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ABSTRACT
The cc-pV(n+d)Z correlation consistent basis sets of double- through quintuple-ζ quality for the atoms Al-Ar have been modified for use with
density functional theory (DFT). These basis set modifications include truncation of high-angular momentum basis functions, recontraction
of the s- and p-functions, and reoptimization of basis function exponents with generalized gradient approximation and hybrid-DFT function-
als. The effects of basis set truncation, recontraction, and reoptimization are shown to improve convergence behavior in atomic energies as
well as dissociation energies and enthalpies of formation.
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I. INTRODUCTION

Density functional theory (DFT) methods, in particular those
which are based on theories developed by Kohn and Sham,1 are
among the most popular electronic structure methods developed.2–8

The success of Kohn-Sham based DFT methods can be directly
traced to their low computational cost in comparison to ab initio
wavefunction methods, as the effects of electron correlation in
Kohn-Sham DFT methods are primarily accounted for through
the exchange correlation functional, VXC, rather than through
excitations of electrons into the virtual orbitals of a reference
state.

Gaussian basis sets are widely used in solving density func-
tional computations; however, most of the basis sets used in these
computations are sets that were constructed using Hartree-Fock and
post-Hartree-Fock methods rather than density functional methods.
In fact, ab initio-derived basis sets can be highly effective and, in
many cases, even more so than basis sets designed for DFT.9–13 One
of the most widely used families of basis sets for both ab initio and
density functional calculations is the correlation consistent basis set
family. These sets have been designed using ab initio methods and

are based upon the systematic accounting of correlation energy. An
important feature of these basis sets, which results from their unique
construction, is that a number of properties, such as energies and
bond lengths, converge to a limit with respect to increasing basis
set level for ab initio methods. The limit—known as the complete,
infinite, or saturated basis set limit—is the limit at which no further
improvements to the basis set can improve upon the results. At this
limit, the only source of error in the calculation is the error intrinsic
to the method.

Correlation consistent basis sets are useful for the calcula-
tion of properties such as atomization energies and geometries of
molecules. While these sets slowly converge toward the complete
basis set limit for properties such as these for ab initio methods, the
convergence to a limit occurs much more quickly for DFT methods.
However, the combination of DFT with correlation consistent basis
sets—which were designed for use with ab initio methods—does
not always result in a limit that is in good agreement with exper-
imental values or other high level theoretical methods, nor does
systematic convergence to a limit for the properties with increas-
ing basis set necessarily occur.11 This lack of systematic conver-
gence of the correlation consistent basis sets when used with DFT
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methods is of particular importance, as this convergence provides
a vital route for the elimination of error arising from basis set
incompleteness as well as for an understanding of the error arising
from the choice of an applied method. Because density func-
tional methods account for electron correlation in a different man-
ner than ab initio methods, the requirements for a suitably opti-
mized one-electron basis set for Kohn-Sham density functionals
may be different than those of Hartree-Fock based wavefunction
methods.

This prior concern is what led Jensen to develop a fam-
ily of basis sets called the polarization consistent basis sets
(pc-n) which were designed explicitly for DFT methods.14–18 These
sets are akin to the correlation consistent basis sets in that they
were constructed in a systematic way, though they were built
upon the idea of angular momentum functions decreasing geo-
metrically [i.e., ns(n/2)p(n/4)d(n/8)f ] rather than decreasing arith-
metically as is the case with the correlation consistent basis sets.
As a consequence, the pc-3 and p-4 basis sets have more s and
p basis functions than analogously sized cc-pVQZ and cc-pV5Z
basis sets. The intent of the pc sets was to provide a family of
sets that were more suitable, in principle, than ab initio-based
sets, with the potential promise of improved property predic-
tions relative to post-HF sets like the correlation consistent basis
sets.

In a study by Wang and Wilson, however, it was shown that
the pc-n basis sets, despite being optimized for use with DFT meth-
ods, did not generally provide better atomization energies than
the correlation consistent basis sets, nor did they result in smooth
convergence toward the Kohn-Sham (KS) limit (analogous to the
CBS limit for wavefunction-based methods) for these energies. Fur-
thermore, the differences in the calculated atomization energies
between the pc-n and cc-pVnZ sets were shown to be less than
1 kcal mol−1. This similarity in energies arising from the pc-n
and cc-pVnZ sets is especially significant, as the pc-n sets include
equal or more basis functions than the corresponding cc-pVnZ
sets, including high angular momentum basis functions (e.g., f -, g-,
and h-functions), as shown in Table I. While the exciting aspect
of the polarization consistent basis set is that the work demon-
strated that there is more than one route to achieve energies similar
to those of the correlation consistent basis sets, it is important to
note that ab initio developed basis sets are quite suitable for DFT
calculations.

Even given the observation that the correlation consistent basis
sets are suitable for DFT calculations, however, these basis sets
can be improved or better “tuned” to improve efficiencies as well
as gain better convergence behavior of properties toward the KS
limit. To improve efficiency, Wilson et al. investigated the need
for higher angular momentum functions. In studies by Prascher
et al., it was shown that, when using DFT methods, the trun-
cation of the g- and h-functions from the correlation consistent
basis sets resulted in deviations in ionization energies and elec-
tron affinities of less than 0.01 eV and dissociation energies by
less than 1 kcal mol−1 for many atomic and molecular systems.
Furthermore, as shown by Prascher and Wilson,19 recontracting
the s- and p-functions of the cc-pVnZ sets to fit the occupied
Kohn-Sham orbitals in an analogous manner to the contraction
of the basis set exponents to the Hartree-Fock orbitals in the
original cc-pVnZ method can improve the convergence of the

TABLE I. (a) The composition of basis set primitive and contracted functions for the
cc-pV(n + d)Z and pc-n basis sets for second row atom (Al-Ar) sets. (b) Basis set
primitive and contracted function compositions for the recontracted and reoptimized
correlation consistent basis sets are shown.

