
 

 

 

 
 

 

  

APPROVED: 
 
Song Fu, Major Professor 
Yan Huang, Committee Member 
Xiaohui Yuan, Committee Member 
Hui Zhao, Committee Member 
Stephanie Ludi, Interim Chair of the 

Department of Computer Science 
and Engineering 

Hanchen Huang, Dean of the College of 
Engineering 

Victor Prybutok, Dean of the Toulouse 
Graduate School 

RELIABILITY CHARACTERIZATION AND PERFORMANCE ANALYSIS OF 

SOLID STATE DRIVES IN DATA CENTERS 

Shuwen Liang 

Dissertation Prepared for the Degree of 

DOCTOR OF PHILOSOPHY 

UNIVERSITY OF NORTH TEXAS 

December 2021 



 

Liang, Shuwen. Reliability Characterization and Performance Analysis of Solid 

State Drives in Data Centers. Doctor of Philosophy (Computer Science and Engineering), 

December 2021, 124 pp., 27 tables, 40 figures, 98 numbered references.   

NAND flash-based solid state drives (SSDs) have been widely adopted in data 

centers and high performance computing (HPC) systems due to their better performance 

compared with hard disk drives. However, little is known about the reliability 

characteristics of SSDs in production systems. Existing works that study the statistical 

distributions of SSD failures in the field lack insights into distinct characteristics of SSDs.  

In this dissertation, I explore the SSD-specific SMART (Self-Monitoring, Analysis, 

and Reporting Technology) attributes and conduct in-depth analysis of SSD reliability in 

a production environment with a focus on the unique error types and health dynamics. 

QLC SSD  delivers better performance in a cost-effective way. I study QLC SSDs in terms 

of their architecture and performance. In addition, I apply thermal stress tests to QLC 

SSDs and quantify their performance degradation processes. Various types of big data and 

machine learning workloads have been executed on SSDs under varying temperatures. 

The SSD throughput and application performance are analyzed and characterized. 
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CHAPTER 1

INTRODUCTION AND MOTIVATION

Whereas even a few years ago a terabyte was seen as a large amount of data, today

individual application can generate petabytes of data per day. Some examples include: 500

terabytes of new data per day are ingested in Facebook databases; launching a series of

XGC1 simulations on the Titan supercomputer at Oak Ridge National Laboratory (ORNL)

needs to write out 100 petabytes of data in order to capture all of the turbulence data.

The explosion of big data continuously pushes the expansion of storage systems in order to

accommodate data at this scale.

Over 90% of the world’s new information produced annually is stored on magnetic

media, most of which are low-cost, high-capacity hard disk drives (HDDs). Datacenter

owners all have mission-critical workloads and need to guarantee the quality of service to

their customers, which are heavily reliant on their storage systems.

However, disk drives are reported to be the most commonly replaced hardware com-

ponents, accounting for 78% of all hardware replacements [30]. The annualized failure rate

(AFR) of disk drives can reach 15% [75], with 2-4% common for enterprise-class drives and

8-9% for consumer-grade drives. A modern datacenter usually has tens to hundreds of thou-

sands of disk drives installed. At such a scale, disk failures are common with tens of instances

every day, not to mention more logical failures that make disk drives inaccessible [52].

The current solutions to disk failures rely mainly on disk rebuilds [70]. As data

generated by applications get bigger and so do disk drives, time to rebuild a failed drive is

extended, causing tens of hours of data disruption. For helium-filled hard drives, due to the

larger capacity and the slower increase in performance, their rebuild time can reach several

days. In large storage systems, more disk drives may fail during disk rebuilds, resulting

in data loss and significant performance degradation. Storage downtime and data loss cost

enterprises $1.7 trillion per year [93].

In recent years, a new trend in storage systems is that NAND flash-based solid state
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drives (SSD) have been widely adopted in data centers and high performance computing

(HPC) systems due to their better performance compared with the traditional hard disk

drives. However, little is known about the reliability characteristics of SSDs in production

systems. Existing works that study the statistical distributions of SSD failures in the field

lack insights to distinguish SSDs from hard disk drives. Moreover, as the SSD technolo-

gies advance, the cost-effective quad-level cell (QLC) NAND based SSD has dominated the

high-end storage market due to the booming Big Data analytics and data-driven Artifi-

cial Intelligence tasks requiring faster data access and larger data storage. As a result, the

landscape of data centers evolves rapidly.

In this dissertation research, I investigate SMART (Self-Monitoring, Analysis, and

Reporting Technology) attributes for in-depth analysis of the reliability and performance of

HDD and SSD in production date center environments. With a focus on the unique error

types and health dynamics of SSD architecture, I leverage machine learning technologies,

such as data clustering and correlation analysis methods, to discover groups of SSDs that

have different health status and relations among SSD-specific SMART attributes.

In the SMART analysis of HDD, I aim to uncover the entire process in which disk’s

health deteriorates and forecast when disk drives will fail in the future. I model the disk

degradation process independent of time, and the intensity of I/O workload, and leverage the

derived degradation signatures to forecast when drives will fail in the future. I have developed

a prototype of proactive disk failure management system and tested its performance using

the SMART data collected from an active data center with approximately 23,000 enterprise-

class disk drives, and generalized and verified the methods on a public dataset published by

a storage provider.

As the dominant workloads in a modern data center have more read requests than

write requests, the latest SSD technologies such as QLC provides a cost-effective solution

for data centers’ storage systems. In addition to SMART analysis, I study the performance

and reliability of QLC SSDs. QLC SSDs deliver better flash storage performance at the

cost that is comparable to the traditional hard disk drives and MLC and QLC SSDs. In
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this dissertation, I analyze the impact of the QLC technology on the landscape of modern

data centers. For example, how could read-intensive applications such as real-time analytics

and deep learning applications benefit from QLC technologies, while balancing the cost and

ensuring data reliability and quality of service? Moreover, I stress test QLC SSDs under

different temperatures and different types of workloads. I characterize the performance

degradation of QLC SSDs under stress tests.

Besides, I explore the state-of-the-art QLC SSDs from the system architecture’s per-

spective and quantitatively showcase the key advancements against previous technologies.

This study includes a comprehensive characterization of all major types of SSDs and discus-

sion of factors that play an important role in affecting SSDs’ performance and reliability in

real-world environments.

1.1. Total Cost of SSD Reliability

1.1.1. Hardware Cost

Hardware cost, in my studies, is mainly defined as disk retirement and replacement

costs. Although the reliability of disk drives has increased over the past few years, disk drives

are reported to be the most commonly replaced hardware components in storage systems,

accounting for 78% of all hardware replacements[87][76]. Even though some studies showed

that the failure rate of SSDs is much lower than that of HDDs [77][10]. A field study on

the data collected from Google data centers for over 6 years found that SSDs encountered

an infant mortality in their first a few years of use, ranging from 4% - 10% depending on

different models. Moreover, as writes and erases to an SSD wear it out gradually, after a

certain number of operations, the SSD should retire to keep storage reliable.

1.1.2. Data Management Cost

The booming of cloud computing, edge computing, online services and data-driven

artificial intelligence applications results in large scale storage systems. In my studies, the

data booming cost refers to the cost that accounts for data processing and data storage due

to the rapid increase of the volume of data.
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New data generation is tremendous faster than storage developed. In 2014, Forbes

sees that every day, human beings create 2.5 Quintillion Bytes(equals to 2.5e+8 Gigabytes.)

of data from those sources. Even despite the fact that some data do not go through storage

systems, we still can expect more than 150 Zettabytes (equals to 1.5e+14 Gigabytes) of data

that will be required to analysis by 2025[21]. Facing such amount of data, storage devices

in data centers are facing a great challenge: how to maintain such growing amount of data

for a relatively limited storage space and power supply?

1.1.3. Data Recovery Cost

Data Recovery Cost is an additional cost to deal with data integrity, data loss, and

data recovery, including time cost as well as other resource costs. The data recovery cost is

mass due to some reasons.

First, the storage recovery process is slow and inefficient. In modern data centers,

disk drives are assigned to different RAID systems. Disk drives failure leads to the RAID

system to process the data restore procedure. The data recovery process is time-consuming.

For example, a 4TB drive may take a day or even longer to rebuild. At the same time,

when the RAID system involves intensive I/O, its normal performance to applications and

operating systems will also be downgraded or even worst, unavailable.

Moreover, the recovery process is passive. The recovery processes of existing storage

systems are mostly passive. It occurs only after disk failure happened. In order to rebuild the

data, the storage system needs to suffer expensive parity computations before writing down

the data to the new disk. Thus, in addition to writing the data to a new disk, computing

parities to rebuild the original data takes most of the time and power.

Last but not the least, the data recovery process may lead to more disk failure. The

data recovery process is a computation and I/O intensive process. The possibilities of disk

failure during the data recovery process is much higher than in normal situations. So, while

the RAID system is recovering the data from the first failure disk, there is a second disk

that may be about to fail. For RAID 6 and RAID 10, they may tolerate 2 disk failures. But

for the most popular RAID 5 that most data centers adopted, 2 disk failure means data is
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forever lost.

1.2. Motivation

In response to the massive data explosion and thanks to the development of lithogra-

phy technology, more and more data centers adopt SSD as their new storage devices.Traditional

data centers rely on massive arrays of HDD to provide higher aggregated performance, how-

ever, switching to SSD storage can achieve paralleled performance with a much smaller data

center footprint; this eliminates unnecessary rack space, cooling costs, power consumption

and maintenance effort. The memory-storage hierarchy in data centers has been shifting

from using HDD as permanent storage to using SSD or a fusion of Flash cache and HDD

storage. While their deployment is increasing, the endurance of SSD still remains as one of

the main concerns.

Ever since SSD were introduced to the enterprise market many years ago, its density

continues to improve thanks to the advances of semi-conductor technology. Depending on the

number of bits stored in each flash cell, there are four basic types of NAND flash used in an

SSD. Each type have its own distinct performance, cost, endurance, and density trade-offs.

Single-level cell (SLC) requires 2 voltage levels (i.e., 0 and 1) to store 1 bit of data, offering

highest write performance and endurance at the cost of price and density. Multilevel cell

(MLC) requires 4 voltage levels to represent 2 bits of data (i.e., 00, 01, 10, and 11). Triple-

level cell (TLC) and Quadruple-level cell (QLC) requires 8 and 16 levels of voltage to store

3 and 4 bits of data, respectively. As the data density increase, the price per bit lowers, but

the endurance and write performance decreases as a result.

Because endurance is such a vital component to the SSD, it is the primary concern

to many data centers that are adopting SSDs. As SSD technology uses NAND flash, the

inherent wear-out characteristics of the NAND flash directly effects the durability of the

SSD. NAND flash chips are non-volatile, meaning they retain data without a constant power

supply. Furthermore, because NAND flash based SSDs does not have moving parts involved

during operation, they are more resistant to sudden shocks and extreme environments than

their HDD counterparts. On the flip side, the NAND flash will eventually wear out as data
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writes accumulate overtime. If the amount of data written to the device exceeds its life span,

NAND flash based SSD will gradually lose the ability to retain charge and the ability to retain

data integrity. Even though SSD employs several techniques to improve endurance, e.g., wear

leveling, garbage collection, and chip-level RAID, performance and reliability degradation

is irreversible. A deeper understanding of SSD endurance and reliability in data centers is

vital.

1.3. Organization of this Dissertation

In first part of this research, I perform an in-depth analysis of SSD reliability using

SSDs’ SMART data collected from an scalable, active production environment. The SSDs

are used as caching devices from approximate 300 servers spread across several data centers

in the United States. The SSDs in my dataset are all MLC SSDs that considered the most

reliable flash type than others. The dataset contains six-months of SSD SMART data. I use

machine learning models and statistical analysis to investigate more than 20 SSD-specific

performance and error-related SMART attributes from over a million complete records.

In the second part of this research, I evaluate the QLC technology’s impact on the

landscape of modern data centers. I study the latest QLC technology, which improves

the SSD economics and fills the much-needed gap between MLC/TLC SSD and legacy HDD

storage, from an architecture level to evince its key advancements over previous technologies.

This storage paradigm transition enables more read-focused workloads to be migrated from

dated HDD based storage to flash, thus releasing the expensive and limited MLC/TLC

resources for write-centric applications. I evaluate two real-world QLC SSDs performance

and compare them against state-of-art SSDs using MLC and TLC technology.

The third part of this research focus on the stress test of QLC SSD. I discuss the

increasing temperature effecting on the performance degradation. In this section of the dis-

sertation, performance degradation is quantified and evaluated under different temperatures

and different types of workloads.

In the following part, I develop a proactive disk failure management system for HDD.

The disk degradation model and proactive management method can capture the dynamics
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of disk health and accurately forecast failure occurrence time, which enables datacenter

operators to protect the system and user data before the disk failures really happen.

In the last part of the dissertation, I develop an on-drive reliability management

paradigm – ACTOR, using open Ethernet drives to address the scalability and reliability of

data. I test the the ACTOR and evaluate performance of the platform.

The remainder of the dissertation is organized as follows. Chapter 2 presents the

background knowledge of the disk drives, storage system reliability, and the architecture of

3D NAND. Chapter 3 describes the data sets and analysis methods. Chapter 4 character-

izes SSD endurance and reliability analysis. In the next chapter, I evaluate the QLC SSD

performance for modern data centers. Chapter 6 discusses the QLC SSD performance in ac-

celeration tests. And chapter 7 discusses the failure prediction prototype for HDD. Chapter

8 introduces the data placement design ACTOR via open Ethernet drives and evaluates its

performance. The last chapter concludes the paper with remarks on future research.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1. Fault Modes of Disk Drives

Most disk drives do not fail in a simple fail-stop way. The production data center

that I study defines a disk failure in three cases: the system loses connection to the disk,

an operation exceeds the timeout threshold, or a write operation fails. Those drives that

cannot function properly are replaced.

Operations to drives may be invoked by read and write calls from the file system as

well as by an internal disk scan process which checks sectors’ reliability and accessibility in

the background. There are several types of disk errors. Read or media error occurs when a

sector cannot be read either during a normal read operation or in a background disk scan.

Data previously stored in the sector is lost. A status code, specifying the reason that the

read fails, is reported. Reallocated sector happens after a number of unsuccessful write

retries. The drive re-maps a failed write to a spare sector. Disk drives usually reserve several

thousand spare sectors. Unstable sectors detected in the disk scan process are marked as

pending sectors. Disk drives then try to correct the errors using Error Correcting Code

(ECC). Sectors that cannot be successfully recovered are called uncorrectable sectors. Seek

errors occurs when a disk drive fails to properly locate a track and needs another revolution

to read from or write to a sector.

Similar to HDD, SSD manufacturers have their proprietary FTL policies to manage

ECC, wear-leveling, and garbage collection. Thus there exists a variety of reliability charac-

teristics of different SSDs. For example, reading and writing data causes wear of flash cells,

which degrades SSD reliability gradually. A number of prior works studied the correlation

between wear and increased of error rate[37, 41, 62, 63, 65, 77]. Wear-leveling is designed to

distribute data across SSD to address this issue.

Retention errors that are caused by the leakage current increase with usage [29, 38, 34,

44, 56, 94]. If not confined or corrected in time, retention errors quickly propagate. As read
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and programming operations can affect the threshold voltage of the neighboring blocks[31,

33, 53, 54, 85], causing untouched cell susceptible to read disturb errors and program disturb

errors. Besides wear-leveling, FTL uses ECC as a countermeasure to prevent the above-

mentioned error propagation to the upper data hierarchy, that is checksum in each page of the

spare space is used by ECC to protect against these errors. If the number of bit errors exceeds

the capability of page-level ECC, SSD controller performs error correction at the host driver

level by using more complex error correction algorithms. From the SSD’s perspective, page-

level ECC are correctable errors, while host driver level ECC are uncorrectable errors. When

the number of uncorrectable errors in a block exceeds a preset threshold, FTL marks it as a

bad block and remaps the data to a reallocated block in the spare space. SSD manufacturers

are conservative about the endurance rating and reserve a considerable amount of space for

remapping data from bad blocks.

2.2. Anatomy of SSD Architecture

C
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r ···
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Figure 2.1. Example of an SSD Physical Layout.

In this section, I discusses the general architecture of SSD. From physical to logical,

this section mainly focuses on the construction of the SSD and how data flows in each SSD

components.

Physically, an SSD mainly consists of the following components.

• Controller.

9



• NAND flash memory chips.

• Connector.

• Integrated Circuits (ICs).

• Resistors, inductors, and capacitors.

• Printed Circuit Board (PCB)

2.2.1. Controller

Table 2.1. Features of SSD Controller

Feature∗ Description

Flash Translation Layer

(FTL)

Map logical address (LBA) to physical address in the

flash memory [59].

Bad Block Mapping Map the bad block’s logical sector to reserved sector

when bad block is detected [18].

Wear Leveling The mechanism that maps re-writed/updated data to

a new location and marks the previous location as ”in-

valid”. Meanwhile, cold data will also be moved around

periodically to provide evenly wear among each cell [36].

Error Correction (ECC) Detect and correct memory bit errors(or soft errors).

Hamming code and parity bit error detection schema

are widely used in SSD [18].

S.M.A.R.T. Monitor and report SSD health status. Some SSD

S.M.A.R.T. attributes are pre-defined, some are manu-

facturer defined [17].

Encryption/Decryption Controller support encryption/decryption to ensure

data security; it typically uses the 256 AES encryption.

Encryption can be applied to partial or whole drive.[18].
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Garbage Collection the controller erase invalid data blocks periodically

to ensure the available space for new write request.

Garbage collection typically runs in the background

during idle time [18].

I/O Caching store frequently used or recently used data to exploit

spatial and temporal locality.

Data scrubbing The mechanism that verifies the integrity of each mem-

ory block periodically. If a bit error is detected, con-

troller will invoke ECC to correct in the same memory

location. Data scrubbing is usually operated in disk idle

time [18].

Power Management To improve power efficiency for SSD, especially when

used in mobile devices, the controller manages power

consumption for the SSD in different states: active, idle,

and slumber.

Trim Support Enables the operating system to notify SSD on which

data blocks can be erased [20].

Thermal Throttling With the internal thermal sensors monitoring the envi-

ronment temperature, SSD controller will reducing the

I/O speed when overheating.

∗Features of proprietary controllers are not included.

An SSD controller works like a central manager that in-charge of all the NAND chips

in the drives. The modern SSD controller is also a powerful ”brain” as it is capable of

managing different kinds of jobs; it executes firmware-level code, manages I/O requests, and

ensures data integrity and storage efficiency. In particular, it manages bad blocks, enforce
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wearing leveling, monitors disk health, and handles garbage collection. Table 2.1 summarizes

universal features that are supported by most SSD controllers. Each SSD manufacturer also

has its own unique tweaks or features to the SSD controllers that boost the performance and

reliability.

2.2.2. NAND Flash Memory Chip

NAND chips are important components to the SSD. Thus far, an SSD can have 4-16

NAND chips [59]. An individual NAND chip can be decomposed from top to down in the

following order (Also see Figure 2.1):

• Die : Each NAND chip can contain several NAND memory dies.

• Plane: Each die can contain 1-4 planes [59].

• Block : Each plane has thousands flash blocks.

– Page/Wordline1 : Each block contains hundreds to thousands of rows of pages

(horizontal).

– String/Bitline2 : Each block contains hundreds to thousands of columns of

strings (vertical).

• Cell : Each page or string contains thousands of flash cells.

In 2D NAND, A flash block is the cluster of wordlines and bitlines. Figure 2.2 shows

the details on the architecture of a block. A row is called a wordline, and a column is called

a bitline. In the block level, transistors are neatly arranged.

The Page is the smallest data storage unit that can be read and wrote to, while the

Block is the smallest data storage unit that can be erased. A page can typically contain 2K,

4K, 8K or 16KB data. And, the size of a block can vary between 256KB and 4MB [59]. But

as technology develops rapidly, we can expect these numbers update quickly.

1When talking about data, we usually use ”page”; while referring to architecture, we use ”wordline”

more often.

2When talking about data, we usually use ”string”; while referring to architecture, we use ”bitline” more

often.
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Moreover, the number of bits a cell stores defines the performance expectation of

an SSD. The cell can only store one bit called Single-Level-Cell(SLC), store two bits called

Multiple-Level-Cell(MLC), the same definition method can also apply to Triple-Level-Cell(TLC)

and Quad-Level-Cell(QLC). Thus, block and cell are critical units related to data in SSD.

2.2.3. Connector

The connector mediates data and signals transfer between the SSD and the host

computer. The universal connectors interface are SATA and PCIe. SATA has three major

revisions. Most of the consumer-graded SSD supports SATA 3.0 or above. SATA 3.0 can

support a burst throughput up to 6 Gbit/s [16]. In contrast, enterprise-graded and high-end

SSD usually embeds the PCIe connector. It applies the NVMe protocol to access NAND

flash memory via a PCIe bus. Theoretically, the throughput of PCIe based SSD can be up

to 32 Gbit/s [15]. Besides, more and more M.2 and U.2 connectors apply to the SSD drives

in recent years. They are designed to connect via the PCIe bus as well. Where, M.2 can be
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SATA 3.0 interface or PCIe 3.0 × 4 interface. U.2 is PCIe 3.0 × 4 interface only.

