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One basic assumption of the celebrated Black-Scholes-Merton PDE model for 

pricing derivatives is that the volatility is a constant. However, the implied volatility plot 

based on real data is not constant, but curved exhibiting patterns of volatility skews or 

smiles. Since the volatility is not observable, various stochastic volatility models have 

been proposed to overcome the problem of non-constant volatility. Although these 

methods are fairly successful in modeling volatilities, they still rely on the implied 

volatility approach for model implementation. To avoid such circular reasoning, we 

propose a new class of stochastic volatility models based on directly observable volatility 

proxies and derive the corresponding option pricing formulas. In addition, we propose a 

new GARCH (1,1) model, and show that this discrete-time stochastic volatility process 

converges weakly to Heston’s continuous-time stochastic volatility model. Some Monte 

Carlo simulations and real data analysis are also conducted to demonstrate the 

performance of our methods. 
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CHAPTER 1

INTRODUCTION

Since the derivation of an arbitrage-free and risk-neutral closed-form solution to Euro-

pean option pricing (Black and Scholes (1973)) [5], derivative trading activities have soared

in the global financial markets. After that, option pricing has developed into one of the

major research areas in modern finance theory. Black-Scholes (BS for short thereafter) for-

mula has even boosted the development of the entire derivative market, according to Jarrow

(1999) [23]. One major contribution of Black, Scholes and Merton’s work was the applica-

tion of risk-neutral option pricing that is independent of investors’ risk preferences. The key

advantage of risk-neutral measure is that portfolio discounted with risk-free rate is a martin-

gale. This facilitates the pricing of any derivative security through conditioning the payoff

at expiration. Because of the computational convenience of Black-Scholes-Merton formula

based on the strong assumption of constant volatility of stock return, it wins great popularity

in the finance field. However, the constant volatility assumption used in the Black-Scholes

method seems unrealistic. Even at the time of their paper, Black and Scholes realized that

the constant volatility assumption was a strong idealization. In an empirical paper Black and

Scholes (1972) [4], the authors tested their option price formulas and concluded: “we found

that using past data to estimate the variance caused the model to overprice options on high-

variance stocks and under-price options on low-variance stocks.” In fact, the overwhelming

evidence from financial time-series data demonstrates that volatility exhibits unpredictable

variation. Additionally, option prices exhibit a significant departure from the prices ob-

tained by Black-Scholes (constant volatility) formula. Moreover, implied volatility of the

stock prices inverted from Black-Sholes formula suggests that stochastic volatility models

are more appropriate than constant volatility model. The three most popular stochastic

volatility models are Hull and White (1987) model [22] , Stein and Stein model (1991) [39],

and Heston(1993) model [20]. All these three models assume that the stock price follows a

geometric Brownian motion, while volatility processes differ. The volatility process of Hull
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and White (1987) model follows a geometric Brownian motion. The volatility process of Stein

and Stein (1991) model follows an arithmetic Ornstein-Uhlenbeck process. While, volatility

process of Heston (1993) model follows a CIR - Cox, Ingersoll and Ross (1985) process [8].

The empirical results of Bakshi, Cao and Chen (1997) [2] show that stochastic volatility

plays a significant role in option pricing. Other stochastic volatility option pricing models

include Johnson and Shanno (1987) [24], Scott (1987) [38], Wiggins (1987) [40], Melino and

Turnbull (1991) [29], Knoch (1992) [27], Duan (1995) [10], Nandi (1996) [30], Bates (1996)

[3], Ritchken and Trevor (1999) [33], Heston and Nandi (2000) [21], Elliot, Siu and Chan

(2006) [11], Christoffersen, Heston and Jacobs (2006) [7], and Mercuri (2008) [28].

There are two types of stochastic volatility models: continuous-time stochastic volatil-

ity models and discrete-time stochastic volatility-GARCH models. Pointed out by Heston

and Nandi (2000), continuous-time stochastic volatility models work well in option pricing,

but they are hard to implement, especially in volatility extraction. The continuous-time

stochastic volatility models assume that the volatility is observable if filtering method is ap-

plied. However, there are difficulties in filtering a continuous volatility variable from discrete

observations of the underlying asset prices in a continuous-time model, stated by Heston

and Nandi (2000). There are two typical proxies for discrete-time volatility observation:

historical volatility and implied volatility. Fleming (1998) [15] shows that implied volatility

inverted from Black-Scholes formula has a stronger predictive power than historical volatil-

ity. However, implied volatility approach involves massive calculation of volatilities. For

each strike price, one volatility for each date will be computed. And it is computation-

ally time-consuming to get the implied volatilities from a long time-series of option prices.

Continuous-time stochastic volatility models for option pricing requires a significant amount

of work. What is worse, pointed out by Schroeder (2006) [37], it is a kind of circular reason-

ing when historical volatility is used for BS option pricing, and then inverted and returned

as implied volatility.

Compared with continuous-time stochastic volatility option pricing models, discrete-

time GARCH models have an apparent advantage that they are much easier to implement.
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Before Heston and Nandi GARCH option pricing model (2000), there are no closed-form

option pricing formulas for existing GARCH models. Those GARCH models, such as Engle

and Mustafa (1992) [12], Amin and Ng (1993) [1], Satchell and Timmermann (1995) [35],

and Duan (1995) are solved by simulation, which requires intensive computation. Among

the GARCH models, Heston and Nandi (2000), Elliot, Siu and Chan (2006), Christoffersen,

Heston and Jacobs (2006), and Mercuri (2008) developed closed form option pricing for-

mula. Heston and Nandi (2000) was the first one provided a closed-form solution for its

non-linear GARCH option pricing model. The lag one version of the Heston and Nandi

(2000) GARCH (1,1) model on the S&P 500 index options data demonstrates significant

pricing improvements over the Black-Scholes model even if the Black-Scholes option price is

computed with implied volatility updated every period, while the option price from Heston

and Nandi GARCH is computed with non-updated volatility filtered from the historical asset

prices.

We develop an option pricing model with the underlying asset’s continuously com-

pounded returns following a GARCH (1,1) process. Like Heston and Nandi (2000) model,

our new GARCH (1,1) model subsumes Heston’s model as a diffusion limit with specified

parameter values. Different from other GARCH option pricing models, which apply filtering

method first and then estimate the parameters to extract the observable volatility, we present

a new volatility proxy so that the volatility is directly observable without applying filtering

method. In this way, we can estimate the parameters of the two equations separately, while

other existing GARCH models estimate the parameters by combining the two equations to-

gether to estimate the parameters. Due to the new volatility proxy, we can price options

without circular reasoning and with less computation for estimating the parameters of the

continuous-time stochastic volatility models than the computation performed in parameter

estimation using implied volatility. In real data application and analysis of Chapter 6, BS

model and the Heston and Nandi GARCH (1,1) model will serve as our baseline models. We

first show the prices of European call options by BS model and Heston Nandi model by only

using stock price information. Then we show the prices of European options call obtained
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from a special case of Hull and White model, generalized Stein and Stein model (generalized

by Schöbel and Zhu (1999) [36]), Heston model, two new models proposed by us (one is a

continuous model, and the other is a discrete model), and other special cases of the continu-

ous models together with the new volatility proxy. We show that the continuous models and

their special cases with our new volatility proxy have better performance than BS model as

continuous option pricing models in terms of root mean prediction error (RMPE) in real data

application and analysis. And our new GARCH (1.1) model outperforms Heston and Nandi

GARCH (1,1) model as discrete option pricing model in terms of RMPE both in simulation

and real data analysis.

We organize the remaining material as follows: Chapter 2 will show the option pricing

solution to the Black-Scholes model, Hull and White (1987) model, Heston (1993) model,

Stein and Stein (1991) model, and the weakness of those models in option pricing. Chapter

3 will present a new method of volatility measure to overcome the unobservable volatility

weakness of the models shown in Chapter 2. We also present a new continuous stochastic

volatility model. The zero drift and uncorrelated special cases of Heston model, generalized

Stein and Stein model, and new continuous model are also presented with the new method

of measuring volatility. In Chapter 4, we will introduce Heston and Nandi GARCH (1,1)

model and present a new GARCH (1,1) model, which has a close relationship with Heston

and Nandi GARCH (1,1) model and Heston model. For Chapter 5, a simulation comparison

among the new GARCH (1,1) model, Heston and Nandi GARCH (1,1) model, and Heston

model with our new method is conducted, as well as more implied volatility comparison

results. For Chapter 6, real data application and analysis is performed.
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CHAPTER 2

RELATED EXISTING OPTION PRICING MODELS

Before we reveal the new method to measure volatility, let’s first review some contin-

uous stochastic volatility models and its corresponding solutions for option pricing. We first

introduce the famous BS model, the first option pricing model with closed-form solution.

After that, we review three of the most popular continuous stochastic volatility models: a

special case of Hull and White model, generalized Stein and Stein model, and Heston model.

These models are aiming to overcome the constant volatility problem of Black-Scholes model.

Some disadvantages of these models and how the proposed new method will improve and

simplify the estimation procedures will be illustrated as well. We also assume that the

financial market is complete and arbitrage-free.

2.1. Black-Scholes Model

The most distinctive feature of BS model is the assumption of constant volatility,

which can be estimated from the stock pricess process. Other quantities required as input

of this model are observable from the market. Under physical measure P, the stock price St

is described by the following geometric Brownian motion

dSt = µStdt+ σStdWt

Under the risk-neutral measure Q:

dSt = rStdt+ σStdW
∗
t

where

dW ∗
t =

µ− r
σ

dt+ dWt

t- Curent time;

St - Current stock price;

K - Option strike price;
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r - Annual continuously compounded constant risk-free rate;

σ - Constant standard deviation of stock returns.

The Black-Scholes pricing formula for the price of a European call Ct is given by

Ct = StΦ(d1)−Ke−r(T−t)Φ(d2).

where Φ is the cumulative distribution function of a standard normal variable. T is the time

to maturity. And d1, d2 are given as follows:

d1 =
1

σ
√
T − t

· [log(
St
K

) + (r +
σ2

2
)(T − t)],

d2 = d1 − σ
√
T − t

=
1

σ
√
T − t

· [log(
St
K

) + (r − σ2

2
)(T − t)],

The price of a European put option Pt can be calculated through the following put-call

parity:

Ct +Ke−r(T−t) = Pt + St

In practice, lots of companies pay dividend. If certain percentages q of stock price is

paid as dividend, we need to replace r with r−q for option price calculation. If certain dollar

amount is paid, the present value of the dividend should be subtracted from the current stock

price, that is to replace St with St− PV(div).

The biggest problem of this model is constant volatility. Scott (1987) and the relevant

references show that volatility changes over time. Moreover, if we plot BS formula implied

volatilities against strike prices, we will see a volatility skew or smile. This is against the ex-

pectation that a constant volatility should result a horizontal line if we plot implied volatility

against strike price. And further empirical studies show that stochastic volatilities will better

predict the option prices. Thereafter, people have developed numerous continuous stochastic

volatility models, such as Scott (1987), Hull and White (1987), Wiggins (1987), Stein and

Stein (1991), Heston (1993), Hagan, Kumar, Lesniewski, and Woodward (2002) [19]. Let’s
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review those three most popular models mentioned at the beginning of the chapter and its

corresponding option pricing solutions next.

2.2. A Special Case of Hull and White Model

The stochastic volatility model presented by Hull and White (1987) assumes that

both the underlying stock price and its instantaneous variance follow Geometric Brownian

Motion. Under physical measure P, the model is given by:

dSt = µStdt+
√
VtStdW1,t

dVt = aVtdt+ σVtdW2,t

where dW1,t and dW2,t are Wiener processes correlated with coefficient ρ. µ may depend on

St, Vt and t. a and σ may depend on Vt and t, but do not depend on St. Here, we consider

a special case also presented by Hull and White (1987), where µ and σ are constants, and

a = κ(θ −
√
Vt). Then the special case of Hull and White Model is given by:

dSt = µStdt+
√
VtStdW1,t

dVt = κ(θ −
√
Vt)Vtdt+ σVtdW2,t

where dW1,t and dW2,t are independent Wiener processes. The reason we choose this special

case is because it has one of the most important features of a volatility model - mean

reversion, as pointed out by Engle and Patton (2001) [13].

Under the risk-neutral measure Q, the special case of Hull and White model is given

by:

dSt = rStdt+
√
VtStdW

∗
1,t

dVt = [κ(θ −
√
Vt)Vt − λt]dt+ σVtdW

∗
2,t

Where λt stands for the market price of volatility risk. Hull and White (1987) postulates

λt = 0 by assuming zero systematic risk for volatility. And we can get the the two Wiener
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processes under risk-neutral measure:

dW ∗
1,t = dW1,t +

µ− r√
Vt
dt

dW ∗
2,t = dW2,t + λtdt

And the Wiener processes dW ∗
1,t and dW ∗

2,t are also independent under risk-neutral measure.

This model doesn’t have an closed-form solution. Hull and White (1987) develops an

approximate solution through Taylor expansion around κ = 0 as follows:

f(St, σ
2
BS) =C(σ2

BS)(1)

+
1

2

S
√
T − t Φ′(d1)(d1d2 − 1)

4σ3
BS

× [
2σ4

BS(ea − a− 1)

a2
− σ4

BS]

+
1

6

S
√
T − t Φ′(d1)(d1d2 − 3)(d1d2 − 1)− (d2

1 + d2
2)

8σ5
BS

× σ6
BS[

e3a − (9 + 18a)ea + (8 + 24a+ 18a2 + 6a3)

3a3
]

where a = σ2(T−t). And σBS is the constant volatility in BS model. C(σ2
BS) is the European

call option price calculated with BS formula. Φ, d1 and d2 are defined in the same way as in

BS model of Section 2.1.

For the second equation of the model under risk-neutral measure, if we apply Ito’s

lemma to log(Vt), we will get

d log(Vt) = (κθ − κ
√
Vt −

1

2
σ2)dt+ σdW ∗

2,t

Integrate both sides, we will get for any s ≥ t

Vs = Vt exp[κθ(s− t)− κ
∫ s

t

√
Vu du−

1

2
σ2(s− t) + σ(W ∗

2,s −W ∗
2,t)]

The above expression will guarantee the positivity of the volatility process given a positive

initial volatility Vt. However, the major disadvantage of this model is that it has no closed-

form solution. Hull and White (1987) provides the approximated option pricing formula (1)

by arguing that the drift term of the volatility process is at least close to zero in practice.
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Stein and Stein (1991) states that it is not sure whether the approximation is accurate enough

when the drift term is significantly different from zero. Based on these disadvantages, Stein

and Stein (1991) develops a stochastic volatility model with a closed-form solution, which is

given in next section.

2.3. Generalized Stein and Stein Model

The stochastic volatility model developed by Stein and Stein assumes an Ornstein-

Uhlenbeck model for its volatility process. Under physical measure P, the model is given

by:

dSt = µStdt+
√
VtStdW1,t

d
√
Vt = κ(θ −

√
Vt)dt+ σdW2,t

where dW1,t and dW2,t are two independent Wiener processes under physical measure. Under

the risk-neutral measure Q, the model is given by:

dSt = rStdt+
√
VtStdW

∗
1,t

d
√
Vt = (κθ − κ

√
Vt − λt)dt+ σdW ∗

2,t

where dW ∗
1,t and dW ∗

2,t are two independent Wiener processes under risk-neutral measure,

and λt is the market price of volatility risk. Like Hull and White (1987), Stein and Stein

(1991) also assumes λt = 0. Stein and Stein (1991) states that market price of volatility

risk is related to investor’s risk preference. But in a risk-neutral world, investors are not

concerned with risk preference. This will lead market price of volatility risk to be zero.

Stein and Stein (1991) also develops a closed-form option pricing formula. Stein and Stein

(1991) claims that volatility is strongly mean-reverting proven by empirical evidence and

their model can deal with non-zero mean reversion parameter θ, and does not require any

assumption about σ being close to zero based on its closed-form solution.

Empirical studies show that stock price and its volatility are usually correlated.

Schöbel and Zhu (1999) [36] generalizes Stein and Stein model by assuming the two Wiener

processes dW1,t and dW2,t are correlated with coefficient ρ (including zero). Here we call
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Stein and Stein model with this generalization as Generalized Stein and Stein model there-

after. Schöbel and Zhu (1999) provides a different closed-form solution from Stein and Stein

(1991) by inverting characteristic function through Fourier transform. Let x(t) be the log

stock price, that is x(t) = logS(t). Under risk-neutral probability measure Q, the option

pricing formula of the generalized Stein and Stein model from Schöbel and Zhu (1999) is

given by

C(S, t, T ) = EQ[e−r(T−t)(S(T )−K) · 1{S(T )>K}](2)

= EQ[e−r(T−t)S(T ) · 1{x(T )>logK}]− e−r(T−t)KEQ[1{x(T )>logK}]

= S(t)EQ1 [1{x(T > logK}]− e−r(T−t)KEQ2 [1{x(T > logK}]

= S(t)P1(S(T ) > K)− e−r(T−t)KP2(S(T ) > K).

where P1 and P2 are given by the following Fourier inversion formula:

Pj =
1

2
+

1

π

∫ ∞
0

Re(fj(φ)
exp{−iφ logK}

iφ
)dφ, j = 1, 2.

In the above formula, Re[] stands for the real part of a complex number. i is the imaginary

unit. f1, f2 are characteristic functions of P1, P2 respectively and are given below:

f1(φ) = exp{iφ(r(T − t) + x(t)) + x(t)− 1

2
ρ(1 + iφ)[σ−1v2(t) + σ(T − t)]}

× exp{1

2
D(t, T ; s1, s3)v2(t) +B(t, T ; s1, s2, s3)v(t) + C(t, T ; s1, s2, s3)}

f2(φ) = exp{iφ(r(T − t) + x(t))− 1

2
iφρ[σ−1v2(t) + σ(T − t)]}

× exp{1

2
D(t, T ; ŝ1, ŝ3)v2(t) +B(t, T ; ŝ1, ŝ2, ŝ3)v(t) + C(t, T ; ŝ1, ŝ2, ŝ3)}
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with

s1 = −1

2
(1 + iφ)2(1− ρ2) +

1

2
(1 + iφ)(1− 2κρσ−1),

s2 = (1 + iφ)κθρσ−1,

s3 =
1

2
(1 + iφ)ρσ−1,

and

ŝ1 =
1

2
φ2(1− ρ2) +

1

2
iφ(1− 2κρσ−1),

ŝ2 = iφκθρσ−1,

ŝ3 =
1

2
iφρσ−1,

D(t, T ) =
1

σ2
(κ− γ1

sinh{γ1(T − t)}+ γ2cosh{γ1(T − t)}
cosh{γ1(T − t)}+ γ2sinh{γ1(T − t)}

)

B(t, T ) =
1

σ2γ1

(
(κθγ1 − γ2γ3) + γ3(sinh{γ1(T − t)}+ γ2cosh{γ1(T − t)})

cosh{γ1(T − t)}+ γ2sinh{γ1(T − t)}
− κθγ1)

C(t, T ) = −1

2
log(cosh{γ1(T − t)}+ γ2sinh{γ1(T − t)}) +

1

2
κ(T − t)+

+
(κ2θ2γ1

2 − γ3
2)

2σ2γ3
1

(
sinh{γ1(T − t)}

cosh{γ1(T − t)}+ γ2sinh{γ1(T − t)}
− γ1(T − t))+

+
(κθγ1 − γ2γ3)γ3

σ2γ3
1

(
cosh{γ1(T − t)} − 1

cosh{γ1(T − t)}+ γ2sinh{γ1(T − t)}
)

γ1 =
√

2σ2s1 + κ2, γ2 =
1

γ1

(κ− 2σ2s3), γ3 = κ2θ − s2σ
2.

where vt is the initial standard deviation. With the time dependent functions D(t, T ), B(t, T )

and C(t, T ), we can obtain the closed-form solutions for fj(φ), and hence the closed-form

option pricing formula.
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2.4. Heston Model

Even though the generalized Stein and Stein model has a closed-form solution and

requires less restrictive assumption than Hull and White model, its second equation doesn’t

guarantee the positivity of volatility. In order to overcome the positivity issue of volatility,

Heston (1993) presents a stochastic volatility model with the instantaneous variance following

a CIR process, which guarantees positivity of the variance if Feller’s condition is satisfied.