Primitives Contracted functions

(a)

cc-pV(D + d)Z 12s8p2d 4s3p2d
cc-pV(T + d)Z 15s9p3d1f 5s4p3d1f
cc-pV(Q + d)Z 16s11p4d2f 1g 6s5p4d2f 1g
cc-pV(5 + d)Z 20s12p5d3f 2g1h 7s6p5d3f 2g1h
pc-1 11s8p1d 4s3p1d
pc-2 13s10p2d1f 5s4p2d1f
pc-3 17s13p4d2f 1g 6s5p4d2f 1g
pc-4 21s16p6d3f 2g1h 7s6p6d3f 2g1h

(b)

cc-p[rt(o)]VDZ 12s8p2d 4s3p2d
cc-p[rt(o)]VTZ 15s9p3d1f 5s4p3d1f
cc-p[rt(o)]VQZ 16s11p4d2f 6s5p4d2f
cc-p[rt(o)]V5Z 20s12p5d3f 7s6p5d3f

molecular ionization potential and electron affinities compared to
the same properties calculated with conventional correlation con-
sistent sets. The convergence of molecular atomization energies
toward the Kohn-Sham limit with recontracted correlation con-
sistent basis sets, however, was only improved by also including
basis set superposition error (BSSE) corrections. As shown by Gib-
son, improvement for computations involving density functionals
could be achieved by reoptimizing the correlation consistent basis
sets.20

Based upon these prior studies, it does not appear that high-
angular momentum functions contribute significantly to the per-
formance of DFT methods for the prediction of properties, such
as atomization energies, ionization potentials, and electron affini-
ties of “typical” main group (pre-d-block) molecules, and instead,
provide an unnecessary computational sink. Second, much of the
nonsystematic behavior of correlation consistent basis sets when
used with DFT methods appears to stem from the basis set con-
tractions and basis set superposition error arising from the cor-
relation consistent basis sets’ construction for Hartree-Fock and
post-Hartree-Fock methods. A question arises, however, as to
whether complete reoptimization and recontraction of the corre-
lation consistent basis sets can aid systematic convergence behav-
ior of correlation consistent basis sets when used with DFT
methods.

Encouraged by the improvements in computational efficiency
and better convergence that has been observed in prior studies,
the current study seeks to improve correlation consistent basis
sets for DFT calculations involving second-row species.20 Several
approaches are considered in the modification of basis sets includ-
ing reoptimization, recontraction, and truncation of basis sets for
use with DFT methods. In Secs. II and III, approaches for the con-
struction of a series of correlation consistent basis sets designed for
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DFT approaches for second row atoms (Al-Ar) are discussed, and
computed bond lengths and enthalpies of formation for second row
containing molecules are presented.

II. METHODOLOGY
The cc-pV(n+d)Z basis sets of Dunning, Peterson, and Wil-

son serve as the initial basis sets in this study.21 In 2001, these sets
were recommended as the appropriate correlation consistent basis
sets for second-row main group atoms, replacing the original corre-
lation consistent sets, which were deemed to be lacking, with near
duplication of exponents in the d sets and lack of sufficient high-
exponent functions.22–25 Improvement in convergence was obtained
by augmenting and reoptimizing the set, including tight-d basis set
functions.

All calculations in this work were performed using common
density functionals: BLYP and B3LYP.26–28 Exponent optimizations
were performed, and contraction coefficients were determined using
the MOLPRO suite of quantum chemistry computational software.29

Dissociation energies and enthalpies of formation at zero kelvin
were calculated using the Gaussian09 computational suite.30 Expo-
nent optimizations were performed using the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) method and an orbital gradient threshold
of 1 × 10−6 as implemented in the MOLPRO software suite. Radial
distribution functions were calculated using the GAMESS software
package.31,32

The truncation of the correlation consistent basis sets for DFT
methods was performed in the same manner as previously demon-
strated by Prascher et al.33 where the g- and h-functions were
removed from the cc-pVQZ and cc-pV5Z sets. The recontractions
of the s- and p-functions were performed using the general con-
traction scheme of Raffenetti,34 but with Kohn-Sham orbital coef-
ficients used in lieu of Hartree-Fock coefficients. For S and Cl,
two sets of contraction coefficients for the 3p orbital exist: the
singly occupied p eigenstate and doubly occupied p eigenstate.
Similar to the recontraction study by Prascher and Wilson for
the first row elements, the doubly occupied Kohn-Sham orbital
coefficients were used for the second row elements. For exam-
ple, in sulfur, the p electronic configuration is p2

xpypz . The con-
traction coefficient of the doubly occupied (p2

x) atomic orbital was
utilized.

The DFT recontracted and reoptimized basis sets for the atoms
H, B-Ar developed by Gibson were also employed in this work.20

In studies by Prascher et al., it was found that though recon-
traction of the first-row element basis sets improved convergence,
it did not lead to smooth monotonic convergence in all cases.19

For the first-row atoms, Gibson examined additional modifica-
tions to the basis sets of first-row atoms and examined the appli-
cability of revised DFT-based basis sets for combustion energies.
Specifically, in addition to truncations and recontractions, the first-
row basis sets were reoptimized with respect to the s, p, d, and
f primitives in logarithmic space with respect to the minimiza-
tion of the KS energy utilizing the BFGS algorithm, as detailed
above. Here, we consider the utility of a number of modifications—
a redesign—of the basis sets as the electronic structure and basis
set become more complicated/larger. Optimizations of the correla-
tion consistent exponents were performed on the ground states of

the atoms Al-Ar, using the same method employed in the original
optimization of the exponents for the correlation consistent basis
sets.35 In particular, s, p, d, and f primitives of the cc-pVnZ basis
sets were reoptimized in logarithmic space to minimize either BLYP
or B3LYP energies using the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm.

To differentiate these new basis sets from previous corre-
lation consistent basis sets, the recontracted and truncated basis
sets have been noted as cc-p[rt(λ)]VnZ—hereafter also referred
to as recontracted—while the optimized, recontracted, and trun-
cated basis sets—hereafter referred to as reoptimized—have been
noted as cc-p[rt(o-λ)]VnZ, where λ is the functional for which
the basis set was recontracted and/or reoptimized. This nota-
tion will be used throughout this work. The composition of basis
set primitive and contracted functions for the resulting recon-
tracted and reoptimized correlation consistent basis sets is shown
in Table I. Both the first-row element (which were developed by
Gibson and are utilized in the current study) and the second-row
element basis sets are included in the supplementary material for
convenience.

