (P).

using Pierotti’s scaled particle theory to find the cavitation energy of a solvent of radius R

(C-SPT), or by means of thermodynamic integration to find the cavitation energy of a cavity

of radius R (C-SPT-MD). The Environ surface descriptors can be used to determine A, but

since they are defined as error functions that smoothly switch at distance R from the atomic

centres, it is necessary to scale these distances up by a small amount so as to fully capture

the surface contribution per atom. This scaling factor is shown in table 7.1 as the parameter

α.

Out of the box, these models do not perform well when matched up against molecular

dynamics simulations. This may well be due to the y parameter from scaled particle theory

(influenced by the density of the solvent and the radius of the hard sphere representation of

the solvent), for reasons explained earlier. Instead we decide to stretch these models as far

as possible and optimize for the mean absolute error while freely varying the y parameter

for each model. This parameter is shown in table 7.1 where applicable. We then compare

these results with other models for the cavitation energy.

Table 7.1 shows that for small molecules, SPT-S performs the best, closely followed by

SPT-V. These results agree with a similar analysis by Colominas [23]. C-SPT performs worse,

and using MD results in place of the cavitation energy for single spheres does not improve

things. When this best performing parameter set is applied to proteins, we interestingly see
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that the SPT-V performs better than SPT-S. This can be somewhat rationalized by the fact

that proteins are larger structures that have surfaces which may not be exposed to solvent.

Surface irregularities will increase the effective radius of the protein cavity beyond what is

representative.

7.4.3. Linear Regression on Descriptors

Since we know that there is a decent proportionality relationship between surface area

and cavitation energy, it serves as a good validation tool and benchmark goal to perform

analysis on surface descriptors. We also introduce usage of Environ-based surface descriptors

here. These descriptors provide more localized information about the shape of the cavity,

and therefore should be an improvement to the single surface area descriptor.

Ordinary Least Squares is used to fit the standard model,

(7.27) y = Xβ + ε

where y represents the output descriptors, in this context, the MD simulated cavi-

tation energy values. X represents the input descriptors, in this context, the surface area

terms (one feature per molecule).

Figure 7.6 shows the ability for quantum surface alone to describe cavitation energy.

For the referenced continuum solvation models [3, 31], the cavitation term assumes no con-

stant correction factor (the ε in equation 7.27). We initially consider only small molecules,

performing ordinary least squares regression with 5-fold cross validation. If ε = 0, then the

MAE is calculated to be 0.646. If ε 6= 0, then the MAE is calculated to be 0.3297. Such a

simple expression for the cavitation energy does indeed work effectively for small molecules,

however, applying this result directly to proteins incurs errors that are much more signifi-

cant (126 kcal/mol assuming ε 6= 0). Clearly, relying on surface area alone as a predictor is

insufficient as we scale up.

Adding the proteins to the training set results in a MAE of 17.567 kcal/mol for

predicting proteins and we have sacrificed our ability to predict small molecules as effectively.
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Figure 7.6. The linear relationship between cavitation energy and surface

area. Surface area generated by quantum surface calculation with soft-sphere

interface. Red trend line generated by ordinary least squares regression with

a combined training set of small molecules and proteins with 3-fold cross val-

idation. Green trend line generated by ordinary least squares regression with

the small molecules used for training data.

The ideal model would predict small molecules with high accuracy, and still perform well for

proteins. It is also apparent that while the spread for small molecules is small enough for a

linear model with respect to the surface area to capture cavitation effects, the higher spread

for proteins suggests that there are factors at play that do not derive from surface area.

The quantum volume is not far behind in its ability to describe the cavitation energy
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in simple terms for small molecules. Here, ε is found to be near zero, and the MAE is

calculated to be 0.4768 kcal/mol. The quantum volume is a worse predictor of protein

cavitation energy (184kcal/mol) than the quantum surface. Combining these two is more

powerful than considering them separately, which is to be expected since physically they

provide different information about the cavity. MAE for small molecules is found to be

0.3138 kcal/mol and for proteins, the MAE is 103 kcal/mol. As seen in the results from the

quantum surface, adding proteins to the training data improves performance for proteins

but reduces performance for the small molecules.