Under physical measure P, Heston model is given by:

dSt = µStdt+
√
VtStdW1,t

dVt = κ(θ − Vt)dt+
√
VtσdW2,t

where dW1,t and dW2,t are correlated with coefficient ρ under physical measure. And Feller’s

condition 2κθ > σ2 is assumed to be satisfied. According to Crisostomo (2014) [9], if we set

κ∗ = κ+ λ, θ∗ = κθ
κ+λ

, the model under risk-neutral measure Q can be given by:

dSt = rStdt+
√
VtStdW

∗
1,t

dVt = κ∗(θ∗ − Vt)dt+
√
VtσdW

∗
2,t

where λVt (which is the same as λt in previous section) stands for the market price of

volatility risk, and λ represents unit price of volatility risk. dW ∗
1,t and dW ∗

2,t are Wiener

processes correlated with coefficient ρ under risk-neutral measure. And they are given by:

dW ∗
1,t = dW1,t +

µ− r√
Vt
dt

dW ∗
2,t =

λ
√
Vt
σ

dt+ dW2,t

The closed form solution of option pricing under Heston model is given as follows:

(3) Ct = StP1 −Ke−r(T−t)P2

where for j = 1, 2

Pj =
1

2
+

1

π

∫ ∞
0

Re[
e−iφ logKfj(φ; t, xt, vt)

iφ
]dφ

fj(φ;xt, Vt) = exp(Cj(τ, φ) +Dj(τ, φ)Vt + iφxt)

12



and

τ = T − t

xt = log(St)

Cj(τ, φ) = riφτ +
a

σ2
[(bj − ρσiφ+ dj)τ − 2 log(

1− gjedjτ

1− gi
)]

Dj(τ, φ) =
bj − ρσiφ+ dj

σ2
(

1− edjτ

1− gjedjτ
)

such that

gj =
bj − ρσiφ+ dj
bj − ρσiφ− dj

dj =
√

(ρσiφ− bj)2 − σ2(2ujiφ− φ2)

u1 =
1

2
, u2 = −1

2
, a = κθ, b1 = κ+ λ− ρσ, b2 = κ+ λ

Empirical evidence shows that no matter what kind of performance standard is ap-

plied, taking stochastic volatility into consideration is the foremost task in outperforming

the BS formula, according to Bakshi, Cao and Chen (1997). Even though stochastic volatil-

ity improves option pricing on BS formula in general, they suffer from a common problem

that volatility is not directly observable. Generally, historical volatility and implied volatil-

ity are two discrete-time volatility proxies for option pricing. According to Fleming (1998),

implied volatility has stronger predictive power. The stronger predictive power makes im-

plied volatility applied more often in stochastic volatility option pricing models. However,

no matter how strong the predictive power of implied volatility is, the application of implied

volatility is a kind of circular reasoning. In order to solve this circular reasoning problem,

we will propose a new method to serve as volatility proxy in next chapter, which makes

volatility directly observable. And Monte Carlo simulation of the new method for these

three continuous models will be also conducted to show their performance in next chapter.
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CHAPTER 3

A NEW METHOD TO MEASURE VOLATILITY FOR CONTINUOUS STOCHASTIC

VOLATILITY MODELS

To overcome the unobservable volatility issue for the continuous stochastic models,

we propose the following new method to measure volatility:

Vt = m ∗ (TVt)
p

where Vt is the instantaneous volatility. TVt stands for total trading volume over the time

interval (t−dt, t). m is a positive constant, and p is a real-valued constant. The transformed

trading volume to measure volatility works for the following reasons: (1) Trading volume is

the second most important information right after stock price. It reflects the overall activity

of investors towards the stock. And trading volume also reflects investor’s future expectation,

and very often showing some inside traders’ reaction to inside information. (2) According to

Chen, Firth and Rui (2001) [6], trading volume is correlated with all measures of volatility.

(3) Stock price is made at the largest number of shares transacted at the moment. (4)

Trading volume causes volatility, not vice versa, according to Paital and Sharma (2016) [32].

All these reasons serve as strong evidence for us to propose this new method to measure

volatility. The identification of m and p will be explained in Chapter 6.

With the new method to measure volatility, we can estimate the parameters without

involving circular reasoning. Moreover, we can estimate the parameters in the two diffusion

equations of the stochastic volatility models separately with the new volatility proxy. The

simulation performance will be shown for the rest of the chapter.

Before we start data simulation and parameter estimation, we set the market price

of volatility risk λt = 0 in all the stochastic volatility models under risk-neutral measure

by adopting the argument of Stein and Stein (1991), which means that investors are not

concerned with risk preference in a risk-neutral world.
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3.1. New Method for a Special Case of Hull and White Model

Since we set market price of volatility risk λt to be zero, the two equations of the

new method for a special case of Hull and White (1987) model under risk-neutral measure

is given by:

dSt = rStdt+
√
VtStdW

∗
1,t

dVt = κ(θ −
√
Vt)Vtdt+ σVtdW

∗
2,t

And the new method is applied to measure volatility, that is to assume Vt = m∗ (TVt)
p. The

Wiener processes dW ∗
1,t and dW ∗

2,t are independent under risk-neutral measure.

3.1.1. Parameter Estimation of the New Method for Hull and White Model

There are four parameters κ, θ, σ and ρ to estimate in this model. We will apply MLE

method with Monte Carlo Simulation to estimate the first three parameters, and method

of moment to estimate ρ. Before estimation, we need to discretize the above processes.

We discretize St and Vt as {S0, S∆, S2∆..., Sn∆} and {V0, V∆, V2∆..., Vn∆ }, where n = T−t
∆

.

Starting from here, we will omit the ∆ in the subscripts for simplicity. Then the stock prirce

process and volatility process are denoted as {Si}n0 and {Vi}n0 . And we discretize the two

diffusion equations of the model as below:

log(Si)− log(Si−1) = (r − 1

2
Vi−1)∆ +

√
Vi−1∆z∗1,i

log(Vi)− log(Vi−1) = (κθ − κ
√
Vi−1 −

1

2
σ2)∆ + σ

√
∆z∗2,i

where z∗1,i and z∗2,i are independent standard normal variables. Then we have log(Vi) −

log(Vi−1) − (κθ − κ
√
Vi−1 − 1

2
σ2)∆ = σ

√
∆z∗2,i . Let U = σ

√
∆z∗2,i. Since U = σ

√
∆z∗2,i ∼

N(0, σ2∆), we get the probability density function of U below:

fU(u) =
1√

2πσ2∆
e−

u2

2σ2∆

Notice dU
dVi

= 1
Vi

. If we substitute U with log(Vi)− log(Vi−1)− (κθ − κ
√
Vi−1 − 1

2
σ2)∆ and

apply chain rule, we will get the conditional density of Vi given Vi−1 as follows:

f(Vi |Vi−1) =
1√

2πV 2
i σ

2∆
exp(− X2

i

2σ2∆
)
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where Xi = log(Vi)− log(Vi−1)−(κθ−κ
√
Vi−1− 1

2
σ2)∆. Then, we get the likelihood function

L(κ, θ, σ) below

L(κ, θ, σ) =
n∏
i=1

1√
2πV 2

i σ
2∆

exp(− X2
i

2σ2∆
)

Thus, the log-likelihood function l(κ, θ, σ) = log(L) is given by

l(κ, θ, σ) =
n∑
i=1

{−0.5[log(2πV 2
i σ

2∆) +
X2
i

2σ2∆
]}

The maximum likelihood estimation (MLE) of the parameters can be performed through

”maxLik” package of R programming software.

3.1.2. Simulation Results

For the data generation, we set the risk-free rate r = 0.03, initial variance from

transformed trading volume V0 = (32000000)−1/5, 1000 replications are simulated for different

sample sizes. Time to maturity is 0.5 years. Initial stock price S0 =$100. After obtaining

values of maximum likelihood (ML) estimators, we get estimated European call option prices

for various strike prices in different sample sizes after plugging the values of ML estimators

into the Taylor expansion formula (formula (1)). Estimated parameter values are compared

with the true parameter values. And the estimated option prices are compared with the

true option prices computed from formula (1) with true parameter values. The parameter

estimation results and option price estimation results are shown in Table 3.1 and Table 3.2

respectively.

Table 3.1 and Table 3.2 show that as sample size increases, the estimated parameter

values are getting closer and closer to the true parameter values. But estimated option prices

have different behaviors. They are not sensitive to sample size. For any sample size shown

in Table 3.2, the difference between the estimated option price and the true option price is

within one cent. Form here, we can conclude that the new method for the special case of

Hull and White model is reliable.
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Table 3.1. Parameter Estimation of New Method for the Special Case of

Hull and White Model (1000 replications)

True V alue κ = 5 θ = 0.2236 σ = 1

n = 50 6.0262 0.2132 0.9730

Bias 1.0262 −0.0104 −0.0270

RMSE 2.3941 0.0517 0.1078

100 5.4234 0.2176 0.9834

Bias 0.4234 −0.006 −0.0166

RMSE 1.3010 0.0322 0.0746

200 5.2065 0.2214 0.9940

Bias 0.2065 −0.0022 −0.0060

RMSE 0.8600 0.0254 0.0510

300 5.1545 0.2209 0.9952

Bias 0.1545 −0.0027 −0.0048

RMSE 0.7065 0.0192 0.0414

400 5.0801 0.2226 0.9952

Bias 0.0801 −0.001 −0.0048

RMSE 0.5717 0.0158 0.0351

600 5.0607 0.2228 0.9987

Bias 0.0607 −0.0008 −0.0013

RMSE 0.4751 0.0127 0.0285

800 5.0533 0.2224 0.9974

Bias 0.0533 −0.0012 −0.0026

RMSE 0.3926 0.0127 0.0254

1000 5.0502 0.2226 0.9975

Bias 0.0502 −0.0010 −0.0025

RMSE 0.3734 0.0095 0.0223
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True V alue κ = 5 θ = 0.2236 σ = 1

2000 5.0198 0.2235 1.0001

Bias 0.0198 −0.0001 0.0001

RMSE 0.2601 0.0063 0.0158

5000 5.0103 0.2233 0.9996

Bias 0.0103 −0.0003 −0.0004

RMSE 0.1553 0.0032 0.0095

10000 5.0056 0.2235 0.9999

Bias 0.0056 −0.0001 −0.0001

RMSE 0.1140 0.0032 0.0063

Table 3.2. Option Price Estimation of New Method for the Special Case of

Hull and White Model

Strike Price X = 80 90 100 110 120

True Call Price 21.3542 12.391 5.6559 2.0097 0.6051

n = 50 21.3526 12.3927 5.6591 2.0125 0.6052

100 21.3532 12.3921 5.6578 2.0114 0.6052

200 21.3539 12.3914 5.6566 2.0103 0.6052

300 21.3539 12.3913 5.6564 2.0102 0.6051

400 21.3539 12.3913 5.6564 2.0102 0.6051

600 21.3542 12.3911 5.656 2.0098 0.6051

800 21.3541 12.3912 5.6562 2.0099 0.6051

1000 21.3541 12.3912 5.6562 2.0099 0.6051

2000 21.3542 12.3910 5.6559 2.0097 0.6051

5000 21.3542 12.3911 5.6559 2.0097 0.6051

10000 21.3542 12.3910 5.6559 2.0097 0.6051
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Figure 3.1. Hull-White VS BS Volatility Skew.

3.1.3. Implied Volatility Comparison between the Special Case of Hull and White Model and

BS Model

The BS model implied volatility is obtained through the function “bscallimpvol” in

R package “derivmkts”. The Hull and White model implied volatility is obtained through

the function “BFfzero” in R package “NLRoot”. In this function, the Bisection method is

applied. We apply the values of MLE from sample size n = 10000 to get the Hull and White

model implied volatility.

From Figure 3.1, we can see that implied volatility inverted from the special case of
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Hull and White model forms a horizontal line, while the BS model implied volatility forms

a “volatility smile”. This indicates that the special case of Hull and White model with our

new method works better to reduce the volatility skew effect than BS model with constant

volatility.

3.2. The New Method for Generalized Stein and Stein Model

In this section, we will apply the new method of measuring volatility for Generalized

Stein and Stein model. Before we perform Monte Carlo simulation, we discretize the model

with Euler’s method first.

3.2.1. Discretization of Generalized Stein and Stein Model and Parameter Estimation

There are four parameters κ, θ, σ and ρ to estimate in this model. We will apply MLE

method with Monte Carlo simulation to estimate the first three parameters, and method of

moment to estimate ρ. Before estimation, we discretize the two processes St and
√
Vt in the

same way as previous section to {Si}n0 and {
√
Vi}n0 , where n = T−t

∆
. And we discretize the

two equations under risk-neutral measure with Euler’s method below:

log(Si)− log(Si−1) = (r − 1

2
Vi−1)∆ +

√
Vi−1∆z∗1,i

√
Vi −

√
Vi−1 = κ(θ −

√
Vi−1)∆ + σ

√
∆z∗2,i

where z∗1,i and z∗2,i are standard normal variables correlated with coefficient ρ. Then we have
√
Vi −

√
Vi−1 − κ(θ −

√
Vi−1)∆ = σ

√
∆z∗2,i . Let U = σ

√
∆z∗2,i. Since U = σ

√
∆z∗2,i ∼

N(0, σ2∆), we get the probability density function of U as below:

fU(u) =
1√

2πσ2∆
e−

u2

2σ2∆

Notice dU
d
√
Vi

= 1. If we substitute U with
√
Vi −

√
Vi−1 − κ(θ −

√
Vi−1)∆ , we will get the

conditional density of
√
Vi given

√
Vi−1 as follows:

f(
√
Vi

∣∣∣√Vi−1

)
=

1√
2πσ2∆

exp(− X2
i

2σ2∆
)
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where Xi =
√
Vi −

√
Vi−1 − κ(θ −

√
Vi−1)∆. Then, we get the likelihood function L(κ, θ, σ)

as below

L(κ, θ, σ) =
n∏
i=1

1√
2πσ2∆

exp(− X2
i

2σ2∆
)

Thus, the log-likelihood function l(κ, θ, σ) = log(L) is given by

l(κ, θ, σ) =
n∑
i=1

{−0.5[log(2πσ2∆) +
X2
i

2σ2∆
]}

The MLE of the parameters can be conducted through “maxLik” package of R programming

software.

For the estimation of ρ, we adopt method of moment. Recall that dW ∗
1,t and dW ∗

2,t

are correlated with coefficient ρ, that is

dW ∗
1,tdW

∗
2,t = ρdt

where

dW ∗
1,t =

d log(St)− (r − 1
2
Vt)dt√

Vt

dW ∗
2,t =

d log(Vt)− (κθ − κ
√
Vt − 1

2
σ2)dt

σ

The discrete form of the above two equations is given as

√
∆z∗1,i =

log(Si)− log(Si−1)− (r − 1
2
Vi−1)∆

√
Vi−1

√
∆z∗2,i =

√
Vi −

√
Vi−1 − κ̂(θ̂ −

√
Vi−1)∆

σ̂

where κ̂, θ̂, σ̂ are the corresponding ML estimators. As dt is discretized as ∆, we get

ρ = z∗1,iz
∗
2,i

Summate both sides of the above equation, we get

nρ =
n∑
1

z∗1,iz
∗
2,i

Then the method of moment estimation of ρ is given as:
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ρ̂ =
1

n

n∑
1

z∗1,iz
∗
2,i

where

z∗1,i =
log(Si)− log(Si−1)− (r − 1

2
Vi−1)∆

√
∆
√
Vi−1

z∗2,i =

√
Vi −

√
Vi−1 − κ̂(θ̂ −

√
Vi−1)∆√

∆σ̂

3.2.2. Simulation Results

For data generation, we set the risk-free rate r = 0.04, initial standard deviation from

transformed trading volume
√
V0 =

√
(10000000)−1/5, and 1000 replications are simulated.

Time to maturity is 0.5 years. Current stock price is assumed to be S0 = $100. During data

generation process for Vt, negative values may be produced. We apply reflection method

here. That is when a negative value of Vt is generated, it will be replaced by its absolute

value. After obtaining ML estimators, we obtain estimated option prices in Table 3.4 after

plugging the values of MLE into the closed-form option pricing formula given by (2).

Table 3.3 and Table 3.4 show that as sample size increases, the estimated parameter

values are getting closer and closer to the true parameter values. And the estimated option

prices show similar pattern of behaviors. As sample size increases, the estimated option

prices are getting closer and closer to the true option prices. From here, we can conclude

that the new method for the generalized Stein and Stein model is reliable.
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Table 3.3. Parameter Estimation of New Method for Generalized Stein and

Stein Model (1000 replications)

True V alue κ = 10 θ = 0.2 σ = 0.2 ρ = 0.7

n = 50 32.8276 0.2389 0.1933 0.6747

Bias 22.8276 0.0389 −0.0067 −0.0253

RMSE 31.9191 0.5358 0.0201 0.1290

100 20.4512 0.2029 0.1965 0.6849

Bias 10.4512 0.0029 −0.0035 −0.0151

RMSE 16.0789 0.1265 0.0162 0.0867

200 15.2022 0.2005 0.1987 0.6956

Bias 5.2022 0.0005 −0.0013 −0.0044

RMSE 8.7047 0.0221 0.0096 0.0602

300 13.3608 0.1995 0.1988 0.6974

Bias 3.3608 −0.0005 −0.0012 −0.0026

RMSE 6.2384 0.019 0.0096 0.0507

400 12.6399 0.1999 0.1989 0.6964

Bias 2.6399 −0.0001 −0.0011 −0.0036

RMSE 5.0274 0.0158 0.0064 0.0444

600 11.5544 0.1994 0.1997 0.7001

Bias 1.5544 −0.0006 −0.0003 0.0001

RMSE 3.649 0.0127 0.0063 0.0348

800 11.3119 0.1995 0.1995 0.6976

Bias 1.3119 −0.0005 −0.0005 −0.0024

RMSE 3.0994 0.0127 0.0063 0.0317

1000 10.9414 0.1998 0.1996 0.6973

Bias 0.9414 −0.0002 −0.0004 −0.0027

RMSE 2.6519 0.0095 0.0032 0.0286
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True V alue κ = 10 θ = 0.2 σ = 0.2 ρ = 0.7

2000 10.4441 0.1998 0.1999 0.7010

Bias 0.4441 −0.0002 −0.0001 0.001

RMSE 1.7216 0.0063 0.0032 0.019

5000 10.1813 0.1998 0.1999 0.6995

Bias 0.1813 −0.0002 −0.0001 −0.0005

RMSE 1.0498 0.0032 0.0032 0.0127

10000 10.0814 0.1999 0.2000 0.7000

Bias 0.0814 −0.0001 0 0

RMSE 0.7476 0.0032 0 0.0095

Table 3.4. Option Price Estimation of New Method for Generalized Stein

and Stein Model

Strike Price X = 80 90 100 110 120

Call True V alue 21.5868 12.9118 6.6469 3.0525 1.3045

n = 50 22.0128 13.7919 7.6606 3.8054 1.7215

100 21.7531 13.1064 6.7328 2.9935 1.1891

200 21.7236 13.0363 6.6807 2.9918 1.215

300 21.7116 13.0062 6.6603 2.995 1.2299

400 21.7099 13.0062 6.6712 3.0141 1.2481

600 21.5935 12.9215 6.6293 3.0092 1.2593

800 21.5931 12.9214 6.6321 3.0146 1.2646

1000 21.5922 12.9217 6.6399 3.0278 1.277

2000 21.5887 12.9146 6.6412 3.039 1.2905

5000 21.5873 12.9115 6.6419 3.0443 1.2968

10000 21.5869 12.9114 6.6445 3.0488 1.3011
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Figure 3.2. Stein and Stein VS BS Volatility Skew.

3.2.3. Implied Volatility Comparison between Generalized Stein and Stein Model and BS

Model

The BS model implied volatility is obtained through the function “bscallimpvol” in R

package “derivmkts”. The generalized Stein and Stein model implied volatility is obtained

through the function “BFfzero” in R package “NLRoot”. In this function, the Bisection

method is applied. We apply the values of MLE from sample size n = 10000 to get the

generalized Stein and Stein model implied volatility.

From Figure 3.2, we can see that generalized Stein and Stein model implied volatility

almost forms a horizontal line, while BS implied volatility forms a “forward skew”. This

tells us that generalized Stein and Stein model with our new method works better to reduce
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the volatility skew effect than BS model with constant volatility.

3.3. The New Method for Heston Model

Similar to what we have done to previous two stochastic volatility models, we apply

the new method of measuring volatility to Heston model.

3.3.1. Heston Model Discretization and Parameter Estimation

There are four parameters κ, θ, σ and ρ to estimate in this model. We will apply MLE

method with Monte Carlo Simulation to estimate the first three parameters, and method of

moment to estimate ρ. Before estimation, we discretize the two processes St and
√
Vt in the

same way as previous section to {Si}n0 and {
√
Vi}n0 , where n = T−t

∆
. And we discretize the

two equations under risk-neutral measure with Euler’s method as below:

log(Si)− log(Si−1) = (r − 1

2
Vi−1)∆ +

√
Vi−1∆z∗1,i

Vi − Vi−1 = κ(θ −
√
Vi−1)∆ + σ

√
Vi−1∆z∗2,i

where z∗1,i and z∗2,i are standard normal variables correlated with coefficient ρ. Then we have

Vi−Vi−1−κ(θ−
√
Vi−1)∆ = σ

√
Vi−1∆z∗2,i . Let U = σ

√
Vi−1∆z∗2,i. Since U = σ

√
Vi−1∆z∗2,i ∼

N(0, σ2Vi−1∆), we get the probability density function of U as below:

fU(u) =
1√

2πσ2Vi−1∆
e
− u2

2σ2Vi−1∆

Notice dU
dVi

= 1. If we substitute u with Vi−Vi−1−κ(θ−
√
Vi−1)∆ , we will get the conditional

density of Vi given Vi−1 as follows:

f(Vi |Vi−1) =
1√

2πσ2Vi−1∆
exp(− X2

i

2σ2Vi−1∆
)

where Xi = Vi − Vi−1 − κ(θ −
√
Vi−1)∆. Then, we get the likelihood function L(κ, θ, σ) as

below

L(κ, θ, σ) =
n∏
i=1

1√
2πσ2Vi−1∆

exp(− X2
i

2σ2Vi−1∆
)
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Thus, the log-likelihood function l(κ, θ, σ) = log(L) is given by

l(κ, θ, σ) =
n∑
i=1

{−0.5[log(2πσ2Vi−1∆) +
X2
i

2σ2Vi−1∆
]}

The MLE of the parameters can be performed through “maxLik” package of R programming

software.

For the estimation of ρ, we adopt method of moment and follow the same procedures

as in previous section. The method of moment estimation of ρ is given by:

ρ̂ =
1

n

n∑
1

z∗1,iz
∗
2,i

where

z∗1,i =
log(Si)− log(Si−1)− (r − 1

2
Vi−1)∆

√
∆
√
Vi−1

z∗2,i =
Vi − Vi−1 − κ̂(θ̂ −

√
Vi−1)∆√

Vi−1∆σ̂

And κ̂, θ̂, σ̂ are the corresponding ML estimators.

3.3.2. Simulation Results

For data generation, we set the risk-free rate r = 0.02, initial variance V0 = (3200000)−1/5,

and 1000 replications are simulated. Time to maturity is 0.5 years. Initial stock price is as-

sumed to be S0 = $50. During data generation process for Vt, reflection method is applied

for negative values as in previous section. After obtaining ML estimators, we compute es-

timated option prices in Table 3.6 after plugging the values of MLE into the closed-form

option pricing formula.