Ground state energies, homonuclear dissociation energies, and
equilibrium bond lengths for second row species were calculated
using the conventional cc-pV(n + d)Z basis sets as well as the recon-
tracted and reoptimized sets of this work. In order to approximate
the Kohn-Sham limit when basis set convergence is illustrated, two
extrapolation schemes developed for wavefunction-based methods
have been used. While other extrapolation schemes may be used
for extrapolations of properties to the Kohn-Sham limit, these two
schemes have been used in previous studies involving reoptimiza-
tion of the cc-pVnZ basis sets for density functional computations of
first row species. In these schemes, the TZ and QZ level basis sets are
the highest basis set levels used, as these schemes will be more prac-
tical for extrapolating the properties of larger molecules. The first
scheme is the three-point, mixed-Gaussian extrapolation formula of
Peterson et al.,36

En = EKS + Ae−(n+1) + Be−(n+1)2

. (1)

The second scheme employed in this work is the Schwartz inverse
cubic formula,37

En = EKS +
A

(lmax)3 . (2)

For both extrapolation schemes, En indicates the energy calculated
using the associated nth level basis set and EKS is the Kohn-Sham
limit. In the inverse Schwartz formula, the nth level basis set also
serves as the lmax for the formula. However, for the truncated basis
sets, the g- and h-functions have also been truncated from the
quadruple-ζ or quintuple-ζ basis sets.

III. RESULTS
A. Atomic energies and radial distribution functions

Calculations of atomic energies using cc-pV(n + d)Z,
cc-p[rt(λ)]VnZ, and cc-p[rt(o-λ)]VnZ were performed with both
BLYP and B3LYP functionals, the results of which are found
in Tables II and III. For both the recontracted and reoptimized
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TABLE II. Atomic ground state energies calculated with the BLYP functional for the atoms Al-Ar are given. All energies are in
hartrees (EH).

Basis set

Atom n cc-pV(n + d)Z cc-p[rt(BLYP)]VnZ cc-p[rt(o-BLYP)]VnZ

Al D −242.367 774 −242.376 057 −242.376 695
T −242.375 187 −242.381 850 −242.381 985
Q −242.380 339 −242.383 434 −242.383 491
5 −242.382 075 −242.383 730 −242.383 804

P −242.383 34 −242.384 36 −242.384 37
S3 −242.384 10 −242.384 59 −242.384 59

Si D −289.372 358 −289.380 417 −289.380 900
T −289.380 918 −289.387 091 −289.387 314
Q −289.384 217 −289.389 441 −289.389 528
5 −289.388 328 −289.389 778 −289.389 794

P −289.386 14 −289.390 81 −289.390 82
S3 −289.386 62 −289.391 16 −289.391 14

P D −341.257 928 −341.266 235 −341.267 099
T −341.268 518 −341.274 316 −341.274 685
Q −341.271 715 −341.277 189 −341.277 324
5 −341.276 263 −341.277 595 −341.277 665

P −341.273 57 −341.278 86 −341.278 86
S3 −341.274 05 −341.279 29 −341.279 25

S D −398.106 858 −398.115 402 −398.116 348
T −398.121 836 −398.127 442 −398.127 921
Q −398.125 486 −398.130 942 −398.131 094
5 −398.130 169 −398.131 478 −398.131 605

P −398.127 61 −398.132 98 −398.132 94
S3 −398.128 15 −398.133 50 −398.133 41

Cl D −460.139 499 −460.148 782 −460.149 810
T −460.157 363 −460.162 893 −460.162 437
Q −460.161 479 −460.166 847 −460.167 001
5 −460.165 934 −460.167 412 −460.167 587

P −460.163 87 −460.169 15 −460.169 66
S3 −460.164 48 −460.169 73 −460.170 33

Ar D −527.521 045 −527.531 162 −527.532 327
T −527.540 243 −527.545 762 −527.546 399
Q −527.544 725 −527.550 039 −527.550 214
5 −527.548 722 −527.550 748 −527.550 827

P −527.547 33 −527.552 53 −527.552 43
S3 −527.548 00 −527.553 16 −527.553 00

sets, energy recovery was seen to be improved compared to the
cc-pV(n + d)Z sets, with an average energy reduction of 5.43,
3.69, 3.13, and 0.97 kcal mol−1 for the double-, triple-, quadruple-,
and quintuple-ζ BLYP recontracted sets, respectively, and 6.04,
3.83, 3.21, and 1.02 kcal mol−1 energy reductions for the BLYP

reoptimized sets. Average energy reduction for the recontracted
B3LYP sets was 3.58, 2.37, 2.01, and 0.61 kcal mol−1 for the double-,
triple-, quadruple-, and quintuple-ζ sets, while an average energy
decrease for the reoptimized B3LYP sets was 3.89, 2.39, 2.04, and
0.68 kcal mol−1, respectively. In Tables II and III, the Kohn-Sham
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TABLE III. Atomic ground state energies calculated with the B3LYP functional for the atoms Al-Ar are given. All energies are
in hartrees (EH).

Basis set

Atom N cc-pV(n + d)Z cc-p[rt(BLYP)]VnZ cc-p[rt(o-BLYP)]VnZ

Al D −242.382 903 −242.388 294 −242.388 605
T −242.389 532 −242.393 847 −242.393 831
Q −242.393 298 −242.395 315 −242.395 335
5 −242.394 498 −242.395 594 −242.395 648

P −242.395 49 −242.396 17 −242.396 21
S3 −242.396 11 −242.397 97 −242.397 59

Si D −289.388 715 −289.393 843 −289.394 424
T −289.396 365 −289.400 367 −289.400 426
Q −289.399 150 −289.402 536 −289.402 413
5 −289.401 888 −289.402 846 −289.402 915

P −289.400 77 −289.403 80 −289.403 57
S3 −289.403 10 −289.405 59 −289.405 59

P D −341.276 438 −341.281 882 −341.282 368
T −341.285 851 −341.289 617 −341.289 657
Q −341.288 737 −341.292 290 −341.292 357
5 −341.291 776 −341.292 654 −341.292 727

P −341.290 42 −341.293 85 −341.293 93
S3 −341.291 43 −341.295 09 −341.295 14

S D −398.125 166 −398.130 726 −398.131 236
T −398.138 734 −398.142 383 −398.141 624
Q −398.142 144 −398.145 673 −398.145 744
5 −398.145 291 −398.146 142 −398.146 235

P −398.144 13 −398.147 59 −398.148 14
S3 −398.144 39 −398.148 07 −398.149 21

Cl D −460.158 575 −460.164 632 −460.165 171
T −460.174 718 −460.178 323 −460.178 612
Q −460.178 562 −460.182 030 −460.182 102
5 −460.181 584 −460.182 531 −460.182 668

P −460.180 80 −460.184 19 −460.184 13
S3 −460.181 89 −460.184 93 −460.186 50

Ar D −527.542 275 −527.548 885 −527.549 486
T −527.559 371 −527.562 782 −527.563 296
Q −527.563 528 −527.566 872 −527.567 042
5 −527.566 273 −527.567 414 −527.567 638

P −527.565 94 −527.569 25 −527.569 22
S3 −527.566 78 −527.577 99 −527.578 33

limit was approximated by the double-, triple-, and quadruple-ζ
energies for the Peterson three-point formula (P) and the triple-
and quadruple-ζ energies for the inverse Schwartz formula,
respectively (S3).

