Creating a Local Usage

Collection System:
PYSUSHI

CHRIS HERGERT, KAREN HARKER, SEPHRA BYRNE
UNT LIBRARIES

Presenter
Presentation Notes
Hello everyone! I'm Chris Hergert with the University of North Texas Libraries, and today I'm here to talk to you about creating a local usage collection system, with examples from the software we developed, called PySUSHI.
I worked with Karen Harker, the Collection Development Librarian here at UNT, and Sephra Byrne, our graduate student assistant, on this system. They're also here in the viewing room, but I'll be the one doing the talking today.
--->

Overview

* What are COUNTER and SUSHI?

* What are the core requirements for a locally-built usage collection system?
* HTTP requesting, error-handling, report parsing, storage

* Optional: credential storage and querying, automatic request re-sending, and resource matching to holdings

 What's next:

* SUSHI data collection process
* Integrating flat files
* Long-term storage considerations (SQL, NoSQL, schema)

Presenter
Presentation Notes
So, here's the general overview of what I'm going to talk to you about today:
The COUNTER standard is the standardized protocol for delivery and format of usage data, as set out by the COUNTER Foundation.
SUSHI is the transmission protocol that accompanies each iteration of the COUNTER standard. SUSHI defines the automated request/response model for automatically going out and getting that COUNTER data from your usage provider platforms, like EBSCO or Springer.
There are two versions of SUSHI that are really out there right now in the electronic resources ecosystem: SUSHI R4 and R5; these accompany the the COUNTER Code of Practice 4 and 5, respectively.
When you're developing an automated system for getting that usage data via SUSHI queries and then storing it, you need to start with your core requirements: what’s the minimum viable product? From there, you can expand and add features.

To that end, we start with the three parts of the standard ETL process, these are the basic aspects of data engineering: Extract, Transform and Load. Along with those three core functionalities, we’ll also tack on error-handling, because that's a core part of software development. So, first we’re going to EXTRACT this data from the SUSHI server with an HTTP request using our usage credentials. Second, we’re going to TRANSFORM that data into some usable format by parsing out that information from the SUSHI server, and then finally we’re going to LOAD that reformatted data into some long-term storage medium, be that a database or maybe a flat file like a CSV or an Excel file.

After we talk about the process for working with SUSHI data, we'll talk about integrating another module to the SUSHI harvester, one that will help us import those COUNTER-compliant flat files from somewhere like a vendor's usage portal or an email from our vendor service rep. The last thing that I’ll talk about today is long-term storage for our usage data, like a database schema and the pros and cons of different types of database.

SUSHI Data Collection Process

1. Generate request using credentials
* Single platform - credentials may be requested from user or retrieved from storage

* Many platforms — Better to save credentials in a database and retrieve the list of credentials needed for the

requests to be made

2. Submit HTTP-GET request to the SUSHI server and collect server response
* SUSHI server responds with either an XML/JSON load containing either an error message or the requested report

* This is where errors need to be caught

3. Parse server response into a usable format

4. Save data

Presenter
Presentation Notes
So, working with SUSHI. It's not a terribly complex topic to talk about, but it has quirks. For starters, your system may or may not need to address both active versions of SUSHI, and these are handled very differently at the request stage.

For R5, the process is much simpler: we encode the authentication and customization parameters onto the URL for the SUSHI server that you want to send your request to, and then that URL string is all that your HTTP request needs; no headers or XML trees required. Because there are no headers necessary, R5 requests can actually be tested in the browser window, but that’s not practical for reasons that I’ll address later. This is the end of the extraction phase of the ETL, because we’ll have an unprocessed data load at the end of this step.

After we've made this request to the server, we need to take the response and process it. The first thing we need to do is look for an error message, that’ll tell us whether to attempt to transform this data load into something usable or to just discard it and maybe send another request. The server responses here can be tricky, and we’ll get into that later.

Finally, after we've parsed out some usable data, we need to load it into a long-term storage medium. We'll talk about storage methods here, and some options based on the scale of data that you want to store.


1. Generate the HTTP Request

* This is a GET request — easily automated with the Requests library in Python
° R4 — request parameters are largely contained in encrypted header data

° R5 —request parameters are appended to the URL address for the SUSHI endpoint, no headers required

* What is the session-scope intent?
* One platform-report request per session?

* Full sweeps of many platforms in one session?

* Recommended to store credentials in the same location as retrieved usage data — SQL DB or
flat file

Presenter
Presentation Notes
So, the first step of working with SUSHI data is making that initial HTTP request to the platform's SUSHI server. The key authentication parameters to verify your identity to the server are your requestor ID, customer reference ID, and sometimes an API key for R5 platforms.

For platforms whose SUSHI support is still using R4, the authentication parameters need to be encoded into a header; this is easiest done as an XML tree that can then be string-encoded. If you're using Python for this, I recommend using the LXML module to create and serialize your XML tree, and then the Requests library to make the HTTP request.

For R5 platforms, this is much easier. There’s no header to include, just parameters that are URL-encoded onto the SUSHI server’s endpoint URL, and then that’s sent as a GET request.