Table 3.5 and Table 3.6 show that as sample size increases, the estimated parameter

values are getting closer and closer to the true parameter values. And the estimated option

prices follow similar pattern As sample size increases, the estimated option prices are getting

closer and closer to the true option prices. Form here, we can conclude that the new method

for Heston model is reliable.
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Table 3.5. Parameter Estimation of New Method for Heston Model (1000 replications)

True V alue K = 12 θ = 0.05 σ = 0.2 ρ = −0.6

n = 50 35.4290 0.0588 0.1925 −0.5808

Bias 23.4290 0.0088 −0.0075 0.0192

RMSE 32.5598 0.1205 0.0204 0.1342

100 22.8212 0.0500 0.1960 −0.5888

Bias 10.8212 0 −0.004 0.0112

RMSE 16.6319 0.0063 0.0133 0.0955

200 16.7886 0.0501 0.1985 −0.5972

Bias 4.7886 0.0001 −0.0015 0.0028

RMSE 8.4015 0.0032 0.0096 0.0633

300 15.3433 0.0498 0.1991 −0.5972

Bias 3.3433 −0.0002 −0.0009 0.0028

RMSE 6.3818 0.0032 0.0095 0.0538

400 14.3311 0.0502 0.1992 −0.5958

Bias 2.3311 0.0002 −0.0008 0.0042

RMSE 5.0932 0.0032 0.0064 0.0445

600 13.6701 0.0499 0.1996 −0.6008

Bias 1.6701 −0.0001 −0.0004 −0.0008

RMSE 3.9731 0.0032 0.0063 0.038

800 13.3529 0.0500 0.1995 −0.5976

Bias 1.3529 0 −0.0005 0.0024

RMSE 3.3554 0.0032 0.0063 0.0317

1000 13.1405 0.0500 0.1995 −0.5978

Bias 1.1405 0 −0.0005 0.0022

RMSE 2.8473 0.0032 0.0032 0.0285
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True V alue K = 12 θ = 0.05 σ = 0.2 ρ = −0.6

2000 12.5101 0.0500 0.2001 −0.6004

Bias 0.5101 0 0.0001 −0.0004

RMSE 1.8855 0 0.0032 0.019

5000 12.2203 0.0500 0.2000 −0.5995

Bias 0.2203 0 0 0.0005

RMSE 1.1782 0 0.0032 0.0127

10000 12.1306 0.0500 0.2000 −0.5999

Bias 0.1306 0 0 0.0001

RMSE 0.8138 0 0 0.0095

Table 3.6. Option Price Estimation of New Method for Heston Model

Strike K = 40 45 50 55 60

True Call Price 10.5980 6.4636 3.3676 1.4741 0.5406

n = 50 10.6575 6.6245 3.6198 1.7348 0.7349

100 10.5823 6.4482 3.371 1.4968 0.5668

200 10.5899 6.457 3.3725 1.4897 0.5571

300 10.5896 6.4532 3.3639 1.479 0.5486

400 10.5945 6.4626 3.3742 1.4865 0.5523

600 10.5936 6.4583 3.3659 1.4769 0.545

800 10.5948 6.4606 3.3684 1.4787 0.5459

1000 10.5953 6.4611 3.3683 1.4781 0.5451

2000 10.5968 6.4626 3.3679 1.4758 0.5425

5000 10.5974 6.4631 3.3678 1.4749 0.5415

10000 10.5977 6.4634 3.3677 1.4746 0.5411
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3.3.3. Implied Volatility Comparison between Heston Model and BS Model

The BS model implied volatility is obtained through the function “bscallimpvol” in R

package “derivmkts”. The Heston model implied volatility is obtained through the function

“BFfzero” in R package “NLRoot”. In this function, the Bisection method is applied. We

apply the values of MLE from sample size n = 10000 to get the Heston implied volatility.

From Figure 3.3, we can see that Heston implied volatility almost forms a horizontal

line, while the BS model implied volatility forms a “reverse skew”. This indicates that

Heston model with our new method works better to reduce the volatility skew effect than

BS model with constant volatility.

Figure 3.3. Heston VS BS Volatility Skew
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Inspired by the Hull and White option pricing formula, which takes the drift term to

be zero, we consider a special case of generalized Stein and Stein model by setting the drift

term and correlation coefficient to be zero in the following section.

3.4. The New Method for a Special Case of Generalized Stein and Stein Model

Consider a special case of generalized Stein and Stein model under risk-neutral mea-

sure Q

dSt = rStdt+
√
VtStdW

∗
1,t

d
√
Vt = σdW ∗

2,t

where dW ∗
1,t and dW ∗

2,t are independent Wiener processes under risk-neutral measure. Un-

der risk-neutral probability measure Q, the option pricing formula of the special case of

generalized Stein and Stein model is given by

C(S, t, T ) = EQ[e−r(T−t)(S(T )−K) · 1{S(T )>K}](4)

= EQ[e−r(T−t)S(T ) · 1{x(T )>logK}]− e−r(T−t)KEQ[1{x(T )>logK}]

= S(t)EQ1 [1{x(T > logK}]− e−r(T−t)KEQ2 [1{x(T > logK}]

= S(t)P1(S(T ) > K)− e−r(T−t)KP2(S(T ) > K).

Where P1 and P2 are given by the following Fourier inversion formula:

Pj =
1

2
+

1

π

∫ ∞
0

Re(fj(φ)
exp{−iφ logK}

iφ
)dφ, j = 1, 2.

In the above formula, f1, f2 are characteristic functions of P1, P2 respectively and are given

as below:

f1(φ) = exp{iφ(r(T − t) + x(t))}

× exp{1

2
D(t, T ; s)v2(t) + C(t, T ; s)}
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f2(φ) = exp{iφ(r(T − t) + x(t))}

× exp{1

2
D(t, T ; ŝ)v2(t) + C(t, T ; ŝ)}

with

s = −1

2
iφ(1 + iφ),

ŝ =
1

2
φ2 +

1

2
iφ,

D(t, T ) = − γ

σ2
tanh{γ(T − t)}

C(t, T ) = −1

2
log(cosh{γ(T − t)})

γ =
√

2σ2s,

where vt is the initial standard deviation. With functions C(t, T ) and D(t, T ), we obtain the

closed-form solutions for fj(φ), and hence the closed-form option pricing formula.

3.4.1. Model Discretization and Parameter Estimation

Since this is a special case of generalized Stein and Stein model, let κ, θ, ρ = 0 in the

generalized model, we will get the discretization as

log(Si)− log(Si−1) = (r − 1

2
Vi−1)∆ +

√
Vi−1∆z∗1,i√

Vi −
√
Vi−1 = σ

√
∆z∗2,i

where z∗1,i and z∗2,i are independent standard normal variables. And the log-likelihood function

l(σ) is given by

l(σ) =
n∑
i=1

{−0.5[log(2πσ2∆) +
(
√
Vi −

√
Vi−1)2

2σ2∆
]}

The MLE of the parameters can be performed through ”maxLik” package of R programming

software.
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Table 3.7. Parameter Estimation of New Method for a Special Case of Gen-

eralized Stein and Stein Model (1000 replications)

True V alue σ = 0.2 True V alue σ = 0.2

n = 50 0.197 800 0.198

Bias −0.003 Bias −0.002

RMSE 0.0223 RMSE 0.0066

100 0.1966 1000 0.1981

Bias −0.0034 Bias −0.0019

RMSE 0.0162 RMSE 0.0037

200 0.1977 2000 0.1988

Bias −0.0023 Bias −0.0012

RMSE 0.0098 RMSE 0.0034

300 0.1976 5000 0.199

Bias −0.0024 Bias −0.001

RMSE 0.0098 RMSE 0.0033

400 0.1976 10000 0.1993

Bias −0.0024 Bias −0.0007

RMSE 0.0068 RMSE 0.0007

600 0.1983

Bias −0.0017

RMSE 0.0065
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Table 3.8. Option Price Estimation of New Method for a Special Case of

Generalized Stein and Stein Model

Strike Price K = 80 90 100 110 120

Call True V alue 21.7493 12.878 5.9186 2.2626 0.8722

n = 50 21.7435 12.8664 5.9041 2.2480 0.8607

100 21.7427 12.8649 5.9022 2.2461 0.8591

200 21.7448 12.8691 5.9074 2.2514 0.8634

300 21.7446 12.8687 5.9070 2.2509 0.8630

400 21.7446 12.8687 5.9070 2.2509 0.8630

600 21.7460 12.8714 5.9104 2.2543 0.8657

800 21.7454 12.8702 5.9089 2.2529 0.8645

1000 21.7456 12.8706 5.9094 2.2534 0.8649

2000 21.7470 12.8733 5.9128 2.2568 0.8676

5000 21.7474 12.8741 5.9138 2.2578 0.8684

10000 21.7480 12.8752 5.9152 2.2592 0.8695

3.4.2. Simulation Results

Set risk-free rate r = 0.04, initial standard deviation
√
V0 =

√
(90000000)−

1
5 , and

1000 replications are simulated. Time to maturity is 0.5 years. During data generation

process for
√
Vt, reflection method is applied. That is when a negative value of

√
Vt is

generated, it will be replaced by its absolute value. After obtaining MLE, we get estimated

option prices in Table 3.8.

Table 3.7 and Table 3.8 show that as sample size increases, the estimated parameter

values are getting closer and closer to the true parameter values. And the estimated option

prices follow similar pattern. As sample size increases, the estimated option prices are getting

closer and closer to the true option prices. Form here, we can conclude that the new method

for the special case of generalized Stein and Stein model is reliable.
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3.5. The New Method for a Special Case of Heston Model

Consider a special case of Heston model under risk-neutral measure Q

dSt = rStdt+
√
VtStdW

∗
1,t

dVt = σ
√
VtdW

∗
2,t

where dW ∗
1,t and dW ∗

2,t are independent Wiener processes under risk-neutral measure. Under

risk-neutral probability measure Q, the option pricing formula for the special case of Heston

model is given by

(5) Ct = StP1 −Ke−r(T−t)P2

where for j = 1, 2

Pj =
1

2
+

1

π

∫ ∞
0

Re[
e−iφ logKfj(φ; t, xt, vt)

iφ
]dφ

fj(φ;xt, Vt) = exp(Cj(τ, φ) +Dj(τ, φ)Vt + iφxt)

and

τ = T − t, xt = log(St)

Cj(τ, φ) = riφτ

Dj(τ, φ) =
dj
σ2

(
1− edjτ

1 + edjτ
)

such that

dj =
√
−σ2(2ujiφ− φ2)

u1 =
1

2
, u2 = −1

2
,
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Table 3.9. Parameter Estimation of New Method for a Special Case of Hes-

ton Model (1000 replications)

True V alue σ = 0.15 True V alue σ = 0.15

n = 50 0.1223 800 0.1496

Bias −0.0277 Bias −0.0004

RMSE 0.0928 RMSE 0.0032

100 0.1337 1000 0.1494

Bias −0.0163 Bias −0.0006

RMSE 0.0684 RMSE 0.0032

200 0.1454 2000 0.1481

Bias −0.0046 Bias −0.0019

RMSE 0.0382 RMSE 0.0159

300 0.1479 5000 0.1463

Bias −0.0021 Bias −0.0037

RMSE 0.0254 RMSE 0.0102

400 0.1478 10000 0.1454

Bias −0.0022 Bias −0.0046

RMSE 0.0254 RMSE 0.0056

600 0.15

Bias 0

RMSE 0.0032

3.5.1. Model Discretization and Parameter Estimation

Since this is a special case of Heston model, let κ, θ, ρ = 0 in the general model, we

will get the discretization as

log(Si)− log(Si−1) = (r − 1

2
Vi−1)∆ +

√
Vi−1∆z∗1,i

Vi − Vi−1 = σ
√
Vi−1∆z∗2,i
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where z∗1,i and z∗2,i are independent standard normal variables. And the log-likelihood function

l(σ) is given by

l(σ) =
n∑
i=1

{−0.5[log(2πσ2Vi−1∆) +
(Vi − Vi−1)2

2σ2Vi−1∆
]}

The MLE of the parameters can be performed through “maxLik” package of R programming

software.

Table 3.10. Option Price Estimation of New Method for a Special Case of

Heston Model

Strike Price K = 80 90 100 110 120

Call True V alue 23.2409 16.0511 10.4895 6.5295 3.9046

n = 50 23.2408 16.0589 10.5022 6.5411 3.9107

100 23.2408 16.0559 10.4973 6.5366 3.9084

200 23.2409 16.0525 10.4918 6.5316 3.9057

300 23.2409 16.0518 10.4905 6.5305 3.9051

400 23.2409 16.0518 10.4906 6.5305 3.9052

600 23.2409 16.0511 10.4895 6.5295 3.9046

800 23.2409 16.0513 10.4897 6.5297 3.9047

1000 23.2409 16.0513 10.4898 6.5298 3.9048

2000 23.2409 16.0517 10.4904 6.5304 3.9051

5000 23.2409 16.0523 10.4913 6.5312 3.9055

10000 23.2409 16.0525 10.4918 6.5316 3.9057

3.6. Simulation Results

During the simulation process, we set the risk-free rate r = 0.04, initial variance

V0 = (3200000)−1/7, and 1000 replications are simulated. Time to maturity is 0.5 years.

Current stock price is assume to be S0 = $100. During data generation process for Vt,

reflection method is applied. That is when a negative value of Vt is generated, it will be
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replaced by its absolute value. After obtaining ML estimators, we obtain estimated option

prices in Table 3.10 after plugging the values of MLE into the closed-form option pricing

formula with κ, θ, ρ = 0.

Table 3.9 and Table 3.10 show that as sample size increases, the estimated parameter

values are getting closer and closer to the true parameter values first until the sample size

reaches 600. Then the estimated parameter values are increasingly deviating from the true

value as the sample size increases. However, no matter how far away the estimated parameter

value deviates from the true value, all the estimated option prices for any strike price have

a difference less than one cent from the true option prices. We can claim that the model is

reliable.

3.7. The New Method for a New Continuous Stochastic Volatility Model

Under physical measure P, the new model is given by:

dSt = µStdt+ Yt
1
4StdW1,t

dYt = κ(θ −
√
Yt)
√
Ytdt+ Yt

3
4σdW2,t

where dW1,t and dW2,t are correlated with coefficient ρ under physical measure. And Yt = Vt
2,

the square of the instantaneous variance. If we follow the argument of Stein and Stein (1991)

about market price of volatility risk and set λt = 0, we get the model under the risk-neutral

measure Q:

dSt = rStdt+ Yt
1
4StdW

∗
1,t

dYt = κ∗(θ∗ −
√
Yt)
√
Ytdt+ Yt

3
4σdW ∗

2,t

where κ∗ = κ, θ∗ = θ. The two Wiener processes dW ∗
1,t and dW ∗

2,t are correlated with

coefficient ρ under risk-neutral measure. And they are given by:

dW ∗
1,t = dW1,t +

µ− r√
Vt
dt

dW ∗
2,t = dW2,t

Before we show the closed-form option pricing formula for this new continuous model,

we introduce the following lemma.
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LEMMA ( Gil-Pelaez (1951) Inversion Theorem).

The cumulative distribution function (CDF) FX of a random variable X and its

characteristic function φX has the following relationship

(6) FX(x) =
1

2
− 1

π

∫ ∞
0

Re[
e−iwxφX(w)

iw
]dw

PROOF. See Appendix A.

THEOREM. The closed form solution of option pricing under the new continuous model is

given as follows:

(7) Ct = StP1 −Ke−r(T−t)P2

where for j = 1, 2

Pj =
1

2
+

1

π

∫ ∞
0

Re[
e−iφ logKfj(φ; t, xt, vt)

iφ
]dφ

fj(φ;xt, Yt) = exp(Aj(τ, φ) +Bj(τ, φ)
√
Yt + iφxt)

and

τ = T − t

xt = log(St)

Aj(τ, φ) = riφτ + (
2a

σ2
− 1

2
)[(

1

2
bj −

1

2
ρσiφ+ dj)τ − 2 log(

1− gjedjτ

1− gj
)]

Bj(τ, φ) =
2bj − 2ρσiφ+ 4dj

σ2
(

1− edjτ

1− gjedjτ
)

such that

gj =
bj − ρσiφ+ 2dj
bj − ρσiφ− 2dj

dj =
1

2

√
(ρσiφ− bj)2 − σ2(2ujiφ− φ2)

u1 =
1

2
, u2 = −1

2
, a = κθ, b1 = κ− ρσ, b2 = κ

PROOF. We will adopt self-financing argument similar to Galiotos (2008) [17] to derive a

PDE for our new continuous model .
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First we construct a portfolio consisting of a risk-free asset with value Bt, ∆ units of

underlying stock, and φ units of an option Ut. And Ut is priced under our new continuous

model framework. The portfolio has value Pt given as

(7a) Pt = ΩBt + ∆St + φUt

and Bt satisfies

(7b) dBt = rBtdt

Assume the portfolio is self-financing. Now we are trying to hedge the volatility risk

for another option with price Ct by setting

Pt = Ct

The change in portfolio value is

(7c) dPt = ΩdBt + ∆dSt + φdUt

Apply Ito’s Lemma to Ct and Ut under physical measure , we get

dCt =
∂Ct
∂t

dt+
∂Ct
∂St

[µStdt+ Yt
1
4StdW1,t] +

∂Ct
∂Yt

[κ(θ −
√
Yt)
√
Ytdt+ Yt

3
4σdW2,t]

+ (
1

2

∂2Ct

∂St
2 )Yt

1
2S2

t dt+ (
1

2

∂2Ct

∂Yt
2 )σ2Yt

3
2dt+

∂2Ct
∂St∂Yt

ρσStYtdt(8a)

dUt =
∂Ut
∂t

dt+
∂Ut
∂St

[µStdt+ Yt
1
4StdW1,t] +

∂Ut
∂Yt

[κ(θ −
√
Yt)
√
Ytdt+ Yt

3
4σdW2,t]

+ (
1

2

∂2Ut

∂St
2 )Yt

1
2S2

t dt+ (
1

2

∂2Ut

∂Yt
2 )σ2Yt

3
2dt+

∂2Ut
∂St∂Yt

ρσStYtdt(8b)
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Substitute (7b), (8b) and stock price equation dSt under physical measure into (7c), we get

dPt = φ[
∂Ut
∂t

+
∂Ut
∂St

µSt +
∂Ut
∂Yt

[κ(θ −
√
Yt)
√
Yt +

1

2
Yt

1
2S2

t

∂2Ut

∂St
2 +

1

2
σ2Yt

3
2
∂2Ut

∂Yt
2 + ρσStYt

∂2Ut
∂St∂Yt

]dt

(8c)

(ΩrBt + ∆µSt)dt+ (∆Yt
1
4St + φ

∂Ut
∂St

Yt
1
4St)dW1,t + φ

∂Ut
∂Yt

Yt
3
4σdW2,t

Set (8a) and (8c) equal, we should also set the coefficients of dt, dW1,t, dW2,t equal between

those two equations. Then we have

(9a) φ = (
∂Ct
∂Yt

)/(
∂Ut
∂Yt

),∆ = −φ∂Ut
∂St

+
∂Ct
∂St

Since Pt = Ct, ΩBt = Pt −∆St − φUt = Ct −∆St − φUt, this will give the drift term of dPt

as

drift(dPt) =φ[
∂Ut
∂t

+
∂Ut
∂St

µSt +
∂Ut
∂Yt

[κ(θ −
√
Yt)
√
Yt +

1

2
Yt

1
2S2

t

∂2Ut

∂St
2

+ σ2Yt
3
2

1

2

∂2Ut

∂Yt
2 + ρσStYt

∂2Ut
∂St∂Yt

] + r(Ct −∆St − φUt) + ∆µSt(9b)

And the drift of dCt is given by

drift(dCt) =
∂Ct
∂t

+ µSt
∂Ct
∂St

+
∂Ct
∂Yt

[κ(θ −
√
Yt)
√
Yt +

1

2

√
YtS

2
t

∂2Ct
∂S2

t

+
1

2
σ2Yt

3
2
∂2Ct
∂Y 2

t

+ ρσStYt
∂2Ct
∂St∂Yt

(9c)

Set the two drift terms (9b) and (9c) equal, and substitute (9a) into them, after some

computation we will get

(
∂Ct
∂Yt

)
−1

[−rCt +
∂Ct
∂t

+ rSt
∂Ct
∂St

+
∂Ct
∂Yt

[κ(θ −
√
Yt)]
√
Yt +

1

2

√
YtS

2
t

∂2Ct
∂S2

t

+
1

2
σ2Yt

3
2
∂2Ct
∂Y 2

t

+ ρσStYt
∂2Ct
∂St∂Yt

]
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= (
∂Ut
∂Yt

)
−1

[−rUt +
∂Ut
∂t

+ rSt
∂Ut
∂St

+
∂Ut
∂Yt

[κ(θ −
√
Yt)]
√
Yt +

1

2

√
YtS

2
t

∂2Ut
∂S2

t

(9d) +
1

2
σ2Yt

3
2
∂2Ut
∂Y 2

t

+ ρσStYt
∂2Ut
∂St∂Yt

]

And the left-hand side of the above equation is a function of Ct, but the right-hand

side is a function of Ut. That means the above equation can be rewritten as a function of

St, Yt, t, name it as λ(St, Yt, t), which is defined as market price of volatility risk. Rewrite is

as λt for simplicity. Then from the left-hand side of (9d), we have

(
∂Ct
∂Yt

)
−1

[−rCt +
∂Ct
∂t

+ rSt
∂Ct
∂St

+
∂Ct
∂Yt

[κ(θ −
√
Yt)]
√
Yt +

1

2

√
YtS

2
t

∂2Ct
∂S2

t

+
1

2
σ2Yt

3
2
∂2Ct
∂Y 2

t

+ ρσStYt
∂2Ct
∂St∂Yt

] = λt

This will give us

[−rCt +
∂Ct
∂t

+ rSt
∂Ct
∂St

+
∂Ct
∂Yt

[κ(θ −
√
Yt)
√
Yt − λt] +

1

2

√
YtS

2
t

∂2Ct
∂S2

t

+
1

2
σ2Yt

3
2
∂2Ct
∂Y 2

t

+ ρσStYt
∂2Ct
∂St∂Yt

] = 0

In the above equation, set λt to be a special value 0, and reparametrize as κ∗ = κ, θ∗ = θ,

we get the following PDE.