To illustrate the behavior of the cc-pV(n + d)Z, recontracted,
and reoptimized sets, the atomic energies of the chlorine atom have

been graphed in Figs. 1 and 2 for the BLYP and B3LYP func-
tional, respectively. In Figs. 1 and 2, the nonconvergent behav-
ior of the cc-pV(n + d)Z sets with the functionals is clear. The
computed energy increases upon increasing the basis set size from
the double ζ to triple ζ level, as is expected. There is no smooth,
monotonic energy convergence with any further increase in basis
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FIG. 1. Chlorine atomic energies calculated with the BLYP functional and the
cc-pV(n + D)Z, cc-p[rt(BLYP)]VnZ, and cc-p[rt(o-BLYP)]VnZ (n = D, T, Q, 5).
Energies are in hartrees (EH).

set size, as occurs when the cc-pV(n + d)Z basis sets are used in
conjunction with ab initio methods. However, the BLYP recon-
tracted and reoptimized basis sets clearly show convergent behavior
toward an asymptotic limit. The B3LYP functional does show cur-
vature in the triple-, quadruple-, and quintuple-ζ cc-pV(n + d)Z
basis sets, but the convergence in B3LYP is considerably slower
than the convergence behavior of the recontracted and reoptimized
basis sets. This is evident from the gap between the quadruple- and
quintuple-ζ energies. The difference in calculated chlorine ground
state energies for the cc-pV(Q + d)Z and cc-pV(5 + d)Z sets
with the B3LYP functional is 1.89 kcal mol−1, while the differ-
ences for the quadruple- and quintuple-ζ basis sets for the B3LYP
recontracted and reoptimized sets are 0.31 and 0.34 kcal mol−1,
respectively.

FIG. 2. Chlorine atomic energies calculated with the B3LYP functional and the
cc-pV(n + D)Z, cc-p[rt(B3LYP)]VnZ, and cc-p[rt(o-B3LYP)]VnZ (n = D, T, Q, 5).
Energies are in hartrees (EH).

FIG. 3. Differences between the 1s phosphorous radial distribution functions
[Δg(r)] at distance r (a.u.) from the nucleus calculated with the conventional
cc-pV(n + d)Z and cc-p[rt(o-B3LYP)]VnZ sets are shown.

Further analysis on the effect of reoptimization of the basis sets
has been performed by analyzing changes made to the radial dis-
tribution of the electrons on the ground state phosphorous atom.
Figures 3–5 illustrate examples of the changes in radial electron dis-
tribution, g(r), due to reoptimization and truncation of the basis

FIG. 4. Differences between the 2s phosphorous radial distribution functions
[Δg(r)] at distance r (a.u.) from the nucleus calculated with the conventional
cc-pV(n + d)Z and cc-p[rt(o-B3LYP)]VnZ sets are shown.
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FIG. 5. Differences between the 3p phosphorous radial distribution functions
[Δg(r)] at distance r (a.u.) from the nucleus calculated with the conventional
cc-pV(n + d)Z and cc-p[rt(o-B3LYP)]VnZ sets are shown.

sets for density functionals. Peak changes to the BLYP and B3LYP
radial distributions between conventional and reoptimized basis sets
were found to be nearly identical, with changes in BLYP radial dis-
tribution found to be slightly larger than changes to B3LYP, as
shown in Fig. 6. For the 1s orbitals, the BLYP and B3LYP reopti-
mizations show a consistent shift in radial distributions from the
core region toward the valence region, but in higher energy atomic
shells, there is no longer consistent behavior of the radial distribu-
tion changes. Substantial shifts in radial distributions are present
for the double-ζ basis sets, where electron distribution is vacated
from the mid regions of the phosphorous atom toward the core and
valence regions. For triple- and quadruple-ζ basis sets, there is a dis-
tinct change between the n = 2 and n = 3 shells of the phosphorous
atom, with both the 2s and 2p orbitals for triple- and quadruple-ζ
following similar shifts in radial distribution as the double-ζ basis
sets toward the valence region. However, for 3s and 3p orbitals,
the triple- and quadruple-ζ show minor increases in the distribu-
tion at the core region but also populate the mid regions (∼0.5
to 1.0 a.u. from the nucleus for the 2s orbital and 1–3 a.u. from
the nucleus for the 2p orbital) vacated by the reoptimized double-ζ
basis sets.

B. Homonuclear diatomic properties
Equilibrium bond lengths (re) and dissociation energies (De)

have been calculated for the homonuclear diatomics Al2, Si2,
P2, S2, and Cl2 using the cc-pV(n + d)Z, cc-p[rt(λ)]VnZ, and
cc-p[rt(o-λ)]VnZ basis sets for both BLYP and B3LYP function-
als. The results of these calculations are found in Tables IV and V
for the BLYP and B3LYP functionals, respectively. Kohn-Sham

FIG. 6. The comparison between the changes in radial distribution function [Δg(r)]
at distance r (a.u.) from the nucleus between the 2s phosphorous radial distri-
bution functions calculated with the conventional cc-pV(n + d)Z and reoptimized
cc-p[rt(o-B3LYP)]VnZ/cc-p[rt(o-BLYP)]VnZ sets is shown.

limits were approximated using the Peterson and Schwartz extrap-
olation formulas as indicated in Sec. III A. All experimental dis-
sociation energies and bond lengths are found in Ref. 38, and ref-
erences therein, except for Al2, for which the experimental data
are derived from the work of Fu et al.39 Additionally, mean abso-
lute deviations (MAD) from the experiment have been deter-
mined for each basis set, as well as the extrapolated Kohn-Sham
limit.

