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ABSTRACT
Background: This study postulates that underlying environmental conditions and a
susceptible population’s socio-economic status should be explored simultaneously to
adequately understand a vector borne disease infection risk. Here we focus on West
Nile Virus (WNV), a mosquito borne pathogen, as a case study for spatial data
visualization of environmental characteristics of a vector’s habitat alongside human
demographic composition for understanding potential public health risks of
infectious disease. Multiple efforts have attempted to predict WNV environmental
risk, while others have documented factors related to human vulnerability to the
disease. However, analytical modeling that combines the two is difficult due to the
number of potential explanatory variables, varying spatial resolutions of available
data, and differing research questions that drove the initial data collection.
We propose that the use of geovisualization may provide a glimpse into the large
number of potential variables influencing the disease and help distill them into a
smaller number that might reveal hidden and unknown patterns. This geovisual look
at the data might then guide development of analytical models that can combine
environmental and socio-economic data.
Methods: Geovisualization was used to integrate an environmental model of the
disease vector’s habitat alongside human risk factors derived from socio-economic
variables. County level WNV incidence rates from California, USA, were used to
define a geographically constrained study area where environmental and
socio-economic data were extracted from 1,133 census tracts. A previously developed
mosquito habitat model that was significantly related to WNV infected dead
birds was used to describe the environmental components of the study area.
Self-organizing maps found 49 clusters, each of which contained census tracts that
were more similar to each other in terms of WNV environmental and
socio-economic data. Parallel coordinate plots permitted visualization of each
cluster’s data, uncovering patterns that allowed final census tract mapping exposing
complex spatial patterns contained within the clusters.
Results: Our results suggest that simultaneously visualizing environmental and
socio-economic data supports a fuller understanding of the underlying spatial
processes for risks to vector-borne disease. Unexpected patterns were revealed in our
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study that would be useful for developing future multilevel analytical models.
For example, when the cluster that contained census tracts with the highest median
age was examined, it was determined that those census tracts only contained
moderate mosquito habitat risk. Likewise, the cluster that contained census tracts
with the highest mosquito habitat risk had populations with moderate median age.
Finally, the cluster that contained census tracts with the highest WNV human
incidence rates had unexpectedly low mosquito habitat risk.

Subjects Ecology, Virology, Epidemiology, Public Health, Spatial and Geographic Information
Science
Keywords West Nile Virus, Public health, Self organizing maps, Parallel coordinate plots,
Data mining

INTRODUCTION
Variations in infectious disease risk occur across environmental gradients and population
groups. Such variations often manifest themselves in geographic space and can be
attributed to complex interactions between the environment, population, and behavior
(Meade, 1977). The underlying processes behind these interactions occur at different,
and often conflicting spatial and temporal scales. Additionally, the data related to those
processes are often collected within different spatial boundaries (e.g., county level
versus census tract verses ecosystem) and for differing research purposes. Attempts to
understand these processes by exploring primary or secondary data sources can introduce
additional levels of complexity due to issues of uncertain data collection contexts (Kwan,
2012), incomplete or unavailable data (Zhang & Goodchild, 2002), or differences in the
underlying questions that drove data collection in the first place (Elliott & Wartenberg,
2004). Further, traditional approaches to model any single complex process of disease risk,
including confirmatory or validation steps, rely on well-defined outcome measures and
a set of clearly specified dependent and independent variables. In order to explore
questions that require coupling more than one complex process simultaneously,
traditional modeling techniques do not appear to be directly applicable and will likely need
modifications to be useful.

Diez Roux & Mair (2010) show that risk can be expressed at different spatial scales and
argue that differential disease risks occur across individual- and group-level characteristics.
Individual characteristics include attributes of the individuals at risk (e.g., age, gender,
income and other personal attributes) while group-level characteristics include the
environmental and socio-economic/demographic context of places to which those
populations belong (e.g., vector habitat conditions, socio-economic and demographic
profiles, and climatic conditions). Collecting data on these characteristics are driven by
various primary questions, measured at various scales, and reported for various purposes.
While the disease ecology triangle (Meade, 1977) provides a robust framework for studying
interactions between human populations, disease agents, and the environment, it is
important to recognize that analytical studies of public health risk must find mechanisms
to reconcile process, scale, and data complexity. Some researchers approach this problem
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with complex multilevel models (multiple scales, misalignment of spatial and temporal
boundaries, uncertain research context of the data—see Diez-Roux (2000), (Edsall,
MacEachren & Pickle, 2001; Edsall, 2003a, 2003b; Kraak & Madzudzo, 2007). However, in
this article, we suggest that prior to developing these analytical models to combine multiple
complex processes, exploratory approaches that use geovisualization techniques may
provide valuable insights for identifying variables and associated processes that contribute
to variations in disease risk across space and time. These types of insights may prove to be a
valuable intermediate step between models that explore environmental determinants of
infectious disease risk, or models that explore demographic determinants of infectious
disease vulnerability, and more complex models that combine both environmental and
demographic variables. We build upon our previous study that used a spatially-explicit
environmental model to assess West Nile Virus (WNV) risk in California based on the
relationship between WNV incidence and mosquito habitat suitability, and here we report
on the visualization of “population” or “human” components of the disease ecology
framework (Meade, 1977) with a spatial lens. While the environmental data used in our
earlier model were of relatively fine geographic resolution (all layers resampled to 120 m
cell size), the study was limited to a county-level analysis due to the non-availability of
both fine-scale WNV disease human incidence data and a related, surrogate parameter,
WNV infected dead bird data reported at the county level. As many public health
researchers lament, our previous analysis would have been more valuable if WNV human
incidence data were available at a finer spatial resolution such as census block groups
or tract (DeGroote et al., 2008). None-the-less, we suggest that geovisualization techniques
can be used to overcome some of these data limitations by enabling hypothesis generation,
seeding confirmatory modeling approaches, and aiding public health practice by
providing a platform for exploring complex interactions between the disease, the
environment within which it operates, and the populations impacted.