−rCt+
∂Ct
∂t

+rSt
∂Ct
∂St

+(κ∗θ∗−κ∗
√
Yt)
√
Yt
∂Ct
∂Yt

+
1

2

√
YtS

2
t

∂2Ct
∂S2

t

+
1

2
σ2Yt

3
2
∂2Ct
∂Y 2

t

+ρσStYt
∂2Ct
∂St∂Yt

= 0

For the remaining part of the proof, we will follow the framework of Rouah (2013)

[34], but work with our new continuous model. Let xt = log(St), then we have:

∂Ct
∂St

=
1

St

∂Ct
∂xt

,
∂2Ct
∂St∂Vt

=
1

St

∂2Ct
∂xt∂Vt
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And apply product rule, we have:

∂2Ct
∂S2

t

= − 1

S2
t

∂Ct
∂xt

+
1

St

∂2Ct
∂St∂xt

= − 1

S2
t

∂Ct
∂xt

+
1

S2
t

∂2Ct
∂x2

t

And rewrite the new model PDE in terms of xt instead of St, then we get the new PDE for

our continuous model:

− rCt +
∂Ct
∂t

+ (r − 1

2

√
Yt)

∂Ct
∂xt

+ (κθ − κ
√
Yt)
√
Yt
∂Ct
∂Yt

(9e) +
1

2

√
Yt
∂2Ct
∂xt2

+
1

2
σ2Yt

3
2
∂2Ct
∂Y 2

t

+ ρσYt
∂2Ct
∂xt∂Yt

= 0

where κ∗, θ∗ are replaced with κ, θ in the above equation. Notice that (9e) holds for any

strike price 0 ≤ K, any stock price 0 ≤ St any value of risk-free interest rate 0 ≤ r. Set

K = 0, St = 1 in the option pricing formula will give us Ct = P1. So P1 satisfies (9e).

Similarly, set K = 1, St = 0, r = 0 in the option pricing formula will give us Ct = −P2. This

shows −P2 satisfies (9e), so does P2. And we have

Ct = StP1 −Ke−r(T−t)P2 = extP1 −Ke−r(T−t)P2

Then we have the derivative of Ct with respect to t:

(10)
∂Ct
∂t

= ext
∂P1

∂t
−Ke−r(T−t)(rP2 +

∂P2

∂t
)

With respect to xt:

(11)
∂Ct
∂xt

= ext(P1 +
∂P1

∂xt
)−Ke−r(T−t)∂P2

∂xt

With respect to x2
t :

∂2Ct
∂x2

t

= extP1 + 2ext
∂P1

∂xt
+ ext

∂2P1

∂x2
t

−Ke−r(T−t)∂
2P2

∂x2
t

(12) = ext(P1 + 2
∂P1

∂xt
+
∂2P1

∂x2
t

)−Ke−r(T−t)∂
2P2

∂x2
t

With respect to Yt and Y 2
t :

(13)
∂Ct
∂Yt

= ext
∂P1

∂Yt
−Ke−r(T−t)∂P2

∂Yt
,
∂2Ct
∂Y 2

t

= ext
∂2P1

∂Y 2
t

−Ke−r(T−t)∂
2P2

∂Y 2
t
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With respect to Yt and xt:

(14)
∂2Ct
∂xt∂Yt

= ext(
∂P1

∂Yt
+

∂2P1

∂xt∂Yt
)−Ke−r(T−t) ∂2P2

∂xt∂Yt

In Equations (10) through (14), regroup terms and cancel ext (since ext = St = 1 in

this set up), and substitute the terms into (9e), we get:

−rP1 +
∂P1

∂t
+

1

2

√
Yt(P1 + 2

∂P1

∂xt
+
∂2P1

∂x2
t

) + (r − 1

2

√
Yt)(P1 +

∂P1

∂xt
) + ρσYt(

∂P1

∂Yt
+

∂2P1

∂xt∂Yt
)

(15) +
1

2
σ2Yt

3
2
∂2P1

∂Y 2
t

+ (κθ − κ
√
Yt)
√
Yt
∂P1

∂Yt
= 0

Simplify (15), we obtain:

∂P1

∂t
+ (r +

1

2

√
Yt)

∂P1

∂xt
+

1

2

√
Yt
∂2P1

∂x2
t

+ ρσYt
∂2P1

∂xt∂Yt
+

(16) [κθ
√
Yt − (κ− ρσ)Yt]

∂P1

∂Yt
+

1

2
σ2Yt

3
2
∂2P1

∂Y 2
t

= 0

Similarly, in Equations (10) through (14), regroup terms and cancel −Ke−r(T−t) (since

K = 1, r = 0,−Ke−r(T−t) = −1 in this set up), and substitute the terms into (9e), we get:

∂P2

∂t
+ (r − 1

2

√
Yt)

∂P2

∂xt
+

1

2

√
Yt
∂2P2

∂x2
t

+ ρσYt
∂2P2

∂xt∂Yt
+

(17) [κθ
√
Yt − κYt]

∂P2

∂Yt
+

1

2
σ2Yt

3
2
∂2P2

∂Y 2
t

= 0

For convenience, combine Equation (16) and Equation (17) into one expression

∂Pj
∂t

+ (r + uj
√
Yt)

∂Pj
∂xt

+
1

2

√
Yt
∂2Pj
∂x2

t

+ ρσYt
∂2Pj
∂xt∂Yt

+

(18) [a
√
Yt − bjYt]

∂Pj
∂Yt

+
1

2
σ2Yt

3
2
∂2Pj
∂Y 2

t

= 0

for j = 1, 2 and where u1 = 1
2
, u2 = −1

2
, a = κθ, b1 = κ− ρσ, b2 = κ.

Let fj(φ;xt, Yt) be the corresponding characteristic functions of Pj for j = 1, 2. When

the characteristic functions fj(φ;xt, Yt) are known, each in-the-money probability Pj can be
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recovered from the characteristic function via the Gil-Pelaez (1951) [18] inversion theorem,

as

Pj =Pr(log(ST ) > log(K))

= 1− Pr(log(ST ) < log(K))

= 1− (
1

2
− 1

π

∫ ∞
0

Re[
e−iφ log(K)fj(φ;xt, Yt)

iφ
]dφ)

=
1

2
+

1

π

∫ ∞
0

Re[
e−iφ log(K)fj(φ;xt, Yt)

iφ
]dφ(19)

At maturity, the probabilities are subject to the terminal condition

(20) Pj = 1xT>logK

where 1 is the indicator function. Equation (20) shows when ST > K at expiry,

the probability of the call being in-the-money is unity. We postulate that the characteristic

functions for the logarithm of the terminal stock price, xT = logST , are of the log linear

form

(21) fj(φ;xt, Yt) = exp(Aj(τ, φ) +Bj(τ, φ)
√
Yt + iφxt)

where Aj and Bj are coefficients and τ = T − t is the time to maturity for the European call

option.

The characteristic functions fi will follow the PDE in Equation (18). This is a result

of the Feynman-Kac theorem, which stipulates that, if a function f(xt, t) of SDEs xt =

(xt, Yt) = (log(St), Yt) satisfies the PDE ∂f/∂t − rf + Af = 0 , Where A is the generator

defined as follows,

A = (r − 1

2

√
Yt)

∂

∂xt
+

1

2

√
Yt
∂2

∂x2
t

+ ρσYt
∂2

∂xt∂Yt
+

[κθ
√
Yt − κYt]

∂

∂Yt
+

1

2
σ2Yt

3
2
∂2

∂Y 2
t

Then the solution to f(xt, t) is the conditional expectation
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f(xt, t) = E[f(xT , T )|Ft]

where Ft is the natural filtration generated by W1,t and W2,t jointly up to time t. Notice

that the values of log(St) and Yt can be completely determined by the information available

up to time t. Using f(xt, t) = exp[iφ log(St)] produces the solution

f(xt, t) = E[eiφ log(ST )|xt, Yt]

which is the characteristic function for xT = log(ST ). Hence, the PDE for the characteristic

function is, from Equation (18)

−∂fj
∂τ

+ (r + uj
√
Yt)

∂fj
∂xt

+
1

2

√
Yt
∂2fj
∂x2

t

+ ρσYt
∂2fj
∂xt∂Yt

+

(22) [a
√
Yt − bjYt]

∂fj
∂Yt

+
1

2
σ2Yt

3
2
∂2fj
∂Y 2

t

= 0

Note the change from t to τ , which explains the negative sign in front of the first

term in the PDE (22). The following derivatives are required to evaluate (22)

∂fj
∂τ

= (
∂Aj
∂τ

+
∂Bj

∂τ

√
Yt)fj,

∂fj
∂xt

= iφfj,
∂fj
∂Yt

=
Bj

2
√
Yt
fj

∂2fj
∂x2

= −φ2fj,
∂2fj
∂Y 2

t

= (
B2
j

4Yt
− Bj

4
√
Y 3
t

)fj,
∂2fj
∂Yt∂xt

=
iφBj

2
√
Yt
fj

Substitute these derivatives into (22) and drop the fj terms to obtain

−(
∂Aj
∂τ

+
√
Yt
∂Bj

∂τ
) + (r + uj

√
Yt)iφ+

1

2

√
Yt(−φ2) + ρσYt(

iφBj

2
√
Yt

)+

[a
√
Yt − bjYt]

Bj

2
√
Yt

+
1

2
σ2Yt

3
2 (
B2
j

4Yt
− Bj

4
√
Y 3
t

) = 0,

or equivalently

√
Yt(−

∂Bj

∂τ
+ ujiφ−

1

2
φ2 +

ρσiφBj

2
− bjBj

2
+
σ2B2

j

8
)+
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(−∂Aj
∂τ

+ riφ+
aBj

2
− σ2Bj

8
) = 0

This gives two differential equations

(23a)
∂Bj

∂τ
= ujiφ−

1

2
φ2 +

ρσiφBj

2
− bjBj

2
+
σ2B2

j

8

(23b)
∂Aj
∂τ

= riφ+
aBj

2
− σ2Bj

8

The equation in (23a) is a Riccati equation for Bj, while the equation in (23b) is

an ordinary derivative for Aj that can be solved through direct integration once Bj is ob-

tained. Solving these equations requires two initial conditions. Recall from (21) that the

characteristic function is

(24) fj(φ;xt, vt) = E[eiφxT ] = exp(Aj(τ, φ) +Bj(τ, φ)
√
Yt + iφxt).

At maturity τ = 0, the value of xT = log(ST ) is known, so the expectation in (24)

will simply reduce to exp(iφxT ). This implies that the initial conditions at maturity are

Bj(0, φ) = 0 and Aj(0, φ) = 0 . At last ,when we compute the characteristic function, we

use xt as the log spot price of the underlying asset, and Yt as its initial variance squared.

Solving the Riccati Equation

We will explain how the expressions in equations (23a) and (23b) can be solved to

yield the call price. First, we introduce the Riccati equation and explain how its solution is

obtained.

The Riccati Equation in a General Setting

Consider the generic Riccati equation for y(t) with coefficients P (t), Q(t), and R(t)

defined as follows:

(25)
dy(t)

dt
= P (t) +Q(t)y(t) +R(t)y(t)2.

The equation can be solved by considering the following second-order ordinary differ-

ential equation (ODE) for w(t)
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(26a) w′′ − [
R′

R
+Q]w′ + PRw = 0

where w(t) is given by the following relationship

(26b) y(t) = −w
′(t)

w(t)

1

R(t)

Notice that (26a) can be written as w′′ + bw′ + cw = 0, where b = −(R
′

R
+Q), c = PR. The

solution to Equation (25) is then given by (26b).

The ODE in (26a) can be solved through the characteristic equation r2 + br+ c = 0,

which has two solutions r1 and r2 given by

r1 =
−b+

√
b2 − 4c

2
, r2 =

−b−
√
b2 − 4c

2
.

The solution to the second-order ODE in (26a) is

w(t) = Mer1t +Ner2t

where M and N are constants. The solution to the Riccati equation is therefore

y(t) = −Mr1e
r1t +Nr2e

r2t

Mer1t +Ner2t
1

R(t)
.

Solution to the Riccati Equation

For Equation (23a), this Riccati equation can be rewritten as

∂Bj

∂τ
= Pj −QjBj +RB2

j

where

Pj = ujiφ−
1

2
φ2, Qj =

bj
2
− ρσiφ

2
, R =

1

8
σ2

The corresponding second-order ODE is

w′′ +Qjw
′ + PjRw = 0
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and w here is given by the relationship Bj = − 1
R
w′

w
. The characteristic equation is r2 +Qjr+

PjR = 0, which has roots

r1,j =
−Qj +

√
Q2
j − 4PjR

2
=
−Qj + dj

2

r2,j =
−Qj −

√
Q2
j − 4PjR

2
=
−Qj − dj

2

where

dj = r1,j − r2,j

=
√
Q2
j − 4PjR

=
1

2

√
(ρσiφ− bj)2 − σ2(2ujiφ− φ2).

The solution to the Riccati equation is therefore

(27) Bj = − 1

R

w′

w
= − 1

R

Mjr1,je
r1,jτ +Njr2,je

r2,jτ

Mjer1,jτ +Njer2,jτ
= − 1

R

Kjr1,je
r1,jτ + r2,je

r2,jτ

Kjer1,jτ + er2,jτ

where Kj =
Mj

Nj
, and Mj , Nj are constants. The initial condition Bj(0, φ) = 0 implies

that, when τ = 0 is substituted in (27), the numerator becomes Kjr1,j +r2,j = 0, from which

Kj = − r2,j
r1,j
. The solution for Bj becomes

Bj = −r2,j

R
(
−er1,jτ + er2,jτ

−gjer1,jτ + er2,jτ
) = −r2,j

R
(

1− edjτ

1− gjedjτ
) =

Qj + dj
2R

(
1− edjτ

1− gjedjτ
)

where

gj = −Kj =
r2,j

r1,j

=
bj − ρσiφ+ 2dj
bj − ρσiφ− 2dj

The solution for Bj can, therefore, be written as

Bj(τ, φ) =
2bj − 2ρσiφ+ 4dj

σ2
(

1− edjτ

1− gjedjτ
)

The solution for Aj is found by integrating (23b)

(28) Aj =

∫ τ

0

riφdy + (
a

2
− σ2

8
)(
Qj + dj

2R
)

∫ τ

0

(
1− edjy

1− gjedjy
)dy +K0
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where y is a dummy variable, and K0 is a constant. The first integral is riφτ , and the

second integral can be found by substitution. Let x = exp(djy), then dx = dj exp(djy)dy

and dy = dx/(xdj). Equation(28) becomes

(29) Aj = riφτ +
1

dj
(
a

2
− σ2

8
)(
Qj + dj

2R
)

∫ exp(djτ)

1

(
1− x

1− gjx
)
1

x
dx+K0.

The integral in (29) can be evaluated by partial fraction decomposition

∫ exp(djτ)

1

1− x
x(1− gjx)

dx =

∫ exp(djτ)

1

[
1

x
− 1− gj

1− gjx
]dx

= [log x+
1− gj
gj

log(1− gjx)]
x=exp(djτ)
x=1

= [djτ +
1− gj
gj

log(
1− gjedjτ

1− gj
)].

Substituting the integral back into (29), and substituting for dj, Qj, and gj, produces the

solution for Aj

Aj(τ, φ) = riφτ + (
2a

σ2
− 1

2
)[(

1

2
bj −

1

2
ρσiφ+ dj)τ − 2 log(

1− gjedjτ

1− gj
)] +K0

where a = κθ. Note that we have the initial condition Aj(0, φ) = 0, which leads to K0 = 0

from the above equation. This will give the complete solution to Aj as follows:

Aj(τ, φ) = riφτ + (
2a

σ2
− 1

2
)[(

1

2
bj −

1

2
ρσiφ+ dj)τ − 2 log(

1− gjedjτ

1− gj
)]

Aj together with Bj completely gives the characteristic functions, and thus completes the

proof of the theorem.

3.7.1. Relationship with Heston Model

Consider a special case of the second diffusion equation of Heston model

dVt = −a1Vtdt+ a2

√
VtdW2,t
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That is to set the long-term mean to be zero for Heston model. Let Y ∗t = V 2
t , and apply

Ito’s Lemma

dY ∗t = 2VtdVt + (dVt)
2

= (a2
2Vt − 2a1V

2
t )dt+ 2a2V

3
2
t dW2,t

= (a2
2 − 2a1

√
Y ∗t )
√
Y ∗t dt+ 2a2(Y ∗t )

3
4dW2,t

And recall the second equation of the new continuous model,

dYt = κ(θ −
√
Yt)
√
Ytdt+ Yt

3
4σdW2,t

If we set the coefficients of two equations dY ∗t and dYt equal, we have

κθ = a2
2

θ = 2a1

σ = 2a2

Put the above three qualities together and get

κθ = 4σ2

We can see that if the coefficients of the new continuous model satisfy κθ = 4σ2, the new

continuous model will be reduced to a special case of Heston model given the same initial

value for
√
Yt and Vt. However, if κθ 6= 4σ2, the new continuous model cannot be reduced

to the special case of Heston model.

Let’s check the Feller condition for the new continuous model. Rewrite the second

equation in the form of CIR process

dYt = κ(θ
√
Yt − Yt)dt+ (σYt

1
4 )
√
YtdW2,t
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Check Feller’s condition to the above equation, we get

2κθ
√
Yt > (σYt

1
4 )

2

After simplification, we get

2κθ > σ2

Then we can claim that if 2κθ > σ2, the volatility process of the new continuous model will

be positive with probability 1.

3.7.2. Model Discretization and Parameter Estimation

Since we set market price of volatility risk to be zero, there are only four parameters

κ, θ, σ and ρ to estimate in this model. We will apply MLE method with Monte Carlo

Simulation to estimate the first three parameters, and method of moment to estimate ρ.

Before estimation, we discretize the two processes St and Yt in the same way as previous

section to {Si}n0 and {Yi}n0 , where n = T−t
∆

. And we discretize the two equations under

risk-neutral measure with Euler’s method as follows:

log(Si)− log(Si−1) = (r − 1

2

√
Vi−1)∆ + (Yi−1)

1
4 ∆z∗1,i

Yi − Yi−1 = κ(θ −
√
Yi−1)

√
Yi−1∆ + σ(Yi−1)

3
4

√
∆z∗2,i

where z∗1,i and z∗2,i are standard normal variables correlated with coefficient ρ. Then we

have Yi − Yi−1 − κ(θ −
√
Yi−1)

√
Yi−1∆ = σ(Yi−1)

3
4

√
∆z∗2,i . Let U = σ(Yi−1)

3
4

√
∆z∗2,i. Since

U = σ(Yi−1)
3
4

√
∆z∗2,i ∼ N(0, σ2(Yi−1)

3
2 ∆), we get the probability density function of U below:

fU(u) =
1√

2πσ2(Yi−1)
3
2 ∆

exp(− u2

2σ2(Yi−1)
3
2 ∆

)

Notice dU
dYi

= 1. If we substitute u with Yi − Yi−1 − κ(θ −
√
Yi−1)

√
Yi−1∆ , we will get the

conditional density of Yi given Yi−1 as follows:

f(Yi |Yi−1) =
1√

2πσ2(Yi−1)
3
2 ∆

exp(− X2
i

2σ2(Yi−1)
3
2 ∆

)
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where Xi = Yi−Yi−1−κ(θ−
√
Yi−1)

√
Yi−1∆. Then, we get the likelihood function L(κ, θ, σ)

below

L(κ, θ, σ) =
n∏
i=1

1√
2πσ2(Yi−1)

3
2 ∆

exp(− X2
i

2σ2(Yi−1)
3
2 ∆

)

Thus, the log-likelihood function l(κ, θ, σ) = log(L) is given by

l(κ, θ, σ) =
n∑
i=1

{−0.5[log(2πσ2(Yi−1)
3
2 ∆) +

X2
i

2σ2(Yi−1)
3
2 ∆

]}

The MLE of the parameters can be performed through “maxLik” package of R programming

software.

For the estimation of ρ, we adopt method of moment and follow the same procedures

as in Section 3.3. The method of moment estimation of ρ is given by:

ρ̂ =
1

n

n∑
1

z∗1,iz
∗
2,i

where

z∗1,i =
log(Si)− log(Si−1)− (r − 1

2

√
Yi−1)∆

√
∆(Yi−1)

1
4

z∗2,i =
Yi − Yi−1 − κ̂(θ̂ −

√
Yi−1)

√
Yi−1∆

√
∆σ̂(Yi−1)

3
4

And κ̂, θ̂, σ̂ are the corresponding ML estimators.
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Table 3.11. Parameter Estimation of New Method for the New Continuous

Model (1000 replications)

True V alue κ = 15 θ = 0.05 σ = 0.2 ρ = 0.5

n = 50 58.1536 0.0535 0.1933 0.4826

Bias 43.1536 0.0035 −0.0067 −0.0174

RMSE 60.3384 0.0444 0.0201 0.1371

100 35.8779 0.0507 0.1965 0.4881

Bias 20.8779 0.0007 −0.0035 −0.0119

RMSE 31.5806 0.0158 0.0162 0.0956

200 25.6668 0.0501 0.1987 0.4973

Bias 10.6668 0.0001 −0.0013 −0.0027

RMSE 16.4402 0.0063 0.0096 0.0665

300 22.2795 0.0498 0.1988 0.4985

Bias 7.2795 −0.0002 −0.0012 −0.0015

RMSE 12.0308 0.0032 0.0096 0.0569

400 20.9875 0.0498 0.1989 0.4969

Bias 5.9875 −0.0002 −0.0011 −0.0031

RMSE 10.0843 0.0032 0.0064 0.0475

600 18.9074 0.0498 0.1997 0.5008

Bias 3.9074 −0.0002 −0.0003 0.0008

RMSE 7.6072 0.0032 0.0063 0.038

800 18.1973 0.0498 0.1995 0.4977

Bias 3.1973 −0.0002 −0.0005 −0.0023

RMSE 6.5894 0.0032 0.0063 0.0317

1000 17.3305 0.0499 0.1997 0.4974

Bias 2.3305 −0.0001 −0.0003 −0.0026

RMSE 5.5792 0.0001 0.0032 0.0286
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True V alue κ = 15 θ = 0.05 σ = 0.2 ρ = 0.5

2000 16.4451 0.0499 0.1999 0.5011

Bias 1.4451 −0.0001 −0.0001 0.0011

RMSE 4.2414 0.0001 0.0032 0.0222

5000 15.5497 0.0499 0.2000 0.4994

Bias 0.5497 −0.0001 0 −0.0006

RMSE 2.4223 0.0001 0.0032 0.0127

10000 15.3011 0.0500 0.2000 0.5000

Bias 0.3011 0 0 0

RMSE 1.8618 0 0 0.0095

3.7.3. Simulation Results

For data generation, we set the risk-free rate r = 0.03, initial variance squared Y0 =

((6400000)−1/6)2, 1000 replications are simulated. Time to maturity is 0.5 years. Initial

stock price is assumed to be S0 = $100. During data generation process for Yt, reflection

method is applied for negative values as in previous section. After obtaining ML estimators,

we compute estimated option prices in Table 3.12 after plugging the values of MLE into the

closed-form option pricing formula.