The data from Tables IV and V demonstrate several key points.
The behavior of BLYP and B3LYP functionals with the uncor-
rected cc-pV(n + d)Z basis sets is included to show the improve-
ment from the recontraction and/or reoptimization of the basis sets.
The errors in the BLYP/cc-pV(n + d)Z calculations rise sharply
from double- to triple-ζ, lowered at the quadruple-ζ, and then
rise again with the quintuple-ζ set. For B3LYP/cc-pV(n + d)Z,
errors tend to drop dramatically from the double-ζ to triple-ζ and
then rise with employment of the quadruple-ζ set, followed by
another lowering at the quintuple-ζ set upon reoptimization of
the basis sets. For B3LYP/cc-pV(n + d)Z calculations, though, the
mean absolute errors were consistently lower than either the recon-
tracted or reoptimized basis sets in contrast to the behavior demon-
strated for the functionals in the atomic calculations. Furthermore,
for the BLYP functional, both the recontracted and reoptimized
functions consistently result in increasing error from experimental
results.

The source of the errors produced by the reoptimized and
recontracted functionals requires analysis of the trends shown by
the MADs and the data in Tables IV and V. First, it is important
to note that, while the atomic energies of the B3LYP/cc-pV(n + d)Z
(uncorrected basis sets) may be closer to the KS limit value
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TABLE IV. Ground state homonuclear diatomic spectroscopic constants calculated with the BLYP functional are shown.
Equilibrium geometries (re) are given in angstroms (Å). Dissociation energies (De) are given in kcal mol−1.

Basis set

cc-pV(n + d)Z cc-p[rt(BLYP)]VnZ cc-p[rt(o-BLYP)]VnZ

Molecule n re (Å) De (kcal mol−1) re (Å) De (kcal mol−1) re (Å) De (kcal mol−1)

Al2 D 2.796 31.668 2.796 31.493 2.796 31.243
T 2.786 31.904 2.792 31.689 2.797 31.305
Q 2.786 31.563 2.789 31.485 2.791 31.394
5 2.787 31.498 2.787 31.474 2.789 31.411

P 2.79 31.36 2.79 31.37 2.79 31.45
S3 2.79 31.31 2.79 31.34 2.79 31.45

Expt.a 2.701 31.7
Si2 D 2.310 75.732 2.310 75.835 2.312 75.263

T 2.300 76.812 2.301 76.594 2.304 76.160
Q 2.298 76.437 2.298 76.383 2.300 76.208
5 2.299 76.436 2.299 76.419 2.299 76.317

P 2.30 76.22 2.30 76.26 2.30 76.24
S3 2.30 76.16 2.30 76.23 2.30 76.24

Expt.b 2.246 75.6
P2 D 1.920 119.511 1.920 120.054 1.921 119.204

T 1.911 121.714 1.913 121.529 1.913 121.277
Q 1.910 121.852 1.911 121.836 1.911 121.576
5 1.911 121.885 1.911 121.895 1.911 121.626

P 1.91 121.93 1.91 122.01 1.91 121.75
S3 1.91 121.95 1.91 122.06 1.91 121.79

Expt.b 1.893 117.2
S2 D 1.941 106.677 1.941 106.272 1.943 105.686

T 1.929 107.625 1.930 107.652 1.932 107.094
Q 1.927 107.865 1.927 107.852 1.928 107.407
5 1.927 107.908 1.927 107.934 1.927 107.620

P 1.93 108.01 1.93 107.97 1.93 107.59
S3 1.93 108.04 1.93 108.00 1.93 107.63

Expt.b 1.889 102.9
Cl2 D 2.059 55.900 2.066 54.930 2.063 55.139

T 2.042 58.126 2.042 58.322 2.044 58.072
Q 2.039 58.365 2.039 58.408 2.041 58.057
5 2.039 58.470 2.039 58.543 2.040 58.222

P 2.04 58.50 2.04 58.46 2.04 58.05
S3 2.04 58.54 2.04 58.47 2.04 60.21

Expt.b 1.987 59.7

aReference 39.
bReference 38.
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TABLE V. Ground state homonuclear diatomic properties calculated with the B3LYP functional are shown. Equilibrium
geometries (re) are given in angstroms (Å). Dissociation energies (De) are given in kcal mol−1.

Basis set

cc-pV(n + d)Z cc-p[rt(B3LYP)]VnZ cc-p[rt(o-B3LYP)]VnZ

Molecule N re (Å) De (kcal mol−1) re (Å) De (kcal mol−1) re (Å) De (kcal mol−1)

Al2 D 2.760 30.907 2.760 30.742 2.760 30.330
T 2.753 31.260 2.756 31.103 2.762 30.504
Q 2.752 31.070 2.753 30.999 2.754 30.929
5 2.753 31.014 2.753 31.002 2.754 30.952

P 2.75 30.96 2.75 30.94 2.75 31.18
S3 2.75 30.93 2.75 30.92 2.75 31.24

Expt.a 2.701 31.7
Si2 D 2.276 73.523 2.276 73.597 2.277 72.724

T 2.267 74.904 2.268 74.739 2.273 73.687
Q 2.264 74.754 2.266 74.683 2.267 74.512
5 2.265 74.744 2.265 74.735 2.266 74.715

P 2.26 74.67 2.26 74.65 2.26 74.81
S3 2.26 74.65 2.26 74.64 2.26 74.91

Expt.b 2.246 75.6
P2 D 1.897 113.108 1.897 113.505 1.898 112.934

T 1.889 115.808 1.890 115.631 1.890 115.678
Q 1.887 116.121 1.888 116.062 1.888 115.838
5 1.888 116.137 1.888 116.145 1.888 115.910

P 1.89 116.30 1.89 116.31 1.89 115.93
S3 1.89 116.35 1.89 116.38 1.89 115.95

Expt.b 1.893 117.2
S2 D 1.913 101.195 1.913 100.848 1.912 100.333

T 1.903 103.193 1.904 103.184 1.906 102.549
Q 1.901 103.566 1.901 103.532 1.902 103.024
5 1.901 103.638 1.900 103.658 1.901 103.296