The table 7.2 summarizes the results from ordinary least squares regression. For the

training data available, the results suggest that if the goal is a single model for the cavitation

energy of both small molecules and proteins, trying to minimize the error with proteins as

part of the training set does impact the performance on small molecules quite significantly.

Arguably the best performing set of descriptors appears to be the quantum volume plus

Environ surface descriptors. If we train on small molecules, the performance is better than

what the quantum surface descriptor alone is capable of, and the MAE (15.84 kcal/mol)

when extrapolating this model towards proteins is an improvement over all other descriptor

choices (assuming that no proteins are used for training).

The table also showcases some of the drawbacks of ordinary least squares regression

when applied to datasets with a large number of descriptors. Rather than relying on a

better choice of descriptors, one can choose regression techniques with the inbuilt ability to

avoid multicollinearity issues. Ridge, Lasso, and Elastic Net regression all remove possible

correlations in descriptors. In an effort to improve performance further, all three techniques

were used on a combination of descriptors. We report here the best performing combinations.

Improving on the accuracy of the small molecular cavitation energies is possible with

both ridge and lasso regression, however the improvement is minimal and the resulting

model performs worse when attempting to extrapolate towards proteins. Minimizing the

error for proteins beyond what is attainable by simple regression is possible (down to around

10 kcal/mol), albeit at the cost of again reducing the performance for simple molecules.
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SM→ SM SM→ P SM + P→ SM SM + P→ P

Quantum Surface (QS) 0.3297 125.7 1.261 17.57

Quantum Volume (QV) 0.4768 184.0 1.542 20.68

QS + QV 0.3138 102.7 0.7694 14.25

Environ Surface (ES) 0.7288 32.35 1.471 22.14

Environ Volume (EV) 0.8067 181.6 0.9615 23.47

ES + QS 0.2831 39.90 0.8988 21.55

ES + QV 0.2990 15.84 1.146 13.26

ES + QS + QV 0.2743 72.34 0.8715 14.59

EV + QS 0.2819 275.6 0.9096 12.98

EV + QV 0.3056 400.2 1.104 15.61

EV + QS + QV 0.2846 143.9 0.9228 13.31

ES + EV + QS 0.2792 482.6 0.7528 19.52

ES + EV + QV 0.2966 245.6 0.7987 19.31

ES + EV + QS + QV 0.2834 573.3 0.7361 21.94

Table 7.2. All values above are MAE (kcal/mol). A subset of descriptors was

used for the Environ surface and Environ volume descriptors, obtained using

CUR decomposition. Best performing results are obtained for each combina-

tion of descriptors for the small molecule set and then applied to proteins. Best

performing results are obtained from a mix of small molecules and proteins

towards proteins and then applied to small molecules.

This level of accuracy is quite encouraging considering the lack of training data for proteins

obtained for this investigation, and the fact that the cavitation energy for proteins is typically

of the order of 102 − 103.
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Figure 7.7. Best performing set of descriptors, Environ surface + volume,

with lasso regression. Predicted cavitation energy plotted against simulated

cavitation energy on a log-log graph. 3-fold cross validation used, graphic

shows the final randomized testing set. MAE for small molecules 0.8 kcal/mol,

MAE for proteins 10.2 kcal/mol.
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APPENDIX A

FIELD AWARE DERIVATIVES
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One of the key component of the analytic derivatives of the field-aware interfaces is

represented by the derivatives of the field fluxes with respect to the electronic density and

the ionic positions. The latter derivative is particularly cumbersome, as the dependence on

ionic positions enters both the calculation of the field vector and the direction normal to the

soft-sphere interface, which is expressed in terms of the soft-sphere gradient. Moreover, both

terms depend explicitly on all the ionic positions, so that all cross terms need to be included,

i.e. the partial derivative of the field flux through the soft sphere surrounding atom a with

respect to the change in position of a second atom c is different from 0.

