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ABSTRACT
In computer simulations of solvation effects on chemical reactions, continuum modeling techniques regain popularity as a way
to efficiently circumvent an otherwise costly sampling of solvent degrees of freedom. As effective techniques, such implicit
solvation models always depend on a number of parameters that need to be determined earlier. In the past, the focus lay
mostly on an accurate parametrization of water models. Yet, non-aqueous solvents have recently attracted increasing atten-
tion, in particular, for the design of battery materials. To this end, we present a systematic parametrization protocol for
the Self-Consistent Continuum Solvation (SCCS) model resulting in optimized parameters for 67 non-aqueous solvents. Our
parametrization is based on a collection of ≈6000 experimentally measured partition coefficients, which we collected in the
Solv@TUM database presented here. The accuracy of our optimized SCCS model is comparable to the well-known universal
continuum solvation model (SMx) family of methods, while relying on only a single fit parameter and thereby largely reducing sta-
tistical noise. Furthermore, slightly modifying the non-electrostatic terms of the model, we present the SCCS-P solvation model
as a more accurate alternative, in particular, for aromatic solutes. Finally, we show that SCCS parameters can, to a good degree
of accuracy, also be predicted for solvents outside the database using merely the dielectric bulk permittivity of the solvent of
choice.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5050938

I. INTRODUCTION
Today, the importance of an accurate treatment of sol-

vation effects in simulating chemical reactions in liquids is
undisputed. To name one highly relevant example, simula-
tions of electro-chemical systems cannot give a complete
picture without considering the response of the solvent
medium to the inherent transport of the charged species.1–4
Unfortunately, the greatly increased computational cost
of sampling the large number of—chemically not directly

relevant—solvent degrees of freedom often restricts atom-
istic simulations.5,6 This is particularly pronounced in first-
principles based approaches, where only very small solvent
boxes are tractable or where only less dynamic immediate
solvation shells are considered.7,8

Circumventing such problems with the explicit treat-
ment of solvation, the old idea of implicit solvation mod-
els9,10 has been undergoing a renaissance in the last ten to
fifteen years.5,11–26 There, solvation is treated, e.g., within
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Density Functional Theory (DFT), at the level of an effective
continuum, which is polarizable and includes additional terms
for non-electrostatic contributions such as dispersion inter-
actions, cavity formation energy (related to the solvent’s
surface tension), or entropic contributions.18,22,25 The effec-
tive nature of the models leads to a number of—solvent
dependent—parameters which, in general, cannot be deter-
mined from first principles, but rather are determined by fit-
ting the respective model to sufficiently large databases of
experimental reference data—most commonly, the solvation
free energies of diverse sets of molecules.5,13,16,22,24,26–29

Owing to its importance as a solvent, and the com-
plexities involved in its explicit simulation from first princi-
ples, by far most of the solvation parameter sets published
to date concentrate on water.5,11,22,25–27,30 Non-aqueous sol-
vents, on the other hand, play important roles in diverse
fields such as crystal synthesis31 and liquid-liquid interface
chemistry,32 or as stable electrolytes which also protect the
electrodes in next-generation batteries.33 Yet, the optimiza-
tion of implicit solvation models for such non-aqueous sol-
vents using statistically converged experimental training sets
has to date rarely been achieved, leading to large errors in
the prediction of solvation energies.34 Notable exceptions to
this are given in the Miertuš-Scrocco-Tomasi (MST) model by
Miertuš and co-workers11–13,16,35 and the well-known univer-
sal continuum solvation model (SMx) family of methods20,21,24
based on the Minnesota (MNsol) database of reference data.36
These models have been widely applied in various fields of
science.37

In this work, we make use of the Self-Consistent Contin-
uum Solvation (SCCS) model, first described and implemented
in the pseudo-potential based QUANTUM ESPRESSO38 DFT
package by Andreussi et al.22 and recently adopted by us in
the full-potential numeric atomic orbital program FHI-aims
(Fritz Haber Institute ab initio molecular simulations).25,39 In
this context, we also showed that the SCCS model can be
efficiently combined with a Poisson-Boltzmann description of
dissolved ion distributions,25,28 which are of high relevance, in
particular, in energy conversion and storage processes.40–43
The main strength of the SCCS approach, however, lies in
the description of solvation energies relying on merely four
adjustable parameters, from which—as we show below—only
a single parameter needs to be effectively adjusted to each
solvent of choice. This dramatically reduces the parameter
space compared to the roughly 30-100 parameters appear-
ing, for example, in the SMx family of models.21,44 This greatly
improves the statistical stability of the fitting procedure,
in particular, for small experimental datasets without losing
accuracy in the prediction.

Here, we specifically present optimized SCCS param-
eters for neutral molecules in 67 non-aqueous solvents
and water. The values were obtained by a rigorous fitting
procedure reproducing solvation free energies from an exten-
sive new database of ≈6000 experimentally measured solva-
tion partition coefficients which we collected. This database,
described in more detail in Sec. II D, can be obtained from

Ref. 45. In order to allow the usage of the SCCS model for
solvents outside of the current database, we also present a
first parameter prediction model merely based on the dielec-
tric bulk permittivity of the solvent.

Finally, in the course of fitting our parameter sets, we
found a way to further improve the accuracy of the non-
electrostatic contributions of the SCCS model by replacing its
dependence on the volume of the solvation cavity with the
solute’s isotropic polarizability (cf. Sec. III C). Especially for
aromatic solutes, our results show a marked improvement of
this SCCS+polarizability (SCCS-P) model over standard SCCS.
With the new SCCS parameter sets and the parameter pre-
diction method, as well as the new SCCS-P model, we aim to
open up non-aqueous continuum solvation calculations to a
wider user-base.