Table 3.11 and Table 3.12 show that as sample size increases, the estimated parameter

values are getting closer and closer to the true parameter values. And the estimated option

prices follow similar pattern. As sample size increases, the estimated option prices are getting

closer and closer to the true option prices. Form here, we can conclude that the new method

for the new continuous model is reliable.
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Table 3.12. Option Price Estimation of New Method for the New Continuous Model

Strike Price K = 80 90 100 110 120

True V alue 21.3339 13.0494 6.921 3.1994 1.3138

n = 50 21.4249 13.2413 7.1447 3.3688 1.4063

100 21.3688 13.1137 6.9788 3.2245 1.3128

200 21.3511 13.0776 6.9394 3.1978 1.3007

300 21.343 13.0608 6.921 3.1853 1.295

400 21.3414 13.0585 6.9198 3.1859 1.2967

600 21.3381 13.0535 6.9173 3.1877 1.3004

800 21.3373 13.0521 6.9165 3.188 1.3013

1000 21.3372 13.0533 6.9202 3.193 1.3059

2000 21.3353 13.0505 6.9188 3.1941 1.308

5000 21.3337 13.0479 6.9174 3.1947 1.3097

10000 21.3345 13.0504 6.9216 3.1992 1.3132

3.7.4. New Continuous Model and BS Implied Volatility Skew

The BS model implied volatility is obtained through the function “bscallimpvol” in

R package “derivmkts”. The new continuous model implied volatility is obtained through

the function “BFfzero” in R package “NLRoot”. In this function, the Bisection method is

applied. We apply the values of MLE from sample size n = 10000 to get the new continuous

model implied volatility.

From the graph, we can see that new continuous model implied volatility forms a

horizontal line, while the BS implied volatility forms a “forward skew”. This indicates that

the new continuous model with the new method to measure volatility works better to reduce

the volatility skew effect than BS model with constant volatility.
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Figure 3.4. New Continuous VS BS Volatility Skew

3.8. The New Method for a Special Case of the New Continuous Model

Consider a special case of the new continuous model when κ, θ = 0 and the two

processes dW ∗
1,t and dW ∗

2,t are independent ( ρ = 0 ). Under the risk-neutral measure Q, the

model is given by:

dSt = rStdt+ Yt
1
4StdW

∗
1,t

dYt = Yt
3
4σdW ∗

2,t

From the previous section, we can get the closed-from solution of option pricing for

the special case as follow:

Ct = StP1 −Ke−r(T−t)P2
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where for j = 1, 2

Pj =
1

2
+

1

π

∫ ∞
0

Re[
e−iφ logKfj(φ; t, xt, vt)

iφ
]dφ

(21) fj(φ;xt, Yt) = exp(Aj(τ, φ) +Bj(τ, φ)
√
Yt + iφxt)

and

τ = T − t

xt = log(St)

Aj(τ, φ) = riφτ − 1

2
djτ + log(

1 + edjτ

2
)

Bj(τ, φ) =
4dj
σ2

(
1− edjτ

1 + edjτ
)

such that

dj =
σ

2

√
φ2 − 2ujiφ

u1 =
1

2
, u2 = −1

2

3.8.1. Model Discretization and Parameter Estimation

Since this is a special case of the new continuous model, let κ, θ, ρ = 0 in the general

model, we will get the discretization as

log(Si)− log(Si−1) = (r − 1

2

√
Vi−1)∆ + (Yi−1)

1
4 ∆z∗1,i

Yi − Yi−1 = σ(Yi−1)
3
4

√
∆z∗2,i

where z∗1,i and z∗2,i are independent standard normal variables. Thus, the log-likelihood

function l(κ, θ, σ) = log(L) is given by

l(κ, θ, σ) =
n∑
i=1

{−0.5[log(2πσ2(Yi−1)
3
2 ∆) +

(Yi − Yi−1)2

2σ2(Yi−1)
3
2 ∆

]}

The MLE of the parameters can be performed through ”maxLik” package of R programming

software.
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Table 3.13. Parameter Estimation of New Method for the Special Case of

New Continuous Model (1000 replications)

True V alue σ = 0.15 True V alue σ = 0.15

n = 50 0.1784 800 0.1794

Bias 0.0284 Bias 0.0294

RMSE 0.038 RMSE 0.0296

100 0.1789 1000 0.1789

Bias 0.0289 Bias 0.0289

RMSE 0.0315 RMSE 0.0291

200 0.1799 2000 0.1761

Bias 0.0299 Bias 0.0261

RMSE 0.0314 RMSE 0.0269

300 0.1798 5000 0.1668

Bias 0.0298 Bias 0.0168

RMSE 0.0305 RMSE 0.0193

400 0.1796 10000 0.1609

Bias 0.0296 Bias 0.0109

RMSE 0.0303 RMSE 0.0126

600 0.1800

Bias 0.0300

RMSE 0.0307

59



Table 3.14. Option Price Estimation of New Method for the Special Case of

New Continuous Model

Strike Price X = 80 90 100 110 120

Call True V alue 21.7159 13.8356 7.9145 4.0834 1.9252

n = 50 21.7162 13.8365 7.9157 4.0846 1.9259

100 21.7161 13.8362 7.9153 4.0842 1.9257

200 21.7159 13.8357 7.9145 4.0835 1.9252

300 21.7159 13.8358 7.9146 4.0836 1.9253

400 21.716 13.8359 7.9148 4.0837 1.9254

600 21.7159 13.8356 7.9145 4.0834 1.9252

800 21.716 13.836 7.9149 4.0839 1.9254

1000 21.7161 13.8362 7.9153 4.0842 1.9257

2000 21.7166 13.8378 7.9175 4.0862 1.9269

5000 21.7181 13.8426 7.9246 4.0927 1.931

10000 21.7191 13.8455 7.9289 4.0966 1.9334

3.9. Simulation Results

During the simulation process, we set the risk-free rate r = 0.03, initial variance

squared Y0 = ((10000000)−1/6)2, and 1000 replications are simulated. Time to maturity is

0.5 years. Current stock price is assume to be S0 = $100. During data generation process for

Yt, reflection method is applied. That is when a negative value of Yt is generated, it will be

replaced by its absolute value. After obtaining ML estimators, we obtain estimated option

prices in Table 3.14 after plugging the values of MLE into the exact closed-form option

pricing formula with κ, θ, ρ = 0.

Table 3.13 shows that as sample size increases, the estimated parameter values are

getting closer and closer to the true parameter values. The estimated option prices do not

follow the same pattern. No matter what the sample size is, the estimated option prices

have a difference within two cents of the true option prices for any strike price, according to
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Table 3.14. Form here, we can conclude that the new method for the special case of the new

continuous model is reliable.
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CHAPTER 4

TWO DISCRETE VOLATILITY MODELS

Due to the implementation difficulties of the continuous stochastic volatility models,

Heston and Nandi (2000) presents an easier to implement discrete GARCH model with

a closed-form solution. Here we only focus on the one-lag GARCH model- GARCH (1,1).

After introducing the Heston and Nandi GARCH (1,1) model, we will present a New GARCH

(1,1) model and relevant theoretical results. At the end of the chapter, we will reveal the

relationship among Heston and Nandi GARCH (1,1) model, our New GARCH (1,1) model,

and (continuous) Heston model.

4.1. Heston and Nandi GARCH (1,1) Model

In this section, we will introduce the Heston and Nandi GARCH (1,1) model un-

der both physical measure and risk-neutral measure as well as their continuous time limit

processes. After that, the closed-form option pricing formula of this model will be given.

4.1.1. Model Specification and Continuous Time Limit

The spot asset price, S(t) (having incorporated the accumulated interest or dividends)

is governed by the following process over step size ∆ under physical measure P:

log(S(t)) = log(S(t−∆) + r + λh(t) +
√
h(t)z(t)

h(t) = ω + βh(t−∆) + α(Z(t−∆)− γ
√
h(t−∆))2

where r is the constant risk-free rate and z(t) is a standard normal variable over one

stepsize period. h(t) is the conditional variance of the log return R(t) (R(t) = log(S(t)) −

log(S(t − ∆)) between time t − ∆ and t. It is determined by the information set at time

t − ∆. The parameters are constrained as 0 < ω, α, β < 1, 0 < β + αγ2 < 1 . Heston and

Nandi (2000) shows that if particular values of ω, α, β, γ are assigned, the Heston and Nandi

GARCH (1,1) model converges weakly to the following continuous process under physical

meansure P :
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d log(S(t)) = (r + λv(t))dt+
√
v(t)dz(t)

dv(t) = κ(θ − v(t))dt+ σ
√
v(t)dz(t)

where z(t) is a Wiener process. And the risk-neutral form of the model is given by:

log(S(t)) = log(S(t−∆)) + r − 1

2
h(t) +

√
h(t)z∗(t)

h(t) = ω + βh(t−∆) + α(Z∗(t−∆)− γ∗
√
h(t−∆))2

where

z∗(t) = z(t) + (λ+
1

2
)
√
h(t)

γ∗ = γ + λ+
1

2

Heston and Nandi (2000) shows that if ω, α, β, γ are assigned with the same values

as assigned in physical measure P , the Heston and Nandi GARCH (1,1) model converges

weakly to the following continuous process under risk-neutral measure Q :

d log(S(t)) = (r − 1

2
v(t))dt+

√
v(t)dz∗(t)

dv(t) = [κ(θ − v(t)) + σ(λ+
1

2
)v(t)]dt+ σ

√
v(t)dz∗(t)

where z∗(t) = (λ+ 1
2
)
√
h(t) + z(t), is a Wiener process under risk-neutral measure Q .

4.1.2. Closed-form Formula

LetCt = C(St, Vt, t) be the price of European call option. The closed form solution

of option pricing for Heston and Nandi GARCH (1,1) Model is given by Heston & Nandi

(2000) as below:

Ct = e−r(T−t)E∗[max(S(T )−K, 0)]

=
1

2
St +

e−r(T−t)

π

∫ ∞
0

Re[
K−iφf ∗(iφ+ 1)

iφ
]dφ−Ke−r(T−t)(1

2
+

1

π

∫ ∞
0

Re[
K−iφf ∗(iφ)

iφ
]dφ)

In this formula, Re[ ] stands for the real part of a complex number. and f ∗(iφ) is the

conditional characteristic function of log(S(T)) under the risk-neutral measure Q. i is the

imaginary unit
√
−1 . The put option price could be calculated through put-call parity
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once the call price is obtained. Heston and Nandi (2000) shows that f(φ) - the conditional

generating function of the terminal stock price S(T) given information set at time t takes the

following log-linear form for the GARCH (1,1) model under physical measure P. This is also

the conditional moment generating function of the log(S(T)) under the physical measure P:

f(φ) = Et[S(T )φ] = S(t)φ exp(A(t;T, φ) +B(t;T, φ)h(t+ ∆))

Heston & Nandi (2000) shows the recursion formulas for the coefficients

A(t;T, φ) = A(t+ ∆;T, φ) + φr +B(t+ ∆;T, φ)ω − 1

2
log(1− 2αB(t+ ∆;T, φ)

B(t;T, φ) = φ(λ+ γ)− 1

2
γ2 + βB(t+ ∆;T, φ) +

(φ− γ)2

2[1− 2αB(t+ ∆;T, φ)]

The two coefficients are computed recursively by working backward from the terminal con-

ditions:

A(T ;T, φ) = 0

B(T ;T, φ) = 0

After obtaining f(φ), replace γ with γ∗ (which is γ + λ + 1
2

in f(φ), we will get the

expression of f ∗(φ)

4.1.3. Simulation Results

Since Heston and Nandi GARCH (1,1) model is well known and widely used, we

needn’t show simulation results here.

4.2. A New GARCH (1,1) Model

We present a New GARCH (1,1) model in this section first. Then we will show more

theoretical results and a closed-form option pricing formula later in this section.
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4.2.1. Model Description and Continuous Time Limit

Assumption 1. The spot asset price, S(t) (having incorporated the accumulated

interest or dividends) is governed by the following process over step size ∆ under physical

measure P:

(30) log(S(t)) = log(S(t−∆) + r + λh(t) +
√
h(t)z(t)

(31) h(t) = a− b2 − ch(t−∆) + (bz(t−∆)−
√
h(t−∆))2

where r is the constant risk-free rate and z(t) is a standard normal variable over one step

size period. h(t) is the conditional variance of the log return R(t), which is defined as R(t)

:= log(S(t))− log(S(t−∆)), between time t−∆ and t. It is determined by the information

set at time t−∆.

If we take expectation over (30), we will get mean log-return E(R(t)) equal to r+λh(t).

We can see that the conditional variance h(t) shows up in E(R(t)) as a return premium

(Heston &Nandi, 2000). And λh(t) is the risk premium over the time period between t−∆

and t, according to Nelson (1990) [31].

When b= 0 and c=1, we get h(t) = a from (31). Under this special condition, the

model reduces to the BS model observed at discrete time intervals. From here, we need to

constrain a > 0. The volatility process given by (31) stays stationary with finite mean and

variance if 0 < c < 1. Since z(t) is symmetric, we can always constrain b > 0. And also,

we need to assume a > b2. This is because if (bz(t − ∆) −
√
h(t−∆))2 = 0 in (31) (this

equality could be achieved for some t), we have a− b2 = h(t) + ch(t−∆) > 0. So, we have

the joint constraints a > 0, b > 0, 0 < c < 1, a > b2 for the model given in Assumption 1.

Equations (30) and (31) describe a discrete stochastic process over one stepsize period

∆, but they have a continuous-time limit. And we have the following convergence theorem.

Theorem 4.1. Under risk-neutral measure P, as the stepsize ∆ goes to zero, the variance

process v(t) := h(t)
∆

and log stock price process will converge weakly to the continuous process

given by Heston (1993) below if particular values of a, b, c are assigned:
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(32) d log(S(t)) = (r + λv(t))dt+
√
v(t)dz(t)

(33) dv(t) = κ(θ − v(t))dt+ σ
√
v(t)dz(t)

where z(t) is a Wiener process.

Proof. The details of proof are attached in Appendix(B).

Assumption 2. The risk-neutral measure Q satisfies Duan’s (1995) locally risk-

neutral valuation relationship(LRVNR), i.e., (1) measure Q is mutually absolutely continuous

with respect to measure P; (2) log( S(t)
S(t−∆)

) | Ft−∆ is normally distributed under measure Q,

where Ft, representing all market information up to time t, is a sequence of increasing σ-

algebras of the filtration {Ft}t≥0 associated with the model ; (3) EQ[ S(t)
S(t−∆)

| Ft−∆] = e∆r; (4)

V arQ[log( S(t)
S(t−∆)

) | Ft−∆] = V arP [log( S(t)
S(t−∆)

) | Ft−∆] almost surely with respect to measure

P.

According to Heston& Nandi(2000), this assumption is equivalent to their assumption

“The value of a call option with one period to expiration obeys the Black-Scholes-Rubinstein

formula.” Under this assumption, the spot price lognormally distributed over one stepsize

period ∆ and the volatility keeps unchanged over this interval. Hence, the BS formula can

be applied. Following this assumption, we get the risk-neutral process for our model in the

following proposition.

Theorem 4.2. Under risk-neutral measure Q, the risk-neutral process of (30) and (31) is

given by:

(34) log(S(t)) = log(S(t−∆)) + r − 1

2
h(t) +

√
h(t)z∗(t)

(35) h(t) = a− b2 − ch(t−∆) + (bz∗(t−∆)− [b(λ+
1

2
) + 1]

√
h(t−∆))2

With a > 0, b > 0, 0 < c < 1, a > b2. And

z∗(t) = z(t) + (λ+
1

2
)
√
h(t))
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Proof. We may follow Duan’s (1995) idea, but work with different equations. Since log( S(t)
S(t−∆)

) |

Ft−∆ is normally distributed under measure Q, it can be written as

log
S(t)

S(t−∆)
= mt + εt

where mt is the conditional mean and εt =
√
h(t)z∗(t) is a normal random variable under

measure Q . The conditinal mean of εt is zero and its conditional variance waits to be

determined. First, we show that mt = r − 1
2
h(t). Since log( S(t)

S(t−∆)
) | Ft−∆ is normally

distributed, S(t)
S(t−∆)

| Ft−∆ is log-normally distributed. And we have

EQ(
St
St−∆

|Ft−∆) = EQ(emt+εt |Ft−∆)

= emt+
h(t)

2

where h(t) = VarP (log( S(t)
S(t−∆)

)|Ft−∆) = VarQ(log( S(t)
S(t−∆)

)|Ft−∆) by the LRNVR assumption

of measure Q . Since EQ( S(t)
S(t−∆)

|Ft−∆) = er by the LRNVR, we have mt = r − 1
2
h(t). By

the above result and the first equation of our model under physical measure P , we have

log
S(t)

S(t−∆)
= r + λh(t) +

√
htzt = r − 1

2
h(t) + εt

This implies that εt = (λ+ 1
2
)h(t) +

√
h(t)z(t). And recall that εt =

√
h(t)z∗(t), then√

h(t)z∗(t) = (λ+
1

2
)h(t) +

√
h(t)z(t)

Factor out the term
√
h(t) on the right side in the above equation√

h(t)z∗(t) =
√
h(t)[(λ+

1

2
)
√
h(t) + z(t)]

Since
√
h(t) is a non-negative random variable, from the above equation, we must have

z∗(t) = (λ+
1

2
)
√
h(t) + z(t)

Substituting z∗(t) into the second equation under measure Q, we get the desired result.

After getting the risk-neutral form of the new GARCH (1,1) model, we can get the

corresponding continuous time limit process, which is given by the following theorem.
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Theorem 4.3. Under risk-neutral measure Q, as the stepsize ∆ goes to zero, the variance

process v(t) := h(t)
∆

and log stock price process will converge weakly to the continuous process

given by the following if particular values of a, b, c are assigned:

(36) d log(S(t)) = (r − 1

2
v(t))dt+

√
v(t)dz∗(t)

(37) dv(t) = [κ(θ − v(t)) + σ(λ+
1

2
)v(t)]dt+ σ

√
v(t)dz∗(t)

where z∗(t) = (λ+ 1
2
)
√
h(t) + z(t), is a Wiener process under risk-neutral measure Q .

Proof. The details of proof are attached in Appendix(C).

4.2.2. Closed-from Option Pricing Formula

Let f(φ) denote the conditional generating function of the terminal stock price S(T)

given information set at time t under physical measure

(38) f(φ) = Et[S(T )φ]

If we rewrite S(T ) = elog(S(T )), we can see that f (φ ) is also the conditional moment

generating function of log(S(T )). And we will use f ∗(φ) to stand for the conditional gen-

erating function of the terminal stock price S(T) (hence the moment generating function of

log(S(T )) ) under risk-neutral measure Q .

Proposition 1. f(φ), the conditional generating function of the terminal stock price, has

the following solution of log-linear form

f(t;T, φ) = S(t)φ exp(A(t;T, φ) +B(t;T, φ)h(t+ ∆))

Where

A(t;T, φ) = A(t+ ∆;T, φ) +φr+B(t+ ∆;T, φ)(a− b2)− 1
2

log[1− 2B(t+ ∆;T, φ)b2].

B(t;T, φ) = φλ+B(t+ ∆;T, φ)(1− c) + 1
2−4b2B(t+∆;T,φ)

[φ− 2bB(t+ ∆;T, φ)]2
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And the A(t;T, φ) and B(t;T, φ) can be calculated recursively from the terminal

conditions

A(T ;T, φ) = 0

B(T ;T, φ) = 0

Proof. We follow Heston & Nandi’s (2000) framework, but perform with our model. Let

x(t) = log(S(t)) and let f(t;T, φ) be the conditional generating function of S(T), or equiva-

lently the conditional moment generating function of x(T), i.e.,

f(t;T, φ) = Et[exp(φx(T ))].

We shall guess that the moment generating function takes the log-linear form

f(t;T, φ) = exp(φx(t) + A(t;T, φ) +B(t;T, φ)h(t+ ∆)

and solve for the coefficients A() and B().

Since x(T ) is known at time T, equation (30)and (31) require the terminal condition

A(T ;T, φ) = B(T ;T, φ) = 0.

Applying the law of iterated expectations to f(t;T, φ),we get,

f(t, T, φ) = Et[f(t+∆;T, φ)] = Et[exp(φx(t+∆)+A(t+∆;T, φ)+B(t+∆;T, φ)h(t+

2∆)

Substituting related expressions of x(t) in equations (30) and (31) shows

f(t;T, φ) = Et[exp(φ(x(t) + r + γh(t+ ∆) +
√
h(t+ ∆)z(t+ ∆)) +A(t+ ∆;T, φ) +

B(t+ ∆;T, φ)× (a− b2 − ch(t+ ∆) + (bz(t+ ∆)−
√
h(t+ ∆))2)

Rearranging terms through completing squares and some algebra shows

f(t;T, φ) =Et{exp(φ(x(t) + r) + A(t+ ∆;T, φ) + φλh(t+ ∆) +B(t+ ∆;T, φ)(a− b2)

(39)

+ b2B(t+ ∆;T, φ)[z(t+ ∆) +
1

2b2
(

φ

B(t+ ∆;T, φ)
− 2b)

√
h(t+ ∆)]2
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+B(t+ ∆;T, φ)[1− c− 1

4b2
(

φ

B(t+ ∆;T, φ)
− 2b)2h(t+ ∆)]

For a standard normal variable z, we have the following result:

E[exp(d1(z + d2)2)] = exp(−1

2
log(1− 2d1) +

d1d2
2

1− 2d1

).