The derivative that we ought to express is the following

∇RcΦa = ∇Rc

∫
E(r) · ∇ha(ra)

∏
b 6=a

hb(rb)dr

=

∫
∇Rc [E(r) · ∇ha(ra)]

∏
b6=a

hb(rb)dr

+
∑
b

(1− δab)
∫

[E(r) · ∇ha(ra)]∇Rchb(rb)
∏
d 6=a,b

hd(rd)dr

(A.1)

where the factor (1− δab) entering the second term is introduced to enforce the fact that the

index b must be different from a. To simplify the above expression, we can exploit the fact

that for central functions we have

(A.2) ∇Rf(r−R) = −∇f(r−R)

or equivalently in this case,

(A.3) ∇Rh(r) = −∇h(r).

The summation in the second term can be simplified by noting that the only term

different from zero occurs when c and b are the same, namely

(A.4)
∑
b

(1− δab)
∫

[E(r) · ∇ha(ra)]∇Rchb(rb)
∏
d6=a,b

hd(rd)dr =

(1− δac)
∫

[E(r) · ∇ha(ra)]∇Rchc(rc)
∏
d6=a,c

hd(rd)dr =
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(δac − 1)

∫
[E(r) · ∇ha(ra)]∇hc(rc)

∏
d6=a,c

hd(rd)dr

The first integral in Eq. (A.1), instead, can be simplified by using the vector calculus

identity for the differential operator applied to a vector scalar product, namely

∇(A ·B) = ∇(AxBx + AyBy + AzBz)

= (∇⊗A)B + (∇⊗B)A

= A× (∇×B) + B× (∇×A) + (A · ∇)B + (B · ∇)A

(A.5)

where the notation u ⊗ v is adopted to indicate the outer product between two vectors.

By using the above identity, the quantity ∇Rc [E(r) · ∇ha(ra)] can thus be recast into the

following expression

(A.6) ∇Rc [E(r) · ∇ha(ra)] = [∇Rc ⊗ E(r)]∇ha(ra) + [∇Rc ⊗∇ha(ra)]E(r)

= − [∇⊗∇φ (zcδ(rc))]∇ha(ra)− δac [∇⊗∇ha(ra)]E(r)

= −H [φ (zcδ(rc))]∇ha(ra)− δacH [ha(ra)]E(r)

In the second passage of the above derivation we expressed the electric field originated by

the ion c in terms of the gradient of its electrostatic potential

(A.7) Ec(r) = ∇φ (zcδ(rc))

while, in the last passage we recast the outer products in terms of the Hessian matrix

(A.8) ∇⊗∇f =


∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂x

∂2f
∂y2

∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂z2

 = H [f ] .

By combining the above relations, the partial derivative of the field flux with respect

to the atomic positions can be written as

(A.9) ∇RcΦa =

−
∫

(H [φ (zcδ(rc))]∇ha(ra) + δacH [ha(ra)]E(r))
∏
b 6=a,c

hb(rb)dr
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+ (δac − 1)

∫
[E(r) · ha(ra)]∇hc(rc)

∏
b6=a,c

hb(rb)dr
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APPENDIX B

ERROR ANALYSIS
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Block Averages

Due to the computational effort of obtaining the time correlation function, we usually

estimate statistical errors in static quantities by studying the behaviour of block averages,

defined over a finite time tB,

(B.1) ĀB ≡
1

tB

∫ tB

0

dtA(t)

In the context of a simulation with discrete time, we calculate a block mean for each

finite time block and then take the variance of this value. As the block time increases, this

variance is expected to converge to a constant value indicating that there is no longer any

correlation between blocks.