This work is organized as follows: In order to place the
significance of the fitted parameters into context, we first give
an outline of the theoretical background of the model, the
efficient reduction of the parameter space, and the fitting pro-
cedure in Sec. II. Then we describe the database used in the
fitting procedure in Sec. II D. Our new parameter sets together
with tests of their accuracy are given in Sec. III, where we also
present our improved SCCS-P model as well as the parameter
prediction scheme for solvents not contained in the database
before giving some concluding remarks in Sec. IV.

II. METHODS
A. The SCCS implicit solvation model

The basis of all implicit solvation models is the formula-
tion of a Generalized Poisson Equation (GPE), given here in
atomic units as5,25

∇ · [ε[nel]∇v] = −4πnsol, (1)

with v being the electrostatic potential, nsol = nel + nnuc
being the solute’s charge density, comprising electronic and
nuclear parts, and ε[nel] representing a model function for the
isotropic, static dielectric solvent permittivity. The latter has
most often been parametrized in terms of the solute’s electron
density (provided by DFT).22,25 In the SCCS model, it is defined
as

εδn ,nc [nel]

=
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1
2 δn
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1
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Here, εs,bulk is the isotropic, static bulk permittivity of the sol-
vent. In contrast to the original implementation of the SCCS
model defining the dielectric transition region by means of
minimum and maximum electron densities nmin and nmax,22,25
we switched above to a different representation by transform-
ing the parameters via

δn = −(ln(nmin) − ln(nmax)), (4)

nc = −
1
2

(ln(nmin) + ln(nmax)), (5)

with nc describing the electron density cutoff of the transition
and δn representing the smoothness. Due to the exponential
decay of the electron density, this logarithmic transforma-
tion leads to a more homogeneous grid density and therefore
a more stable discrete grid representation of the parameter
space. Ultimately, this enables a reduction of the parameter
space to a single dimension.

The model presented so far depicts only the purely
electrostatic interactions between the solute and solvent,
based on the mean-field approximation. Additional non-
electrostatic, non-mean-field correction terms can be effec-
tively added to the energy functional. They comprise
cavity-formation, Pauli-repulsion, and dispersion interaction
parts

Gnon-mf = Gcav + Grep + Gdis. (6)

In the SCCS model, Gnon-mf is expressed in terms of the quan-
tum surface S[nel] and volume V[nel] of the solvation cavity
which are evaluated from a finite difference scheme using the
switching function ϑδn ,nc

Gnon-mf(p)[nel] = (α + γ)Sδn ,nc [nel] + βVδn ,nc [nel], (7)

where γ represents the solvent’s surface tension and α and β

are effective solvent-specific parameters.

In total, the SCCS model therefore gives rise to
a four-dimensional parameter space represented by the
vector

p =
*....
,

δn
nc

(α + γ)
β

+////
-

∈ R4. (8)

The non-mean-field energy correction is added to the Kohn-
Sham (KS) energy functional yielding the general SCCS energy
functional which needs to be minimized. This minimiza-
tion results in the GPE and the KS equation having to be
solved in a self-consistent manner. In order to solve the
GPE, both QUANTUM ESPRESSO and FHI-aims utilize a
self-consistent relaxation scheme using the vacuum Poisson
Green’s function as a preconditioner. QUANTUM ESPRESSO
additionally supports a conjugate gradient scheme which
uses a preconditioner representing the Poisson equation
in the limit of a slowly varying dielectric constant.29 For
a more detailed description, the reader is referred to the
respective publications.22,25,29

B. Technical remarks
The self-consistent treatment of energy corrections in

the form of Eq. (7) is known to sometimes lead to numerical
instabilities.46 In addition, it dramatically increases the com-
putational costs of any parameter optimization scheme as it
requires DFT-SCCS calculations on the full four-dimensional
parameter space. In our earlier work,25 however, we found
that Eq. (7) can also be added as a post self-consistent field
(SCF) correction with only a sub-meV effect on the calculated
solvation energies. This implies that the functional derivatives
δGnon-mf(p)[nel]

δnel
added to the KS-Hamiltonian play only a minor

role for calculated solvation energies. In the present work, we
verified this result also for a low-dielectric solvent (chloro-
form) (cf. Fig. S1 in the supplementary material). Due to this
property of the DFT-SCCS approach, the parameter space to
be explored numerically can be reduced to only two dimen-
sions (nc and δn). Gnon-mf(p)[nel] is then always added as an
analytic extension of the parameter space being coupled to
the DFT-SCCS grid via Sδn ,nc and Vδn ,nc .

A further important question for the computational effi-
ciency of the optimization procedure is to which degrees
the geometries change due to the presence of the solvent.
Our database consists of small neutral organic molecules, for
which we generally found no major changes in geometries
under the influence of the implicit solvent. Due to this fact,
we perform all DFT-SCCS calculations as single-point calcula-
tions using optimized geometries in a vacuum. We note, how-
ever, that our scheme is trained for predicting the variation
of solvation energies among solutes differing in geometry and
functionality. From this, we expect that some degree of geom-
etry dependence of the solvation energy is also effectively
included. Some transferability to larger solutes with stronger
rearrangements in solvents, e.g., amino acids, can therefore
be assumed, although this assumption has to be validated in
future work.