West Nile Virus, a vector-borne disease that is primarily spread by the Culex species
of mosquitos, was first detected in the United States in 1999 (Nash et al., 2001).
Several studies have utilized the information from satellite imagery for environmental
characteristics such as temperature, vegetation cover, and moisture (Ozdenerol,
Bialkowska-Jelinska & Taff, 2008; Rodgers & Mather, 2014). Land surface temperature was
attributed as one of the main factors contributing to the WNV propagation in Southern
California (Liu & Weng, 2012). They associated higher temperature to viral replication
in mosquitoes and related lower elevations as more susceptible to WNV invasion due to
warmer temperatures in coastal plains habitats (Wimberly et al., 2008). Mean temperature
during summers, land surface temperature, elevation, diversity of landscape, and water
content in vegetation were the main environmental factors contributing to WNV
propagation in Southern California. High temperature has been consistently associated
with outbreaks and hotspots of WNV activity (Hartley et al., 2012; Reisen, Fang &
Martinez, 2014; Hoover & Barker, 2016), some studies have suggested that certain
mosquito species are associated with more urban habitats (Reisen et al., 2008;
Kilpatrick, 2011; Savage et al., 2014), some have linked drought to WNV outbreaks
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(Paz, 2015; Paull et al., 2017), and others (e.g., Cooke, Grala &Wallis, 2006) have explored
the connections between WNV human infection risk and environmental conditions such
as the presence of streams, vegetation, and roads.

In our earlier study (Kala et al., 2017) geostatistical and spatial analysis techniques were
used to build a spatially explicit model after exploring multiple environmental factors
(i.e., factors directly or indirectly related to known mosquito determinants such as
vegetation, elevation, evapotranspiration, streams, land use and temperature) that linked
mosquito habitat suitability to the number of WNV-positive dead birds, which was used
as a surrogate for human WNV risk. That study concluded that including spatial
heterogeneity in the modeling improved predictive ability in understanding WNV risk.
A geographically weighted regression (GWR) was applied to a statistically significant
ordinary least squares (OLS) model to improve model fit from 61% to 71%. The resulting
WNV disease risk surface was created using multi-criteria decision analysis approach
(detailed process can be referred to our previous article, Kala et al. (2017)). This modeling
process was based upon four steps: (1) establishment of the environmental factors,
(2) standardization of the factors, (3) establishment of relative weights for each factor, and
(4) a Simple Additive Weighting (SAW) method to construct the disease risk surface.

Ruiz et al. (2004) reported that socio-economic factors such as age, income, and
race/ethnicity of the human population can also be important predictors of WNV
infection risk in humans. While many attempts to predict the risk of WNV transmission
have been published, efforts that attempt to link both environmental and socio-economic
factors within a spatial framework have resulted in less than complete understanding of
the complex relationships associated with human infection risk of WNV. In the study
reported here we hypothesize that geovisualization techniques to explore the relationships
between disease outcomes, population characteristics, and the environment within
which they interact will result in a more complete understanding of the complex
patterns related to this disease. A more complete understanding may open doors to more
traditional model development and validation approaches that are familiar to public health
planners.