In practice, we start from a block size of 1, calculating and storing the variance, and

then continuing the increase the block size, until the last nv variances themselves have a

standard deviation of less than 10% (an arbitrary stop point) of the most recent variance

value. The oldest variance value is then taken to be the variance of the distribution (being

the first value in a series of variance values which have shown to be converged sufficiently).

This estimate is quite liberal since it is important to keep these simulations from running

for too long.

Error Propagation

So far we have a collection of points that together can describe the cavitation energy

of a system due to thermodynamic integration. The error of each of these values is calculated

by the method of block averages, however some manipulation is required in order to get the

error of the computed cavitation energy.

There are a few complications in the thermodynamic approach. This is explained

more verbosely above, but in summary, the energy and the value of lambda follow an inverse

power law. After some analysis, it seems as if this inverse power law is less than 1 and

therefore the integration is expected to converge. In order to numerically integrate I decided

to assume a simple power law for interpolating the function between points, since usually the
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assumption is that the function between points follows close to some kind of polynomial or

preferably, a straight line. Due to the asymptotic nature of the integration, such a method

would vastly overestimate the actual energy.

Suppose we have a series of values 〈U(λ)〉 for values of λ in the range (0, 1), spaced

in powers of 10. We calculate the power law between adjacent points,

(B.2) Ui = aiλ
bi
i

(B.3) Ui+1 = aiλ
bi
i+1

(B.4) Ei =
ai

bi + 1

(
λbi+1
i+1 − λ

bi+1
i

)
From the above equations, Ui is obtained from the molecular dynamics simulations,

λ is set in advance and therefore it is possible to calculate a and b. Finally

(B.5) E =
n−1∑
i=0

Ei

From the method of block averages, we can calculate a value of the variance of each

Ui, σUi and then for the variance of the cavitation energy, we use standard error propagation

techniques (assuming that the points are independent). Since

(B.6) bi =
log Ui+1

Ui

log λi+1

λi

(B.7) σbi =

√(
σUi+1

Ui+1

)2

+
(
σUi
Ui

)2

∣∣∣log
(
λi+1

λi

)∣∣∣
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(B.8) ai = Uiλ
−bi
i

(B.9) σai = Uiλ
−bi
i

√
(σbi log λi)2 +

(
σUi
Ui

)2
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[15] Nicéphore Bonnet and Nicola Marzari, First-principles prediction of the equilibrium

shape of nanoparticles under realistic electrochemical conditions, Phys. Rev. Lett. 110

(2013), no. 8, 86104.

[16] Itamar Borukhov, David Andelman, and Henri Orland, Steric effects in electrolytes:

A modified poisson-boltzmann equation, Phys. Rev. Lett. 79 (1997), 435–438.

[17] , Adsorption of large ions from an electrolyte solution: a modified Poisson-

Boltzmann equation, Electrochim. Acta 46 (2000), no. 2-3, 221–229.

[18] Quinn Campbell and Ismaila Dabo, Electrochemical stability and light-harvesting abil-

ity of silicon photoelectrodes in aqueous environments, The Journal of Chemical Physics

151 (2019), no. 4, 044109.

[19] Quinn Campbell, Daniel Fisher, and Ismaila Dabo, Voltage-dependent reconstruction

of layered bi2wo6 and bi2moo6 photocatalysts and its influence on charge separation for

water splitting, Phys. Rev. Materials 3 (2019), 015404.

[20] David Leonard Chapman, LI. A contribution to the theory of electrocapillarity, Philos.

Mag. 25 (1913), no. 148, 475–481.

[21] P. Claverie, Intermolecular interactions: from diatomics to biopolymers, B. Pullman,

Wiley, New York (1978), 69–305.

[22] Matteo Cococcioni, Francesco Mauri, Gerbrand Ceder, and Nicola Marzari, Electronic-

144



Enthalpy Functional for Finite Systems Under Pressure, Phys. Rev. Lett. 94 (2005),

no. 14, 145501.

[23] Carles Colominas, F.Javier Luque, Jordi Teixidó, and Modesto Orozco, Cavitation
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