2.2.4. PCB, ICs and Other Components

All components, including controller, NAND chips, and connector, are on the printed

circuit board (PCB), connecting with integrated circuits (ICs). Besides, there are sensors

and counters tied to the PCB such as the thermal sensor and physical event counters. All

components work together to make the SSD work appropriately as a whole.

2.2.5. Data Operations on SSDs

Writes. Data from the file system goes through the SSD connector before arriving

at the controller. Since data can only be written to empty blocks, the controller maintains

a pool of empty blocks. If the drive runs out of empty blocks, the controller will perform

garbage collection to reclaim ”invalid” data blocks before writing data to the NAND mem-

ory. Otherwise, the FTL runs the address mapping algorithm and determines the physical

addresses in NAND chips – the FTL maps the logical data blocks into the NAND page

and then written into a block. Specifically, the controller applies a high positive voltage to

responsive NAND pages and strings. Voltages of selected cells will be changed to logical “0“.

After related cell voltages are updated, the ECC will verify the written data before return

the ”success” signal to the OS.

Reads. Reading data from SSD is similar to the writing process. The file system

issues the read request. The request goes through the connector and enters the SSD con-

troller. The controller processes the request and communicates with the NAND interface.

FTL locates the physical addresses of the request data. Then, the controller applies the read

voltage (intermediate positive voltage) to related NAND pages and strings. Since medium

positive voltage won’t change the logical representation of NAND cells, the selected NAND

cells will respond with the corresponding stored logical 0 and 1. Raw data then goes through

the NAND decoders. After decoding and verifying, data stream sends back to the file system.

Erase. Erasing data in SSD is quite different from erasing data on a HDD. In SSD,

the erase process can only be performed in block-level while writing and reading process
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can perform at page-level. An erase operation is the process of removing electrons from

the storage layer to change the state of the cell to logical 1. Typically, delete request sent

from the file system won’t immediately remove the data from flash memory; the controller

only marks the ”erased data” as ”invalid.” The garbage collection algorithm run in the

background decides when to issue a large negative voltage to erase the whole block.
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Figure 2.3. Charge Trap (CT) cell vs. Floating Gate (FG) cell.

2.2.6. Data Placement

In general, SSD has two storage areas: main area and spare area. Main area stores

user data and the spare area contains bad block marker, ECC and may have some metadata.

Usually, the spare area is reserved and user cannot get access to it.

Data in SSD, including data placement, are specified and managed by the controller.

SSD only write to one page each time and block marked as ”bad block” will not be used.

But, determining which page will be written and how to skip the bad block are defined by

the related algorithms embedded in the SSD controller. The controller also defines other

jobs related to data placement. For example, wear-leveling algorithms and I/O algorithms
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in the controller will divide large files and store each part in different flash chips. The data

integrity algorithm writes data parities to a separate flash chip.

2.3. The State-of-the-Art QLC Architectures

The quad-level cell(QLC) technology was first introduced by NEC in 1996 [14]. Com-

pared with prior generation, i.e., SLC, MLC, and TLC, QLC technology enables larger per

bit capacity while lowering the cost. This technology was initially developed for the dynamic

random-access memory(DRAM) chip. In the 2000s, QLC technology applied to NOR flash

memory cells and NAND flash chips. Later on in the winter of 2018, the first commercial

QLC NAND-based SSD became available [14]. In this section, I present the key advance-

ments of QLC technology that uplift the storage density, and bridge the gap of performance

and cost between flash and legacy HDD storage. The main difference between QLC and

other types of SSD lies at the cell level and block level. I highlight the main features of QLC

technology in Table 2.2, then explore them in detail and compare them against competitive

SSD technologies.

2.3.1. Cell-Level Architecture

2.3.1.1. Physical Architecture

NAND-based SSD generally employs one of the two transistor technologies: Charge

Trap (CT) MOSFET (Metal Oxide Semiconductor Field Effect Transistor) and Floating

Gate (FG) MOSFET. Manufactures like Samsung, Toshiba, SanDisk, and Western Digital

develop their SSD architecture using the CT MOSFET, while Micron and Intel adopt the

FG MOSFET. Figure 2.3 illustrates the difference between CT cell and FG cell. The storage

layer of CT cell uses the silicon nitride while the FG cell uses floating gate [79]. Additionally,

the charged storage layer in CT is shared among all cells while in FG they are isolated.

According to Micheloni’s study [73], the majority of SSD relying on CT cells but FG cell

also have its market share.

16



Table 2.2. Specifications of SLC, MLC, TLC, and QLC

Types SLC MLC TLC QLC

P/E Cycle 90-1000k 8-30k 3-5k 500-1k

Bit per Cell 1 2 3 4

Reliability ***** **** *** **

Endurance ***** **** *** **

Power∗ 0.1-3.6W 0.6-2.6W 0.7-3.6W 1.5-3.6W

Cell Density * ** *** ****

Voltage Levels 2 4 8 16

NAND Archi-

tecture

2D/3D 2D/3D 3D 3D

Latency / QoS[90]

Read 25µs 50µs 75 µs ≈100µs

Write 200-300µs 600-900µs 900-1350µs ≈1500µs

Erase 1.5-2ms 3ms 5ms ≈6ms

∗Ranging from idle to active power consumption.

2.3.1.2. Data Programming

One QLC cell can store four bits of information, which is 33% more than TLC tech-

nology. As illustrated in Figure 2.4, it requires 24 different electric voltage levels to program

a QLC cell (represented by 0000 - 1111). A logical QLC cell data (4 bits) are mapped to

four pages. Thus, it takes four cycles to raise the voltage level to the desired state.

There are many QLC programming algorithms. Traditional method named Binary

Code is illustrated in the upper portion of Figure 2.4. For a narrower and tighter voltage

range, traditional data mapping based on Binary Code becomes inefficient and can easy

introduce data error [58]. Thus, more sophisticated programming algorithms have been

proposed. Since QLC SSD is designed for read-intensive workloads, data reading based on

Gray Code method provides a better solution (refer to lower portion of Figure 2.4). The

most obvious benefit to this is that two successive values differs in only one bit [13]. Thus,
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if voltage shift and data retention error occurs, Binary Coding may encounter up to 4 bits

data error (i.e., voltage level 7 to 8 in Figure 2.4), Gray coding only yields 1-bit data error.

There are many Gray Code variants [58], but all of them retain the 1-bit differ rule for sibling

values.
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Figure 2.4. QLC Voltage Levels and Data Mapping under Binary Coding

vs. Gray Coding.

2.3.2. Block-Level Architecture

Starting from the TLC technology, block-level design shifted from 2 to 3 dimensional.

Each generation of 2D NAND architecture shrinks the size and increases the number of

transistors in the chips to accommodate the Moore Law. However, 2D NAND design has

reached the lithographic limitation [73]. The new 3D flash architecture extends the vertical

space to achieve a higher density and capacity. Thus, QLC SSD continues the trend of using

3D NAND architecture in block level design.

18



Each manufactures has its proprietary 3D NAND designs. Toshiba developed a 3D

NAND technology named Bit-Cost Scalable NAND technology (BiCS) then later improved

to Pipe-shaped Bit Cost Scalable (P-BiCS). Samsung introduced several vertical gate (with

either horizontal or vertical channels) designs, namely V-NAND architecture. The V-NAND

family includes the Vertical Recess Array Transistor (VRAT), the Vertical Stacked Array

Transistor (VSAT), and the Terabit Cell Array Transistor (TCAT) [73]. SK Hynix proposed

designs based on FG cell, named Dual Control-gate with Surrounding Floating-gate (DC-SF)

and its variant called Advanced DC-SF [89].

3D NAND design is an extension of 2D NAND that adds the vertical dimension.

Figure 2.5 illustrates a typical way to convert a 2D string to a 3D string. Imagine when all

the strings in a 2D block are folded over then stood vertically, essentially transitioning the

2D planar block into a 3D block. Samsung’s TCAT and SK Hynix’s DC-SF uses different

approaches. In a nut shell, TCAT and DC-SF don’t fold over the string, but add a ”z” axle

to the 2D planar instead. Figure 2.6 shows this type of 3D NAND block construction. Both

CT and FG cells presented in Figure 2.3 can be applied to this type of 3D architecture.

Transitioning from 2D to 3D block, a new concept called ”layer.” The number of

layers defined by the number of vertical Control Gates (CG). In QLC, the number of layers

are usually the multiple of 4. The common construction of 3D NAND flash uses 32, 36, 48,

56 and 96 layers. More layers usually means higher storage density. In the year of 2019, 96

layer 3D NAND dominates the QLC market share. Meanwhile, the 3D NAND flash of over

100 layers (e.g., 128 layers) is just around the corner.

Different 3D NAND block poses various design challenge. I can characterize them

from the following aspects: (1) cell size (in µm2) and shape (gate-all-round or planar) ; (2)

cell storage type (CT or FG); (3) channel alignment (horizontal or vertical); (4)gate process

preference (gate-first or gate-last). 3D NAND design is sophisticated and thus, 3D NAND

architecture remains a research topic.
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CHAPTER 3

DATA AND METHODS

3.1. Introduction of Datasets

This chapter discusses the 2 major datasets I used for this research. The first data

set is the SSD SMART datset. The SSD SMART dataset was collected from several active

production data centers owned by a major financial service provider. Each server in the data

center has 2 sockets, 10-18 cores per socket, 1.5 TB of DRAM, 1-2 SSDs, and 8-45 HDDs.

There are two types of SSD in my dataset and each type of SSDs have the same age. SSDs are

used as a data buffer between the main memory and the storage subsystem. They accelerate

data accesses, improve I/O throughput, and reduce access latency from main disks in a Ceph

storage node. The workloads run on the servers include investment/portfolio management,

brokerage order management systems, and financial planning management. This represents

a wide range of operating system main disks, persistent database storage, and sequential

message queues.

The SMART monitoring system is employed for both HDDs and SSDs to collect

access information and fault/error indicators. SSD SMART data are collected hourly at

runtime. By the time of this study, I have six months of SMART records from both HDDs

and SSDs. I pre-process the raw SMART data by extracting SMART attributes and their

values and removing incomplete records. Over a million SSD records are kept with over 20

attributes from two SSD brands and models. Then, I analyze the correlation among these

attributes and further explore machine learning technologies to characterize and study SSD

reliability.

Another dataset is the HDD SMART dataset for the failure prediction research in the

dissertation. The HDD SMART data used in my discussion and illustration was collected

from an active, production data center, equipped with over 23,000 enterprise-class hard disk

drives and running Google-like workload, including search, news, multimedia (music, image

and video playing), transactions, maps and etc. The disks used in this storage system are
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from the same manufacturer and the dataset covers a running period of eight weeks. Every

hour, the SMART attributes are profiled from every disk drive.

The drives that were replaced are labeled as “failed” drives. Those drives that still

function in the storage system are labeled as “good” drives. Overall, more than 400 drives

are “failed” in the eight-week period and about 23,000 drives are “good” in the dataset.

Also, I do another set of experiments on a public dataset provided by Backblaze, which

provides B2 cloud storage and backup services. Backblaze has published 5-year SMART data

collected from 125,000 hard disk drives in its storage system. Those drives come from five

manufactures with multiple models. I select the one that has the largest population (i.e.,

Seagate drives with model ST4000DM000). The dataset contain SMART records from 36,924

drives. The drives that are replaced are labeled as “failed” drives. Those drives that still

function in the storage system are labeled as “good” drives. Among the 36,924 drives, 2,811

are failed.

3.2. SMART

S.M.A.R.T. is short for Self-Monitoring, Analysis and Reporting Technology(SMART).

It is a monitoring system included in computer hard disk drives HDDs and SSDs. The disk

attributes, collected by SMART, directly or indirectly indicate hard drive health status and

others give statistical information. Normally, SMART attributes are selected by manufac-

turers and come with disks. User cannot define and modify which attributes would like to

collect.

Each SMART attribute has Identifier : the meaning of the attribute; Data: raw

measured values provided by a sensor or a counter; Threshold: the failure limit value for the

attribute; Value: the relative health of the attribute (This value is calculated by algorithms,

usually linear functions, designed by drive manufacturers, using the raw data. The value is

initially set to a theoretical maximum and decreases during the lifetime of the disk); Status

flags: indicating the main purpose of the attribute, e.g., critical or statistical (does not

directly affect disk condition). Thresholds are pre-defined for each attribute by the drive

manufacturer. When the value of an attribute is below its threshold, a warning flag is issued.
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3.2.1. SSD Specific SMART Attributes

The SMART technology monitors drives’ accesses and errors, and provides various

attributes, many of which are particularly designed for SSDs. An SSD manufacturer adopts

a subset of all SMART attributes which may be different from that of another manufacturer.

Even among drives produced by the same manufacturer, those of different models may have

different sets of SMART attributes. In general, I group the SMART attributes into three

categories, i.e., environmental factors (e.g., temperature and power-on hours), workload-

related statistics (e.g., the amount of data read from or written to flash chips), and error

attributes (e.g., the number of seek errors and the number of uncorrectable errors). In the

data center that I study, two SSD models from different vendors are found. Table 3.1 lists

the SMART attributes provided by the SSDs.

Table 3.1. SSD SMART Attributes and Description∗

ID Attributes Descriptions

Environmental Attributes

9 POH Power On Hour

12 PCC Power Cycle Count

174 UPLC Unexpected Power Lost

194 TC Temperature Celsius

Workload-related Attributes

166 MWEC Min Write/Erase Count

168 MEC Max Erase Count

173 AWEC Average Write/Erase Count

180 URNB Unused Reserve NAND Blocks

202 PLR Percent Lifetime Remaining

230 PWEC % of Write/Erase Count

232 PARS % Avaliable Reserved Space

Continued on next page
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Table 3.1 – SSD SMART attributes and descriptions

ID Attributes Descriptions

233 TNWG Total NAND Write(GB)

241 TWG Total Write(GB)

242 TRG Total Read(GB)

246 CHSW Cumulative Host Sectors Written

247 NONPWYTH Number of NAND page written by Host

248 NONPWNTF Number of NAND page written by FTL

Error-related Attributes

4 RRER Raw Read Error Rate

5 RSC Reallocated Sector Count

167 MBB Min Bad Block/Die

169 TBB Total Bad Block

171 PFC Program Fail Count

172 EFC Erase Fail Count

183 SID SATA Interface Downshift

184 ECC Error Correction Count

187 RU Reported Uncorrected

196 REC Reallocation Event Count

197 CPEC Current Pending ECC Count

206 WER Write Error Rate

212 SPE SATA Physical Error

∗ Note: Attributes exclusive to Model-A SSDs are colored in red and attributes exclusive to Model-

B SSDs are colored in blue. The rest of the attributes are common for both SSD models.
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3.2.2. HDD Specific SMART Attributes

SMART attributes for HDD have some differences from the SDD ones. Due to the

different physical structures of the HDD, some SMART attributes are only available to

HDD. SUT, SER, and HFW from the Table 3.2 are examples of SMART attributes that

are only applicable to HDD. However, some attributes are shared within SDD and HDD,

especially some environment-related attributes. Similar to the SSD SMART attributes, disk

manufacturers define what attributes are provided to users. Table 3.2 shows the SMART

attributes that collected from the HDD to evaluate reliability.

Table 3.2. HDD SMART Attributes

Attributes Descriptions

Spin-Up Time (SUT) Average time of spindle to spin up to full operation

Seek Error Rate (SER) Rate of seek errors of the magnetic heads

Power on Hour (POH) Count of hours in power-on state

Reported Uncorrectable Error (RUE) Errors that cannot be recovered using ECC

High Fly Writes (HFW) Errors that head fly outside normal operat- ing range

Hardware ECC Recovered (HER) Time between ECC-corrected errors

Temperature Celsius (TC) Current internal temperature in Celsius

Read Error Rate (RER) Rate of hardware read errors when reading data

Reallocated Sectors Count (RSC) Count of reallocated sectors when finds an error

Current Pending Sector Count (CPSC) Current count of unstable sectors (waiting for remapping)

3.3. Evaluate Reliability and Performance

3.3.1. Correlation Analysis

Compared with several decades of deployment of HDDs in the field, SSDs are still

at the early stage of usage as the mainstream storage media in production systems. Little

is known about SSDs’ reliability characteristics in real-world settings. Most recently, large-

scale field studies, such as [77], identify substantial differences from those SSD fault data

collected in controlled environments. Production systems involve a wide range of conditions,
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e.g., real-world applications display a variety of access patterns and frequencies compared

with synthetic benchmarks. Additionally, the entire software stack on top of a flash storage

also affects data accesses, SSD performance degradation, and lifespan.

In the Chapter 4, I investigate the relationship among SMART attributes by quan-

tifying pair-wise correlation coefficients. I also use boxplot to visualize the distributions of

SSD SMART data. By analyzing the correlation among SSD SMART attributes, I obtain a

better understanding of the influence among various factors and their criticalness for charac-

terizing SSD reliability. I compare several correlation coefficients, i.e., Pearson, Spearman,

and Kendall. I select the Spearman rank correlation coefficient, because it provides the best

modeling of monotonic linear/non-linear relations which are common for SMART attributes.

To prevent invalid correlation, I remove SMART attributes whose values remain constant

over time.

3.3.2. SSD Evaluation of Reliability and Performance

In order to understand SSD’s reliability and discover the relations between SMART

attributes and SSD’s health status at the drive level, I analyze the SSD SMART dataset

by using machine learning methods. Specifically, I explore K-means clustering on SMART

records. K-means is an unsupervised machine learning method, which is used to discover

groups of data items with similar feature patterns. It can help us establish a dynamic view

of SSD’s health status with possible transitions over time.

3.3.3. Evaluating Performance and Reliability of QLC SSD

This dataset is collected by my experiments. It includes SSD performance as well

as SMART data. Historically, performance-sensitive and read-centric workloads have relied

on parallel arrays of HDDs to deliver the required capabilities that service-level agreement

(SLA) demand. With the advance of QLC technology, can these new SSD achieve the

storage performance and capacity requirement? I evaluate the real-world performance of the

latest QLC SSDs and compare its performance with state-of-art SSDs using MLC and TLC

technologies. I try to answer the question: Can QLC SSD offers flash storage performance
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at more approachable price? In this project, I will address these problems.

3.3.4. Acceleration Tests of QLC SSD

In the acceleration tests of QLC SSD, the dataset is collected by in-lab experiments.

Each test is repeated 100 times to allow the disks to reach an stable status. I collect data from

each time of experiment running. The dataset includes disk performance data, workload data

and temperature data. The sources of the data come from different monitoring tools and

devices. I mainly apply statistical theologies to analyze the data, for example, performing

T-test to evaluate the significant level of the performance degradation. The P-value is

calculated by the following formula:

P − value =
mean1−mean2

(n1−1)×var12+(n2−1)×var22

n1+n2−2
×
√

1
n1

+ 1
n2

where,

mean1 and mean2 are average values of each sample sets,

var1 and var2 are variances,

n1 and n2 are number of records.

For more details, please refer to Chapter 6.

3.3.5. Proactively Protecting against Disk Failure

The proactive protecting against disk failure experiment uses the HDD SMART

dataset. Before investigating the SMART data, I clean the dataset by removing those

SMART attributes that have no variation during the monitoring period, and the attributes

with high fluctuations which do not store the status of history points, because they do not

contribute to understanding the dynamics of disk health. To avoid bias to any attribute, I

use “min- max normalization” method to normalize the values of each attribute to the range

of [-1, 1].

xnorm = 2× x− xmin

xmax − xmin

− 1
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After cleaning the constant attributes, I have 10 SMART attributes left (Table 3.2).

Among them, CPSC, RUE, SER, HFW and HER show small variation, while RER, TC,

SUT, POH and RSC display medium to large variation. To discover the type of disk failures

and model the corresponding degradation process, it is important to find the critical SMART

attributes that have strong correlation with the occurrences of disk failures. For each failed

disk, I calculate the pairwise correlation between an attribute and the rest of attributes,

and select the critical attributes which are highly correlated with other attributes (i.e., with

a correlation higher than a threshold, such as 0.75). Besides, in order to understand the

logical failure and predict future failure of the HDD, I also leverage the clustering machine

learning algorithms, regression models, and some statistical methods to investigate the HDD

SMART dataset. The Chapter 7 provides more details of it.
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CHAPTER 4

RELIABILITY CHARACTERIZATION OF SOLID STATE DRIVES IN A SCALABLE

PRODUCTION DATACENTER

In this chapter, I explore the SSD-specific SMART dataset to conduct an in-depth

analysis of SSD reliability in a production environment. In this datatset, SSDs are used as

a data buffer between the main memory and the storage subsystem.

4.1. SSD Caching and Flash Storage

Server-side flash or SSD caching refers to the deployment of SSDs as flash memory

for caching and tiering data between the main memory and the storage system. As a cost-

effective alternative to flash storage, it is often coupled with slower HDDs to improve the

read and write throughput. When using SSDs as read cache, compute nodes retrieve data

from permanent storage (HDDs) or via a storage area network (SAN), and store temporary

copies of active data on NAND flash memory. Thus, data can be accessed quickly when

needed. When used as write cache, SSDs buffer data until the slower and persistent storage

has space and bandwidth to complete write operations. SSD caching is managed by system’s

storage controllers and is secondary to the main memory. Because the footprint of active

data is relatively small, the capacity requirement of SSDs is lower than that of a full flash

storage. Flash storage is getting popular in high performance storage appliances that use

flash memory based technologies as the permanent storage media. It has higher capacity and

reliability requirements, while the access frequency is usually less than that of SSD caching.