This hypothesis suggests that an integrated approach to understanding the relationships
of environmental variables and human population demographics on WNV risk should
improve our ability to explore large numbers of possible combinations of the processes
in order to discover potential hidden but useful patterns. However, Guo et al. (2005)
asserted that even in a selected subset of the data it is still a challenge to discover hidden
relationships as potential patterns may be expressed in various forms—perhaps linear
or non-linear, perhaps spatial or non-spatial, or perhaps some such combination.
Geovisualization tools can be useful to support multivariate analysis of geospatial data in
order to highlight these potential patterns. We have attempted to add value to our
earlier GWR model by including information on the spatial characteristics of human
population via geovisualization. The addition of demographic data alongside the
environmental model may provide understanding to public health planners who want to
better understand patterns related to an infectious disease. This added value was
accomplished with geovisualization tools to develop self-organizing maps (SOM) and
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parallel coordinate plots (PCP) to provide insights into the complex processes that
operate simultaneously across environmental and socio-economic patterns of this public
health issue.

MATERIALS AND METHODS
Disease vectors and pathogen reservoirs typically intersect within the context of specific
environmental factors (Rochlin et al., 2011), while the risk of host infection is influenced
by the composition of a susceptible population. For the mosquito vector, the WNV
pathogen and the human host population, environmental and socio-economic factors that
have been identified by previous research studies were utilized in this study. Several studies
have utilized mosquito habitat suitability as a surrogate for estimating WNV risk for
human infection (e.g., Cooke, Grala &Wallis, 2006). In the study reported here, our earlier
mosquito habitat suitability model was used to describe the environmental processes
occurring in our study area, while census tract level demographic data were used to
describe the socio-economic processes at play (see Table 1). Figure 1 illustrates the model
framework including the advantages of using this approach.

In the United States, California ranks third in total area (U.S. Census Bureau, 2012), and
has had the largest population of any state since the 1960’s (U.S. Census Bureau, 1996,
2011). There are 58 counties in California, and 8,057 census tracts (U.S. Census Bureau,
2019). WNV was first detected in California in 2003 (Reisen et al., 2004), and then received
national attention for the high rates of the disease during the following two years (Jean
et al., 2007). Results of WNV vector-borne environmental modeling in California (Kala
et al., 2017) let to this study of combining socio-economic data with the results of the
environmental model using multivariate geovisualization. This study utilized coarse-scale
data (county level) of reported cases of WNV human incidence along with infected
dead bird counts as the basis for estimating WNV risk. Fine scale environmental (120 m
pixels) and coarse scale demographic data (census tract level) were used to define
environmental and socio-economic factors for the study area. The study was conducted
in two phases: (1) mosquito habitat modeling based on environmental factors and
(2) geovisualization techniques based on socio-economic factors. Basemaps for this study
were created either using (1) ArcGIS� software by Esri (ArcGIS� and ArcMapTM are the
intellectual property of Esri and are used herein under license; copyright © Esri; all
rights reserved; for more information about Esri� software, please visit http://www.esri.com),
or (2) Topologically Integrated Geographic Encoding and Referencing system (TIGER) by
the U.S. Census Bureau, which is in the Public Domain.

Study area and environmental and socio-economic factors affecting
WNV
Reported human incidence rates for the study period by county were used to create a
3-dimensional database where the X and Y dimensions were the geographic centroids of
each county, and WNV incidence rates for the county provided the Z dimension.
Those data were then analyzed to generate a spatial 1-standard deviation ellipse (SDE),
representing the contiguous region that contained 1-standard deviation of the reported
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Figure 1 West Nile Virus risk and susceptibility geovisualization modeling framework.
Full-size DOI: 10.7717/peerj.9577/fig-1

Table 1 Variables related to susceptible human population characteristics (composition) and vector habitat characteristics (context) utilized
in this study.

Human population characteristics (demographic
composition)

Mosquito habitat characteristics
(environmental context)

Factors studied
(reference)

Relation to WNV risk Factors studied
(reference)

Relation to WNV risk

Old age
(Jean et al., 2007;
Ruiz et al., 2004)

Weakened immune system Stream, Vegetation, Road
(Cooke, Grala & Wallis,
2006; Kala et al., 2017)

Sites for breeding and resting.

Male sex
(Murray et al.,
2006)

Social history or lifestyle. Temperature
(Kala et al., 2017;
Wimberly et al., 2008)

Increases growth rate of vector, decreases egg development cycle
and shortens extrinsic incubation period of vector.

Race/Ethnicity
(Ruiz et al., 2004)

Increased risk from behaviors
linked to their lifestyle.

Surface slope
(Ozdenerol,
Bialkowska-Jelinska &
Taff, 2008)

Water stagnation creating mosquito breeding ground.

Income
(Ruiz et al., 2004)

Increased risk from behaviors
linked to their lifestyle.

Cultivated land, Developed
land
(Kilpatrick, 2011)

Preferred natural ground pools in cultivated land and warmer
micro-climates in developed lands.
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human WNV incidence rates in California. SDE mapping is a common method used to
identify spatial direction trends of attribute data associated with geographical features.
It has been widely used for geographically identifying disease and crime trends (Chainey,
Tompson & Uhlig, 2008; Wang, Shi & Miao, 2015; Leigh, Dunnett & Jackson, 2016;
Al-Kindi et al., 2017; Ma et al., 2017; Polupan et al., 2017; Butkovic et al., 2019; Lu et al.,
2019; Chen et al., 2020). We used SDE to identify the contiguous region that contained
1-standard deviation of WNV human incidence rates to focus on the counties in California
that would most likely reveal previously unknown patterns of WNV risk and vulnerability,
and defined that region as our study area.