Substituting this result in (39) and subsequently equating terms in both sides of (39)

shows

A(t;T, φ) = A(t+ ∆;T, φ) +φr+B(t+ ∆;T, φ)(a− b2)− 1
2
log[1− 2b2B(t+ ∆;T, φ)].

B(t;T, φ) = φλ+B(t+ ∆;T, φ)(1− c) + 1
2−4b2B(t+∆;T,φ)

[φ− 2bB(t+ ∆;T, φ)]2

Some remark about Proposition 1. If we compare the two forms of the model under

physical measure and risk-neutral measure, we can see that besides the difference between

z(t) and z∗(t), another difference lies in the coefficient of
√
h(t−∆) term. For physical

measure form, the coefficient is one, but for risk-neutral form, the coefficient is b(λ+ 1
2
) + 1.

If we keep this different term and perform the reasoning in Proposition 1, we will get the

expression of f ∗(t;T, φ) as follows:

f ∗(t;T, φ) = S(t)φexp(A∗(t;T, φ) +B∗(t;T, φ)h(t+ ∆))

Where

A∗(t;T, φ) = A∗(t+ ∆;T, φ) + φr +B∗(t+ ∆;T, φ)(a− b2)− 1

2
log[1− 2B∗(t+ ∆;T, φ)b2].

B∗(t;T, φ) = φλ+B∗(t+ ∆;T, φ)(d2 − c) +
1

2− 4B∗(t+ ∆;T, φ)b2
[φ− 2bdB∗(t+ ∆;T, φ)]2

d = b(λ+
1

2
) + 1

And the A∗(t;T, φ) and B∗(t;T, φ) can be calculated recursively from the terminal conditions

A∗(T ;T, φ) = 0
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B∗(T ;T, φ) = 0

Proposition 2 (Heston and Nandi (2000)). If the characteristic function of the log spot

price is f(iφ), then under physical measure we have

Et[Max(S(T )−K, 0)] =f(1)(
1

2
+

1

π

∫ ∞
0

Re[
K−iφf(iφ+ 1)

iφf(1)
]dφ)

−K(
1

2
+

1

π

∫ ∞
0

Re[
K−iϕf(iφ)

iφ
]dφ),

Proof. The details of proof are attached in Appendix(D).

Heston and Nandi (2000) presents this new inversion formula, different from that of

Heston (1993) and other authors. On the right-hand side of the expression above, we only

need to calculate one integral instead of two. An option value is the discounted expected

value of the payoff, Max(S(t)−K, 0) calculated under risk-neutral measure Q, i.e., applying

the characteristic function f ∗(iφ). By Heston and Nandi (2000), a European option value is

given by the following corollary.

Corollary. At time t a European call option with strike price K that expires at time T is

worth

C =e−r(T−t)E∗t [Max(S(T )−K, 0)] =
1

2
S(t)

+
e−r(T−t)

π

∫ ∞
0

Re[
K−iφf ∗(iφ+ 1)

iφ
]dφ)

−Ke−r(T−t)(1

2
+

1

π

∫ ∞
0

Re[
K−iφf ∗(iφ)

iφ
]dφ).

where E∗t [ ] denotes the expectation under the risk-neutral measure Q. This finishes the

option pricing formula.
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Proof. Note that if we perform the same procedures as in Proposition 2 under risk neutral

measure, we will get

C = e−r(T−t)E∗t [Max(S(T )−K, 0)]

= e−r(T−t)f ∗(1)(
1

2
+

1

π

∫ ∞
0

Re[
K−iφf ∗(iφ)

iφf ∗(1)
]dφ)

−Ke−r(T−t)(1

2
+

1

π

∫ ∞
0

Re[
K−iφf ∗(iφ)

iφ
]dφ)

=
1

2
e−r(T−t)f ∗(1) +

e−r(T−t)

π

∫ ∞
0

Re[
K−iφf ∗(iφ)

iφ
]dφ

−Ke−r(T−t)(1

2
+

1

π

∫ ∞
0

Re[
K−iφf ∗(iφ)

iφ
]dφ)(40)

And under the risk-neutral distribution, follow the argument of Heston and Nandi (2000)

(in the proof of Proposition 3), we have

e−r(T−t)f ∗(1) = e−r(T−t)E∗[exp(x(T ))|S(t), h(t)] = e−r(T−t)E∗[S(T )|S(t), h(t)] = S(t)

this together with (40) demonstrates the corollary.

4.2.3. Relation Between New GARCH (1,1) Model and Heston and Nandi GARCH (1,1)

Model

Our model has a close relation with Heston and Nandi GARCH (1,1). The first rela-

tion between them is that both converge to the same continuous-time limit process (Heston

model) under both physical measure and risk-neutral measure. Before revealing the second

relation, let

a = ω + α, b = αγ, c = 1− β − αγ2

we will get

ht = ω + βht−∆ + α(zt−∆ − γ
√
ht−∆)2 + α(1− z2

t−∆)(1− αγ2)
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We can see that the difference between the above equation and the second diffusion equation

of Heston and Nandi GARCH (1,1) model under physical measure is the last term α(1 −

z2
t−∆)(1 − αγ2). And the expectation of this term is zero. This means equation (3) is

equal to the second equation of Heston and Nandi GARCH (1,1) model plus a second order

term, which is asymptotically zero. This is the second relation between these two discrete

models. Moreover, the second order term serves as a second-order correction to Heston

and Nandi GARCH (1,1) model. Due to the second order correction, we can expect that

the new GARCH (1,1) model should have better performance in option price estimation

when the sample size is relatively small if the data set is generated from the new GARCH

(1,1) model. When the sample size is large enough, we could expect that the estimated

option prices obtained from those three models (including the continuous Heston model)

should agree, since they converge to the same continuous-time process. The simulation

results comparison among the new GARCH (1,1) model, Heston and Nandi GARCH (1,1)

model, and (continuous) Heston model will be presented in next chapter, due to their special

relationship.
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CHAPTER 5

MORE SIMULATION RESULTS COMPARISON

In this chapter, we will present more simulation results and graphs based on some

previous simulation results. First, we will show simulation comparison among new GARCH

(1,1) model, Heston and Nandi GARCH (1,1) model, and Heston model. Secondly, we will

show the graph of comparison between BS model and other stochastic volatility models.

Before we reveal these two comparison results, we show method of parameter estimation for

new GARCH (1,1) model with transformed trading volume serving as volatilities. And the

parameter estimation of Heston and Nandi GARCH (1,1) model will be performed with an

existing R programming software package.

5.1. New GARCH (1,1) Parameter Estimation Method

Since the volatilities are directly observable with our new method, we are able to

estimate the parameters in each equation separately. And the second equation of the model

doesn’t depend on stock price, we can estimate the parameters in this equation first with

MLE method.

5.1.1. Parameter Estimation for the Second Equation

Recall that the second equation of our new GARCH (1,1) model:

h(t) = a− b2 − ch(t−∆) + (bz(t−∆)−
√
h(t−∆))2

Let U = |X| =
∣∣∣bz(t−∆)−

√
h(t−∆)

∣∣∣ =
√
h(t)− a+ b2 + ch(t−∆). Since bz(t −∆) −√

h(t−∆) ∼ N(−
√
h(t−∆), b2), U = |X| follows folded normal distribution. Then the

pdf of U is given by

fU(u) =
1√

2πb2
[exp(−

(u−
√
ht−∆)2

2b2
) + exp(−

(u+
√
ht−∆)2

2b2
)]

Let yt = h(t)− a+ b2 + ch(t−∆). Substitute u in the above with
√
yt and apply chain rule,

we get the conditional density of h(t)
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f(ht |ht−∆) =
1

2b
√

2πyt
[exp(−

(
√
yt −

√
ht−∆)2

2b2
) + exp(−

(
√
yt +

√
ht−∆)2

2b2
)]

=
1

2b
√

2πyt
exp(−

(
√
yt −

√
ht−∆)2

2b2
)[1 + exp(−

2
√
ytht−∆

b2
)]

Then we get the log-likelihood

l(θ) =
∑

[−1

2
log(b2yt)] +

∑
[−

(
√
yt −

√
ht−∆)2

2b2
] +
∑

log[1 + exp(−
2
√
ytht−∆

b2
)],

with constraints a > 0, b > 0, 0 < c < 1, a > b2.

During parameter estimation for the second equation, h(t)−a+b2+ch(t−∆) becomes

negative very likely during iteration (recall
∣∣∣bz(t−∆)−

√
h(t−∆)

∣∣∣ =
√
h(t)− a+ b2 + ch(t−∆) ≥

0 ). In order to solve the estimation issue, we multiply a large enough positive constant w

to both sides of the second equation as below

wh(t) = wa− (
√
wb)2 − cwh(t−∆) + (

√
wbz(t−∆)− d

√
wh(t−∆))2

Let h(t) = wh(t), a = wa, b =
√
wb, c = c, then the above equation becomes

h(t) = a− (b)2 − c h(t−∆) + (bz(t−∆)−
√
h(t−∆))2

The criterion for choosing w is wE(h(t)) ≥ 0.1, where E(h(t))-the expectation of h(t) can

be approximated with the sample mean of h(t).

5.1.2. Parameter Estimation for the First Equation

Let â, b̂, ĉ be the maximum likelihood estimator for a, b, c obtained previously. In

order to estimate λ more accurately in the first equation, let’s create a new time series for

volatility with â, b̂, ĉ recursively and call it h∗(t) as follows:

h∗(t) = â− b̂2 − ĉh∗(t−∆) + (b̂z(t−∆)−
√
h∗(t−∆))2

z(t) =
R(t)− r − λ ∗ h∗(t)√

h∗(t)
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Where

R(t) = log(
S(t)

S(t−∆)
)

And the inital value of h∗(t) is set to be equal to the initial value of h(t).

Obviously, the time series {h∗(t)} contains λ in every term. Now the first equation

of our model becomes

R(t) = r + λh∗(t) +
√
h∗(t)z(t)

where R(t) is the log-return, defined the same as above. Then R(t)−r−λh∗(t) =
√
h∗(t)z(t).

Let U =
√
h∗(t)z(t). Since,

√
h∗(t)z(t) ∼ N(0, h∗(t)), we have the probability density of U :

fU(u) =
1√

2πh∗(t)
e−

u2

2h∗(t)

Then substitute u above with R(t) − r − λh∗(t) given h∗(t − ∆), we have the conditional

probability density of h∗(t):

f(h∗(t) |h∗(t−∆)) =
1√

2πh∗(t)
e−

(R(t)−r−λh∗(t))2
2h∗(t)

Let n = T
∆

, and we get a sample time series of {h∗(t)} as {h∗(∆), h∗(2∆), h∗(3∆), ..., h∗(i∆), ..., h∗(n∆)}

We get the likelihood function L(λ):

L(λ) =
n∏
i=1

f(h∗(t) |h∗(t−∆)) =
n∏
i=1

1√
2πh∗(i∆)

e−
(R(t)−r−λh∗(t))2

2h∗(i∆)

Then the log-likelihood function l(λ) is given as below

l(λ) =
n∑
i=1

1√
2πh∗(i∆)

−
n∑
i=1

(R(t)− r − λh∗(t))2

2h∗(i∆)

The MLE of λ can be obtained numerically through the “maxLik” package in R programming

language.
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5.2. Heston and Nandi GARCH (1,1) Model Parameter Estimation

The parameters are estimated through MLE method. The likelihood function is given

by

L =
n∏
t=1

1√
2πh(t)

e−
(R(t)−r−λh(t))2

2h(t)

where h(t) is given by the second equation of Heston and Nandi GARCH (1,1) model recur-

sively. That is

ht = ω + βht−∆ + α(Zt−∆ − γ
√
ht−∆)2

Thus, the log-likelihood function is

l = log(L) =
T∑
t=1

−0.5{log(2πh(t)) +
(R(t)− r − λh(t))2

h(t)
}

The MLE of the parameters in Heston and Nandi GARCH (1,1) model will be per-

formed numerically through “hngarhFit” function in “fOptions” package in R programming

software.

Next, we will show simulation comparison among new GARCH (1,1) model, Heston

and Nandi GARCH (1,1) model, and (continuous) Heston model due to the weak convergence

relationship among them. First, We will generate data from our new GARCH (1,1) model

with 1000 paths for different sample sizes, and then fit the data set with these three models.

Then, we will compare the option price estimation results of these three models.

5.3. Simulation Results Comparison

For data generation from new GARCH (1,1) model, we set step-size ∆ = 1(day), and

set the true values of the parameters as λ = −2, a = 1.1E−04, b = 4E−04, c = 0.598, initial

stock price S0 = 100, daily risk free rate r = 0.03
252

(assume there are 252 trading days in a

year), initial variance from transformed trading volume h0 = 1
252

(15000000)−
1
5 , and burn

first 100 pieces of data generated. With this set up, we do Monte Carlo simulation with 1000

paths. And in table (5.1), we show the simulation results. For the MLE of the parameters

in the second equation, we choose w = 4000 (multiply 4000 to both size of the equation to

avoid iteration error).
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From Table 5.1, we can see that as sample size increases, the estimation of parameters

are becoming more and more close to the true values. From Table 5.4 and Table 5.5, we

can see that the option price estimation for the new GARCH (1,1) model is very accurate.

And the all the pricing errors are less than one cent. Hence, the new GARCH (1,1) model

is reliable.

Table 5.4 shows that the new GARCH (1,1) model has the most accurate option

price estimation among these three models. The new GARCH (1,1) slightly outperforms

the Heston model with our new method. And both the new GARCH (1,1) model and

Heston model with the new method obviously outperform Heston and Nandi GARCH (1,1)

model. This is mainly because with new method of measuring volatilities, these two models

incorporate more information than Heston and Nandi GARCH (1,1) during the parameter

estimation process. The reason for our new GARCH (1,1) model outperforms Heston model

is because our new GARCH (1,1) model doesn’t have the discretization error as Heston

model has.

Besides option pricing advantage of the new GARCH (1,1) model over Heston and

Nandi GARCH (1,1) model, another advantage of the new GARCH (1,1) model over Heston

and Nandi GARCH (1,1) model lies in parameter estimation. The new GARCH (1,1) model

produces less negative values during the iterations of parameter estimation process. And

it also converges much quicker than Heston and Nandi GARCH (1,1) model. In practice,

the new GARCH (1,1) model converges very fast with a very broad range of initial values

of parameters. This is mainly because with the new method of volatility proxy, we can

estimate the parameters in these two diffusion equations of the new GARCH (1,1) model

separately. However, parameters in Heston and Nandi GARCH (1,1) model cannot be esti-

mated separately equation by equation without observable volatilities. Very rarely Heston

and Nandi GARCH (1,1) model converges at the first time without updating the parameter

values during iteration process of parameter estimation.
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Table 5.1. Parameter Estimation of New Method for New GARCH (1,1)

Model (1000 replications)

True V alue λ = −2 a = 1.1E − 04 b = 4E − 04 c = 0.598

n = 50 −2.0967 1.19E − 04 3.90E − 04 0.6466

Bias −0.0967 8.90E − 06 −9.60E − 06 0.0486

RMSE 10.4992 2.63E − 05 4.18E − 05 0.1414

100 −1.8911 1.13E − 04 3.95E − 04 0.6164

Bias 0.1089 3.40E − 06 −5.50E − 06 0.0184

RMSE 7.3215 1.70E − 05 2.89E − 05 0.0935

200 −1.8384 1.12E − 04 3.98E − 04 0.6096

Bias 0.1616 2.10E − 06 −1.90E − 06 0.0116

RMSE 5.3119 1.25E − 05 1.99E − 05 0.0674

300 −1.7794 1.11E − 04 3.98E − 04 0.6052

Bias 0.2206 1.30E − 06 −2.40E − 06 0.0072

RMSE 4.3948 1.05E − 05 1.64E − 05 0.0574

400 −1.7748 1.11E − 04 3.98E − 04 0.6037

Bias 0.2252 1.00E − 06 −2.00E − 06 0.0057

RMSE 3.6688 9.17E − 06 1.46E − 05 0.0509

600 −1.6372 1.11E − 04 3.99E − 04 0.6029

Bias 0.3628 9.00E − 07 −1.10E − 06 0.0049

RMSE 3.1296 7.19E − 06 1.14E − 05 0.0383

800 −1.5646 1.11E − 04 4.00E − 04 0.6013

Bias 0.4354 6.00E − 07 −5.00E − 07 0.0033

RMSE 2.7792 5.98E − 06 9.56E − 06 0.0318

1000 −1.6187 1.11E − 04 4.00E − 04 0.6008

Bias 0.3813 5.00E − 07 −3.00E − 07 0.0028

RMSE 2.5521 5.18E − 06 8.76E − 06 0.0286
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True V alue λ = −2 a = 1.1E − 04 b = 4E − 04, c = 0.598

2000 −1.6346 1.10E − 04 4.00E − 04 0.599

Bias 0.3654 2.00E − 07 −2.00E − 07 0.0010

RMSE 1.7525 3.71E − 06 6.70E − 06 0.0190

5000 −1.5792 1.10E − 04 4.00E − 04 0.598

Bias 0.4208 0 0 0

RMSE 1.1458 2.36E − 06 4.22E − 06 0.0126

10000 −1.601 1.10E − 04 4.00E − 04 0.5986

Bias 0.3990 1.00E − 07 −2.00E − 07 6.00E − 04

RMSE 0.8546 1.70E − 06 2.80E − 06 0.0095

Table 5.2. Parameter Estimation for HN GARCH (1,1) Model (1000 replications)

λ ω α β γ

n = 50 −2.5865 9.06E − 05 1.38E − 05 0.3097 46.0814

SE 11.4633 7.33E − 05 2.65E − 05 0.3826 20.4663

100 −2.3486 1.06E − 04 9.02E − 06 0.2782 55.4369

SE 7.7033 6.97E − 05 1.72E − 05 0.3573 21.7375

200 −2.2825 1.13E − 04 5.52E − 06 0.2965 56.1677

SE 5.4423 6.54E − 05 9.81E − 06 0.3415 19.5587

300 −2.2389 1.13E − 04 4.50E − 06 0.3017 69.8806

SE 4.4809 6.07E − 05 7.75E − 06 0.3226 22.1106

400 −2.205 1.14E − 04 3.79E − 06 0.2999 77.0359

SE 3.7378 5.83E − 05 6.24E − 06 0.3131 25.4247

600 −2.0613 1.12E − 04 2.96E − 06 0.3157 94.7049

SE 3.1623 5.54E − 05 4.83E − 06 0.3004 25.8801

800 −2.007 1.17E − 04 2.55E − 06 0.2849 120.4533

SE 2.7670 5.59E − 05 4.12E − 06 0.2941 29.1941

1000 −2.056 1.20E − 04 2.33E − 06 0.2686 120.4503

SE 2.5361 5.38E − 05 3.72E − 06 0.2814 28.2075

2000 −2.0755 1.25E − 04 1.64E − 06 0.229 180.7783

SE 1.7140 4.76E − 05 2.53E − 06 0.2467 35.1456

5000 −2.0131 1.03E − 04 1.15E − 06 0.3138 278.9822

SE 1.0657 3.60E − 05 1.57E − 06 0.2498 39.4652

10000 −2.0407 1.21E − 04 8.87E − 07 0.1739 413.7306

SE 0.7495 3.36E − 05 1.07E − 06 0.1802 46.2420
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Table 5.3. Parameter Estimation for Heston Model (1000 replications)

κ θ σ ρ

n = 50 160.13 0.0464 0.1965 0.0078

SE 32.6466 0.0006 0.0207 0.1444

100 155.52 0.0464 0.1992 −0.0014

SE 24.6446 0.0005 0.0145 0.1016

200 153.12 0.0463 0.2006 0.0005

SE 19.2569 0.0003 0.0106 0.0695

300 151.85 0.0464 0.201 0.0006

SE 14.1167 0.0003 0.0085 0.0585

400 152.03 0.0463 0.201 0.0022

SE 12.4054 0.0002 0.0072 0.0511

600 151.91 0.0464 0.2015 −0.0001

SE 10.3452 0.0002 0.0059 0.0415

800 151.36 0.0464 0.2014 0.0006

SE 8.2 0.0002 0.005 0.0357

1000 151.54 0.0464 0.2015 −0.0002

SE 9.4976 0.0002 0.0048 0.0320

2000 150.54 0.0464 0.2015 0

SE 9.0323 0.0001 0.0037 0.0216

5000 150.6 0.0464 0.2016 −0.0002

SE 6.8264 0.0001 0.0025 0.0147

10000 150.76 0.0464 0.2016 0.0005

SE 4.8615 0.0001 0.0017 0.0101
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Table 5.4. New GARCH (1,1) VS HN GARCH (1,1) VS Heston

S = 100 K = 80 90 100 110 120

True Price 22.2719 13.7742 7.2959 3.2774 1.2572

n = 50 New GARCH 22.2711 13.7733 7.2962 3.2792 1.2594

HN 22.1824 13.5015 6.8652 2.8629 0.9841

Heston 22.2645 13.767 7.3029 3.2995 1.2818

100 New GARCH 22.2718 13.7745 7.2971 3.2792 1.2589

HN 22.2042 13.5755 6.9893 2.9852 1.0644

Heston 22.2646 13.767 7.3026 3.2991 1.2815

200 New GARCH 22.2717 13.7739 7.2958 3.2777 1.2577

HN 22.2274 13.651 7.114 3.1095 1.1488

Heston 22.263 13.7627 7.2962 3.293 1.2774

300 New GARCH 22.2718 13.7743 7.2962 3.278 1.2578

HN 22.2312 13.662 7.1306 3.1249 1.1586

Heston 22.2645 13.7669 7.3024 3.299 1.2814

400 New GARCH 22.2717 13.7739 7.2956 3.2773 1.2573

HN 22.23 13.6594 7.1275 3.1227 1.1575

Heston 22.263 13.7626 7.2962 3.293 1.2774

600 New GARCH 22.2722 13.7751 7.2973 3.2789 1.2584

HN 22.2362 13.6776 7.1557 3.1494 1.1752

Heston 22.2645 13.7669 7.3024 3.299 1.2814
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S = 100 K = 80 90 100 110 120

800 New GARCH 22.2722 13.7752 7.2974 3.279 1.2584

HN 22.2412 13.6917 7.1765 3.1686 1.1874

Heston 22.2645 13.7668 7.3024 3.2989 1.2814

1000 New GARCH 22.2721 13.7749 7.297 3.2785 1.2581

HN 22.2396 13.6881 7.1724 3.1659 1.1863

Heston 22.2645 13.7669 7.3024 3.2989 1.2814

2000 New GARCH 22.2723 13.7754 7.2977 3.2792 1.2585

HN 22.242 13.695 7.1826 3.1752 1.1923

Heston 22.2645 13.7668 7.3024 3.2989 1.2814

5000 New GARCH 22.2723 13.7753 7.2975 3.2789 1.2583

HN 22.2381 13.6814 7.1586 3.1495 1.1734

Heston 22.2645 13.7668 7.3024 3.2989 1.2814

10000 New GARCH 22.2722 13.7751 7.2972 3.2786 1.2581

HN 22.2579 13.7376 7.2438 3.2305 1.2274

Heston 22.2645 13.7668 7.3024 3.2989 1.2814

5.4. BS VS Stochastic Volatility

In this section, we will compare BS model implied volatility plot with plots of implied

volatility inverted from those three stochastic volatility models with data generated from

different models. Firstly, we make this comparison by generating data from Generalized Stein

and Stein model with our new method. Secondly, we make the comparison by generating

data from Heston model with our new method. The following two subsections will show

more about the implied volatility comparison.