In this research, I study the reliability of SSDs as caching/buffering devices.

4.2. Related Works

Many studies have investigated the bit error failure behavior of multi-level cells

(MLC)[35, 33, 34] and single-level cells (SLC)[65]. They find that the bit error rate of the

flash memory increases with an increased number of Program/Erase (P/E) cycles. These

studies model the bit error rate as an exponential function of the number of P/E cycles
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that a cell has gone through. There are also a number of recent studies analyzing the sta-

tistical distributions of SSD failures in the field[63, 77]. They also find that although flash

drives offer a lower field replacement rate than HDDs, they have a significantly higher rate

of uncorrectable errors that can impact the stored data.

However, the existing studies of SSD reliability are either at the circuit level (i.e.,

MLC and SLC) or for the entire storage system level using field data. They do not explore

the rich set of performance and reliability related attributes provided by the SSD SMART at

the drive level. Compared with the SSD failure field data which do not provide insight into

how SSD deteriorates and what factors dominate the process or workload and environment

data which complicate SSDs’ failure analysis, SSD-specific SMART data provide a direct

and insightful way to characterize SSD failures with a generic method.

On the other hand, many existing works study the reliability of raw flash chips.

Their evaluations are performed in controlled lab environments with only a limited number

of models and devices. In general, they use synthetic benchmarks to stress individual flash

components, and identify error symptoms and sources. For example, [31, 54, 53, 65, 35, 33]

found that flash reliability is attributed to read disturb error and program disturb error

which are caused by the tunneling effect where data in the untouched blocks are affected

by read or program operations in the surrounding blocks. Data retention error is caused

by detrap current that erratically changes the data at threshold voltage[94, 95, 29, 56].

The error prediction and recovery methods are discussed in [64]. The reliability of flash cells

deteriorate over a number of P/E cycles [39, 80]. In [49], the cost, performance, capacity, and

reliability trend of flash memory are studied. In the controlled environment, tests focusing

on certain aspects of flash memory aim to eliminate unwanted effects. Results from these

works provide a knowledge base on flash reliability, and are complementary to my work.

The aforementioned studies provide insights to chip-level flash reliability. It is also

urgent to understand flash reliability in large-scale datacenters under real-world workloads.

Recent works from Facebook[63], Google[77], and Microsoft[67] study field datasets. Their

studies discover important differences in the field compared with those in the controlled
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environments. SSDs in their studies are used as permanent storage devices. In contrast, SSDs

in the datacenter that I study are used as caching devices. In addition, my dataset includes

six months of detailed SSD-specific SMART records, which are valuable for characterizing

SSD reliability at the device level with rich semantic information.

4.3. Correlations Analysis of SSD SMART Data

Figure 4.1 and Figure 4.2 shows the pair-wise correlation calculated by using Spear-

man coefficients for the two SSD models in my dataset. Values of the Spearman corrleation

coefficients range from −1 (i.e., strong negative monotone correlation) to +1 (i.e., strong

positive monotone correlation), while 0 indicates no correlation. I compare the correlations

of environmental attributes with workload-related attributes, and also with error-related at-

tributes. I show the results with over 95% of confidence. In the correlation heat-map, redder

colors indicate stronger correlations. Note that the solid red blocks along the diagonal show

the correlation of an attributes with itself, which is not considered in my analysis. Other

blocks with a correlation coefficient greater than a threshold, say 0.9, infer that the corre-

sponding attribute pairs are significantly correlated. The major findings on the correlations

of SSD SMART attributes are as follows.

4.3.1. Finding 1: Environmental Attributes Barely Affect SSD Reliability

After removing constant-valued attributes, I use 13 SMART attributes to calculate

the correlation coefficients for Model-A SSDs, and 12 attributes for the Model B. Among

these attributes, environmental attributes, i.e., Temperature in Celsius (TC), Power On

Hours (POH), Power Cycle Count (PCC), and Unexpected Power Lost Count (UPLC),

do not possess strong correlations with other attributes. If the threshold for the correlation

coefficient is set to 0.6, the correlation between the following attributes needs analysis. Power

On Hours (POH) and the Number of NAND Page Write by FTL (NONPWNTF) for Model-B

SSDs have a correlation of 0.84, 0.67 between POH and Total Read in GB (TRG) for Model

A, and 0.53 between POH and Total Write in GB (TWG). This is because older SSDs (i.e.,

higher POH values) are more likely to experience more read/write/erase operations. Thus,
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environment-related SMART attributes do not significantly influence SSD reliability, which

confirms with prior studies [63, 77].

Figure 4.1. Spearman Correlation among Attributes of Model A SSDs

4.3.2. Finding 2: Workload-related Attributes Do Not Directly Indicate Occurrences of SSD

Failures

Flash cells can endure a limited number of program and erase (PE) cycles. I/O

workloads could provide useful information about the wear level of flash cells. Early research

reported an exponential growth of the Raw Bit Error Rate (RBER) with the increase of PE

cycles [65, 37, 38]. However, recent field studies show the contradictory results, that is the

increase of RBER is linear[77].

In Figure 4.1, I observe that those attributes that are related to write and erase

operations of SSDs, such as Max Erase Count (MEC), Percentage of Write Erase Count

(PWEC), Average Write Erase Count (AWEC), Total NAND Write in GB (TNWG), and

Total Write in GB (TWG), have significant correlations which are higher than 0.9 between
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each other. However, the dataset does not show any correlation between these wear-related

attributes with failure symptoms such as the Raw Bit Error Rate and Bad Blocks. Since the

dataset contains six months of SSD SMART records, it is possible that flash chips have not

experienced failures during that period of time.

Figure 4.2. Spearman Correlation among Attributes of Model B SSDs

The raw values of TNWG and TWG of Model A, as well as the Number of NAND

Page Written by Host (NONPWYTH) and Number of NAND Page Written by FTL (NON-

PWNTF) of Model B can be used to calculate flash memory’s write amplification ratio.

Figure 3(a) shows the linear regression that fits the correlation data between TNWG and

TWG.

I observe a 1.3X write amplification from host initiated writes to the actual NAND

page writes by FTL. Note the ideal write amplification is 1X. The workload-related attributes

do not directly indicate the occurrences of SSD failures.
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(a) Write Amplification

(b) Host writes vs. NAND Writes

Figure 4.3. Relationship of Write Operations.

A similar pattern is observed for Model-B SSDs. As illustrated in Figure 4.2, Aver-

age Write Erase Count (AWEC) has a strong correlation with Percent Lifetime Remaining
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(PLR), Cumulative Host Sectors Written (CHSW), Number of NAND Page Written by Host

(NONPWYTH), and Number of NAND Page Written by FTL (NONPWNTF). Among these

attributes, PLR indicates the estimated percentage of lifetime remaining based upon the av-

erage number of block erase operations and the number of rated block erase operations. The

average number of block erase operations has a positive correlation with AWEC. Hence-

forth, PLR becomes positively correlated with AWEC. I also find that 90.8% of SSDs in

the datacenter have PLR equal to zero, which means those SSDs reach the end of their

lifetime according to the specification of PLR. However, the error-related SMART attributes

for those SSDs show no significant difference from other SSDs whose PLRs are greater than

zero. In addition, those SSDs run smoothly for a long period of time with PLR remaining as

0%. This finding also confirms that manufacturers’ rated block erase count is conservative,

and SSDs’ actual lifetime in field is longer than that provided by the manufacturers.

The results also show that Cumulative Host Sectors Written (CHSW) and NAND

Page Written by Host (NONPWYTH) have a correlation coefficient of 1.0. CHSW indicates

the amount of data that the host writes to the LBA device. FTL then translates and maps the

LBA sector requests to physical pages on an SSD. The number of pages written is recorded

by NONPWYTH. The number of bytes written to the SSD recorded by the two attributes

should be the same. A typical sector size is 512 bytes, and the page size of Model-B flash

memory is 16 KB. This corresponds to my observation that the mapping from sectors to

pages has a ratio around 30:1 as shown in Figure 3(b). The correlation results between PLR

and error-related attributes from Model-B SSDs also confirm that not every workload-related

SMART attribute, such as PLR, directly indicates that SSDs fail.

4.3.3. Finding 3: I/O Workloads Are Not Evenly Distributed in The Datacenter

I also investigate the distributions of environmental attributes and their strongly

correlated attributes. The cross-comparison identifies two models for workload, wear level,

and cumulative failure symptoms. In this study, I use boxplots to illustrate the attributes’

distributions for ease of visualization and analysis. Figure 4.4 shows the environmental

attributes from both SSD models with outliers, while Figure 4.5 shows the environmental
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attributes from both SSD models without outliers. The boxplot with outliers show a few

significant large PCC values from Model B. Thus, to better understanding distributions,

Figure 4.5 eliminates the outliers.
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Figure 4.4. Distributions of Environmental Attributes from Model A and

Model B – With Outliers.
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(a) Distribution of Environmental Attributes from Model-A

(b) Distribution of Environmental Attributes from Model-B

Figure 4.5. Distributions of Environmental Attributes from Model A (Top)

and Model B (Bottom) – Without Outliers.

From Figure 4.5, the box region shows the first quartile (Q1) to the third quaritle

(Q3) of raw values for environmental attributes, that is Power On Hours (POH), Power Cycle

Count (PCC), and Temperature Celsius (TC). In these figures, where IQR is the interquartile

range (Q3-Q1), I set the whiskers of boxplots using the default value 1.5. Thus, the upper

whisker shows the maximum value at (Q3+1.5*IQR), where the lower whisker shows the
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minimum value at (Q1-1.5*IQR). Beyond the whiskers, data are considered outliers and do

not show in figures. Solid and dash lines represent the median value and arithmetic mean

of each attribute respectively. I analyze the median values in the following discussion as

medians are not skewed so much by extreme values, for example, PCC value in model B.

And so medians give a better idea of typical values to compare between SSD models.

The median TC value for both SSD models is relatively close. This is because 1) the

cooling system in the datacenter functions well, and 2) the internal thermal management of

SSDs keeps drives under a stable temperature.

At the same time, I observe that Model-A SSDs have about two times longer operation

time than Model-B drives based on the POH. The variance of POH is high, ranging from

2,000 to 19,000 for Model A, and from 2,000 to 11,000 for Model B. Considering the median

PCC for both models is close (i.e., around 20-22), I consider that the value of POH is not

solely determined by the operation time. After checking manufacturers’ documents, I find

that the raw value of POH reflects a device’s online hour (i.e., under power), and excludes

the increment in offline states such as SATA Partial, SATA Slumber, and SATA Device Sleep.

I also consulted with system administrators working at the datacenter who confirmed that

both SSD models in the system were deployed in the same time frame. Despite less than

5% of the SSDs experienced infant mortality and were replaced, the majority of SSDs were

operated in an active system since their deployment. Since enterprise datacenters employ

more aggressive power saving policies, I believe that Model-B SSDs have experienced less

workload as the time spent in offline states is about two times more than Model-A SSDs.

I also notice that this workload imbalance not only happens between different models of

SSDs, but also among drives of the same model. The difference between PCC median and

PCC mean in model B is caused by a few drives (¡10% of SSD population) that have very

high PCC values. All these observations show that the I/O workloads are not uniformly

distributed among SSDs.

In summary, I conclude the following 4 findings: 1) write and erase operations have

a strong correlation between each other; 2) environmental attributes do not directly affect
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SSDs’ health; 3) workload-related attributes do not directly indicate the occurrences of SSD

failures; 4) I/O operations are not evenly distributed in the system.

4.4. Characteristics of SSD Reliability

Figure 4.6. Model A SSD Elbow

I use “elbow method” to choose 5 as optimal number of clusters for k-means clustering.

SMART attributes MEC, WEC, PWEC, TNWG and TWG are used in clustering.

Based on the material composition and architecture of SSDs, I/O operations, includ-

ing read, write and erase, can influence the health status of SSDs. We analyze the categories

of SSD health states and their possible transitions over time. Experimental results show that

the SSD SMART records can be grouped into five clusters for both Model-A and Model-B

SSDs, which is shown in Figure 4.6 and Figure 4.7. For Model-A SSDs, SMART attributes

MEC, WEC, PWEC, TNWG and TWG etc. are selected for clustering, while AWEC and

NONPWNTF, CHSW and NONPWYTH etc. are used to cluster SMART records for Model
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B. Due to the high dimensionality, we do not plot the five clusters. With the euclidean dis-

tance cost function, Model-A SSDs have a distortion value lower than 0.03, while Model-B

drives have a lower than 0.01 distortion value.

Figure 4.7. Model B SSD Elbow

I use “elbow method” to choose 5 as optimal number of clusters for k-means clustering.

SMART attributes AWEC and NONPWNTF, CHSW and NONPWYTH are used in clus-

tering.

An important finding from my experimental results is that, for both models of SSDs,

the health states of SSDs may change from one group to another as the wear level changes.

In several cases, such transitions happen more than once. In my study, a maximum of three

transitions is observed for Model-A SSDs and a maximum of nine transitions is observed

for Model-B SSDs. For Model A, over 84% of SSDs experience health state transitions,

which called reliability degradation. Model B SSDs also have over 36% drives experience

health state transitions. Table 4.2 and Table 4.1 present the relative size of each SMART

record cluster and the frequency of reliability degradation. From the tables I can see the
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patterns of reliability degradation between the two models of SSDs are different. Specifically,

the majority of Model-A SSDs have reliability degradation, while Model-B SSDs have more

stable health states. As I discuss before that I/O workload is unbalanced between Model-A

and Model-B SSDs, those drives of Model B with less workload are more likely to stay in

one health state.

Table 4.1. Groups of SSD SMART Records and Transitions of SSD Health

States (Model A).

CATEGORIES CLUSTERS PERCENTAGE of SSDs(Model A)

in CATEGORY(%)

Cluster Cluster 0 10.7%

Cluster 1 0.0%

Cluster 2 1.3%

Cluster 3 2.0%

Cluster 4 2.0%

Cluster Transition Cluster 1→4 27.3%

Cluster 3→1 18.0%

Cluster 3→1→4 38.0%

Cluster 3→1→4→0 0.7%

To analyze the wear levels and relationship between SMART records and SSD health

states, I investigate each cluster produced by K-Means. I find each SSD model has its

own reliability characteristics and has some properties in common. The distributions of

the selected attributes among different SSD groups are shown in Figure 4.8. For Model-A

SSDs, I find that 1) drives in Cluster 2 experience I/O intensive operations. The number

of read operations is the highest, and the number of write and erase operations (as shown

by 5Combine in Figure 4.8) is lower than those in other clusters. 2) Drives in Cluster

0 experience the highest number of write and erase operations, while the number of read

operations is the average. (3) Clusters 1, 3 and 4 include the majority of drives which

experience the average number of I/O operations. However, the reliability degradation of

SSDs in the three clusters follows similar transition patterns, i.e., Cluster 3 → Cluster 1 →
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Cluster 4. Along this transition, the value of Total Bad Block (TBB) decreases while the

number of write and erase operations increases. Based on the preceding findings, I infer

that the health states of SSDs in Clusters 2 and 0 is worse than other drives which are still

in good shape. Those good SSDs will experience reliability degradation, i.e., transition to

Clusters 1 and 4, as more I/O operations and P/E cycles cause wear and errors.

Table 4.2. Groups of SSD SMART Records and Transitions of SSD Health

States (Model B).

CATEGORIES CLUSTERS PERCENTAGE of SSDs(Model B)

in CATEGORY(%)

Cluster Cluster 0 19.8%

Cluster 1 27.0%

Cluster 2 0.7%

Cluster 3 15.6%

Cluster 4 0.7%

Cluster Transition Cluster 3→0 29.8%

Cluster 0→3 0.7%

Cluster 3←→0 4.3%

Cluster 3→0→1 0.7%

Cluster 1→0→3 0.7%

For Model-B SSDs, I find that 1) drives in Cluster 0, 2 and 3 experience similar write

and erase operations for both FTL and host; 2) drives in Cluster 4 experience the highest

number of FTL write operations (as shown by 2COMBINE 1 in Figure 4.8), while drives

in Cluster 1 experience the lowest number of FTL writes; 3) for Host write operations (i.e.,

2COMBINE 2 in Figure 4.8), drives in Cluster 1 experience the highest number while those

in Cluster 4 have the lowest Host writes; 4) counter-intuitively, PLR cannot indicate the

remaining lifetime of an SSD. Only SSDs in Clusters 2 and 4 have PLR > 0, while PLR of

SSDs in other clusters remains 0; 5) Clusters 3 and 0 have the majority of drives (that is

70.2% as see in Table III). A half of the drives experiences reliability degradation. Among

them, 85.8% of SSDs follow a similar degradation pattern, that is Cluster 3 → Cluster 0.
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Drives in Cluster 3 have more unused NAND blocks than those in Cluster 0. Based on the

preceding findings, I believe that SSDs in Clusters 0, 2 and 3 experience the similar write

workloads. SSDs in Cluster 3 are in a better health state than those in Cluster 0.

(a) SSD Model-A

(b) SSD Model-B

Figure 4.8. Attributes’ Values of Cluster Centroids (Top–Model A and

Bottom–Model B).

For both models, I/O operations affect SSDs’ health status, and even cause relia-

bility degradation of the drives. Workload-related attributes play an important role for

SSD reliability analysis. As a characteristic of SSD reliability, I discover that the reliability

degradation of SSDs follows certain patterns which depend on the model of a drive and I/O

workload that the drive performs.
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CHAPTER 5

AN EMPIRICAL STUDY OF QUAD-LEVEL CELL (QLC) NAND FLASH SSDS FOR

BIG DATA APPLICATIONS

In this chapter, I would like explore and evaluate the performance, as well as reliability

of QLC SSD in modern data centers. Cause QLC is a such new technology that no data

center apply it in large scale, I set up the experiment in lab servers.

5.1. Related Works

QLC SSD is a new product targeted at read-intensive workloads for use in datacenters.

As far as I know, there are only two related research papers focus on this aspect. The

research conducted by Yoshiki et. al [84] focuses on QLC NAND flash memory power

consumption and performance analysis on different heterogeneous SSD configurations. Their

research points out that SCM(Storage Class Memory)/TLC configuration is optimal for

cold workloads; while SLC/QLC configuration is recommended for hot workloads. Another

research is purposed by Liu et. [58]. This chapter studies efficient coding methods for QLC

NAND flash. Their paper presents four enhanced Gray codings to QLC NAND to improve

efficiency for read operations and data error correction. To distinct my work from the

previous researches, I emphasize the performance evaluation of QLC SSD as a contender for

HDD and other types of SSDs in datacenter storage systems. My evaluation also compares

QLC SSD against MLC or TLC SSD in terms of the economic aspects and analyzes how

QLC SSD will change the landscape of modern datacenters.

The 3D NAND QLC is by far the most promising solution to achieve the “high

capacity, high reliability , low cost” goal in SSD storage. But it is not the only solution.

Another famous storage technology is called 3D XPoint [18] by Intel. Intel integrated this

technology in its Optane memory, as well as applying this technology to its SSDs, namely

Optane SSD. Micron also has its own 3D XPoint brand, named QuantX. But Micron does

not has any SSDs available that come embedded with this technology. The performance

evaluation shows that 3D XPoint SSD achieve better write latency and I/O speed than
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most 3D NAND SSDs in the market, according to the research [12]. However, the price of

Optane SSD is still 4-5X greater.

5.2. Evaluating Performance and Value of QLC SSD for Modern Data Centers

Table 5.1. Types of SSD in Evaluations

Brand Name∗ Cell Type+ Architecture Capacity (GB) Cost per bit

Brand A eMLC 2D 240 $$$

Brand B TLC 3D 480 $$

Brand C QLC 3D 480 $

Brand D eQLC 3D 1920 $

∗ For each brand, the logical sector size are 512 byte; physical sector size may vary.

+ The “e” in front of a cell type denotes the enterprise grade drive.

5.2.1. Experiment Setup

Table 5.1 highlights the main features of each SSD used in my experiment. My

evaluation comprises of several factors that might impact SSD performance. All of my

experiments are performed on two HP Proliant ML110 G6 Storage servers with identical

configuration. Each server is equipped with an eight core Intel Xeon (3 GHz), 8 GB DRAM,

and Ubuntu 18.04 LTS. All HDDs and SSDs are physically attached to the sever machine

via SATA 3.0 connectors. I use the fio (aka., Flexible I/O) synthetic trace to simulate

various types of workloads. During the experiment, fio was set to use asynchronous engine

for non-buffered I/O, and the I/O depth were set to 64 to saturate the bandwidth. The

broad range of factors that might affect the performance of SSD in production environment

includes read-write ratio, data access patterns, block size, garbage collecting operations, bad

block managements and reserved block replacement policy, etc. The total workload size

exceeds available memory to ensure a storage-centric workload. I repeat each test five times

then report the average.