Once the study area had been determined, socio-economic and environmental data
were extracted from each census tract that intersected the ellipse. The dataset contained
seven variables for each census tract. A single environmental variable (referred to in this
study as “mosquito risk”) that represented the results of our earlier GWR model (Kala
et al., 2017) was derived from analysis of environmental eight parameters (stream density,
surface temperature, surface slope, cultivated land, developed land, road density,
vegetation type, evapotranspiration rate). Mosquito risk was found to be statistically
significantly related to annual WNV-infected dead birds sentinel data, averaged for the
2004–2010 (Kala et al., 2017). Annual WNV-infected dead birds sentinel data has been
shown to be useful for estimating humanWNV risk by multiple studies (Eidson et al., 2001a,
2001b, 2001c;Guptill et al., 2003;Mostashari et al., 2003; Ruiz et al., 2004; Johnson et al., 2006;
Nielsen & Reisen, 2007; Patnaik, Juliusson & Vogt, 2007; Chaintoutis et al., 2014).
The mosquito risk model resulted in a risk surface with a range of 0 to 10. Higher values
indicate higher probability of WNV infected birds based on environmental conditions
related to mosquito habitat. For the current study, mosquito risk was extracted for each of
the census tract within the study area.

Numerous studies have shown that a susceptible population’s risk can be influenced by
demographic and socio-economic conditions. For example, Ruiz et al. (2004) and Jean
et al. (2007) suggest that the elderly are more susceptible because they have higher rates of
weakened immune systems. Males and females may have differing vulnerabilities due
to social history or lifestyle (Murray et al., 2006). Ruiz et al. (2004) also suggest that
race/ethnicity or income influence vulnerability due to behaviors linked to lifestyle.
For each census tract in the study area, the following data were extracted from 2010 Census
data: percent of census tract’s population identified as male; percent of census tract’s
population identified as white; percent of census tract’s population identified as black;
percent of census tract’s population identified as Hispanic; median age of population in
census tract, and; median household income in census tract.

Geovisualization techniques
This study utilized a spatially explicit exploratory approach for identifying the interaction
between different environmental (mosquito habitat) and socio-economic (human
demographic) processes occurring in each census tract within a 1-SDE. The approach
consisted of utilizing the risk map with multivariate visualization techniques to facilitate
the exploration and understanding of complex environmental and socio-economic
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patterns within the California data. The analysis was facilitated with SomVis, originally
an open source Java application, that has now been ported to a web-based service
(zillioninfo.com). SomVis was/is an integrated software tool consisting of three
interactively linked visualizations that can help focus attention on patterns of similarity
in complex data sets. The three visualizations used were: (1) a SOM (Kohonen, 2001)
to perform multivariate analysis, dimensional reduction, and data reduction;
(2) a PCP (Inselberg, 2002) to visualize the multivariate patterns with display; and
(3) geographic mapping (GeoMap) to highlight clusters of specific interrelationships.
The geovisualization tools of SOM and PCP have been adopted in many fields of
science for exploring difficult high dimensional and non-linear problems as well as for
visualization of multivariate problems (Edsall, 2003a, Koua & Kraak, 2004; Guo et al.,
2005; Basara & Yuan, 2008; Kaur, Singh & Bahrdwaj, 2013; Brookes et al., 2014; Fanelli
Kuczmarski et al., 2018; Mutheneni et al., 2018). These tools help to display the
high-dimensional datasets, search for hidden relations among the complex set of variables
and transform them into a 2-D pattern recognition problem.

Our study highlights the potential of combining these tools along with GIS to detect and
analyze different hidden patterns within the complex multivariate data. The coupling of
these techniques provides an interesting platform for analyzing larger datasets by
integrating it into a spatially-explicit disease model or by using it for near-real time disease
monitoring. This user interactive data exploration platform helps identify clusters of
complex high dimensional datasets while preserving the topological relationships between
data vectors.