5.4.1. BS VS Stochastic Volatility with Generalized Stein and Stein Model Generated Data

For data generation from Stein and Stein model with our new method, we set κ =

10, θ = 0.2, σ = 0.2, ρ = 0.7, the risk free rate r = 0.04, initial standard deviation from
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transformed trading volume
√
V0 =

√
(10000000)−1/5, and 1000 replications are simulated.

Time to maturity is 0.5 years. Current stock price is assumed to be S0 = $100. During data

generation process for Vt, negative values may be produced. We apply reflection method

here. That is when a negative value of Vt is generated, it will be replaced by its absolute

value.

With the generated data set of sample size 10000, we fit the data set with general-

ized Stein and Stein model, Heston model, and new continuous model to get MLE of the

parameters. Then with the MLE of the parameters, we can get the implied volatilities for

those three stochastic volatility models based on the true option price calculated with the

closed-form formula of Generalized Stein and Stein model. Figure 5.1 shows the comparison

of the implied volatility vs S/K ( ratio between stock price and strike price) for BS model

and other three stochastic volatility models.

From Figure 5.1, we can see that all the stochastic volatility models with our new

method have less steep implied volatility plot. Recall that the closer the implied volatility

plot to a horizontal line, the better the model is from the perspective of reducing implied

volatility skew effect. With this standard, we can see that all these three stochastic volatility

models with the new method outperform BS model.

5.4.2. BS VS Stochastic Volatility with Heston Generated Data

For data generation from Heston model, we set κ = 10, θ = 0.05, σ = 0.2, ρ =

−0.6, the risk free rate r = 0.02, initial variance from transformed trading volume V0 =

(3200000)−1/5, and 1000 replications are simulated. Time to maturity is 0.5 years. Initial

stock price is assumed to be S0 = $50. During data generation process for Vt, reflection

method is applied for negative values as in previous section. That is when a negative value

of Vt is generated, it will be replaced by its absolute value.

With the generated data set of sample size 10000, we fit the data set with generalized

Stein and Stein model, Heston model, and new continuous model to get MLE of the param-

eters. Then with the MLE of the parameters, we get the implied volatilities for those three

stochastic volatility models based on the true option price calculated with the closed-form
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Figure 5.1. BS VS Stein VS Heston VS New Continuous

formula of Heston model. Figure 5.1 shows the comparison of the implied volatility vs S/K

(ratio between stock price and strike price) for BS model and other three stochastic volatility

models.

From Figure 5.2, we can see that all the stochastic volatility models with our new

method have less steep implied volatility plot. Recall that the closer the implied volatility

plot to a horizontal line, the better the model is from the perspective of reducing implied

volatility skew effect. With this standard, we can see that all these three stochastic volatility

models with the new method outperform BS model.

From the above two comparisons shown in Figure 5.1 and Figure 5.2, we can claim that

those three stochastic volatility models outperform BS model in terms of implied volatility
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skew with our new method of measuring volatility.

Figure 5.2. BS VS Heston VS Stein VS New Continuous
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CHAPTER 6

REAL DATA APPLICATION AND ANALYSIS

In this chapter, we apply the volatility proxy: annualized variance Vt = m ∗ (TVt)
p,

where m = 1 and p is identified as follows:

p =


−1

6
if 108 ≤ ATV

−1
5

if 107 ≤ ATV < 108

−1
4

if 106 ≤ ATV < 107

where ATV is defined as the average trading volume of the stock in the chosen period of

time. Here we use daily trading volume data. So ATV refers to average daily trading volume

of the chosen trading volume sample data set. The above identification is based on the real

market data of 2006. For other years, there may be slight adjustment. For 2006 data, we do

not consider stocks with trading volume less than 106 since trading volume less than 106 is

not liquid enough. For Daily variance ht = m∗ (TVt)
p, m = 252, and p is identified as above.

For the rest of the chapter, we will see how this new method of volatility proxy is applied in

read data. And the in sample performance and out of sample performance are measured by

root mean prediction error (RMPE).

We choose stock price and trading volume information of Microsoft, Costco, Exxon

Mobil, and JP Morgan to analyze. We first estimate parameters with MLE during the time

period from January 1st to March 31st, 2006. For in sample performance, we choose the

time period from March 31 to May 20. For out of sample performance, we choose the time

period from April 7th to May 20th. And all the option prices shown in this chapter are about

European call options. The corresponding European put option prices can be computed from

put-call parity.

6.1. Microsoft Data Analysis and Option Price Forecasting

The average trading volume for Microsoft from January 1st to March 31st is between

107 and 108, so p = −1
5
. For Heston and Nandi GARCH (1,1) model and the New GARCH
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(1,1) model, we take stepsize as one day. This indicates m = 252. For all the continuous

models, we take m = 1. We take the LIBOR r = 0.051 as annual risk-free rate. The rest

three companies will adopt the same stepsize, m value, and risk-free rate as above mentioned.

The ex-dividend date is May 15 with dividend $0.09, which should be subtracted from stock

price during option price computation.

6.1.1. MSFT Parameter Estimation

With the stock price information and transformed trading volume serving as volatility

proxy, we perform MLE method to get parameter estimates in each model. The parameter

estimation results are shown in Table 6.1.

6.1.2. MSFT In Sample Performance Comparison

After getting ML estimators for each model, we show forecasted option prices of

different strike prices in Table 6.2, as well as observed market prices. Among those models,

BS and Heston and Nandi GARCH (1,1) model serve as baselines. Forecasted option prices

from all models with our new method have smaller RMPE than option prices calculated

from two baseline models. The new method for the special case of generalized Stein and

Stein model has the smallest RMPE and thus the best performance.

6.1.3. MSFT Out of Sample Performance Comparison

For out of sample performance, we show forecasted option prices of various strike

prices in Table 6.3, as well as observed market prices. Forecasted option prices calculated

from all non-baseline models with our new method have smaller RMPE compared with

option prices calculated from two baseline models. Similar to the in sample performance,

the new method for the special case of Stein and Stein model has the smallest RMPE and

thus the best performance.

6.2. Costco Data Analysis and Option Price Forecasting

The average trading volume for Costco from January 1st to March 31st is between

106 and 107, so p = −1
4
. The ex-dividend date is May 8 with dividend $0.08, which should

be subtracted from stock price during option price computation.
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Table 6.1. MSFT Parameter Estimation

BS σ = 0.1566

SE 0.0142

Hull-White κ = 109.1 θ = 0.1663 σ = 0.0566

SE 4.201 0.0001 0.0051

Stein− Stein κ = 188.5 θ = 0.1670 σ = 0.0666 ρ = −0.1535

SE 5.949 0.0007 0.006

Heston κ = 229.4 θ = 0.0279 σ = 0.1405 ρ = −0.1503

SE 5.974 0.0002 0.0128

New Continuous κ = 259.5 θ = 0.0280 σ = 0.251 ρ = −0.1540

SE 4.195 0.0003 0.0227

Special Stein σ = 0.0749

SE 0.0068

Special Heston σ = 0.1496

SE 0.0135

Special New Continuous σ = 0.2999

SE 0.02715

Heston−Nandi λ = 0.2258 ω = 9.35E − 05 α = 9.149E − 30 β = 0.03834 γ = 4.975

SE 5.9316 0 0 0 0

New Garch(1, 1) λ = 0.1951 a = 5.636E − 05 b = 2.563E − 04 c = 0.5084

SE 16.7772 0 0 0.11

6.2.1. COST Parameter Estimation

With the stock price information and transformed trading volume serving as volatility

proxy, we perform MLE method to get parameter estimates in each model. The parameter

estimation results are shown in Table 6.4.
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Table 6.2. MSFT In Sample Performance

S = 27.21 K = 22.5 25 27.5 30 32.5 RMPE

Observed Market price(call) 4.85 2.45 0.6 0.1 0.05

BS 4.7744 2.3318 0.5334 0.035 0.0006 0.0785

Hull −White(New) 4.7746 2.3438 0.5711 0.0462 0.0012 0.0679

Stein− Stein(New) 4.7759 2.3456 0.5731 0.0472 0.0023 0.0666

Heston(New) 4.7746 2.3452 0.5745 0.0471 0.0012 0.0671

New Continuous(New) 4.7746 2.3454 0.5748 0.0471 0.0012 0.0670

Special Stein− Stein(New) 4.7767 2.347 0.5708 0.0491 0.0033 0.0657

Special Heston(New) 4.7748 2.3449 0.5682 0.0475 0.0015 0.0676

Special New Continuous(New) 4.7747 2.3419 0.559 0.0447 0.0014 0.0699

Heston−Nandi 4.7744 2.3318 0.5332 0.0349 0.0006 0.0785

New GARCH(1, 1) 4.7747 2.3476 0.5743 0.0449 0.001 0.0667

Table 6.3. MSFT Out of Sample Performance

S = 27.25 K = 22.5 25 27.5 30 32.5 RMPE

Observed Market price(call) 4.85 2.45 0.55 0.1 0.05

BS 4.7917 2.3334 0.4923 0.0238 0.0002 0.07564

Hull −White(New) 4.7918 2.3474 0.5446 0.0371 0.0007 0.06377

Stein− Stein(New) 4.7944 2.3445 0.5284 0.0333 0.0027 0.06538

Heston(New) 4.7918 2.3437 0.531 0.0331 0.0005 0.06629

New Continuous(New) 4.7918 2.3441 0.5317 0.0332 0.0005 0.06611

Stein− Stein Special (New) 4.7946 2.3502 0.5431 0.0393 0.0032 0.06157

Heston Special (New) 4.7919 2.3483 0.5423 0.0381 0.0009 0.06328

New Continuous Special(New) 4.7919 2.3463 0.5353 0.0362 0.0008 0.06455

Heston−Nandi 4.7917 2.3334 0.4921 0.0237 0.0002 0.07569

New GARCH(1, 1) 4.7918 2.346 0.5312 0.0313 0.0004 0.06593
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Table 6.4. COST Parameter Estimation

BS σ = 0.1534

SE 0.0139

Hull −White κ = 100.5 θ = 0.1612 σ = 0.0840

SE 4.227 0.0001 0.0076

Stein− Stein κ = 189.4 θ = 0.1588 σ = 0.0944 ρ = −0.1477

SE 8.437 0.001 0.0086

Heston κ = 126.2 θ = 0.0253 σ = 0.1813 ρ = −0.1468

SE 5.933 0.0005 0.0164

New Continuous κ = 475 θ = 0.0253 σ = 0.4058 ρ = −0.1390

SE 4.198 0.0003 0.0368

Special Stein σ = 0.1053

SE 0.0095

Special Heston σ = 0.2651

SE 0.024

Special New Continuous σ = 0.4221

SE 0.0382

Heston−Nandi λ = 12.15 ω = 1.229E − 07 α = 7.875E − 18 β = 0.9987 γ = 5.086

SE 2.966 0 0 0 0

New Garch(1, 1) λ = 11.15 a = 4.945E − 05 b = 3.628E − 04 c = 0.4930

SE 9.686 0 0 0.1094

6.2.2. COST In Sample Performance Comparison

After getting ML estimators for each model, we show forecasted option prices of

different strike prices in Table 6.5, as well as the observed market prices . The forecasted

option prices from all models with our new method have smaller RMPE than option prices

calculated from two baseline models. The special case of Stein and Stein model has the

smallest RMPE and thus the best performance.
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Table 6.5. COST In Sample Performance

S = 54.16 50 52.5 55 57.5 60 RMPE

Observed Market price(call) 4.6 2.55 1 0.3 0.1

BS 4.5057 2.4061 0.9693 0.2781 0.0555 0.0812

Hull −White(New) 4.5265 2.458 1.0332 0.3207 0.0721 0.0569

Stein− Stein(New) 4.5223 2.4434 1.0088 0.3101 0.0656 0.0613

Heston(New) 4.5213 2.4439 1.0143 0.3068 0.0662 0.0614

New Continuous(New) 4.52 2.4414 1.012 0.3057 0.0658 0.0625

Special Stein− Stein (New) 4.5398 2.4683 1.0344 0.3375 0.0819 0.0514

Special Heston(New) 4.5334 2.4487 1.0146 0.3192 0.0805 0.0560

Special New Continuous (New) 4.5191 2.4218 0.9837 0.2951 0.068 0.0697

Heston−Nandi 4.508 2.4144 0.9768 0.2829 0.0573 0.0768

New GARCH(1, 1) 4.5308 2.458 1.0213 0.3049 0.0629 0.0550

6.2.3. COST Out of Sample Performance Comparison

For out of sample performance, we show forecasted option prices for various strike

prices in Table 6.6, as well as observed market prices. And we can see that only Heston

model, generalized Stein and Stein model, new continuous model, and new GARCH (1,1)

model with our new method outperform the two baseline models. The remaining models

with our new method, including special cases of Hull and White, Heston, Stein and Stein,

and new continuous model, underperform the two baseline models. The main reason for

this under performance is because the drift terms of those non-special models are not close

enough to zero. And the new GARCH (1,1) model has the best performance in out of sample

option price forecasting.

6.3. Exxon Mobil Data Analysis and Option Price Forecasting

The average trading volume for Exxon Mobil from January 1st to March 31st is

between 107 and 108, so p = −1
5
. The ex-dividend date is May 10 with dividend $0.32, which

should be subtracted from stock price during option price computation.
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Table 6.6. COST Out of Sample Performance

S = 55.7 50 52.5 55 57.5 60 RMPE

Observed Market price(call) 6 3.65 1.8 0.6 0.15

BS 5.9276 3.5775 1.6768 0.5571 0.1242 0.0751

Hull −White(New) 5.9262 3.5704 1.6621 0.5433 0.1177 0.0837

Stein− Stein(New) 5.9253 3.6049 1.7081 0.5885 0.1486 0.0569

Heston(New) 5.9319 3.5969 1.7137 0.5903 0.1397 0.055

New Continuous(New) 5.9317 3.5963 1.7134 0.5906 0.1401 0.0552

Special Stein− Stein (New) 5.9198 3.5947 1.6585 0.5474 0.1428 0.0804

Special Heston(New) 5.9312 3.5745 1.6483 0.5332 0.1235 0.0879

Special New Continuous (New) 5.9268 3.5593 1.6227 0.5083 0.109 0.105

Heston−Nandi 5.9282 3.5808 1.6835 0.5634 0.1272 0.0712

New GARCH(1, 1) 5.936 3.6086 1.7257 0.5919 0.1358 0.0482

6.3.1. XOM Parameter Estimation

With the stock price information and transformed trading volume serving as volatility

proxy, we perform MLE method to get parameter estimates in each model. The parameter

estimation results are shown in Table 6.7.

6.3.2. XOM In Sample Performance Comparison

After getting ML estimators for each model, we show forecasted option prices of

different strike prices in Table 6.8, as well as observed market prices. From this table, all

the stochastic volatility models with the new method outperform the two baseline models.

And the new GARCH (1,1) has the smallest RMPE and thus the best performance among

all models.

6.3.3. XOM Out of Sample Performance Comparison

The out of sample performance of Exxon Mobil is shown in Table 6.9. We can see

that all the stochastic volatility models with the new method outperform the two baseline
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Table 6.7. XOM In Sample Performance

BS σ = 0.1655

SE 0.015

Hull −White κ = 111.4 θ = 0.1869 σ = 0.0344

SE 4.197 0 0.0031

Stein− Stein κ = 162.7 θ = 0.1872 σ = 0.0477 ρ = 0.1363

SE 5.9318 0.0006 0.0043

Heston κ = 162.4 θ = 0.0351 σ = 0.0953 ρ = 0.1362

SE 5.932 0.0002 0.0086

New Continuous κ = 323.7 θ = 0.0351 σ = 0.1904 ρ = 0.1335

SE 4.1944 0.0002 0.0172

Stein Special Case σ = 0.0583

SE 0.0053

Heston Special Case σ = 0.1165

SE 0.0106

New Cont Special σ = 0.2328

SE 0.0211

Heston−Nandi λ = 4.334 ω = 1.291E − 115 α = 1.828E − 05 β = 0.8305 γ = −13.04

SE 5.932 0 0.00000507 0 0.005012714

New Garch(1, 1) λ = 3.272 a = 8.9982E − 05 b = 1.8923E − 04 c = 6.4679E − 01

SE 8.389 0 0 0.1177

models. The new method for the special case of generalized Stein and Stein model has the

smallest RMPE and thus the best performance.

6.4. JP Morgan Data Analysis and Option Price Forecasting

The average trading volume for JP Morgan from January 1st to March 31st is between

107 and 108, so p = −1
5
. The ex-dividend date is April 4 with dividend $0.34, which should

be subtracted from stock price during option price computation.
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Table 6.8. XOM In Sample Performance

S = 60.87 55 57.5 60 62.5 65 RMPE

Observed Market price(call) 6.25 4 2.15 0.9 0.3

BS 5.9919 3.7634 1.9875 0.8481 0.2857 0.1743

Hull −White(New) 6.0424 3.8851 2.1693 1.0259 0.4051 0.1293

Stein− Stein(New) 6.0427 3.8878 2.1717 1.0291 0.409 0.1301

Heston(New) 6.0434 3.8877 2.1735 1.0305 0.4087 0.1302

New Continuous(New) 6.0425 3.8857 2.1707 1.0278 0.4068 0.1298

Special Stein− Stein (New) 6.045 3.8893 2.1704 1.0276 0.4097 0.1289

Special Heston(New) 6.0438 3.8845 2.166 1.0229 0.4048 0.1282

Special New Continuous (New) 6.0405 3.8772 2.1555 1.0125 0.3976 0.1274

Heston−Nandi 5.9953 3.7524 1.9606 0.8359 0.2984 0.1823

New GARCH(1, 1) 6.0471 3.8924 2.1758 1.0284 0.4043 0.1271

Table 6.9. XOM Out of Sample Performance

S = 61.34 55 57.5 60 62.5 65 RMPE

Observed Market price(call) 6.65 4.35 2.4 1 0.3

BS 6.3729 4.0571 2.1459 0.8929 0.2821 0.2186

Hull −White(New) 6.41 4.1671 2.3341 1.09 0.4159 0.1529

Stein− Stein(New) 6.403 4.1551 2.3107 1.0658 0.4024 0.1561

Heston(New) 6.4047 4.1535 2.3127 1.0682 0.4008 0.1557

New Continuous(New) 6.4041 4.1519 2.3102 1.0657 0.399 0.1561

Special Stein− Stein (New) 6.4106 4.1718 2.3348 1.0902 0.4207 0.1523

Special Heston(New) 6.4112 4.1671 2.3318 1.0875 0.4155 0.1524

Special New Continuous (New) 6.4093 4.1622 2.3239 1.0793 0.4097 0.1532

Heston−Nandi 6.3778 4.0523 2.1199 0.8762 0.2936 0.2265

New GARCH(1, 1) 6.4076 4.1582 2.3157 1.0666 0.3964 0.1526
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6.4.1. JPM Parameter Estimation

With the stock price information and transformed trading volume serving as volatility

proxy, we perform MLE method to get parameter estimates in each model. The parameter

estimation results are shown in Table 6.10.

Table 6.10. JPM Parameter Estimation

BS σ = 0.1436

SE 0.013

Hull −White κ = 224.7 θ = 0.1988 σ = 0.0496

SE 4.196 0 0.0045

Stein− Stein κ = 157.8 θ = 0.2005 σ = 0.0797 ρ = −0.0014

SE 8.905 0.0012 0.0078

Heston κ = 210.6 θ = 0.0391 σ = 0.1525 ρ = 0.0077

SE 5.932 0.0003 0.0138

New Continuous κ = 420.3 θ = 0.0392 σ = 0.3037 ρ = 0.0065

SE 4.195 0.0003 0.0275

Stein Special Case σ = 0.1007

SE 0.0091

Heston Special Case σ = 0.2007

SE 0.0182

Special New Continuous σ = 0.4009

SE 0.0363

Heston−Nandi λ = 4.625 ω = 3.197E − 08 α = 1.104E − 54 β = 9.996E − 01 γ = 6.489

SE 4.194 0 0 0 0

New Garch(1, 1) λ = 2.543 a = 1.301E − 04 b = 3.033E − 04 c = 0.8386

SE 11.863 0.00001933 0.00002747 0.1249
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6.4.2. JPM In Sample Performance Comparison

After getting ML estimators for each model, we show forecasted option prices of

different strike prices in Table 6.11, as well as observed market prices. From this table, not

all the stochastic volatility models with the new method outperform the baseline models.