45



Note that new SSD needs to break-in before the experiments. Since brand new SSDs

shipped with empty flash blocks, I/O latency measured at empty blocks will differ from non-

empty blocks. The break-in process fills the new drive with nonzero data. I/O performance

measured from non-empty block represents real-world results from production environment.

5.2.2. Performance Evaluation

In production storage systems, different applications exhibit distinct I/O patterns

and characteristics. We can categorized them into two types: small reads/writes and large

reads/writes. The former is typically measured by IOPS, while the latter is evaluated by

throughput. In my preliminary testing, I adopted the widely used benchmark configuration

and procedures to evaluate the performance of an SSD. I selected the following three metrics

to quantitatively measure the performance. The objective of each metric is highlighted as

follows.

(1) Sequential Write/Read with 1MB block size. This test measures I/O band-

width for large I/O requests. In this test, sequential write/read are performed in

multiple parallel streams, using 1MB I/O size to simulate large data writes/reads.

(2) Write/Read IOPS with 4KB block size. This test measures the ability of a

block device to handle small I/O requests. Following the industrial best-practice, I

set I/O size to 4KB. Write/read are only performed in single stream, so the number

of concurrent request is adjusted to a larger number to generate sufficient requests

before they saturate the I/O bandwidth.

(3) Write/Read Latency with 4KB block size. This test evaluates the latency of

a block device completing a I/O request. The write/read are performed in single

stream and I/O array size is set to a small number, so the number of concurrent

request is adjusted down to prevent reaching the maximum bandwidth or maximum

IOPS.
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Table 5.2. Benchmark Results

Metrics Brand A Brand B Brand C Brand D

Write

Throughput

(MB/s)

247 250 191 231

IOPS 9663 10400 6853 8852

Latency (µs) 406.1 378.9 574.7 446.3

Read

Throughput

(MB/s)

210 249 241 192

IOPS 4468 5337 2441 3338

Latency (µs) 896.9 763.4 1631.9 1195.1

Table 5.2 shows the preliminary results in these experiments. Overall, the write/read

of both QLC drives performs worse than that of other drives. The brand C QLC drive has

the lowest writing speed at 191 MB/s. Brand D QLC drive performs better at 231 MB/s.

However, the write IOPS of both QLC drives can only achieve 66% - 90% of its MLC and

TLC competitor, while the write latency are also 40µs-200µs higher than Brand A and Brand

B drives. Similarly, the sequential read IOPS of QLC drives are 25% - 55% lower than its

competitors and the read latency almost doubles the MLC and TLC drives. I cannot simply

conclude that all QLC drives performs worse than TLC or MLC drives, but from the result I

can extrapolate that SSD performance will degrade when the data bits per cell are increased.

This result is intuitive as the increase of bit per cell require advanced architecture design

and complicated electron level controls. In addition, QLC only have around 500 to 1000 P/E

cycles. To prolong its lifespan, some QLC SSDs throttle the write performance by design.

On the other hand, QLC SSD packs 33% more data per cell (4 bits rather than 3) and

adopts more sophisticated algorithms to encode data. Hence, they might exhibit different
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I/O characteristic than industry best-practice for MLC and TLC drives. In the following

sections, we explore a range of factors to optimize the storage configurations that yield better

read performance for QLC SSDs.

5.2.2.1. Block Size Matters

Brand A Brand B Brand C Brand D
4K 208 210 94.1 203 Brand A 
8K 228 226 97.4 216 Brand B
16K 242 238 102 220 Brand C
32K 243 240 102 221 Brand D
64K 242 241 100 222
128K 243 244 106 224
256K 247 242 154 225
512K 246 243 174 227
1M 247 250 191 231
4M 251 250 163 234
10M 258 255 161 234
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(a) Sequential Write

Brand A Brand B Brand C Brand D
4K 134 199 169 152
8K 178 230 206 177
16K 196 242 222 187
32K 207 242 229 191
64K 212 245 233 193
128K 213 247 235 195
256K 215 248 238 196
512K 208 247 236 192
1M 210 249 241 192
4M 213 250 242 195
10M 220 261 250 203
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(b) Sequential Read

Brand A Brand B Brand C Brand D Brand A(test 2) Brand A(test 1)
4K 39 44.8 30.1 38.2 39 42.3
8K 57.9 56.3 53.7 65.7 57.9 64.3
16K 77.4 62.8 74.3 103 77.4 98.9
32K 88.6 64.3 106 136 88.6 133
64K 92.1 67 124 167 92.1 162
128K 95.2 68 103 194 95.2 196
256K 99.1 69.9 109 212 99.1 196
512K 98.9 68.4 110 222 98.9 188
1M 96.8 73.8 110 231 96.8 69.6
4M 93.2 72.7 107 230 93.2 66.3
10M 90.3 74.4 79.3 233 90.3 69.3
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(c) Random Write)

Brand A Brand B Brand C Brand D
4K 16.5 21.8 10.4 14.1
8K 28.7 39.7 18 24.8
16K 35.3 67.1 31.7 35.1
32K 41.7 103 54.7 54.8
64K 58.8 136 83.1 84.8
128K 79.4 175 118 119
256K 108 207 158 146
512K 139 233 196 168
1M 167 250 224 186
4M 167 250 224 187
10M 171 263 233 194

0

50

100

150

200

250

300

4K 8K 16K 32K 64K 128K 256K 512K 1M 4M 10M

Brand A Brand B Brand C Brand D

(d) Random Read

Read Write Read Write Read Write Read Write
4K 14.2 4.756 15 5.03 8.932 2.993 11.9 3.976
8K 23 7.688 28.7 9.53 15.8 5.244 19.9 6.654
16K 31.4 10.5 43.7 14.4 26.1 8.721 29.2 9.681
32K 39.9 13.3 69.4 23.2 44.5 14.8 44.5 15
64K 54.2 18 94.3 31.2 65 22.1 67.8 22.5
128K 71.9 24.3 120 40.3 93.5 31.1 93.7 31.2
256K 93.7 31.1 146 49.6 122 41 114 37.4
512K 118 40.9 166 52.9 149 50 131 44.2
1M 143 49.6 172 56.6 169 53 143 49.6
4M 143 49.4 172 57.3 169 56.7 143 52.2
10M 129 40.1 161 57.3 172 60.5 147 52
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(e) Read and Write in 75/25 Ratio

Read Write Read Write Read Write Read Write
4K 16 1.794 15.2 1.671 9.722 1.08 12 1.431
8K 25.4 2.84 27.6 3.034 17.8 1.986 23.3 2.477
16K 35.8 3.974 52.7 5.851 29.7 3.297 32.2 3.56
32K 44.8 5.003 79.8 8.997 51.1 5.643 49.8 5.483
64K 61.3 6.805 113 12.6 75.9 8.44 76.5 8.569
128K 81.6 8.959 138 15.7 108 11.7 107 12
256K 108 12.3 174 19.5 142 16.3 131 14.9
512K 140 15.5 200 22.2 174 19.7 153 17.3
1M 168 19.4 218 25 200 22.6 169 18.6
4M 167 19.6 218 25.5 199 21.8 171 18
10M 170 22.5 221 27.5 205 23.9 175 19.7
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(f) Read and Write in 90/10 Ratio

Figure 5.1. Block Sizes Effects on Read and Write
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My preliminary test uses 4KB data block size. However, this block size may artificially

inflate the total I/O number that the drives are capable of handling [19], and the I/O

patterns in real-world scenarios are also more complicated. We may encounter different data

block sizes with a mix of reads and writes requests. To better understand the QLC I/O

characteristics for read-centric workloads, I test various block sizes with the read/write ratio

at 75/25. The read and the write operations are also randomly mixed to simulate real-world

scenarios. Figure 5.1 shows the experiment results. I increase the block sizes from 4KB to

10MB, and tested both sequential and random I/O operations. From the results, I have the

following observations.

• I/O speed increases with the block size. Overall, the performance of sequential

and random write/read operations of QLC SSD increases with the block size. I

observed a similar trend in SLC, MLC and TLC SSDs. Since the logical block size

of each drive is 512KB, write requests can only be handled per block unit, I believe

the writing performance degradation, when block size exceed 1 MB, is due to data

buffering or write aggregation. I conclude that for the write process, SSD logical

block size positively impacts the I/O performance.

• I/O speed increases faster when block sizes are smaller. Its obvious that

sequential I/O speed increases faster when the block size is less than 16KB. The

random read performance increases rapidly until the block size reaches 1MB. How-

ever, for random write request, each drive have a different optimal block size. The

experiment results also indicate that too many tiny files or massive files may hurt

SSD performance. The optimal block size should be in the range of 16KB to 1MB.

• Performance of enterprise-grade QLC SSD is more stable and predictable

than consumer-grade QLC SSD. In this experiment, I evaluated a consumer-

grade QLC SSD (Brand C) and an enterprise-grade QLC SSD (Brand D). In both

write and read tests, Brand D QLC SSD strictly follows the increasing trend as

other MLC and TLC drives. But the I/O performances of Brand C SSD has more

fluctuations, especially during the write tests. For the sequential write test, the
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throughput of Brand C SSD peaks at 1MB block size before it starts to degrade.

For a random write test, the throughput of Brand C SSD rapidly grows at first

but then degrades after the block size exceeds 64KB. I still need further study to

fully explain the fluctuating performance of Brand C SSD, but I believe the SSD

controller design has a major impact on I/O performance.

5.2.2.2. Garbage Collection Matters

In SSDs, the garbage collection (GC) process releases the blocks that were occupied

by invalid data. Recall that GC is usually performed at background when the drive is idle,

so it minimize the performance impact while ensures the available drive capacity. Such a

strategy is typically useful for consumer environment as they tend to have more idle time.

However, enterprise environment have a much more intensive storage usage, causing the

GC procedure to lack having sufficient time to perform its task in the background. When

GC is eventually forced to run in the foreground alone with the application I/O payload, it

imposes a significant performance and endurance impact to the system, especially for the

write performance.

GC activities may have distinct performance impact for different SSDs, as it is effected

by the embedded GC algorithm, the wear-leveling algorithm, the SSD controller policy, the

amount of SSD empty blocks, capacity, block size, and other factors. Theoretically, QLC

SSD needs to spend more efforts on GC than other types of SSD due to the complexity of

NAND cells design. To measure the performance impact of GC for my QLC SSDs, I first fill

up the SSD with random data then immediately issue burst I/O workloads. This will invoke

the GC to release the invalid data blocks before handling new write request. Fig 5.2 shows

the I/O performance difference between QLC SSD with GC and without GC in different

I/O size. On average, Brand C SSD random write performance drops 90% when garbage

collection onset, while Brand D SSD drops about 76%. Garbage collection activity not only

impact write performance, but also affects read operations. Recent studies [83] found that

read performance also degrades significantly when garbage collection is engaged; the read

request will also be blocked until garbage collection process finish.
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Without GC With GC Without GC With GC
4K 30.1 5.447 4K 38.2 37.7
8K 53.7 7.358 8K 65.7 34.2
16K 74.3 6.553 16K 103 44.9
32K 106 8.324 32K 136 34.3
64K 124 9.601 64K 167 35.6
128K 103 8.562 128K 194 38
256K 109 10.9 256K 212 39.5
512K 110 9.223 512K 222 43.5
1M 110 11.1 1M 231 41.6
4M 107 9.33 4M 230 42.5
10M 79.3 10.3 10M 233 46.5

Brand C Brand D

0

50

100

150

200

250

4K 8K 16K 32K 64K 128K 256K 512K 1M 4M 10M

Without GC With GC

(a) Brand C QLC SSD
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Figure 5.2. Garbage Collection Effects on RandomWrite (Throughput(MB)

vs. Block Size)

5.2.2.3. Bad Block and Reserved Block Matters

SSD is a masterpiece of complex industrial products that comprises of thousands of

sub-components. So, besides the block sizes and garbage collection, SSD performance might

also affected by the number of bad blocks and reserved blocks. A block is marked as a bad

block when its P/E cycle reaches a preset threshold or it becomes inaccessible. When a

block is marked as a bad block, the SSD controller will map its logical address to a spare

block from the reserved block area. Data in the inaccessible bad block is considered as lost

since read and write requests cannot be completed. However, if the SSD supports block level

redundancy such as Erasure coding or internal RAID, then the SSD controller can initiate

the recovery procedure that reconstruct the lost data to the spare blocks. The recovery

procedure will impact I/O performance as it requires additional I/O resources. Moreover,

as the number of bad blocks accumulates, the number of reserved blocks will be exhausted.

As a result, the available capacity of the SSD eventually shrinks. QLC SSD is more likely

to encounter this problem as it has much lower P/E cycles.

5.2.2.4. Environment Matters

Like other types of SSD, environment factors such as power surge, radiation and

operating temperature also impact the QLC SSD performance.

• Power: QLC SSD is a NAND flash based drive that are non-volatile. It can retain
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data even without power supply. However, study [97][86] shows that sudden power

outage (and the associated power surge) will flip the bits and cause data corruption.

Even in datacenter environment where power supply is generally stable, long power-

on hours might lead to electron discharge and cause NAND flash to lose its data

retention ability. When any bit errors are detected, the SSD controller will engage

built-in error correction code (ECC) mechanisms to resolve the silently corrupted

data. As a result, I/O performance will also be significantly affected by the ECC

activity.

• Radiations: Cosmos radiation can disrupt the NAND flash cell energy level and

causing soft errors. It can also permanently damage the semiconductor, leading to

malfunction. Radiation problems not only occurs to SSD drives used in space flights

but also impact datacenters at higher altitude.

• Temperature: Temperature has significant impact on the physical characteristics of

NAND flash cell, hence indirectly affects the SSD’s I/O performance. As the working

temperature increasing, the oxide tunnel in NAND gates loses the ability to retain

its charge level. Electrons will be able to escape from the tunnels much easier, which

leads to bit flipping and soft errors. To tackle this problem, most SSD controllers

implement thermal throttling mechanisms that artificially decrease the I/O resource

quota when it detects temperature increase nearing the set threshold. This gives

ECC mechanisms more time to correct the increasing number of corrupted bits.

However, thermal throttling significantly degrades the SSD performance. When

storage systems on heavy workloads or storage rack are placed at areas that has

bad air circulation or ventilation, thermal throttling might be triggered much more

frequently and will greatly impact the overall performance of the storage system.

5.2.3. Economic Analysis

With the ever-increasing data load and read-centric requests, datacenters are pressed

to meet the increasing storage and service demands. When upgrading the storage infras-

tructure from the existing one or building a new one, IT professionals are constrained to the
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binary options of: performance-oriented 2.5-inch 10K RMP HDDs that offers higher per-

formance but smaller capacity (e.g., 2.4TB), or 3.5-inch 7200 RPM HDDs that have higher

capacity (e.g, 14TB) but lower read IOPS. Therefore, we can transitioning the standard

twelve-bay 2U storage server into high-performance node that have 29TB raw capacity, or

high-capacity node that have 168TB of raw capacity. QLC SSDs from major manufactures

offers up to 7.6TB capacity (available in Brand D) per 2.5-inch drive that transitioning the

same 2U server into 184TB raw capacity (i.e., 10% more than capacity tier HDDs). New

QLC SSD offers a higher-density and higher-performance storage for the same datacenter

footprints. In addition, QLC SSD has the following advantages that makes it beneficial to

replace HDDs for read-intensive workloads (data listed in Table 5.3).

Table 5.3. Per Drive Cost vs Performance

Characteristics HDD eMLC TLC eQLC

Random I/O MB/s 50 167 250 186

Read IOPS 189 4468 5337 2441

$ / GB 0.02 0.67 0.2 0.12

• Power efficient: the HDD power consumption is around 8-11 watts while QLC

SSD is around 3 watts (3X less). However, the read IOPS per watts shows QLC

SSD has 38X higher power efficiency for the real-world power consumption.

• Reliable: the maximum data bytes that passed through the HDD drive interface

(both read and write) is typically 2.5 - 3.5 petabyte (PB) while the QLC SSD have

estimated 450 TB of total write byte (TBW). Since QLC SSD is targeted at read-

intensive workloads (e.g., 90%+ reads), it can endure up to 4.5PB data bytes that

passed through the SSD interface within life-cycle, that is 28.5% higher than HDDs.

• Cost-effective: HDDs are still the most affordable storage solution in terms of the

dollar per GB of storage (i.e., $ / GB). But in order to support the quality of service

(QoS) demand that are essential to datacenter operation, a large number of HDD

arrays is required to achieve the desired read performance. My previous study [71]

53



indicates that a RAID-5 array comprises of five HDDs or a RAID-6 array comprises

of seven HDDs provide similar read performance to a single QLC SSD. Therefore,

QLC SSD and HDD ended up having similar investment per GB to reach same level

of performance. Consider the cost per GB for management and maintenance such

as cooling and rack space, QLC SSD becomes more cost-effective than HDD, which

leads to a higher investment gain.
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CHAPTER 6

AN IN-LAB STUDY OF QLC SSD PERFORMANCE IN ACCELERATION TESTS

In this chapter, I would introduce the Highly Accelerated Life Tests (HALT) of NVMe

QLC SSD. HALT is a reliable method to find design defects and weaknesses in electronic

and electro-mechanical assemblies in the industry[4]. It includes a series of multi-stress tests

that accelerate the aging of the SSD. By sequentially increases the stress of environments

well beyond the SSD will encounter in normal usage, I simulate thermal tests from HALT

in lab to evaluate the performance and reliability of QLC SSD.

6.1. Evaluating NVMe QLC SSD

This experiment focus on the NVMe QLC SSD. SATA and PCIe are the 2 major

types of connectors in SSDs. SATA connectors are more seen on SLC, MLC, and TLC SSDs.

Working with power connectors, SATA-based SSDs can have up to 6GB/s transportation

speed. However, PCIe connectors are more popular in QLC SSDs. NVMe(Non-Volatile

Memory Express), an interface protocol built specifically for SSDs, works with PCIe to

transfer data to and from SSDs. SSDs with NVMe protocol(aka, NVMe SSDs) can provide

up to 32GB/s transportation speed based on PCIe 3.0 without an additional power connector.

Also, since the PCIe 4.0 already released, new SSDs adopt this protocol can be expected

to twice as fast as PCIe 3.0, about 10x faster than SATA. Besides, the physical size of the

NVMe SSD is normally smaller than SATA-based SSD. It also usually eliminates the outer

protection box of each disk, and the user can see the NAND chip directly. Compared with

other types of SSDs, QLC SSDs have higher capacities on the same size NAND chip. As I

notice, many data center-level and enterprise-level SSDs are now NVMe SSDs.

In this experiments, I test 2 models of NVMe QLC SSDs. Even though both of them

come from the same manufacturer, they are from different product series. Table 6.1 shows

more detail information of them.
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Table 6.1. Types of QLC SSD in Thermal Tests

Model∗ Cell Type Architecture Capacity Firmware Cost

Model A NVMe QLC 3D 512GB 004c $

Model B NVMe QLC 3D 118GB k4110440 $$$

∗ For each model, the logical sector size are 512 byte; physical sector size may vary.

6.2. Experiment Setup

The HALT includes stress tests of temperature, rapid thermal cycle and vibration. In

my experiment, I facility the thermal tests to QLC SSD. I monitor the QLC SSD behaviors

during the process and analyze the performance and reliability degradation of the SSD. In

the experiments, I utilize the Flexible I/O Tester (FIO) and HiBench to test my SSDs. In

the first part of my experiments, I apply FIO to test some basic I/O performance of QLC

SSDs, while in the second part, I apply HiBench to test big data benchmarks on SSD.

In the above mentioned experiments, I use the HP ML110 server with 16GB memory

installed. The operating system is Ubuntu 20.04. All the packages, including FIO, HiBench,

and other monitoring tools are installed in Ubuntu Environment.

6.2.1. FIO and Blktrace

FIO provides huge flexibility of defining workloads by users. There can be any number

of processes or threads involved, and they can each be using their own way of generating

I/O defined by users[3]. In my experiment, I unitize FIO in two different ways. The first

usage is basic – to test the QLC SSD’s throughput, IOPS and latency. This is included

in the first part of my experiment. In the second part of the experiment, I cooperate the

FIO with the Blktrace package, to replay the I/O traces in sufficient times. Blktrace is a

Linux kernel based mechanism that provides detailed traces information of the I/O traffic

on block devices[1]. User can see the kernel events and queue operations background details

by utilizing Blktrace. Blktrace also can record those I/O information into a binary file and

allow FIO to replay it in the future.
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6.2.2. HiBench and Hadoop

HiBench and Hadoop are applied in the second part of the experiment. HiBench is a

big data benchmark suit introduced by Intel. It is still actively update and the latest version

is 7.1.1[7], which I use in the experiment. HiBench includes different types of big data work-

loads, including micro-benchmarks, machine learning benchmarks, web search benchmarks

and database benchmarks. It supports these benchmarks running on Hadoop and Spark. In

my experiment, I test some benchmarks on top of the Hadoop cluster. Despite that more

benchmarks can be run on Spark, Hadoop is more capable to process big data sets that size

exceeds available memory. Moreover, Hadoop is better used on batch process with tasks

that exploit disk read and write operations[24]. Under these considerations, Hadoop is more

suitable for my experiment purposes.