I. SOM is used to reduce the dimensionality of data for data visualization purposes
while retaining the most information contained within the database. It is a unique
partitioning clustering method, which segments multivariate data into non-overlapping
clusters and projects them on a two-dimensional layout. Koua & Kraak (2004) describe
SOM as an unsupervised neural clustering technique that is useful in situations
where the data volumes are large and interrelationships unclear. The approach involves
partitioning the dataset where each element (in this case each census tract within the
ellipse) is classified into one cluster out of a set number of desired clusters—49 in
this study. Clusters contain elements that are similar to each other in terms of the
observations for the statistically most relevant variables in the dataset. Some clusters may
contain many elements (census tracts), while other may only contain a few, but census
tracts within a cluster are more similar to each other than they are to census tracts in
other clusters. Likewise, some clusters of census tracts can be more similar to other
clusters, but are still different enough to be classified as different clusters according to the
feature selection algorithm of SomVis. The clusters are then mapped onto a fixed grid
of hexagons, in our case a 13-by-13 grid of hexagons to assist in data visualization.
Each cluster is represented with a node (circle) whose diameter is linearly scaled
according to the number of census tracts that it contains. Nodes are equally spaced in a
two-dimensional space, and behind the nodes is a layer of hexagons, which are shaded to
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show the multivariate dissimilarity between neighboring nodes. Clusters falling on
bright-tone hexagons are more similar to each other than those in darker tones of these
hexagons.

II. A PCP maps n dimensional space onto a two-dimensional layout by using n equidistant
parallel vertical axes, where n is the number of variables in the data set. Each vertical
axis represents one variable and is linearly scaled using its minimum and maximum
values. Each cluster is displayed as a horizontal polyline intersecting each of the vertical
axes at the point that corresponds to the respective attribute value for this data element.
The thickness of the polyline is proportional to the number of elements in the node
(number of census tracts). The PCP can help visualize the data either using
combinations of variables (cluster level) or for each individual variable (data item level).

III. Geographic mapping of which census tracts fall within any specific cluster or
clusters provides a visual perspective of where the socio-economic and environmental
variables of most interest are located. SomVis refers to these as a Geomap and they
represent the spatial distribution of multivariate patterns. The Geomap provides a
spatial perspective to clusters of similar variables identified using PCPs. These three
visual components allow an array of user-controlled interactions that link spatial
patterns to the underlying data.

RESULTS
Our earlier study (Kala et al., 2017) found that the best-fitting mosquito habitat model
that predicted number of WNV infected dead birds in all counties in California had an
adjusted r2 of 0.71 (r2 = 0.75, p < 0.05). Those results agreed with other research (e.g., Beck
et al., 1994) that found that understanding insect borne infectious disease risk is improved
when considering spatial heterogeneity of the variables that affect the risk. Our current
study, using the same mosquito habitat suitability modeling approach, also found that
environmental modeling of environmental variables is improved when considering spatial
heterogeneity of those variables. Figure 2 provides aWNV infection risk surface map based
on the infected dead bird versus mosquito habitat model.

In this study, we defined our study area as the 1-SDE of reported WNV incidence rates
in California. California has 58 counties; 35 counties intersected the ellipse, representing
a geographically contiguous area that represents approximately 67% of all WNV incidence
rates. The counties within the ellipse averaged approximately 523,000 hectares in size.
Defining this ellipse as our study area was a data reduction approach that allowed focusing
on the most relevant WNV incidence rates. Figure 3 represents the counties, color coded by
reported incidence rates along, with the 1-SDE based on incidence.

Socio-economic (demographic) variables were extracted for all census tracts within the
ellipse. California has 8,040 census tracts, with 1,133 intersecting the 1-SDE. The census
tracts within the ellipse averaged 8,780 hectares in size. Environmental and
socio-economic data were considered simultaneously with SOM analyses. The resultant
SOM identified 49 distinct nodes of census tracts (Fig. 4).
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Each SOM node shown in Fig. 5 (indicated with colored circles) represents a cluster of
census tracts that are most similar in terms of all seven variables. The diameter of each
node represents the number of census tracts in the node. To illustrate how geovisualization
can be used by public health planners, two specific nodes are highlighted for discussion.
First, the cluster that contains census tracts with the highest median age is highlighted
(labeled as cluster 1 and green in color), and is of interest because it is a variable that has
been described as representative of the most vulnerable population (the elderly) to WNV
health issues (e.g., Campbell et al., 2002). Second, the cluster that contains census tracts
with the highest environmental WNV risk (mosquito habitat) based on the GWRmodel is
highlighted (labeled as cluster 2 and blue in color) because of the statistically significant
relationship to WNV infected dead bird count.