For those models, which underperforms the baseline models, have slightly bigger RMPE

than the baselines. But we still expect better performance of these models in out of sample

performance. And the new method for the special case of the new continuous model has the

smallest RMPE and thus the best performance.

Table 6.11. JPM In Sample Performance

S = 41.64 35 37.5 40 42.5 45 RMPE

Observed Market price(call) 6.65 4.2 2.05 0.6 0.1

BS 6.5403 4.0767 1.8609 0.4979 0.0670 0.1221

Hull −White(New) 6.5485 4.1584 2.13 0.8151 0.2233 0.1264

Stein− Stein(New) 6.5492 4.1619 2.139 0.825 0.2296 0.1319

Heston(New) 6.5481 4.1563 2.125 0.8094 0.2199 0.1234

New Continuous(New) 6.548 4.1555 2.123 0.8072 0.2186 0.1222

Special Stein− Stein (New) 6.5512 4.1641 2.1349 0.8188 0.2305 0.1290

Special Heston(New) 6.5502 4.1607 2.1258 0.809 0.224 0.1235

Special New Continuous (New) 6.549 4.1538 2.1081 0.7887 0.2123 0.1131

Heston−Nandi 6.5402 4.074 1.8458 0.4791 0.0603 0.1310

New GARCH(1, 1) 6.5489 4.1593 2.128 0.8082 0.2166 0.1224

6.4.3. JPM Out of Sample Performance Comparison

The out of sample performance of JP Morgan is shown in Table 6.12. We can see

that all the stochastic volatility models with the new method outperform the two baseline

models. The new method for the special case of Heston model and the new GARCH (1,1)

model have the smallest RMPE and thus the best performance.

97



Table 6.12. JPM Out of Sample Performance

S = 41.71 35 37.5 40 42.5 45 RMPE

Observed Market price(call) 6.95 4.55 2.35 0.75 0.15

BS 6.9149 4.4364 2.1158 0.5735 0.0709 0.1459

Hull −White(New) 6.9175 4.4813 2.3278 0.8746 0.2225 0.0736

Stein− Stein(New) 6.9185 4.484 2.3387 0.8875 0.2315 0.0788

Heston(New) 6.9175 4.481 2.3267 0.8733 0.2217 0.0731

New Continuous(New) 6.9175 4.4805 2.3251 0.8712 0.2204 0.0723

Special Stein− Stein (New) 6.9198 4.4845 2.333 0.8765 0.2291 0.0745

Special Heston(New) 6.9184 4.4836 2.3258 0.8694 0.2228 0.0715

Special New Continuous (New) 6.9179 4.4799 2.3133 0.8529 0.2131 0.0661

Heston−Nandi 6.9148 4.4352 2.1045 0.5551 0.0641 0.155

New GARCH(1, 1) 6.9179 4.4834 2.3302 0.8727 0.2183 0.0715

6.5. Conclusion

From the real data application and analysis of those four companies, we can conclude

the following: (1) All the stochastic volatility models with the new method have smaller

average RMPE than BS model and Heston-Nandi GARCH (1,1) model. This further proves

that besides being correlated with all measures of volatility, the trading volume itself can

serve as a measure of volatility under some transformation. And the new method of mea-

suring volatility is robust. (2) No matter for in sample data analysis or out of sample data

analysis, the new GARCH (1,1) has the smallest average RMPE for both categories and thus

the best performance. There are two major reasons for the new GARCH (1,1) to have the

best performance. The first one is that the new method of measuring volatility carries more

information into the option pricing process and thus provides more accurate option prices.

The second reason is because the new GARCH (1,1) model is discrete with exact closed

form solution and thus has no discretization error. (3) In real data analysis, the drift term of

the continuous stochastic volatility models is close to zero most of the times. Even though
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this is not always true, the performance of the new method for the special case of Hull and

White model, Stein-Stein model, Heston model, and the new continuous model shows this.

This is why the new method for those special cases outperform BS model and Heston-Nandi

GARCH (1,1) model.

Both the simulation and real data application and analysis show that the new method

of measuring volatility works well. And the forecasted option prices outperform the two

baseline models - BS model and Heston-Nandi GARCH (1,1) model in terms of RMPE.

Further work for improvement could lie in more refined method of identifying m and p to

get more accurate option price forecast.
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APPENDIX A

GIL-PELAEZ INVERSION THEOREM
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Proof of Gil-Pelaez (1951) Inversion Theorem (The proof is quoted from Crisos-

tomo (2014) [9]).

Proof. The proof follows the reasoning in Kendall, Stuart and Ird (1994) [26] and Wu (2007)

[41]. First we start with the integral

I =

∫ ∞
0

eiwxφX(−w)− e−iwxφX(w)

iw
dw

Replacing each characteristic function by its integral form, the expression above becomes

I =

∫ ∞
0

eiwx
∫∞
−∞ e

−iwzdF (z)− e−iwx
∫∞
−∞ e

iwzdF (z)

iw
dw

=

∫ ∞
0

∫ ∞
−∞

eiwxe−iwz − e−iwxeiwz

iw
dF (z)dw

=

∫ ∞
0

∫ ∞
−∞

eiw(x−z) − e−iw(x−z)

iw
dF (z)dw

Next, considering Euler’s equality sin(θ) = (eiθ − e−iθ)/2i, and using θ = w(x− z), it

can be seen that 2 sinw(x− z) = (eiw(x−z)− e−iw(x−z))/i. Notice that, for any real number δ,

limn→∞
∫ n

0
sin(δt)/tdt = (π/2)sgn(δ). Therefore, applying Fubini’s theorem and the above

fact (replace δ with x− z, t with w ) , the integral I simplifies to

I =

∫ ∞
0

∫ ∞
−∞

2 sinw(x− z)

w
dF (z)dw

=

∫ ∞
−∞

∫ ∞
0

2 sinw(x− z)

w
dwdF (z)

=

∫ ∞
−∞

πsgn(x− z)dF (z)

= π[F (x) + 0− (1− F (x))]

= π[2F (x)− 1]
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Consequently, solving for F (x) and then substituting I by its original definition yields

F (x) =
1

2
+

1

2π

=
1

2
+

1

2π

∫ ∞
0

eiwxφX(−w)− e−iwxφX(w)

iw
dw

Finally, since the desity of X is a real-valued function, using the properties of Fourier

transforms, φX(w) has conjugate symmetry and [φX(w) + φX(−w)]/2 = Re[φX(w)]. There-

fore, the CDF of X can also be expressed as

F (x) =
1

2
+

1

π

∫ ∞
0

eiwxφX(−w)− e−iwxφX(w)

2iw
dw

=
1

2
− 1

π

∫ ∞
0

Re[
e−iwxφX(w)

iw
]dw

Here, we finish the proof of Gil-Pelaez Inversion Theorem.
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Convergence to Continuous Time Limit Under Physical Measure P.

Proof. Notice that the first equation of our model (equation (30)) under physical mea-

sure is the Euler discretization of the continuous-time limit (equation (32) ). According to

Yan (2002) [42], Euler discretization is weakly convergent. This proves the first equation

convergence.

Rewrite the second equation of our model under physical measure as follows

(B1) ht = a− b2 − cht−∆ + (bzt−∆ −
√
ht−∆)2

Notice that ht is the conditional variance of the stock return between the time interval

t−∆ and t. For notational clarity, rewrite it as ∆ht−∆ with starting point ∆h0.

Divide ∆ to both sides of the above equation and let ∆vt = ∆ht
∆

for t ≥ 0 with

starting point ∆v0 = ∆h0

∆
. Then ∆vt−∆ is the variance per unit of time calculated from the

time interval (t−∆, t).

From (B1), we have

(B2) ∆vt =
a− b2

∆
− c(∆vt−∆) + (

b√
∆
zt−∆ −

√
∆vt−∆)2

Discretize the process ∆vt as follows:

∆vt = ∆vj∆

for j∆ ≤ t < (j + 1)∆, where j is a natural number. Let a = κθ∆2, b = σ∆
2
− κσ∆2

4
,

c = κ∆− κ2∆2

4
, and plug them into (B2) to get

(B3) ∆vj∆ = κ(θ − ∆v(j−1)∆)∆ + (
κ2∆2

4
+ 1)∆v(j−1)∆ + (

κσ∆
3
2

2
− σ
√

∆)zt−∆
√

∆v(j−1)∆

+ (
κ2σ2∆3

16
+
σ2∆

4
− κσ2∆2

4
)(z2

t−∆ − 1)

with starting point ∆v0. Let’s choose a starting point v0 for the continuous volatility process,

which satisfies the following equality

(B4) ∆v0 =
a− b2

∆
− c(v0) + (

b√
∆
zt−∆ −

√
v0)2
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We assume the starting point v0 follows a non-central chi-square distribution with

mean µ0 and variance σ2
0. Also assume the non-central chi-square distribution that v0 follows

is generated by a normal variable that is independent of the normal variable that generates

∆v0. we can see that the left-hand side of (B4) is a linear combination of shifted and scaled

random variables of non-central chi-square distributions. Thus, we can conclude that ∆v0,

on the right-hand side of (B4), also follows a non-central chi-square distribution.

Do the substitution a = κθ∆2, b = σ∆
2
− κσ∆2

4
, c = κ∆ − κ2∆2

4
in (B4), we can see

that ∆v0 and v0 also satisfy (B3). That is

(B5) ∆v0 = κ(θ − v0)∆ + (
κ2∆2

4
+ 1)v0 + (

κσ∆
3
2

2
− σ
√

∆)zt−∆

√
v0

+ (
κ2σ2∆3

16
+
σ2∆

4
− κσ2∆2

4
)(z2

t−∆ − 1)

Take expectation for both sides of (B5), we get

E[∆v0] = κ(θ − µ0)∆ + (
κ2∆2

4
+ 1)µ0

where µ0 = E[v0]. Let ∆→ 0+, we have

(B6) lim
∆→0+

E[∆v0] = µ0

Take variance for both sides of (B3) and take the limit, we will get

(B7) lim
∆→0+

V ar[∆v0] = lim
∆→0+

[(
κ2∆2

4
+ 1)v0]

We get the above equality is because when ∆→ 0+, the variance terms and covariance terms

containing ∆ will go to zero. Take out the coefficient on the right side of (B7), we get

(B8) lim
∆→0+

V ar[∆v0] = lim
∆→0+

(
κ2∆2

4
+ 1)2V ar[v0]

Since V ar[v0] = σ2
0, and lim∆→0+(κ

2∆2

4
+ 1)2 = 1, we get

(B9) lim
∆→0+

V ar[∆v0] = V ar[v0] = σ2
0
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From (B5), we get

(B10) lim
∆→0+

∆v0 = v0

Let F∆ and F be the cumulative distribution functions of ∆v0 and v0 respectively. Since the

cumulative functions of non-central chi-square distributions are continuous on positive real

line, together with (B6), (B9), (B10), we can get

(B11) lim
∆→0+

F∆(y) = lim
∆→0+

P (∆v0 ≤ y) = F (y)

From (B3), we have

1

∆
E[∆vt − ∆vt−∆|∆vt−∆ = y] = κ(θ − ∆vt−∆) +

κ2∆

4
∆vt−∆

1

∆
V ar[∆vt − ∆vt−∆|∆vt−∆ = y] = σ2

∆vt−∆ + (
σ4

8
− σ2κ∆vt−∆ +

σ2κ2

4
∆vt−∆∆)∆

− κσ4∆4

16
+

5κ2σ4∆5

64
− κ3σ4∆6

32
+
κ4σ4∆7

256

So, if we let ∆→ 0+, the conditional expectation and variance above become

(B12) lim
∆→0+

1

∆
E[∆vt − ∆vt−∆|∆vt−∆ = y] = κ(θ − ∆vt−∆)

(B13) lim
∆→0+

1

∆
V ar[∆vt − ∆vt−∆|∆vt−∆ = y] = σ2

∆vt−∆

For δ = 1, from (B3) we have

|∆vt − ∆vt−∆|2+δ = |(
√

∆)3g(∆)3|

where

g(∆) = κ(θ − ∆v(j−1)∆)
√

∆ +
κ2∆

3
2

4
∆v(j−1)∆ + (

κσ∆

2
− σ)zt−∆

√
(∆v(j−1)∆)

+ (
κ2σ2∆3

16
+
σ2∆

4
− κσ2∆2

4
)(z2

t−∆ − 1)
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Then

lim
∆→0+

1

∆
E[|∆vt − ∆vt−∆|2+δ|∆vt−∆ = y] = lim

∆→0+

1

∆
E[|(
√

∆)3g(∆)3|]

= lim
∆→0+

√
∆E[|g(∆)3|]

Since g(∆) only involves one random variable zt−∆, whose any moment is finite, and other

quantities are finite, we can conclude that E[|g(∆)3| is finite. Then together with the above

equality, we can get

(B14) lim
∆→0+

1

∆
E[|∆vt − ∆vt−∆|2+δ|∆vt−∆ = y] = 0

Based on (B11), (B12), (B13), and (B14), by Theorem 2.1 in Foster and Nelson (1994)

[16], this proves that (31) converges to (33) weakly. This completes Theorem 4.1.
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Convergence to Continuous-time Limit Under Risk-neutral Measure Q

Proof. Since (34) is the Euler discretization of (36), by Yan (2002), we can conclude that

(34) converges to (36) weakly.

Rewrite the second equation of our model under risk-neutral measure as follows

(C1) h(t) = a− b2 − ch(t−∆) + (bz∗(t−∆)− [b(λ+
1

2
) + 1]

√
h(t−∆))2

As in Appendix B, , rewrite h(t) as ∆ht−∆ with starting point ∆h0.

Divide ∆ to both sides of the above equation and let ∆vt = ∆ht
∆

for t ≥ 0 with starting

point ∆v0 = ∆h0

∆
. From (C1), we have

(C2) vt =
a− b2

∆
− cvt−∆ + (

b√
∆
z∗t−∆ − [b(λ+

1

2
) + 1]

√
vt−∆)2

Discretize the process ∆vt as follows:

∆vt = ∆vj∆

for j∆ ≤ t < (j + 1)∆, where j is a natural number. Let a = κθ∆2, b = σ∆
2
− κσ∆2

4
,

c = κ∆− κ2∆2

4
, and plug them into (C2) to get

(C3) ∆vj∆ =
1

∆
[κθ∆2− (

σ∆

2
− κσ∆2

4
)2]− (κ∆− κ

2∆2

4
)∆v(j−1)∆ +{ 1√

∆
(
σ∆

2
− κσ∆2

4
)z∗t−∆

− [(
σ∆

2
− κσ∆2

4
)(λ+

1

2
) + 1]

√
∆v(j−1)∆}2

with starting point ∆v0. Let’s choose a starting point v0 for the continuous volatility process,

which satisfies the following equality

(C4) ∆v0 =
a− b2

∆
− cv0 + (

b√
∆
z∗t−∆ − [b(λ+

1

2
) + 1]

√
v0)2

We assume the starting point v0 follows a non-central chi-square distribution with

mean µ0 and variance σ2
0. Also assume the non-central chi-square distribution that v0 follows

is generated by a normal variable that is independent of the normal variable that generates

∆v0. we can see that the left-hand side of (C4) is a linear combination of shifted and scaled
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random variables of non-central chi-square distributions. Thus, we can conclude that ∆v0,

on the right-hand side of (C4), also follows a non-central chi-square distribution.

Do the substitution a = κθ∆2, b = σ∆
2
− κσ∆2

4
, c = κ∆ − κ2∆2

4
in (C4) , we can see

that ∆v0 and v0 also satisfy (C3). That is

(C5) ∆v0 =
1

∆
[κθ∆2 − (

σ∆

2
− κσ∆2

4
)2]− (κ∆− κ2∆2

4
)v0 + { 1√

∆
(
σ∆

2
− κσ∆2

4
)z∗t−∆

− [(
σ∆

2
− κσ∆2

4
)(λ+

1

2
) + 1]

√
v0}2

Take expectation for both sides of (C5) and let ∆→ 0+, we get

(C6) lim
∆→0+

E[∆v0] = E[v0] = µ0

Take variance for both sides of (C3) and let ∆→ 0+, we get

(C7) lim
∆→0+

V ar[∆v0] = lim
∆→0+

V ar{[[(σ∆

2
− κσ∆2

4
)(λ+

1

2
) + 1]

√
v0]2} = V ar[v0] = σ2

0

We get the above equality is because when ∆→ 0+, the variance terms and covariance terms

containing ∆ will go to zero.

From (C5), we get

(C8) lim
∆→0+

∆v0 = v0

Let F∆ and F be the cumulative distribution functions of ∆v0 and v0 respectively. Since the

cumulative functions of non-central chi-square distributions are continuous on positive real

line, together with (C6), (C7), (C8), we can get

(C9) lim
∆→0+

F∆(y) = lim
∆→0+

P (∆v0 ≤ y) = F (y)

From (C3), we get

(C10) lim
∆→0+

1

∆
E[∆vt − ∆vt−∆|∆vt−∆ = y] = κ(θ − ∆vt−∆) + σ(λ+

1

2
)∆vt−∆

(C11) lim
∆→0+

1

∆
V ar[∆vt − ∆vt−∆|∆vt−∆ = y] = σ2

∆vt−∆
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For δ = 1, from (C3) we have

|∆vt − ∆vt−∆|2+δ = |(
√

∆)3g(∆)3|

where

g(∆) =[κθ
√

∆− (
σ∆

1
4

2
− κσ∆

5
4

4
)2] + [(

σ∆
1
4

2
− κσ∆

5
4

4
)z∗t−∆]2

− 2[(
σ∆

1
4

2
− κσ∆

5
4

4
)z∗t−∆][(

σ∆

2
− κσ∆2

4
)(λ+

1

2
) + 1]

√
∆v(j−1)∆

+ 2(
σ∆

1
2

2
− κσ∆

3
2

4
)(λ+

1

2
)
√

∆v(j−1)∆

+ (
σ∆

3
4

2
− κσ∆

7
4

4
)(λ+

1

2
)
√

∆v(j−1)∆

Then

lim
∆→0+

1

∆
E[|∆vt − ∆vt−∆|2+δ|∆vt−∆ = y] = lim

∆→0+

1

∆
E[|(
√

∆)3g(∆)3|]

= lim
∆→0+

√
∆E[|g(∆)3|]

Since g(∆) only involves one random variable zt−∆, whose any moment is finite, and other

quantities are finite, we can conclude that E[|g(∆)3| is finite. Then together with the above

equality, we can get

(C12) lim
∆→0+

1

∆
E[|∆vt − ∆vt−∆|2+δ|∆vt−∆ = y] = 0

Based on (C9), (C10), (C11), and (C12), by Theorem 2.1 in Foster and Nelson (1994)

[16], this proves that (35) converges to (37) weakly. This completes Theorem 4.3.
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Proof of Proposition 2 (Heston and Nandi (2000) ).

Proof. Let f(φ) denote the conditional moment generating function of the conditional prob-

ability density, p(x(T )|S(t), h(t)), where x(T ) is the logarithm of the terminal asset price

(x(T ) = logS(T )). Let g(x(T )) = 1
f(1)

exp(x(T ))p(x(T )|S(t), h(t)). It is easy to see that

it is a valid probability density because it is non-negative and f(1) = Et[exp(x(T ))] from

equation (38). Notice that

g(x(T )) =
1

f(1)
exp(x(T ))p(x(T )|S(t), h(t))

=
1

Et[exp(x(T ))]
exp(x(T ))p(x(T )|S(t), h(t))

=
1∫∞

−∞ exp(x(T ))p(x(T )|S(t), h(t))dx(T )
exp(x(T ))p(x(T )|S(t), h(t))

Notice that, the above expression shows that all the computations about g(x(T )) are , in fact,

conditional on S(t) and h(t). And this conditioning is realized through p(x(T )|S(t), h(t)).

And the moment generating function for g(x(T )) is∫ ∞
−∞

exp(φx(T ))g(x(T ))dx(T ) =
1

f(1)

∫ ∞
−∞

exp((φ+ 1)x(T ))p(x(T )|S(t), h(t))dx(T )

=
f(φ+ 1)

f(1)

Since the terminal asset price is exp(x(T )), the conditional expectation of a call option

payoff separates into two terms with probability integrals.

E[Max(ex(T ) −K, 0)|S(t), h(t)] =

∫ ∞
log(K)

exp(x(T ))p(x(T )|S(t), h(t))dx(T )

−K
∫ ∞

log(K)

p(x(T )|S(t), h(t))dx(T )

=f(1)

∫ ∞
log(K)

g(x(T ))dx(T )−K
∫ ∞

log(K)

p(x(T )|S(t), h(t))dx(T )(D1)

113



Since f(φ+1)
f(1)

is the moment generating function corresponding to g(x(T )), due to the re-

lationship between characteristic function and moment generating function, f(iφ+1)
f(1)

is the

characteristic function corresponding to g(x(T )). Feller (1971) [14] and Kendall and Stuart

(1977) [25] show how to recover the ”probabilities” from the characteristic function below

(D2)

∫ ∞
log(K)

g(x(T ))dx(T ) =
1

2
+

1

π

∫ ∞
0

Re[
e−iφ log(K)f(iφ+ 1)

iφf(1)
]dφ

And f(φ) is the moment generating function corresponding to p(x(T )|S(t), h(t)), then f(iφ)

is the characteristic function corresponding to p(x(T )|S(t), h(t)). We can recover the “prob-

abilities” from the characteristic function below

(D3)

∫ ∞
log(K)

p(x(T )|S(t), h(t))dx(T ) =
1

2
+

1

π

∫ ∞
0

Re[
e−iφ log(K)f(iφ)

iφ
]dφ

Substituting equation (D2) and equation (D3) into (D1) proves the proposition.
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