All DFT-SCCS calculations in this paper are per-
formed using the Perdew-Burke-Ernzerhof (PBE) exchange-
correlation functional47 using the all-electron program pack-
age FHI-aims as well as “tight” convergence settings.39,48 Sys-
tematic test calculations using water as a solvent indicated
that such settings yield a numerical convergence of solva-
tion energies in the sub-meV region.25 In Fig. S3 of the sup-
plementary material, we show that this result also holds for
non-aqueous solvents, here tested for the low-dielectric sol-
vent chloroform using our optimized parameters described
in Table I. The parameter optimization scheme (cf. Sec. III B)
was implemented in the Python programming language using
common scientific packages such as Scipy, Numpy, and
Pandas.

C. Solvation free energies
Following the previous definitions, solvation energies are

then calculated via

∆Gsol(p) = ∆Gel
δn ,nc

+ (α + γ)S◦δn ,nc
+ βV◦δn ,nc

, (9)
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TABLE I. Optimized (α + γ) parameters (in dyn/cm) for the SCCS model for 67
non-aqueous solvents. A corresponding value for water evaluated on the
Shivakumar training set132 is also given for comparison. For all solvents, δn = 2.0,
nc = 7.6, and β = −0.5 GPa. “ID” is the unique molecular solute identifier in the
database (only for solvents, which also occur as solutes in the database).

ID (α + γ) (dyn/cm) RMSD (meV)

1,4-dioxane53,123 055 36.9 64.2
1-chlorobutane138 125 41.0 30.4
1-hexadecene60 . . . 40.1 25.2
1-methyl-2-piperidinone55 . . . 46.4 48.6
1-octanol51 088 44.6 42.1
1-propanol134,137 083 45.4 33.8
2,2,4-trimethylpentane145 118 38.4 25.6
2-ethoxyethanol130 257 43.9 35.6
4-formylmorpholine55 620 46.5 28.6
Acetic acid146 150 43.1 46.0
Acetone57 059 43.7 41.2
Acetophenone61 263 44.5 29.5
Benzonitrile59 219 43.8 42.9
Bromobenzene56 231 41.8 37.7
Butanone148 060 44.0 38.2
Butyl acetate135 067 40.4 45.1
Carbon tetrachloride106,138 041 36.5 38.6
Chlorobenzene56 102 42.3 49.0
Chloroform138 040 37.7 34.7
Cyclohexanone148 251 43.8 30.4
Decan-1-ol137 131 42.4 42.5
Decane144 104 40.2 27.3
Dibutyl ether51,58 050 39.3 29.1
Dichloroethane136 146 43.1 42.5
Dichloromethane138 039 41.9 29.5
Diethyl ether53,58 047 40.1 18.2
Diiodomethane50 423 44.8 52.5
Dimethylformamide55 117 46.3 39.0
Dodecane54 246 41.4 35.6
Ethanol137 082 44.6 34.3
Ethyl acetate136 116 40.9 27.3
Ethylbenzene142 096 37.4 47.7
Ethylene glycol58 . . . 51.5 47.3
Formamide55,124 625 53.2 46.4
Heptane105,106,144 022 38.2 26.9
Hexadecane49,80 105 39.8 32.5
Hexane144 020 38.8 29.1
Iodobenzene56 283 40.3 42.9
Isobutanol139 151 43.8 38.6
Isopropanol134,139 112 45.4 29.5
m-xylene143 217 38.2 27.3
Methanol137 081 46.4 39.5
Methoxyethanol91 464 44.9 34.3
Methyl acetate135 065 41.9 26.5
Methyl- 159 39.2 36.0
cyclohexane63,96,97,99,118,120,155

n,n-dibutylformamide55 . . . 44.8 37.3
n,n-dimethylacetamide55 485 45.5 46.4
n-butanol137 084 44.8 35.1
n-ethylacetamide55 . . . 47.0 41.6
n-methylacetamide55,134 621 47.1 44.7
n-methylformamide55 466 48.7 25.6
n-methylpyrrolidone55,108 615 46.9 36.0
o-xylene143 158 37.8 47.3

TABLE I. (Continued.)

ID (α + γ) (dyn/cm) RMSD (meV)

Octane144 024 40.4 24.7
p-xylene143 114 37.9 44.2
Pentane79,94,98,100,107,109,119,151 018 38.5 20.4
Pentanol137 085 44.6 41.2
Phenylamine61 232 43.7 36.9
Propylene carbonate58,108 478 49.1 38.6
Pyridine129 115 42.7 32.1
Sulfolane141 . . . 47.8 45.5
tert-butanol139 153 43.5 29.5
Tetraethylene glycol . . . 43.0 36.9
dimethyl ether92

Tetrahydrofuran53,123 054 40.3 31.2
Toluene142 095 38.4 33.4
Tributyl phosphate68 335 42.5 24.7
Undecane54 245 37.7 39.0
Water132 080 57.2 79.4

Average all 37.1 meV (0.856 kcal/mol)
Average non-aqueous 36.4 meV (0.839 kcal/mol)

with the electrostatic energy difference

∆Gel
δn ,nc

= E◦sol,δn ,nc
− E◦vac. (10)

We use the superscript ◦ to indicate a property calculated
from the fully self-consistent electron density and electro-
static potential. E◦sol,δn ,nc

is the respective total energy result-
ing from a DFT-SCCS calculation, while E◦vac is the same energy
in the absence of SCCS described solvent (a regular vacuum
DFT calculation).