Figure 2 West Nile Virus (WNV) risk based on environmental context modeling (i.e., mosquito
habitat risk). Risk is represented by a unitless value that can theoretically range from a low of 0
(zero) to a high of 10 (ten), based on environmental variables that linked mosquito habitat to WNV
infected dead birds as described in Kala et al. (2017). Full-size DOI: 10.7717/peerj.9577/fig-2
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Once SOM nodes are defined, a PCP can be developed to explore the interaction
between different environmental and socio-economic risk factors. The PCP shows seven
vertical axes representing each of the variables under consideration, and 49 polylines
representing clusters of census tracts that are most similar to each other for those seven
parameters. Figure 6 represents the PCP with the polyline for cluster 1 (census tracts with

Figure 3 West Nile Virus human incidence rate by county with a 1-standard deviation ellipse
superimposed. California has 58 counties; 31 counties are contained within or intersect with the
1-standard deviation ellipse. Colors represent quintiles of reported human incidence ofWNV. Built using
ESRI ArcGIS� and ArcMapTM basemap files (ESRI, Redlands, CA, USA). Sources for basemap: National
Geographic, Esri, Garmin, HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA,
increment P Corp. Full-size DOI: 10.7717/peerj.9577/fig-3
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the highest average median age) highlighted in green. The PCP indicates that the census
tracts contained within this cluster average: (1) the lowest percent male (~45%); (2) a
moderate household income (~$60,000); (3) the lowest percent Hispanic (~9%); (4) the
highest median age (~51 years); (5) nearly the highest percent white (~89%); (6) a low
percent black (~1%), and; (7) a moderately high mosquito habitat risk (~6.5).

Figure 4 Census tracts (1,133) within the 1-standard deviation ellipse of human West Nile Virus
incidence rate. Built using ESRI ArcGIS� and ArcMapTM basemap files (ESRI, Redlands, CA, USA)
and Topologically Integrated Geographic Encoding and Referencing system by U.S. Census Bureau.
Sources for basemap: National Geographic, Esri, Garmin, HERE, UNEP-WCMC, USGS, NASA, ESA,
METI, NRCAN, GEBCO, NOAA, increment P Corp, U.S. Census Bureau.

Full-size DOI: 10.7717/peerj.9577/fig-4
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Turning to the cluster with census tracts that average the highest environmental risk
(mosquito habitat suitability),) this cluster can be visualized with the polyline shown in
blue in Fig. 7. The PCP indicates that the census tracts contained within this cluster
average: (1) a moderate percent male (~49%); (2) a moderately low household income
(~$55,000); (3) a moderately low percent Hispanic (~19%); (4) a moderate median age
(~36 years); (5) a moderately high percent white (~79%); (6) a moderate percent black
(~4%), and; (7) the highest mosquito habitat risk (~7.1).

DISCUSSION
After finding a significant relationship between environmental variables related to Culex
mosquito habitat and the number of dead birds infected with WNV, we examined human
incidence rates in California to extract socio-economic data (population demographics
related to WNV susceptibility). Our goal was to use geovisualization techniques to
explore the combination of both environmental and socio-economic information to better
understand this vector borne infectious disease. Out of the very large number of questions
that could be explored with geovisualization, we highlighted two specific ones here:
(1) what are the characteristics of the California cluster that represents the census tracts
with the highest median age, and; (2) what are the characteristics of the California cluster

Figure 5 Self organizing map representing 49 nodes with valid combination of contextual and
compositional parameters from 1,133 census tracts. Size of node (circle) reflects how many census
tracts in the cluster. Darker gray shading of background hexagons represents more dissimilarity to nearby
clusters. Full-size DOI: 10.7717/peerj.9577/fig-5
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Figure 6 Parallel coordinate plot showing 49 polylines representing each cluster; green highlighted polyline represents cluster with the highest
median age. Compositional parameters include average values of all census tracts in cluster for: percent of population that is male, median
household income, percent Hispanic, median age, percent white, percent black. Contextual parameters include mosquito habitat risk based on
environmental parameters related to West Nile Virus infected dead birds. Bold numbers on each axis represent the maximum average value and the
minimum average value for the 49 clusters. Full-size DOI: 10.7717/peerj.9577/fig-6

Figure 7 Parallel coordinate plot showing 49 polylines representing each cluster; blue highlighted polyline represents cluster with the highest
mosquito habitat risk. Full-size DOI: 10.7717/peerj.9577/fig-7
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that represents the census tracts with the highest mosquito habitat risk. Many other
questions can be explored once the data are extracted, but to illustrate the technique, we
will focus on these two questions.

For example, the cluster that contains the census tracts with the highest median age
(~58 years) can be visualized in the SOM—it is the node highlighted in green and labeled
“cluster-1” in Fig. 5. In the SOM, this node is represented with a circle of moderate
diameter indicating that it contains a moderate number of census tracts compared to other
nodes, and it is located in a moderately toned gray area indicating that it is moderately
dissimilar in multivariate space to other nodes in the study area. “cluster-2”, highlighted in
blue in Fig. 5, represents the node that contains the census tracts having the highest
mosquito habitat risk. The node’s diameter is relatively large, indicating that it contains a
large number of census tracts compared to other nodes. Like cluster-1, cluster-2 is located
in a moderately toned gray area, indicating moderate dissimilarity to other nodes.