I set up the Hadoop cluster in standalone mode and enforce all the data read and

write operations go through the QLC SSD testing subject. In this case, the HDFS, including

the datanode and the namenode are assigned in the QLC SSD. Data sets for testing are also

stored in it.

6.2.3. Thermal Environments

Thermal tests from HALT requires aging the test article, in this case, QLC SSD,

through sequential steps to increase the stress environments. By following this rule, I set up

the different temperature levels. But before that, I need to figure out the upper bound and

lower bound of the temperature.

The upper bound temperature should be the thermal throttling throttling tempera-

ture of the SSD. As the temperature increase well beyond the thermal throttling temperature,

the thermal throttling protection will be triggered. In extreme cases, the SSD will disconnect

from the server, and cause the running process shut down immediately. The default thermal

throttling threshold for NVMe drives are at 66°C. So, the temperature should not be set up

beyond that. In addition, according to the American Society of Heating, Refrigerating and

Air-Conditioning Engineers (ASHRAE), it recommends that server inlet temperatures be

between 18°C and 27°C (64.4°F to 80.6°F). For the up-time servers, however, it recommends
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an upper limit of 25°C[2].

Besides, considering there is not only storage media exists, other hardwares may also

be installed in datacenters, Table 6.2 and 6.3 show the safe temperature of some other hard-

wares. The temperature values in the table relate to industrial-grade equipments. Compar-

ing with the commercial-grade hardwares, the industrial-grade equipments can bare a higher

range of temperature changes. Table 6.2 shows the idle temperature of the devices and the

maximum temperature the devices may reach for intensive workloads. Table 6.3 shows the

environmental temperature ranges that the devices can run continuously and safely. Most

SSDs are rated for running within a temperature range of 0ºC up to a max temperature

of 70ºC [23]. Specially, industrial-grade NVMe SSD can deliver stable performance even in

extreme temperatures ranging from -40°C to 85°C [22]. However, please beware that the

safe temperature does not indicate the devices can run at their best performance inside the

ranges.

According to the above suggestions and considerations, I set up the temperature at

25°C, 35°C, 45°C and 50°C for QLC SSD running environment. According to the most

datacenter temperature setup, I assume the QLC SSD running at the 25°C environment

temperature is the normal usage case. I use the environment temperature at 25°C as the

baseline. Then, I test the drive performance at 35°C, 45°C and 50°C. For 25°C, 35°C,

and 50°C temperature setup, I test both the FIO and the Hadoop benchmarks. For all

the temperature setups, I also test the Hadoop big data benchmark as well. I monitor

the performance of the SSD drives during different temperature environments and different

workloads.

Table 6.2. Safe Running Temperature of CPU, GPU and DRAM

Component CPU[51] GPU[47] DRAM[98]

Idle Temperature 40-45°C 30-45°C 45°C

Intensive Loading Temperature 95°C 85°C 95°C
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Table 6.3. Safe Running Temperature of Network and Storage

Component Network Card[81] Network Switches[11] HDD[25] NVMeSSD[22]

Lower-bound Temperature 0 -40°C 0°C -40°C

Upper-bound Temperature 90°C 85°C 60°C 85°C

6.3. Performance Evaluation

6.3.1. FIO Benchmark Experiments

In this section, I test the QLC SSD under 25°C, 35°C, and 50°C using basic FIO

command lines. I test their throughput, IOPS and latency. For all the categories, I test

their sequential reading and writing, as well as random reading and writing. The following

Table 6.4 and Table 6.5 show the results from Model A and Model B. Each test are repeated

on 3 different SSD with the same model, so the results are average values.

From Table 6.4 and Table 6.5, both Model A and Model B QLC SSD shows similar

behavior on performance and degradation when environment temperature increase from 25°C

to 50°C. But still can see some differences between them.

6.3.1.1. Benchmark Results and Degradation Analysis

Table 6.4. Model A Throughput, IOPS and Latency Results

Benchmarks Throughput(MB/s) IOPS Latency(µs)

Temperature 25°C 35°C 50°C 25°C 35°C 50°C 25°C 35°C 50°C

write zero 489.20 462.68 419.34 111154.06 61741.12 81527.78 39.19 44.20 47.46

read zero 1339.71 1142.67 686.95 84253.43 64027.69 76975.22 18.04 20.60 19.35

Sequential write random 518.89 455.17 442.80 119787.16 67122.74 90618.69 25.19 41.22 43.79

read random 1288.10 1144.08 698.58 82767.31 63223.44 80812.20 18.11 20.99 19.20

random read 1652.14 1316.74 387.29 84779.91 71160.59 42219.64 100.48 101.42 130.45

Random random write 273.28 265.02 174.75 35946.24 28676.39 18579.51 34.61 40.43 95.95
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Table 6.5. Model B Throughput, IOPS and Latency Results

Benchmarks Throughput(MB/s) IOPS Latency(µs)

Temperature 25°C 35°C 50°C 25°C 35°C 50°C 25°C 35°C 50°C

write zero 594.57 580.60 425.38 135355.45 138732.57 108127.24 17.95 16.57 17.98

read zero 1368.11 1302.76 1112.41 323729.82 332679.82 284557.43 12.04 10.95 12.12

Sequential write random 594.38 580.40 434.41 135254.17 138623.00 109172.18 17.94 16.46 17.70

read random 1368.32 1303.44 1078.78 322955.72 332516.35 275316.90 12.15 11.08 12.19

random read 1368.12 1302.08 1083.03 324254.89 442449.81 275220.02 12.19 10.98 12.32

Random random write 587.19 577.45 419.91 134667.87 138015.14 105696.33 17.69 16.52 17.72

For both Model A and Model B QLC SSD, when they are at 25°C, their through-

put reach the maximum values as their manufacture advertised. For both models, reading

throughput is much higher than writing throughput, no matter in sequence or random cat-

egory. However, Model A seems more capable to achieve the best performance in sequential

write than random write, but vise verse for reading operations. For Model B, writing and

reading throughput are stable no matter it is sequential or random. For IOPS, Model B

performs better than Model A, especially for reading operations. For Model A, it shows the

writing operations have higher IOPS than reading operations for sequential read/write, but

opposite for random read/write. For Model B, IOPS values are more consistent, no matter

for sequential or random operations. And reading operations are having much higher values

than writing operations. For Latency, reading operations perform much better than writing

operations for both models, except the random read/write from Model A.

When temperature increase from 25°C to 35°C, the throughput of both models are

downgraded. Overall, Model A shows larger degradation than Model B. Model A has the

largest throughput degradation on random read, while Model B shows all the reading op-

erations, including sequential reading and random reading, have similar degradation. Also,

both models show their reading operations have a little higher degradation than their writing

operations. Look at the IOPS values of Model A, IOPS values show significant degradation.

However, the IOPS values of Model B show a little improve, especially the random read
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operation. From the Latency category, Model A shows its latency values increase when tem-

perature increase from 25°C to 25°C. However, Model B shows its latency values decrease

a little bit. In summary, when the temperature increase from 25°C to 35°C, Model A SSD

shows degradation on throughput, IOPS and latency. However, Model B SSD only shows

the degradation on I/O throughput. At the same, Model B shows a slightly improvement

on IOPS and latency instead.

If the temperature increase from 25°C to 50°C, all the categories – throughput, IOPS

and latency, show degradation on values. For throughput and IOPS, both Model A and

Model B show obvious downgrading. Compared within 2 models, Model A has higher degra-

dation than Model B, especially on reading operations. Please refer to later discussion in this

section fro more details. The degradation of IOPS are similar between 2 models. For latency,

Model A shows a clearly downgrading. Even though Model B also show downgrading, but

the degradation is not that distincted as Model A. In order to have more insightful ideas of

the degradation, I also calculate the downgrading percentages for both models. Table 6.6

and Table 6.7 show the percentage changes with temperature increasing from 25°C.

Also, here shows the equations of calculating the degradation percentages. For

throughput and IOPS values, the larger the better, so I assume that the throughput and

IOPS values in lower temperature would be larger than that in higher temperature. How-

ever, for the latency values, the smaller the better, so I assume the latency values in lower

temperature would be smaller than that in higher temperature.

DegradationOfThroughput/IOPS =
l − h

l
× 100%

where,

l is the throughput/IOPS value in lower temperature,

h is the throughput/IOPS value in higher temperature.
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Similar, the degradation percentage of latency equation shows below.

DegradationOfLatency =
h− l

l
× 100%

where,

l is the latency value in lower temperature,

h is the latency value in higher temperature.

Table 6.6. Model A Throughput, IOPS and Latency Degradation – 25°C

Benchmarks Throughput(MB/s) IOPS Latency(µs)

Temperature 25°C → 35°C 25°C → 50°C 25°C → 35°C 25°C → 50°C 25°C → 35°C 25°C → 50°C

write zero 5.42% 14.28% 44.45% 26.65% 12.78% 21.10%

read zero 14.71% 48.72% 24.01% 8.64% 14.21% 7.28%

Sequential write random 12.28% 14.66% 43.97% 24.35% 63.64% 73.84%

read random 11.18% 45.77% 23.61% 2.36% 15.88% 5.95%

random read 20.40% 76.56% 16.06% 50.20% 0.93% 29.82%

Random random write 3.02% 36.05% 20.22% 48.31% 16.80% 177.20%

Table 6.7. Model B Throughput, IOPS and Latency Degradation – 25°C

Benchmarks Throughput(MB/s) IOPS Latency(µs)

Temperature 25°C → 35°C 25°C → 50°C 25°C → 35°C 25°C → 50°C 25°C → 35°C 25°C → 50°C

write zero 2.35% 28.46% -2.50% 20.12% -7.69% 0.17%

read zero 4.78% 18.69% -2.76% 12.10% -9.05% 0.66%

Sequential write random 2.35% 26.91% -2.49% 19.28% -8.25% -1.34%

read random 4.74% 21.16% -2.96% 14.75% -8.81% 0.33%

random read 4.83% 20.84% -36.45% 15.12% -9.93% 1.07%

Random random write 1.66% 28.49% -2.49% 21.51% -6.61% 0.17%

Both tables show obvious degradation happening on I/O bandwidths when tempera-

ture increases from 25°C to 50°. When temperature increases from 25°C to 35°C, the degra-

dation percentages are small, while as the temperature keeps increasing, the percentages

enlarge. Compared with Model A, Model B shows more stable degradation among reading

and writing operations. For example, when temperature increases from 25°C to 50°C, all
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the degradation percentages are greater than 18% but lower than 30%. However, the degra-

dation percentages of Model A are ranging from 14% to 76% under the same temperature

changes. While comparing the degradation percentages between reading and writing, Model

A shows the reading operations have a larger performance dropping than the writing, espe-

cially for the random read. But the Model B has different results. Model B shows only its

reading operation degradation percentages greater than its writing’s when temperature from

25°C to 35°C. But it shows its writing operations sensitive to temperature increases than its

reading’s when temperature increases from 25°C to 50°C.

For IOPS, the degradation percentages of writing operations are higher than the

readings’ in Model A. And for the sequential I/O operations, the majority degradation

happens when temperature increases from 25°C to 35°C. For Model B, when the temperature

reaches 35°C, the IOPS performs a little better than that in 25°C, especially the random

read operations. However, it is really hard to tell whether those percentage changes are real

or just statistic errors since the percentages are similar and small, which are close to 2.5%.

To continue increasing the temperature to reach 50°C, the degradation happens.

For latency, Model A shows its writing latency are larger than its reading’s. The

latency of Model B has a little improvement while temperature increases to 35°C. But later

the latency seems back to normal when temperature reaches 50°C.

Overall, Model A shows higher percentages of degradation on throughput, IOPS and

latency, which indicates that Model A SSD is sensitive and reactive to higher temperature

environments, especially for the reading operations. Compared with Model A, Model B

shows its stable and consistent degradation percentages among all the sequential I/O and

random I/O.

6.3.1.2. P-values and Analysis

Comparing the performance results on 25°C, SSD shows significant performance

downgrade on values and percentage when temperature reaching at 50°C. To prove this

conclusion in more confidence, I also facilitate the T-test to evaluate the significant level

using p-values to demonstrate the degradation of each benchmarks.
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T-test is a type of inferential statistic to determine if there is a significant difference

between the means of two groups. In order to analyze the significant intervals, I use two-

tail equal variance T-test. The P-values in my experiment are calculated by the following

formula.

P − value =
mean1−mean2

(n1−1)×var12+(n2−1)×var22

n1+n2−2
×
√

1
n1

+ 1
n2

where,

mean1 and mean2 are average values of each sample sets,

var1 and var2 are variances,

n1 and n2 are number of records.

P-values are probability values to describe how likely it is the data would be occurred

randomly [28]. The value of P-value ranges from 0 to 1. The smaller the p-value, the

stronger the evidence that we should reject the null hypothesis. Thus, in my cases, the

null hypothesis is QLC SSD shows no performance different between 25°C and

50°C. Normally, a p-value less than 0.05 is statistically significant. It indicates there are

less than 5% probability that the null hypothesis is acceptable.Similarity, a p-value less than

0.01 is statistically extremely significant. It indicates that there are less than 1% probability

that the null hypothesis is acceptable. Table 6.8 shows the p-values of the Model A SSD of

different benchmarks, and Table 6.9 shows Model B’s p-values.

The majority of p-values from both models show significant degradation, some bench-

marks’ p-values even show extremely significant. For Model A, most benchmarks in through-

put show their p-values less than 0.01, except the write zero benchmark shows no significant

at all. In IOPS, the read zero benchmark shows no significant while others are all show

significant. In Latency, only random read benchmark and random write benchmark show

significant degradation in Model A. Compared with the sequential I/O operations, the ran-

dom I/O operations are more likely to have degradation due to temperature increase. For

Model B drive, it shows extremely significant degradation for all the benchmarks in through-

put and IOPS categories, but no significant in the Latency category.
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After analyzing the FIO benchmark results in average values, percentages and p-

values, I can confirm that Finding 1: QLC SSD show degradation in throughput

and IOPS when temperature increases beyond the recommended their normal

operating temperature. But the experiment also confirm that SSD Latency is rarely

affected by the temperature increases.

Moreover, when comparing the two different SSD models, I also find out that even

though both models show throughput degradation, but different models reacts differently.

Model A shows more sensitive and acclimate to temperature increases when doing reading

operations. However, Model B shows its sensitive to writing operations more than reading

operations in high temperature. Its writing downgrading percentages are slightly higher

than its readings’ at 50°C. Finding 2: Different QLC SSD model show different

degradation preference on read/write.

Furthermore, when comparing the overall performance between two models, I also

can see that Model B shows a higher ability to maintain stable and balance on throughput

and, IOPS and Latency even after degradation. For example, when temperature increases

from 25°C to 50°C, the throughput degradation percentages of Model A can be vary from

14% to 76%, but Model B’s ranges from 15% to 28%. Similar scenario I observed from IOPS.

Without further investigation, I do not know the exact cause of it. But I believe that the

their different firmware is part of the cause.

6.3.2. Big Data Benchmarks Experiments

The FIO benchmark result provides an overall basic idea of how those QLC SSD

models react to temperature increases. However, real-world application scenarios are more

complicated. Especially considering the big data booming recently, as well as the QLC SSD

is targeting the high-end storage market, analyzing more practical cases may help to have

a deeper understanding of the QLC SSD’s reliability when facing temperature increases. In

this section, I test the QLC SSD Model A and Model B under 25°C, 35°C, 45°C and 50°C

environment temperatures. I apply different big data workloads on top of them, and observe

their degradation behaviours on I/O throughput.
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Table 6.8. Model A P-values and Significant

Benchmarks Throughput(MB/s) IOPS Latency(µs)

Temperature 25°C vs.50°C 25°C vs.50°C 25°C vs.50°C

write zero 1.91E-01NS 1.78E-02 ∗ 4.49E-01NS

read zero 9.95E-05 ∗∗ 8.80E-02NS 9.59E-02NS

Sequential write random 8.51E-04 ∗∗ 1.16E-03 ∗∗ 1.32E-01NS

read random 7.26E-04 ∗∗ 4.76E-02 ∗∗ 1.68E-01NS

random read 1.79E-08 ∗∗ 5.94E-07 ∗∗ 1.09E-04 ∗∗

Random random write 3.70E-03 ∗∗ 1.13E-02 ∗ 3.81E-02 ∗

NS indicates p-value > 0.05, which the performance different is NOT significant;

∗ indicates p-value ≦ 0.05, which the performance different is significant;

∗∗ indicates p-value ≦ 0.01, the different is extremely significant.

Table 6.9. Model B P-values and Significant

Benchmarks Throughput(MB/s) IOPS Latency(µs)

Temperature 25°C vs.50°C 25°C vs.50°C 25°C vs.50°C

write zero 8.85E-05 ∗∗ 1.17E-04 ∗∗ 8.39E-01NS

read zero 7.41E-04 ∗∗ 4.52E-03 ∗∗ 4.01E-01NS

Sequential write random 3.51E-05 ∗∗ 2.81E-04 ∗∗ 5.56E-01NS

read random 9.12E-04 ∗∗ 2.80E-03 ∗∗ 2.49E-01NS

random read 9.59E-04 ∗∗ 1.94E-03 ∗∗ 8.49E-01NS

Random random write 1.01E-04 ∗∗ 2.04E-04 ∗∗ 2.10E-01NS

NS indicates p-value > 0.05, which the performance different is NOT significant;

∗ indicates p-value ≦ 0.05, which the performance different is significant;

∗∗ indicates p-value ≦ 0.01, the different is extremely significant.
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The experiment has two steps. First of all, I set up the Hadoop environment and run

each benchmark on top of it under 25°C. During the same time, I integrate the Blktrace to

record the I/O traces from the process. During this step, the I/O traces of Model A and

Model B SSD will be recorded separately. Secondly, I apply the FIO to replay the recorded

traces 100 times under different temperature environments and collect their throughput

data as well as data from other monitoring tools. The repetition time is defined by my pre-

experiment. The QLC SSD would not show degradation from the first few times of replay.

And different benchmark show different start time of degradation. The 100 is a number

large enough that throughput of all benchmarks show degradation, and is stable for a long

enough time without showing second degradation1.

6.3.2.1. Data Size

Due to the server memory limitation, I use different size of data sets for different

benchmarks in order to approach the maximum usage of the memory. Table 6.10 summarizes

the data set sizes of each workload. Data set sizes are pre-defined by HiBench.

6.3.2.2. Benchmarks and I/O Trace Analysis

The workloads in this experiment section include micro-benchmarks, machine learning

benchmarks and web search benchmarks. From the micro-benchmarks, I test the Wordcount,

Sort, Dfsioe-read and Dfsioe-write benchmarks. From the machine learning benchmarks, I

test the Bayes and Kmeans benchmarks. From the web search benchmarks, I apply the

Nutchindexing and Pagerank benchmarks.

• Wordcount: The Wordcount benchmark is one of the simple applications con-

tained in the Hadoop distribution. It takes a set of text files as input, and counts

the number of times that each word appears[26]. While running the Wordcount

benchmark on Hadoop standalone mode, the whole process includes tow parts: Map

and Reduce. The Mapping process takes over 90% of the time process time. And

the Reduce process run after the Mapping process finishing.

1Second degradation is not observed even repetition reach higher number.
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Table 6.10. Benchmarks and Data Set Sizes

Benchmarks Dataset Size

Wordcount Huge 32,000 MB

Sort Huge 3,200 MB

Micro Dfsioe-read Huge 256 × 100 MB

Dfsioe-write Huge 256 × 100 MB

Bayes Large pages: 100,000

classes: 100

ngrams: 2

Machine Learning Kmeans Large number of clusters: 5

dimensions: 20

number of samples: 20,000,000

samples per input file: 4,000,000

maximum iteration: 5

k: 10

Nutchindexing Small pages: 1,000,000

Web Search Pagerank Small pages: 5,000

number of iterations: 3

block: 0

block width: 16

• Sort: The Sort benchmark sorts a set of records that is randomly generated.

The application uses identity map and identity reduce functions as the MapReduce

framework does the sorting[26].

• Dfsioe: The Dfsioe benchmark in the HiBench suit is the enhanced DFSIO. It tests

the HDFS throughput of the Hadoop cluster by generating a large number of tasks

performing writes and reads. It measures the average I/O rate of each map task,

the average throughput of each map task, and the aggregated throughput of HDFS
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cluster[7].

• Byes: The Bayes is a simple classical classification machine learning algorithm.

In HiBench, it generate documents whose words follow the Zipfian distribution[7].

During the process, Map and Reduce run simultaneously.

• Kmeans: The Kmeans workload is a well-known clustering machine learning al-

gorithm. In HiBench, the Kmeans benchmarks generates input from GenKMeans-

Dataset based on Uniform Distribution and Gaussian Distribution[7]. In my ex-

periment, the default cluster number is five. While running the Kmeans workload,

MapReduce jobs run cluster by cluster until all cluster are finished.

• Nutchindexing: The Nutchindexing workload tests the indexing sub-system in

Nutch. It uses the automatically generated Web data whose hyperlinks and words

both follow the Zipfian distribution with corresponding parameters[7].

• Pagerank: The Pagerank is a search engine ranking algorithm. The Pagerank

benchmark test the Hadoop embedded pagerank algorithm using the data source

generated from Web data whose hyperlinks follow the Zipfian distribution[7].