The experimental values in our database are not the sol-
vation free energies themselves, but rather given as decadic
logarithm values of the partition coefficients K, which were
determined from experimental solvation data (cf. Sec. II D).
The partition coefficient K is defined by

Ksolvent/air =
[solute]solvent

[solute]air
, (11)

where [solute]solvent is the equilibrium concentration of the
solute in the organic solvent phase and [solute]air is the equi-
librium concentration in the gas phase. Hence, the partition
coefficient describes the distribution of a substance between
two phases, in our case the organic and the gas phase. Using
the concentration dependence of the chemical potential, the
standard-state solvation free energy for neutral solutes can
then be computed from the partition coefficient as

∆Gsol,exp = −RT ln(Ksolvent/air), (12)

where R is the ideal gas constant and T is the temperature.

D. Solv@TUM, the non-aqueous solvation
energy database

All of the parameters presented in this work were fit-
ted to training data collected by us in the “Solv@TUM”
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database, hosted for download at the Technical Univer-
sity of Munich. All of the experimental partition coeffi-
cients used for the determination of the reference free
energies were taken from compilations in publications of
Abraham, Acree, and co-workers (cf. Table I for specific list-
ing of references).49–157 The authors calculated the parti-
tion coefficients from published experimental infinite dilu-
tion activity coefficient, Henry’s law constant, and mole frac-
tion solubility data using standard thermodynamic relation-
ships. For those organic solvents that were almost com-
pletely immiscible with water, partition coefficients were cal-
culated from published water-to-organic solvent partition
coefficient data. For the latter water-organic solvent par-
titioning systems, the slight degree of mutual solvent mis-
cibility has little effect on the partitioning behavior of the
solute.

The different origin of the partition coefficients makes it
difficult to assess the general accuracy of the data. Neverthe-
less, based on those solute/solvent combinations measured
independently by a number of research groups, we estimate
the worst case errors of our logK values as ±0.08. This implies
an experimental accuracy of about ±5 meV for the solvation
free energies contained in the Solv@TUM database. By com-
paring the MNsol database of solvation free energies with the
Solv@TUM database (cf. Fig. S4 in the supplementary mate-
rial), we found a mean absolute deviation of 10 meV, so we
generally expect the experimental uncertainty to be within
5-10 meV. In total, 5952 partition coefficients of neutral
molecules were measured, comprising 148 non-aqueous sol-
vents and 658 solutes. These solutes and solvents range from
small gaseous molecules to large, chemically diverse organic
and inorganic molecules, mainly composed of the classic ele-
ments of organic chemistry, i.e., C, H, N, O, F, Cl, S, Br, and
I, with a smaller subset of 13 molecules containing Si, Ge, Pb,
Sn, Fe, and P. In addition, data on monoatomic species (i.e.,
Hg, as well as noble gases He, Ne, Ar, Kr, Xe, and Rn) are

also included. This set thereby covers a variety of common
functional groups158 as illustrated in Fig. 1(a). The database
contains 884 unique atomic environments, measured by con-
sidering all neighbors up to the 2nd neighbor shell.159,160
As expected from this analysis, and most important for the
fitting models based largely on electrostatics, the isotropic
polarizabilities [evaluated by Density Functional Perturba-
tion Theory (DFPT)161] and dipole moments of the database
molecules cover wide ranges of 0.2–29.9 Å3 (in cgs units)
and 0.0–7.8 D, respectively, see Figs. 1(b) and 1(c). Previ-
ous studies on water as a solvent suggested that the opti-
mized parameters derived from the reference data of purely
neutral solutes are not directly applicable to charged sys-
tems.23 A future goal is therefore the extension of Solv@TUM
to the case of charged solutes that will allow the deriva-
tion of parameters particularly tailored for the modeling of
charged systems as of importance in many electrochemical
systems.

In the final database, we made sure that each solute entry
is unique and has a unique name identifier. The partition
coefficients, vacuum optimized geometries, and polarizabili-
ties and dipole moments of all solutes are provided as a single
structure data file (sdf). To ensure a fast and straightforward
access, a database interface on the basis of Pybel162 and Open-
Babel163 was implemented. This enables a simple, fast, and
intuitive filtered search through the database. Further features
of the database interface and the exact usage are described in
more detail in the manual. The database and the interface are
provided free-of-charge in Ref. 45.

E. Cost function
The accuracy of the computationally predicted solvation

free energies with respect to the experimental reference data
has to be quantified by an appropriate error function. Most
common choices are the Mean Absolute Error (MAE)

FIG. 1. (a) Chemical diversity of the generated solvation free energy database (Solv@TUM). The histogram shows the occurrence of the different functional groups of the
solutes. Only functional groups occurring more than three times are shown in this diagram. [(b) and (c)] Molecular polarizabilities and dipole moments of all solutes.
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MAE(p) =
1
N

N∑
i=1

����∆G
sol
i (p) − ∆Gsol,exp

i

����, (13)

and the Root Mean Square Deviation (RMSD) functions

RMSD(p) =

√√√
1
N

N∑
i=1

(∆Gsol
i (p) − ∆Gsol,exp

i )2, (14)

or even both. Here, p denotes a given choice of parame-
ters. The sums in the above equations go over all N solutes
for which reference data for the solvent of choice is avail-
able. Note that thereby we fit the parameters for each solvent
independently.

While the MAE was extensively used to assess the qual-
ity of implicit solvent parametrizations,21,22,24 we note here
that it represents a uniform weighting of the errors for each
data point. The RMSD, in contrast, has a tendency of being
dominated by the (few) points with the largest deviation. It
is therefore more suitable for validating the transferability of
an effective model which we ultimately want to show here. In
order to demonstrate this, all following results—if not men-
tioned otherwise—are further evaluated with respect to an
independent test set instead of a training set of reference
data.