The 49 clusters were then analyzed with PCP, allowing visual inspection of the
characteristics of the input parameters of each cluster. Cluster-1 (composition includes
highest median age) is highlighted as a green polyline in Fig. 6. Following the polyline for
cluster-1 indicates that in addition to the highest median age, it also contains a group of
census tracts with: the lowest percent males; a moderate median household income; the
lowest percent Hispanic; nearly the highest percent white; nearly the lowest percent black;
and a moderately high mosquito habitat risk. This visualization may suggest to public
health planners that overall this cluster may not be as vulnerable to WNV as the initial
reaction for concern for census tracts with the highest median age might imply.

Cluster-2 (environmental context shows highest WNV mosquito habitat risk) is
highlighted as a blue polyline in Fig. 6. While this group of census tracts represent the
highest WNV mosquito habitat risk, they contain relatively moderate levels of the six
population socio-economic parameters. Implications of the information from this cluster
may also be important to inform public health planning.

Clusters can also be viewed spatially for additional geographic insight. Figure 8 provides
a map of census tracts with the two highlighted clusters isolated. Census tracts colored
green (n = 19) represent those with the highest median age. The non-contiguous nature of
the census tracts associated with this cluster indicates that they are only similar based
on their non-spatial attribute characteristics rather than because of geographical location
or autocorrelation. In contrast, the cluster that contains census tracts with the highest
WNV mosquito habitat risk (colored blue, n = 30) tend to be concentrated in geographic
space. This spatial insight would be valuable to public health planners who may be
planning interventions.

The results from this exploratory analysis suggest that further investigation is required
to fully understand the relationship between age and WNV risk. As mentioned above,
studies have suggested that elderly people are more vulnerable to WNV, but others such as
Carson et al. (2012) shows that WNV infection was greatest for the younger population.
It would be simple for public health planners to want to visualize the cluster that
contains the census tracts with this composition (lowest median age), and use the PCP to
visualize the characteristics of that cluster. If, on the other hand, the planner would rather
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focus on WNV human incidence rates, census tracts that occur in areas with the highest
incidence rates might drive the visualization. For example, Glenn County (near the
northern edge of the SDE in Fig. 3) reported the highest WNV rate during the study
period, so the planner might be interested in finding the cluster(s) that contain the census
tracts of this county. This county has six census tracts, and Fig. 9 shows the PCP
highlighting the five clusters that contain those census tracts. Two of the six census tracts
fall within a single cluster (highlighted in pink), but the other four census tracts each fall in
four separate clusters. These polylines, representing all five clusters that occur in the
county with the highest WNV incidence rates, reveal an unexpected pattern. These five
clusters, all representing distinct combinations of environmental and socio-economic data,
all have a relatively lowWNVmosquito habitat risk. This newly revealed pattern reinforces
a suggestion that WNV disease, like other vector-borne infectious diseases, may not

Figure 8 Geomap showing spatial context of census tracts contained in the cluster (#1 in the
self-organizing map (SOM)) with the highest median age (green) and the census tracts in the
cluster (#2 in the SOM) with the highest mosquito habitat risk (blue). Built using Topologically
Integrated Geographic Encoding and Referencing system basemap files. Sources for basemap: U.S.
Census Bureau. Full-size DOI: 10.7717/peerj.9577/fig-8
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necessarily be contracted in the location where a person lives, but rather where they may
have traveled to locations that represent higher risk areas. The pathogen may be contracted
during outdoor activities in a higher risk area, and then later their disease is diagnosed
by the victim’s local physician and reported using a local address. While that idea is a
common-sense caveat in many vector-borne research conclusions (see for example:
Atkinson et al., 2012, 2014; M’ikanatha & Iskander, 2014; Riddle, 2020), this data mining
geovisualization analysis provides some initial evidence to that effect. The low
correspondence between WNV habitat risk (Fig. 2) and actual incidence of WNV disease
in the population (Fig. 9) highlights why a geographically based visualization of the
relationships between environmental and socio-economic data may be useful.

Additionally, the public health planner may want to explore all clusters represented in
Glenn County in order to understand census tracts outside of Glenn County. For example,
if the focus is on the only cluster in Glenn County that contains more than one census
tract, the planner may want to explore other census tracts outside of Glenn County that are
contained in that specific Glenn County cluster. That cluster represents 21 census tracts
in the study area (see Fig. 10), but they don’t have any spatial relationship to each
other. After visualizing this pattern, public health practitioners may plan on providing
heightened information on detecting WNV symptoms to physicians in those census tracts,
since the environmental and socio-economic patterns uncovered in those census tracts are
highly related to those in Glenn County, where WNV incidence was the highest.

Figure 9 Parallel coordinate plot highlighting the five clusters found in Glenn County, the county with the highest human incidence rate of
West Nile Virus. Pink line represents the only cluster that contains more than one census tract in Glenn County.