P 1.90 103.78 1.90 103.73 1.90 103.30
S3 1.90 103.84 1.90 103.79 1.90 103.37

Expt. 1.889 102.9
Cl2 D 2.028 52.093 2.033 51.208 2.031 51.094

T 2.012 55.294 2.012 55.446 2.014 55.133
Q 2.009 55.654 2.009 55.680 2.012 55.291
5 2.009 55.798 2.009 55.855 2.010 55.494

P 2.01 55.86 2.01 55.82 2.01 55.38
S3 2.01 55.92 2.01 55.85 2.01 55.41

Expt.b 1.987 59.7

aReference 39.
bReference 38.
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[particularly at the cc-pV(T + d)Z basis set level] than the recon-
tracted and reoptimized basis sets, the atomic energies computed
with cc-pV(n + d)Z basis sets do not result in a smooth, mono-
tonic convergence toward the Kohn-Sham limit. This may stem
from a cancelation of errors between the basis set and density
functional approximation. Thus, though the errors in the individ-
ual recontracted and reoptimized basis sets tend to produce larger
errors when coupled with the B3LYP functional, smooth, mono-
tonic convergence of atomic energies is achieved and thus the
Kohn-Sham limit is able to be approximated with the reoptimized
basis sets.

C. Enthalpies of formation
Enthalpies of formation at zero kelvin [ΔHf

0 (0 K)] were
calculated employing the B3LYP and BLYP functionals in con-
junction with conventional cc-pVnZ and cc-pV(n + d)Z basis
sets for first and second row atoms, respectively, as well as the
cc-p[rt(λ)]VnZ, and the cc-p[rt(o-λ)]VnZ basis sets. cc-p[rt(λ)]VnZ
and cc-p[rt(o-λ)]VnZ basis sets of Gibson20 are used for hydrogen
and the first row atoms (H, B-Ne). Geometry optimizations were
performed with each basis set and functional pairing to determine
ground state molecular geometries. The results of these calcula-
tions are found in Tables VI and VII. All experimental enthalpies of

formation are obtained from the NIST-JANAF thermochemical data
tables.40

In general, enthalpies calculated using the recontracted and
reoptimized basis sets are further from the experimental value. This
may be due to cancelation of errors, in which the uncorrected basis
sets have an error that is offset by an error in the density func-
tional method. Calculated B3LYP enthalpies of formation deviate
from the conventional correlation consistent sets by an average of
1.90, 0.36, 0.48, and 0.52 kcal mol−1 for the recontracted double-,
triple-, quadruple-, and quintuple-ζ basis sets, respectively, while
the reoptimized sets deviate from the conventional correlation con-
sistent basis sets by an average of 1.66, 1.47, 1.27, and 0.71 kcal
mol−1 for the double-, triple-, quadruple-, and quintuple-ζ basis sets,
respectively. For the BLYP functional, calculated enthalpies of for-
mation deviate from the conventional correlation consistent basis
sets by 7.79, 0.38, 0.46, and 1.72 kcal mol−1 for the double-, triple-,
quadruple-, and quintuple-ζ recontracted basis sets, respectively,
while the reoptimized basis sets deviate from conventional correla-
tion consistent sets by an average of 3.25, 1.84, 1.64, and 0.71 kcal
mol−1 for the double-, triple-, quadruple-, and quintuple-ζ basis sets,
respectively.

However, it is clear from Tables VI and VII that the use of
conventional correlation consistent basis sets consistently fails to
yield convergent behavior for all calculated enthalpies of formation

TABLE VI. Enthalpies of formation at zero kelvin [ΔHf
0 (0 K)] calculated with the B3LYP functional are shown. Units are given

in kcal mol−1. cc-pV(n + d)Z and cc-pVnZ basis sets are used for second row atoms (Al-Ar) and first row atoms (B-Ne),
respectively.

Basis set

cc-pV(n + d)Z/cc-pVnZ cc-p[rt(B3LYP)]VnZ cc-p[rt(o-B3LYP)]VnZ

Molecule N ΔHf
0 (0 K) (kcal mol−1) ΔHf

0 (0 K) (kcal mol−1) ΔHf
0 (0 K) (kcal mol−1)

AlF3 D −263.440 −262.591 −261.381
T −275.430 −275.817 −272.430
Q −278.644 −277.902 −276.348
5 −277.438 −277.063 −276.769

P . . . . . . −278.63
S3 . . . . . . −279.21

AlCl3 D −119.762 −118.926 −120.952
T −125.252 −125.023 −123.664
Q −126.099 −125.463 −124.775
5 −125.865 −125.421 −124.888

P . . . . . . −125.42
S3 . . . . . . −125.13

SiCl4 D −130.325 −128.548 −130.242
T −137.667 −137.637 −136.148
Q −138.470 −137.654 −137.157
5 −138.447 −137.755 −137.406

P . . . −137.66 −137.74
S3 . . . −137.67 −137.90
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TABLE VI. (Continued.)

Basis set

cc-pV(n + d)Z/cc-pVnZ cc-p[rt(B3LYP)]VnZ cc-p[rt(o-B3LYP)]VnZ

Molecule N ΔHf
0 (0 K) (kcal mol−1) ΔHf

0 (0 K) (kcal mol−1) ΔHf
0 (0 K) (kcal mol−1)

PF3 D −202.422 −200.811 −198.328
T −222.021 −222.428 −220.369
Q −224.138 −223.580 −222.710
5 −223.729 −222.973 −222.884

P . . . −224.24 −224.06
S3 . . . −224.42 −224.42

SO2 D −43.685 −45.224 −45.306
T −62.294 −62.852 −61.154
Q −64.446 −64.131 −63.136
5 −64.975 −64.314 −64.210

P −65.69 −64.87 −64.28
S3 −66.02 −65.06 −64.58

SO3 D −57.615 −58.910 −58.975
T −82.582 −83.106 −80.306
Q −84.690 −84.050 −82.342
5 −85.024 −83.935 −83.829

P . . . . . . −83.52
S3 . . . . . . −83.83

ClF3 D −8.974 −8.022 −8.084
T −21.328 −21.605 −21.887
Q −23.655 −23.196 −23.161
5 −23.842 −23.378 −23.422

P −25.01 −24.12 −23.90
S3 −25.35 −24.36 −24.09

CS2 D 31.589 32.081 32.757
T 29.125 29.065 30.229
Q 28.606 28.861 29.199
5 28.625 28.856 28.995

P . . . 28.74 28.60
S3 . . . 28.71 28.45

COS D −29.040 −25.448 −27.319
T −32.603 −32.398 −31.479
Q −33.355 −32.994 −32.492
5 −33.066 −32.820 −32.713

P . . . . . . −33.08
S3 . . . . . . −33.23

NOCl D 12.318 19.414 15.741
T 10.627 11.522 11.368
Q 9.995 10.262 10.782
5 10.206 10.445 10.640

P . . . . . . 10.44
S3 . . . . . . 10.35
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TABLE VII. Enthalpies of formation at zero kelvin [ΔHf
0 (0 K)] calculated with the BLYP functional are shown. Units are given