Use of the RMSD is also the better choice for the param-
eter optimization cost function. Being defined as a sum over
absolute values, the MAE is only a piecewise-defined func-
tion consisting of linear, affine functions. This makes it non-
differentiable and therefore less suitable as a cost function for
most optimization protocols. Instead, we thus minimize here
the residual sum of squares (RSS) function

min
p

RSS(p), (15)

which is defined as

RSS(p) = N · RMSD2(p), (16)

and has its minima at the same positions in parameter space
as the RMSD.

III. RESULTS AND DISCUSSION
A. Reduction of the parameter space

By treating the non-electrostatic part of the solvation
free energy as a post-SCF correction, DFT calculations only
need to be performed on the two dimensional {δn, nc }-grid.
In principle, parameter optimization techniques could directly
be applied to these grid data, ideally leading to a global min-
imum. Before applying such a scheme it is, however, useful
to first assess the shape of the cost function in parameter
space in order to gain a rough overview of the optimization
problem.

We therefore started to evaluate solvation free ener-
gies for N = 30 solutes and the solvent chloroform as a first
example on an n × n parameter space, with n = 5 being the

number of grid points per axis. The non-electrostatic param-
eters (α + γ) and β were optimized (as described in Sec. III B),
at each single {δn, nc } point. This results in an RMSD surface
for chloroform, spanned by δn and nc, as depicted in Fig. 2.
The therein plotted RMSD surface does not show a well sep-
arated minimum in the δn dimension. The very flat parameter
space loosens the impact of a global minimum and suggests
that the δn dimension does not add any physical value to the
model. On the twelve widely spread points in Fig. 2 indicated
by black crosses, the RMSD is minimal with values between
36.7 and 37.7 meV. This removes the need for an explicit opti-
mization of δn and suggests to simply fix it to a constant value.
We decided to set δn = 2.0 which is large enough to pre-
vent numerical instabilities due to very sharp transitions in
the dielectric function ε(r) and yet small enough for a good
computational efficiency. This value for δn will be used for all
subsequent calculations. We note that Andreussi et al. sug-
gested that the smoothness of the dielectric function may be
chosen arbitrarily22 which we confirm here for non-aqueous
solutions also. Furthermore, by transforming the parame-
ter space from nmin and nmax to nc and δn, we are able to
directly utilize this observation and reduce the number of free
parameters.

Figure 2 also shows that the RMSD surface is shallow not
only in δn but also in the nc-dimension. We therefore investi-
gated the sensitivity of the RMSD to the choice of nc. To this
end, we determined the optimal nc values for 17 solvents again
on a set of 30 solutes per solvent, but now choosing n = 25
grid points in the remaining nc dimension. Figure 3 depicts the
optimal values for each solvent as well as the uncertainty
interval of nc for RMSD variations of 10 meV around the min-
imum. Errors of 10 meV are usually acceptable in terms of
solvation energy predictions, in particular, considering the
accuracy of the experimental reference data and uncertainties
inherent to DFT calculations. Furthermore, Fig. 3 shows that a
value of nc = 7.6 yields errors well within the 10 meV range
for all solvents, indicating that the optimization of nc can be
omitted as well. For all following results, we therefore set δn =
2.0 and nc = 7.6, meaning that only a single DFT calculation is
required for any solvent-solute calculation in the optimization
process.

FIG. 2. “Lowest RMSD”-surface as a function of the two DFT-SCCS parameters
{δn, nc } shown as 3D (left) and contour (right) plot. Both plots are reconstructed
from a 5 × 5-grid in {δn, nc }-space. RMSD values within 1 meV of the minimum
are depicted as black crosses in the contour plot. The plot illustrates the flatness
of the parameter space and the possibility of fixing δn to a value of choice.
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FIG. 3. Optimal nc values for a range of non-aqueous solvents and water
plotted as red crosses. The blue lines indicate the nc interval correspond-
ing to a 10 meV uncertainty in the RMSD around the minimum. A value of
nc = 7.6, indicated by the orange horizontal line, lies well within the 10 meV error
range for all solvents.

By treating the non-electrostatic part of the solvation
free energy as post-correction and by setting δn and nc to
fixed values, the RSS cost function can be evaluated for all of
the remaining parameter space from just one single DFT-SCF
calculation. It is easy to show that the resulting RSS func-
tion is strictly convex, which implies that a stationary point
of the function is the unique global minimum. Therefore, the
optimal values of the non-electrostatic parameters (α + γ)
and β can be determined by solving the linear equation
system

∇RSS((α + γ), β) = 0 (17)

(for a detailed derivation, cf. the supplementary material).