Full-size DOI: 10.7717/peerj.9577/fig-9
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These examples of geovisualization data mining to explore environmental and
socio-economic data related to WNV disease in California represent only a few of the
many questions that public health planners may pose. The planners most familiar with the
spatial, temporal and historical setting of WNV in California will almost certainly generate
different questions. Other infectious diseases in other areas will also generate specific
questions to be explored by public health practitioners. Geovisualization will likely provide
unique insights.

CONCLUSIONS
Developing new analytical models that combine environmental and socio-economic
model for infectious disease planning is difficult because the data are often collected at
differing scales, using differing boundaries, and under differing research contexts, each of
which might help explain pieces of an infectious disease independently, but in aggregate
may provide much better insight. This article suggests that an exploratory geovisualization
process can help planners understand the interplay between environmental and
socio-economic data prior to embarking on the difficult development of an analytical model
that accounts for these disparities.

This study explored the use of geovisualization techniques to uncover patterns in large,
complex data sets that would be difficult to otherwise discover. WNV was used as a case

Figure 10 Census tracts, highlighted in pink, within 1-standard deviation ellipse that are in the same
cluster that contains more than one census tract found in Glenn County. Built using Topologically
Integrated Geographic Encoding and Referencing system basemap files. Sources for basemap: U.S.
Census Bureau. Full-size DOI: 10.7717/peerj.9577/fig-10
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study to explore this question—California became the center of United States attention in
2004 and 2005 due to high rate of disease incidence. Geovisualization allowed combining
the spatially explicit environmental factors (mosquito habitat risk) with socio-economic
data (population demographics) in a data mining context to find previously unknown data
clusters at the census tract level. Major challenges for multivariate geospatial mapping
include large data volumes, high dimensionality, and the perception of complex patterns
(Guo, 2009). The research reported here utilizes a spatially explicit exploratory approach
that combines geovisualization, spatial analysis, and computational methods for
identifying the interaction between different environmental and socio-economic factors.
There are multi-level dynamics involved in a disease transmission including complex
environmental procedures and the population dynamics. Our research has explored the
use of spatially explicit geovisualization techniques for identification of interesting clusters
(based on their multivariate similarity) for future investigation. Our results suggest that the
visualization of similarity clustering of multivariate attributes facilitates the analysis of
complex data. It also helps expose the underlying spatial processes that may result in
differential risks. Another advantage of this approach is that patterns found in voluminous
and complex epidemiological data can provide more focused opportunities for analysis
and interpretation by experts in that field. With an interactive user platform,
geovisualization techniques can efficiently obtain new knowledge from the data and
become an important hypothesis-generating tool in public health research. Understanding
underlying environmental and socio-economic characteristics for the occurrence of WNV,
or any infectious disease, is important for mitigating future outbreaks.

We have shown a few examples of how geovisualization could be used by public health
planners to better understand and respond to an infectious disease outbreak. This
approach found 1,133 census tracts within our study area of WNV incidence in California,
and classified those census tracts into 49 clusters where each cluster contained census
tracts that were more similar to each other in terms of WNV environmental and
socio-economic parameters, than to the census tracts represented in all other clusters.
Examples of several interesting patterns were revealed. For example, the cluster that had
census tracts with the highest average mosquito habitat risk only had mid-level median age
levels. Had there been a cluster that had both the highest mosquito habitat risk and the
highest median age, public health planners might choose more intense intervention
measures in those census tracts. Another interesting pattern uncovered was that census
tracts in the county that had the highest reported incidence of WNV had relatively low
mosquito habitat risk. This might lead to a speculation that demographic and
socio-economic parameters should be weighted more importantly than mosquito habitat
risk when developing public health plans. Likewise, this pattern might suggest other factors
like poor links between modeled mosquito habitat risk and WNV risk in areas outside
the training set data or spatial biases in recording effort operating differently at the county
level and the census tract level could be at play. Focusing on those ideas through
geovisualization may reveal other unknown patterns.

This article represents a case study that utilized a retrospective view of a WNV outbreak
in California in the mid 2000’s. At that time, geovisualization tools were quite limited
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and not often used by public health practitioners. Now that the tools are more available,
and much easier to use, a future research program that explores using geovisualization in
near-real time during an outbreak is appropriate. Infectious disease outbreaks occur
frequently, and rapid planning and response are always desirable. Many of these outbreaks
are not well understood, and adequate interventions could certainly benefit from data
mining, geovisualization approaches. For example, at the time of this writing the
Coronavirus (COVID-19) was first reported to the public on 31 December 2019, after the
outbreak was first detected in Wuhan City, China (CDC, 2020). By mid-February 2020,
tens of thousands of cases were reported and news of the virus spreading outside of China
started appearing in January 2020. This outbreak will clearly create a large and complex
dataset, and public health planners would certainly benefit if they were able to explore
geospatial patterns in that dataset in near-real time.
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