When you're developing your software or tool, you need to decide early on what your base session-scope is: do your want to run this tool just to get a single report from a single platform, or is your primary goal to sweep up usage from many platforms in one session?

The other big decision that you need to think about at this phase is much less far-reaching: would you like to store your platforms’ authentication parameters in a flat file that the client will query, or would you like them to be manually entered by the user?
If you're planning to store this usage data in a SQL database, then we recommend creating a simple credentials table that your SUSHI client can query fully into its process stack. With quick access to that whole table, it can pull the necessary credentials for each request that it needs to make. This is much faster than querying your database or flat file for the credentials of every platform that needs a request made.

2. Send Request and Collect Response

* |If a SUSHI server is backed up or cannot complete a request within 120 seconds, it must
return a queueing message
* If request is queued, the SUSHI client should re-attempt this request in two to five minutes.

e Submitted via HTTP-GET in both R4 and R5, but R5 requests can be tested in browser

* Response codes:
 Standard HTTP status codes, primarily 2xx/4xx

Presenter
Presentation Notes
Okay, so now you’ve generated the request and queried a platform’s SUSHI server; it’s time to collect the server’s response and interpret it.

If the platform's SUSHI server can't completely service that request within 120 seconds, it will respond with a message indicating that the request has been queued. Usually the request takes less than 30 seconds to be processed, but it may take longer for very large reports. If your task is to work through a series of platform requests, you can either move that request to the end of your list and continue, or you can simply have your client wait for a few minutes if this is the only request you need or if time isn’t critical.
 -	One warning about re-sending requests: some platforms will lock you out for an hour or two based on your IP address if you send too many requests in too short a time frame, like a ten-second span.

Due to the simplified nature of the requests for SUSHI R5, you can actually test R5 platform authentication and report customization parameters in your web browser, although this isn’t practical for a production-level system because copy-pasting from your browser directly into another tool for parsing can lead to issues like encoding errors. The standard encoding for R5 reports is UTF-8, which is a common default for RESTful APIs, but your computer doesn’t necessarily know that, and most free JSON parsing applications attempt to infer the encoding based on the data, and this isn’t always reliable.

If you want to test your platform or customization parameters, you simply append the parameters to the platform’s URL, then paste that complete address string into the URL bar of an internet browser. That’ll send the request to the SUSHI server, which will display the JSON-formatted server response.

The response codes for these requests are, by requirement, the standard HTTP status codes: a 200 for a success, and codes in the 400s for errors.

3. Parse Server Response

* Algorithmically parse JSON or XML tree data into a data table
* In Python, can use Pandas table for R-style dataframes as tables
* Ignore the top 4-5 layers of the tree (4 for R4, 5 for R5)

* If writing a custom parser:

Create a dataframe with desired column when report load is received

Start at first item node

Generate a blank array with length = table width

Populate blank array with item node attributes, selecting desired attributes by tag.
Add populated array to dataframe

N

Move to next item node and repeat from step 3 until all item nodes have been parsed

Presenter
Presentation Notes
Recommend using Pandas for dataframe -> table handling
You can likely ignore the top several layers of the XML/JSON response tree for report loads, since these will be your own identifying information reconstituted into a report wrapper.
Here's the algorithm for parsing out the tree. If anyone here has taken a data structures class at some point, this is a very standard breadth-first tree-searching algorithm, but without a termination condition except that the tree is completed. At the end of the search, the tree will have been completely converted into a tabular report that can be moved into long term storage
-->

4. Save Data in Long-Term Storage

* Need long-term storage appropriate to data format (SQL vs. NoSQL)
* NoSQL if data still in tree form, SQL if data has been normalized/tabularized

» After compiling dataframes to be moved into long-term storage:
 If moving to flat files, iterate through the files and save to a flat file via object methods to save computation
* If moving to a database:
1. initialize database connection and cursor (if in Python, PyODBC is recommended)
2. Insert each dataframe into the appropriate storage table via one of the following:
* Bulk insert query for each dataframe

* |terate through each dataframe and insert by-row into the appropriate table

Example: Hand
Sweep (PySUSH

INg S

F

WOr

¢

ow)

USHI| Request

Get credentials

from database

e Exported
ol from SQL
Server

database

e One row per
platform-
report to
collect

Make HTTP-GET

request

e Python
® Parse each

Requests report from

XML/JSON
into a
DataFrame

e Log SUSHI
messages in
database

_

Collate data

e For each
report type
(TR, DR, JR1,
DB1, etc),
assemble all
reports
collected into
a single
DataFrame

Import into

usage database

e |[nsert each
Sﬁ compiled
o)l DataFrame

into database

table for that
report type

e DataFrame
schema =
table schema

_ J

SQL Server

Presenter
Presentation Notes
Here, we’re going to get just a little more in-depth with how the system works.
- To start, we export the table of platforms, credentials, and reports to be pulled from the database, and store it as a dataframe in local memory.
- Next up, we cycle through each row of this dataframe, checking each report-type column and requesting the data from the server for each marked report-type.
- After each report is pulled and parsed, it’s added to the stack for that report type, and after all of the reports are pulled, we take each one of these stacks and collate it into a single dataframe for that just the reports of that report type.
- Now that we have a series of big dataframes, we save each one locally as a CSV, and then we trigger an import package from the database that pulls in each one of - these CSV files to the table for that report type, where the table schema already matches that report’s schema.