Analyzing the optimal values of the parameters (α + γ) and
β for a range of solvents, we discovered that the optimal val-
ues were strongly dependent on the choice of the training set.
This effect indicates that the model might be overfitting the
training set data. Cross validation is an efficient technique for
quantifying such transferability issues of the model. In order to
assess the transferability of the model, we therefore applied
k-fold cross validation with k = 9 as an example of the sol-
vent chloroform and a set of 222 solutes. For this purpose,
we split the reference data randomly into 9 parts (with six of
them comprising 25 solutes and three 24 solutes). Each of the 9
parts is treated once as a disjoint validation set while the train-
ing set is built up from the respective remaining 8 parts. The
resulting optimized (α + γ) and β parameters of the 9 unique
cross-validation runs are shown in Fig. 4. As indicated in the
plot, the optimization of both parameters at the same time
leads to a large variation of the optimal (α + γ)-parameter in
a range between 28.0 and 37.5 dyn/cm. This variation can be
explained by the shallow global minimum of the RMSD func-
tion with respect to (α + γ) and β (cf. the supplementary mate-
rial).22,26 Only a few changes in the training set and thereby
changes in the quantum surface S and volume V are enough
for a noticeable shift of the strict global minimum. These
changes in the parameters, though, lead to only minor changes

FIG. 4. Results of the 9-fold cross validation on the 222 entries of the solvent chlo-
roform. Shown on the left are the optimized (α + γ) values for the different cross
validation runs k (see the text). While large variations are observed for the fitting
procedure with two variable non-electrostatic parameters (blue), the values are
almost constant for a fixed β = −0.5 GPa (orange). This means that optimizing
both non-electrostatic parameters does not match the requirement of solute inde-
pendent parameters. On the other hand, the errors on the test set, depicted on the
right, are equal in both cases. This implies that fixing β does not cause a loss of
accuracy.

in the fitting error, due to the shallowness of the RMSD sur-
face. Thus, for all solvents we considered in this work (also
water), we can fix β to a value of −0.5 GPa without a loss of
accuracy.

In addition to the optimization of both parameters, Fig. 4
depicts the optimized (α + γ) value for β being fixed at β = −0.5
GPa. While the minimal RMSD values are nearly unchanged,
the optimized (α + γ) parameter is now stable at (α + γ)
= 37.5 dyn/cm with respect to the definition of the train-
ing set. Furthermore, if the training sizes would be much
smaller, the two-parameter approach could be even less sta-
ble in the optimized parameters which could also result in a
worse predictability. For the remainder of this work, we there-
fore follow the one-parameter approach, which then removes
the need for running cross-validation. Test sets are accord-
ingly simply selected randomly from the list of data. The one-
parameter approach also has the advantage that it simplifies
the derivation of a parameter prediction scheme in which one
now merely has to correlate a single parameter with solvent
properties (cf. Sec. III D).

B. Parameter optimization
The parameter reduction effectively reduces the need

for DFT-SCCS calculations to a minimum of one per solute-
solvent combination. We therefore decided to consider the
complete set of solutes that was available for a particular
solvent in the database. Solvents with less than 30 solvation
energy entries were not considered due to a possible overfit-
ting to such small training sets. A list of these 67 solvents with
appropriate dielectric permittivity values and the number of
solutes in the dataset is given in Table S1 of the supplementary
material.

The parameter values δn = 2.0, nc = 7.6, and β = −0.5 GPa
were used for all solutes, and only the (α + γ) was optimized
for each solvent. 20% of the available solutes for each solvent
were selected randomly as a test set, and the remainder was
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used for training (cf. Table S1 of the supplementary material
for exact numbers). The optimal (α + γ) values lie in a range
between 36.5 and 57.2 dyn/cm and are listed explicitly for
each solvent in Table I. Additionally, the RMSD on the inde-
pendent test set is listed. If not specified otherwise, all RMSD
errors in this work are errors on an independent test set. The
average RMSD over all solvents is 37.1 meV, and the average
RMSD over all non-aqueous solvents is as low as 36.4 meV.
MAEs and errors on the training sets are listed for each sol-
vent in Table S1 of the supplementary material. Furthermore,
Table S2 of the supplementary material provides the parame-
ters for a different fit using β = 0.0 GPa which is slightly less
accurate for molecular solutes, but could be of possible use,
e.g., for extended slab calculations where the cavity volume is
not well defined.

In order to assess the accuracy of the optimized SCCS
model, we compared the resulting errors to the widely used
SM844 and SMD (“D” stands for “density”) models.21 SMx
models, such as SM8, have been developed since the early
1990s in the group of Cramer and Truhlar,20 with the SMD
model being the successor of the SM8 model. Both the
SMD and the SM8 models showed the best performance
and accuracy in comparison with other continuum solva-
tion models based on polarizable continuum model (PCM) or
Conductor-like Screening Model (COSMO) approaches44 and
have been used extensively in many areas of science.164–166
They are among the most systematically and extensively opti-
mized models for non-aqueous solvents based on a large col-
lection of experimental reference data.34 Both models were
trained on the Minnesota Solvation Database, which, among
others, contains 2140 solvation free energies for 321 neutral
solutes in 90 non-aqueous solvents. From the 67 non-aqueous
solvents of which we determined the SCCS parameters, we
identified 40 as also being part of the Minnesota Database.

Figure 5 compares the accuracy of the SMD and SM8
model (training set error) with that of the SCCS model (test

set error) using our newly derived optimized parameter sets.
For a fair comparison, we calculated the SCCS errors both
on test sets derived from our new database and on the same
Minnesota sets for which the MAEs of SM8 and SMD were
reported.21,44 Most importantly, Fig. 5 clearly shows that the
SCCS and SMx models can reach similar accuracy. Compar-
ing in detail the errors of all schemes on the same test set
(MNsol), the SCCS approach shows, however, also some larger
deviations. These can be attributed to the composition of the
MNsol test set: While the Solv@TUM derived sets are chem-
ically very diverse (cf. Fig. 1), the selected test sets from the
Minnesota database are dominated by a few functional groups,
for which we know that the accuracy of the SCCS model tends
to be worse (e.g., alcohols). Due to the higher flexibility of the
SM8 model using 64 independent parameters and the SMD
model using 37 independent parameters, these approaches
partially show a higher accuracy resulting from the specific
training to these datasets. In contrast, our single-parameter
SCCS approach shows similar accuracy for most systems even
without specific training to these sets. The results therefore
show the high transferability of our scheme which was already
indicated before by the independence of the training set (cf.
Fig. 4). The single-parameter approach also partly averages
out experimental error fluctuations which could result in an
erroneous prediction of solvation effects. On the other hand,
the SMx models are universal models, which means that they
can be applied to every solvent, while the SCCS model is
only applicable to solvents for which parameters have been
calculated. In Sec. III D, we will present an approach with
which the SCCS model gets universal but at the expense of
accuracy.