Even though all the HiBench benchmarks are running MapReduce on top of Hadoop,

different benchmark has unique workload patterns, as well as different ratios of read and

write. Table 6.11 shows the read/write ratios for each benchmark from both SSD models.

Since the Pagerank benchmark does not have any reading entrance, so the table only shows

the raw number of reading and write entrance.

Ratio(read/write) =
n1

n2

where,

n1 = number of read entrance,

n2 = number of write entrance.

From the table, the Wordcount and the Nutchindexing benchmark show reading op-

eration is more intensive than writing operations. Especially the Wordcount benchmark

shows its reading entrances are over double than the its writings’. But other benchmarks
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are write entrances over read entrances, even the Dfsioe-read benchmark. However, these

ratios only show the frequency of reading and writing operations, but do not indicate the

I/O bandwidth. And also cannot define the workload is read intensive or write intensive at

all. Cause each read/write entrance can have different I/O bandwidth.

Table 6.11. Benchmarks Read/Write Ratios

Benchmarks Model A Model B

Wordcount 2.05 2.37

Sort 0.38 0.57

Micro Dfsioe-read 0.54 0.81

Dfsioe-write 0.48 0.55

Bayes 0.17 0.13

Machine Learning Kmeans 0.62 0.69

Nutchindexing 1.12 1.17

Web Search Pagerank(raw) 0/90 0/98

In order to have a better understanding of the workload patterns, Figure 6.1 and

Figure 6.2 show the I/O request numbers from each model.

In general, Model A and Model B show similar workload patterns in each benchmark.

For the Wordcount benchmark, read and write requests distribute almost evenly after the

the process starting. And the read requests are overwhelming the write requests during the

whole process. So, the Wordcount benchmark is a read intensive benchmark. For the Sort

benchmark, write request peaks after the middle of the process, and the request number is

high to reach 7000 for Model A and 5000 for Model B. While the read request remains a low

number through the whole process. Thus, The Sort benchmark is no doubt a write intensive

benchmark. The Dfsioe-read and the Dfsioe-write benchmarks, as their names indicated,

read request domains the Dfsioe-read, and write request domains the Dfsioe-write. Even

though both of them are not purely read or write requests only. The read requests from

the Bayes and the Kmeans benchmarks are only appear at some moment of the processes.
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Specially, the write request peaks at the end of the process of the Kmeans benchmark.

Combined with the read/write ratio from Table 6.11, the Bayes benchmark and the Kmeans

benchmark are write intensive benchmarks. The Pagerank benchmark is a write intensive

workload since it only has write operations. The Nutchindexing benchmark workload pattern

shows four peaks. The first three peaks have both write and read requests. The 4th peak only

shows write requests. Considering the read/write ratio of the benchmark, the Nutchindexing

benchmark seems a read/write balance workload.

6.3.2.3. Benchmark Results and Degradation Analysis

Table 6.12 and Table 6.13 display the average values of I/O throughput from Model

A and Model B in different environment temperature.

When temperature is less than and equal to 45°C, both Model A and Model B show

their maximum reading throughput from the Wordcount benchmark. The read intensive

benchmark – Dfsioe-read also show its throughput value close to the maximum. From the

Dfsioe-write benchmark from both models show their maximum writing throughput. Other

write intensive benchmarks, for example, the Sort, the Bayes and the Kmeans show relative

high values on write. But the Pagerank benchmark shows lower I/O throughput values

comparing with other write intensive benchmarks.

Table 6.12. Model A Throughput under Different Temperatures

Temperature 25°C 35°C 45°C 50°C

Throughput(MB/s) Read Write Read Write Read Write Read Write

Wordcount 1411.26 5.21 1426.44 5.26 1443.36 5.33 1258.60 4.64

Sort 82.32 777.51 84.57 798.68 82.96 783.61 75.118 710.82

Micro Dfsioe-read 1325.00 39.89 1333.22 40.15 1346.66 40.57 1211.80 36.48

Dfsioe-write 0.09 878.88 0.09 879.34 0.09 842.89 0.08 766.32

Machine Learning Bayes 73.68 710.12 79.15 763.13 78.19 754.11 65.74 633.71

Kmeans 118.85 758.67 120.49 768.89 117.44 749.81 101.64 649.03

Web Search Nutchindexing 223.07 534.30 221.57 530.71 218.84 524.31 181.62 435.12

Pagerank NA 167.45 NA 167.52 NA 165.48 NA 155.26
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(c) Dfsioe-Read Read/Write Request
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(e) Bayes Read/Write Request
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(f) Kmeans Read/Write Request
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(g) Nutchindexing Read/Write Request
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(h) Pagerank Read/Write Request

Figure 6.1. Summary of Read and Write Request from Model A

(the ◦ indicates the Read, the ◦ indicate the Write)
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(f) Kmeans Read/Write Request
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(h) Pagerank Read/Write Request

Figure 6.2. Summary of Read and Write Request from Model B

(the ◦ indicates the Read, the ◦ indicate the Write)
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Figure 6.3. Distribution of Micro-Benchmarks from Model A

Table 6.13. Model B Throughput under Different Temperatures

Temperature 25°C 35°C 45°C 50°C

Throughput(MB/s) Read Write Read Write Read Write Read Write

Wordcount 1251.92 4.64 1248.90 4.63 1242.98 4.60 931.92 3.45

Sort 127.99 530.67 127.83 529.74 127.40 527.88 85.49 354.63

Micro Dfsioe-read 1179.52 38.97 1174.62 38.78 1173.83 38.78 898.39 29.67

Dfsioe-write 0.06 586.81 0.06 588.60 0.06 576.44 0.04 357.49

Machine Learning Bayes 50.61 562.66 50.55 564.17 51.09 565.51 32.85 364.28

Kmeans 95.80 537.14 96.17 539.01 96.03 538.17 65.69 368.47

Web Search Nutchindexing 198.95 490.39 199.70 491.57 199.51 491.19 127.20 313.28

Pagerank NA 437.59 NA 441.89 NA 444.79 NA 444.46
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Figure 6.4. Distribution of Micro-Benchmarks from Model B

To have a deeper understanding, Figure 6.3, Figure 6.4, Figure 6.5 and Figure 6.6

show the distributions of I/O throughput of benchmarks using the box-plot.

Figure 6.3 and Figure 6.4 show the I/O distributions of Micro-Benchmark under

different temperature. All benchmarks show significant I/O throughput dropping when

temperature reach up to 50°C. For Model A, the throughput of the Wordcount benchmark

and the Dfsioe-read benchmark, which are reading intensive workloads, even have a little

increase when temperature increase from 25°C to 45°C. The sort and the Dfsioe-write, which

are writing intensive workloads, their throughput start decreasing earlier at 45°C. For Model

B, all the micro-benchmark show their throughput downgrading starting at 50°C. Before

reaching the 50°C, their throughput are stable, not matter for reading intensive or writing

intensive workloads.
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Figure 6.5. Distribution of Machine Learning Benchmarks

Figure 6.5 shows the I/O distributions of Machine Learning benchmarks from both

models. Both of them show major downgrade of I/O throughput at 50°C. The Bayes bench-

mark of Model A, however, its degradation starts at 45°C.

Figure 6.6 shows the I/O distribution of Web Search benchmarks from both mod-

els. Model A shows the major downgrading starting at 50°C. Model B only show the I/O

throughput of the Nutchindexing benchmark downgraded at 50°C. However, the throughput

of the Pagerank benchmark are close not matter at what temperature tier.

In a nutshell, this experiment reinforces my first finding: when the environment tem-

perature increases well beyond the recommended operating temperature, QLC SSD show sig-

nificant degradation in throughput. Furthermore, this experiment also confirm that Finding

3: 50°C is the borderline temperature that major degradation starts. Specially,
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Model A shows its throughput downgrading earlier at 45°C when running write intensive

workloads. In the opposite, read intensive workloads shows a small throughput increases be-

fore 45°C. Besides, comparing Model B with Model A, Model B shows relatively consistent

throughput on all benchmarks, no matter for read intensive or write intensive workloads. In

addition, the box-plots at 50°C show larger boxes than at lower temperatures. It indicates

that Finding 4 : the fluctuation of throughput at 50°C is much higher than lower

temperature.
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Figure 6.6. Distribution of Web Search Benchmarks

6.3.2.4. P-values and Analysis

Although the throughput values from the experiment show the major throughput

degradation happens at 50°C, but they can not prove that there exist significant difference

between throughput values at different temperature.
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Table 6.14. Model A P-Values of Different Temperature Changes (25°C →

50°C)

Temperature 25°C vs. 35°C 25°C vs. 45°C 25°C vs. 50°C

P-Values Read Write Read Write Read Write

Wordcount 5.20E-05 ∗∗ 5.09E-05 ∗∗ 4.44E-15 ∗∗ 4.12E-15 ∗∗ 3.90E-51 ∗∗ 4.10E-51 ∗∗

Sort 3.94E-02 ∗ 3.81E-02 ∗ 5.57E-01NS 5.51E-01NS 8.52E-10 ∗∗ 8.73E-10 ∗∗

Micro Dfsioe-read 3.04E-01NS 2.77E-01NS 8.04E-03 ∗∗ 5.98E-03 ∗∗ 3.17E-29 ∗∗ 4.14E-29 ∗∗

Dfsioe-write 6.74E-01NS 4.22E-01NS 1.13E-20 ∗∗ 1.88E-19 ∗∗ 2.03E-58 ∗∗ 2.15E-58 ∗∗

Machine Learning Bayes 1.07E-03 ∗∗ 9.92E-04 ∗∗ 6.82E-03 ∗∗ 6.15E-03 ∗∗ 5.55E-05 ∗∗ 5.71E-05 ∗∗

Kmeans 2.21E-01NS 2.32E-01NS 5.13E-01NS 5.19E-01NS 4.23E-26 ∗∗ 4.37E-26 ∗∗

Web Search Nutchindexing 7.91E-01NS 7.91E-01NS 3.77E-01NS 3.84E-01NS 7.53E-16 ∗∗ 7.78E-16 ∗∗

Pagerank NA 9.08E-01 NA 3.25E-03 ∗∗ NA 4.47E-15 ∗∗

NS indicates p-value > 0.05, which the performance different is NOT significant;

∗ indicates p-value ≦ 0.05, which the performance different is significant;

∗∗ indicates p-value ≦ 0.01, the different is extremely significant.

Table 6.14 through Table 6.17 show the P-values of Model A and Model B for each

benchmarks at different temperature. The majority of the p-values shows that the through-

put values between different temperature having significant differences. From Table 6.14

and Table 6.14, as temperature increases from 25°C to 35°C, 3/8 benchmarks’ p-values show

significant. When the temperature increases from 35°C to 45°C, 3/4 benchmarks’ p-values

show extremely significant. As the temperature reaches 50°C, all benchmark’s p-values show

extremely significant. P-values of Model B show a similar trend. Taking the box-plot results

into consideration, as the temperature keep increasing, more and more benchmarks show

significant throughput degradation. When comparing p-values between different tempera-

ture, most p-values show minimum values at 50°C. Also, as the temperature increases, the

p-values are smaller. This illustrates the degradation is more significant at higher tempera-

ture. Here, I summary the Finding 5: When temperature beyond 25°C, QLC SSD

throughput starts degradation for some benchmarks. As the temperature keep

increasing, more and more benchmark workloads starting to degraded, and the

degradation becomes more and more significant.
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Table 6.15. Model A P-Values of Different Temperature Changes (35°C →

50°C)

Temperature 35°C vs. 45°C 35°C vs. 50°C 45°C vs. 50°C

P-Values Read Write Read Write Read Write

Wordcount 8.11E-06 ∗∗ 8.09E-06 ∗∗ 3.20E-57 ∗∗ 3.38E-57 ∗∗ 6.77E-63 ∗∗ 6.94E-63 ∗∗

Sort 6.04E-27 ∗∗ 2.74E-27 ∗∗ 1.51E-99 ∗∗ 5.98E-100 ∗∗ 8.56E-76 ∗∗ 3.84E-76 ∗∗

Micro Dfsioe-read 4.30E-04 ∗∗ 4.62E-04 ∗∗ 1.07E-66 ∗∗ 2.95E-65 ∗∗ 4.07E-71 ∗∗ 1.97E-70 ∗∗

Dfsioe-write 6.71E-21 ∗∗ 7.56E-20 ∗∗ 1.39E-58 ∗∗ 1.13E-58 ∗∗ 6.78E-27 ∗∗ 1.33E-27 ∗∗

Machine Learning Bayes 9.54E-17 ∗∗ 2.10E-17 ∗∗ 2.16E-29 ∗∗ 1.76E-29 ∗∗ 2.56E-26 ∗∗ 1.82E-26 ∗∗

Kmeans 7.39E-02NS 7.82E-02NS 3.27E-102 ∗∗ 2.70E-103 ∗∗ 1.80E-16 ∗∗ 1.22E-16 ∗∗

Web Search Nutchindexing 6.04E-01NS 6.13E-01NS 8.05E-13 ∗∗ 8.41E-13 ∗∗ 1.31E-15 ∗∗ 1.24E-15 ∗∗

Pagerank NA 1.07E-03 ∗∗ NA 1.47E-15 ∗∗ NA 2.15E-11 ∗∗

NS indicates p-value > 0.05, which the performance different is NOT significant;

∗ indicates p-value ≦ 0.05, which the performance different is significant;

∗∗ indicates p-value ≦ 0.01, the different is extremely significant.

Table 6.16. Model B P-Values of Different Temperature Changes (25°C →

50°C)

Temperature 25°C vs. 35°C 25°C vs. 45°C 25°C vs. 50°C

P-Values Read Write Read Write Read Write

Wordcount 2.92E-01NS 2.88E-01NS 1.38E-02 ∗ 1.35E-02 ∗ 2.04E-107 ∗∗ 1.85E-107 ∗∗

Sort 4.64E-02 ∗ 1.26E-02 ∗ 8.67E-10 ∗∗ 6.04E-14 ∗∗ 6.21E-117 ∗∗ 3.64E-117 ∗∗

Micro Dfsioe-read 8.05E-02NS 5.45E-02NS 9.46E-02NS 1.06E-01NS 6.23E-91 ∗∗ 3.99E-90 ∗∗

Dfsioe-write 6.49E-13 ∗∗ 1.62E-12 ∗∗ 6.03E-08 ∗∗ 1.18E-09 ∗∗ 7.73E-168 ∗∗ 1.70E-169 ∗∗

Machine Learning Bayes 4.58E-01NS 1.86E-02 ∗ 5.88E-10 ∗∗ 1.13E-04 ∗∗ 1.03E-120 ∗∗ 1.46E-122 ∗∗

Kmeans 2.86E-09 ∗∗ 5.80E-10 ∗∗ 4.39E-05 ∗∗ 2.14E-04 ∗∗ 9.72E-62 ∗∗ 9.50E-62 ∗∗

Web Search Nutchindexing 3.67E-13 ∗∗ 4.12E-07 ∗∗ 8.22E-07 ∗∗ 2.57E-03 ∗∗ 4.66E-200 ∗∗ 9.18E-200 ∗∗

Pagerank NA 2.73E-02 ∗ NA 1.65E-04 ∗∗ NA 3.77E-04 ∗∗

NS indicates p-value > 0.05, which the performance different is NOT significant;

∗ indicates p-value ≦ 0.05, which the performance different is significant;

∗∗ indicates p-value ≦ 0.01, the different is extremely significant.
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Table 6.17. Model B P-Values of Different Temperature Changes (35°C →

50°C)

Temperature 35°C vs. 45°C 35°C vs. 50°C 45°C vs. 50°C

P-Values Read Write Read Write Read Write

Wordcount 1.19E-01NS 1.19E-01NS 1.35E-105 ∗∗ 1.29E-105 ∗∗ 1.40E-100 ∗∗ 1.32E-100 ∗∗

Sort 4.58E-04 ∗∗ 2.00E-04 ∗∗ 2.88E-116 ∗∗ 2.55E-116 ∗∗ 2.47E-115 ∗∗ 1.59E-115 ∗∗

Micro Dfsioe-read 8.19E-01NS 9.66E-01NS 2.45E-89 ∗∗ 5.29E-88 ∗∗ 7.88E-87 ∗∗ 3.41E-86 ∗∗

Dfsioe-write 2.56E-12 ∗∗ 2.38E-12 ∗∗ 1.94E-169 ∗∗ 4.29E-170 ∗∗ 5.46E-149 ∗∗ 1.73E-149 ∗∗

Machine Learning Bayes 4.38E-17 ∗∗ 2.95E-04 ∗∗ 3.60E-121 ∗∗ 1.97E-124 ∗∗ 4.72E-124 ∗∗ 1.38E-124 ∗∗

Kmeans 1.85E-02 ∗ 5.89E-03 ∗∗ 1.59E-62 ∗∗ 1.88E-62 ∗∗ 3.09E-62 ∗∗ 3.88E-62 ∗∗

Web Search Nutchindexing 1.24E-01NS 1.64E-01NS 1.89E-200 ∗∗ 3.50E-200 ∗∗ 8.95E-200 ∗∗ 1.56E-199 ∗∗

Pagerank NA 1.37E-01NS NA 1.93E-01NS NA 8.63E-01NS

NS indicates p-value > 0.05, which the performance different is NOT significant;

∗ indicates p-value ≦ 0.05, which the performance different is significant;

∗∗ indicates p-value ≦ 0.01, the different is extremely significant.
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CHAPTER 7

AVOIDING CATASTROPHIC DATA LOSS WITH DIFFERENTIATED DISK

DEGRADATION AND FAILURE PREDICTION

In this chapter, I leverage our lab’s previous findings to propose a differentiated and

proactive disk failure management framework.

7.1. Related Works

Disk failure prediction is not a new topic. A number of methods have been proposed

in the literature, such as [96, 91, 72, 61, 46, 45, 93, 66] (Please see Section 7.1 for more

discussion). However, they rely on a one-size-fits-all prediction model and future disk state

data to “predict” (detect actually) all failures, which significantly comprises the accuracy

and applicability of those approaches. In the work [52], Song Huang successfully identified

different types of disk failures using SMART data.

A number of existing research efforts seek to characterize the distribution of disk

failures and discover indicators of impending failures. Gray et al. [48] observed failure rates

ranging from 3.3-6% in two large web properties at Microsoft. Schwartz et al. [78] reported a

failure rate of 2-6% in the drive population at an Internet Archive. Schroeder and Gibson [76]

found that in the field, annual disk replacement rate typically exceeded 1%, with 2-4%

common and up to 13% observed on some systems. They presented the per-component failure

percentages for three different types of systems and reported a significant overestimation of

mean time to failure (MTTF) by manufacturers. Bairavasundaram et al. [27] revealed the

potential risk of latent sector errors during RAID reconstruction, which was not predicted

in the early RAID reliability model. Xin et al. [92] analyzed the effect of infant mortality on

long-term disk failure rates and used hidden Markov models to describe the effect. Pinheiro

et al. [68] studied failures of consumer-grade disk drives used in Google’s services. They

found that most SMART attributes correlated with disk failures. Ma et al. [60] analyzed

disk failures in EMC (now Dell) data backup systems and found that the count of reallocated

sectors correlated strongly with failures. Their findings comply with our results from one
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of the three failure categories [52]. However, as the information of failure categories is not

available, all failure instances are considered together in the preceding works. Little work

thoroughly analyzes the degradation process of disk failures.

Gunawi et al. [50] collected 101 reports of fail-slow hard- ware incidents and ana-

lyzed the root causes including hard disk failures. Many techniques have been proposed

to analyze disk failures using SMART data. Gaber et al. [46] extracted features from sev-

eral time windows and used compound features to reduce the “false alarm” rate for failure

detection. Murry et al. [66] compared the performance of support vector machine (SVM),

unsupervised clustering, and two non-parametric statistical tests (rank-sum and reverse ar-

rangements tests) on 369 hard drives. They found that the rank-sum method achieved the

best performance, i.e., 33.2% FDR and 0.5% FAR. Markov Models [45, 96], probability anal-

ysis [61], regression trees [57], and Mahalanobis distance [88] have been proposed to predict

disk failures. A number of machine learning techniques were applied to predict sector errors

in [27]. Botezatu et al. [30] presented data analytics results on Backblaze dataset to plan the

replacement of drives. Rinco n et al. [72] identified 52% of disk failures and achieved a higher

performance than the prior work. Xu et al. [93] developed a ranking-based machine learn-

ing model to characterize the faulty disks and rank the disks based on their error-proneness.

Xiao et al. [91] proposed an online Random Forests model which can be fed in with sequential

of SMART data on-the-fly to detect disk failures.

7.2. Critical SMART Attributes and Disk Failure Types

7.2.1. Disk SMART Dataset

Figure 7.1 shows the top eight attributes having the highest correlation with other

attributes. Figure 1(a) shows that, among 28.8% of disks, the correlation between RSC and

RUE which are higher than 0.75; and in 25.2% of disks, the correlation between RSC and

POH are higher than 0.75. Also, in Figure 1(b) and 1(c), RUE are highly correlated with

RSC in 41.7% of disks, and POH are highly correlated with RSC in 41.2% of disks. These

statistical measurements indicate that RSC is most relevant to other attributes, and RUE

and POH follow behind. Hence, the changes of RUE, POH may enlarge the variation of RSC
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with high possibility, and RSC, RUE, and POH are more sensitive than other attributes as

well. In our recent study [52], I found POH was a key attribute for logical disk failures.