Integrating Flat Files

* Flat files are distinct data files that are generally able to be manipulated at the user level
* Usually in a common file format like XLSX/CSV/JISON/TXT

* Different formatting based on COUNTER COP
e COP4 -7 info rows above column headers

e COP5 -13 infor rows above column headers
* Upon reading file content into long-term storage, should the file be deleted or archived
* Storage constraints are often the final deciding factor
* Logging is critical because files will pile up
* Only handle a file (as a delete/archive) after the file's contents have been uploaded and logged
* Multiple failures to upload a single file can cause a single file's logs to pile up

Presenter
Presentation Notes
When you're integrating flat files into your automated usage collection system, the process may seem straightforward – you read in a CSV, you do a little data manipulation, and then you move it into long-term storage, what could be easier? There are just a few problems to think about:

First, what do you do with those downloaded files? You want to put all of your files in the same folder so that they can be swept up efficiently by your program, but you don't want that folder to fill up with files that have already been stored, so do you delete the files that have been successfully uploaded, or do you archive them to another storage location?

We choose to archive our old data files for future reference in case there's an issue, but your storage space on your computer or a networked drive will generally be the determinant here. If you don't have the space to archive data files, then just read their contents into your database or other long-term storage and then delete the files.

One more consideration is WHEN to either delete or archive those files; you don’t want to do it immediately after reading the file into memory, because any issues that prevent a successful upload of those contents into your long-term storage will mean that you either need to go fish that data file out of your archive folder or go and download it again. The fix here is to not move or delete any files until after the contents have been moved from program memory into long-term storage, and the success has been logged.


Long-term Storage: SQL vs NoSQL

* SQL:

* PRO: more commonly used in academic structures, libraries probably already have MS suite available

* PRO: Easy interfacing with most programming languages via existing modules, easily converts from existing flat
files like CSV/XLSX

* CON: Requires normalizing all SUSHI data into a tabular structure
* NoSQL:
* PRO: Maintains the hierarchical structure of SUSHI data
* CON: Unlikely to be available at most libraries unless Couchbase or MongoDB is in use
* CON: Querying can be an unfamiliar process, even when SQL querying converters are available

Max Table Size | DB Recommendation

250 rows SQLite

10,000 rows MS Access
100,000 rows MySQL
Beyond 100k MS SQL Server

Presenter
Presentation Notes
Okay, last topic: long-term storage in databases. We use a SQL database because it’s an efficient and established way to store longitudinal data that needs to be relational, but there are downsides to this as well as upsides and downsides to a NoSQL database.

For starters, SUSHI data comes to us in a tree format, and that requires that it be normalized into a tabular structure; that process is most of the transformation phase of working with SUSHI data. For NoSQL databases like CouchBase or MongoDB, however, the data can be stored directly as a JSON-formatted document with the hierarchy preserved.

The cons to a NoSQL database are the opposites of some of the pro’s of a SQL database: availability. Libraries and universities don’t generally use NoSQL databases outside of a computer science department, so the products may be unavailable and the querying may be unfamiliar. The other issue is that reading a CSV or an Excel file into a NoSQL database is often a bit of a convoluted process.

The last topic here are storage recommendations: here are a few SQL database products for developers to look at based on the scale of data that you anticipate working with. I’ll say this: I generally don’t recommend SQLite or Access for usage data storage; neither has anywhere near the storage capabilities for the data that most libraries will gather in a year.


Long-term Storage (Cont'd)

Reports Reports Credentials
* Match platform identifiers ReportID PlatformlD
with reports to collect for Platform SUSHIAvaliable
that platform PlatformID RequestorID
CustomerID
Credentials i

* Credentials for each APIKey
platform, with a platform
identifier to link to Reports
table

DR/TR/JR1/DB1/BR1

* Usage tables, each holding
all reports of that type Querying

and Parsing

Presenter
Presentation Notes
Okay, so this is a sample system diagram for a SUSHI-harvesting client like the one we have. You have your table of reports to gather and then your table of platform credentials, which is joined to the reports table by a platform identifier, and these are jointly queried by the client software.

The client takes that list of reports to gather, along with the credentials, then makes the requests and transforms the results. Finally, the client then stores the report data in a table for each type of report.


Questions

Presenter
Presentation Notes
Okay, so that’s about it!

Any questions?

	Creating a Local Usage Collection System: PySUSHI
	Overview
	SUSHI Data Collection Process
	1. Generate the HTTP Request
	2. Send Request and Collect Response
	3. Parse Server Response
	4. Save Data in Long-Term Storage
	Example: Handling SUSHI Request Sweep (PySUSHI workflow)
	Integrating Flat Files
	Long-term Storage: SQL vs NoSQL
	Long-term Storage (Cont'd)
	Questions