C. The SCCS-P model: An improved model
for aromatic solutes

So far, we have optimized the SCCS model for non-
aqueous solvents and demonstrated its performance using

FIG. 5. Mean Absolute Error (MAE) for the prediction of solvation free energies of 40 non-aqueous solvents for the SM8 and SMD21,44 and our optimized SCCS model.
Errors for the SCCS model are given as errors calculated on an independent Solv@TUM sub-set and errors calculated on the SMx sets (MNSol). Solvents for which the
difference between our and the SMx errors are large are marked with dotted lines. The difference between the SCCS Solv@TUM and the SCCS MNSol errors for some
solvents can be explained by the composition of these sets. While our sets are very diverse, the sets of these solvents in the Minnesota database are dominated by a few
functional groups, for which we know that the accuracy of the SCCS model tends to be worse (e.g., alcohols). Here we plot MAEs instead of RMSDs as only the former is
given in the available SMx literature. The SMD solvation energies were calculated at the M05-2X/6-31G∗ and the SM8 at the SM8/mPW1PW/6-31G(d) level of theory.
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FIG. 6. Comparison of the RMSDs of
the SCCS and the polarizability modified
variant, the SCCS-P model on random
test sets for a range of solvents from the
Solv@TUM database.

only a single fitting parameter. The non-electrostatic part of
the SCCS model is, however, a relatively coarse approximation
to the physical reality. As an example, dispersion interactions
are generally proportional to the polarizabilities of the inter-
acting systems. Yet, SCCS approximates the polarizability of
the solute as a linear function of the solvation cavity volume.
A straightforward way to improve on the SCCS model could
therefore be to utilize isotropic solute polarizabilities instead
of solvation cavity volumes in the non-electrostatic energy
expression. The energy expression of this new SCCS-P model
then reads

∆Gsol(p) = ∆Gel
δn ,nc

+ (αP + γ)S◦δn ,nc
+ βPα

iso,◦. (18)

The subscript P of α and β here highlights that their values
are different from those in the standard SCCS model. This also
means that we have to apply a different constant value for
βP. In similar tests to the ones performed for standard SCCS,
we found that βP = −4.2 GPa was a suitable choice yielding
low errors for all solvents. The polarizability αiso,◦ can either
be found in extended experimental databases167 or directly
be calculated with Density-Functional Perturbation Theory
(DFPT) in FHI-aims.161 In order not to rely on the presence
of experimental data, we decided here to follow the latter
approach. Nevertheless, we also compared to experimental
values and found an overall perfect agreement (cf. Fig. S2 in
the supplementary material).

Figure 6 shows the RMSDs obtained by optimizing the
(αP +γ) parameter and using the same fitting strategy as before
for the original SCCS model (all values are listed in Table S3 in
the supplementary material). The averaged RMSD reduces to
31.8 meV (0.733 kcal/mol), which corresponds to an increase
in accuracy of about 15%. By correlating the isotropic polar-
izability with the solvation cavity volume, we found a good
linear correlation, but also some distinct outliers, in partic-
ular, for more voluminous solutes (cf. Fig. S6 in the sup-
plementary material). We therefore checked the sensitivity
of the error to the solute chemical composition. From this,
we found that larger solutes as well as solutes with conju-
gated systems lead to more drastically reduced errors than
the complementary small solutes and non-conjugated groups
of solutes in our database. By further separating the RMSD
into errors related to aromatic and aliphatic solutes, we found

that most of the improvement in accuracy is in fact related
to a better description of aromatic solute solvation (cf. Fig.
S7 in the supplementary material). The RMSD of 688 calcu-
lated solvation free energies of aromatic solutes decreases
by 14.3 meV from 43.4 meV (SCCS) to 29.1 meV (SCCS-P),
while the RMSD of 4357 calculated solvation free energies of
aliphatic solutes only decreases by 4.5 meV from 37.3 meV
(SCCS) to 32.8 meV (SCCS-P). In conclusion, the SCCS-P model
requires the calculation of the polarizability for each solute
of interest (or the usage of experimental reference data),
but then yields an increased accuracy in the prediction of
solvation effects, in particular, for larger aromatic solutes.