in kcal mol−1. cc-pV(n + d)Z and cc-pVnZ basis sets are used for second row atoms (Al-Ar) and first row atoms (B-Ne),
respectively.

Basis set

cc-pV(n + d)Z/cc-pVnZ cc-p[rt(BLYP)]VnZ cc-p[rt(o-BLYP)]VnZ

Molecule n ΔHf
0 (0 K) (kcal mol−1) ΔHf

0 (0K) (kcal mol−1) ΔHf
0 (0K) (kcal mol−1)

AlF3 D −274.038 −272.759 −267.918
T −282.156 −282.400 −277.618
Q −284.107 −283.318 −280.872
5 −282.149 −281.791 −281.265

P . . . . . . −282.77
S3 . . . . . . −283.25

AlCl3 D −116.951 −115.976 −116.377
T −121.063 −120.745 −119.258
Q −121.586 −120.931 −119.888
5 −121.243 −120.765 −120.221

P . . . . . . −120.25
S3 . . . . . . −120.35

SiCl4 D −128.074 −126.027 −125.533
T −133.053 −133.047 −131.284
Q −133.431 −132.661 −131.948
5 −133.318 −132.627 −132.163

P . . . . . . −132.33
S3 . . . . . . −132.43

PF3 D −217.941 −215.966 −210.311
T −232.221 −232.683 −229.738
Q −233.506 −232.996 −231.532
5 −232.486 −231.799 −231.587

P . . . . . . −232.57
S3 . . . . . . −232.84

SO2 D −63.512 −64.724 −62.664
T −78.360 −79.098 −77.191
Q −80.109 −79.894 −78.490
5 −80.318 −79.728 −79.635

P −81.12 . . . −79.24
S3 −81.39 . . . −79.44

SO3 D −82.935 −83.724 −80.391
T −102.495 −103.302 −99.869
Q −103.931 −103.424 −101.021
5 −103.717 −102.731 −102.642

P . . . . . . −101.68
S3 . . . . . . −101.86

J. Chem. Phys. 151, 064110 (2019); doi: 10.1063/1.5113873 151, 064110-12

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE VII. (Continued.)

Basis set

cc-pV(n + d)Z/cc-pVnZ cc-p[rt(BLYP)]VnZ cc-p[rt(o-BLYP)]VnZ

Molecule n ΔHf
0 (0 K) (kcal mol−1) ΔHf

0 (0K) (kcal mol−1) ΔHf
0 (0K) (kcal mol−1)

ClF3 D −47.249 −46.110 −45.509
T −55.341 −55.750 −55.296
Q −56.879 −56.512 −56.278
5 −56.663 −56.339 −56.343

P . . . . . . −56.85
S3 . . . . . . −57.00

CS2 D 21.753 21.700 24.175
T 20.549 20.427 21.847
Q 20.201 20.433 20.930
5 20.316 20.540 20.624

P . . . . . . 20.40
S3 . . . . . . 20.26

COS D −41.792 −103.663 −38.626
T −43.630 −43.561 −42.120
Q −44.073 −43.716 −42.902
5 −43.510 −56.166 −43.106

P . . . . . . −43.36
S3 . . . . . . −43.47

NOCl D −10.602 −4.003 −5.715
T −10.180 −9.579 −9.010
Q −10.449 −10.249 −9.429
5 −9.963 −9.777 −9.589

P . . . . . . −9.67
S3 . . . . . . −9.74

with the exception of SO2, SO3, and ClF3 for the B3LYP functional
and SO2 for the BLYP functional. Additionally, as noted in pre-
vious studies, the conventional correlation consistent basis sets in
conjunction with density functional methods do not show rapid
convergence toward the Kohn-Sham limit.9,41,42 The convergence
behavior of the remaining enthalpies of formation in general shows
a peak occurring with the quadruple-ζ basis sets, with an inver-
sion in the convergence behavior then occurring with the subse-
quent quintuple-ζ calculated enthalpies of formation. This conver-
gence behavior persists in the use of the recontracted basis sets
as well. Only when the reoptimized cc-p[rt(o-λ)]VnZ basis sets
are used with the paired functional is convergence of the molecu-
lar enthalpies of formation consistently demonstrated across both
molecules and functionals. While all atomic energies and diatomic
constants demonstrate convergence to the KS limit, the molecular
enthalpies do not converge for the uncorrected cc-pV(n + d)Z basis
sets, and in some cases, such as AlF3 and AlCl3, smooth mono-
tonic convergence only occurs for the reoptimized cc-p[rt(o-λ)]VnZ

basis sets. An illustration of this convergence behavior is shown in
Fig. 7, where the calculated enthalpies of formation of carbonyl sul-
fide (COS) using the conventional correlation consistent basis sets,
recontracted basis sets, and reoptimized basis sets with the B3LYP
functional are shown. The calculated enthalpies of formation with
the reoptimized sets show smooth convergent behavior toward the
Kohn-Sham limit, while the conventional basis sets and recontracted
basis sets both show nonmonotonic convergence. Furthermore, the
enthalpies of formation calculated with the conventional quadruple-
ζ basis sets exceed both of the estimated Kohn-Sham limits of
−33.08 and −33.23 kcal mol−1—extrapolated using the reoptimized
basis sets using the Peterson and Schwartz extrapolation schemes,
respectively.