Some SMART attributes, such as “Read Error Rate (RER)”, show high fluctuation

when disks are actually in degradation and even close to failures. Their values are not

cumulative, that is their readings are either instantaneous or refreshed after a period of time.

Thus, they do not maintain the history of the attributes. The high fluctuation can distract

our analysis of disk degradation and make the derived degradation signature inaccurate.

Therefore, they are not selected as critical attributes.

Data center environmental parameters such as temperature and humidity have been

associated with disk failures in the past. This study does not necessarily consider the effect

of these factors due to lack of accurate and reliable data points. I note that these factors

are causes and may result in observable symptoms considered in this study such as disk

read/write/seek errors which may lead to failures.

7.2.2. Understanding Logical Disk Failures

In [52], I explored machine learning and statistical analysis methods to discover types

of disk failures from SMART data. Three categories of disk failures, i.e., logical failures

(59.6%), bad sector failures (7.6%), and read/write head failures (32.8%), were identified.

An important finding was that logical failures account for a large portion of disk failures.

These “failed” drives had SMART readings similar to those of working drives, i.e., they did

not display physical problems. Those “failures” were more likely caused by errors of the OS

or file system that made those drives inaccessible. I referred them to logical failures and

used regression trees to model disk health degradation status.

Two important questions that are left unanswered are 1) Why do those logical failures

happen? and 2) How can I solve their problems so that those drives can still be used without

replacement? To answer these two questions, I conduct a deeper analysis of the logical disk

failures.

83



(a) Correlation of RSC with other attributes

(b) Correlation of RUE with other attributes

(c) Correlation of POH with other attributes

Figure 7.1. Correlation between SMART Attributes among Failed Disks.
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Figure 7.2. Subgroups of Failed Disks with Logical Failures

I leverage data clustering algorithms and statistical analysis methods to investigate

the 258 drives having logical failures. Figure 7.2 shows the results from using K-Means++

clustering. Three subgroups are found. The decile distributions of the critical SMART

attributes are depicted in Figure 3(a) and 3(b). In Figure 7.2, 8.6% of logical failures

are associated with long Spin-Up Time (SUT) ( 3(a)), which measures an average time

used by the spindle to rotate disk platters to the fully operational speed; 4.3% of logical

failures are related to abnormal High Fly Write (HFW)( 3(b)), which keeps track whether

the Read/Write heads are above the normal range during write operations. The rest of logical

failures are difficult to distinguish using SMART attributes. Together with the failure types

that I have found in [52], five types of disk failures are discovered.

• RUE failures, a.k.a. Read/Write head failures, characterized by Reported Un-

correctable Errors (RUE). Uncorrectable errors occur during data communication

between disk components and between disks and I/O controllers. Once the number

of uncorrectable errors reaches a limit, a disk fails.

• RSC failures, a.k.a. bad sector failures, characterized by Reallocated Sector Count

(RSC). When an excessive number of bad sectors exist, a disk is not writable.

• SUT logical failures, characterized by Spin-Up Time (SUT). It takes a longer

than normal period of time to spin up disk platters to the full speed.
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• HFW logical failures, characterized by High Fly Write (HFW). The Read/Write

heads are higher than normal away from the surface of platters during write opera-

tions.

• Other logical failures. There is no obvious physical damage on a disk, but have

a small number of write errors and a small to medium number of read errors. They

cannot be characterized by one or a combination of SMART attributes.

(a) Deciles of Spin-Up Time

(b) Deciles of High Fly Writes

Figure 7.3. Subcategories of Logical Disk Failures.

7.3. Discovering and Differentiating Disk Degradation Signatures

SMART records the statistics of disk operations and errors. It does not tell if a

drive fails or has performance degradation. Without discovering the entire disk degradation
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process, any modeling cannot accurately characterize this process. To address this problem,

I must find the start of disk degradation, which itself is a challenge.

7.3.1. Identify the Start of Disk Degradation

The analysis of “failed”drives (Section 7.2.2) can only tell us how a drive behaves at

and close to the time when it is replaced. It cannot show us how the drive change from being

healthy to becoming degraded. To find that lost part of the picture, I include those “good”

(or called working) drives into the analysis. A drive is working does not mean that it has no

erroneous or abnormal behavior. It functions, that is reading data from or writing data to

the sectors specified by I/O requests or having spare sectors to replace bad sectors.

I analyze the working drives with an aim to identify those drives that have erroneous

behavior from the healthy ones, and thus to discover the start of disk degradation. To this

end, I extract the last SMART record of each working drive, and use data clustering, such

as K-Means++, algorithms to group the drives into different categories. In my experiment,

I find six groups from data clustering. By analyzing the deciles of each attribute for the six

groups, I find that five groups of the working drives match the five groups of the failed drives

(described in Section 7.2.2), which indicates that the working drives in these five groups

have the signs of health degradation. The remaining one is the largest group and does not

match with any of the five failure groups with regard to the decile distributions of the critical

SMART attributes. It corresponds to the group of healthy drives.

Additionally, I use all SMART records of the working drives in data clustering to

verify the preceding finding. The results are the same. No matter whether I use the last

SMART record of each working drive or all of their SMART records, data clusters produce

the same number of groups with similar decile distributions.

(1) Read/Write Head Failures : To determine if a drive degrades with Read/Write head

failures, I extract the SMART records of working disks and failed disks which are

related to the Read/Write head failures. Then I calculate the RUE deciles of these

records and quantify the difference between these records. Figure 7.4 shows the RUE

deciles of disk records in three groups: healthy disk records, working disk records
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with RUE degrading trend, and failed disks with RUE failures. In Figure 7.4, the

working disks with RUE degrading trend, and the failed disks have lower RUE

values, while healthy disks have much higher RUE values. I use the upper bound,

i.e., 0.37, as the RUE degradation threshold, which means a disk is considered as in

a degradation process after its RUE value becomes less than 0.37. For those disks

whose RUE sharply drops to 0.37 in a short period of time, immediate replacement is

deemed necessary. Drives’ health degrades gradually and the thresholds are defined

to confirm that drives start to experience health degradation.

(2) Bad Sector Failures : Similarly, to identify the start of disk degradation for bad

sector failures, I extract SMART records from failed disks having bad sector failures,

SMART records from working disks with RSC degradation, and healthy disks. In

Figure 7.5, the healthy disks have higher RSC values and the RSC values of 80%

of healthy disks are close to 1. In contrast, disks with bad sector failures and disks

with RSC degradation have much lower RSC values. I set a hyperplane to separate

the disk SMART records into different groups and define the degradation threshold.

From Figure 7.5, I choose 0.03 as the threshold for RSC degradation. When the

RSC value of a disk drops to 0.03 or less, then the disk is considered as in the

degradation process. I can forecast when the disk is going to fail (Section 7.4).

Figure 7.4. Deciles of RUE for Finding the Start of Degradation.
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Figure 7.5. Deciles of RSC for Disks for Finding the Start of Degradation.

7.3.2. Differentiated Disk Degradation Signatures

After the start of disk degradation is identified, I can discover the entire degradation

process from the SMART data of a failed drive. I use a degradation signature to model the

degradation process, which is useful for disk degradation monitoring and failure prediction.

For each type of disk failures, I derive a degradation signature to characterize the unique

trend of disk degradation in that type. In degradation modeling and failure prediction

(Section 7.4), I use SMART records from 70% of the failed drives as a training dataset and

SMART records from the rest failed drives as a testing dataset for verification.

Figure 7.6. Relation between Degradation Distance and RUE for

Read/Write Head failures (Red Line is the Regression Model.)
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Figure 7.7. Relation between Degradation Distance and RSC for Bad Sector

Failures (Red Line is the Regression Model.)

(1) Read/Write Head Failures : In order to predict future Read/Write head failures, I

need to quantify the relation between the degradation status and the critical SMART

attributes. For each failed disk, I extract the last SMART record and use it as the

failure record of the disk. Then I calculate the dissimilarity modeled by distance,

such as Euclidean distance, between each SMART record prior to the failure and the

failure record. The distance is converted to a degradation value by using a linear

transformation. I build a regression model to quantify the degradation distance,

RUE values and other SMART attributes. Figure 7.6 shows the relation between

disk degradation and RUE values. Failed disks with RUE failures have a similar

relation, that is a low degradation value is mostly caused by a low RUE value.

The degradation values can be modeled by the following degradation signature.

In Equation (1), disk degradation is determined by changes of RUE and RSC of a

disk. For failed drives with Read/Write head failures, the RSC values of 84.6% disks

change with RUE, which indicates that RUE impacts RSC with a high prob- ability

and both of them should be included in the degradation signature, i.e., Equation

(1). To evaluate this regression model, I calculate the R2 and the root mean square

error (RMSE) of this model (0.91 and 0.098 respectively), which prove the high

performance of this model.
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(2) Bad Sector Failures: Following a similar approach, I discover the relation between

the degradation distance and the critical SMART attributes, as shown in Figure 7.7.

A regression method is used to quantify this dependency. The degradation signature

is as follows. The degradation distance is highly correlated with RSC, much more

than any other SMART attribute. The red line in Figure 7.7 shows the degradation

signature, i.e., Equation (2), that best fits the data points. R2 and RMSE is 0.98

and 0.116 respectively.

(1) Degradation = 1.26 + 1.03 ∗RUE − 0.15 ∗RUE2 − 0.28 ∗RUE3 + 0.29 ∗RSC

(2) Degradation = 0.87 + 0.96 ∗RSC + 0.18 ∗RSC2 + 0.06 ∗RSC3

7.4. Disk failures Prediction and Logical Failure Remediation

With a period of monitoring, the collected SMART data can be used to predict

when a disk will fail, which is useful for proactive failure management to avoid disk rebuild

and data loss. The degradation status, calculated by the degradation signatures, in a sliding

monitoring window provides a time series that keeps tracking the change of the disk’s health.

By using an ensemble of failure predictors, I can forecast the type of disk failure and explore

the shape of the corresponding degradation signature to predict when the drive will fail.

7.4.1. Prediction of Two Types of Disk Failures

Figure 7.8 shows the degradation process of a disk, which use the first 50% degradation

values (as the sliding monitoring window with history data) for degradation monitoring and

predict the rest degradation values using a linear regression model. The blue curve is the

actual observed degradation distance. The green curve is the degradation value calculated

by the degradation model, with SMART data as input. The red curve shows the prediction

of degradation status. Figure 7.8 shows the predicted failure time is a little before the actual

failure time.
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Figure 7.8. Degradation Prediction for Disks with Read/Write Head Fail-

ures.

Figure 7.9. Degradation Prediction for Disks with Bad Sector Failures.

As I discussed in the previous section, the RSC value degrades periodically and man-

ifests as “step” pattern. It is not easy to predict the failures using linear regression model.

Hence, I apply Auto-Regressive Integrated Moving Average (ARIMA) model to forecast the

degradation values as time series data. ARIMA model not only consider the trend of the

time series data, but also the seasonal, cyclical, and irregular components, which means it

accounts for the relationship through time. I consider the contribution of the RSC values

in the previous periods to the current RSC value, and converting a non-stationary to a

stationary process by differentiating the time series, to quantify the current RSC values.
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Figure 7.9 shows the prediction results of using the first 50% of time series data

as monitoring data. It displays the actual distance to the failure point of the disks (ac-

tual degradation status), the mapped degradation status (calculated from the degradation

model), the degradation test data and the prediction results on the test data. In Figure 7.9,

the blue curve which represents the observed degradation data is mostly covered by the red

curve which represents the prediction results. This indicates that the prediction results are

accurate as the difference between the actual failure time and the predicted failure time is

less than 3 hours.

I deploy the degradation signatures and prediction models to a storage system on

campus, to calculate the degradation status and forecast the upcoming failure time of disks.

I find that the difference between actual failure time and the predicted failure time of RUE

failure is less than 20 hours, and the difference of RSC failure is less than 8 hours. A key

factor of failure prediction is the accuracy of the degradation signatures based on the SMART

attributes, because the ARIMA model shows its outstanding performance on prediction.

Compared with our previous work [52] that used regression tree to estimate disk

degradation status, our proposed performance signature-centric approach achieves a higher

prediction accuracy and reduces the root mean square error rate for Read/Write Head Fail-

ures and Bad Sector Failures to 0.098 (i.e., by 14.03%) and 0.116 (by 10.07%), respectively.

Compared with the long rebuild time and simultaneous failures in a disk group during

rebuild which causes data loss, our proactive method is safer and more effective. The data

transfer rate of modern hard disk drives with an eSATA interface reaches 150 Mbps [74].

The data backup overhead of a full 4TB disk can be finished around eight hours. Therefore,

right after the start of degradation of a disk drive is detected, our methods keep monitoring

the degradation dynamics and forecast the failure time with a high accuracy, which enables

the system administrators and management tools to have a Lead Time to Failure (LTTF)

long enough to migrate the data to a healthy, spare disk.
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7.4.2. Remediation of Logical Failures

Logical failures are caused by software errors. The disk drives display no obvious

physical damage. If the root-cause errors can be corrected, these disk drives can continue

functioning without replacement, which reduces both the repair cost and disk rebuild over-

head. In this section, I study two types of logical failures and discuss possible remediation.

Figure 7.10. Attribute Distribution of the SUT Logical Failures.

Figure 7.11. Attribute Distribution of the HFW Logical Failures.

(1) SUT Logical Failures : Spin-up-time (SUT) is the amount of time for the platters

to reach an operational rotating speed. Longer SUT is usually considered as caused

by hardware problems, either the spindle itself or the bearing has wear and tear.

However, the SUT-related disk failures that I discover in Section 7.2.2 are a subset
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of logical failures. After consulting with storage experts, I find out that the power

saving techniques can also affect SUT. When the I/O workload decreases, that is a

less number of disk reads/writes, modern hard disk drives switch to the power-saving

mode(s), in which the rotation speed of disks drops. When a burst of disk read/write

requests come, the spindle of the disks takes extra time to reach the operational

speed. The disk drives have no physical problem. The power management software

causes this extra spin-up time. To remedy this SUT-related logical disk failure,

I can balance I/O workload over time so that there is no obvious disk idle time.

This remediation needs the assistance of I/O nodes which distribute I/O requests

to disks. Another way is to change the power saving strategy to keep disks always

rotating at the operational speed. However, it leads to more power and energy

consumption. Thus, the trade-off among disk reliability, control complexity, and

energy consumption needs to be considered to address this type of disk failure.

Predicting SUT failures is not an easy task because the SUT value has a long

degradation process. The time series of SUT is usually flat. Figure 7.10 shows the

decile of healthy disks and working disks with an SUT degradation trend, and that of

failed disks with SUT-related failures. The healthy disks can be distinguished from

those disks with SUT degradation trend and disks with SUT-related failures using a

hyperplane of SUT. From Figure 7.10, I find that 0.26 is the degradation threshold

for SUT values. When the SUT reading from SMART is less than this threshold, I

can apply the preceding remediation action to prevent the logical failures.

(2) HFW Logical Failures : When data is written to disks, the High Fly Monitor provides

protection for write operations by recording the distance between the read/write

head and platters. If the flying height is beyond the normal range, a high HFW

value is recorded. As for logical disk failures, I study the specifications of disk

drives and online documents and discussion groups of disk manufacturers, and find

out that a thick air cushion between the read/write head and disk platter is a cause

of abnormal HFW values. Normally, the air cushion prevents the read/write head
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touches a disk platter. However, if the read/write head stays at a track for a long

time, the rotation of the disk causes more air to accumulate between the track and

the read/write head, which produces a High-Fly- Write error. To remedy the HFW-

related logical disk failures, I can distribute the data access across different tracks.

Thus, the read/write heads would not stay at a track for a long time to trap too

much air. To realize this, the file system or operating system may distribute hot

and cold data evenly on disk drives. Another way to tackle this type of failure is

to move the read/write head to other tracks when the HFW reading is detected as

anomalous. This requires the operating system to monitor the SMART readings.

Similar to SUT, the time series of HFW has a flat degradation curve and a long

degradation process. In some cases, the value of HFW may go up a little and

then drop again. This reflects the variation of the thickness of air cushion between

the read/write head and disk platters. Thus, it is difficult to predict the HFW-

related disk failures by using the time series of HFW. To determine whether disk

drive may have HFW-related failures, I quantify the degradation threshold from

HFW readings. Figure 7.11 shows the HFW deciles of healthy disks, working disks

with HFW degradation, and the failed disks with HFW-related failures. I find that

0.27 can be used as a threshold to identify the start of the degradation process for

HFW-related failures. When the monitored HFW reading is below the threshold,

our proposed remediation action(s) can be applied to prevent HFW-related logical

failures.

7.5. Method Generalization and Verification: Experimental Results Using Backblaze Dataset

According to the observations, there are some slight differences between the collected

SMART attributes of disks which are from different manufacturers or different models. Also

the distributions of the same attributes may not be the same. Some distribution bias or shift

exists in the disks from different branches. Therefore, one of our targets is to generalize our

methods to other storage systems even running different workloads. I apply our methods

to the Backblaze dataset which is mentioned in Section 7.2.1, I found that the failures can
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be categorized into 6 different groups: RUE-related failures (can be divided into Group 1

and Group 2), Uncorrectable Sector Count(USC)-related failures (Group 3), HFW-related

failures (Group 4), SATA Downshift Error Count (SDEC)- related failures (Group 5), and

logical failures (Group 0). I scale the value of attributes to the range of [0, 100]. Figure 12(a),

12(b), 12(c), 12(d) show the decile of RUE, USC, HFW, and SDEC attributes. The RUE-

related failures are divided into 2 groups because some of them failed when the RUE are 0,

and some of them failed when RUE values drop down to 50%. This results from the one group

of failures are impacted by other attributes as well. RUE-related failures have relatively long

degradation process and HFW-related failures have even longer degradation process. Use

the same method as before, I can calculate the thresholds to determine the starting point of

degradation. On the other hand, USC-related failures and SDEC-related failure degrade very

fast, and setting the thresholds is not enough. The system administrators need to monitor

the degradation process once the USC and SDEC value begin to change.

For RUE-related failures and HFW-related failures, which do not degrade abruptly,

I characterize the degradation processes by building an Attribute-Health Status Regression

model to eliminate the dependency on workload. It maps the SMART attributes to the

degradation status. The orange lines in Figure 7.13 and 7.14 are predicted degradation

status from the regression model based on the attribute values. I can see that the predicted

status is quite closed to the actual degradation status which are calculated by Euclidean

distance method, especially when the disks are degrading and closed to the failure point. I

evaluate the overall performance of these regression models by calculating the Root Mean

Square Error, which are 0.1839 and 0.1624 respectively.

Finally, I apply the Time Series prediction model to forecast the upcoming failures.

Figure 7.13 and 7.14 display the prediction results on RUE-related failures and HFW-related

failures. I use the sliding window model by feeding in some history records to improve the

prediction accuracy. The green lines in the figures are the prediction results which are closed

to the blue lines (actual degradation status), and the orange lines (the degradation status

generated from the regression models), most of them are even overlapped. It means the
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predicted results are accuracy. Further more, the results from both production datasets

prove that, the our prediction method can forecast the future failure accurately.

Our proposed method is lightweight. It takes less than a few seconds to cluster the

SMART records of all failed drives, calculate distributions, and build degradation signatures

on an Intel Xeon E5-2683 machine. Disk failure prediction for a drive takes about 0.6 second

for a prediction window.

(a) Decile of RUE attribute (b) Decile of USC attribute

(c) Dfsioe-Read Read/Write Request (d) Decile of SDEC attribute

Figure 7.12. Deciles of Critical Attributes

98



Figure 7.13. Regression Model and Prediction of RUE-related Failure.

Figure 7.14. Regression Model and Prediction of HFW-related Failure.
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CHAPTER 8

ENABLE ON-DRIVE RELIABILITY MANAGEMENT VIA OPEN ETHERNET DRIVE

8.1. Introduction

It has been nearly a decade since the increase of CPU frequency fall behind the

Moore’s law. Instead of slowing the computational power improvement, innovations like

domain-specific hardware (e.g., TPU, Crypto-currency Miner, etc.), enhanced security, open

instruction sets, and agile chip development lead the way to a new golden age for computer

architecture. As a result, the aggregated compute power for AI and big data computing

still increases at a rate following the Moore’s law due to these heterogeneous computing

advancement. Novel computing paradigms have been proposed to offload computation from

traditional multi-core CPUs to many-core processor such as GPU or TPU, and even to

computer peripherals such as memory, disk drives, and NIC (i.e., in-memory processing,

smart drives, and edge-computing enabled network controllers).

Storage systems are indispensable for big data processing today. The ever-growing

size of computation and data analytic results demands larger storage capacity, which chal-

lenges data processing and storage scalability. Moreover, the increasing complexity of storage

hierarchy and “passive” storage devices make today’s storage systems inefficient, which ne-

cessitates the adoption of new storage technologies. In short, OED is a hard drive that can

do computing on drive itself, rather than moving data back and forth to main CPU.