D. A simple parameter prediction scheme
Not all solvents which could be of potential interest, e.g.,

in battery modeling or electro-chemistry, have already been
experimentally studied in terms of solvation free energies. It is
therefore important to have an approximate method to pre-
dict SCCS parameters also for solvents for which reference
data are missing. For this purpose, we studied the correlations
of the optimized SCCS parameters with the intrinsic solvent
properties. The properties then used in the prediction scheme
should ideally be available for nearly every existing solvent
in order for the scheme to be useful in practice. Examples
of such widely available properties could be the molecular
dipole moment or the solvent’s bulk permittivity. By corre-
lating our optimized (α + γ) parameters for all non-aqueous

FIG. 7. Correlation between the optimal parameter values (α + γ) and the loga-
rithm of the dielectric permittivity. A simple linear regression (orange line) yields a
coefficient of determination (R2) of 82%. This suggests our linear parameter pre-
diction scheme as a first guess for solvents where there are no enough training
data available.
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FIG. 8. Mean Absolute Error (MAE) for
the prediction of solvation free energies
of 50 non-aqueous solvents out of the
Minnesota Solvation Database for the
SM8 and SMD21,44 and the SCCS model
with our parameter prediction scheme.
We here plot MAEs instead of RMSDs as
only the former are given in the available
SMx literature.

solvents with these descriptors, we found a good logarith-
mic correlation with the bulk solvent permittivity, resulting
in an R2-coefficient of 0.82 (cf. Fig. 7). The prediction func-
tion for the optimal SCCS (α + γ) is given by the regression
line

(α + γ) = 3.0 dyn/cm · ln(εs,bulk) + 36.0 dyn/cm. (19)

Analogously, the same parameter in the SCCS-P variant can be
predicted by the equation

(αP + γ) = 2.0 dyn/cm · ln(εs,bulk) + 12.0 dyn/cm. (20)

In order to test the accuracy of the prediction method, we
evaluated the MAE using the SCCS with the prediction param-
eters on 50 solvents out of the Minnesota Database, which
were not part of the linear regression and compared them with
the SM8 and SMD model. As depicted in Fig. 8, the generalized
SCCS model performs impressively well, in particular, consid-
ering the fact that all parameters were predicted. In the case of
non-optimized implicit solvation methods, the most straight-
forward way to estimate non-aqueous solvation trends would
be a change in the bulk dielectric permittivity while leaving
all solvent parameters at a fixed value. Here, we show that
the simplicity of this coarse approach can be retained in our
optimized scheme where the parameters are also predicted
by the value of the bulk dielectric permittivity. This results in
a much higher accuracy and motivates the use of the gener-
alized SCCS scheme for the estimation of neutral, molecular
solvation effects in arbitrary non-aqueous environments. A
future goal will be the extension of this scheme to the case
of charged solutes similar to what has been done before for
the case of water as a solvent.23

IV. CONCLUSIONS
Modeling the influence of non-aqueous solvents on

chemical reactions is of high importance, in particular, in
the field of battery engineering. Implicit solvation models

combined with density-functional theory are, in principle,
able to simulate these effects. This, however, requires first a
parameter optimization to the solvents of choice, which to
date has been only performed for the SMx family of models.

In this work, we first presented a new, extended database
of 5952 solvation energies of neutral, molecular solutes in
non-aqueous solvents. We then used this database to train
the SCCS model available in both QUANTUM ESPRESSO22

and FHI-aims25 for 68 solvents. In this process, we found
that the effective parameter space can be reduced to a sin-
gle dimension per solvent. This leads to statistically stable
optimized parameter sets, which converge quickly with the
training set size. At the same time, the accuracy of the opti-
mized SCCS model reaches an average RMSD of 37.1 meV
and an average MAE of 30.1 meV on independent test sets of
all non-aqueous solvents. This performance is similar to the
SMx series of models which, however, uses up to 54 effective
parameters.

In the case of organic solutes, the description of dis-
persion interactions is essential for the accurate prediction
of solvation energies. To this end, we presented an updated
variant of the SCCS model that uses the solute’s isotropic
polarizability instead of the solvation cavity volume. The
experimental value for the polarizability is available for a wide
range of molecules. Alternatively, it can be calculated straight-
forwardly to a high accuracy via Density-Functional Pertur-
bation Theory (DFPT), e.g., with FHI-aims.161 The resulting
SCCS-P model remarkably improves the description of aro-
matic solutes, for which dispersion interactions are more pro-
nounced. The average MAE thereby reduces to 24.9 meV and
the RMSD to 31.8 meV, making the SCCS-P model the pre-
ferred choice for more accurate predictions of non-aqueous
solvation of aromatic solutes.

In order to also enable the calculation of solvation ener-
gies in solvents not included in our new database, we also
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present a simple scaling relation of the optimized parameters
with the bulk dielectric permittivity. Using this parameter-
prediction scheme, we obtain an average MAE of 32.4 meV
(RMSD 40.1 meV) for the SCCS model and an average MAE
of 27.6 meV (RMSD 34.1 meV) for the SCCS-P model, being
close to the non-predicted value. The mere knowledge of
the solvent’s bulk dielectric permittivity therefore enables an
accurate modeling of neutral solutes in arbitrary non-aqueous
solvent environments by means of the generalized SCCS
scheme.

SUPPLEMENTARY MATERIAL

See supplementary material for a detailed mathematical
background of the optimization scheme. We further provide
convergence tests regarding the non-self-consistent treat-
ment of non-electrostatic solute-solvent interactions as well
as parameter correlation analysis. Convergence tests are per-
formed exemplarily for chloroform as a solvent. The accuracy
of the experimental reference data is assessed by comparing
solvation energies from the MNsol and Solv@TUM database.
We show the high accuracy of the polarizability calculations
by comparing with the experimental reference data. Further-
more, a table is attached with all solvent bulk dielectric per-
mittivities, optimized parameters, and all training and test set
errors. Finally, three more plots visualize the improvement of
the description of aromatic solute solvation by the SCCS-P
method and again all results are tabulated.
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83R. Garriga, F. Sánchez, P. Pérez, and M. Gracia, Fluid Phase Equilib. 138,
131–144 (1997).
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