The inability of the conventional double-, triple-, and
quadruple-basis sets to produce enthalpies of formation which
show smooth, monotonic convergence to the Kohn-Sham limit is
further illustrated by the calculated enthalpies of formation for
the NOCl molecule and the BLYP functional, shown in Fig. 8.
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FIG. 7. Enthalpies of formation at zero kelvin calculated for the COS molecule with
the B3LYP functional and the cc-pV(n + D)Z, cc-p[rt(B3LYP)]VnZ, and cc-p[rt(o-
B3LYP)]VnZ (n = D, T, Q, 5). Units are in kcal mol−1.

The conventional correlation consistent basis sets fail to show
any convergence behavior in the calculated enthalpies of for-
mation, instead demonstrating an undulating rise in calculated
enthalpies of formation, with the calculated enthalpies of for-
mation for all the conventional basis sets below the estimated
Kohn-Sham limits of −9.672 and −9.735 kcal mol−1—extrapolated
using the reoptimized basis sets using the Peterson and Schwartz
extrapolation schemes, respectively. Convergence behavior shows
improvement with the recontracted basis sets but the calculated
enthalpies of formation with the recontracted sets still fail to pro-
duce monotonic convergence behavior. Furthermore, the calcu-
lated quadruple- and quintuple-ζ enthalpies of formation using
the recontracted basis sets also exceed the estimated Kohn-Sham
limits.

FIG. 8. Enthalpies of formation at zero kelvin calculated for the NOCl molecule
with the BLYP functional and the cc-pV(n + D)Z, cc-p[rt(B3LYP)]VnZ, and
cc-p[rt(o-B3LYP)]VnZ (n = D, T, Q, 5). Units are in kcal mol−1.

D. CPU efficiency comparison
Comparison between the central processing unit (CPU)

resource efficiencies of the conventional correlation consistent basis
sets and the recontracted and reoptimized basis sets was per-
formed by determining the percentage CPU time savings based upon
single point energy calculations done in series for all molecules
examined in Sec. III C using a Dell OptiPlex 390 with 8 GB
DDR3 memory. Geometries for the single-point calculations were
taken from B3LYP geometry optimizations using the cc-pVTZ and
cc-pV(T + d)Z basis sets. The percentage CPU time savings pro-
vided by the use of the recontracted and reoptimized basis sets
compared to conventional correlation consistent basis sets is shown
in Table VIII.

The truncation of the g- and h-functions from the cor-
relation consistent basis sets has a considerable effect on the
required CPU time to determine single-point energies. For the
B3LYP functional, the recontracted and reoptimized quadruple-ζ
basis sets require approximately 51% less CPU time than calcula-
tions using conventional quadruple-ζ correlation consistent basis
sets, while the recontracted and reoptimized quintuple-ζ basis sets
require approximately 91% less CPU time compared to the con-
ventional quintuple-ζ basis sets. There is a slight increase in CPU
time savings when the BLYP functional is used, with quadruple-
and quintuple-ζ recontracted and reoptimized basis sets requir-
ing approximately 53% and 97% less CPU time than the con-
ventional correlation consistent basis sets, respectively. For both
B3LYP and BLYP functionals, there is not a significant time dif-
ference in employing recontracted and reoptimized double-ζ and
triple-ζ basis sets compared to conventional correlation consistent
basis sets.

For both B3LYP and BLYP functionals, the amount of CPU
time required for single-point calculations using the recontracted
(cc-p[rt(λ)]V5Z) and reoptimized (cc-p[rt(o-λ)]V5Z) quintuple-ζ
basis sets is comparable to the time required for calculations
using conventional correlation consistent quadruple-ζ (cc-pVQZ)
basis sets. For B3LYP single point calculations, the recontracted

TABLE VIII. Percentage CPU time savings for the 10 molecular single point energies
calculated using Gaussian09. Percentage differences are calculated by comparing
the CPU time required by conventional correlation consistent basis sets and the
recontracted and reoptimized basis sets. B3LYP/cc-pVTZ geometries were used for
all calculations.

Basis set

Functional n cc-p[rt(λ)]VnZ (%) cc-p[rt(o-λ)]VnZ (%)

B3LYP
D . . . . . .
T . . . . . .
Q 49.66 52.03
5 90.82 92.18

BLYP
D . . . . . .
T . . . . . .
Q 52.36 54.09
5 96.77 97.11
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and reoptimized quintuple-ζ basis sets require only an average
of 18% and 5% more CPU time, respectively, than the conven-
tional quadruple-ζ basis sets. For BLYP calculations, the recon-
tracted and reoptimized quintuple-ζ basis sets require an average
of 3.5% and 6.3% less CPU time than conventional quadruple-ζ
basis sets.

IV. CONCLUSIONS
Two modified basis set series have been considered for density

functional methods. These basis sets, the recontracted and trun-
cated cc-pV[rt(BLYP)]nZ and cc-pV[rt(B3LYP)]nZ sets and the
recontracted, reoptimized, and truncated cc-pV[rt(o-BLYP)]nZ and
cc-pV[rt(o-B3LYP)]nZ sets, are compact and robust. These basis sets
demonstrate systematic convergence to the Kohn-Sham limit over-
all, for both generalized gradient approximation (GGA) and hybrid
functionals. The convergent behavior of these functionals will allow
for parameterization of density functionals in the absence of basis set
effects and allow for reliable extrapolation of molecular properties to
the Kohn-Sham limit.

The calculated atomic energies for recontracted and reopti-
mized correlation consistent sets demonstrate clearly superior con-
vergent behavior toward the Kohn-Sham limit. The mean abso-
lute errors calculated with reoptimized, truncated basis sets for
homonuclear diatomic dissociation energies not only show reli-
able convergence toward the Kohn-Sham limit but extrapolations to
this limit via common extrapolation schemes also show substantial
improvements to the dissociation energies compared to calculations
using conventional cc-pV(n + d)Z basis sets. These improvements
occur for both GGA and hybrid DFT functionals. The calculated
enthalpies of formation using conventional, recontracted, and reop-
timized correlation consistent basis sets show that beyond homonu-
clear diatomic species, smooth, monotonic convergence to Kohn-
Sham limit is only consistently achieved through the combination
of the reoptimized basis sets with either the BLYP or B3LYP func-
tional (depending on the functional for which the basis sets were
designed).

SUPPLEMENTARY MATERIAL

See supplementary material for recontracted and reoptimized
basis sets used in this study.
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