In this section, I demonstrate the advantage of on-drive reliability management using

OED. I set up a test environment that consists of a host Linux server and two OED drives.

The host can communicate with each OED via serial port and SSH channel over 1 Gb

Ethernet connection. Each OED runs embedded Linux Debian OS that is self-contained and

works as a regular Linux server. I have conducted comprehensive experimental evaluation to

measure the performance and power consumption of OED and compare it with traditional

server. In addition to I/O operations, I test and evaluate on-drive data processing, including

data compression, aggregation and erasure encoding, which provide natural support for data-
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intensive applications. The evaluation provides first-hand results of this new hardware and

demonstrates its superior benefit for energy-efficient computing.

To build a storage cluster with Ethernet-enabled micro storage servers, I need a

reliable mechanism to orchestrate the data distribution among a large number of Open

Ethernet Drives (OED). My initial plan was to adopt the manager-worker model that uses

a centralized manager to control and manage all the OED drives. However, due to the

norm of disk failures and various datacenter service level agreements (SLA), assigning an

OED as the manager could lead to a single point of failure in the cluster. Thus I design a

decentralized scheme exploring distributed hash tables (DHT) or peer-to-peer (P2P) network.

I have evaluated several software for our needs such as OpenDHT by UC-Berkeley, Bamboo

DHT by UC-Berkeley, Open Chord by MIT, FreePastry by Rice, Chimera/Tapestry by

UCSB, and Kademlia DHT by NYU. Due to the high run-time resource demand and high

latency by JRE, I excluded software that implemented in JAVA. I tested all candidates using

C++ implementation, only Kademlia works for the OED environment. Others require many

dependencies and libraries that are not compatible with the ARM processors used in OED

drives.

I setup an active storage cluster consisting of a host server and 60 OED drives. Each

unit in the cluster shares the name space over a network file system (NFS). I use parallel

Erasure coding (ParEC) to distribute erasure coded blocks. For traditional storage systems

using hard disk drives, host servers handle erasure encoding, decoding and orchestrate data

distribution on individual drives. In contrast, hosts in active storage systems only assign

source file blocks to corresponding OED drives. The additional encoding, decoding, and era-

sure code block distribution are handled by the OED cluster. Compared with the traditional

design, active storage systems relieve the hosts from data-intensive computation, which also

reduces the power consumption and carbon footprint. Our experimental results show that

Open Ethernet Drive can significantly lower the energy consumption while maintaining the

data processing throughput simultaneously by ensuring data availability and storage scal-

ability. Results and findings from this work will facilitate scheduling of on-drive compute
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resource for building active and scalable storage systems.

8.2. Incorporate Near-data computation for Reliable Data Storage

As the size of data centers continues to grow, many issues, such as scalability, per-

formance, reliability and power consumption, arise. In this paper,I introduce ACTOR, an

active storage paradigm to address two of them: storage resilience and energy efficiency.

When exabytes of data to be stored on hundreds of thousands of disk drives, storage relia-

bility becomes a major challenge. At such a scale, data corruption and disk failures become

the norm. For large-capacity (e.g., 8-12 TB) hard disk drives, it could take several days

or even a week to rebuild a failed drive. In a large storage system with hundreds of disk

arrays, more drives may fail when a drive is being rebuilt, which results in significant per-

formance degradation and escalates the risk of data loss. Dealing with data corruption and

disk failures becomes the standard procedure for data center operation.

Energy consumption is also an important issue for operating data centers. The storage

subsystem in HPC and big data systems consumes around 20% of the total power usage.

Likewise, it also accounts for up to 50% of the total cost of ownership for data centers.

A recent field study[40][55] reveals that many applications exhibit burst I/O accesses in

contrast to consistent storage access pattern throughout a day. Much power is wasted when

the workload level is low. Energy efficiency is a major concern for large-scale storage.

I explores Ethernet-connected Drives to develop parallel erasure coding[32] and build

the active, scalable, resilient, and energy efficient storage paradigm (shown in Figure 8.1).

By the time of this study, there are three major models of Ethernet connected disk drives in

the market that provide comparable functionality. I compare them with a close examination

of their advantages, as listed in Table 8.1. These products possess attractive features such

as: 1) embedded ARM based low-power CPU, 2) on-board memory, 3) running Linux OS,

4) Ethernet access and TCP/IP network connection, and 5) high capacity disk and/or flash

storage. These features enable us to offload data processing operations closer to the storage

media and reduce system power consumption.
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Figure 8.1. Shifting from Passive Storage with a Storage Server-Drive Par-

adigm to a Cluster of Highly-Parallel, Computing-Enabled Autonomic Drives.

Table 8.1. Specifications of Ethernet Connected Drives

Manufacture Processor Memory OS Storage Ethernet Platform

OED gen1 HGST

32-bit ARM

1 GHZ

1-core

2 GB DDR3

1600 MHZ

1-channel

Embedded

Debian 7.4

4TB HDD

7200rpm

1 Gbit/s

active

Open platform,

run applications

OED gen2 HGST

32-bit ARM

2.2 GHZ

Dual-core

1 GB DDR3

1600 MHZ

2-channel

Embedded

Debian 8.4

8TB HDD

7200 rpm

1 Gbit/s

active

Open platform,

run applications

8.2.1. Ethernet Connected Drives

As a subsidiary of West Digits (WD), HGST has its own directly-addressed storage

disk drives[6]. Open Ethernet Drive (OED) has been designed as a micro-storage server[5].

The first-generation OED has one single-core 32-bit 1 GHz low-power ARM processor, 2

GB DDR3 memory at 1600 MHZ, a Gigabit Ethernet link, and 4 TB of storage space while

maintaining a traditional 3.5-inch disk drive form-factor. It runs embedded Debian 8.0 OS

with kernel v3.14.3. The first generation OED supports a vendor supplied extension board
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that can be coupled with OED for development on single drives. The second-generation OED

upgrades hardware to accommodate increased need for computation power. It comes with a

32-bit ARM dual-core processor that clocked at 2.2 GHz, Debian 8.1 OS, 1 GB dual-channel

DDR3 memory, and 8 TB of storage space. Unlike the 1st-generation OED that can be

operated individually, the 2nd-generation OED requires a designated 4U storage enclosure

(i.e., JBOD) to operate. Each JBOD enclosure can support up to 60 OEDs and offer 480 TB

capacity without redundant configuration. Each hot-swappable OED is connected to the 60

Gbps internal bus, and is accessible via one of the four 10 Gbps external Ethernet ports.

For Ethernet connected drives that provide the KV store interface, using Get and

Put object-style operations simplify application development with ease of moving data be-

tween applications and storage. This also requires a broader support from the development

community to provide updates of new access protocols, open-source libraries, etc., in or-

der to interact with existing applications. On the other hand, OEDs from HGST provide

open access to the embedded OS, so that servers can manage disk drives directly as if they

were worker nodes. OEDs enables “data-centric” storage services that can support software-

defined storage (SDS). As a result, I choose OEDs as the active storage component for the

design of ACTOR.

8.2.2. Incorporating Parallel Erasure Coding in Object Storage

Being able to easily and inexpensively create, manage, administrate, and migrate

unstructured data is crucial for big data analytics . It is difficult if not possible for the

traditional storage paradigm to meet these requirements, and they suffer from performance

degradation when a system scales out[82]. Erasure-coded storage has been widely adopted

to provide cost-effective space saving and fault resilience[69]. I integrate erasure-coding tech-

niques with object storage to manage unstructured data as unified redundant data objects

in a highly-parallel, scalable OED storage mini-cluster.
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Figure 8.2. Architecture of ACTOR.

8.2.2.1. Parallel Erasure Coding

As an efficient data resilience technology, erasure coding gains an uprising attention

. However, existing systems use a single machine or a multi-threading approach to perform

encoding and decoding, which is not scalable to process ever-increasing big data. In addition,

I notice that SYSTEM-IDLE states account for a significant portion of the overall processing

time and energy consumption in the erasure coding/decoding process. When encoding and

decoding a large file, single machine is not an efficient solution. I propose a Parallel Erasure

Coding (ParEC) technique[42] to address such concerns.

In today’s processors, multi-core CPU has embedded Single Instruction Multiple Data

(SIMD) subsystems. Inspired by[69, 43], I utilize the processor’s SIMD extensions for data

parallelism. I extend the existing single-process encoding/decoding approach by adding MPI

parallel I/O for task parallelism. With the combination of data and task parallelism, ParEC

improves the performance and scalability of erasure coding techniques. Moreover, power and

energy is saved by minimize the system idle and exploit overlapping between data migration
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and encoding/decoding process.

8.2.2.2. Data Placement in OED-based Mini-Cluster

At a high level, ACTOR aims to substitute storage servers in the traditional storage

system with a mini-cluster of networked OEDs. Gateway servers have direct accesses to

each OED drive. However, deserializing unstructured data into objects and vise versa needs

to re-engineer the data access protocol. As illustrated in Figure 8.2, I explore distributed

hashing method called ring, in which each Ethernet drive governs a data region on circular

space. For a file with N data segments, ParEC generates K parity code chunks. This N+K

encoding scheme can tolerate up to K data segment loss. Upon a large data-set arrives at

P2P network, it is deserialized into N segments which mapped to N corresponding OEDs on

the ring. These N OEDs then launch ParEC to generate K parity segments, and disseminate

them to non-overlapping K OEDs. When client issues a data retrieval request, the N OEDs

that initiate the encoding process are responsible for decoding the erasure data objects before

returning the data chunk to the client.

OEDs are more than a hard disk drive that uses Ethernet for communication. They

provide a higher level of abstraction for data transfer and on-drive data processing. OED

can offload traditional logical block address (LBA) management and disperse object data

to disk drives. I integrate this new technology into the active storage paradigm to simplify

storage system software stack, enable transparent drive-to-drive data migration, and reduce

the significant drive read/write traffic from compute nodes.

8.3. Performance Evaluation

The evaluation of ACTOR focuses on two aspects: real-world storage performance and

energy consumption for data reliability management tasks. Since ACTOR primarily targets

storage reliability management, I measure its performance and energy consumption using

Erasure encoding and decoding of ParEC applications. Our evaluation aims to answer the

following question: Compared with the existing storage paradigms, Can ACTOR deliver
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energy efficient reliability management? I measure energy consumption E(Wh) of

executing a task as a product of power P (watts) and time T (hours), that is E = P × T .

For comparison, I use a server that is equipped with a SATA hard disk drive to represent

the passive storage. First, I measure the execution time of each benchmark workload on the

server and a single OED to compare Tserver and TOED. Then, I increase the number (n) of

OEDs in ACTOR until its aggregated performance matches with that of the server, where

Tserver ≈ TOEDs. I measure POEDs and check if EOEDs < Eserver.

Figure 8.3. OED Drive is Connected Directly to Power Supply and Ethernet

Switch as a Micro-Storage Server.

8.3.1. Test Platform Configuration

The servers that I use in my experiments are equipped with eight Intel Xeon cores (3

GHz), 8 GB of DDR3 memory, and Seagate BarraCuda ST2000DMs hard disk drive. The
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OS is Ubuntu 16.04 LTS. I study both generations of HGST OED drives in the experiments.

The first-generation OED uses an extension board as an interface for power supply, Ethernet

connection and serial port. The servers and OEDs are connected by Ethernet cable via a

Gigabit switch. After activating OED’s embedded OS, Debian 7.4 Wheezy, the available

memory for user programs is 1.79 GB. Block storage is 4 TB as an SCSI disk (/dev/sda).

Figure 8.3 shows the setup of the OED drive (first-generation). The appearance of OED

is the same as a standard 3.5-inch HDD form factor with extension board which provides

necessary external connections through a SATA interface. The second-generation OED drives

are installed in a JBOD enclosure at Los Alamos National Laboratory. It consists of 30 OEDs

with 10 Gbps Ethernet connection.

Power consumption is measured at room temperature, that is around 76 degree

Fahrenheit, and 80% humidity, using WattsUp Pro power meters. The accuracy is within

1.5%. Its current and power factor readings are within ±1.5%[8]. Monitored logs are trans-

ferred to a desktop computer for power consumption analysis.

8.3.2. Erasure Coding Performance on OED

In this set of experiments, I measure the performance of erasure coding, using Zfec,

on OED. Zfec[9] is a popular erasure coding implementation, which expands the size of input

data by adding redundant blocks of information (i.e, check bits) to the original data in the

encoding mechanism, whereas they are removed in the decoding process. Note that our

ParEC data placement algorithms also based on Zfec. Two parameters, K and M, are used,

where M represents the number of share files with size as 1
K

of the input file size.

Figure 4(a) shows the encoding and decoding time of Zfec on OED drive. From

M = 8 to M = 16, higher encoding difficulty takes more time. When M = 8 and K = 6,

the time to encode is less compared to that when M = 8 and K = 3, because as K increases

the number of share files also increases, which decreases the number of check bits added to

each share file, thus decreasing the encoding time. Also, when M = 16 and increasing the

K, encoding time decreases. Similarly, as K increases the time to decode a share file should

decrease as well. But interestingly, there is no much time difference with increase in K. The
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curve steep is almost the same for all K values.

(a) Encoding Time
(b) Decoding Throughput

]

(c) Power Consumption

Figure 8.4. Experimental Results of Erasure Coding with N Data Blocks

and K Parity Blocks.

As we have seen earlier, as the number of share files increases the power required

to encode the file also increases. Figure 4(c) shows the power consumption of running Zfec

erasure encoding on OED. From the figure, it is clear that when M = 3 and K = 16, it takes

more power to encode whereas when M = 8 and K = 6, it takes less power. The power
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consumption ranges from 8.4 watt to 8.7 watt in addition to the idle power consumption

where Pidle = 16watts, which is optimal. Similarly, decoding power usage (not shown, but has

similar trend) also increases with the number of share files. Likewise, with the increase of file

size, power consumption for erasure decoding also increases. After the memory overflow(i.e.,

file size ≥ memory size), the power consumption for decoding remains stable with increased

file size. The power consumption ranges from 8.2 watt to 9.2 watt in addition to the idle

power consumption where Pidle = 16watts.

Figure 4(b) presents the measurements of throughput when performing erasure coding

on OED drive. I observed that throughput of erasure decoding is almost 10× higher than

encoding phase since decoding is faster than encoding. It also shows that for encoding with

an increased number of share files, the throughput decreases. So M = 8 and K = 8 has a

higher throughput compared to M = 16 and K = 3. Interestingly, the opposite is true for

decoding i.e, the throughput of decoding increases with an increase in share files, e.g., the

throughput of M = 16 andK = 3 is much greater than that of M = 8 and K = 3. Overall,

the throughput of erasure encoding and decoding is desirable on OED drive.

8.4. Discussion and Implication

In this section, I present ACTOR, an active Cloud storage paradigm that utilizes the

on-drive data processing capability of Ethernet-connected drives as the intelligent Big Data

reliability management solution. ACTOR leverages a large number of low power Ethernet-

connected drives, which can reduce power consumption and electric bills for big data applica-

tions. Moreover, processing data closer to storage media allows us to offload computation and

reliability management workload to Ethernet-connected drives, which enhances parallelism

and reduces data movement. We can take advantage of this hardware parallelism to handle

a massive amount of data sent to the storage system from data-intensive applications. We

can further save network bandwidth by performing data compression and data aggregation

before data transfer, so much less data will be transferred to compute nodes. I extensively

evaluate ACTOR and Ethernet-connected drives with various tools and benchmark suites to

measure the performance of data processing and data compression, and storage reliability.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORKS

9.1. Conclusions

In this dissertation, I first i nvestigated SSD-specific SMART data co llected fr om an 

active production datacenter. I find t hat S SDs h ave m any u nique a ttributes compared 

with HDDs. By analyzing these SSD-specific a ttributes, I  fi nd th at th ey ar e ve ry useful 

for characterizing and modeling the health status SSDs at the device level. The analytic 

results show that the volume of I/O operations and P/E cycles has a significant impact 

on the wear level of SSDs. Write and erase related attributes display strong correlations. 

In a well maintained datacenter, environmental attributes do not have directly influence 

SSD reliability. I also observe health state transitions which correspond to SSD reliability 

degradation.

Next, I study the QLC SSD performance, as well as its economic effects on the land-

scape of datacenters. My research indicates that QLC SSD is a promising contender when 

comparing against other types of SSDs and HDDs. While QLC has the worst write/read 

IOPS when compared to other SSDs, it does not detract from the fact that QLC SSD is 

more suitable for large data workloads compared with small data workloads. QLC SSD can 

also provide a favorable solution to datacenters with its high capacity and density. In the 

cost-effective analysis, I concluded that one QLC SSD is equivalence in performance as a 5-7 

HDDs RAID array at a similar cost. Also, QLC SSD has lower power consumption while 

retaining higher reliability than HDD.

The further acceleration experiments of QLC SSD prove that QLC SSD performance 

is affected by environment temperature well beyond the recommended 25°C, including degra-

dation of I/O throughput and IOPS. However, Latency is rarely affected. Big data bench-

mark workloads tests also indicate the borderline temperature of major degradation is at 

50°C. And, degradation actually start early once temperature increases, the more higher the 

temperature, the more significant degradation can observe.
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All these study of SSD, including the characteristics of SSD, the reliability of SSD,

and the performance evaluation of SSD, reveal some important understandings that never

known. At the same time, I am not only stressing some common senses of SSD, but proofing

them with strict experiments and tests, and supporting them with quantify statistic.
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(4) Song Huang, Shuwen Liang, Song Fu, Weisong Shi, Devesh Tiwari, Hsing-Bung

Chen “Characterizing disk health degradation and proactively protecting against

disk failures for reliable storage systems“, In Proceedings of the IEEE International

Conference on Autonomic Computing (ICAC), 2019.
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mance in HPC Storage Systems”, In Proceedings of the The 38th Symposium on

Reliable Distributed Systems (SRDS), October 2019.
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acterizing and Modeling Reliability of Declustered RAID for HPC Storage Systems”,

112



In Proceedings of the 49th Annual IEEE/IFIP International Conference on Depend-

able Systems and Networks (DSN) –Industry Track, June 2019.

(7) Zhi Qiao, Shuwen Liang, Nandini Damera, Song Fu, Hsing-bung Chen, Michael

Lang, “ACTOR: Active Cloud Storage with Energy-Efficient On-Drive Data Pro-

cessing”, In Proceedings of the IEEE International Conference on Big Data (Big

Data), December 2018.

(8) Zhi Qiao, Jacob Hochstetler, Shuwen Liang, Song Fu, Hsing-bung Chen, Bradley

Settlemyer, “Incorporate Proactive Data Protection in ZFS Towards Reliable Stor-

age Systems”, In Proceedings of the IEEE 4th Intl Conf on Big Data Intelligence

and Computing and Cyber Science and Technology Congress (DataCom), August

2018.

(9) Zhi Qiao, Jacob Hochstetler, Shuwen Liang, Song Fu, Hsing-bung Chen, Bradley

Settlemyer, “Developing cost-effective data rescue schemes to tackle disk failures in

data centers”, In Proceedings of the International Conference on Big Data, June

2018.

(10) Zhi Qiao, Shuwen Liang, Hai Jiang, Song Fu, “A customizable MapReduce frame-

work for complex data-intensive workflows on GPUs”, In Proceedings of The IEEE

34th International Performance Computing and Communications Conference (IPCCC),
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MapReduce”, In Proceedings of The IEEE 2nd International Conference on Cyber

Security and Cloud Computing (CSCloud), November 2015.

9.3. Future Directions

The growing adoption of edge computing and IoT infrastructure shapes the require-

ments of future storage systems. Indeed, the future storage system will keep a pace to not

only have larger capacity, higher density but also more reliable. SSD is one of the promising

future by its cost-effective feature, especially the QLC SSD. There is also no doubt that as

the 3D NAND technology developing, higher density of bits will be available in one cell in the
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near future. On the other hand, another trend for future storage media is multi-functionality.

Combing memory and storage together, the storage media can achieve higher transportation

speed and better performance. OED drive is an example of the early stage of hybrid disk

drive.

As a future work, I plan to further study the reliability degradation process of SSDs

and accurately model this process for a deeper understanding and better characterization of

SSD reliability. From my previous studies, even though significant degradation is observed,

but the cause of degradation remains mystery.

My future work will be focus on four different categories. Firstly, SSD can per-

formances other different stress tests, for example, rapid thermal tests or vibration tests.

Quantify the degradation and modeling the degradation process will be important to predict

the SSD performance and disk failure. Secondly, controller of SSD embedded a lot man-

agement algorithms that can affects the performance and reliability of SSD. For example,

garbage collection algorithm, wear-leveling algorithm and so forth. Understand these algo-

rithms help me have a much better understanding of the reliability of SSD. And it also can

help to modify relative algorithms to optimize performance for specific working scenarios.

Thirdly, there are some hybrid SSDs are in the high end storage market. And there is lack

of reliability analysis of those SSDs. Testing and evaluate the performance and reliability of

hybrid SSD will help us to understand them better. Last by not least, I would like to study

and develop the cost-effective data placement algorithms based on my previous studies of

the SSD’s performance and reliability characteristics.
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